

April 22, 2003

File No.: 10-3006-13/13

Ms. Eva Chu Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-9335

Subject: First Quarter 2003 Groundwater Monitoring Report

Friesman Ranch Property, Livermore, California

Dear Ms. Chu:

Attached is the First Quarter 2003 Groundwater Monitoring Report for the Friesman Ranch Property, 1600 Friesman Road, Livermore, California (site). The results of this report are consistent with the results of the previous groundwater monitoring events that have been performed at the site, with chemicals of concern only being detected in monitoring wells KMW-6 and KMW-7. No chemicals of concern were detected in the other wells sampled (KMW-1 and KMW-8).

As requested in your letter of March 3, 2003 to Ms. Lorraine del Prado of Children's Hospital and Research Center Foundation, additional investigation of the site was conducted during the first quarter of 2003. The additional work included an investigation of the creek adjacent to the site to assess possible impact from the petroleum hydrocarbon plume, and a well survey to identify water supply wells within 2000 feet of the site.

We trust that the attached submittal meets your requirements. Should you require any additional information and/or clarification, please contact the undersigned at (925) 460-5300.

Very truly yours,

ATC ASSOCIATES INC.

James A. Lehrman, RG, CHG

Senior Project Manager

Attachments

cc: Ms. Lorraine del Prado, Children's Hospital and Research Center Foundation

Ms. Leah Goldberg, Hansen, Bridgett, Marcus, Vlahos and Rudy, LLP

Reid Spil 24, 2003

QUARTERLY GROUNDWATER MONITORING REPORT FIRST QUARTER 2003 FRIESMAN RANCH PROPERTY LIVERMORE, CALIFORNIA

Submitted By:

ATC Associates Inc. 6602 Owens Drive, Suite 100 Pleasanton, CA 94588

ATC Project No. 75.23909.0001

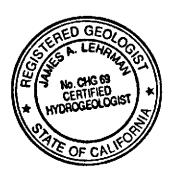
April 22, 2003

Prepared By: Scott Perkins Project Scientist

Reviewed By: James A. Lehrman, RG, CHG Senior Project Manager

CERTIFICATION*

All hydrogeologic and geologic information, conclusions, and recommendations in this document have been prepared under the supervision of and reviewed by a California Registered Geologist.


James A. Lehrman, RG, CHG

Senior Project Manager

California Registered Geologist #5032

California Certified Hydrogeologist #HG 69

4/22/03 Date

* A registered geologist's certification of conditions comprises a declaration of his or her professional judgment. It does not constitute a warranty or guarantee, expressed or implied, nor does it relieve any other party of its responsibility to abide by contract documents, applicable codes, standards, regulations, and ordinances.

QUARTERLY GROUNDWATER MONITORING REPORT FIRST QUARTER 2003 FRIESMAN RANCH PROPERTY LIVERMORE, CALIFORNIA

TABLE OF CONTENTS

1.	IN	NTRODUCTION	.1
	1.1	Objectives and Scope of Work	.1
		IELD ACTIVITES	
	2.1		
	2.2		
		2.1 Water Level Measurement	
		2.2 Groundwater Sample Collection	
	2.3	Analytical Laboratory Parameters	
í	2.4	Quality Assurance/Quality Control Sample Collection	
	2.5	Investigation-Derived Waste Handling Procedures	3
	2.6	Site Restoration	3
3.		SUMMARY OF RESULTS	7
J.			
	3.1	Introduction	.3
	3.2	Water Levels	4
	3.3	Free-Product Thickness	4
	3.4	Groundwater Monitoring Well Samples	4
	3.	4.1 Chemicals of Concern	
	3	8.4.1.1 Total Petroleum Hydrocarbons as Gasoline	4
	3	3.4.1.2 Total Petroleum Hydrocarbons as Diesel	4
	3	3.4.1.3 Aromatic Hydrocarbons	4
		3.4.1.4 Methyl Tertiary-Butyl Ether	
	3.	4.2 Bio-Parameters	.5
		3.4.2.1 Dissolved Oxygen	
		3.4.2.2 Oxidation-Reduction Potential	
	3	3.4.2.3 Hydrogen-ion Index (pH) and Temperature	5
	3	3.4.2.4 Ferrous Iron	
	3.	.4.3 Alkalinity	
	3.	.4.4 Nitrate	. 5
	3.	.4.5 Sulfate	.6
	3.	.4.6 Biological Oxygen Demand (BOD)	.6
	3.	.4.7 Chemical Oxygen Demand (COD)	
		· ·	

3.5		Assurance/Quality Control Samples6
3.5.		p Blank6
3.5.		ind Duplicate Sample6
4.	CREE	K INVESTIGATION7
5.	WELL	SURVEY7
6.	SUMM	IARY, CONCLUSIONS AND RECOMMENDATIONS7
6.1	Field A	ctivities7
6.2	Groun	dwater Chemistry8
6.3	Recom	mendations8
		LIST OF FIGURES
Figure 1	I	Site Vicinity Map
Figure 2		Sampling Locations
Figure 3		Groundwater Elevations and Hydraulic Gradient
Figure 4	1	Groundwater Analytical Results: January 2003
		LIST OF TABLES
Table 1		Summary of Groundwater Elevation Data
Table 2		Summary of Groundwater Analytical Results
Table 3		Quality Assurance/Quality Control Sample Analytical Results
Table 4		Bio Attenuation Analytical Results
		LIST OF APPENDICES
APPEN	DIX A	FIELD MONITORING NOTES
		Record of Water Level Measurements – January 17, 2003 Field Purge/Sampling Worksheets – January 17, 2003
APPEN	IDIX B	CHAIN-OF-CUSTODY RECORDS AND CERTIFIED ANALYTICAL LABORATORY REPORTS
		LABORATORT REPORTS
APPEN	DIX C	WELL SURVEY DATA

QUARTERLY GROUNDWATER MONITORING REPORT FIRST QUARTER 2003 FRIESMAN RANCH PROPERTY LIVERMORE, CALIFORNIA

1. INTRODUCTION

This report describes the results of the First Quarter 2003 Groundwater Monitoring Event performed at the Friesman Ranch Property, Livermore, California (hereinafter the site) (Figure 1).

1.1 Objectives and Scope of Work

The objectives of the activities performed were to:

- Continue a regularly scheduled groundwater monitoring program to track spatial and temporal variations in groundwater conditions; and
- Assess current Site groundwater conditions.

To meet these objectives, the following scope of work was implemented:

- Implement the scheduled groundwater monitoring event, which included water-level measurements, an evaluation of free-product thickness (if any); and collection of water quality samples for chemicals-of-concern (COCs), and biological attenuation parameters including biological and chemical oxygen demand for select samples.
- Evaluate bioattenuation parameters; and
- Prepare this quarterly groundwater monitoring report.

In addition to these regularly scheduled activities, a creek investigation and a well survey were performed in accordance with the request of the Alameda County Health Care Services Agency (ACHCSA) in a letter to Ms. Lorraine del Prado of Children's Hospital and Research Center Foundation, dated March 3, 2003.

2. FIELD ACTIVITIES

2.1 Introduction

This section summarizes the field activities performed for the quarterly groundwater monitoring program. Field activities were performed on January 17, 2003. Figure 2 shows the locations of the existing groundwater monitoring wells.

2.2 Groundwater Monitoring Activities

The eight Site wells (KMW-1 through KMW-8) were monitored for depth to groundwater this event. Only wells KMW-1, KMW-6, KMW-7 and KMW-8 were sampled. The goal of these activities was to

Page 1 of 8

measure water levels, assess free-product thickness (if any) and collect water quality samples that accurately represent stabilized aquifer conditions.

Prior to sampling, field instrumentation was calibrated and/or checked before opening the monitoring wells. All instruments were successfully calibrated and checked (Appendix A).

2.2.1 Water Level Measurement

The wells were opened and ventilated for a minimum of 0.5 hour. Prior to purging, the depth to water was measured in the wells to the nearest 0.01 foot using a clean, calibrated electronic water-level indicator. Water-level data were used to calculate the required purge volumes for sampling. Measurements were recorded on Water-Level Measurement Records (Appendix A).

2.2.2 Groundwater Sample Collection

Upon completion of the water-level measurements, ATC purged select monitoring wells by using a Honda pump and dedicated disposable tubing. During purging, aquifer parameters (hydrogen ion index [pH], temperature, and electrical conductivity) were measured to evaluate whether the water in each well had stabilized prior to sampling (Appendix A). The wells were purged until a minimum of three casing volumes of water were removed, aquifer parameters appeared to stabilize, and water levels were allowed to recover to near static levels before sampling.

Water from each well was collected using disposable polyvinyl chloride (PVC) bailers. Groundwater monitoring well samples were placed in appropriate containers (either 40-milliliter [ml] glass volatile organic analysis [VOA] vials, 1-liter amber glass bottles and/or 500-ml or 250-ml polyethylene bottles), labeled and the containers were then placed in Ziploc™ plastic bags. The samples were then placed in an ice chest packed with loose water-based ice maintained at 4 +/- 2 degrees Celsius (°C) for delivery to the laboratory.

2.3 Analytical Laboratory Parameters

Groundwater monitoring well samples were analyzed for the following parameters:

- Total petroleum hydrocarbons as gasoline (TPH-g) using Modified United States Environmental Protection Agency (EPA) Method 8015C;
- Total petroleum hydrocarbons as diesel (TPH-d) using Modified EPA Method 8015C;
- Benzene, toluene, ethylbenzene and total xylenes (BTEX) using EPA Method 8021B;
- Methyl tertiary-butyl ether (MTBE) using EPA Method 8021B;
- Alkalinity using Standard Methods for Water and Wastewater (SM) 2320B;
- Ferrous Iron (Fe⁺²) using EPA Method 200.7;
- Sulfate (SO₄⁻²) and Nitrate (NO₃) using EPA Method 300.1;
- Biological Oxygen Demand (BOD) using (SM) 5210B (wells KMW-1 and KMW-6 only); and
- Chemical Oxygen Demand (COD) using EPA Method 410.4 (wells KMW-1 and KMW-6 only).

2.4 Quality Assurance/Quality Control Sample Collection

Normal quality assurance/quality control (QA/QC) sampling activities includes the laboratory preparation and analysis of a trip blank that accompanies the ice chest to and from the laboratory. In addition, a blind duplicate was submitted for well KMW-6.

For this event, the following QA/QC samples were prepared or collected:

- A trip blank; and
- A blind duplicate.

Because only dedicated and/or new equipment was used to purge the wells and collect the samples, no equipment blank was collected.

2.5 Investigation-Derived Waste Handling Procedures

Investigation-derived wastes (IDW – purge water and decontamination rinsate liquids) were containerized onsite in labeled, United States Department of Transportation (DOT)-approved 55-gallon drums.

Drums were inspected prior to use for physical integrity and condition. Each drum was labeled to identify the waste source location, physical contents, date collected and generator's name. A total of two drums (containing monitoring well purge water and decontamination rinsate liquids) of IDW were generated during this quarter's monitoring activities. The drums will be disposed of at an appropriate licensed facility.

2.6 Site Restoration

Following completion of monitoring activities, the work area was left in a presentable and workable condition as near as practicable to original conditions.

3.0 SUMMARY OF RESULTS

3.1 Introduction

Water-level measurements were recorded on January 17, 2003. Groundwater samples were also collected from four of the eight wells on the site and submitted for analysis. The monitoring well samples were analyzed at McCampbell Analytical, Inc., a laboratory certified by the California Department of Health Services (DHS) Environmental Laboratory Accreditation Program (ELAP) for the specific analyses performed.

Tables 1, 2, 3 and 4 summarize the data measured and/or analyzed. Appendix B contains certified analytical laboratory reports and chain-of-custody records.

3.2 Water Levels

As part of the groundwater monitoring event, water levels were measured in monitoring wells KMW-1 through KMW-8 on January 17, 2003. Depths to water ranged from 10.85 to 12.77 feet below ground surface (bgs) in wells KMW-3 and KMW-2 respectively (Table 1). In January 2003, groundwater flow was to the northwest with a hydraulic gradient of 0.005 foot per foot (ft/ft). These results are consistent with the previous groundwater monitoring event in October 2002.

3.3 Free-Product Thickness

No sheen was observed on any of the samples. No free product was observed or detected in the wells. Historically, no free product has been detected in any of the wells (Appendix C).

3.4 Groundwater Monitoring Well Samples

A total of four wells (KMW-1 and KMW-6 through KMW-8) were sampled and analyzed for TPH-g, TPH-d, BTEX, and MTBE. These results are summarized in Table 2. Certified analytical laboratory reports are included in Appendix B.

