SCS ENGINEERS

July 28, 2003

File No.: 01203087.00

Ms. Eva Chu Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-9335

Subject: Second Quarter 2003 Groundwater Monitoring Report

Friesman Ranch Property, Livermore, California

Dear Ms. Chu:

Attached is the Second Quarter 2003 Groundwater Monitoring Report for the Friesman Ranch Property, 1 600 Friesman Road, Livermore, California (Site). The results of this report are consistent with the results of the previous groundwater monitoring events that have been performed at the Site, with chemicals of concern only being detected in monitoring wells KMW-6 and KMW-7. No chemicals of concern were detected in the other monitoring wells sampled (KMW-1 and KMW-8).

SCS Engineers is planning to perform the next groundwater monitoring event by the end of July, 2003. During this upcoming event, we plan to collect samples from monitoring wells KMW-1, KMW-6, KMW-7 and KMW-8, and analyze them for chemicals of concern.

We trust that the attached submittal meets your requirements. Should you require any additional information and/or clarification, please call.

Very truly yours,

James A. Lehrman, RG, CHG Senior Technical Manager

Attachment

cc: Ms. Lorraine Del Prado, Children's Hospital Medical Foundation Ms. Leah Goldberg, Hansen, Bridgett, Marcus, Vlahos and Rudy, LLP

Alameda County

JUL 3 2003

Environmental Health

QUARTERLY GROUNDWATER MONITORING REPORT SECOND QUARTER 2003 FRIESMAN RANCH PROPERTY LIVERMORE, CALIFORNIA

Prepared for:

Children's Hospital and Research Center Foundation 5225 Dover Street Oakland, California 94609-1809

Prepared by:

SCS Engineers 6850 Regional Street, Suite 240 Dublin, California 94568

> July 28, 2003 File No. 01203087.00

This Quarterly Monitoring Report for the Second Quarter of 2003 for the Friesman Ranch Property, Livermore, California, dated July 28, 2003 is based on data provided by personnel working for ATC Associates of Pleasanton, California. This report has been prepared and reviewed by the following:

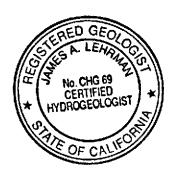
Emily Harris

Staff Geologist

Alex Naughton

Project Scientist

Registered Environmental Assessor No. 7819


James A. Lehrman

Senior Technical Manager

California Registered Geologist #5032

California Certified Hydrogeologist #HG 69

SCS ENGINEERS

TABLE OF CONTENTS

1. INTRODUCTION1
1.1 OBJECTIVES AND SCOPE OF WORK1
2. FIELD ACTIVITES1
2.1INTRODUCTION
3. SUMMARY OF RESULTS4
3.1 INTRODUCTION 4 3.2 WATER LEVELS 4 3.3 FREE-PRODUCT THICKNESS 4 3.4 GROUNDWATER SAMPLES 4 3.4.1 Chemicals of Concern 5 3.4.2 Bio-Parameters 5 3.5 QUALITY ASSURANCE/QUALITY CONTROL SAMPLES 7 3.5.1 Trip Blank 7 3.5.2 Blind Duplicate Sample 7 4. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 8 4.1 FIELD ACTIVITIES 8 4.2 GROUNDWATER CHEMISTRY 8 4.3 RECOMMENDATIONS 9
LIST OF FIGURES
Figure 1 Site Vicinity Map Figure 2 Sampling Locations Figure 3 Groundwater Elevations and Hydraulic Gradient Figure 4 Groundwater Analytical Results: April 2003
LIST OF TABLES
Table 1 Summary of Groundwater Elevation Data Table 2 Summary of Groundwater Analytical Results Table 3 Quality Assurance/Quality Control Sample Analytical Results Table 4 Bio-attenuation Parameter Analytical Results

LIST OF APPENDICES

APPENDIX A FIELD MONITORING NOTES

Record of Water Level Measurements - April 15, 2003

Field Purge/Sampling Worksheets - April 15, 2003

APPENDIX B CHAIN-OF-CUSTODY RECORDS AND CERTIFIED ANALYTICAL

LABORATORY REPORTS

DISCLAIMER

This report has been prepared for the Children's Hospital and Research Center Foundation with specific application to a Quarterly Monitoring report for property located at 1600 Friesman Road, Livermore, California. The report has been prepared using data provided through fieldwork and sampling conducted by personnel from ATC Associates, Inc. of Pleasanton, California. It is assumed field activities and sampling was conducted in accordance with the care and skill generally exercised by reputable professionals, under similar circumstances, in this or similar localities. No other warranty, either expressed or implied, is made as to the professional advice presented herein.

Changes in site use and conditions may occur due to variations in rainfall, temperature, water usage, or other factors. Additional information which was not available to the consultant at the time of this investigation or changes which may occur on the site or in the surrounding area may result in modification to the site that would impact the summary presented herein. This report is not a legal opinion.

1. INTRODUCTION

This report describes the results of the Second Quarter 2003 Groundwater Monitoring Event at the Friesman Ranch Property, Livermore, California (Site) (Figure 1). Field work was performed by personnel from ATC Associates, Inc. (ATC) of Pleasanton, California. Data was provided to SCS Engineers (SCS), who used it to prepare this report.

1.1 OBJECTIVES AND SCOPE OF WORK

The objectives of the activities performed were to:

- Continue a regularly scheduled groundwater monitoring program to track spatial and temporal variations in groundwater conditions; and
- Assess current Site groundwater conditions.

To meet these objectives, the following scope of work was implemented:

- Implementation of the scheduled groundwater monitoring event by ATC. Groundwater monitoring included water-level measurements, an evaluation of free-product thickness (if any); and collection of water quality samples for chemicals-of-concern (COCs) and biological attenuation (bio-attenuation) parameters including biological and chemical oxygen demand of select samples.
- Evaluation of bio-attenuation parameters by SCS; and
- Preparation of this quarterly groundwater monitoring report by SCS.

2. FIELD ACTIVITES

2.1 INTRODUCTION

This section summarizes the field activities performed for the quarterly groundwater monitoring program. Field activities were performed by ATC on April 15, 2003. Figure 2 shows the locations of the existing groundwater monitoring wells.

2.2 GROUNDWATER MONITORING ACTIVITES

The eight Site wells (KMW-1 through KMW-8) were monitored for depth to groundwater during this event. Wells KMW-1, KMW-6, KMW-7 and KMW-8 were sampled during this event. The goal of these activities was to measure water levels, assess free-product thickness (if any) and collect water quality samples that accurately represent stabilized aquifer conditions.

Prior to sampling, field instrumentation was calibrated and/or checked before opening the monitoring wells. All instruments were successfully calibrated and checked. Logs of field activities are provided in Appendix A.

2.2.1 Water Level Measurement

The wells were opened and ventilated for a minimum of 0.5 hour. Prior to purging, the depth to water was measured in the wells to the nearest 0.01-foot using a clean, calibrated electronic water-level indicator. Water-level data were used to calculate the required purge volumes for sampling. Measurements were recorded on Water-Level Measurement Records (Appendix A).

2.2.2 Groundwater Sample Collection

Upon completion of the water-level measurements, ATC purged the monitoring wells by using a Honda pump and dedicated disposable tubing. During purging, aquifer parameters (hydrogen ion index [pH], temperature, and electrical conductivity) were measured to evaluate whether the water in each well had stabilized prior to sampling (Appendix A). The wells were purged until a minimum of three casing volumes of water were removed, aquifer parameters appeared to stabilize, and water levels were allowed to recover to near static levels before sampling.

Water from each well was collected using disposable polyvinyl chloride (PVC) bailers. Groundwater monitoring well samples were placed in appropriate containers (40-millilter [ml] glass volatile organic analysis [VOA] vials, 1-liter amber glass bottles and/or 500-ml or 250-ml polyethylene bottles), labeled, and the containers were then placed in ZiplocTM plastic bags. The samples were stored in an ice chest packed with loose water-based ice maintained at 4 +/- 2 degrees Celsius (°C) for delivery to the laboratory.

Water from the on-site water supply well was collected from a spigot in front of the dairy building and sampled (TAP sample) during the Second Quarter 2003 event. Prior to sample collection, the tap was run for approximately 2 to 3 minutes. The sample was then collected from the spigot by holding appropriate labeled containers (as listed above) beneath the water flow. Containers were then placed into ZiplocTM plastic bags and stored in an ice chest packed with loose water-based ice maintained at 4 +/- 2 degrees Celsius (°C) for delivery to the laboratory.

2.3 ANALYTICAL LABORATORY PARAMETERS

Groundwater monitoring well samples were analyzed for the following parameters:

- Total petroleum hydrocarbons as gasoline (TPH-g) using Modified United States Environmental Protection Agency (EPA) Method 8015C;
- Total petroleum hydrocarbons as diesel (TPH-d) using Modified EPA Method 8015C;

- Benzene, toluene, ethylbenzene and total xylenes (BTEX) using EPA Method 8021B;
- Methyl tertiary-butyl ether (MTBE) using EPA Method 8021B;
- Alkalinity using Standard Methods for Water and Wastewater (SM) 2320B;
- Ferrous Iron (Fe⁺²) using EPA Method 200.7;
- Sulfate (SO₄⁻²) and Nitrate (NO₃) using EPA Method 300.1;
- Biological Oxygen Demand (BOD) using (SM) 5210B (wells KMW-1 and KMW-6 only); and
- Chemical Oxygen Demand (COD) using EPA Method 410.4 (wells KMW-1 and KMW-6 only).

2.4 QUALITY ASSURANCE/QUALITY CONTROL SAMPLE COLLECTION

Normal quality assurance/quality control (QA/QC) sampling includes the laboratory preparation and analysis of a trip blank that accompanies the ice chest to and from the laboratory, and the collection of a blind duplicate from one sampling location.

For this event, the following QA/QC samples were prepared or collected:

- One trip blank; and
- One blind duplicate collected from well KMW-6.

Because only dedicated and/or new equipment was used to purge the wells and collect the samples, no equipment blank was collected.

2.5 INVESTIGATION-DERIVED WASTE HANDLING PROCEDURES

Investigation-derived wastes (IDW – purge water and decontamination rinsate liquids) were containerized on-site in labeled, United States Department of Transportation (DOT)-approved 55-gallon drums.

Drums were inspected prior to use for physical integrity and condition. Each drum was labeled to identify the waste source location, physical contents, date of collection and generator's name. A total of three drums (containing monitoring well purge water and decontamination rinsate liquids) of IDW were generated during this quarter's monitoring activities. The drums will be disposed of at an appropriate licensed facility.

2.6 SITE RESTORATION

Following completion of monitoring activities, the work area was left in a presentable and workable condition as near as practicable to original conditions.

3. SUMMARY OF RESULTS

3.1 INTRODUCTION

Water-level measurements were recorded on April 15, 2003. Groundwater samples were also collected from four of the eight monitoring wells and the water supply well on the Site and submitted for analysis. The samples were analyzed at McCampbell Analytical, Inc., a laboratory certified by the California Department of Health Services (DHS) Environmental Laboratory Accreditation Program (ELAP) for the specific analyses performed.

Appendix B contains certified analytical laboratory reports and chain-of-custody records. Table 1 contains historical water level and free-product thickness measurements. Groundwater analytical results for the COCs are summarized in Table 2.

3.2 WATER LEVELS

As part of the groundwater monitoring event, water levels were measured in monitoring wells KMW-1 through KMW-8 on April 15, 2003. Depths to water ranged from 10.16 to 12.76 feet below ground surface (bgs) in wells KMW-3 and KMW-5 respectively (Table 1). In April 2003, groundwater flow was to the northwest with a hydraulic gradient of approximately 0.01 feet per foot (ft/ft). These results are generally consistent with the previous groundwater monitoring event in January 2003.

3.3 FREE-PRODUCT THICKNESS

No sheen was observed on any of the samples; however, a hydrocarbon odor was noted in wells KMW-6 and KMW-7. No free product was observed or detected in the wells. Historically, no free product has been detected in any of the wells.

3.4 GROUNDWATER SAMPLES

A total of four monitoring wells (KMW-1 and KMW-6 through KMW-8) were sampled and analyzed for TPH-g, TPH-d, BTEX, MTBE and bio-parameters. The water supply well was sampled and analyzed for TPH-g, BTEX and MTBE. Analytical results are summarized in Tables 2 and 4. Certified analytical laboratory reports are included in Appendix B.

3.4.1 Chemicals of Concern

3.4.1.1 Total Petroleum Hydrocarbons as Gasoline

TPH-g was detected at concentrations of 390 micrograms per liter (μ g/L) in KMW-6 and 880 μ g/L in KMW-7, but was not detected in any of the other wells. The TPH-g concentration in the sample from KMW-6 is at least one order of magnitude lower than previous concentrations detected (Table 2). The concentration detected in the sample from KMW-7 is consistent with historical concentrations detected at the same location (Table 2).

3.4.1.2 Total Petroleum Hydrocarbons as Diesel

TPH-d was detected at concentrations of 110 μ g/L in KMW-6 and 350 μ g/L in KMW-7, but was not detected in any of the other wells. The TPH-d concentration detected in the sample from KMW-6 is one order of magnitude lower than previous concentrations detected (Table 2). The concentration detected in the sample from KMW-7 is lower than historical concentrations detected at the same location (Table 2).

