QUARTERLY GROUNDWATER MONITORING REPORT FIRST QUARTER 1999 FRIESMAN RANCH PROPERTY LIVERMORE, CALIFORNIA

June 1999

June 11, 1999

This document was prepared for use only by the client, only for the purposes stated, and within a reasonable time from issuance. Non-commercial, educational and scientific use of this report by regulatory agencies is regarded as a "fair use" and not a violation of copyright. Regulatory agencies may make additional copies of this document for internal use. Copies may also be made available to the public as required by law. The reprint must acknowledge the copyright and indicate that permission to reprint has been received.

June 11, 1999

File No.: 10-3006-13/103

Ms. Eva Chu Alameda County Health Care Services Agency 1131 Harbor Bay parkway, Suite 250 Alameda, California 94502-9335

Subject: First Quarter Groundwater Monitoring Report for Friesman Ranch

Property, Livermore, California

Dear Ms. Chu:

Attached is the First Quarter 1999 Groundwater Monitoring Report for the Friesman Ranch Property, 1600 Friesman Road, Livermore, California (site). The results of this report are consistent with the results of the previous groundwater monitoring events that have been performed at the site, with chemicals of concern only being detected in monitoring wells KMW-6 and KMW-7. No chemicals of concern were detected in the other wells or creek water samples collected.

Kleinfelder, Inc. is planning to perform the next groundwater monitoring event during the week of June 21 through 25, 1999. I will call you next week to provide you with a more definitive date. During this upcoming event, we plan to collect samples from the eight onsite wells and analyze them for chemicals of concern. Only wells KMW-6 and KMW-7 will be analyzed for polynuclear aromatic hydrocarbons and dissolved lead. In addition, we are not planning to collect creek samples for this event.

We trust that the attached submittal meets your requirements. Should you require any additional information and/or clarification, please call.

Very truly yours,

KLEINFELDER, INC.

Neal E. Siler, R. E. A.

Project Manager

Attachment

cc: Mr. George Kwong, Children's Hospital Medical Foundation

Ms. Leah Goldberg, Hansen, Bridgett, Marcus, Vlahos and Rudy, LLP

A Report Prepared for:

Children's Hospital Medical Foundation 5225 Dover Street Oakland, California 94609

QUARTERLY GROUNDWATER MONITORING REPORT FIRST QUARTER 1999 FRIESMAN RANCH PROPERTY LIVERMORE, CALIFORNIA

Kleinfelder Job No. 10-3006-13/013

Prepared by:

Michele Mahoney Staff Scientist

Neal E. Siler, R.E.A. Project Manager

Approved by

Steven W. H. Walker, R.G., C.E.G.

Senior Geologist

KLEINFELDER, INC.

7133 Koll Center Parkway Suite 100 Pleasanton, California 94566 (925)484-1700

June 11, 1999

QUARTERLY GROUNDWATER MONITORING REPORT FIRST QUARTER 1999 FRIESMAN RANCH PROPERTY LIVERMORE, CALIFORNIA

TABLE OF CONTENTS

1. IN	TRODUCTION	L
1.1	OBJECTIVES AND SCOPE OF WORK	1
2. FI	ELD ACTIVITES	2
2.1	INTRODUCTION	2
2.2	GROUNDWATER MONITORING ACTIVITES	2
2.2	2.1 Water Level Measurement	2
2.2	2.2 Free-Product Thickness Measurement	2
2.2	2.3 Groundwater Sample Collection	2
2.3	CDEEK WATER SAMPLING ACTIVITIES	3
2.4	ANALYTICAL LABORATORY PARAMETERS	3
2.5	OLIALITY ASSURANCE/OUALITY CONTROL SAMPLE COLLECTION	4
2.6	INVESTIGATION-DERIVED WASTE HANDLING PROCEDURES	4
2.7	SITE RESTORATION	4
3. SI	UMMARY OF RESULTS	.5
3.1	INTRODUCTION	
3.1	WATER LEVELS	.5
3.3	FREE-PRODUCT THICKNESS	.5
3.4	GROUNDWATER MONITORING WELL SAMPLES	.5
	4.1 Total Petroleum Hydrocarbons as Gasoline	.6
	4.2 Total Petroleum Hydrocarbons as Diesel	.6
	4.3 Aromatic Hydrocarbons	.6
	.4.4 Methyl Tertiary-Butyl Ether	.6
	.4.5 Polynuclear Aromatic Hydrocarbons	.6
	.4.6 Dissolved Lead	.6
3.5	CDEEK SAMPLES	./
3.6	THE COLUMN TWO IS NOT THE COLUMN TO A MINISTER OF THE COLUMN TWO IS NOT THE COLUMN TWO I	.7
	6.1 Trip Blank	/
	.6.2 Blind Duplicate Sample	7
_	UMMARY, CONCLUSIONS AND RECOMMENDATIONS	
4.1	FIELD ACTIVITIES	
4.1		8
4.2	CREEK CHEMISTRY	9
4.4		9
'		

5. LIMITA	TIONS10
6. REFERE	NCES11
	LIST OF PLATES
Plate 1 Plate 2	Site Vicinity Map Sampling Locations
	LIST OF TABLES
Table 1 Table 2 Table 3 Table 4	Groundwater Elevation Data – March 25, 1999 Groundwater Monitoring Well Sample Analytical Results Creek Sample Analytical Results Quality Assurance/Quality Control Sample Analytical Results
	LIST OF APPENDICES
APPENDIX A	FIELD MONITORING NOTES
	Record of Water Level Measurements - March 25, 1999
	Well Development and Sampling Logs - March 25 and March 26, 1999
APPENDIX I	CHAIN-OF-CUSTODY RECORDS AND CERTIFIED ANALYTICAL LABORATORY REPORTS
APPENDIX (HISTORICAL WATER LEVEL MEASUREMENTS
APPENDIX I	HISTORICAL GROUNDWATER CHEMISTRY

1. INTRODUCTION

This report describes the results of the First Quarter 1999 Groundwater Monitoring Event performed at the Friesman Ranch Property, Livermore, California (Plate 1). The First Quarter 1999 Groundwater Monitoring Event is the second quarterly monitoring event performed under the current scope of work.

The work performed was based on our report entitled Remedial Investigation, RBCA Tier 2 Evaluation and Remedial Action Plan, Friesman Ranch Property, Livermore, California dated October 17, 1997 (our Report), the Alameda County Health Care Services Agency, Environmental Health Services Division's (ACHCSA's) letter regarding Additional Investigations at 1600 Friesman Road, Livermore, CA dated July 29, 1998 (ACHCSA, 1998). Also the ACHCSA requested that samples collected from monitoring wells be analyzed for additional parameters and that creek water samples be collected from Arroyo de Las Positas (ACHCSA, 1999). Preparation of this report is a key task of our Workplan dated November 18, 1998 [Kleinfelder, Inc. (Kleinfelder), 1998]

1.1 OBJECTIVES AND SCOPE OF WORK

The objectives of the activities performed were to:

- Continue a regularly scheduled groundwater monitoring program initiated in December 1998 to track spatial and temporal variations in groundwater conditions; and
- Evaluate the potential for groundwater to impact the adjacent Arroyo de Las Positas (creek).

To meet these objectives, the following scope of work was implemented:

- Implementation of a regularly scheduled groundwater monitoring event;
- Implementation of a creek sampling event; and
- Preparation of this quarterly groundwater monitoring report.

2. FIELD ACTIVITES

2.1 INTRODUCTION

This section summarizes the field activities performed for the quarterly groundwater monitoring program. All field activities were performed on March 25 and March 26, 1999. Plate 2 shows the locations of the existing groundwater monitoring wells and the creek sampling locations.