3.4.1 Chemicals of Concern

3.4.1.1 Total Petroleum Hydrocarbons as Gasoline

TPH-g was detected at concentrations of 5,700 micrograms per liter (μ g/L) in KMW-6 and 1,100 μ g/L in KMW-7, but was not detected in any of the other wells. These results are consistent with historical concentrations detected (Table 2).

3.4.1.2 Total Petroleum Hydrocarbons as Diesel

TPH-d was detected at concentrations of 2,100 μ g/L in KMW-6 and 610 μ g/L in KMW-7, but was not detected in any of the other wells. These results are consistent with historical concentrations detected (Table 2).

3.4.1.3 Aromatic Hydrocarbons

Aromatic hydrocarbons were detected in monitoring wells KMW-6 and KMW-7, but were not detected in the other wells. Benzene was detected in excess of its drinking water maximum contaminant level (MCL), 1 μ g/L, at concentrations of 87 μ g/L in KMW-6 and 7.8 μ g/L in KMW-7. Toluene was detected below its MCL (150 μ g/L) at a concentration of 4.3 μ g/L in KMW-6 and 1.3 μ g/L in KMW-7. Ethylbenzene was detected below its MCL (700 μ g/L) at concentrations of 170 μ g/L in KMW-6 and 24 μ g/L in KMW-7. Total xylenes were detected below its MCL (1,750 μ g/L) at concentrations of 100 μ g/L in KMW-6 and 84 μ g/L in KMW-7. These results are consistent with historical concentrations detected (Table 2).

3.4.1.4 Methyl Tertiary-Butyl Ether

MTBE was not detected in any of the sampled wells. These results are consistent with historical concentrations detected (Table 2).

3.4.2 Bio-Parameters

3.4.2.1 Dissolved Oxygen

Dissolved Oxygen (DO) is the most thermodynamically favored electron acceptor used in the biodegradation of fuel hydrocarbons. During aerobic biodegradation, DO concentrations decrease.

DO was measured at 0.47 milligrams per liter (mg/L) in well KMW-7 (Table 4). This well represents the dissolved oxygen inside the hydrocarbon plume. DO measurements in wells KMW-1 and KMW-8 (wells outside the plume) ranged from 0.85 to 0.67 mg/L, respectively. The values indicate relatively anoxic conditions both within the plume and outside of the plume.

3.4.2.2 Oxidation-Reduction Potential

The ORP of groundwater is a measure of electron activity and is an indicator of the relative tendency of a solution to accept or transfer electrons. It influences and is influenced by the nature of biologically mediated degradation of COCs.

ORP ranged from less than -100 millivolts (mV) to -50 mV in wells in which COCs were detected (Table 4). ORP ranged from 115 mV to 155 mV in wells in which COCs were not detected. The values indicate oxidizing conditions outside the plume and reducing conditions inside the COC plume.

3.4.2.3 Hydrogen-ion Index (pH) and Temperature

The pH and temperature of the shallow groundwater were at levels conducive for the metabolic activity of bacteria capable of degrading fuel hydrocarbons (Table 4).

3.4.2.4 Ferrous Iron

In some cases, Ferric Iron (Fe⁺³) serves as an electron acceptor during anaerobic biodegradation of petroleum hydrocarbons. During this process, Fe⁺³ is reduced to Fe⁺². Ferrous iron can thus be used as an indicator of anaerobic degradation of petroleum compounds.

Ferrous Iron (Fe⁺²) was detected in KMW-6 at a concentration of 3.9 mg/L, 0.45 mg/L in KMW-7 and 1.1 mg/L in KMW-8 (Table 4). It was not detected in KMW-1.

3.4.3 Alkalinity

In general, areas impacted by petroleum hydrocarbons exhibit a total alkalinity higher than that seen in background areas. This is expected because microbially mediated reactions causing biodegradation of these compounds will cause an increase in total alkalinity of the system.

Alkalinity was reported at levels ranging from 310 mg/L in KMW-1 to 530 mg/L in KMW-6 (Table 4). In the impacted areas, the average alkalinity was 505 mg/L. In areas outside the petroleum hydrocarbon plume, the average alkalinity was 345 mg/L.

3.4.4 Nitrate

After DO has been depleted in the petroleum hydrocarbon impacted areas, nitrate may be used as an electron acceptor for anaerobic biodegradation via denitrification. Nitrate concentrations are used to estimate the mass of petroleum hydrocarbons that can be degraded by this process.

Nitrate was not reported above the detection limit (1.0 mg/L) in any of the wells sampled (Table 4).

3.4.5 Sulfate

After DO, nitrate and Fe⁺³ have been depleted in the impacted area, sulfate may be used as an electron acceptor for anaerobic degradation. The process is termed sulfate reduction and results in the production of sulfide.

Sulfate concentrations ranged from <1.0 mg/L in well KMW-6 to 8.9 mg/L in well KMW-8 (Table 4). The average sulfate concentration in the impacted area was 3.5 mg/L, whereas the average sulfate concentration outside the impacted area was 8.5 mg/L. Thus, it appears that sulfate is being reduced in the impacted area.

3.4.6 Biological Oxygen Demand (BOD)

BOD is a measure of the demand for oxygen in the subsurface by biological processes.

BOD levels ranged from <2.0 mg/L in well KMW-1 (outside the plume) to 16 mg/L in well KMW-6 (inside the plume).

3.4.7 Chemical Oxygen Demand (COD)

COD is a measure of the demand for oxygen in the subsurface by chemical processes.

COD was not detected above the reporting limit of 20 mg/L in either of the two wells (KMW-1 and KMW-6) sampled. This indicates that there are no other significant demands for oxygen in this environment, other than biological demands.

3.5 Quality Assurance/Quality Control Samples

The QA/QC samples collected and analyzed for this groundwater monitoring event included a trip blank and a blind duplicate sample. The results for these QA/QC samples are summarized on Table 3 and certified analytical laboratory reports are contained in Appendix B.

3.5.1 Trip Blank

One trip blank was prepared and analyzed for the January 2003 groundwater monitoring event. The trip blank contained no detectable concentrations of TPH-g, MTBE or BTEX.

3.5.2 Blind Duplicate Sample

One blind duplicate sample (KMW-16) was collected from monitoring well KMW-6 on January 17, 2003. This duplicate sample was analyzed for TPH-g, TPH-d, BTEX, and MTBE.

The Relative Percent Differences (RPD) for TPH-d, TPH-g, benzene, toluene, ethylbenzene and total xylenes (the analytes detected) were 10.0, 1.74, 2.27, 18.95, 5.71 and 0.0 percent, respectively (Table 3). The RPDs for all the analytes detected were below the typical QA/QC goal of less than 20 percent.

4.0 CREEK INVESTIGATION

In order to comply with a request of the ACHCSA made in their letter of March 3, 2003 to Ms. del Prado, an investigation of the creek adjacent to the site was conducted on March 27, 2003. The creek (Arroyo Las Positas) was investigated to assess possible impact from the petroleum hydrocarbon plume. An ATC staff member walked along the creek bed adjacent to the site from the bridge west of well KMW-2 to a point south of well KMW-4. The soil along the sides of the creek bed near stream level was probed at intervals of about every 10 feet to a depth of three to six inches using a metal rod to observe any odor, sheen, or other evidence of petroleum hydrocarbons. No odor, sheen, or other evidence of petroleum hydrocarbons was observed during the investigation.

5.0 WELL SURVEY

Also to comply with a request of the ACHCSA made in their letter of March 3, 2003 to Ms. del Prado, a well survey was performed to identify all water supply wells within 2,000 feet of the site. ATC made a request to the Zone 7 Water Agency for a well location map showing all known wells in the vicinity of the site. Upon review of this map, ATC requested well logs and other available information on wells within 2,000 feet of the site. ATC was informed by the Zone 7 Water Agency that well logs could only be supplied to another government agency; therefore, the well location map was supplied to ACHCSA so that they could make the request.

ACHCSA requested logs from the four wells closest to the site, including the on-site water supply well located approximately 350 feet to the west northwest (upgradient) of the plume. ATC reviewed the well logs and well construction details to assess the effects of well pumping on the plume. The well logs indicate that all of the nearby wells have at least a fifty-foot well seal, and penetrate clayey soils from approximately 20 to 60 feet or more bgs. The depth to water at the site ranges from approximately 10 to 16 feet bgs, and the total depth of the monitoring wells is 24 feet bgs. The petroleum hydrocarbon plume appears to be confined to these shallow depths. Based on the distance from the plume, the well construction, and the soil types encountered, it is unlikely that any of the nearby water supply wells could be impacted by the petroleum hydrocarbon plume. The well location map and the well logs from the four wells closest to the site are included in Appendix C.

6.0 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

The summary and conclusions presented in this section are based on research implemented, information collected, and interpretations developed during this and previous investigations performed at the property. The information evaluated in this report was collected by ATC during the first quarter of 2003. The summary and conclusions that follow are presented in the categories of field activities and groundwater chemistry.

6.1 Field Activities

- Field activities performed consisted of the First Quarter 2003 groundwater monitoring event.
- Water level measurements and the collection of water quality samples were conducted. The samples collected were analyzed for COCs (TPH-g, TPH-d, BTEX, and MTBE), bioattenuation parameters (DO, ORP, alkalinity, ferrous Iron, nitrate, sulfate, BOD and COD).

- Prior to the initiation of field activities, and between sampling locations, all equipment was decontaminated.
- Purge water and decontamination rinsate liquids were containerized and stored on-site in DOTapproved 55-gallon drums. They will be disposed of at a licensed facility.
- Following completion of field activities, the work area was left in a presentable and workable condition, as nearly as practicable to original conditions.

6.2 **Groundwater Chemistry**

- Only two groundwater monitoring well samples (KMW-6 and KMW-7) contained detectable concentrations of petroleum hydrocarbon compounds. The groundwater sample collected from KMW-1 and KMW-8 did not contain detectable concentrations of petroleum hydrocarbon compounds.
- The plume is confined to the site and is stable. Concentrations of COCs continue to decrease with time indicating that natural processes are working to remediate the plume.
- The subsurface environment appears to not be well oxygenated. It appears that anaerobic processes (iron and sulfate reduction) are operating to decrease the concentrations of COCs in the groundwater.
- The BOD and COD concentrations indicate that the injection of ORC (oxygen releasing compound) into the plume would primarily facilitate site cleanup by enhancing microbial activity.

In addition, based on the creek investigation preformed at the site on March 27, 2003, we conclude that the petroleum hydrocarbon plume has not impacted the creek. Furthermore, based on the survey of water supply wells within the vicinity of the site, it is unlikely that the petroleum hydrocarbon plume could impact any of these nearby water supply wells.

6.3 Recommendations

ATC makes the following recommendations concerning further investigations and remedial actions at the property:

- The regularly scheduled groundwater monitoring program should be continued, with the next event being implemented in April 2003.
- Water levels and free-product thickness should be measured in, and groundwater quality samples should be collected from monitoring wells KMW-1, KMW-6, KMW-7 and KMW-8.
- Groundwater quality samples collected from the three monitoring wells should be analyzed for TPH-g, TPH-d, BTEX and MTBE, as well as bio attenuation parameters.