3.4.1.3 Aromatic Hydrocarbons

Aromatic hydrocarbons were detected in monitoring wells KMW-6 and KMW-7, but were not detected in the other wells. Benzene was detected in excess of its drinking water maximum contaminant level (MCL), which is 1 μ g/L, at concentrations of 7.4 μ g/L in KMW-6 and 7.1 μ g/L in KMW-7. Toluene was detected below its MCL (150 μ g/L) at concentrations of 0.58 μ g/L in KMW-6 and 0.69 μ g/L in KMW-7. Ethylbenzene was detected below its MCL (700 μ g/L) at concentrations of 8.5 μ g/L in KMW-6 and 4.4 μ g/L in KMW-7. Total xylenes were detected below the MCL (1,750 μ g/L) at concentrations of 6.1 μ g/L in KMW-6 and 52 μ g/L in KMW-7. These results are consistent with historical concentrations detected, with exception of benzene, toluene, ethylbenzene, and total xylenes detections in the sample from KMW-6; these are at least one order of magnitude lower than previous concentrations detected at this location (Table 2).

3.4.1.4 Methyl Tertiary-Butyl Ether

MTBE was not detected in any of the sampled wells. These results are consistent with historical findings (Table 2).

3.4.2 Bio-Parameters

3.4.2.1 Dissolved Oxygen

Dissolved Oxygen (DO) is the most thermodynamically favored electron acceptor used in the biodegradation of fuel hydrocarbons. During aerobic biodegradation, DO concentrations decrease.

DO was measured in the field at 0.51 milligrams per liter (mg/L) in well KMW-7 (Table 4). This well represents dissolved oxygen conditions inside the hydrocarbon plume. DO measurements in wells KMW-1 and KMW-8 (wells outside the plume) were 0.56 and 0.51, respectively.

3.4.2.2 Oxidation-Reduction Potential

The Oxidation-Reduction Potential (ORP) of groundwater is a measure of electron activity and is an indicator of the relative tendency of a solution to accept or transfer electrons. It influences and is influenced by the nature of biologically mediated degradation of COCs.

ORP ranged from less than -100 millivolts (mV) to 145 mV in wells in which COCs were detected (KMW-6 and KMW-7) (Table 4). ORP ranged from 55 mV to 120 mV in wells in which COCs were not detected (KMW-1 and KMW-8). These values generally indicate oxidizing conditions outside the COC plume and reducing conditions inside the plume.

3.4.2.3 Hydrogen-ion Index (pH) and Temperature

The pH and temperature of the shallow groundwater were at levels conducive for the metabolic activity of bacteria capable of degrading fuel hydrocarbons (Table 4).

3.4.2.4 Ferrous Iron

In some cases, Ferric Iron (Fe⁺³) acts as an electron acceptor during anaerobic biodegradation of petroleum hydrocarbons. During this process, Fe⁺³ is reduced to Ferrous Iron (Fe⁺²). Ferrous Iron can thus be used as an indicator of anaerobic degradation of petroleum compounds.

Ferrous Iron (Fe⁺²) was detected in KMW-1 and KMW-6 at respective concentrations of 0.071 mg/L and 2.4 mg/L. (Table 4). It was not detected in KMW-7 or KMW-8.

3.4.2.5 Alkalinity

In general, areas impacted by petroleum hydrocarbons exhibit a total alkalinity higher than that seen in background areas. This is expected because microbially mediated reactions causing biodegradation of these compounds will cause an increase in total alkalinity of the system.

Alkalinity was reported at levels ranging from 384 mg/L in KMW-1 to 577 mg/L in KMW-7 (Table 4). In the impacted areas (i.e., wells KMW-6 and KMW-7), the average alkalinity was 551.5 mg/L. In areas outside the petroleum hydrocarbon plume, the average alkalinity was 404.5 mg/L.

3.4.2.6 Nitrate

After DO has been depleted in the petroleum hydrocarbon impacted areas, nitrate may be used as an electron acceptor for anaerobic biodegradation via denitrification. Nitrate concentrations are used to estimate the mass of petroleum hydrocarbons that can be degraded by this process.

Nitrate was reported at levels of 1.8 mg/L, 15 mg/L, and 2.4 mg/L in KMW-1, KMW-7, and KMW-8, respectively (Table 4).

3.4.2.7 Sulfate

After DO, nitrate and Fe⁺³ have been depleted in the impacted area, sulfate may be used as an electron acceptor for anaerobic degradation. The process is termed sulfate reduction and results in the production of sulfide.

Sulfate concentrations ranged from 12 mg/L in well KMW-6 to 97 mg/L in well KMW-7 (Table 4). The lowest and greatest sulfate concentrations were both found within the impacted area (i.e., wells KMW-6 and KMW-7); thus, it cannot be determined whether or not sulfate reduction is occurring in the impacted area.

3.4.2.8 Biological Oxygen Demand

BOD is a measure of the demand for oxygen in the subsurface by biological processes.

BOD levels ranged from <2.0 mg/L in well KMW-1 (outside the plume) to 6.4 mg/L in well KMW-6 (inside the plume).

3.4.2.9 Chemical Oxygen Demand

COD is a measure of the demand for oxygen in the subsurface by chemical processes.

COD was not detected above the reporting limit of 20 mg/L in either of the two samples (KMW-1 and KMW-6) analyzed for COD. This indicates that except for biological demands, there are no significant demands for oxygen in this environment.

3.5 QUALITY ASSURANCE/QUALITY CONTROL SAMPLES

The QA/QC samples collected and analyzed during this groundwater monitoring event included one trip blank and one blind duplicate sample. The results for these QA/QC samples are summarized on Table 3 and certified analytical laboratory reports are contained in Appendix B.

3.5.1 Trip Blank

One trip blank was prepared and analyzed for the April 2003 groundwater monitoring event. The trip blank contained no detectable concentrations of TPH-d, TPH-g, MTBE or BTEX.

3.5.2 Blind Duplicate Sample

One blind duplicate sample (KMW-16) was collected from monitoring well KMW-6 on April 15, 2003. This duplicate sample was analyzed for TPH-g, TPH-d, BTEX, and MTBE. The Relative Percent Differences (RPDs) for TPH-d, TPH-g, benzene, toluene, ethylbenzene and total xylenes (the analytes detected) were 9.5, 36.4, 55.2, 12.8, 41.1 and 68.1 percent, respectively (Table 3). The RPDs for TPH-g, benzene, ethylbenzene, and total xylenes for Second Quarter 2003 were generally greater than RPDs associated with duplicate data from past sampling events. However, KMW-6 sample concentrations of all detected constituents in the Second Quarter 2003

are significantly reduced with respect to concentrations detected in previous quarters. The absolute differences between KMW-6 sample results and duplicate sample results in the Second Quarter 2003 are small, and do not appear to be significant.

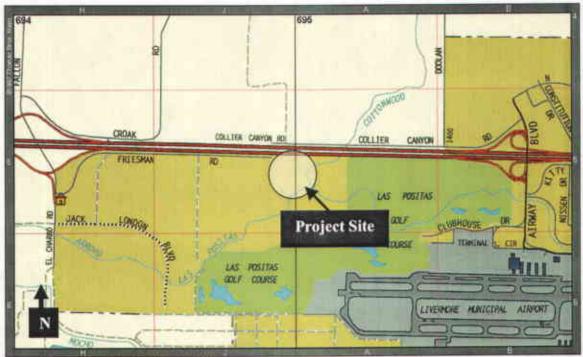
4. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

The summary and conclusions presented in this section are based on research implemented, information collected, and interpretations developed during this and previous investigations performed at the property. The data evaluated in this report was collected by ATC during April 2003. The summary and conclusions that follow are presented in the categories of field activities and groundwater chemistry.

4.1 FIELD ACTIVITIES

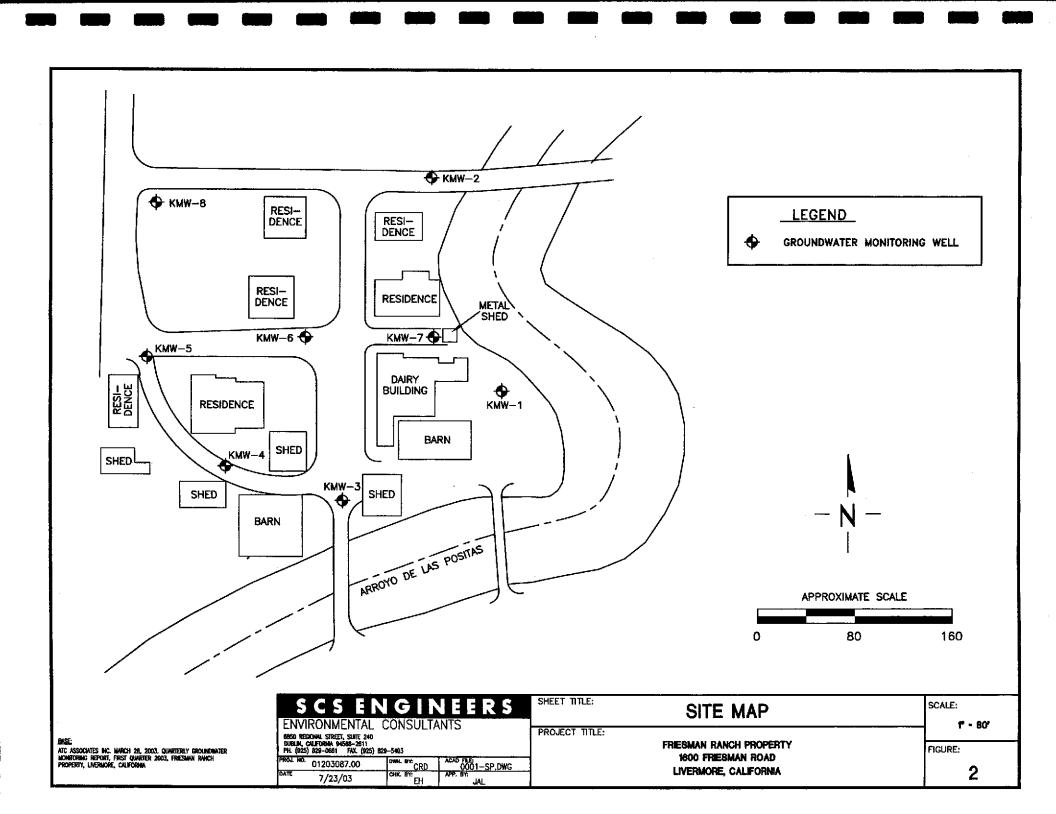
- Field activities performed consisted of the Second Quarter 2003 groundwater monitoring event.
- Water level measurements and the collection of water quality samples were conducted. The samples collected were analyzed for COCs (TPH-g, TPH-d, BTEX, and MTBE), bio-attenuation parameters (DO, ORP, alkalinity, Ferrous Iron, nitrate, sulfate, BOD and COD).
- Prior to the initiation of field activities, and between sampling locations, all equipment was decontaminated.
- Purge water and decontamination rinsate liquids were containerized and stored on-site in DOT-approved 55-gallon drums. They will be disposed of at a licensed facility.
- Following completion of field activities, the work area was left in a presentable and workable condition, as nearly as practicable to original conditions.

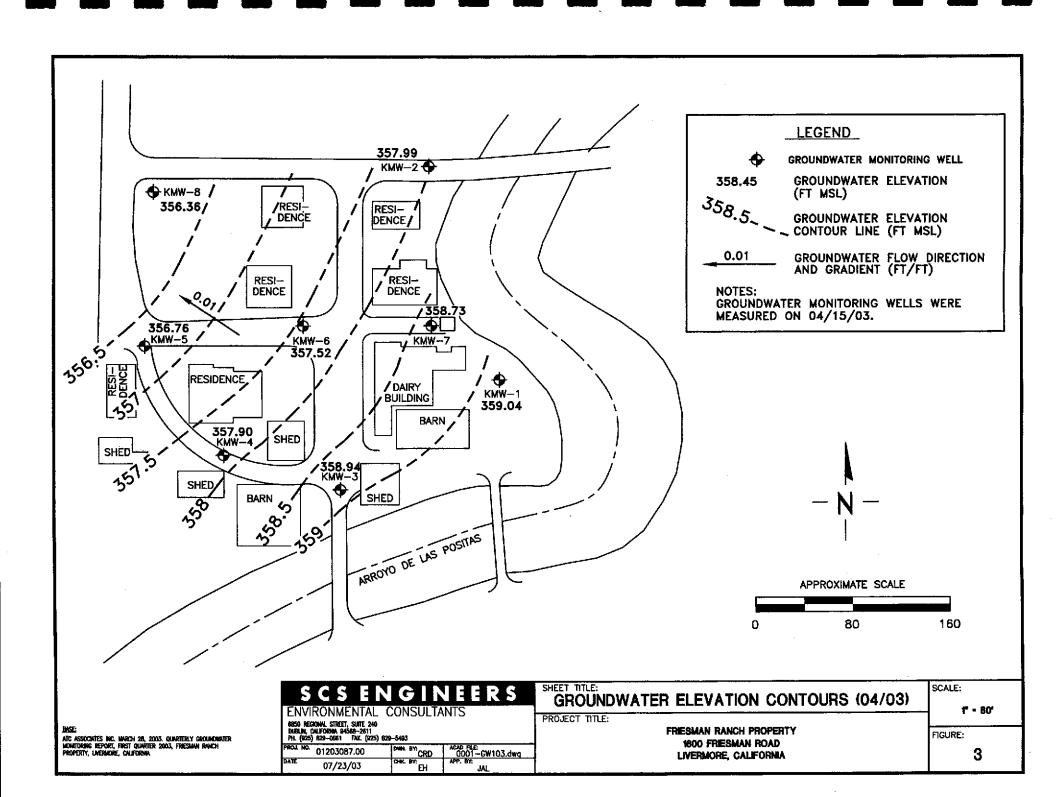
4.2 GROUNDWATER CHEMISTRY


- Only two groundwater monitoring well samples (KMW-6 and KMW-7) contained detectable concentrations of petroleum hydrocarbon compounds. Groundwater samples collected from monitoring wells KMW-1 and KMW-8 and the water supply well (TAP sample) did not contain detectable concentrations of petroleum hydrocarbon compounds.
- The plume is confined to the Site and is stable. Concentrations of COCs continue to decrease with time, indicating that natural processes are working to remediate the plume.
- The subsurface environment appears to be poorly oxygenated. It appears that anaerobic processes (such as iron reduction from Fe⁺³ to Fe⁺²) are operating to decrease the concentrations of COCs in the groundwater.