2.2 GROUNDWATER MONITORING ACTIVITES

The eight wells (KMW-1 through -8) were monitored. The goal of these activities were to measure water levels and free-product thickness, and collect water quality samples that accurately represent stabilized aquifer conditions in the vicinity of each well. To this end, the wells were purged until stabilization of aquifer parameters was achieved.

Prior to sampling, field instrumentation was calibrated and/or checked before opening the monitoring wells. All instruments were successfully calibrated or checked (Appendix A).

2.2.1 Water Level Measurement

All wells were opened and ventilated for a minimum of 0.5 hour. Prior to purging, the depth to water was measured in each well to the nearest 0.01 foot using a clean, calibrated electronic water-level indicator. Water-level data were used to calculate the required purge volumes for sampling. Measurements were recorded on Water-Level Measurement Records and Well Development and Sampling Logs (Appendix A).

2.2.2 Free-Product Thickness Measurement

On March 25, 1999, prior to purging each well, the free-product thickness was measured using a clean oil/water interface probe (Appendix A).

2.2.3 Groundwater Sample Collection

Upon completion of the water-level measurements, Kleinfelder purged the monitoring wells by bailing them with dedicated polyvinyl chloride (PVC) bailers. During purging, aquifer parameters (hydrogen ion index [pH], temperature, and electrical conductivity) were measured to evaluate whether the water in each well had stabilized prior to sampling (Appendix A). The wells were purged until a minimum of three casing volumes of water were removed, aquifer parameters appeared to stabilize, and water levels were allowed to recover to near static levels before sampling. After sampling a dedicated bailer was hung inside each well in order to be used for the next sampling event.

Water from each well was collected using the same new dedicated PVC bailer used for purging. Groundwater monitoring well samples were placed in appropriate containers (either 40-millilter

[ml] glass volatile organic analysis [VOA] vials, 1-liter amber glass bottles and/or 500-ml polyethylene bottles), labeled and the containers were then placed in ZiplocTM plastic bags. The samples were then placed in an ice chest packed with loose water-based ice to 4 +/- 2 degrees Celsius (°C) for delivery to the laboratory.

2.3 CREEK WATER SAMPLING ACTIVITIES

Creek samples were collected in order to obtain representative samples in three locations, one upgradient, one adjacent and one down-gradient of the source area. Prior to collecting the samples the sampling locations were selected with the concurrence of ACHCSA personnel. Sampling protocol consisted of submerging the sample containers directly into the creek to collect a representative sample at the specified location.

Creek samples were collected in appropriate containers (40-ml VOA vials, 1-liter amber bottles and/or 500-ml polyethylene bottles) labeled and then containers were then placed in ZiplocTM plastic bags. The samples were then placed in an ice chest packed with loose water-based ice to 4 +/- 2 degrees °C for delivery to the laboratory.

2.4 ANALYTICAL LABORATORY PARAMETERS

Groundwater monitoring well samples and creek samples were analyzed for the following parameters:

- Total petroleum hydrocarbons as gasoline (TPH-g) using Modified United States Environmental Protection Agency (EPA) Method 8015;
- Total petroleum hydrocarbons as diesel (TPH-d) using Modified EPA Method 8015 following filtering with a 0.45-micron filter and preparation using silica-gel cleanup;
- Benzene, toluene, ethylbenzene and total xylenes (BTEX) using EPA Method 8020;
- Methyl tertiary-butyl ether (MTBE) using EPA Method 8020. Any detections of MTBE were to be confirmed using EPA Method 8260;
- Polynuclear aromatic hydrocarbons (PAHs) using EPA Method 8270 (KMW-6, KMW-7, Creek 1 and Creek 2 only); and
- Dissolved lead using EPA Method 6010/7000 (KMW-6 and KMW-7 only) following filtering with a 0.45-micron filter.

2.5 QUALITY ASSURANCE/QUALITY CONTROL SAMPLE COLLECTION

Normal quality assurance/quality control (QA/QC) sampling activities includes the laboratory preparation and analysis of a trip blank that accompanies the ice chest to and from the laboratory. In addition, a blind duplicate and an equipment rinsate blank are collected and analyzed. All of these samples are analyzed for TPH-g and BTEX.

For this event, the following QA/QC samples were prepared or collected:

- A trip blank; and
- A blind duplicate.

Because only dedicated equipment was used to purge the wells and collect the samples, no equipment blank was collected.

2.6 INVESTIGATION-DERIVED WASTE HANDLING PROCEDURES

Investigation-derived wastes (IDW – purge water and decontamination rinsate liquids) were containerized onsite in labeled, United States Department of Transportation (DOT)-approved 55-gallon drums.

Drums were inspected prior to use for physical integrity and condition. Each drum was labeled to identify the waste source location, physical contents, date collected and generator's name. A total of four drums (four containing monitoring well purge water and decontamination rinsate liquids) of IDW were generated during this quarters monitoring activities.

2.7 SITE RESTORATION

Following completion of monitoring activities, the work area was left in a presentable and workable condition as near as practicable to original conditions.

3. SUMMARY OF RESULTS

3.1 INTRODUCTION

Water-level and free-product thickness measurements were recorded on March 25, 1999. Groundwater samples were collected from each of the eight monitoring wells and creek samples were collected from Arroyo de Las Positas on March 25 and March 26, 1999, and submitted for analysis. The monitoring well and creek samples were analyzed at McCampbell Analytical, Inc., a laboratory certified by the California Environmental Protection Agency (Cal/EPA), Department of Health Services (DHS) Environmental Laboratory Accreditation Program (ELAP) for the specific analyses performed.

Tables 1 through 4 summarize the data measure and/or analyzed. Appendix B contains certified analytical laboratory reports and chain-of-custody records. Appendix C contains historical water level and free-product thickness measurements. Historical hydochemical data for the wells are contained in Appendix D.

3.2 WATER LEVELS

As part of the groundwater monitoring event, water levels were measured in the eight monitoring wells on March 25, 1999. Depths to water ranged from 11.59 to 13.27 feet bgs (Table 1). These represent the shallowest depths to water levels since the first monitoring event in September 1997. In March 1999, groundwater flow was to the northwest with a hydraulic gradient of 0.006 feet per foot (ft/ft). These results are consistent with the previous groundwater monitoring event in December 1998 (Appendix C) (Kleinfelder, 1999).

3.3 FREE-PRODUCT THICKNESS

No sheen was observed on any of the samples; however, a strong hydrocarbon order was noted in wells KMW-6 and KMW-7. No measurable free product was detected using either a bailer or the oil/water interface probe. Historically, no free product has been detected in any of the wells (Appendix C).

3.4 GROUNDWATER MONITORING WELL SAMPLES

A total of eight wells (KMW-1 through KMW-8) were sampled and analyzed for TPH-g, TPH-d, BTEX, MTBE. Two of these wells (KMW-6 and KMW-7) were additionally analyzed for total lead and PAHs. These results are summarized in Table 2. Certified analytical laboratory reports are included in Appendix B. Historical groundwater monitoring analytical results are contained in Appendix D.

3.4.1 Total Petroleum Hydrocarbons as Gasoline

TPH-g was detected at concentrations of 7,000 micrograms per liter (μ g/L) in KMW-6 and 4,300 μ g/L in KMW 7, but was not detected in any of the other wells sampled. These results are consistent with historical concentrations detected (Appendix D).

3.4.2 Total Petroleum Hydrocarbons as Diesel

TPH-d was detected at concentrations of 1,700 μ g/L in KMW-6 and 1,200 μ g/L in KMW-7. It was not detected in any of the other wells sampled. Historical groundwater monitoring analytical results are contained in Appendix D.