TABLE 1
SUMMARY OF GROUNDWATER ELEVATION DATA
FRIESMAN RANCH PROPERTY
LIVERMORE, ALAMEDA COUNTY, CALIFORNIA

WELL NUMBER	SAMPLING DATE	WATER :	FREE- PRODUCT	TOC:	GROUNDWATER ELEVATIONS
	e desperante de empreso Alberta	FROM	THICKNESS	USGS Datum	USGS Datum
		T.O.C.((feet)	(feet)	(Ft. above MSL)	(Ft. above MSL)
KMW-1	9/8/97	12.82	0.00	370.12	357.30
	12/28/98	12.72	0.00		357.40
	1/12/99	12.97	0.00		357.15
	3/25/99	11.99	0.00		358.13
	6/21/99	NM	NM		NC
	9/16/99	NM	NM		NC
	10/16/02	14.27	0.00		355.85
	1/17/03	11.67	0.00		358.45
KMW-2	9/8/97	14.28	0.00	370.72	356.44
	12/28/98	14.08	0.00		356.64
	1/12/99	14.32	0.00		356.40
	3/25/99	13.19	0.00		357.53
	6/21/99	NM	NM		NC
	9/16/99	NM	NM		NC
	10/16/02	*	*		*
	1/17/03	12.77	0.00		357.95
кмw-з	9/8/97	12.34	0.00	369.10	356.76
	12/28/98	12.39	0.00		356.71
	1/12/99	15.13	0.00		353.97
	3/25/99	11.59	0.00		357.51
	6/21/99	NM	NM		NC
	9/16/99	NM	NM		NC
j	10/16/02	13.69	0.00		355.41
	1/17/03	10.85	0.00		345.20

WELL	SAMPLING	WATER	FREE:	T/0.C:	GROUNDWATER
NUMBER'	DATE	LEVEL	PRODUCT	ELEVATION	ELEVATIONS
rei proposition di Schall Gallet St	e fall politically. Professional	FROM	THICKNESS	USGS Datum	USGS Datum
ic whyter or	andreis Alfre e presi	T.O.C.		er (1914) A Superstant of published the	
1.766	Tally with	(feet)	(feet)	(Et. above MSE).	(Ft. above MSL)
KMW-4	9/8/97	13.76	0.00	369.80	356.04
	12/28/98	13.76	0.00		356.04
	1/12/99	14.40	0.00		355.40
	3/25/99	12.89	0.00		356.91
: :	6/21/99	NM	NM		NC
:	9/16/99	NM	NM		NC
:	10/16/02	15.92	0.00		353.88
	1/17/03	12.17	0.00		357.63
KMW-5	9/8/97	14.24	0.00	369.52	355.28
	12/28/98	14.17	0.00		355.35
	1/12/99	15.32	0.00		354.20
	3/25/99	13.27	0.00		356.25
	6/21/99	NM	NM		NC
	9/16/99	NM	NM		NC
	10/16/02	16.45	0.00		353.07
	1/17/03	12.60	0.00		356.92
KMW-6	9/8/97	14.28	0.00	370.08	355.80
	12/28/98	14.16	0.00		355.92
	1/12/99	14.47	0.00		355.61
	3/25/99	13.22	0.00		356.86
	6/21/99	14.56	0.00		355.52
	9/16/99	14.29	0.00		355.79
	10/16/02	16.27	0.00		353.81
	1/17/03	12.54	0.00		357.54

WELL 1	SAMPLING	WATER	FREE-	Ť.O.C	GROUNDWATER
NUMBER	DATE	LEVEL	PRODUCT	ELEVATION	ELEVATIONS
er er paggaratik Paggaratik		FROM	THICKNESS :	USGS Datum	USGS Datum
		T.O.C.			斯里克斯 1000年
		(feet)	(feet)	(Ft. aböve MSL) 👢	(Et. above MSL)
KMW-7	12/28/98	12.91	0.00	370.04	357.13
	1/12/99	13.15	0.00		356.89
	3/25/99	12.12	0.00		357.92
	6/21/99	12.86	0.00		357.18
	9/16/99	13.00	0.00		357.04
	10/16/02	14.63	0.00		355.41
	1/17/03	11.77	0.00		358.27
KMW-8	12/28/98	13.37	0.00	368.61	355.24
	1/12/99	13.70	0.00		354.91
	3/25/99	12.48	0.00		356.13
	6/21/99	13.30	0.00		355.31
:	9/16/99	13.57	0.00		355.04
	10/16/02	15.85	0.00		352.76
NOTES:	1/17/03	11.87	0.00		356.74

NOTES:

G.S. = Ground Surface

NC = Not Calculable

NM - Not Measured

T.O.C. = Top of casing. All measurements in feet relative to top of casing.

USGS = United States Geological Survey

All wells have 4" ID casing = 0.65 gallons per casing length (foot).

Wells KMW-7 and KMW-8 installed on December 23, 1998

^{*} Well obstructed, no water level measurement taken

TABLE 2
SUMMARY OF GROUNDWATER ANALYTICAL RESULTS
FRIESMAN RANCH PROPERTY
LIVERMORE, ALAMEDA COUNTY, CALIFORNIA

	and the state of the state of		TPH-G	BENZENE	en a Carinson		TOTAL	MEBE	PAHS	LEAD
WELL NUMBER	SAMPLE COLLECTION	TPH-D (jig/L)	1.Γ.1G (μg/L) -	BENZENE 4 (ug/L)	(ug/L)	ETHYL BENZENE	XYLENES		μg/L)	(µg/L)
NUMBER	DATE	(IR) LI	(hg/LJ)	(HB/L)	1,145,1.7	(µg/L)		U16	(MELL)	0.671/
KMW-1	9/8/97	<50	<50	<0.5	<0,5	<0.5	<0.5	<5.0	<10	-
	12/28/98	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	7.8
dup.	12/28/98	<50	<50	< 0.5	<0.5	<0.5	<0.5	<5.0	<10	5.9
•	3/25/99	<50	<50	< 0.5	<0.5	<0.5	<0.5	<5.0	-	-
	6/21/99	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/99	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/16/02	<50	<50	< 0.5	<0.5	<0.5	< 0.5	<5.0	-	- 1
	1/17/03	<50	<50	< 0.5	<0.5	<0.5	<0.5	<5.0	-	-
KMW-2	9/8/97	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	-
	12/28/98	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	<5.0
	3/25/99	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	-
	6/21/99	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/16/99	NS	NS	NS	NS	NS	NS	NS	NS	NS
<u> </u>	10/16/02	NS	NS	NS	NS	NS	NS	NS	-	-
	1/17/03	NS	NS	NS	NS	NS	NS	NS	NS	NS
KMW-3	9/8/97	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	-
	12/28/98	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	<5.0
	3/25/99	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	•
l i	6/21/99	NS	NS	NS	NS	NS -	NS	NS	NS	NS
	9/16/99	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/16/02	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	•	
	1/17/03	NS	NS	NS	NS	NS_	NS	NS	NS	NS
KMW-4	9/8/97	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	-
	12/28/98	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	7.5
	3/25/99	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	- I
	6/21/99	NS	NS	NS	NS	NS	NS	NS	NS	NS
ļ	9/16/99	NS	NS	NS	NS	NS	NS	NS	NS	NS
	10/16/02	<50	<50	< 0.5	<0.5	<0.5	<0.5	<5.0 NS	NS	NS
*** **** 4	1/17/03	NS .50	NS	NS	NS r0.5	NS co.5	NS ro f			
KMW-5	9/8/97	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10 <10	-
đup.	9/8/97	<50	<50	<0.5	<0.5	<0.5	<0.5 <0.5	<5.0 <5.0	<10	8.5
	12/28/98	<50	<50	<0.5	<0.5	<0.5 <0.5	<0.5	<5.0	10	د.ه
	3/25/99 6/21/99	<50 NO	<50 NS	<0.5 NS	<0.5 NS	NS	NS	NS	NS	NS
		NS NS	NS NS	l .	NS NS	NS NS	NS NS	NS	NS	NS
	9/16/99	NS <50	<50	NS <0.5	<0.5	<0.5	<0.5	<5.0	143	"
	10/16/02 1/17/03	NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS	NS
KMW-6	9/8/97		13,000, a		14	560	490	<150**	140*	
IZIVI W -0	12/28/98	1,800, d	3,200, a	86	3.6	140	90	<50**	130*	15
	3/26/99	1,800, a 1,700, d,b		160	5.1	270	200	<100**	100*	<5.0
dup.	3/26/99	1,700, d,b		170	6.5	270	200	<100**	100*	
լ ասի.	6/21/99	1,700, d,b	3,800, a	170	<0.5	260	160	<10	200*	<5.0
	9/16/99	1,900, d,0	7,100, a	230	9.8	300	210	<120	<10	<5.0
	10/16/02	1,600, d	4,600, a	100	8.4	190	110	<50	-	
dup.	10/16/02	1,000, d	5,100, a	110	10	210	110	<50	-	.
լ - սար.	1/17/03	2,100, d	5,700, a	87	4.3	170	100	<25		.
dup.	1/17/03	1,900, d	5,800, a	89	5.2	180	100	<25		-

WELL	SAMPLE	TPH-D	TPH-C	RENZENE	TOLUENE	ETHYL	TOTAL	MTBE	PAHs	LEAD
NUMBER	COLLECTION: DATE	of A last second property	Control of the Contro	(µg/L)	A STORY OF A COLUMN		XYLENES (µg/L)	that are being a second at	and a second to part of	
KMW-7	12/28/98	1,000, d,h	9,100, a,h	23	17	190	700	<70**	110*	38
	3/25/99	1,200 d,b	4,300, a,h	19	16	56	270	<70**	23 *	22
	6/21/99	1,300, d,b	1,300, a	6.5	< 0.5	21	62	<5.0	27 *	<5.0
dup.	6/21/99	1,200, d	2,000, a	6.4	6.7	24	76	<5.0	17 *	-
	9/16/99	1,100, d	950, a	3.3	2	19	33	<10	<10	<10
	10/16/02	480, d	270, a	1.3	<0.5	4	15	<5.0	-	-
	1/17/03	610, d	1,100, a	7.8	1.3	24	84	<10	-	-
KMW-8	12/28/98	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	12
]	3/25/99	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	-
	6/21/99	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	-	-
1	9/16/02	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5	-	- 1
	10/16/02	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	.
	1/17/03	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	-

Mat	tari	
110	LUS.	

TPH-D Total Petroleum Hydrocarbons as Diesel

TPH-G Total Petroleum Hydrocarbons as Gasoline MTBE Methyl Tertiary-Butyl Ether

MCL Cal/EPA Maximum Contaminant Level

μg/L Micrograms per Liter (approx. equal to parts per billion)

<0.5 Not detected at or above the laboratory method reporting limit

a Unmodified or weakly modified gasoline is significant

b Diesel range compounds are significant; no recognizable pattern

d Gasoline range compounds are significant

h Lighter than water immiscible sheen is present

** Reporting limit raised due to high presence of TPH-g

Not analyzed

NS Not Sampled

Napthalene only, all other chemicals were <10 micrograms per liter

PAHs Polyaromatic Hydrocarbons

TABLE 3 QUALITY ASSURANCE/QUALITY CONTROL SAMPLE ANALYTICAL RESULTS FRIESMAN RANCH PROPERTY LIVERMORE, ALAMEDA COUNTY, CALIFORNIA January 2002

OA/QC	SAMPLE	SAMPLE T	TPH-D	TPH-G	BENZENE	TOLUENE	ETHYL	JOTAI:	MTBE	PAHs	LEAD
SAMPLE TYPE	D.	COLLECTION BATE	(ug/L)	Carlotte Control of the	i (ug/L)	(1/2/1)	BENZENE (µg/L)	XYLENES (µg/L)	(µg/L).	(µg/L):	(µg/L)
Primary Sample	KMW-6	1/17/03	2,100, d	5,700, a	87	4.3	170	100	<25	-	-
Duplicate Sample	KMW-16	1/17/03	1,900, d	5,800, a	89	5.2	180	100	<25		_
Trip Blank	Trip Blank	1/17/03	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	-
	RPD		10.0%	1.74%	2.27%	18.95%	5.71%	0.00%	NC	NC	NC

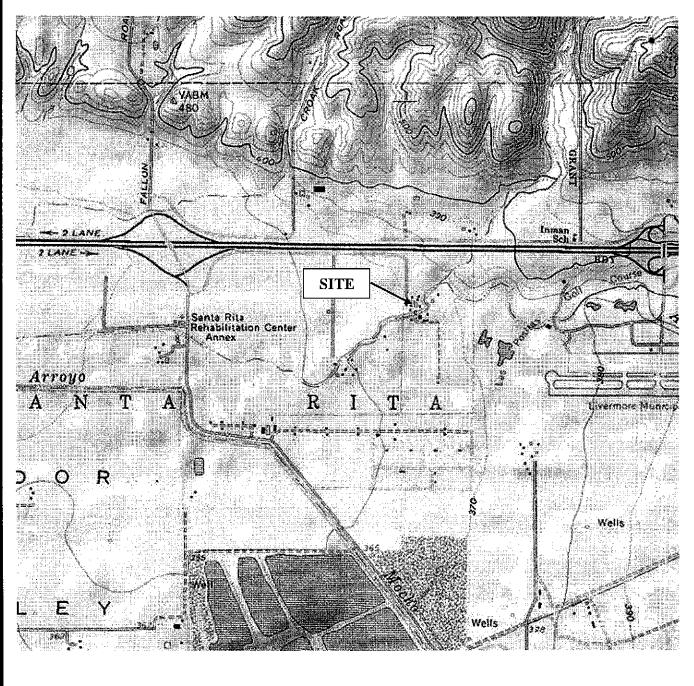

Notes:	
TPH-D	Total Petroleum Hydrocarbons as Diesel
TPH-G	Total Petroleum Hydrocarbons as Gasoline
MTBE	Methyl Tertiary-Butyl Ether
RPD	Relative Percent Difference
μg/L	Micrograms per Liter (approx. equal to parts per billion)
<0.5	Not detected at or above the laboratory method reporting limi
a	Unmodified or weakly modified gasoline is significant
b	Gasoline range compounds are significant
d	Gasoline range compounds are significant
NC	Not calculable
-	Not Analyzed
PAHs	Polyaromatic Hydrocarbons