• The BOD and COD concentrations indicate that the injection of ORC (oxygen releasing compound) into the plume would primarily facilitate Site cleanup by enhancing microbial activity.

4.3 RECOMMENDATIONS


SCS makes the following recommendations concerning further investigations and remedial actions at the property:


- The regularly scheduled groundwater monitoring program should be continued, with the next event being implemented by the end of July 2003.
- Water levels and free-product thickness should be measured and groundwater quality samples should be collected from monitoring wells KMW-1, KMW-6, KMW-7 and KMW-8.
- Groundwater quality samples collected from the four monitoring wells should be analyzed for TPH-g, TPH-d, BTEX and MTBE, as well as bio-attenuation parameters. The water supply well should be analyzed for TPH-g, BTEX and MTBE.
- Implementation of the Workplan for Soil Vapor Survey which was prepared by ATC Associates (April 22, 2003), and approved by Alameda County Heath in a letter to Ms. Lorraine Del Prado (June 2, 2003).

(Source: Thomas Bros. Maps, Bay Area pg. 694)

Site Vicinity Map Friesman Ranch Property Livermore, California

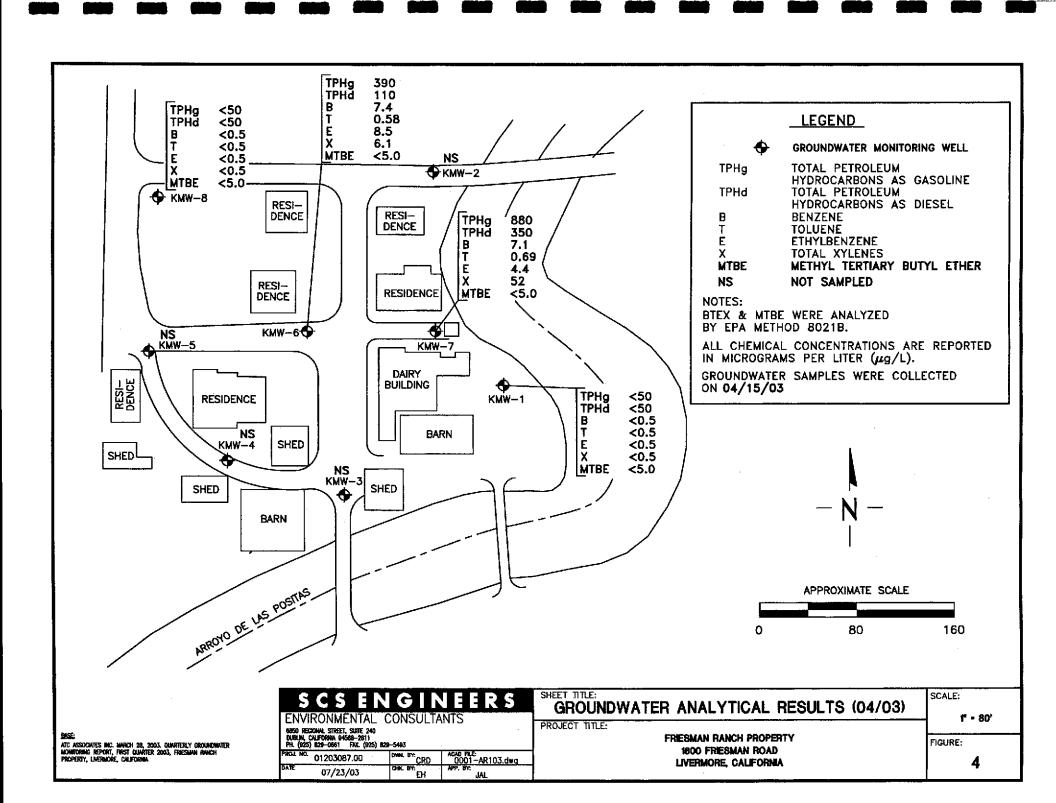


TABLE 1
SUMMARY OF GROUNDWATER ELEVATION DATA
FRIESMAN RANCH PROPERTY
LIVERMORE, ALAMEDA COUNTY, CALIFORNIA

WELL	SAMPLING	WATER	FREE-	1,0.C	GROUNDWATER
NUMBER	DATE	LEVEL FROM	PRODUCT THICKNESS	ELEVATION USGS Datum	ELEVATIONS USGS Datum
		T.O.C.			
		(feet)	(feet)	(FL above MSL)	(FL above MSL)
KMW-1	9/8/1997	12.82	0.00	370.12	357.30
	12/28/1998	12.72	0.00		357.40
	1/12/1999	12.97	0.00		357.15
	3/25/1999	11.99	0.00		358.13
	6/21/1999	NM	NM		NC
	9/16/1999	MM	NM	!	NC
	10/16/2002	14.27	0.00		355.85
	1/17/2003	11.67	0.00	!	358.45
	4/15/2003	11.08	0,00		359.04
KMW-2	9/8/1997	14.28	0.00	370.72	356.44
	12/28/1998	14.08	0.00		356.64
	1/12/1999	14.32	0.00		356.40
	3/25/1999	13.19	0.00		357.53
	6/21/1999	ЙM	NM		NC
	9/16/1999	NМ	NM		NC
	10/16/2002	*	*		*
	1/17/2003	12.77	0.00		357.95
	4/15/2003	12.73	0.00		357.99
KMW-3	9/8/1997	12.34	0.00	369.10	356.76
	12/28/1998	12.39	0.00		356.71
	1/12/1999	15.13	0.00		353.97
	3/25/1999	11.59	0.00		357.51
	6/21/1999	NM	NM		ЙC
	9/16/1999	NM	ŅМ		NC
	10/16/2002	13.69	0.00		355.41
	1/17/2003	10.85	0.00		345.20
	4/15/2003	10.16	0.00		358.94
KMW-4	9/8/1997	13.76	0.00	369.80	356.04
	12/28/1998	13.76	0.00		356.04
	1/12/1999	14.40	0.00		355.40
	3/25/1999	12.89	0.00		356.91
	6/21/1999	NM	NM		NC
	9/16/1999	NM	NM		NC
	10/16/2002	15.92	0.00		353.88
	1/17/2003	12.17	0.00	:	357.63
	4/15/2003	11.90	0.00		357.90

WELL NUMBER	SAMPLING DATE	WATER LEVEL FROM FOC	FREE- PRODUCT THICKNESS	T.O.C ELEVATION USGS Datum	GROUNDWATER ELEVATIONS USGS Datum
		(feet)	(feet)	(Ft. above MSL)	(Ft. above MSL)
KMW-5	9/8/1997	14.24	0.00	369.52	355.28
	12/28/1998	14.17	0.00	!	355.35
	1/12/1999	15.32	0.00		354.20
	3/25/1999	13.27	0.00		356.25
	6/21/1999	NM	NM		NC
	9/16/1999	NM	NM		NC
	10/16/2002	16.45	0.00		353.07
	1/17/2003	12.60	0.00		356.92
	4/15/2003	12.76	0.00		356.76
KMW-6	9/8/1997	14.28	0.00	370.08	355.80
	12/28/1998	14.16	0.00		355.92
	1/12/1999	14.47	0.00		355,61
	3/25/1999	13.22	0.00		356.86
-	6/21/1999	14.56	0.00		355.52
	9/16/1999	14.29	0.00		355.79
	10/16/2002	16.27	0.00	,	353.81
	1/17/2003	12.54	0.00		357.54
	4/15/2003	12.56	0.00	:	357.52
KMW-7	12/28/1998	12.91	0.00	370.04	357.13
	1/12/1999	13.15	0.00		356.89
	3/25/1999	12.12	0.00		357.92
	6/21/1999	12.86	0.00		357.18
	9/16/1999	13.00	0.00		357.04
	10/16/2002	14.63	0.00		355.41
	1/17/2003	11.77	0.00		358.27
	4/15/2003	11.31	0.00		358.73
KMW-8	12/28/1998	13.37	0.00	368.61	355,24
	1/12/1999 3/25/1999 6/21/1999 9/16/1999 10/16/2002	13.70 12.48 13.30 13.57 15.85	0.00 0.00 0.00 0.00 0.00		354.91 356.13 355.31 355.04 352.76
	1/17/2003 4/15/2003	11.87 12.25	0.00 0.00		356.74 356.36

NOTES: G.S. = Ground Surface NC = Not Calculable

NM - Not Measured

T.O.C. = Top of casing. All measurements in feet relative to top of casing.
USGS = United States Geological Survey

All wells have 4" ID casing ≈ 0.65 gallons per casing length (foot).

Wells KMW-7 and KMW-8 installed on December 23, 1998

* Well obstructed, no water level measurement taken

TABLE 2

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

FRIESMAN RANCH PROPERTY

LIVERMORE, ALAMEDA COUNTY, CALIFORNIA

WELL	SAMPLE	TPH-D	TPH-G	BENZENE	TOLUENE	ETHYL	TOTAL	MTBE	PAHs	LEAD
NUMBER	COLLECTION	ARAGE		LITELY NEW HIGH SAFE	High thirt choice	BENZENE	BRU PARTER AV	gwegelow i.e.	Mark Mark	(Japaksawa
MONIDER	DATE	(µg/L)	(µg/L)	(µg/L)	(µg/L)	and control of the special of	idajatu an aerat estir	(µg/L)	(µg/L)	(ng/L)
KMW-1	9/8/1997	<50	<50	g 70.000000	<0.5	(µg/L) <0.5	(µg/L)	5-100 ter. 110)	-10 ×10	1487115 Land 199
VIALAA-1	12/28/1998	<50 <50	<50	<0.5 <0.5	<0.5	<0.5	<0.5 <0.5	<5.0 <5.0	<10 <10	7.8
dup.	12/28/1998	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	5.9
	3/25/1999	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0		
	6/21/1999	NS	NS	NS	NS	NS	NS	NS	NS	NS
1	9/16/1999	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/16/2002	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	٠	-
	1/17/2003 4/15/2003	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	•	-
KMW-2	9/8/1997	<50 <50	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<5.0 <5.0	<10	
KIVI VY +2	12/28/1998	<50	<50 <50	<0.5	<0.5	<0.5	<0.5	<5.0 <5.0	<10	<5.0
	3/25/1999	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-10	
	6/21/1999	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/1999	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/16/2002	NS	NS	NS	NS .	NS	N\$	NS	-	
	1/17/2003	NS :	NS	NS	NS	NS	NS	NS	NS	NS
CC 8 (13) C 2	4/15/2003	NS	NS cco	NS 10.5	NS	NS	NS	NS	NS	NS
KMW-3	9/8/1997 12/28/1998	<50 <50	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<5.0 <5.0	<10 <10	<5.0
	3/25/1999	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0 <5.0	-10	~3.0
	6/21/1999	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/1999	NS	NS	NS	NS	NS	NS	NS	NS	NS
·	10/16/2002	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	
,	1/17/2003	NS	NS	NS	NS	NS	NS	N5	NS	NS
773 F137 A	4/15/2003	NS	NS	N5	NS	NS	NS	NS	NS	NS
KMW-4	9/8/1997 12/28/1998	<50 <50	<50 <50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	
	3/25/1999	<50 <50	<50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0,5	<5.0 <5.0	<10	7.5
	6/21/1999	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/1999	NS :	NS	NS	NS	NS	NS	NS	NS	NS
l i	10/16/2002	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	-
	1/17/2003	NS :	NS	NS	NS	NS	NS	NS	NS	NS
	4/15/2003	N\$	NS	NS	NS	NS	NS	NS	NS	NS
KMW-5	9/8/1997	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	-
dup.	9/8/1997 12/28/1998	<50 <50	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<5.0	<10	- 0.5
	3/25/1999	<50	<50	<0.5	<0.5	<0.5	<0.5 <0.5	<5.0 <5.0	<10	8.5
	6/21/1999	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/1999	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/16/2002	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0		-
	1/17/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/15/2003	NS	NS	NS	NS	NS	NS	NS	NS	NS
KMW-6	9/8/1997	3,200, d	13,000, a	250	14	560	490	<150**	140*	
	12/28/1998 3/26/1999	1,800, d 1,700, d,b	3,200, a 7,000, a	86 160	3,6 5,1	140 270	90 200	<50** <100**	130* 100*	15 <5.0
đup.	3/26/1999	1,700, d,b	6.700, a	170	6.5	270	200	<100**	100*	<3.0
	6/21/1999	1,500, d,b	3,800, a	170	<0.5	260	160	<10	200*	<5.0
	9/16/1999	1,900, d	7,100, a	230	9.8	300	210	<120	<10	<5.0
	10/16/2002	1,600, d	4,600, a	100	8.4	190	110	<50	-	-
dup.	10/16/2002	1,900, d	5,100, a	110	10	210	110	<50	-	•
4	1/17/2003	2,100, d	5,700, a	87	4.3	170	100	<25	-	-
dup.	1/17/2003 4/15/2003	1,900, d 110, d	5,800, a	89	6.4	180	100	<25	-	_
dup.	4/15/2003	100, d	390, a 270, a	7.4 4.2	0.5X 0.51	8.5 5,6	6.1 3.0	<5.0 <5.0	-]
KMW-7	12/28/1998	1,000, d,h	9,100, a,h	23	17	190	700	<70**	110*	38
	3/25/1999	1,200 d,b	4,300, a,h	19	16	\$6	270	<70**	23 *	22
	6/21/1999	1,300, d.b	1,300, a	6.5	<0.5	21	62	<5.0	27 *	<5.0
dup.	6/21/1999	1,200, d	2,000 a	6,4	6.7	24	76	<5.0	17 *	-
	9/16/1999	1,100, d	950, a	3.3	2	19	33	<10	<10	<10
	10/16/2002	480, d	270, a	1.3	<0.5	4	15	<5.0	-	•
	1/17/2003 4/15/2003	610, d	1,100, a	7.8	1.3	24	84	<10	-	-
KMW-8	12/28/1998	350, d <50	880, a <50	7.1 <0.5	0.69 <0.5	4.4 <0.5	52	<5.0	- - (10	12
121A1 A1 - 0	3/25/1999	<50 <50	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<5,0 <5,0	<10	12
	6/21/1999	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5		_
	9/16/2002	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	_	
	10/16/2002	<50	<50	<0.5	<0.5	<0.5	<0.5	<5,0	-	-
	1/17/2003	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0		
	4/15/2003 4/15/2003	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	•
TAP Sample		-	<50	< 0.5	<0.5	<0.5	< 0.5	<5.0		

Notes: TPH-D

Total Petroleum Hydrocarbons as Diesel

TPH-G Total Petroleum Hydrocarbons as Gasoline

MTBE Methyl Tertiary-Butyl Ether

PAHs Polyaromatic Hydrocarhons
MCL Cal/EPA Maximum Contaminant Level

µg/L Micrograms per Liter (approx. equal to parts per billion)

<0.5 Not detected at or above the laboratory method reporting limit

TAP Sample was collected from the water supply well on-site.