3.4.3 Aromatic Hydrocarbons

Aromatic hydrocarbons were detected in monitoring wells KMW-6 and KMW-7, but were not in any of the other wells sampled. Benzene was detected in excess of its drinking water maximum contaminant level (MCL), 1 μ g/L, at concentrations of 160 μ g/L in KMW-6 and 19 μ g/L in KMW-7. Toluene was detected below its MCL (150 μ g/L) at concentrations of 5.1 μ g/L in KMW-6 and 16 μ g/L in KMW-7. Ethylbenzene was detected below its MCL (700 μ g/L) at concentrations of 270 μ g/L in KMW-6 and 56 μ g/L in KMW-7. Total xylenes was detected below the MCL (1,750 μ g/L) at concentrations of 200 μ g/L in KMW-6 and 270 μ g/L in KMW-7. Historical groundwater monitoring analytical results are contained in Appendix D.

3.4.4 Methyl Tertiary-Butyl Ether

MTBE was not detected in any of the wells. The reporting limit was raised to $100~\mu g/L$ for KMW-6 to $100~\mu g/L$ and for KMW-7 due to interference from other petroleum hydrocarbons. These results are consistent with historical concentrations detected (Appendix D).

3.4.5 Polynuclear Aromatic Hydrocarbons

Naphthalene was the only PAH detected at concentrations of 100 μ g/L in KMW-6 and 23 μ g/L in KMW-7. The remaining wells were not sampled for PAHs.

3.4.6 Dissolved Lead

This event marks the first time that dissolved lead (samples filtered with a 0.45-micron filter prior to analysis) was analyzed for in samples collected from KMW-6 and KMW-7. It was detected at a concentration of 22 μ g/L in KMW-7 and was not detected in KMW-6. The 22 μ g/L detected in KMW-7 is in excess of the MCL for lead (15 μ g/L).

3.5 CREEK SAMPLES

A total of three creek samples (Creek-1 through 3) were sampled and analyzed for TPH-g, TPH-d, BTEX and MTBE. Two of these creek samples (Creek-1 and -2) were also analyzed for PAHs. These results were all below reporting limits and are presented in Table 3. Certified analytical laboratory reports are included in Appendix B.

3.6 QUALITY ASSURANCE/QUALITY CONTROL SAMPLES

The QA/QC samples collected and analyzed for this groundwater monitoring event included a trip blank and a blind duplicate sample. The results for these QA/QC samples are summarized on Table 4 and certified analytical laboratory reports are contained in Appendix B.

3.6.1 Trip Blank

One trip blank was prepared and analyzed for the March 1999 groundwater monitoring event. The trip blank contained no detectable concentrations of TPH-g, TPH-d, MTBE or BTEX.

3.6.2 Blind Duplicate Sample

One blind duplicate sample (KMW-6A) was collected from monitoring well KMW-6 on March 26, 1999. This duplicate sample was analyzed for TPH-g, TPH-d, BTEX, MTBE and PAHs.

The Relative Percent Differences (RPD) for TPH-g, TPH-d, benzene, toluene, ethylbenzene, total xylenes and naphthalene (the analytes detected) were 4.4, 0.0, 6.0, 24.1, 0.0, 0.0 and 0.0 percent, respectively (Table 4). The only RPD that exceeded the typical QA/QC goal of less than 20 percent was that for toluene. The difference may be attributed to volatilization of the sample during sampling and/or transit to the laboratory as well as differences between laboratory instruments.

4. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

The summary and conclusions presented in this section are based on research implemented, information collected, and interpretations developed during this and previous investigations performed at the property. The information evaluated in this report was collected by Kleinfelder during March 1999. The summary and conclusions that follow are presented in the categories of field activities, groundwater levels and free-product thickness, and groundwater chemistry.

4.1 FIELD ACTIVITIES

- Field activities performed consisted of the first quarterly groundwater monitoring event for 1999;
- Water level and free-product thickness measurements and the collection of water quality samples were conducted. The samples collected were analyzed for TPH-g, TPH-d, BTEX, MTBE, PAHs, and dissolved lead;
- Prior to the initiation of field activities, and between sampling locations, all equipment was decontaminated.
- Purge water and decontamination rinsate liquids were containerized and stored on-site in DOT-approved 55-gallon drums;
- Following completion of field activities the work area was left in a presentable and workable condition, as nearly as practicable to original conditions.

4.2 GROUNDWATER CHEMISTRY

- Only two groundwater monitoring well samples (KMW-6 and KMW-7) contained detectable concentrations of petroleum hydrocarbon compounds. None of the other groundwater samples contained detectable concentrations of petroleum hydrocarbon compounds;
- TPH-g was detected at 7,000 μg/L in KMW-6 and 4,300 μg/L in KMW-7. TPH-d was detected at 1,700 μg/L in KMW-6 and 1,200 μg/L in KMW-7. Benzene was detected in excess of its MCL at 160 μg/L in KMW-6 and 19 μg/L in KMW-7. Toluene was detected below its MCL (150 μg/L) at 5.1 μg/L in KMW-6 and in KMW-7 16 μg/L. Ethylbenzene was detected below its MCL (700 μg/L) in KMW-6 at 270 μg/L and in KMW-7 at 56 μg/L. Total xylenes was detected below the MCL (1,750 μg/L) in KMW-6 at 200 μg/L and in KMW-7 at 270 μg/L. Naphthalene was the only PAH detected at 100 μg/L in KMW-6 and 23 μg/L in KMW-7. MTBE was not detected in any of the groundwater monitoring well samples;
- Dissolved lead was only detected in KMW-7 at 22 μg/L, which is in excess of its MCL.
 KMW-6 and KMW-7 were the only two wells sampled for total lead.

4.3 CREEK CHEMISTRY

TPH-g, TPH-d, BTEX, MTBE and PAHs were not detected in any of the creek samples collected. Thus, it appears that the petroleum hydrocarbons detected in the groundwater has not impacted Arroyo de Las Positas.