TABLE 4
BIO ATTENUATION PARAMETER ANALYTICAL RESULTS

Analyte	KMW-I	KMW-2	-KMW-3	KMW-4	- KMW-5	KMW-6	KMW-74	KMW-8i
Field Measurements								
DO (mg/L)	0.85	NA	NA	NA	NA	NM	0.47	0.67
ORP (mV)	155	NA	NA	NA	NA	<-100	-50	115
Temperature (°C)	16.0	NA	NA	NA	NA	21.1	18.7	18.0
pН	7.2	NA	NA	NA	NA	6.8	6.9	7.0
Turbidity (NTU)	1.9	NA	NA	NA	NA	13.3	38.3	4.1
Laboratory Measurement								
Alkalinity (mg/L)	310	NA	NA	NA	NA	530	480	380
BOD (mg/L)	<2.0	NA	NA	NA	NA	16	NA	NA
COD (mg/L)	<20	NA	NA	NA	NA	<20	NA	NA
Ferrous Iron, FE (II) (mg/L)	<0.05	NA	<0.05	<0.05	< 0.05	2.49	<0.05	<0.05
Nitrate (mg/L)	<1.0	NA	NA	NA	NA	<1.0	<1.0	<1.0
Sulfate (mg/L)	8.2	NA	NA	NA	NA_	<1.0	7.0	8.9

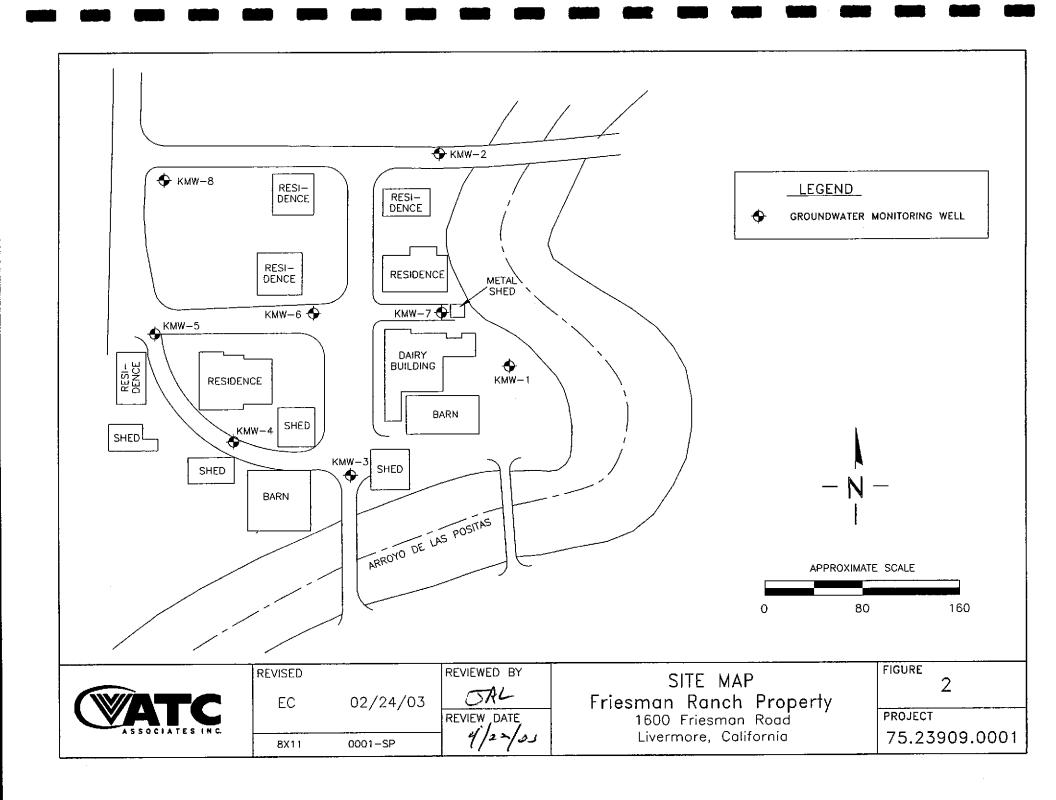
Notes:

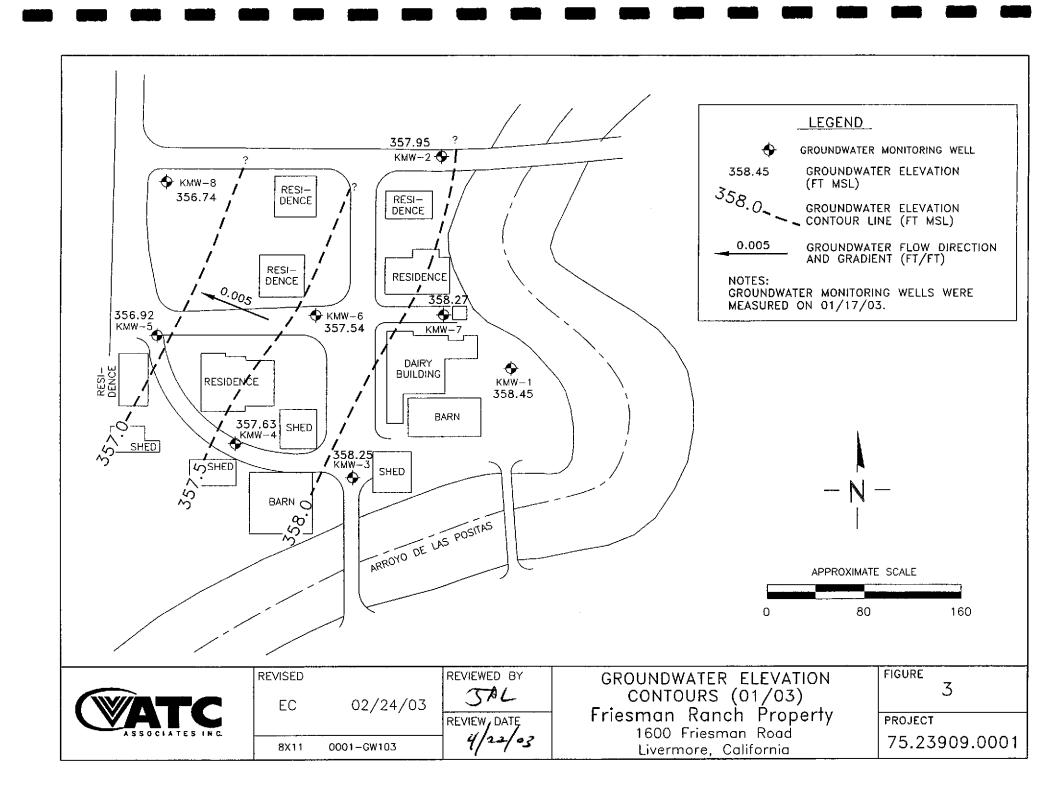
- 1. DO = Dissolved Oxygen.
- 2. ORP = Oxidation-Reduction Potential (measured in millivolts [mV]).
- 3. BOD = Biological Oxygen Demand.
- 4. COD = Chemical Oxygen Demand.
- 5. NA = Not Analysed.
- 6. <5.0 = Analyte not present at or above indicated reporting limit.
- 7. FE(II) = Percent Ferrous Iron represents percentage of Fe(II) of Total Fe in system.
- 8. NTU = Nephelometric Turbidity Units
- 9. NM = Not Measured
- 10. mg/L = milligrams per liter
- 11. pH = Hydrogen-ion index

W E

SOURCE: UNITED STATES GEOLOGICAL SURVEY *LIVERMORE QUADRANGLE*, *CALIFORNIA 7.5 MINUTE SERIES* (TOPOGRAPHIC) MAP. OBTAINED FROM THE 2000 NATIONAL GEOGRAPHIC TOPO SOFTWARE..

6602 Owens Drive, Suite 100 Pleasanton, CA 94588 (925) 460-5300


PROJECT NO: 75.23909.0001


DESIGNED BY: EC SCALE: SHOWN REVIEWED BY: JAL

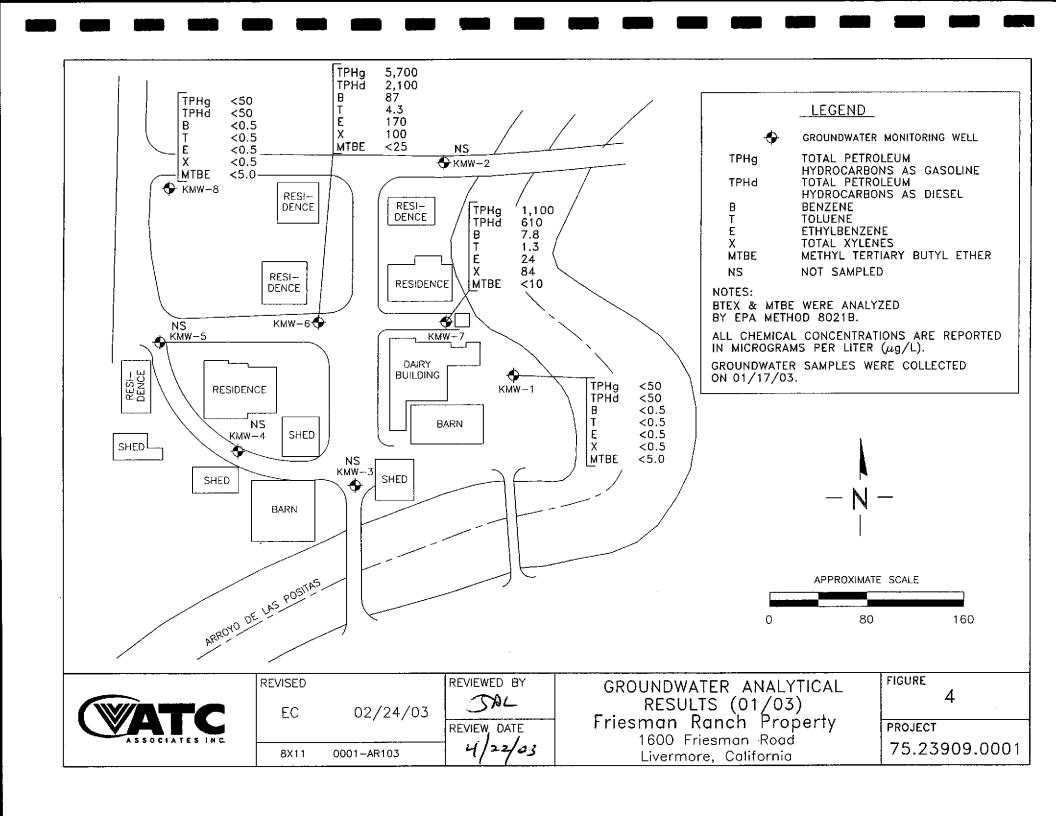

DRAWN BY: EC DATE: 02/03 FILE:0001-TOPO

FIGURE 1 SITE LOCATION MAP

FRIESMAN RANCH PROPERTY 1600 FRIESMAN ROAD LIVERMORE, CALIFORNIA

FIELD REPORT/DATA SHEET

Date: 1.17.03

Day: M Tu W Th

Project Number: 75.23909.0001

Field Technician: P. Arroy o

Order Well ID	Dlaw	Lock	Exp. Cap	Total Douth	VEED	D'JTV Filia	Inte	Electric Gonnaents
KMW-1	4 "	Good	GOOD	23.40	11.67	11.78	10∞	Assemble to Comments
KMW - 2	4"		1	13.30	12.77	12.77	N/A	
KMW-3	4"		7	23.90	10.85	10.85	NA	
KMW-4	4"			23.65	12.17	12.17	N/A	•
KMW-5	4"			23.40	12.60	12.60	N/A	
KMW-6	4"			23.40	12.54	12.90	1210	
KHW-7	4"			23.50	11.77	13.07	11.30	
KMW-8	4"			23.65	11.87	11.87	1040	
							10 70	
		,	\					·
NOTES:			<u> </u>					

Number of Drums Ousite

Full	Emply	JATOT
1/2	Ø	
Estimated Value:	•	

AND AND AREALL DRUMS LADELLED WITH THE LABELS FACING OUT. THE LABELS FACING OUT.