- Unmodified or weakly modified gasoline is significant Diesel range compounds are significant; no recognizable pattern
- Gasoline range compounds are significant Lighter than water immiscible sheen is present
- h ** Reporting limit raised due to high presence of TPH-g
- Not enalyzed
- NS Not Sampled
- Napthalene only, all other chemicals were <10 micrograms per liter

TABLE 3 QUALITY ASSURANCE/QUALITY CONTROL SAMPLE ANALYTICAL RESULTS FRIESMAN RANCH PROPERTY LIVERMORE, ALAMEDA COUNTY, CALIFORNIA April 2003

QA/QC	SAMPLE	SAMPLE	ТРН-D	TPH-G	BENZENE	TOLUENE	ETHYL	TOTAL	MTBE	PAHs	LEAD
SAMPLE TYPE	ID	COLLECTION DATE	(µg/L)	(µg/L)	(µg/L)	(µg/L)	BENZENE (µg/L)	XVLENES (µg/L)	(µg/L)	(µg/L)	(µg/L)
Primary Sample	KMW-6	4/15/2003	110	390	7.4	0.58	8.5	6.1	<5.0	-	-
Duplicate Sample	KMW-16	4/15/2003	100	270	4.2	0.51	5.6	3.0	<5.0	-	-
Trip Blank	Trip Blank	4/15/2003	-	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	•
	RPD		9.5%	36.4%	55.2%	12.8%	41.1%	68.1%	NC	NC	NC

Notes:	
TPH-D	Total Petroleum Hydrocarbons as Diesel
TPH-G	Total Petroleum Hydrocarbons as Gasoline
MTBE	Methyl Tertiary-Butyl Ether
RPD	Relative Percent Difference
μg/L	Micrograms per Liter (approx. equal to parts per billion)
< 0.5	Not detected at or above the laboratory method reporting limit
NC	Not calculable
-	Not Analyzed

TABLE 4
BIO-ATTENUATION PARAMETER ANALYTICAL RESULTS

Analyte	KMW-1	KMW-2	KMW-3	KMW-4	KMW-5	KMW-6	KMW-7	KMW-8
W72 Y J Ball								
Field Measurements			1					
DO (mg/L)	0.56	NM	NM	NM	NM	NM	0.51	0.51
ORP (mV)	55	NM	NM	NM	NM	<-100	145	120
Temperature (°C)	18.1	NM	NM	NM	NM	19.3	17.7	16.2
pΗ	6.73	NM	NM	NM	NM	6.06	6.12	6.50
Turbidity (NTU)	1.70	NM	NM	NM	NM	9.4	5.1	11.8
Laboratory Measurement								
Alkalinity (mg/L)	384	NM	NM	NM	NM	526	577	425
BOD (mg/L)	<2.0	NM	NM	NM	NM	6.4	NA	NA
COD (mg/L)	<20	NM	NM	NM	NM	<20	NA	NA
Ferrous Iron, FE (II) (mg/L)	0.071	NM	NM	NM	NM	2.4	<0.05	<0.05
Nitrate (mg/L)	1.8	NM	NM	NM	NM	<1.0	15	2.4
Sulfate (mg/L)	78	NM	NM	NM	NM	12	97	81

Notes:

DO = Dissolved Oxygen.

ORP = Oxidation-Reduction Potential (measured in millivolts [mV]).

BOD = Biological Oxygen Demand.

COD = Chemical Oxygen Demand.

NA = Not Analysed.

< 5.0 = Analyte not present at or above indicated reporting limit.

FE(II) = Percent Ferrous Iron represents percentage of Fe(II) of Total Fe in system.

NTU = Nephelometric Turbidity Units

NM = Not Measured

mg/L = milligrams per liter

pH = Hydrogen-ion index

APPENDIX A FIELD MONITORING NOTES

RECORD OF WATER LEVEL MEASUREMENTS APRIL 15, 2003

FIELD REPORT/DATA SHEET

Date: 4.15.03

Project Number: <u>75.23909</u>, 0001

Field Technician: PARROYO

Order	[Manual Parks Parks	Diam	Lock	Exp.	Total Dejith	V/TU IAIIII	DTSV	I Time	Comments
· .	KMW-1	4	Good	Good	23.40	11.08	11.08	1140	1888 8 8 8 8 8 8 9 8 Comments in the Principle of the Pri
	KMW-Z	Ч			13.30	12.73	12.73	NS	
	KMW-3	_4			23.90	10.16	10.16	NS	
	KMW-4	_4_			23.65	11.90	11.90	2 2	
	KMW-5	4			23.40	12.76	12.76	NS	
	KMW-6	4			23.40	12.56	12.56	1520	
	KHW-7	- 니			23.50	11.31	11.31	1430	
	KMW-8	4			23.65	12.25	12.25	1320	
ES:									

Number of Drums Ousite

Full	Empty	TOTAL
	Ø	
Estimated Value:	/	

FIELD PURGE/SAMPLING WORKSHEETS APRIL 15, 2003

Project Name: FRIESMAN KANCH	_ Project Number: 73, 23909, 000 /
Address: 1600 FRIESMAN RD. LIVERMORE, CA	Date: 4·15·03 Well Lock Number:
Well Number: KM W− I	Well Integrity: Good
Development/Purge/Sampler(s): P. Accoyo	Ambient Conditions: Sunny
Pre-Purge DO (mg/L)SGo	
Screened at WELL VOLUME CALCUL Well Casing Total Well Depth to Linear Fe	et Gallons Per
Diameter (in.) Depth (ft.) Goundwater (GW) of GW	Linear Foot 1 Well Volume (gal.) X 0.17 =
= = = = = = = = = = = = = = = = = = = =	X 0.38 =
23.40 11.08 = 12.3	32 X 0.66 = 8.13 X 0.83 =
6 - =	X 1.5 =
	INSPECTION (BAILER CHECK)
Floating Product (ft.) (in.): Sheen/Iride	escence: None Odor: Nene
CPOLINDWATER PLIE	RGING PURGE METHOD
<u> </u>	
Stainless Steel Bailer; Submersible Pump; Air Diaph	ragm Pump;
Stagnant Volume	
Stagnant Volume Volumes Purged Conducti	vity Temp. Color/Turbidity
Purged (gal.) Time pH (µs/umho	· ·
(gan) Time pri (porumit	(5.1.6.7)
0 0 1121 6.75 4045	19.4 Cloudy
1 8.0 1124 7./3 1271	18.1 CLEAR Recovery
2 16.0 1127 7.01 1101	17.6 Rate:
3 24:0 1130 6:73 1085	18.1 (Fast)
	Medium
4	Slow
5	
6	
7	
8	
9	
10	
GROUNDWATER SAMPLING Sampling Equivalent Level Recovery Sample	uipment: Disposable Bailer
Depth to GW (ft.)	e Containers No. Preservation Method/pH
	L), amber glass 1 None
(P) After Purging 1235 40 ml \	
P - 0.8 (P-I) = 11.33 80% Recovery 500 ml	polypropylene 3 None (1 H2SO4)
(S) Before Sampling 11.08 Trip Bla	ank / HCL
(P-S) / (P-I) X 100 = <u>iOO</u> % Total Recovery	
Sample Date/Time: 4.15.03 / 1140 Turbio	dity (NTU): 1-7
Calibrate Date/Time: 4-15-63	EH (MEV): 55
PURGED WATE	R CONTAINMENT
Total drums at site: Water 3 Soil Ø	Vater pump through treatment system
-	
Remarks:	

Project Name: FRIESMAN RANCH	Project Number: 75, 23909, 000 /
Address: 1600 FRIESMAN RD.	Date: <u>4-75-03</u>
LIVERMORE, CA	Well Lock Number:
Well Number: KMW-6	Well Integrity: Good
Development/Purge/Sampler(s): P. Arroyo	Ambient Conditions: Clouby
	I
Pre-Purge DO (mg/L)	
Screened at WELL VOLUME CALCULA	TION
Well Casing Total Well Depth to Linear Feet	Gallons Per
Diameter (in.) Depth (ft.) Goundwater (GW) of GW	<u>Linear Foot</u> 1 Well Volume (gal.) X 0.17 =
3 =	× X 0.38 =
23.40 - 12.56 = 10.84	X 0.66 = 7.15
4.5	X 0.83 = 1.5 × 1.5
	X 1.5 =
GROUNDWATER SURFACE INS Floating Product (ft.) (in.): Sheen/Iridesc GROUNDWATER PURGI	ence: Nove Odor: YES
Stainless Steel Bailer; Submersible Pump; Air Diaphrag	.)
Stagnant Volume	
Volumes Purged Conductivity	/ Temp. Color/Turbidity
Purged (gal.) Time pH (µs/umhos)	·
targed (gaily time pri (paralilitos)	(Other)
1110.5	200
0 1456 656 1403	21.3 CIEAN Recovery
1 7.0 1501 6.21 1371	17.23
2 14.0 1506 6.09 1358	19.4 Rate:
3 21.0 /5// 6.06 1354	19.3 Fast
4	Medium
	Slow
5	
6	
7	
8	
9	
10	
GROUNDWATER SAMPLING Sampling Equipmediater Level Recovery Sample Co	nent: <u>Disposable Bailer</u>
Depth to GW (ft.)	No. Preservation Method/pH
(my many	amber glass None
(P) After Purging 13:30 40 ml VOA	
	ypropylene 3 None (1 H2So4)
(S) Before Sampling 12.54 Trip Blank)
(P-S) / (P-I) X 100 = 100 % Total Recovery	
To strict the strict that the strict the strict that the strict the strict that the strict tha	
Sample Date/Time: 4.15.03 / 1520 Turbidity	(NTU): <u>94</u>
Calibrate Date/Time: 4.15.63	EH (MEV): ∠-100
PURGED WATER O	ONTAINMENT
FUNGED WATER C	
Total drums at site: Water 3 Soil Water	r pump through treatment system
Remarks: Took Duplicate	
TOOK LANDICATIO	