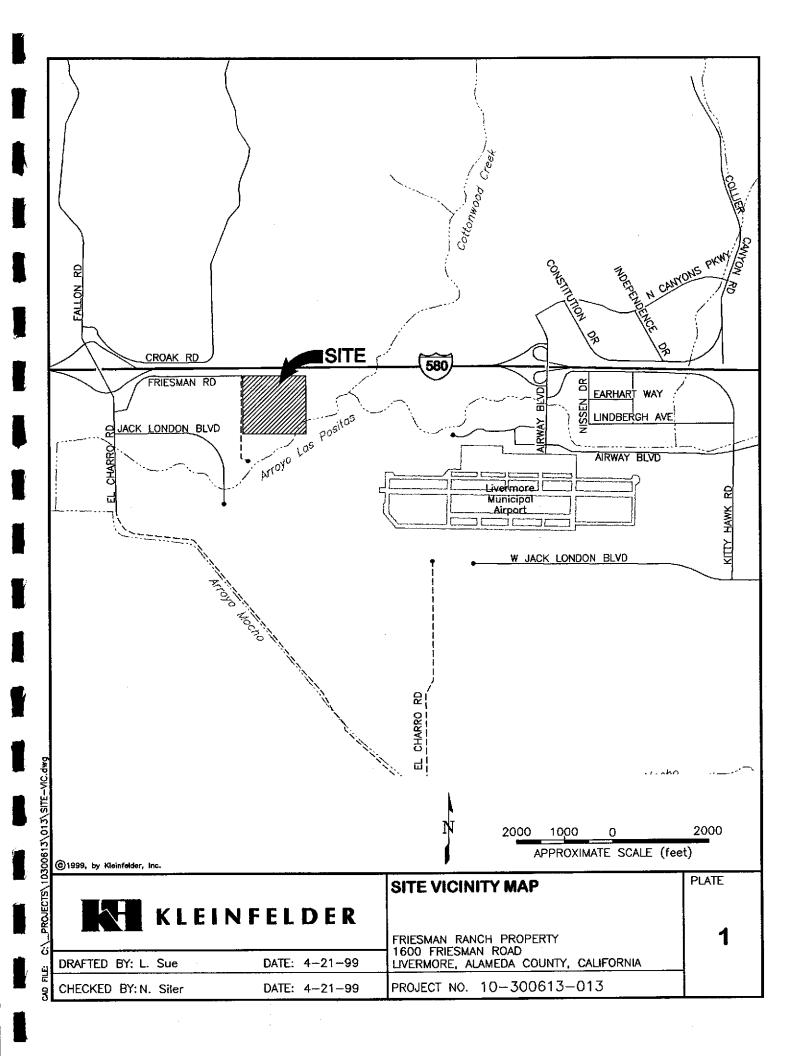
4.4 RECOMMENDATIONS

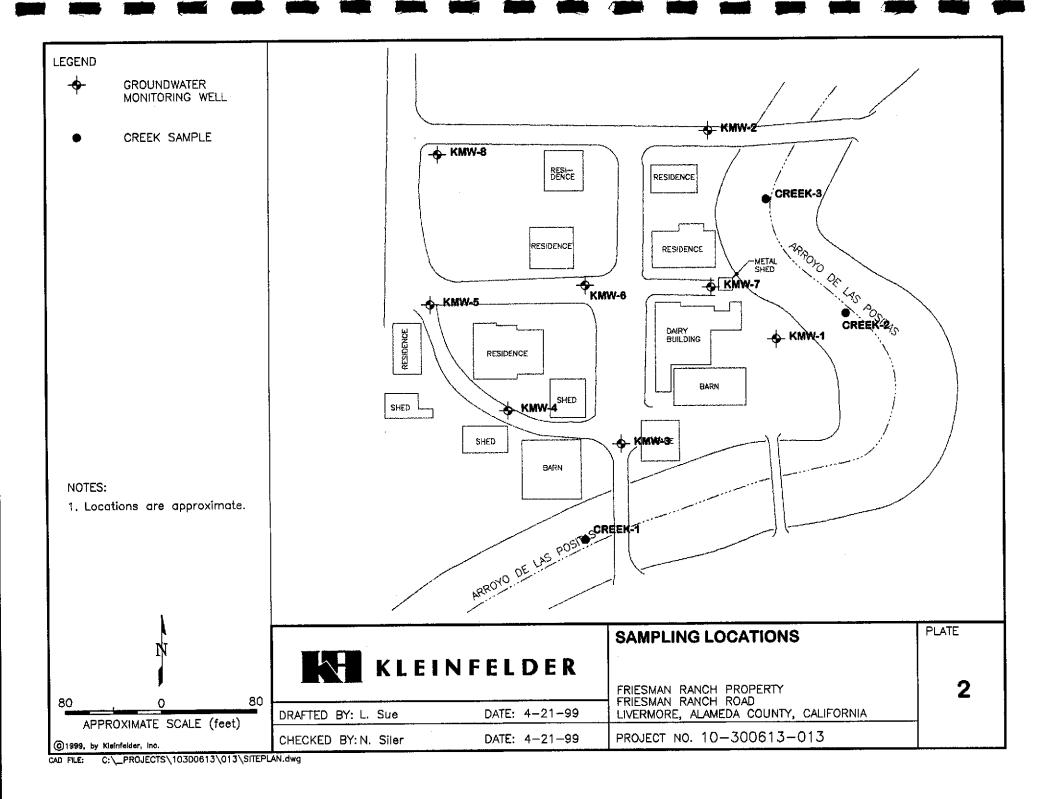
Kleinfelder makes the following recommendations concerning further investigations and remedial actions at the property:

- The regularly scheduled groundwater monitoring program should be continued, with the next event being implemented in June 1999;
- Water levels and free-product thickness should be measured in and groundwater quality samples should be collected from the eight monitoring wells;
- Groundwater quality samples collected from the eight monitoring wells should be analyzed for TPH-g, TPH-d, BTEX and MTBE. Samples collected from KMW-6 and KMW-7 should be analyzed for PAHs and dissolved lead.
- Collection of additional creek water samples during the next scheduled event are not warranted at this time.

5. LIMITATIONS

The scope of services described here is not intended to be inclusive, to identify all potential concerns, or to eliminate the possibility of environmental problems. Within current technology, no level of assessment can show conclusively that a property or its structures are completely free of contaminated and/or hazardous substances. Therefore, Kleinfelder cannot offer a certification that the recommendations made in this report will clear the property of environmental liability.


During the course of the performance of Kleinfelder's services, contaminated and/or hazardous materials were discovered. Our client or the property owner are solely responsible for notifying all governmental agencies, and the public at large, of the existence, release, treatment or disposal of any contaminated and/or hazardous materials observed at the project site, either before or during performance of Kleinfelder's services. Kleinfelder will assume no responsibility or liability whatsoever for any claim, loss of property value, damage, or injury which results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials.


Kleinfelder performed the investigative activities and evaluations in accordance with generally accepted standards of care that existed in Northern California at the time the work was performed. No warranty, expressed or implied, is made.

6. REFERENCES

- Alameda County Health Care Services Agency, 1998, Letter from Ms. Eva Chu of Alameda County Health Care Services Agency to Ms. Leah Goldberg of Hanson, Bridgett, Marcus Vlahos and Rudy LLP Regarding Addmittional Investigations at 1600 Friesman Road, Livermover, CA. July 29
- Alameda County Health Care Services Agency, 1999, Letter from Ms. Eva Chu of Alameda County Health Care Services Agency to Ms. Leah Goldberg of Hanson, Bridgett, Marcus, Vlahos and Rudy LLP Regarding Groundwater Sampling at 1600 Friesman Road, Livermore, CA. March 5
- Kleinfelder, Inc., 1997, Remedial Investigation RBCA Tier 2 Evaluation and Remedial Action Plan, Friesman Ranch Property, Livermore, California. October 17.
- Kleinfelder, Inc., 1998, Request for Authorization for Additional Services, Modified Remedial Action Implementation, Friesman Ranch Property, Livermore, California. August 24.
- Kleinfelder, Inc., 1999 Well Installation and Quarterly Groundwater Monitoring Report, Friesman Ranch Property, Livermore, California. February 17

TABLE 1 GROUNDWATER ELEVATION DATA FRIESMAN RANCH PROPERTY LIVERMORE, ALAMEDA COUNTY, CALIFORNIA MARCH 1999

PERSONNEL: M. MAHONEY

T.O.C. GROUNDWATER WATER WELL G.S. WELL WATER FREE-**ELEVATIONS** NUMBER **PRODUCT** DEPTH HEIGHT **LEVEL** ELEV. LEVEL **USGS Datum FROM USGS Datum** FROM THICKNESS **FROM** FROM G.S. T.O.C. T.O.C. T.O.C. (Ft. Above (Ft. Above MSL) (feet) MSL) (feet) (feet) (feet) (feet) 358.13 12.52 370.12 23.47 0.53 0.00 KMW-1 11.99 357.53 0.00 23.57 0.43 13.62 370.72 KMW-2 13.19 357.51 369.10 0.54 12.13 KMW-3 11.59 0.00 23.46 356.91 369.80 13.20 KMW-4 12.89 0.00 23.69 0.31 369.52 356.25 13.69 0.42 0.00 23.58 KMW-5 13.27 356.86 0.00 23.47 0.53 13.75 370.08 KMW-6 13.22

0.58

0.58

23.70

23.90

12.70

13.06

370.04

368.61

NOTES:

KMW-7

KMW-8

G.S. = Ground Surface

T.O.C. = Top of casing. All measurements in feet relative to top of casing.

0.00

0.00

USGS = United States Geological Survey

12.12

12.48

All wells have 4" ID casing = 0.65 gallon per casing length (foot).