Project N	ame: <u>F(155</u>	MAN RA	NCH			nber: <u>75.23909</u>	.0001
	1600 Fr		₹d.			17.63	
Well Num	Livermove	2 <u>CA</u> 1 W - 1			Well Lock N Well Integri		
Developm	nent/Purge/Sa	mnier(s):) Account		Ambient Co		
			- HIOYI	<u>۔۔۔۔</u>)
Pre-Pu	rge DO (mg/L	-) <u> </u>					
Screened Well C Diamet	asing Tota	 Il Well th (ft.) Go	WELL VOL Depth to undwater (GV	UME CALCULAT Linear Feet M of GW	TON Gallons Linear i		Volume (gal.)
	9	•	endinates (O	Ξ	X 0.1	7 =	
1	5 23.L	10:	11.67	= 11.73	X 0.38		4
4.5	2 34 0		II-W	= 11-1 -	X 0.83	3 =	1
6_		-		=	X 1.5	=	
Floating P	roduct (ft.) (in	grou .): <u>None</u>	·	R SURFACE INS	nce: NON	<u> </u>	1ES
	•	_		WATER PURGIN			
Stainles	ss Steel Bailer	r, ☐ Submer	sible Pump	; 🛮 Air Diaphragi	n Pump; ∭ /⊦	londa Pump;☐ Oth	er
Stagnant	Volume						
Volumes	Purged			Conductivity	Temp.	Color/Turbidity	
Purged	(gal.)	Time	pН	(µs/umhos)	(°C)	(other)	
•			•	,	•	_	
0	0	0943	8.1	1 1 MS	14.4	CLEAR	Bassyssy
1	7.0	0945	7.3	1.7 ms	14.2	i	Recovery
2	14.0	0947	7.2	1.0 ms	15.7	<u> </u>	Rate:
3	21.0	0949	7.2	0.9ms	16.0	1	Fast
4	21.		7.0			· · · · · · · · · · · · · · · · · · ·	Medium
5							Slow
6							
7							
8	 -						
9				<u></u>			
10							
						0	
	IDWATER SA	AMPLING	S	ampling Equipm	ent: <u>) Sp</u>	osable Bail	<u>tr</u>
vvater Leve	el Recovery	oth to GW (f	١.	Sample Cor	namers	No. Preservati	on Method/pH
(I) Initially	De,	1.67	L)	1 liter (L), a	mber glass	110. 110001100	ott moure—p
(P) After P		410		40 ml VOA	inder grade		-
P - 0.8 (P-		2.15 80%	Recovery	500 ml poly	propylene		
(S) Before		78	,	Trip Blank	.,		
(P-S) / (P-I)	X 100 =	% To	tal Recover	ry			
Sample Da	te/Time: 1-17	1.03 /	1000	Turbidity (N	NTU): <u>/.9</u>		
Calibrate D	ate/Time: 🔟	7.03/	0900			_ EH (MEV):_	155
	-		PUR	GED WATER CO	NTAINMEN	T	
Total drums	s at site: Wate	er <u>11/2</u>	Soil	Water	pump throug	h treatment system	
Remarks:							
•							

Project Name: <u>Friesman Ranch</u> Address: <u>1600 Friesman Rd.</u> Livermore, CA	Project Number: <u>75.23909.0001</u> Date: <u>1.17.03</u> Well Lock Number:
Well Number: KMW- 6	Well Integrity: Good
Development/Purge/Sampler(s): 4. Arroys	Ambient Conditions: Sunny
Pre-Purge DO (mg/L)	
Screened at WELL VOLUME CALC Well Casing Total Well Depth to Linear Diameter (in.) Depth (ft.) Goundwater (GW) of G	Feet Gallons Per
- =	X 0.17 =
23.40: 12.54 10	.86 × 0.56 = 7.16
4.5	X 0.83 =
5 =	X 1.5 =
Floating Product (ft.) (in.): None Sheen/Irio	•
GROUNDWATER PU Stainless Steel Bailer, Submersible Pump; Air Diap	RGING PŮRGE METHOD hragm Pump; MHonda Pump; COther
Stagnant Volume	
Volumes Purged Conduct	
Purged (gal.) Time pH (µs/uml	nos) (°C) (other)
	200 ()
0 <u>0 1158 7.0 1.5 ms</u>	220 Ight brain Recovery
1 $\frac{7.0}{100}$ $\frac{1200}{100}$ $\frac{6.9}{1.4}$ $\frac{1.4}{100}$ ms	
2 14.0 1202 6.9 1.4 ms	d0.4 Chart
3 <u>21.0 /204 6.8 1.4 ms</u>	Fast Fast
4	Medium
5	Slow
6	
7	
8	
9	
10	
GROUNDWATER SAMPLING Water Level Recovery Depth to GW (ft.) Sampling Eq. Sampling Eq.	uipment: _DISPOSABLE BAILEY e Containers No. Preservation Method/pH
	L), amber glass
(P) After Purging 17.50 40 ml	•
	polypropylene
(S) Before Sampling 12.90 Trip Bl	ank
(P-S) / (P-I) X 100 =% Total Recovery	
	dity (NTU): 13-3
Calibrate Date/Time: 1.17.0.3 / 0900	EH (MEV); >-(80
' PURGED WATE	R CONTAINMENT
Total drums at site: Water 11/2 Soil V	Vater pump through treatment system
Remarks:	

Project Name: Friesman Rancht	Project Number: 75.23909. 000 I
Address: 1600 Friesman Rd. Livermore CA	Date: 1.17.03 Well Lock Number:
Well Number: KMIN-7	Well Integrity: Good
Development/Purge/Sampler(s): 2. Arroyo	Ambient Conditions: Sunny
Pre-Purge DO (mg/L), 47	
Screened at WELL VOLUME CALCULA	TION .
Well Casing Total Well Depth to Linear Feet	Gallons Per
Diameter (in.) Depth (ft.) Goundwater (GW) of GW	Linear Foot 1 Well Volume (gal.) X 0.17 =
2350: 11.77 = 11.73	Y 0.38 =
$\frac{4}{45}$ $\frac{4}{45}$ $\frac{350}{45}$: 11.77 = 11.73	x 0.66 = 7.74 x 0.83 =
6 - =	X 1.5 =
COOLINDWATER CUREACTING	PRECTION (DAILED CHECK)
GROUNDWATER SURFACE INS Floating Product (fL) (in.): None Sheen/Iridesc	ence: Odor:
GROUNDWATER PURGI	NG PÚRGE METHOD
☐ Stainless Steel Bailer, ☐ Submersible Pump; ☐ Air Diaphrag	ım Pump; ☑ Honda Pump; ☐ Other
Stagnant Volume	
Volumes Purged Conductivity	
Purged (gal.) Time pH (µs/umhos)	(°C) (other)
	21.3 CLEAV
$\frac{0}{123} = \frac{1.3 \text{ ms}}{1.3 \text{ ms}}$	21.3 CCAV Recovery
1 7.0 1125 7.0 1.4 ms	
2 14.0 1127 7.0 1.4 ms	18.7 Fast
3 21.0 1129 6.9 1.3 ms	Medium
4	Slow
5	
6	
7	
8	
10	
GROUNDWATER SAMPLING Sampling Equipm	ient: Disposable Bailer
Water Level Recovery Sample Co	<u>ntainers</u>
Depth to GW (ft.)	No. Preservation Method/pH
AC. 2	mber glass
(P) After Purging (8.30) 40 ml VOA P - 0.8 (P-l) = (3.07) 80% Recovery 500 ml poly	nropylene
(S) Before Sampling 13.07 Trip Blank	
(P-S) / (P-I) X 100 = <u>\$0</u> % Total Recovery	
Sample Date/Time: 1.17.02 / 1/30 Turbidity (17 1 28 3
Sample Date/Time: 1.17.03 / 1150 Turbidity (NTU): <u>38.3</u>
Calibrate Date/Time: 1.17.03 / 09.00	EH (MEV):'-50
PURGED WATER CO	THEMPIATO
	About the standard of the stan
Total drums at site: Water 1 1/2 Soil Water	pump through treatment system
Remarks:	<u> </u>
	-

Project Name: <u>Friesman Ranch</u> Address: <u>1600 Friesman</u> Rd	Project Number: <u>75.23909.0001</u> Date: 1.17.03
Livermore CA	Weil Lock Number:
Well Number: KMW - 8	Well Integrity: <u>Goo</u>
Development/Purge/Sampler(s): P. Arroyo	Ambient Conditions: Sunny
Pre-Purge DO (mg/L) 107	
Screened at WELL VOLUME CALCU Well Casing Total Well Depth to Linear Fe Diameter (in.) Depth (ft.) Goundwater (GW) of GW	et Gallons Per Linear Foot 1 Well Volume (gal.)
23.65 : 11.87 : 11.7	X 0.17 = X 0.38 = 7.77 X 0.66 = 7.77 X 0.83 = X 1.5 =
Floating Product (fL) (in.): None Sheen/Inde	INSPECTION (BAILER CHECK) escence: New Odor: YES
GROUNDWATER PUR ☐ Stainless Steel Bailer, ☐ Submersible Pump, ☐ Air Diaph	:GING PŮRGE METHOD ragm Pump; ☑ Honda Pump; ☐ Other
Stagnant Volume Volumes Purged Conductive Purged (gal.) Time pH (µs/umho	· · ·
0 0 1032 7.1 1.1 ms 1 7.0 1034 7.1 1.2 ms 2 14.0 1036 7.0 1.2 ms	17.6 CLEAV Recovery Rate:
3 31.0 1038 7.0 1.3 ms 4 5	18.0 Fast Medium Slow
6 7 8	
9	
GROUNDWATER SAMPLING Sampling Equi Water Level Recovery Sample Depth_to GW (fL)	pment:
(I) Initially $1/87$ 1 liter (L (P) After Purging 1350 40 ml VC), amber glass OA ootypropylene
	ty (NTU): 4-1
Calibrate Date/Time: 1.17.03 / 0900 PURGED WATER	EH (MEV): //S
Total drums at site: Water 11/2 Soil Wa	ater pump through treatment system
Remarks:	

McCampbell Analytical Inc.	110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
	Telephone: 925-798-1620 Fax: 925-798-1622
	http://www.niccampbell.com E-mail: main@mccampbell.com

ATC Associates	Client Project ID: #75.23909.0001;	Date Sampled: 01/17/03
6602 Owens Drive, #100	Friesman Ranch	Date Received: 01/17/03
Pleasanton, CA 94588	Client Contact: Jim Lehrman	Date Reported: 01/24/03
	Client P.O.:	Date Completed: 01/24/03

WorkOrder: 0301226

January 24, 2003

Dear Jim:

Enclosed are:

- 1). the results of 6 analyzed samples from your #75.23909.0001; Friesman Ranch project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

👍 McCampbell Analytical Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

ATC Associates	Client Project ID: #75.23909.0001;	Date Sampled: 01/17/03
6602 Owens Drive, #100	Friesman Ranch	Date Received: 01/17/03
Dlagganton CA 04588	Client Contact: Jim Lehrman	Date Extracted: 01/18/03-01/22/03
Pleasanton, CA 94588	Client P.O.:	Date Analyzed: 01/18/03-01/22/03

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction method: SW5030B			Analytical methods: SW8021B/8015Cm				Work Order: 0301226			
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	KMW-1	w	ND	ND	ND	ND	ND	ND	1	104
002A	KMW-6	w	5700,a	ND<25	87	4.3	170	100	5	102
003A	KMW-16	w	5800,a	ND<25	89	6.4	180	100	5	92.2
004A	KMW-7	w	1100,a	ND<10	7.8	1.3	24	84	1	107
005A	KMW-8	w	ND	ND	ND	ND	ND	ND	1	109
006A	Trip Blank	w	ND	ND	ND	ND	ND	ND	1	98.3
ï										
					an contract					
		-							-	
			: :							
	g Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
ND means not detected at or above the reporting limit		S	NA	NA	NA	NA	NA	NA	1	mg/K

*water and vapor samples are reported in μg/L, soil and sludge samples in mg/kg, wipe samples in μg/wipe, and TCLP extracts in μg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

A	McCampbell
TC A	ssociates

McCampbell Analytical Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

ATC Associates	Client Project ID: #75.23909.0001;	Date Sampled: 01/17/03
6602 Owens Drive, #100	Friesman Ranch	Date Received: 01/17/03
Pleasanton CA 94588	Client Contact: Jim Lehrman	Date Extracted: 01/17/03
	Client P.O.:	Date Analyzed: 01/17/03-01/18/03

Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel*

Extraction method: SW		٥,	Analytical methods: SW8015C	Work Order:	0301226
Lab ID	Client ID	Matrix	TPH(d)	DF	% SS
0301226-001B	KMW-1	w	ND	1	82.6
0301226-002B	KMW-6	w	2100,d	1	83.2
0301226-003B	KMW-16	w	1900,d	1	82.2
0301226-004B	KMW-7	w	610,d	1	82.9
0301226-005B	KMW-8	w	ND	1	82.6
<u>.</u>					
					i
	THE CANADA C				
	,				
İ					
Reporting L	imit for DF =1;	w	50	μ	g/L
	ot detected at or reporting limit	S	NA	ı	IA

^{*} water and vapor samples are reported in µg/L, wipe samples in ug/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all TCLP / STLC / SPLP extracts in µg/L

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent / mineral spirit.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

		· · · · · · · · · · · · · · · · · · ·				
ATC Associates	Client Project ID: #75.23909.0001;	Date Sampled: 01/17/03				
ATC Associates 6602 Owens Drive, #100 Pleasanton, CA 94588	Friesman Ranch	Date Received: 01/17/03				
Diagranton CA 04599	Client Contact: Jim Lehrman	Date Extracted: 01/17/03				
Fleasanton, CA 94366	Client P.O.:	Date Analyzed: 01/17/03-01/18/03				

Inorganic Anions by IC*

Extraction method: E	300.1		Analytical methods: E300.1		Work Order: 0301226			
Lab ID	Client ID	Matrix	Nitrate as N	Sulfate	DF	% SS		
0301226-001C	KMW-1	w	ND	8.2	1	80		
0301226-002C	KMW-6	w	ND	ND	1	113		
0301226-003C	KMW-16	w	ND	ND	1	112		
0301226-004C	KMW-7	w	ND	7.0	1	107		
0301226-005C	KMW-8	w	ND	8.9	1	108		
								
	Limit for DF =1;	w	1.0	1.0		ng/L		
	reporting limit	S	NA	NA	m	g/Kg		

^{*} water samples are reported in mg/L, liquid and soil samples in mg/kg, wipe samples in μ g/wipe.

[#] surrogate diluted out of range or surrogate coelutes with another peak; N/A means surrogate not applicable to this analysis.

j) sample diluted due to high inorganic content; i) liquid sample that contains greater than ~2 vol. % sediment.

McCampbell Analytical Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

ATC Associates	Client Project ID: #75.23909.0001;	Date Sampled: 01/17/03
6602 Owens Drive, #100	Friesman Ranch	Date Received: 01/17/03
Pleasanton, CA 94588	Client Contact: Jim Lehrman	Date Extracted: 01/17/03
ricasamon, CA 34300	Client P.O.:	Date Analyzed: 01/17/03

ICP Metals*

Extraction method: E20	00.7		Analytical	methods: E200.7	Work Order:	0301226
Lab ID	Client ID	Matrix	Extraction	Iron	DF	% SS
0301226-001C	KMW-1	w	DISS.	ND	1 -	N/A
0301226-002C	KMW-6	w	DISS.	3.9	1	N/A
0301226-003C	KMW-16	w	DISS.	3.9	1	N/A
0301226-004C	KMW-7	w	DISS.	0.45	1	N/A
0301226-005C	KMW-8	w	DISS.	1.1	1	N/A
Reporting I	Limit for DF =1;	W	DISS.	0.05	n	ng/L
	reporting limit	S	TTLC	NA	m	g/kg

* water samples are reported in mg/L, soil/sludge/solid/product samples in mg/kg, wipes in µg/wipe and all TCLP / STLC / DISTLC / SP	LP extracts in
water samples are reported in higher, some study of the highest in highest in highest in highest are reported in highest are r	DI 4.11.41-10 1
lmg/L.	

ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

Analytical Methods: EPA 6010C/200.7 for all elements except: 200.9 (water-Sb, As, Pb, Se, Tl); 245.1 (Hg); 7010 (sludge/soil/solid/oil/product/wipes -As, Se, Tl); 7471B (Hg).

DISTLC extractions are performed using STLC methodology except that deionized water is substituted for citric acid buffer as the extraction fluid. DISTLC results are not applicable to STLC regulatory limits.

i) liquid sample that contains greater than ~2 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations; z) reporting limit raised due to matrix interference.

DHS Certification No. 1644

Angela Rydelius, Lab Manager

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0301226

EPA Method: SW80	21B/8015Cm E	xtraction:	SW5030B		BatchID:	5667	Spiked Sample ID: 0301230-001A			
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Ассерtапсе	Criteria (%)
Compound µg/L	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(gas)	ND	60	105	106	0.494	110	107	2.08	80	120
МТВЕ	300.5	10	NR	NR	NR	98.8	92.8	6.25	80	120
Benzene	ND	10	118	119	0.537	119	115	3.46	80	120
Toluene	ND	01	116	115	1.04	115	111	3.45	80	120
Ethylbenzene	ND	10	119	116	3.22	116	117	1.01	80	120
ХуІспеѕ	ND	30	113	113	0	120	113	5.71	80	120
%SS:	107	100	115	113	2.03	113	109	3.56	80	120

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS – MSD) / (MS + MSD) * 2.

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

Matrix: W

WorkOrder: 0301226

EPA Method: SW8015C	E	xtraction:	SW35100	;	BatchID:	chID: 5664 Spiked Sample ID: N/A				
0	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
Compound	μg/L μg/L % Rec. % Rec			% Rec.	. % RPD % Rec.		% Rec.	% RPD) Low High	
TPH(d)	N/A	7500	N/A	N/A	N/A	125	130	3.85	70	130
%SS:	N/A	100	N/A	N/A	N/A	111	113	1.59	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR E300.1

Matrix: W

WorkOrder: 0301226

EPA Method: E300.1	E	xtraction:	E300.1		BatchID:	5602	s	piked Sampl	e ID: N/A	
Campaind	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
Compound	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
Nitrate as N	N/A	1	N/A	N/A	N/A	90.9	90.8	0.0978	80	120
Sulfate	N/A	1	N/A	N/A	N/A	101	100	0.0975	80	120
%SS:	N/A	100	N/A	N/A	N/A	95.5	95.3	0.174	80	120

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR E200.7

Matrix: W

WorkOrder: 0301226

EPA Method: E200.7	E	xtraction:	E200.7		BatchID:	5749	s	piked Sampl	e ID: N/A	
0	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
Compound	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
Iron	N/A	10	N/A	N/A	N/A	94	91.5	2.64	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

GeoAnalytical Laboratories, Inc. nue Modesto, CA 95351 Phone (209) 572-0900 Fax (209) 572-0916

1405 Kansas Avenue Modesto, CA 95351

CERTIFICATE OF ANALYSIS

Report # P020-01

Date: 1/28/03

McCampbell Analytical

1/20/03

110 2nd Ave. South #D7

Date Rec'd: Date Started:

1/21/03

Pacheco

CA 94553 PO#

Project:

Date Completed:1/26/03

Date Sampled: 1/17/03

Time:

					Sampler:	
Sample ID	Lab ID	RL	Method	Analyte	Results Unit	is
301226-001D	P300609	2.0	SM5210B	B.O.D	ND mg/	L
301226-002D	P300610	2.0	SM5210B	B.O.D	16 mg/	′L

Inorganic Supervisor

Certification # 1157

GeoAnalytical Laboratories, Inc.

1405 Kansas Avenue Modesto, CA 95351

Phone (209) 572-0900 Fax (209) 572-0916

CERTIFICATE OF ANALYSIS

Report # P020-01

Date: 1/22/03

McCampbell Analytical

Date Rec'd: Date Started: 1/20/03 1/21/03

110 2nd Ave. South #D7

Date Completed:1/21/03

Pacheco CA 94553

PO#

RL

20

Project:

Date Sampled: 1/17/03 Time:

10:00 am

Sample ID

Method Analyte Sampler: Results Units

301226-001D

Chemical Oxygen Demand P300609 20 410.4

ND mg/L

301226-002D

P300610

Lab ID

410.4

Chemical Oxygen Demand

ND

mg/L

Inorganic Supervisor

Certification # 1157

GeoAnalytical Laboratories, Inc.

1405 Kansas Avenue Modesto, CA 95351

Phone (209) 572-0900 Fax (209) 572-0916

Report# P020-01

QC REPORT

McCampbell Analytical 110 2nd Ave. South #D7

Pacheco

CA 94553

Analyte	Method	Batch #	Dates Analyzed	Orig.	Dupl.	MS %Rec	MSD %Rec	RPD	LCS %Rec Blank	Comments
B.O.D	SM5210B	B00035	1/21/03-1/26/03	292	271			7.5	ND	

* LCS/LCSD (see comments)

CRONIT BOMBAYWAIA
Inorganic Supa-

Certification # 1157

GeoAnalytical Laboratories, Inc.

1405 Kansas Avenue Modesto, CA 95351

Phone (209) 572-0900 Fax (209) 572-0916

Report# P020-01

QC REPORT

McCampbell Analytical 110 2nd Ave. South #D7

Pacheco

CA 94553

Analyte	Method	Batch #	Dates Analyzed	Orig.	Dupl.	MS %Rec	MSD %Rec	RPD	LCS %Rec	Blank	Comments
Chemical Oxygen Demand	410.4	I00451	1/21/03			113.3	113.3	0.0	113.3	ND	

* LCS/LCSD (see comments)

Inorganic Supervisor

Certification # 1157

McCampbell Analytical Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0301226

Subcontractor:

GEO ANALYTICAL LABORATORIES

1405 Kansas Avenue Modesto, CA 95351 TEL:

(209) 572-0900

FAX:

(209) 572-0916

ProjectNo: #75.23909.0001; Friesman Ranch

Acct #:

N/A

Date Received:

1/17/03

Date Printed:

1/17/03

								Requested Tests		
Sample ID	ClientSampID	Matrix	Collection Date	TAT	BOD	COI	O			
			1447/02 40:00:00 AM	Chandord		1 4		Parring		
0301226-001D	KMW-1	Water	1/17/03 10:00:00 AM		<u> </u>			P30009	<u> </u>	
0301226-002D	KMW-6	Water	1/17/03 12:10:00 PM	Standard		1111111		P300(010		

Comments:

BOD AND COD STANDARD TAT PLEASE FAX RESULTS AS SOON AS READY; THANK YOU

	Date/Time	Date/Time
Relinquished by: Millism Valles	01-17-03 5pm Received by: COUNTRY	1/17/03
Relinquished by: Courcer	1/20/03 10an Received by: Kidla Gadella	1/20/03 10 an

860 Waugh Lane, H-1, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

24 January 2003

McCampbell Analytical

Attn: Melissa Valles

110 2nd Ave. South, #D7

Pacheco, CA 94553-5560

RE: ATC Associates

Work Order: A301418

Enclosed are the results of analyses for samples received by the laboratory on 01/20/03 09:35. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Heidi M. Peebles For Sheri L. Speaks

Offeich M Peebles

Project Manager

860 Waugh Lane, H-1, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

Page 1 of 5

McCampbell Analytical

110 2nd Ave. South, #D7 Pacheco, CA 94553-5560

Attn: Melissa Valles

01/20/2003 09:35

Report Date:

01/24/03 11:52

Project No: 0301226

Project ID: ATC Associates

Receipt Date/Time

Client Code **MCCLAB**

CHEMICAL EXAMINATION REPORT

Client PO/Reference

Order Number A301418

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
KMW-1	A301418-01	Water	01/17/03 10:00	01/20/03 09:35
KMW-6	A301418-02	Water	01/17/03 12:10	01/20/03 09:35
KMW-16	A301418-03	Water	01/17/03 12:10	01/20/03 09:35
KMW-7	A301418-04	Water	01/17/03 11:30	01/20/03 09:35
KMW-8	A301418-05	Water	01/17/03 10:40	01/20/03 09:35

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Offeich M Peebles

860 Waugh Lane, H-1, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 2 of 5

McCampbell Analytical 110 2nd Ave. South, #D7 Pacheco, CA 94553-5560 Attn: Melissa Valles