Project Nar Address:	ne: <u>FRie</u>	SMAN FRIESMA			Project Date:	t Numbe	r: <u>75. 23</u> 4-15-03	3 <i>909.</i> 00	00/
-	IVERMOR	E, CA				ock Num	iber:		
Well Numb	er:K	MW-7				ntegrity:	<u>Good</u>		
Developme	ent/Purge/Sar	npler(s):	P. Arroys		Ambie	nt Condi	tions: <i>Ci</i>	bupy_	
Pre-Purg	e DO (mg/L)	.5	· · · · · · · · · · · · · · · · · · ·		··· ··· ··				
Screened : Well Ca	sing Total	Well	Depth to	IME CALCULAT	(Gallons Pe		Br. II Male	(mal.)
Diameter 2	r (in.) Depth	<u>1 (tt.) Go</u> -	undwater (GW)	of GW =	<u>_</u>	<u>inear Foo</u> r 0.17	<u>t 1'</u>	Well Volume	(gai.)
3		-		= .	X	0.38	=		
45	2 3.st		11.31	= 12.19	X X	0.66 0.83	= 8	² , 04	
6				=	<u> </u>	1.5	2	· · · · · · · · · · · · · · · · · · ·	
Floating Pr	oduct (ft.) (in.		10,	SURFACE INS Sheen/Iridesco	ence: _	<u>Non</u>	e Odo		<u> </u>
Stainles	s Steel Bailer	; Subme	rsible Pump;			1	nda Pump	Other	
Stagnant Volumes Purged	Volume Purged (gal.)	Time	pН	Conductivity (µs/umhos)		•	Color/Turbidi (other)	ity	
		2.1 dan				_	a		
0	0	1310	W.47	_1385	19.		CIEAR		Recovery
1	80	1415	<u>6.10</u>	1324	<u>.20.1</u>				Rate:
2	16.0	1420	6.11	1275	18.	<u>3 </u>		<u>/</u> _	
3	24.0	1425	6.12	125/	17.	2			ast
4									Medium
5									Slow
6									
7									
8									
. 9									
10		<u> </u>							
	IDWATER SA el Recovery De	AMPLING		ımpling Equipr Sample Co	nent: ontaine	<u>Disp</u>		<i>Bail</i> 6 ervation Me	4
(I) Initially		11.31	-	1 liter (L),	amber (glass	L No	one	
(P) After P		<u> 1.20 </u>		40 ml VOA			3 HO	الـ	
P - 0.8 (P-		148 80%	6 Recovery	500 ml pol		ene		ne .	
	Sampling			Trip Blank			_1_ HC	L	
(P-S) / (P-I)	X 100 =	100 % 10	otal Recover	у					
Sample Da	te/Time: 4.	15.03	1430	Turbidity	(NTU):	5.1			
Calibrate D	ate/Time: 4	15.03					EH (M	EV): <u>14</u>	5
			PUR	GED WATER C	ONTA	INMENT			
Total drums	s at site: Wat	er <u> </u>	Soil	Ø Wate	r pump	through	treatment sy	stem	
Remarks:				- <u></u> -					

	ne: FRit				Project Num		09.0001
Address:		FRIESMA	a RD.		Date:	4.15.03	
Well Number	VERMON	<u>`∈ , C/A</u> VW - 8	··		Well Lock N		······································
			· Arroyo	·	Well Integrit Ambient Cor		Di /
Developme	nivi urge/cai	impier(a). <u> </u>	· Haraka	··	Willipierir Col	riditions. <u>Cross</u>	
Pre-Purg	e DO (mg/L)_ ,51		****			
Screened a				ME CALCULATI		_	
Weil Cas Diameter		l Well h (ft.) → Gοι	Depth to indwater (GW)	Linear Feet of GW	Gallons Linear F		Volume (gal.)
2		-		=	X 0.17	7 =	Totalio (gan)
(4)	23.6	4	2.25	= = (140	X 0.38 X 0.66		n
4.5	W 51. W	- 1	C. C.3	= 1140	X 0.83		مان
6		• .	<u></u>	±	X 1.5	=	
Cleating Dec	advet (ft.) (i.e.					AILER CHECK)	N. In o
rioating Pro	oduct (ft.) (in	·):	0.	Sheen/Iridesce	nce: ///o	oneOdor:	None
				ATER PURGIN	-		
Stainless	Steel Bailer	r; Submer	sible Pump;	Air Diaphragr	n Pump;)€	fonda Pumpi Ot	her
Stagnant	Volume						
Volumes	Purged			Conductivity	•	Color/Turbidity	,
Purged	(gai.)	Time	рH	(µs/umhos)	(°C)	(other)	
0 -	0	1305	6.82	1336	17.7	CLEAR	<u></u>
1	7.0	1309	6.65	1233	16.4	1	Recovery
2	14.0	1313	6.52	1232	167		Rate:
3	21.0	1318	6.50	1266	16.2		- (Fast)
	<u> </u>	1010	<u></u>	1.00	767-2		Medium
4 .							Slow
5							_ SIOW
6 .							
7 .							
8 .							_
9 .		•					_
10							-
GROUN Water Level	DWATER SA	AMPLING	Sat	npling Equipm Sample Co	ent: <u>Dî</u>	sposable E	BAILER
		pth to GW (f	t.)	<u>carripic co</u>	TIGHT CT O	No. Preserva	tion Method/pH
(I) Initially		2.25	,	1 liter (L), a	moer glass	1 None	· · · · · · · · · · · · · · · · · · ·
(P) After Pu	irging 1	2.80		40 ml VOA	J	3 HCL	
P - 0.8 (P-I)) =	<i>2.30</i> 80%	Recovery	500 ml poly	propylene		
(S) Before S	Sampling/	2.25		Trip Blank			
(P-S) / (P-I)	X 100 =	<u>(○○</u> % To	tal Recovery				
Sample Date	e/Time: <u>4</u> .	15.03	1820	Turbidity (I	NTU): 11.5	8_	
Calibrate Da	ate/Time: 4	15.03				EH (MEV)	120
			PURG	SED WATER CO	ONTAINMEN	IT	7
Total drums	at site: Wat	ter <u>3</u>	Soil	✓ Water	pump throug	gh treatment syster	m
Remarks:			•				•
							

APPENDIX B CHAIN OF CUSTODY RECORDS AND CERTIFIED ANALYTICAL LABORATORY REPORTS

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-nail: main@mccampbell.com

ATC Associates	Client Project ID: #75.23909.0001	Date Sampled: 04/15/03		
6602 Owens Drive, #100		Date Received: 04/15/03		
Pleasanton, CA 94588	Client Contact: Jim Lehrman	Date Reported: 04/22/03		
	Client P.O.:	Date Completed: 04/22/03		

WorkOrder: 0304240

April 22, 2003

Dear Jim:

Enclosed are:

- 1). the results of 7 analyzed samples from your #75.23909.0001 project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

Yours truly,

McCampbell Analytical Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

ATC Associates	Client Project ID: #75.23909.0001	Date Sampled: 04/15/03
6602 Owens Drive, #100		Date Received: 04/15/03
DI	Client Contact: Jim Lehrman	Date Extracted: 04/16/03-04/18/03
Pleasanton, CA 94588	Client P.O.:	Date Analyzed: 04/16/03-04/18/03

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction	method: SW5030B		,• (00 012)	Analytical methods: SW8021B/8015Cm				Work Order: 0304240		
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	KMW-1	w	ND	ND	ND	ND	ND	ND	1	87.3
002A	KMW-6	w	390,a	ND	7.4	0.58	8.5	6.1	1	#
003A	KMW-16	w	270,a	ND	4.2	0.51	5.6	3.0	1	110
004A	KMW-7	w	880,a	ND	7.1	0.69	4.4	52	1	104
005A	KMW-8	w	ND	ND	ND	ND	ND	ND	1	98.8
006A	Trip Blank	w	ND	ND	ND	ND	ND	ND	1	100
007A	TAP Sample	w	ND	ND	ND	ND	ND	ND	1	103
										-
		The state of the s	·							
Reporting Limit for DF =1; ND means not detected at or above the reporting limit		W	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
		S	NA	NA	NA	NA	NA	NA	1	mg/K

*water and vapor samples are reported in µg/L, soil and sludge samples in mg/kg, wipe samples in µg/wipe, and TCLP extracts in µg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spinit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

DHS Certification No. 1644

Angela Rydelius, Lab Manager

	McCamp
--	--------

McCampbell Analytical Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

ATC Associates	Client Project ID: #75.23909.0001	Date Sampled: 04/15/03
6602 Owens Drive, #100		Date Received: 04/15/03
71 04500	Client Contact: Jim Lehrman	Date Extracted: 04/15/03
Pleasanton, CA 94588	Client P.O.:	Date Analyzed: 04/16/03-04/22/03

Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel*

Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel* Extraction method: SW3510C Analytical methods: SW8015C					0304240
Lab ID	Client ID	Matrix	TPH(d)	DF	% SS
0304240-001B	KMW-1	w	ND	1	98.2
0304240-002B	KMW-6	w	110,d	į t	104
0304240-003B	KMW-16	W	100,d	1	95.7
0304240-004B	KMW-7	w	350,d	1	102
0304240-005B	KMW-8	w	ND	1	104
	· · · · · · · · · · · · · · · · · · ·				
Reporting Limit for DF =1;		w	50		g/L
ND means not detected at or above the reporting limit		S	NA	1	NΑ

^{*} water and vapor samples are reported in µg/L, wipe samples in ug/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all TCLP / STLC / SPLP extracts in µg/L

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent / mineral spirit.

Jh.

Angela Rydelius, Lab Manager

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

Analytical	Inc
	Analytical

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622

				http://w	ww.mccampbell.com E-mail: main@mcc	impbell.com					
ATC Associates	i	Client Pro	oject ID: #75.	23909.0001	Date Sampled: 04/15/	03					
6602 Owens Dr	ive, #100				Date Received: 04/15/03						
Pleasanton, CA	04500	Client Co	ntact: Jim Leh	rman	Date Extracted: 04/15/03						
Ficasamon, CA	9 4 366	Client P.0	D.:		Date Analyzed: 04/16/	03					
Extraction method: E20	00.7			letals* methods: E200.7		Work Order:	0304240				
Lab ID	Client ID	Matrix	Extraction		DF	% SS					
0304240-001D	KMW-1	w	DISS.		0.071						
0304240-002D	KMW-6	w	DISS.		1	N/A					
0304240-003E	KMW-16	w	DISS.		1	N/A					
0304240-004E	KMW-7	w	DISS.		ND	1	N/A				
0304240-005E	KMW-8	w	DISS.		ND	1	N/A				
							<u> </u>				
	And Andrew Co. 1999										
	A Charles . A Laborr for Entry Co.				A A A A A A A A A A A A A A A A A A A						
				,							
			 				-				

ND means not detected at or	W	DISS.	0.05	mg/L
above the reporting limit	S	TTLC	NA	mg/kg
* water/liquid/oil samples are reported in my	g/L, soil/sludg	e/solid/product sa	mples in mg/kg, wipes in µg/wipe and all TCLP / STLC / DIS	STLC / SPLP

extracts in mg/L.

means surrogate recovery outside of acceptance range due to matrix interference. ND means not detected above the reporting limit: N/A means not

means surrogate recovery outside of acceptance range due to matrix interference; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

Analytical Methods: EPA 6010C/200.7 for all elements except: 200.9 (water/liquid-Sb, As, Pb, Se, Tl); 245.1 (Hg); 7010 (sludge/soil/soild/oil/product/wipes - As, Se, Tl); 7471B (Hg).

i) liquid sample that contains greater than ~2 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations; j) reporting limit raised due to insufficient sample amount; y) estimated values due to low surrogate recovery; z) reporting limit raised due to matrix interference.

ATC Associates

Client Project ID: #75.23909.0001

Date Sampled: 04/15/03

Date Received: 04/15/03

Client Contact: Jim Lehrman

Date Extracted: 04/15/03

Client P.O.:

Date Analyzed: 04/15/03-04/16/03

Inorganic Anions by IC*

Extraction method: E300.1 Analytical methods: E300.1 Work Order: 0304240

extraction method: E30	0.1		Analytical methods: E300.1		Work O	rder: 0304240
Lab ID	Client ID	Matrix	Nitrate as N	Sulfate	DF	% SS
0304240-001C	KMW-1	w	1.8	78	1	89.0
0304240-002C	KMW-6	w	ND	12	1	90.0
0304240-003C	KMW-16	w	1.2	15	. 1	91.0
0304240-004C	KMW-7	w	15	97	1	109
0304240-005C	KMW-8	w	2.4	81	1	91.0
						1
				FF * ***(\$1,500,000,000,000,000,000,000,000,000,00		
j						

Reporting Limit for DF =1;	W	1.0	1.0	mg/L
ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg

^{*} water samples are reported in mg/L, liquid and soil samples in mg/kg, wipe samples in μ g/wipe.

[#] surrogate diluted out of range or surrogate coelutes with another peak; N/A means surrogate not applicable to this analysis.

⁽j) sample diluted due to high inorganic content.

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0304240

EPA Method: SW802	Spiked Sample ID: 0304240-007A									
Commonad	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptano	e Criteria (%)
Compound	րց/և րչ	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(btex) [£]	ND	60	101	101	0	111	103	7.78	80	120
MTBE	ND	10	111	112	1.01	102	108	5.54	80	120
Benzene	ND	10	98.2	99.9	1.72	98.9	98.4	0.535	80	120
Toluene	ND	10	102	103	1.38	103	102	0,663	80	120
Ethylbenzene	ND	10	102	103	0.530	103	103	0	80	120
Xylenes	ND	30	107	107	0	107	107	0	80	120
%SS:	103	100	99.3	100	0.965	99.5	98.9	0.636	80	120

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

 $[\]pounds$ TPH(blex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

Matrix: W

WorkOrder: 0304240

EPA Method: SW8015C	Extraction: SW3510C BatchID: 6554 Spiked Sar				piked Sampl	le ID: N/A				
0	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)
Compound	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(d)	N/A	7500	N/A	N/A	N/A	92	92	0	70	130
%SS:	N/A	100	N/A	N/A	N/A	90.2	90.2	0	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

QC SUMMARY REPORT FOR E200.7

Matrix: W

WorkOrder: 0304240

EPA Method: E200.7	EPA Method: E200.7 Extraction: E200.7					BatchID: 6550 Spiked Sample ID: N/A					
Compound	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
Compound	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
Iron	N/A	10	N/A	N/A	N/A	118	107	9.71	70	130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

QC SUMMARY REPORT FOR E300.1

Matrix: W

WorkOrder: 0304240

EPA Method: E300.1	Е	extraction:	E300.1		BatchID:	6576	S	Spiked Sample ID: N/A			
Compound	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)	
Compound	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
Nitrate as N	N/A	1000	N/A	N/A	N/A	88.3	88.9	0.681	80	120	
Sulfate	N/A	1000	N/A	N/A	N/A	94.2	94.8	0.616	80	120	
%SS;	N/A	100	N/A	N/A	N/A	90.4	90.9	0.574	80	120	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

GeoAnalytical Laboratories, Inc. 1405 Kansas Avenue Modesto, CA 95351 Phone (209) 572-0900 Fax (209) 5

Phone (209) 572-0900 Fax (209) 572-0916

CERTIFICATE OF ANALYSIS

Report # P106-02

McCampbell Analytical 110 2nd Ave. South #D7

Project: #75.23909.0001

Date Rec'd: Date Started:

4/16/03 4/19/03

CA 94553 Pacheco

PO#

Date Completed: 4/23/03

Date: 4/23/03

Date Sampled:

4/15/03

Time: Sampler:

Sample ID	Lab ID	RL	Method	Analyte	Results	Units
0304240 - 001 E	P303685	20 20	SM2320B 410.4	Total Alkalinity as CaCO ₃ Chemical Oxygen Demand	384 ND	mg/L mg/L
0304240 - 002 E	P303686	20 20	SM2320B 410.4	Total Alkalinity as CaCO ₃ Chemical Oxygen Demand	526 ND	mg/L mg/L
0304240 - 003 D	P303687	20	SM2320B	Total Alkalinity as CaCO ₃	516	mg/L
0304240 - 004 D	P303688	20	SM2320B	Total Alkalinity as CaCO3	577	mg/L
0304240 - 005 D	P303689	20	SM2320B	Total Alkalinity as CaCO ₃	425	mg/L

Kohit Bombaywala Inorganic Supervisor

Certification # 1157

Donna Keller Laboratory Director

GeoAnalytical Laboratories, Inc. nue Modesto, CA 95351 Phone (209) 572-0900 Fax (209) 572-0916

1405 Kansas Avenue Modesto, CA 95351

PO#

CERTIFICATE OF ANALYSIS

Report # P106-02

Date: 4/21/03

McCampbell Analytical 110 2nd Ave. South #D7

Project: #75.23909.0001

Date Rec'd: 4/16/03 Date Started: 4/16/03

Pacheco CA 94553 Date Completed: 4/21/03

Date Sampled:

4/15/03

Time: Sampler:

Sample ID	Lab ID	RL	Method	Analyte	Results Units	
0304240 - 001 E	P303685	2.0	SM5210B	B.O.D	ND mg/L	
1						
0304240 - 002 E	P303686	2.0	SM5210B	B.O.D	6.4 mg/L	

Kanti Gandhi Chemist

Donna Keller Laboratory Director

Certification # 1157

GeoAnalytical Laboratories, Inc. 1405 Kansas Avenue Modesto, CA 95351 Phone (209) 572-0900 Fax (209) 5

Phone (209) 572-0900 Fax (209) 572-0916

Report# P106-02

QC REPORT

McCampbell Analytical 110 2nd Ave. South #D7

Pacheco

CA 94553

Analyte	Method	Batch #	Dates Analyzed	Orig.	Dupl.	MS %Rec	MSD %Rec	RPD	LCS %Rec	Blank	Comments
Total Alkalinity as CaCO3	SM2320B	102854	4/19/03			82.3	90.8	1.1	109.2	ND	
Chemical Oxygen Demand	410.4	102876	4/23/03			103.3	103.3	0.0	103.3	ND	

* LCS/LCSD (see comments)

Rohit Bombaywala Inorganic Supervisor

Certification # 1157

Laboratory Director

GeoAnalytical Laboratories, Inc.

1405 Kansas Avenue Modesto, CA 95351

Phone (209) 572-0900 Fax (209) 572-0916

Report# P106-02

QC REPORT

McCampbell Analytical 110 2nd Ave. South #D7

Pacheco

CA 94553

Analyte	Method	Batch #	Dates Analyzed	Orig.	Dupl.	MS %Rec	MSD %Rec	RPD	LCS %Rec Blank	Comments
B.O.D	SM5210B	B00209	4/16/03-4/21/03	87	90			3.4	ND	

* LCS/LCSD (see comments)

Kanti Gandhi Chemist

Certification # 1157

Donna Keller Laboratory Director

P106-02

McCampbell Analytical Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0304240

Subcontractor:

GEO ANALYTICAL LABORATORIES

1405 Kansas Avenue Modesto, CA 95351 TEL:

(209) 572-0900

FAX:

(209) 572-0916

ProjectNo:

#75.23909.0001

Acct #:

N/A

Date Received:

4/15/03

Date Printed:

4/15/03

								Requested Tests
Sample ID	ClientSampID	Matrix	Collection Date	TAT	Alkalinity	BOD	COD	Me to the second and A and a control of the second and a
0304240-001E	KMW-1	Water	4/15/03 11:40:00 AM	Standard	1	1	· 1	P303685 3
0304240-002E	KMW-6	Water	4/15/03 3:20:00 PM	Standard	1	1	1	P303686 L
0304240-003D	KMW-16	Water	4/15/03 3:20:00 PM	Standard	1			P303687 (1)
0304240-004D	KMW-7	Water	4/15/03 2:30:00 PM	Standard	1		<u> </u>	P308688 1
0304240-005D	KMW-8	Water	4/15/03 1:20:00 PM	Standard	1			P303 1089 L

Comments:

PLEASE ANALYZE SAMPLES FOR ALKALINITY, BOD, AND COD; STANDARD TAT; PLEASE FAX RESULTS AS SOON AS READY;

THANK YOU....

Please send results to: Melissa Valles

Relinquished by: Melioir Valle 04/15 6:00pm Received by: Jed 4/16/03

Relinquished by: Jed ex 4/16/03

Received by: Jed ex 4/16/03

Received by: Jed ex 4/16/03

McCampbell Analytical Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page I of I

WorkOrder: 0304240

Client:

ATC Associates

6602 Owens Drive, #100 Pleasanton, CA 94588 TEL:

(925) 460-5300

FAX:

(925) 463-2559

ProjectNo:

#75.23909.0001

PO:

Date Received:

4/15/03

Date Printed:

4/15/03

							F	Requested Tests	 }		
Sample ID	ClientSamplD	Matrix	Collection Date	Hold	Alkalinity	BOD	COD	E200_7	E300_1	SW8015C	8021B/8015
0304240-001	KMW-1	Water	4/15/03 11:40:00 AM		. E ;	Ë	 . E	. D	c	В	 , A
0304240-002	KMW-6	Water	4/15/03 3:20:00 PM	1.1-1	Е	E	E	D	С	В	A
0304240-003	KMW-16	Water	4/15/03 3:20:00 PM	7	D			Е	С	В	A
0304240-004	KMW-7	Water	4/15/03 2:30:00 PM		D			E	C	В	Α
0304240-005	KMW-8	Water	4/15/03 1:20:00 PM		D			Е	С	В	A
0304240-006	Trip Blank	Water	4/15/03						, , , , , , , , , , , , , , , , , , ,		A
0304240-007	TAP Sample	Water	4/15/03 4:00:00 PM					<u>-</u>			A

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

				Plea	santor	, CA 9		030	04240	С	H	411	V ()F	С	US	ST	10	ΣY	F	OF	RM
							460-5300 463-2559			Turn	arni	ınd		V 1 1	n da	v	3	dav		2	-8 hr	
Project Name:	FRIESMAN		I.a				vens Hos	in trai		Time		and		•	' day		2			0		
Project Number:	75, 239			-	,	Task:	2	SPITAL		(worl	king	day					2				()
Project Address:				RD.	Liv		ore, CA															
Laboratory:	McCampb	sell Ane	Julio	n Co	ontact:	(925	7798-16	20					~~	An	alys	es F	lequ	este	d			
Lab Address/Phone:	lio Se	COND (AME	Sea	th i	*D-7	Pacheo	e. CA	•							(ĝ		10				
ATC Project Manager	Jim	LEHM	mn													0760		FE	>	Ì	1 1	
ATC PM Ph. No.:	(925) 225-	7815			Email:	LEHI	rman 75	`@atc-er	viro.com							ě	35.2	<u>τ</u> Ε,	7-2			
ATC Sampler:	P. Arre			_ F	hone:	(925)	225-781	.3		TBE	(8260)	Ê	[€			etect)	al (33	чH'h	£ 1.1		1 1	
	Sa	mple Inf	orma	tion		Con	tainer Info	rmation		X/M	nates	3015	(80	8020	8260	p woj)	, Tot	E, S.	Z	BOD	A	
				Matr	х	No.	Type	Preser- vative	Comments /	TPHG/BTEX/MTBE (8015M/8020)	Fuel Oxygenates	TPHd (8015M)	HVOCs (8010)	VOCs (8020)	VOCs (8260)	PP Metals (fow detect) (7000/6010)	Cyanide, Total (335.2)	Nitremte, Sulfibite,	TOTAL ALICANIMITY	Bı	COD	
ATC Sample ID	Date	Time	Soil	Water	Vapor			P _T C S	Field Notes	14 ye	Fue	上	主	≥_	2	8	ठे	2	P			_
KMW-1	4.15.03.	1140		X		3	VOA	HCL		$\perp X$		ļ.,				<u> </u>	ļ			ļ		
KMW-1			<u> </u>	X		1	ILAG.	None				X			<u> </u>	<u> </u>	ļ	X 2				
KMW - I			<u> </u>	X			SoomL	None									ļ	X	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
KMM.]				X		1	SOOML	None				ļ.,				<u> </u>	<u> </u>		X			
KMW-1				X		1	Stome	None.									ļ			X.		
KMW-1		V		X		i	SBOML	14250H			<u></u>						ļ				X	
KMW-6		1520		X		3	VOA	HCL		X		L.,				<u> </u>	<u> </u>					\dashv
KMW-6		١		X		1	IL A.G.	None	,			X		<u> </u>				· · · · · · · · · · · · · · · · · · ·				
KMW-6				ľX		Ì	500 ML	None							<u> </u>			X				_
KMW-b				X		1	SOCIML	Nove											X		1	_
KMW-60			Ì	X		1	500mL	None			<u> </u>									X,	5-2-	
KMW-ks				X	-	i	500mc	Hasay								<u> </u>					Δ	
KMW-16				X		.3	VOA	HCL		X												
KMW-16				X		i	IL A.G.	None				X					ļ	,				
KMW-16				X		1	STORL	Nove										\geq				
KMW-160		V		X			Scome	None											\times			
Additional Comments	* FILTE	12 3 Pr	ese.	2VE	Σĸ	Э <i>И</i>] «	SAMPLES	upor	1 IRB ARRIVA	9 L												
	* INVO			ren.		Spir	/	rectly			<u></u>		a	٠						····		
Relinquished By:	171	the	4		Date/	Time:	4.15.03,	1700	Received By:	Mu	06	110	ďΰ			Dat	e/Tin	ne.	4/	13	5	pin
Relinquished By:	1 1 1 1 L	177	/=- -		Date/		113.03/	7700	Received By:			. v ·	<u>~~,5€`</u>			Dat	e/Tir	ne:				
Relinquished By:		/			Date/				Reserved By: V		14	near	PUAY	<u>"!"</u>	VO.	ball	e /Ti			OTHE		
Sample Condition, Good? Yes	No	On Ice? Y	es	No	•		Temp		Transportation Metho	d:	<i>(</i> -	rrid N iv i			V.	-	-	~	Pag	e <u>1</u>	_of_	2_

White - Lab
L/Admin/Subsurtice Group/revised chain of custody; revised 05/08/01

Yellow - Lab

Pink - ATC

			Pleasanto Main Line	n, CA 9 : (925) -	460-5300	03	64240												OF	
Project Namé:		n Ranci	Facsimile:	CHIL	ovens Ho	spiral	<u> </u>	Turn	:					y	2	day day	,		2-8 hr other	
Project Number:		07.000 l		_	2_		_	(wor	kıng	day	(S)	—	b day	y	2	24 NF			<u> </u>)
Project Address: Laboratory:	1600	<u>FRIESMA</u>	n RD. LIV	Ermo	<u> 215, CA</u>		_					Ā	20 124	ses F	2000	octo	- d			
Lab Address/Phone:	MCComple	ell Anal	utich (Contact	(929	5)798-16	20	-			т	Т	T	iaiy:		(equ	6311	-			—т
ATC Project Manager:	110 55	cond Av	ie South	*D-7	+AChE	<u> 20, UA</u>	-						l	910		Ä	>			
ATC Project Manager. ATC PM Ph. No.:		EHCMAN	Email	1500	man 75	(a) ata a	- nvisa com						l	9/00	7	ر ا	5		1	
ATC Sampler:		7815 040			225- 781		- -	7BE	(8260)	(E	<u>©</u>	٥		etect) (70	al (335	alfigh	KALin			
	Sa	mple Infor	mation	Con	tainer Info	rmation		X X	nates	25	8	18	280	low d	Ţot	S	=	BOD	Clop	
			Matrix	No.	Туре	Preser- vative	Comments /	TPHg/BTEX/MTBE (8015M/8020)	Fuel Oxygenates (8260)	TPHd (8015M)	HVOCs (8010)	VOCs (8020)	VOCs (8260)	PP Metals (low detect) (7000/6010)	Cyanide, Total (335.2)	Nitrate, Sulfinte, FE	Total AIKALINITY	Ã	ව	
ATC Sample ID	Date		Soil Water Vapor		310.0	 	Field Notes	F ®	교	<u> </u>	工	>	>	1 4	O.	72	}			\dashv
<u>KMW-7</u>	4.15.03	1430	$- \mathcal{S} $	3	AOV	HCC		+					┼	 	 		-			
<u> KMW-7</u>	 	1-1	-	1	IL AG.	Nove		ļ	 		-	-	 -	┼─	├	$\overline{}$	 			\dashv
KMW·7	 -		$- \diamondsuit $		Stam	None		 		 	-	 	 		├─	Ζλ.				\dashv
<u> </u>	 	1700	-		Soom	None		\ /		├	 		-	 			\sim			-+
KMW-9		1320	-	13	VOA	HCL		 X	-	\forall	╁	┼	┼	+	 					
KMW-8		1 1 - 1		1 1	ILAG.	None		 	 	∤△	╁		-			V			+	\dashv
KHM-3	 	+ 1	$\rightarrow \bigcirc \vdash$	1	Sooml	Nove			_	-	╁	-	 			Δ	$\overline{\nabla}$		+	
		1-1/-	$\rightarrow \bigcirc \vdash$	1	SOUMI	Nove		17	<u> </u>	-	+	\vdash		-	ļ		Δ	\vdash		
TRIP BLANK	 	1.00	$-+ \diamond +$	 	VDA	HCL		$\langle \rangle$		 	┼	-	-	 				-	+	\dashv
TAP Sample	 	1600	- \$ 	3	YOA	HCC				├	├-	-		-	-					-+
	 	+-}-	- & 		ILAG.	Mora		 		-	-			-				 	-+	
		 		<u> </u>	500 m1	None		<u> </u>		├	 	 	 	-						-
V	W	V	$- \Delta $		500ML	None	TOTAL MINISTER PRINCIPLE	11/		 	RESI	SVA	areas	VOAS	0	≱G	MET.	ILS	ОТНЕ	
	 	 				<u> </u>	686 17 4 min da 4 ki 2 i 2 min i 1 i 1 i 3 i 2 ki 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			<u> </u>	RES	Pat	 	1	-				$\overline{}$	
	ļ <u>.</u>			ļ			Lake Line Lange	ميل	<u> </u>	 	, Ex	RVA	ننذر	AB_			-			
Addition	-26			<u> </u>				<u></u>	ļ	<u> </u>	<u> </u>	<u> </u>	L							
Additional Comments:	* FILTE		iserve II				n 196 ARRIV	AC				Δa								
Relinquished By: Relinquished By:	fito	Ayr		Time: Time:	41502/	1700	Received By:	\mathcal{A}	rel	/a	Va	ĽV.		_	e/Tin e/Tin		17/	\$	S/?/	m
Relinquished By:				Time:			Received By:							_	e/Tin	ne:				
Sample Condition, Good? Yes _	No	On Ice? Yes	No	Cooler T	етр		Transportation Method							-	•	I	Page	e <u>Z</u>	<u>-</u> of _	<u> 2-</u>