DATE: March 25, 1999

357.92

356.13

TABLE 2 GROUNDWATER MONITORING WELL SAMPLE ANALYTICAL RESULTS FRIESMAN RANCH PROPERTY LIVERMORE, ALAMEDA COUNTY, CALIFORNIA

WELL	SAMPLE	TPH-D	TPH-G	BENZENE	TOLUENE	ETHYL	TOTAL	MTBE	PAHs	LEAD
NUMBER	COLLECTION	(µg/L)	(µg/L)	(μg/L)	(µg/L)	BENZENE	XYLENES	(µg/L)	(µg/L)	(µg/L)
	DATE					(µg/L)	(µg/L)			
KMW-1	3/25/99	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	. -
KMW-2	3/25/99	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	-
KMW-3	3/25/99	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	-
KMW-4	3/25/99	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	-
KMW-5	3/25/99	<50	<50	< 0.5	<0.5	<0.5	<0.5	<5.0	-	-
KMW-6	3/26/99	1,700, d,b	7,000, a	160	5.1	270	200	<100**	100*	<5.0
KMW-7	3/25/99	1,200 d,b	4,300, a,h	19	16	56	270	<70**	23*	22
KMW-8	3/25/99	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	-
MCL				1.0	150	700	1,750			15***

٠

TPH-D Total Petroleum Hydrocarbons as Diesel

TPH-G Total Petroleum Hydrocarbons as Gasoline

MTBE Methyl Tertiary-Butyl Ether

PAHs Polynuclear Aromatic Hydrocarbons

MCL Cal/EPA Maximum Contaminant Level

μg/L Micrograms per Liter (approx. equal to parts per billion)

<0.5 Not detected at or above the laboratory method reporting limit

a Unmodified or weakly modified gasoline is significant

d Gasoline range compounds are significant

h Lighter than water immiscible sheen is present

* Naphthalene only, all other chemicals were <20 µg/L

** Reporting limit raised due to interference of petroleum hydrocarbons

*** Federal MCL

TABLE 3 CREEK SAMPLE ANALYTICAL RESULTS FRIESMAN RANCH PROPERTY LIVERMORE, ALAMEDA COUNTY, CALIFORNIA

WELL	SAMPLE	TPH-D	TPH-G	BENZENE	TOLUENE	ETHYL	TOTAL	MTBE	PAHs	LEAD
NUMBER	COLLECTION DATE	(µg/L)	(µg/L)	(µg/L)	(µg/L)	BENZENE (µg/L)	XYLENES (µg/L)	(µg/L)	(µg/L)	(µg/L)
Creek-1	3/26/99	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	-
Creek-2	3/26/99	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	-
Creek-3	3/26/99	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	-
MCL				1.0	150	700	1,750			15***

Notes:

Total Petroleum Hydrocarbons as Diesel TPH-D Total Petroleum Hydrocarbons as Gasoline TPH-G Methyl Tertiary-Butyl Ether MTBE Polynuclear Aromatic Hydrocarbons **PAHs** Cal/EPA Maximum Contaminant Level MCL Micrograms per Liter (approx. equal to parts per billion) μg/L

Not detected at or above the laboratory method reporting limit < 0.5

Federal MCL ***

TABLE 4
QUALITY ASSURANCE/QUALITY CONTROL SAMPLE ANALYTICAL RESULTS
FRIESMAN RANCH PROPERTY
LIVERMORE, ALAMEDA COUNTY, CALIFORNIA

QA/QC	SAMPLE	SAMPLE	TPH-D	ТРН-G	BENZENE	TOLUENE	ETHYL	TOTAL	MTBE	PAHs	LEAD
SAMPLE	ID	COLLECTION	(µg/L)	(µg/L)	(µg/L)	(µg/L)	BENZENE		(µg/L)	(µg/L)	(µg/L)
TYPE		DATE					(µg/L)	(µg/L)			
Primary Sample	KMW-6	3/26/99	1,700, d,b	7,000, a	160	5.1	270	200	<100**	100*	<5.0
Duplicate Sample	KMW-6A	3/26/99	1,700, d,b	6,700, a	170	6.5	270	200	<100**	100*	-
Trip Blank		3/25/99	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	<5.0
	RPD		0.0%	4.4%	6.0%	24.1%	0.0%	0.0%	NC	0.0%	NC

Notes:	
TPH-D	Total Petroleum Hydrocarbons as Diesel
TPH-G	Total Petroleum Hydrocarbons as Gasoline
MTBE	Methyl Tertiary-Butyl Ether
PAHs	Polynuclear Aromatic Hydrocarbons
RPD	Relative Percent Difference
μg/L	Micrograms per Liter (approx. equal to parts per billion)
<0.5	Not detected at or above the laboratory method reporting limit
a	Unmodified or weakly modified gasoline is significant
d	Gasoline range compounds are significant
ħ	Lighter than water immiscible sheen is present
*	Naphthalene only, all other chemicals were <0.5 μg/L
**	Reporting limit raised due to high presence of TPH-g
NC	Not calculable

APPENDIX A – FIELD MONITORING NOTES

RECORD OF WATER LEVEL MEASUREMENTS – MARCH 25, 1999

	D OF W		LEVEL	MEASUF	REMENT	rs		,	,				
				clear				Sheet	of <u></u>				
roject:	= > / 11		Submitted	i By:	Date.								
Project No	0.:			l By:				Date:					
Instrument	Number:					<u>-</u>				_			
Well Number	Time (opened/measured)	Sensitivity Setting	Measuring Point	Measurement	Replicate Me (if reque			Notes		(Incked) 4)			
1 vanioci	(24-hr)	(est. %)	(M.P.)	1	2	3	40	r		5			
nω-8	9:36			12.48			NO oil	* .		_			
ทพ-5	10:00			13.27			rusil			_			
NW-4	10:08			12.89			neoil						
MW-3	1			11.59			nooil						
mw-/				11.49			hooil						
	11:20			13,22			woil		i				
nau-7	11:35			12.12			No dil		* 1				
Avi O	9-40			13.19			1/20 C. 1						
MW-2	9:50	<u> </u>		1 2 1			1/20 611						
			-				 			T			
	ļ			<u> </u>			 			\dagger			
			 				<u> </u>			╁			
		<u> </u>		-			<u> </u>			╀			
			<u> </u>							+			
									ļ	\dotplus			
									ļ	\downarrow			
										_			
								<u></u>		1			
		1											
	 		1		• 5								
	 	-	+		<u> </u>				1	\top			
ļ	 	-	-	<u></u>					 	1			
ļ	<u> </u>		 		 	 -			 	7			

All Wells Locked - YES / NO

M.P.: TOC, GS, Cover ring, Other:

WELL DEVELOPMENT AND SAMPLING LOGS – MARCH 25, 1999

	KLEINFELI							**/**	T NO S	
YE	LL DEVEL	OPM	ENT &	SAMPL	ING LO)G			L NO. {	
ate	3/24/99	1	Weather:_							f
roie	ct. Friesman	Ronch		Submitted					Date:	
roie	ect No.: 10-30	3000-1	3 /012 E	Reviewed	By:				Date:	
٠٠,٠	Purpose of L		T T	Developme	ut	X	Sampling			
=		<u> </u>				Submers-	Dedicated (Other: Too	المواد ا	
	Purging		Bailer	Disposable Bailer	Suction Pump	able Pump	Pump	120	licated Bailer	1
	Equipment	-	Bailer	Disposable	Suction	Submers-		Other:		
티	Sampling Fortune		Pance	Bailer	Pump	able Pump	Pump		\ 1	
到	Equipment Test Equipment	т	Water		pl		Condu	ctivity	<u>Turbi</u>	sity
& Decontamination		er No.	110101		KA905		9029	3	$\overline{}$	
죕	Calibration Date	_	N/		3/25/9		3/25/			
			Wa		3 /25/ Rin	se i	Rins		Rinse	Ш
91	Decontamination	*	DI	Steam	Di	Steam	DI	Steam	DI	Steam
	Methods TSP	ļ	Tap	Hot	Tap	Hot	Tap	Hot	Tap	Hot
립	Alconox	1	Other	Cool	Other	Cool	Other	Cool	Other	Cool
Equipment	Other:									·-·
됩		. (gal):			NH					
		Source:			101				l	
	Decon. Note							<u> </u>	· · · · · · · · · · · · · · · · · · ·	
			good) fa	ir poor	We	li Integrity:	good fair	г роог	Locked:	yes (no)
					DTW	×	Factor	× 1 C.V	=	7.6 gal
	Purge Volum					l ×	2'-0125	×] = [22.8 gal
	Well Diam.: □ 2				12.48 ft.		sheen	film	,	feet thick
河	Free Product?:	Odor:	no yes	Floau	ng Product:		ancon.			
nent / Purge Record	Time (24-hr)		10:00	10:20	10.28	10:40	<u> </u>	ļ	 	Replicate Goals
R	Gallons Purged		0	7.0	15.2	22.8	<u> </u>	<u> </u>	 	
E	Surged (minutes))	1	NA	NA	Λ ι Α		ļ <u>.</u>	<u> </u>	(dev. only
뤅	рН		S	6.99	7.12	7.14		<u> </u>	ļ	±0.10
귤	Temperature (°C	<u> </u>	T	217	16	17				±1°C
	Cond. (µmhos/ca		Α	1620	1010	1610	<u> </u>	<u> </u>	<u> </u>	±10%
Develor	Salinity (%)		R	四1.2		1.3		<u> </u>		±10%
H	Turbidity (NTU	s)	T	NA	NA	MA				<50 NTU
	Color		1	1				<u> </u>		Colories
	Depth to Water				(12.51	1	<u> </u>	<u> </u>	±0.01
	Reference	e Point:	TOC	Other:						الجنوبين المراجع
⋡	Sample #	Time	Quantity	Volume	Туре	Preserv.	Filtration	ı Aı	alysis	Lab
	KMW-8		3	40 nl	VOAs	Ø		TPH-9	STEX, MTRE	McCam
M			1 7	liter	Amber	Ø		- ₽#-	<u>d</u>	
취	CMW 6		1]					
뒴	 		1							
Sample Lor		 								
~	` 		1							<u> </u>
1	 		1	1						<u></u>
\succ	1 01 01									
	Other Observ	rations:								
Ě	 						 			
ĮΣ	· •							777-11 Y	ocked? yes	no / N/
	Final Check: \	il akOV	ree of bubble	es? yes / 1	10 / NA			WCII L	resear yes	110 1 141

JΚ	KLEINFELDER LL DEVELOPM		SAMPI	ING LO)G		WEI	L NO.	5
		Weather:						Sheet	of
	ect: Friesman Rai	-	Submitted	By:				Date:	
oi oi	ect No.: 10-3006-13		Reviewed					Date:	
-,	Purpose of Log	1	Developme		X	Sampling			
	Purging	Bailer	Disposable	Suction	Submers-	Dedicated (Other: Dedi	icated	
	Equipment		Beiler	Pump	able Pump	Pump		<u>Sailer</u>	
ej	Sampling	Beiler	Disposable	Suction	Submers-	Dedicated Pump	Juner:	11	ì
	Equipment	Water	Bailer	Pump pH	able Pump	Conduc	tivity	Turb	idity
mtam!	Test Equipment Meter No.	TYBICI	LATE I		575				
	Calibration Date/Time	N		NA YOU	<u> </u>	 -			
1	Decontamination	Wa		Rins	e I	Rins	e II	Rins	e III
3	Methods	Di	Steam	DI	Steam	DI	Steam	DI	Steam
PIECEL	TSP .	Tap	Hot	Tap	Hot	Tap Other	Hot Cool	Tap Other	Hot Cool
	Alconox	Other	Cool	Other	Cool	Outc		Out.	
١	Other: Vol. (gal):			144					
•	Source:				· _				
	Decon. Notes:								
_	Well Security:	(good) fa	ir poor	Wel	1 Integrity:	good) fair	poor	Locked:	yes (no)
-	Purge Volume (CV)			DTW	×		× 1 C.V	=	68 gal
	Well Diam.: □ 2" N 4"		_	13.27ft.	×	2'-0.175 4'-0.663	×	=	20.4 gal
	Free Product?: Odor:		Floati	ng Product:	none	sheen	film		feet thick
3			11:15	11:50	11:56			<u> </u>	Replicate
Kecora	Time (24-hr)	11:30	6.8	13.6	20.4				Goals
1220	Gallons Purged Surged (minutes)	1	NA	10.0	\$	1			(dev. only
	pH	S	1.27	7.20	7.154	Y			±0.10
	Temperature (°C)	T	17.9	17.9	18,0				±1°C
	Cond. (µmhos/cm)	A	1350	1320	1320				±10%
Ē	Salinity (%)	R	1.1	1.1	1.1			<u> </u>	±10%
Development / /	Turbidity (NTU's)	T	NA -		25			<u> </u>	<50 NTU
~	Color	1	brunish			<u> </u>	ļ		Coloriess
	Depth to Water				[3.35	D		1	±0.01°
	Reference Point	TOC	Other:	·					
		Quantity	Volume	Туре	Preserv.	Filtration		alysis	Lab
	Sample # Time	- Comment							
	Sample # Time	3	\$6 mg	1 Maker	8		TPH-9	, BTEX, MT	BE McCo

Other Observations:

超

Final Check: VOAs free of bubbles? yes / no / NA

Well Locked? yes / no V NA

KA KLEINFELDER WELL DEVELOPMENT & SAMPLING LOG WELL NO. 4 Sheet Date: 3/24/99 Weather: Date: Project: Friesman Ranch Submitted By: Michele Mahoney Date: Project No.: 10-3000-13/012 Reviewed By: X Sampling Development Purpose of Log Dedicated Dedicated Other: Submers-Purging Bailer Disposable Suction Bailer Bailer able Pump Pump Pump Equipment Dedicated Other: Submers-Bailer Disposable Suction Sampling Equipment & Decontamination Bailer able Pump Pump Pump Equipment Conductivity Turbidity pН Water Level Test Equipment KA_ 90575 Meter No. NA Calibration Date/Time Rinse III Rinse II Wash Rinse I Decontemination Steam DI Steam Steam DI Methods Di Steam Hot Tap Hot Tap Hot Тар Tap Hot Cool Other Other Cool Cool Other Other Cool Alconox Other: Vol. (gal): Source: Decon. Notes: yes no Well Integrity: good fair Locked: poor Well Security: (good) fair DOOT 1 C.V gal Factor DTW T.D. Purge Volume (CV) 2*-0.175 12.89 ft. = gal ص ، ا 2 Well Diam.: □ 2" × 4" 23.69 ft. × 4*= 0.663 feet thick film Floating Product: sheen none Free Product?: Odor: (no) yes Development / Purge Record Replicate 1247 1237 1242 Time (24-hr) 12.30 **Goals** 21.6 14.4 7.2 Gallons Purged (dev. only) Surged (minutes) 40 ±0.10 S 1.13 7.73 ±1°C 16.5 T 17.1 Temperature (°C) ±10% 1050 990 050 A Cond. (jumhos/cm) ±10% 6.9 R 8.9 Salinity (%) <50 NTUs Ť NΑ Turbidity (NTU's) Colorless <u>brown</u>ish Color ±0.01 13.82 Depth to Water TOC Other: Reference Point: Lab Analysis Filtration Preserv. Quantity Volume Турс Sample # Time TPH-9, BTEX, MIBE McCamp bell 40 ml VOA3 KMW-4 Ambe l liter KMW-4