Report Date: 01/24/03 11:52 Project No: 0301226

Project ID: ATC Associates

Order Number A301418 Receipt Date/Time 01/20/2003 09:35

Client Code MCCLAB Client PO/Reference

•		Alpha A	nalytical	Laborato	ries, Inc.			
	METHOD	BATCH	PREPARED	ANALYZED	DILUTION	RESULT	PQL	NOTE
MW-1 (A301418-01)			Sample Ty	pe: Water		Sampled: 01/17/03 10:00		
Conventional Chemistry Parameters by	y APHA/EPA M	lethods						
Total Alkalinity as CaCO3	EPA 310.1	AA32206	01/21/03	01/21/03	1	310 mg/l	1.0	
Carbonate Alkalinity as CaCO3	н	n	li .	Ħ	**	ND "	1.0	
Bicarbonate Alkalinity as CaCO3	H	"	n	**	н	310 "	1.0	
Hydroxide Alkalinity as CaCO3	۳	**	H	*	*	ND "	1.0	
KMW-6 (A301418-02)			Sample Ty	pe: Water		Sampled: 01/17/03 12:10		
Conventional Chemistry Parameters by	y APHA/EPA N	1ethods						
Total Alkalinity as CaCO3	EPA 310.1	AA32206	01/21/03	01/21/03	1	530 mg/l	1.0	
Carbonate Alkalinity as CaCO3	II .	**	"	11	н	ND "	1.0	
Bicarbonate Alkalinity as CaCO3	п	**	11	II	"	530 "	1.0	
Hydroxide Alkalinity as CaCO3	n	π	II	#	19	ND "	1.0	
KMW-16 (A301418-03)			Sample Ty	pe: Water		Sampled: 01/17/03 12:10		
Conventional Chemistry Parameters b	y APHA/EPA N	I ethods						
Total Alkalinity as CaCO3	EPA 310.1	AA32206	01/21/03	01/21/03	1	540 mg/l	1.0	
Carbonate Alkalinity as CaCO3	п	**	"	n	н	ND "	1.0	
Bicarbonate Alkalinity as CaCO3	II	"	71	R	**	540 "	1.0	
Hydroxide Alkalinity as CaCO3	н	п	"	н	**	ND "	1.0	
KMW-7 (A301418-04)			Sample Ty	pe: Water		Sampled: 01/17/03 11:30		
Conventional Chemistry Parameters b	y APHA/EPA N	Methods						
Total Alkalinity as CaCO3	EPA 310.1	AA32206	01/21/03	01/21/03	1	480 mg/l	1.0	
Carbonate Alkalinity as CaCO3	II	H	•	11	ч	ND "	1.0	
Bicarbonate Alkalinity as CaCO3	н	**	#	п	h	480 "	1.0	
Hydroxide Alkalinity as CaCO3	**	*	II	11	**	ND "	1.0	
KMW-8 (A301418-05)			Sample Ty	pe: Water		Sampled: 01/17/03 10:40		
Conventional Chemistry Parameters b	y APHA/EPA I	Methods						
Total Alkalinity as CaCO3	EPA 310.1	AA32206	01/21/03	01/21/03	1	380 mg/l	1.0	
Carbonate Alkalinity as CaCO3	Ħ	v		11	II	ND "	1.0	
Bicarbonate Alkalinity as CaCO3	H	Ħ	n	II	n	380 "	1.0	
Hydroxide Alkalinity as CaCO3	**	"	II .	**	*	ND "	1.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Offeid M Peebles

860 Waugh Lane, H-1, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 3 of 5

McCampbell Analytical 110 2nd Ave. South, #D7 Pacheco, CA 94553-5560

Project No: 0301226

Report Date: 01/24/03 11:52

Project ID: ATC Associates

Attn: Melissa Valles

Client Code

Client PO/Reference

Order Number 301418

Receipt Date/Time 01/20/2003 09:35

MCCLAB

Alpha Analytical Laboratories, Inc.

METHOD

BATCH PREPARED ANALYZED DILUTION

RESULT

NOTE **PQL**

KMW-8 (A301418-05)

Sample Type: Water

Sampled: 01/17/03 10:40

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Offeid M Peebles

Heidi M. Peebles For Sheri L. Speaks Project Manager

1/24/2003

860 Waugh Lane, H-1, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 4 of 5

McCampbell Analytical 110 2nd Ave. South, #D7 Pacheco, CA 94553-5560 Attn: Melissa Valles

Report Date: 01/24/03 11:52

Project No: 0301226

Project ID: ATC Associates

Order Number A301418

Receipt Date/Time 01/20/2003 09:35 Client Code **MCCLAB**

Client PO/Reference

%REC RPD Spike Source RPD Limit Result %REC Limits Flag Analyte(s) PQL Units Level Result

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Offeich M Peebles

860 Waugh Lane, H-1, Ukiah, California 95482

e-mail: clientservices@alpha-labs.com • Phone: (707) 468-0401 • Fax: (707) 468-5267

CHEMICAL EXAMINATION REPORT

Page 5 of 5

McCampbell Analytical 110 2nd Ave, South, #D7 Pacheco, CA 94553-5560

Attn: Melissa Valles

Report Date: 01/24/03 11:52

Project No: 0301226

Project ID: ATC Associates

Order Number A301418

Receipt Date/Time 01/20/2003 09:35 Client Code MCCLAB

Client PO/Reference

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference **PQL** Practical Quantitation Limit Higher

MeCAMPBELL ANALYTICAL INC. CHAIN OF CUSTODY RECORD 110 2th Avenue South, #D7 TURN AROUND TIME PACHECO, CA 94553-5560 RUSH 24 HOUR 48 HOUR 5 DAY 10 DAY Telephone: (925) 798-1620 Fax: (925) 798-1622 Bill To: McCampbell Analytical **ANALYSIS REQUEST** Report To: Melissa Valles Project Name: ATC ASSUCIALE! Project #: 0301224 Survival Fish BioAssay tows & 3 Spine Stickelsback COMMENTS **Project Location:** METHOD **MATRIX SAMPLING** PRESERVED *36 hr hold time please dechlorinate Type Containers # Containers General Minerals 96ir Static % Surviv Flat Headminnows & SAMPLE ID Fish Bioassay Time Date Alkalinty Coliform Sludge Water Cyanide HNO. Other Other Sulfide MBAS HC BOD Color Soil Odor EPA Ice 12,2 Temp 01/17 KMW-1 10:00 A361419 - 1 1001 KMW-6 12:10 -2 12-10 KMW-16 -3 11:30 -4 KMW-7 10:40 KMW-8 Received By: Remarks: PLEASE FAX RESULTS ASAP Relinquished By: Date: Time: Melisas Klle 01-117 (unpresopred voors) samples in order trum 601-005 Spm Received By: Peeleles Relinquished By: Time: Date: 1/20/03 Standard TAT 9:35 Received By: Relinquished By: Time: Date: **OUOTE #: 030106kd-1**

							re, Suite 10 94588	0301	a210		H	Αİ	N (OF	- C	:U	ST	OI	DY	/ F	OR	ξM
				Main	Line:	(925)	460-5300									-						
ASSO	CIATES	ING					463-2559		•	Turn	aro	und		X	10 da	ay	3	day		2	-8 hr	
Project Name:	Friesma	u Ran	VLH.	_	Client:	CHIL	<u>Drens H</u>	SOTAL	L	Time) :			<u> </u>	7 day	<i>t.</i>	2	day	,	0		
Project Number:	75.2390					Task	2	· ·	_	(worl	king	day	s)		5 day		2	!4 hr			()
Project Address:	1600 F	Y IESMA	n f	2d.	LIVE	umo	re.CA		_							•						
Laboratory:	(Camobe 1)	Analy	Hica) Co	ontact:	(925	3798-16	20						An	alys	es F	Requ	este	∌d			
Lab Address/Phone:	110' 2nd	Ave:	Sout	h #	D-7	PAC	heco c	4								<u>o</u>		E				\Box
ATC Project Manager:	_ Jim C	EHYME	9N						_			•				9/60		Щ	7	l 1		
ATC PM Ph. No.:	(925) 225-	7815					man75		oviro.com	l _	1.	f			i	ĕ	5.2	16	- =	1 1		
ATC Sampler:	P. Arco	/O		. F	hone:	(925)	225-781	<u>ვ</u>	. .	ш n	260)				l	<u>윤</u>	<u>ප</u>	FA	==			l
										TPHg/BTEX/MTBE (8015M /8929) 802	8) St	TPHd (8015M)	HVOCs (8010)	<u>6</u>	6	PP Metals (fow detect) (7000/5010)	Cyanide, Total (335.2)	Nitrate, Suifate, FE	ALKAlinity			
j	Sai	mple info	ormai	tion		Con	tainer Info	rmation		₹ (nat:	<u>5</u>	<u>(8</u>	8	326	Š	۱ř. I	แร้	A			
				Matri	ix			و پر		E S	ğ	8)	ပ္ပ	VOCs (8020)	VOCs (8260)	şie	ide	AT		8		
		<u> </u>				No.	Type	Preser- vative	Comments /	£ 25	0	Ĭ	9	Ö	8	ž	an/	Ŧ	TOTAL	8	3	1
ATC Sample ID	Date	Time	Soil	Water	Vapor	3	1/0.4		Field Notes	F ®	<u></u>	F	Ξ	Α	Ž	윤	0	2	ت		4	_
KMW-1	1-17-03	1000	-	*		٦	VOA	HUL		$+\Delta$	\vdash				 		 			┝─┤		+
KMW-1	 			X		├-	IL A.G.	None		 	ļ	X			ļ					$\vdash \vdash$		
KMW-I		 [<u> </u>	ĽX,			500 mL				ļ					ļ		X	,_,	 		Ц.
KMW-I				X		<u> </u>	500 ML		.,							ļ			X			
KMW-J				X			500mL	None												X		
KMW-1				X		1	500ml	42504													\mathbf{X}	
KMW-6		1210		∇		3	VOA	HCL		X												
KMW-6		ì		∇		ī	ILAG.	None				V						-				
KMW-6				\Diamond		1	500 m/	None										∇				
KMW-6				$\langle \rangle$			500ml	None									+	\hookrightarrow	\triangleleft			
		 		$\langle \rangle$		1-1-	 												Δ	$ \sqrt{} $		
KMW-6		 		\sim			500m1	None		-								\dashv		A	\prec	
KMW-6		 		X,	·- ·-	<u> </u>		Heson					ļ								Δ \vdash	
KMW-16		 		X		3	NOA	HU		X												
KMW-16				Х		31	IL A.G.	None	<u> </u>			X										
KMW-16				X			500 ml	None										X				
KMW-16		V		X		l	500ml	None											\times			
Additional Comments:	# FILTE	r AND	ρ_{ℓ}	ESE	rve	IRDA	SAMO	les U	pon lab A	rriv	A/											
	* INYO!			lan.	s Ho	25/17	tal L	Direct					•									
Relinquished By:	Net.	the	,,		Date/	Time:	1.17.031	(11/1)	Received By:	ma.	1		//	_		Date	e/Tim	e:/2	1//	7/0	2 /	3/0
Relinquished By:	# 10 1a	17			Date/			1,/11,/	Received By:		- 8		8				e/Tim		-/-	4	<u>' '</u>	
Relinquished By:		1			Date/			•	Received By:			····-					e/Tim	-				
Sample Condition. Good? Yes _	No	On Ice? Ye	s N	lo		Cooler T	emb		Transportation Method	:								-	'age	·	of	_
White Lab							-10															
White - Lab L:/Admin/Subsurface Group/revised	chain of custody; revise	d 05/08/Q1			AAa	Lin Va	Wh \	Yellow - L	ab											Pin	k - AT	С