White - Lab
L:/Admin/Subsurface Group/revised chain of custody: revised 05/08/01

ATC Associates	Client Project ID: #75.23909.0001	Date Sampled: 04/15/03
6602 Owens Drive, #100		Date Received: 04/15/03
Pleasanton, CA 94588	Client Contact: Jim Lehrman	Date Reported: 04/22/03
ricasamon, CA 94368	Client P.O.:	Date Completed: 04/22/03

WorkOrder: 0304240

April 22, 2003

Dear Jim:

Enclosed are:

- 1). the results of 7 analyzed samples from your #75.23909.0001 project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly,

ATC Associates	Client Project ID: #75.23909.0001	Date Sampled: 04/15/03
6602 Owens Drive, #100		Date Received: 04/15/03
Pleasanton, CA 94588	Client Contact: Jim Lehrman	Date Extracted: 04/16/03-04/18/03
rieasanion, CA 94500	Client P.O.:	Date Analyzed: 04/16/03-04/18/03

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction	method: SW5030B			Analytical:	methods: SW8021	B/8015Cm		Work	Order: 0	304240
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	KMW-i	w	ND	ND	ND	ND	ND	ND	1	87.3
002A	KMW-6	w	390,a	ND	7.4	0.58	8.5	6.1	1	#
003A	KMW-16	w	270,a	ND	4.2	0.51	5.6	3.0	1	110
004A	KMW-7	w	880,a	ND	7.1	0.69	4.4	52	1	104
005A	KMW-8	w	ND	ND	ND	ND	ND	ND	1	98.8
006A	Trip Blank	w	ND	ND	ND	ND	· ND	ND	1	100
007A	TAP Sample	w	ND	ND	ND	ND	ND	ND	1	103
			,			}				
	ng Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
	the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/K

^{*}water and vapor samples are reported in μg/L, soil and sludge samples in mg/kg, wipe samples in μg/wipe, and TCLP extracts in μg/L.

DHS Certification No. 1644

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

ATC Associates	Client Project ID: #75.23909.0001	Date Sampled: 04/15/03
6602 Owens Drive, #100		Date Received: 04/15/03
M	Client Contact: Jim Lehrman	Date Extracted: 04/15/03
Pleasanton, CA 94588	Client P.O.:	Date Analyzed: 04/16/03-04/22/03

extraction method: SW			tractable Hydrocarbons as Diesel* cal methods: SW8015C	Work Order:	0304240
Lab ID	Client ID	Matrix	TPH(d)	DF	% SS
0304240-001B	KMW-1	w	ND	1	98.2
0304240-002В	KMW-6	w	110,d	1	104
0304240-003B	KMW-16	w	100,d	1	95.7
0304240-004B	KMW-7	w	350,d	1	102
0304240-005B	KMW-8	W	ND	1	104
Reporting I	imit for DF =1;	W	50	μ	ıg/L
	ot detected at or reporting limit	S	NA]	NA

^{*} water and vapor samples are reported in µg/L, wipe samples in ug/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all TCLP / STLC / SPLP extracts in µg/L

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent / mineral spirit.

ATC Associates	Client Project ID: #75.23909.0001	Date Sampled: 04/15/03
6602 Owens Drive, #100		Date Received: 04/15/03
,	Client Contact: Jim Lehrman	Date Extracted: 04/15/03
Pleasanton, CA 94588	Client P.O.:	Date Analyzed: 04/16/03

M	eta	le	*

Extraction method: E20	00.7		Analytical	methods: E200.7	Work Order:	
Lab ID	Client ID	Matrix	Extraction	Iron	DF	% SS
0304240-001D	KMW-1	w	DISS.	0.071	1	N/A
0304240-002D	KMW-6	w	DISS.	2.4	1	N/A
0304240-003E	KMW-16	w	DISS.	1.9	1	N/A
0304240-004E	KMW-7	w	DISS.	ND	1	N/A
0304240-005E	KMW-8	w	DISS.	ND	1	N/A
	r - 48					
					-	_
Reporting L	imit for DF =1; ot detected at or	W	DISS.	0.05		g/L
	reporting limit	S	TTLC	NA	mį	g/kg

^{*} water/liquid/oil samples are reported in mg/L, soil/sludge/solid/product samples in mg/kg, wipes in µg/wipe and all TCLP / STLC / DISTLC / SPLP extracts in mg/L.

means surrogate recovery outside of acceptance range due to matrix interference; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

Analytical Methods: EPA 6010C/200.7 for all elements except: 200.9 (water/liquid-Sb, As, Pb, Se, Tl); 245.1 (Hg); 7010 (sludge/soil/solid/oil/product/wipes - As, Se, Tl); 7471B (Hg).

i) liquid sample that contains greater than ~2 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations; j) reporting limit raised due to insufficient sample amount; y) estimated values due to low surrogate recovery; z) reporting limit raised due to matrix interference.

ATC Associates

Client Project ID: #75.23909.0001

Date Sampled: 04/15/03

Date Received: 04/15/03

Client Contact: Jim Lehrman

Date Extracted: 04/15/03

Client P.O.:

Date Analyzed: 04/15/03-04/16/03

Extraction method: E30	00.1		Inorganic Anions by IC* Analytical methods: E300.1		Work Order: 0304240		
Lab ID	Client ID	Matrix	Nitrate as N	Sulfate	DF	% SS	
0304240-001C	KMW-1	w	1.8	78	1	89.0	
0304240-002C	KMW-6	w	ND	12	1	90.0	
0304240-003C	KMW-16	w	1.2	15	1	91.0	
0304240-004C	KMW-7	w	15	97	1	109	
0304240-005C	KMW-8	w	2.4	81	1	91.0	
						[
	·						
	·						

Reporting Limit for DF =1;	W	1.0	1.0	mg/L
ND means not detected at or above the reporting limit	S	NA	NA	mg/Kg

^{*} water samples are reported in mg/L, liquid and soil samples in mg/kg, wipe samples in μ g/wipe.

[#] surrogate diluted out of range or surrogate coelutes with another peak; N/A means surrogate not applicable to this analysis.

⁽j) sample diluted due to high inorganic content.

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0304240

EPA Method: SW802	1B/8015Cm E	xtraction:	SW50308	SW5030B BatchID: 6573				Spiked Sample ID: 0304240-007A					
Cananavad	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)			
Compound	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High			
TPH(btex) ^E	ND	60	101	101	0	111	103	7.78	80	120			
МТВЕ	ND	10	111	112	1.01	102	108	5.54	80	120			
Benzene	ND	10	98.2	99.9	1.72	98.9	98.4	0.535	80	120			
Toluene	ND	10	102	103	1.38	103	102	0.663	80	120			
Ethylbenzene	ND	10	102	103	0.530	103	103	0	80	120			
Xylencs	ND	30	107	107	0	107	107	0	80	120			
%SS:	103	100	99.3	100	0.965	99.5	98.9	0.636	80	120			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

Matrix: W

WorkOrder: 0304240

EPA Method: SW8015C	Extraction: SW3510C				BatchID:	6554	Spiked Sample ID: N/A			
0	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
Compound	µg/L	μg/L	μg/L % Rec.		% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(d)	N/A	7500	N/A	N/A	N/A	92	92	0	70	130
%SS:	N/A	100	N/A	N/A	N/A	90.2	90.2	0	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS – MSD) / (MS + MSD) * 2.

QC SUMMARY REPORT FOR E200.7

Matrix: W

WorkOrder: 0304240

EPA Method: E200.7	Extraction: E20				BatchID:	6550	Spiked Sample ID: N/A			
Compound	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	: Criteria (%)
Compound	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
Iron	N/A	10	N/A	N/A	N/A	118	107	9.71	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR E300.1

Matrix: W

WorkOrder: 0304240

EPA Method: E300.1	E	xtraction:	E300.1		BatchID: 6576			Spiked Sample ID: N/A			
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)	
Compound	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
Nitrate as N	N/A	1000	N/A	N/A	N/A	88.3	88.9	0.681	80	120	
Sulfate	N/A	1000	N/A	N/A	N/A	94.2	94.8	0.616	80	120	
%SS:	N/A	100	N/A	N/A	N/A	90.4	90.9	0.574	80	120	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

GeoAnalytical Laboratories, Inc.

1405 Kansas Avenue Modesto, CA 95351

PO#

Phone (209) 572-0900 Fax (209) 572-0916

CERTIFICATE OF ANALYSIS

Report # P106-02

Pacheco

McCampbell Analytical

110 2nd Ave. South #D7

CA 94553

Project: #75.23909.0001

Date Started:

Date Rec'd:

4/16/03

4/19/03

Date Completed: 4/23/03

Date: 4/23/03

Date Sampled:

4/15/03

Time: Sampler:

Sample ID	Lab ID	RL	Method	Analyte	Result	s Units
0304240 - 001 E	P303685	20 20	SM2320B 410.4	Total Alkalinity as CaCO₃ Chemical Oxygen Demand	384 ND	mg/L mg/L
0304240 - 002 E	P303686	20 20	SM2320B 410.4	Total Alkalinity as CaCO₃ Chemical Oxygen Demand	526 ND	mg/L mg/L
0304240 - 003 D	P303687	20	SM2320B	Total Alkalinity as CaCO₃	516	mg/L
0304240 - 004 D	P303688	20	SM2320B	Total Alkalinity as CaCO3	577	mg/L
0304240 - 005 D	P303689	20	SM2320B	Total Alkalinity as CaCO3	425	mg/L

Rohit Bombaywala Inorganic Supervisor

Donna Keller Laboratory Director

Certification # 1157

GeoAnalytical Laboratories, Inc.

1405 Kansas Avenue Modesto, CA 95351

Project: #75.23909.0001

Phone (209) 572-0900 Fax (209) 572-0916

CERTIFICATE OF ANALYSIS

Report # P106-02

Date: 4/21/03

McCampbell Analytical 110 2nd Ave. South #D7

Date Rec'd:

4/16/03 4/16/03

CA 94553 Pacheco

Date Started:

Date Completed: 4/21/03

PO#

Date Sampled:

4/15/03

Time: Sampler:

Sample ID	Lab ID	RL	Method	Analyte	Results	Units
0304240 - 001 E	P303685	2.0	SM5210B	B.O.D	ND	mg/L
0304240 - 002 E	P303686	2.0	SM5210B	B.O.D	6.4	mg/L

Kanti Gandhi

Chemist

Donna Keller Laboratory Director

Certification # 1157

GeoAnalytical Laboratories, Inc. 1405 Kansas Avenue Modesto, CA 95351 Phone (209) 572-0900 Fax (209) 5

Phone (209) 572-0900 Fax (209) 572-0916

Report# P106-02

QC REPORT

McCampbell Analytical 110 2nd Ave. South #D7

Pacheco

CA 94553

Analyte	Method	Batch #	Dates Analyzed	Orig.	Dupl.	MS %Rec	MSD %Rec	RPD	LCS %Rec	Blank	Comments
Total Alkalinity as CaCO3	SM2320B	I02854	4/19/03			82.3	90.8	1.1	109.2	ND	
Chemical Oxygen Demand	410.4	102876	4/23/03			103.3	103.3	0.0	103.3	ND	

* LCS/LCSD (see comments)

Rohit Bombaywala Inorganic Supervisor

Certification # 1157

Laboratory Director

GeoAnalytical Laboratories, Inc.