Other Observations:

Final Check: VOAs free of bubbles? yes / no / NA

Well Locked? yes / no / NA

Well Locked? yes / no / NA

KA KLEINFELDER

WE	LL DEVEL	OPM	ENT &	SAMPI	LING L	OG		WE	LL NO.	3
ate	:		Weather:						Sheet	of
roje	ect: Friesman	- Rac	,dh	Submitted	By: Mi	cholo M	ahoneu	/	Date:	
	ect No.: 10-3			Reviewed	By:		0		Date:	
	Purpose of I			Developme		[X]	Sampling			
	Purging		Bailer	Disposable	Suction	Submers-	Dedicated	Other: 7) is	posable	
Equipment & Decontamination	Equipment		•	Beiler	Pump	able Pump	Pump		Bailer	
	Sampling		Beiler	Disposable	Suction	Submers-	Dedicated	Other:	Д	
	Equipment			Bailer	Pump	able Pump	Pump		6 51.2	
	Test Equipment		Water	Level	<u>pl</u>		Condu	CHYILY	Turbi	any
	Meter No.				KA 909	575				
	Calibration Dat		N		10.1	na î	Die	se II	Rinse	- 111
긺	Decontaminatio Methods	П	Wa DI	Steam	Rin:	Steam Steam	Di Killi	Steam Steam	DI VIIIS	Steam
ᆲ	TSP	j	Tap	Hot	Tap	Hot	Tap	Hot	Тар	Hot
買	Alconox		Other	Cool	Other	Cool	Other	Cool	Other	Cool
늴	Other:									
폤		i. (gai):								
		Source:								
	Decon. Note	es:		<u></u>						<i>_</i>
	Well S	ecurity:	(good) fa	ir poor	Wel	l Integrity:	good) fai		Locked:	yes no
	Purge Volum		T.D.	, - -	DTW	×	Factor	× 1 C.V	- I	7.f.(gal
	Well Diam.: □ :	2" ै (4"	23.46ft.	_	1159 ft.	×	2*=0.175 4*=0.663	× 3		23.(/gal
	Free Product?:	Odor:	(nó) yes	Floatii	ng Product:	none	sheen	film		feet thick
Record	Time (24-hr)		1812	13:18	13.24	1332				Replicate
2	Gallons Purged		0	7.8	15.6	23.6				Goals
/Purge	Surged (minutes)	1	NA -		->				(dev. only)
뢱	рН		S	7.20	7.19	7.26				±0.10
뮕	Temperature (°C)	T	16.5	15.5	15.4				±1℃
nment	Cond. (umhos/c		A	1150 1KW	1126	1120				±10%
뒤	Salinity (‰)		R	09	0.9	0.9			<u> </u>	±10%
Develo	Turbidity (NTU	s)	Т	NA -		>		<u> </u>		<50 NTU
	Color		+		<u></u>		<u> </u>		<u> </u>	Colorless
	Depth to Water			ł		12.15	1	1	1	±0.01'
_	Reference	e Point:		Other:						
	Sample #	Time	Quantity	Volume	Туре	Preserv.	Filtration	1111	alysis	Lab
	KMW-3		3	40 Mr.	VOAS	Ø	1		TEX, MIBE	McCamp
Š	KMW-3		1 1	liter	Amber	Ø	 	TPH-	<u>d</u>	 - - - -
Sample Loz			 	 	 	 	 	 		
E			 	 	 	}_	 	1		-
K			 	1	 -	 	1			
	 		 	1	1	 		1		
>	<u> </u>		<u> </u>		1	1	1	1		
r	Other Observ	ations:								
뙲										
ঘ		<u>,</u>						***		G INI
	Final Check: V	/OAs fin	ec of bubble	s? yes / ne	o / NA			Well Lo	cked? yes /	(DO)/ NA

KA KLEINFELDER

WE	WELL DEVELOPMENT & SAMPLING LOG WELL NO. 2									
Date	Date: 3/24/99 Weather: Sheet of									
Proj	Project: Fricsman Ranch Submitted By: Michele Mahney Date:									
Proj	ect No.: 10-3006-13	1012	Reviewed	l By:		J		Date:		
	Purpose of Log		Developme	ent	囟	Sampling				
	Purging	Bailer	Disposable	Suction	Submers-	Dedicated	Other: Dec	icated		
	Equipment		Beiler	Pump	able Pump	Pump		Baile		
티티	Sampling	Bailer	Disposable	Suction	Submers-	Dedicated	Other:	ιι		
	Equipment	Water	Bailer	Pump	able Pump	Pump	ctivity	Turb	212-	
Ē	Test Equipment Meter No.	water	Level		<u>H</u>	COMO	CHVILY	3 1010	ICITY	
Ĕ	Calibration Date/Time	N	Α	KA 90	<u> </u>	<u> </u>		<u> </u>		
걸	Decontamination		ash	Rin	ise I	Rin	se II	Rins	e III	
ধ	Methods	DI	Steam	DI	Steam	DI	Steam	Di	Steam	
Ĕ	TSP .	Tap	Hot	Тар	Hot	Тар	Hot	Tap	Hot	
E	Alconox	Other	Cool	Other	Cool	Other	Cool	Other	Cool	
Equipment & Decontamination	Other: Vol. (gal):	· · · ·		NA						
7	Vol. (gai): Source:			, , , , }						
	Decon. Notes:					<u>1</u> _	<u> </u>	I		
\succeq		(6.50)		***	41 7	(3) (C)				
_	Well Security:	good) fa	ir poor	<u> </u>		good fair		Locked:	yes (no)	
	Purge Volume (CV)	T.D.	_ i	DTW	*	Factor 2-0.175	× 1 C.V) =] _	6.9 gal	
	Well Diam.: □ 2* 💆 4*		•	13.19 ft.		47-0.663] =	20.7 gal	
핍	Free Product?: Odor:			ng Product:		sheen	film		feet thick	
opment / Purge Record	Time (24-hr)	1435	1445	1450	1500				Replicate	
C R	Gallons Purged	. 0	6.9	13.8	20.7	· '			<u>Goals</u>	
E I	Surged (minutes)	1	MA -		7	<u> </u>			(dev. only)	
3	pH	S	7.18	7.15	7.24				±0.10	
5	Temperature (°C)	T	15.1	15.1	15.0	<u> </u>		, i	±1℃ ±10%	
100	Cond. (µmhos/cm) Salinity (‰)	A	1496	1430	1400	<u>. </u>			±10%	
Devel	Turbidity (NTU's)	R T	/./	1.1	1.1				<50 NTUs	
ā	Color	1	NA -		-				Coloriess	
	Depth to Water		 	7	13.29	 		 	±0.01'	
	Reference Point:	TÓC	Other:	· · · · · · · · · · · · · · · · · · ·	TAIL!	<u></u>	1	<u> </u>		
\succ	Sample # Time	Quantity	Volume	Туре	Preserv.	Filtration	Ans	alysis	Lab	
	Kmw-2	3	40 ml.	VoAs	Ø			17BE TOH	7	
Ħ	KMW-2	<u> </u>	1 liter	Amber	0		TPH		Trick Carry	
7	75.00		1 11114	7 (140001	 	 	1	· · · · · · · · · · · · · · · · · · ·		
Sample Lor										
San		1	1						V	
·										
	Other Observations:									
K										
Mix										
l	Final Check: VOAs free of bubbles? yes / no / NA Well Locked? yes / (no)/ NA									