					Plea	santon	, CA 9	e, Suite 10 14588 460-5300	0 (30)	226	С	H	ΑII	N (OF	C	U	ST	O	ΥC	FC	DRÏ	VI
ASSOC	C I A	T E S	ING					163-2559			Turn	aro	und		×	10 da	ıy	3	day		2-8	hr	
			1 RAN 9.000	/		Client:	CHIIC Task:	lvens Hos	piłac		Time (work		day	s)		7 day 5 day	,	2	day 4 hr	-	oth (_	er	_)
Project Address:	160	o F/	ilsma	n_	Bd.	برا	arma	re, CA							A		[₹equ	ooto				
Laboratory: MC	Camp	bell	Analy	Hich	C C	ontact:	<u>(925</u>	7) 798-11	020	-				Ţ	An I	laiys	T	T	este	<u>"</u>			Т
	ַ מוו	2nd	Ave	Sou	H_ 1	<u>*D-7</u>	-10	checo,	CH	•							5.0			_	1		
ATC Project Manager:	(025)	3 IM	LEHY	mar	}	Email	1 = 1	Hm An7	Matr-el	wiro com						l	ĕ	নি	定	1	١.	1	
		120- 170-1	7815	. <u></u>				225- 78 1			4	(09	ĺ				는 유	336	휟	.3			
ATO Sampler.	- F)	1107	<u>u</u>		•		(47			•	TBE S	s (82	ξ	10	ြ	٦	de te	国	똑	3	ł		1
		San	nple Info	orma	ion		Con	tainer Info	rmation		TPHg/BTEX/MTBE (8015M/ 862 0) ∑ O :	Fuel Oxygenates (8260)	TPHd (8015M)	HVOCs (8010)	VOCs (8020)	VOCs (8260)	PP Metals (low detect) (7000/6010)	Cyanide, Total (335.2)	Nitrate, Sulfate, FE	ALKAlinity			
			1	<u> </u>	Matr	X			- e -		/BTE	худа	9	ပ္မွ	S.	ော်	tals	ide	色	الد		İ	
	_		l				No.	Туре	Preser- vative	Comments / Field Notes	РН <u>д</u> 1015	Open	표	lŞ	Įõ.	ĮŠ.	§ a	, a	王	TOTAL			1
ATC Sample ID		ate	Time	Soll	Water	Vapor		1./ o. A		rield Notes	 	ű.	-	╀╧	-	-	-	19-1	4				┿
KMW-7	<u> 1-17:</u>		1130	ļ	X-	-	3	VoA	HCL					╢	├-	┼	-	+			-		+
KMW-7	<u> 1-17</u>	<u>- 03</u>			X,		<u> </u>	JLA.G.	None					┿	 	\vdash	├-	╂─┤		 	\dashv	\dashv	╁
KMW-7			\ _	ļ	X,		ļ <u>. </u>	500 ml	None	<u> </u>			-	╀	├-	-	┼	╁─┤			+	\dashv	+
kmw-7					X.		<u> </u>	500m/	None		 		ļ. <u> </u>	┼	-	 -	├	╁─┤		X			+-
KMW-8			1040	ļ	χ,		3	VOA	HOL		$\perp X$			-	├	╁	ļ	+		 	+		+
KMW-8			<u> </u>	ļ	Χ,			1L A.G.	None		 		Ľ	-	<u> </u>			┼			+		+-
KMW-8					X			500ml	Nove				├	_	١	 	 -		X				-
KMW-8				<u> </u>	X,			500 ml	None	<u> </u>		<u> </u>	ļ	-	 	ļ	<u> </u>	1	ļ	X			4
Trip BlANK	V		<u> </u>	<u> </u>	X	<u></u>		VOA	HCC		$\bot X$	<u> </u>	_	 	 		ļ	 		\vdash	\dashv		
										<u>.</u>			ļ	 	 	ļ	_			\longmapsto		 	\bot
												<u> </u>	<u> </u>	ļ	ļ	<u> </u>	<u> </u>	 '	ļ	\square			- -
								<u> </u>	·			<u> </u>	1_	1		╙	<u> </u>	<u> </u>	_				\perp
]						<u> </u>		<u> </u>	_	ļ	<u> </u>		\sqcup			
													<u> </u>		<u> </u>		<u> </u>						
]							
Additional Comments:	¥	FILTE	Y Ani	D 10/	esac	VC.	IRon	Samp	les U	oon lab	Arri	AL											
			ce/ C			s Ľ			incost	<u> </u>						_							
	-/)		1				A.		/	<i>,</i>	11 11 11 11 11 11			- 160	10		Del	- /Ti-	~~	M.	11-11	3 ((3)
Relinquished By:	14.0	<u></u>	74 <u>-</u>			Date/		1-17-03	11310	Received By:			an a	- 1	or	u	-	te/Tin te/Tin		21	70	<u> </u>	<u>~~</u>
Relinquished By:	<u>/</u>					Date/				Received By: Received By:							_	te/Tin					
Relinquished By:			0-10-1		No.	Date/		Tomp		Transportation Metho	d:							ا ۱۱۱ دی.		Page	;	of	
Sample Condition. Good? Yes _	NO _		On Ice? Y	es	···		Conter	Temp		(Introportation (Notice													

White - Lab

McCampbell Analytical Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

B

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0301226

Client:

ATC Associates 6602 Owens Drive, #100 Pleasanton, CA 94588 TEL:

(925) 460-5300

FAX: ProjectNo: (925) 463-2559 #75.23909.0001; Friesman Ranch

PO:

Date Received:

1/17/03

Date Printed:

1/17/03

					[Re	quested Test	ts		
Sample ID	ClientSamplD	Matrix	Collection Date	Hold	Alkalinity	BOD	COD	E200_7	E300_1	SW8015C	8021B/8015
0301226-001	KMW-1	Water	1/17/03 10:00:00 AM		D	D		C	C	В	A
0301226-002	KMW-6	Water	1/17/03 12:10:00 PM		D	D	D	С	С	В	A
0301226-003	KMW-16	Water	1/17/03 12:10:00 PM		D			С	С	В	Α
0301226-004	KMW-7	Water	1/17/03 11:30:00 AM		D			С	С	В	A
0301226-005	KMW-8	Water	1/17/03 10:40:00 AM		D			С	С	В	A
0301226-006	Trip Blank	Water	1/17/03							ļ	<u>A</u>

Prepared by: Sonia Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

ATC Associates	Client Project ID: #75.23909.0001;	Date Sampled: 01/17/03
6602 Owens Drive, #100	Friesman Ranch	Date Received: 01/17/03
Pleasanton, CA 94588	Client Contact: Jim Lehrman	Date Reported: 01/24/03
ricasanion, CA 94366	Client P.O.:	Date Completed: 03/28/03

Work Order: 0301226

March 28, 2003

RE: Analytical Report Revision; Friesman Ranch, Project #75.23909.0001 - sampled 01/17/03

Dear Mr. Scott Perkins,

Please note the revision of the toluene concentration on Client Sample ID "MWK-16" (MAI ID #0301226-003A) from 6.4 ug/L to 5.2 ug/L by EPA 8021B. After further review of the integration of this peak, it was determined that our automated integration software routine drew the integration baseline to mildly over-estimate the actual toluene concentration. By manually re-drawing the toluene baseline to a more appropriate position, a more precise toluene concentration was then caluculated. The analyst, shift supervisor and myself all agree that this manually drawn baseline is more accurate than the automated one drawn by Chemstation and is the truest baseline that can be drawn. Furthermore, by re-setting the baseline, the toluene concentration mimicks the toluene concentration found in this sample's blind duplicate, "KMW-6", MAI ID #0301226-002A.

Please feel free to contact me at 925-798-1620 with any further questions or concerns.

Sincerely.

Angela Rydelius Laboratory Manager

McCampbell Analytical Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 http://www.mccampbell.com E-mail: main@mccampbell.com

ATC Associates	Client Project ID: #75.23909.0001;	Date Sampled: 01/17/03		
6602 Owens Drive, #100	Friesman Ranch	Date Received: 01/17/03		
Pleasanton, CA 94588	Client Contact: Jim Lehrman	Date Extracted: 01/18/03-01/22/03		
	Client P.O.:	Date Analyzed: 01/18/03-01/22/03		

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

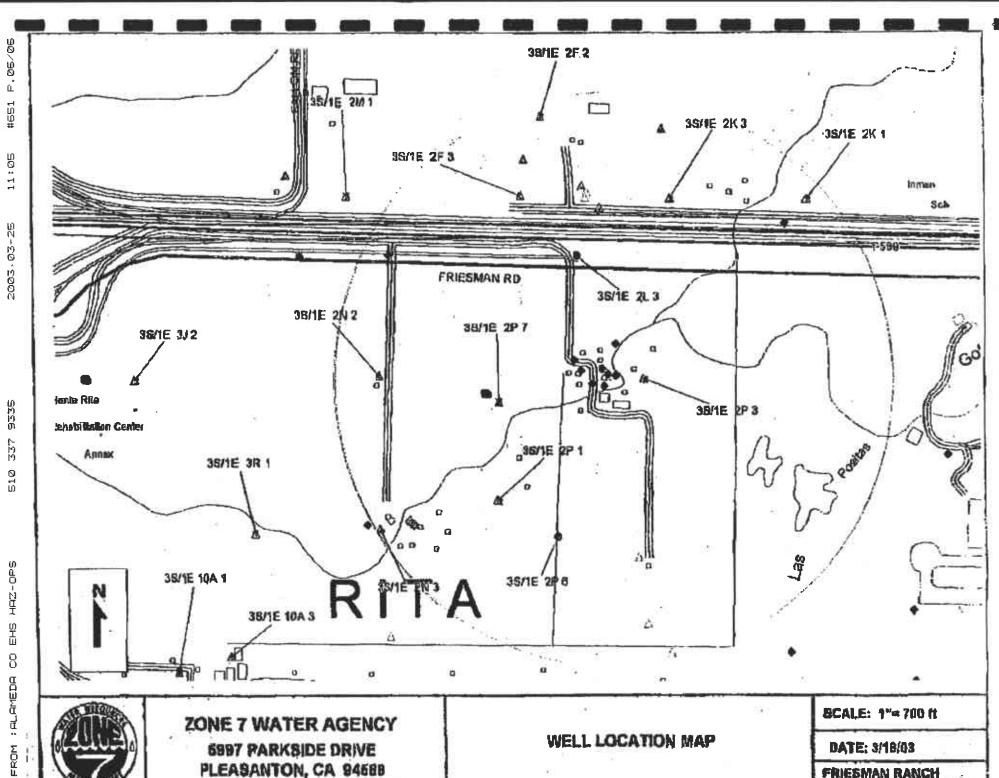
Extraction method: SW5030B			Analytical methods: SW8021B/8015Cm				Work Order: 0301226			
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	KMW-1	w	ND	ND	ND	ND	ND	ND	1	104
002A	KMW-6	w	5700,a	ND<25	87	4.3	170	100	5	102
003A	KMW-16	w	5800,a	ND<25	89	5.2	180	100	5	92.2
004A	KMW-7	w	1100,a	ND<10	7.8	1.3	24	84	1	107
005A	KMW-8	w	ND	ND	ND	ND	ND	ND	l	109
006A	Trip Blank	w	ND	ND	ND	ND	ND	ND	1_	98.3
									į	
						 				
	<u>. </u>									
					-					
					<u> </u>					
					ļ		1			
					<u> </u>	·				<u> </u>
		-		<u> </u>						-
				-	ļ				-	
				<u> </u>	<u> </u>				_	
	<u></u>								<u> </u>	<u> </u>
	ng Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
ND means not detected at or above the reporting limit		S	NA	NA	NA	NA	NA	NA	1	mg/K

*water and vapor samples are reported in μg/L, soil and sludge samples in mg/kg, wipe samples in μg/wipe, and TCLP extracts in μg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

DHS Certification No. 1644


- Angela Rydelius, Lab Manager

ALAMEDA COUNTY ENVIRONMENTAL HEALTH DEPARTMENT Division of Environmental Protection

1131 HARBOR BAY PARKWAY, SUITE 250 ALAMEDA, CA 94502-6577 Telephone (510) 567-6700 FAX (510) 337-9335

FACSIMILE COVER SHEET

To:	Jun behrman
From:	Evzdu 50/567-6762
pan .	
Date:	3/25/03
Notes:	I did not request all, the well to s 2 ne 7, I st the reacest & downgradient por reed the others, but me tomor which mes
Ifo	you need the others, lot me transwhich mes
	list.

6997 PARKSIDE DRIVE PLEASANTON, CA 94688

DATE: 3/18/03

FRIESMAN RANCH

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

REMOVED

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

REMOVED

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

REMOVED

35/1E-2PL

27-25-5

LOS OF TILL FOR CONTUD FOLIA

AS

nom com.	24	F		
DRILLIER:	65 1, 77 4, 73	110 10 1000	7	لسرنا مقدس والمتضارم
				- 17 47

\$ 20 45 52	8 20 45 53 53 53	8 12 25 7	Ft. Ty Top soil and clay 5 6 Brown top soil alay 5 3 Dark gray clay 1 3 Hard gray alay 3 5 Sandy clay 5
52 50 4 50 7 150 150 150 150 150 150 150 150 150 150	10 F & ST 14 150 7 187 187 187 187 187 187 187 187 187 1	528647 940 550 20 550	26 Sand 26 Sand 27 Packed sand 27 Packed sand 28 Saniy clay 3 Mari gray clay 3 Cray clay - hard 3 Cray clay - hard 5 Saniy clay 5 Sand gray clay 70 Packed gray clay 70 Packed gray clay 70 Packed gray ghole 7 Sand gray ghole
207 308 309 359 357 275	320 340 355 377 377 377 400	13 10 15 23 25 25	3 Fard and sticky gray clay 3 Fard and sticky gray simils 3 Ford and sticky gray simils 3 Ford and said mock 25 Gravel and said 3 Ford gray clay 5 Gravel and hard clay 5 Ford brown clay and gravel

400 Ft. Total Finished Well

4679 Pt. Cesing

Perforated: Approximation

50 to 576 pt. - 9251 pt. 376