1405 Kansas Avenue Modesto, CA 95351

Phone (209) 572-0900 Fax (209) 572-0916

Report# P106-02

QC REPORT

McCampbell Analytical 110 2nd Ave. South #D7

Pacheco

CA 94553

Analyte	Method	Batch #	Dates Analyzed	Orig.	Dupl.	MS %Rec	MSD %Rec	RPD	LCS %Rec Blank	Comments
B.O.D	SM5210B	B00209	4/16/03-4/21/03	87	90			3.4	ND	

* LCS/LCSD (see comments)

Kanti Gandhi Chemist

Certification # 1157

Donna Keller

Laboratory Director

P106-02

McCampbell Analytical Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0304240

Subcontractor:

GEO ANALYTICAL LABORATORIES

1405 Kansas Avenue Modesto, CA 95351 TEL:

(209) 572-0900

FAX:

(209) 572-0916 #75.23909.0001

ProjectNo: Acct #:

N/A

Date Received:

4/15/03

Date Printed:

4/15/03

				-	-			equested Tests
Sample ID	ClientSampID	Matrix	Collection Date	TAT	Alkalinity	BOD	COD	
	LCB NAT A	Water	4/15/03 11:40:00 AM	Stondard	1 :			D252685 3
0304240-001E 0304240-002E	KMW-1 KMW-6	Water Water	4/15/03 3:20:00 PM	Standard	1	1	1	7303686 L
0304240-003D	KMW-16	Water	4/15/03 3:20:00 PM	Standard	1			P303687 (D)
0304240-004D	KMW-7	Water	4/15/03 2:30:00 PM	Standard	1			P308 688
0304240-005D	KMW-8	Water	4/15/03 1:20:00 PM	Standard	1			P3031089 1

Comments:

PLEASE ANALYZE SAMPLES FOR ALKALINITY, BOD, AND COD; STANDARD TAT; PLEASE FAX RESULTS AS SOON AS READY;

THANK YOU....

Please send results to: Melissa Valles

Relinquished by: Hullion Valla 04/15 6:00pm Received by: July 4/16/03
Received by: July 4/16/03
Received by: July 4/16/03

McCampbell Analytical Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

À

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0304240

Client:

ATC Associates

6602 Owens Drive, #100 Pleasanton, CA 94588 TEL:

(925) 460-5300

FAX:

(925) 463-2559

ProjectNo:

#75.23909.0001

PO:

Date Received:

4/15/03

Date Printed:

4/15/03

Sample ID		<u> </u>					R	Requested Test	S		
	ClientSamplD	Matrix	Collection Date	Hold	Alkalinity	BOD	COD	E200_7	E300_1	SW8015C	8021B/8015
0304240-001	 KMW-1	Water	4/15/03 11:40:00 AM			 E	 E	Đ	С	В	Α
0304240-002	KMW-6	Water	4/15/03 3:20:00 PM		Е	Е	E	D	С	В	Α
0304240-003	KMW-16	Water	4/15/03 3:20:00 PM	405,	D			E	С	В	A
0304240-004	KMW-7	; Water	4/15/03 2:30:00 PM	b	D			E	С	В	A
0304240-005	KMW-8	Water	4/15/03 1:20:00 PM	Li	D	.,.		E	С	В	<u>A</u>
0304240-006	Trip Blank	Water	4/15/03	[!			ļ	Α
0304240-007	TAP Sample	Water	4/15/03 4:00:00 PM	Ĺ			1			d. an even	A

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

	6602 Owens Drive, Suite 100 Pleasanton, CA 94588 Main Line: (925) 460-5300									CHAIN OF CUSTODY FORM												
							160-5300			Turn	aror	լոժ		V) 1	10 da	v	3	dav		2-	8 hr	
1	CIATES						163-2559 <u>vens Hos</u>	- nue-44		Time		u		•	7 day		2	day		01		
Project Name: Project Number:	FIZIESMAY	1 Kanc 109.00		- `	. IIټالل	<u>uruu)</u> Task	<u>vens nos</u> 2	SC IIII		(work		days		5	5 day		2	4 hr			()
Project Number. Project Address:	73, 23	<u> Fri Cenau</u>	$\frac{9}{2}$	RD.	111					`												
Laboratory:	1600 Friesman RD. LIVERMORE, CA McCampbell Analytical Contact: (925)798-1620													An	alys	es F	tequ	este	d	<u> </u>		
Lab Address/Phone:	110 Second AVE South #D-7 PACHEGO, CA															Đ		lu				
ATC Project Manager:	Jim	Jim GEHRMAN														(7000/6010)	ر ا	五日	7+		1	
ATC PM Ph. No.:	(925) 225	925) 225- 1815 Email: LEHYMAN 75 @atc-enviro.com									_					9	35.	1E	2			
ATC Sampler:	P. Arr	040		_ P	hone:	(925)	225- 781	3		BE BE	(8250)	5	ြ			etect)	al (3	чĤн	ALICATIONITY			
	Sa	ample inf	orma	tion		Con	tainer Info	rmation		X/MT	nates	1015	(801	3020	8260	low d	, Tot	É, S.		7 31	A	
At Market				Matri	x	No.	Туре	Preser- vative	Comments /	TPHg/BTEX/MTBE (8015M/8020)	Fuel Oxygenates (TPHd (8015M)	HVOCs (8010)	VOCs (8020)	VOCs (8260)	PP Metals (low detect)	Cyanide, Total (335.2)	Nitrate, Sulfiate,	TOTAL	Be	COD	
ATC Sample ID	Date	Time	Soll	Water	Vapor				Field Notes	F 8	Ē	E	三	≥	×	8.	Ó.	2				
KMW-1	4.15.03	1140		X		3	VOA	HCL		$\perp X$	<u> </u>	_	ļ	 	╀	_	 		<u> </u>	-		
KMW-	<u> </u>	1		X		1	IL A.G.	None		_		X	ļ	 	 	<u> </u>		\ \ \ \ \				
KMW - 1				\perp			SOOML	None				<u> </u>	-	<u> </u>	 		ļ	Х	\ /			
KMM-1				$ \mathbf{X} $		1	SCOML	None				<u> </u>	ļ	ļ	-	<u> </u>		-	\triangle			
KMW-1				X		l	STOME	None				<u> </u>		<u> </u>	<u> </u>	 	-			X.	Ċ	
KMW~1		1		X		1	SBOML	14250u				ļ	ļ		igl	<u> </u>	 			-	Χ.	
KMW-6		1520		X		3_	VOA	HCL		\perp	ļ	ļ.,		<u> </u>	1_	ļ		_		-		-
KMW-6		\		X		\	ILAG.	None			<u> </u>	X			ļ					ļ		-
KMW-10				ľΧ		1	Sooml	None				ļ	_	ļ	.		-	X	V	-		
KMW-6				X			SOOML	Nove			ļ		<u> </u>	 	-	ļ	1_		Δ	\downarrow		
KMW-10				X		1	SOCIAL	None			<u> </u>		<u> </u>	<u> </u>			ļ	<u> </u>	ļ	X		
KMW-K2				X		li	500ING	H2504			<u> </u>	<u> </u>	ļ	<u> </u>	ļ	ļ	 				Δ	
KMW-16			<u> </u>	X		3	VOA	HCL		X		Ĺ.,		<u> </u>	<u> </u>	<u> </u>	ļ		<u> </u>	-		
KMW-16				X		Ì	IL A.G.	None				X			_		-			ļ		
KHW-16			1	ĪΧ		1	SUDME	Nave				<u> </u>			<u> </u>	<u> </u>	-	X	_	ļ		
KMW-160			1	X			STOME	None				<u> </u>			<u> </u>		<u></u>		X			
Additional Comments	* FILT	ER 3 P	nese	,2VE	Σĸ	on	SAMPLES	s upo	n IND ARRIV	AL												
	* INVO					Spir		irectly						1.07								
	- /) - /	/			Data	/Time:	ALIC KO	1700	Received By:	M	el	1/2	W	te		Da	le/Tii	me:	4/	13	5	pm
Relinquished By:	#Ma	-/41	<u>/</u>		-	/Time:	415.03	1 1 100	Received-By	1-10		<u> </u>	<u> </u>	· .		_Da	te/Ti	me:				-
Relinquished By: Relinquished By:	1		<u></u>		_	/Time:			Respived By		F	HET	RVA:	TICH	, VV	b a	ê7ri	ner.				
Sample Condition, Good? Yes	No	On Ice?	Yes_	 _ No		Cooler	Temp		ranspertation Meth	od:	1	TTIM	\mathcal{H}^{*} d			_			Pag	ë!	_ ŏf	_2_
- Inpla Callation (cook)									Dicklossamil	LAB			AUNE ERV E		LAB			÷				
White - Lab							<u></u>	Yellow -	Lab											Pi	nk -	ATC

			Ple	asanto	n, CA 9	re, Suite 10 94588 460-5300	o 03	64240	С	H	٩II	N (OF	C	:US	ST	Ol	DΥ	′ F	OR	١N			
ASSO	CIATES	INC.				463-2559			Turn	aroı	und			10 da			3 day			-8 hr				
Project Name:	FRIESMA	ESMAN RANCH Client: CHILDVENS HOSPITAL											Time:7 day2 day other											
Project Number:	75.2390	75.23907.000 Task: 2											(working days) 5 day24 hr (
Project Address:	1600	1600 FRIESMAN RD. LIVERMORE, CA											Ā	- Alve	ses F	2000	inet	a ci						
_aboratory:	Mc Compt	1c Campbell Analytical Contact: (925)798-1620									_	т-	T	laiye	T	T	6316			\Box				
_ab Address/Phone:		110 SECOND AVE South #D-7 PACHECO, CA									•			1) §		FE	7			ı			
ATC Project Manager		Jim LEHCMAN (925) 225- 7815 Email: LEHCMAN 75 @atc-enviro.com													900	ন	-J	-5			J			
ATC PM Ph. No.:	(925) 225-							nviro.com		a		1			Ĕ	335	t.	اڅ	1 1					
ATC Sampler:	P. Arr	oyo		Phone	e. <u>(925)</u>	225- 181	<u> </u>	-	TBE	Fuel Oxygenates (8260)	Ĕ	5	6	6	PP Metals (low detect) (7000/6010)	Cyanide, Total (335.2)	Nitrate, Sulfate,	Tatel Alkalinity						
	Sa	ımple info	rmation	,	Con	tainer Info	rmation		TPHG/BTEX/MTBE (8015M/8020)	enate	TPHd (8015M)	HVOCs (8010)	VOCs (8020)	VOCs (8260)	(low	<u>ا</u> ر	6		BOD	COO				
			Ma	trix		75	, ee .	Comments /	3/BT	Dxyg	후	ပ္ကြ	8	8	etals	niđ	(g)	इ	M	ව				
ATC Sample ID	Date	Time	Soil Wat	er Vapo		Туре	Preser- vative	Field Notes	(801)	Fuel	Ē	Ĭ	Š	Š	<u>8</u>	Ç	2	10						
KMW-7	4.15.03	1430		<u> </u>	3.	AOV	HCC		$\perp \!\!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$		<u> </u>	ļ	<u> </u>	ــ	—	 	 							
KMW.7	1					IL A.G.	Nove		<u> </u>	<u> </u>	X	↓_		 	↓	 	k	-		 				
KMW-7					<u> </u>	Soom	None				<u> </u>	ļ	 	 	↓	<u> </u>	$ \Delta $		 		_			
KMW-7		1	!×		1	SOOM	None		<u> </u>			ļ	<u> </u>	<u> </u>	↓	ļ	<u> </u>	X	 	├ ──┼				
KMW-8		1320	×		3	VOA	HCL		X		L.,		<u> </u>		↓	↓		<u> </u>	 					
KMW-8		1	$\overline{}$			ILAG.	None				X				<u> </u>	<u> </u>	ļ.,,	<u> </u>						
KMW-8			×		1	500ml	None			<u> </u>	<u> </u>	<u> </u>			<u> </u>		X	<u></u>						
KMW-8		W	$\neg \mid \mathbf{x}$		1	Sound	Nove]					<u> </u>		1		X						
TRIP BLANK		-	$\neg \uparrow \searrow$	7	Ī	VDA	HCL		X					-		<u> </u>		<u> </u>						
TAP Sample		1600		>	3	VOA	HCC		X				T			Γ	Ī							
Trip Ong pic		100	- abla	-	11	ILAG	Dora		- 	1		\top			T	T								
	 			} 	+ ;	50011	Nova				I^-										-			
	+ + + + + + + + + + + + + + + + + + + +	11/	$\rightarrow \Diamond$			SUDML					<u> </u>	1	1	1	VOA	3 1 C	380	Met	12.1	отнея	1			
	W	+V-	-	 	1 1	30000	Hooves	10776 - 2010		 	1	TES TES	PAYA	+		#					_			
		_				-	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		+	100	IN.	V	AB	+	1		1					
		-		_				فعضاره و در باید از شکا گیا	1 2 3 4 A	¥B	-		PXV	MICE	IAB_	+	+	-	╆					
additional Comment	S. Mr. +11	<u> </u>		<u> </u>	Pal	SAMPLE	S (100	n IAb Anzi	VAL.	J	<u> </u>									<u> </u>				
Mattonal Comment	* INV		HILDRE		Hoson		LEUY IN	i iii	11 -															
	\wedge			11-47	1.15.15	-1,-1,-1,-74 - 1 12 -1	<i>)</i>						11	7				, June						
elinquished By:	Vito	Ayl			e/Time:	41503/	1700	Received By:	\mathcal{A}	Mel	1	VI	Ų,	· · ·		te/Tir		1/	15	5/2/	<u>-1/1</u>			
telinquished By:	/				e/Time:			Received By:								te/Tir								
Relinquished By:		1		Date	e/Time:			Received By:							_ Dat	te/Tir		Pag	7	_ of _	<u>z</u>			
ample Condition, Good? Yes	No	On Ice? Ye	es No _		Cooler	Temp		Transportation Metho	đ:						_			ray	E					
													_								_			

White - Lab

L:/Admin/Subsurfar'e Group/revised chain of custody; revised 05/08/01

Yellow - Lab

Pink - ATC