	KLEINFEL			0 4 2 CDT	DICTO)C		WEI	I NO ·	7	
WELL DEVELOPMENT & SAMPLING LOG WELL NO. 7 Sheet of											
Date: Weather:							Date:				
Project: Friesman Ranch Submitted						 -		Date:			
Project No.: 10-3006-13/012 Reviewed By.							Date				
Purpose of Log								==			
	Purging		Bailer	Disposable	Suction	Submers-	Dedicated	Other: Ded	icated	<u> </u>	
	Equipment			Bailer	Pump	able Pump	Pump		Bailer		
ر ا	Sampling		Bailer	Disposable	Suction	Submers-		Other:	M		
1	Equipment			Bailer	Pump	able Pump	Pump	ومانونا	Turbic	liter	
副	Test Equipment	L	Water J	<u>cvel</u>	pF	<u> </u>	Condu	ctivity	101010	11(4	
耳		ter No.			KA 90	575			<u> </u>		
Decontamination	Calibration Date/Time						Rinse II		Dince	Rinse III	
	Decontamination	0	<u>Wa</u>		Rinse I			Steam Steam	DI	Steam	
쾰	Methods		Di	Steam Hot	DI Tap	Steam Hot	DI Tap	Hot	Tap	Hot	
Ę	TSP Alconox	1	Tap Other	Cool	Other	Cool	Other	Cool	Other	Cool	
텵	Other:	İ			•				1		
Equipment		l. (gal):			NA				<u> </u>		
_		Source:				- -					
							<u> </u>				
Decon. Notes: Well Security: good fair poor Well Integrity: good fair poor Locked: y									yes (no		
		ecurity:	good fa	ir poor				× 1 C.V		7.7 gal	
	Purge Volum		T.D.	-	DTW	*	Factor 2~0.175		_ r	23.1 ga	
	Well Diam.: 🛛 🕻	2" 🗆 4"	23.7 ft.	-	12.12ft.		4"- 0.663	× 3		feet thick	
_	Free Product?:	Odor:	no) yes	Floati	ng Product:	none	sheen	film	<u> </u>		
nent / Purge Record	Time (24-hr)		1615	1625	1630			<u> </u>		Replicate	
뙲	Gallons Purged	-	0	7.7	15.4	23.1	·			Goals	
S.	Surged (minutes	3	1	NA -		-\$ ²				(dev. only	
E	pH	·	S	7.02	7.04	204				±0.10	
7	Temperature (°C	7)	T	15.9	15.9	15.9				±1°C	
E	Cond. (umhos/c		A	1410	1410	1410				±10%	
<u> </u>	Salinity (%)		R	1.1	11	100 LL			1	±10%	
Develor	Turbidity (NTU	(c)	T	NA -		5				<50 NTU	
ă	Color	<u>.,</u>	1				1			Colorles	
	Depth to Water		 ` ` 	grayish	1 (14.09		:		±0.01'	
i	Reference	> Point	TOC	Other:							
\succ			Quantity	Volume	Турс	Preserv.	Filtratio	n Ai	nalysis	Lab	
	Sample #	Time	<u> </u>	*40ml	VOAS	P			BTEX, MTBE	McCam	
	KMW-7	<u>·</u>	. 3		Amber		1	TPH		i	
S	KMW-7	 	 	1 Ider	Poly	HNO3			lead		
96	KMW-7	 	 	500MI	Amber			TAH		W	
Sample Los	KMW-7	 	- -	liter	Thou	1 2		 '''	<u></u>		
l 🔅	' 			1	-			- 			
				 				-		1	
\		<u> </u>		1		<u> </u>					
	Other Observ	vations:	_ 5tv	ng odo	<u>r</u>						
1	a I			<u> </u>							
1	1										
l	Final Check:	VOAs fi	ree of bubble	s? yes / 1	10 / NA		·	Well L	ocked? yes	(no)/ N/	
I Man Critical Total State Co.											

KA KLI	EINFELI	DFR
--------	---------	-----

V	WELL DEVELOPMENT & SAMPLING LOG WELL NO. /s-									
D	Date: Weether									
Pı	oject: Fire O									
Pi	01ect No. 12 - 200/ - 13 / - 0 Period 5									
l	Durmora of Yan									
>	D		☐ Development		Samplin	Sampling				
Equipment & Decontamination	Equipment		Bailer	Disposable	Suction	Submers-	Dedicated	Other: <	Ded.	icade
	Committee			Beiler	Pump	able Pump	Pump		B	المتعادة
	Equipment		Beiler	Disposable		Submers-		Other:	>dica	red
	Test Equipment	 -	Wat	Bailer Ar I musi	Pump				Brile	4
	Me	Meter No.		Water Level		<u>pH</u>		ductivity	Tu	<u>rbidity</u>
Į	Calibration Date/Time				1124 0	KA 90575				
Įĕ	Decontamination				7					
4	Methods	-	Wash DI Steam		DI	Rinse I		nse II	Rin	nse III
E	TSP		Tap	Hot	Tap	Steam Hot	DI Tap	Steam	DI	Steam
E	Alconox		Other	Cool	Other	Cool	Other	Hot Cool	Tap Other	Hot
Ę	Other:		· ,				ł		Oute	Cool
	1 401.	Vol. (gal):			1 1	<i>A</i>			 	
ĺ		ource:			1	7	1		 	
\subseteq	Decon. Note:	s:						"	<u> </u>	
	Well Se	curity:	(good) 1	fair poor	W	ell Integrity	good) fa			
	Purge Volume	(CV)	T.D.		DTW	×	Factor		Locked	7
	Well Diam.: □ 2'	" A 4"] _	13,22 ft	_	Factor 2'= 0.175	× 1 C.V		6.79 gal
	Free Product?:	Odor: (no) ves	_	ng Product:	_	4'= 0.663	×	, =	20.37gal
) Li	Time (24-hr)				ng Froduct.	none)	sheen	film		feet thick
forment / Purge Record	Gallons Purged		10:15	10:20	10:25	10:30				Replicate
N	Surged (minutes)		<u>0</u> ↑	10,79	13.58	20.37				Goals
Ħ	pH			NA -		>				(dev. only)
Ħ	Temperature (°C)		S	6.65	6.69	6.71				±0.10
됩	Cond. (pmhos/cm)		T	20.5	20.5	20.5				±1°C
<u> </u>		<u>'</u>	<u> </u>	1810	1810	1760				±10%
Der	Salinity (%)		R	1.7	1.5	1.5				±10%
a	Turbidity (NTU's) Color		T	NA -		€				<50 NTUs
	Depth to Water			·						Coloriess
	Reference P	201044	TO 0			<u> </u>				±0.011
=			TÓC	Other:						
		ime	Quantity	Volume	Type	Preserv.	Filtration	Anal	vsis	Lab
	KMW-6		3	40ml	VOAS	Ø		TPH-9 RT	<u> </u>	
3	KMM-0		1	Unter	Amber	8		TPH-d	1.1170	ING TAMPARE
읨	KMW-10			500 ml.	Poly	HNO3		Totalle	ad	
Sample Log	KMW-6		1	liter	Amber	B		PAHS		
V2	KMW-10A	_	3	40 ml.	VOAS	Ø		TPH-9 B	TEY AFRE	
	KMW-6A		<u> </u>	Hiter	Amber	Ø		TPW-d		
									`	-
	Other Observation	ons:								
Miss										
	Final Check: VOA	s free c	of bubbles	yes / no	/ NA			117-11 T*	.30	
								Well Locke	207 YES / (1	ROYNA J

KA KLEINFELDER WELL DEVELOPMENT & SAMPLING LOG WELL NO. Sheet of Weather: Date: Date: Submitted By: Michell Mahaney Project: Friesman Ranch Date: Project No.: 10-30001-13/012 Reviewed By: Sampling. Development Purpose of Log Dedicated Dedicated Other: Disposable Suction Submers-Bailer Purging able Pump Pump Equipment Bailer Pumo Dedicated Other: Submers-Reiler Disposable Suction Sampling Squipment & Decontamination Pump able Pump Pump Equipment Conductivity Turbidity Water Level pН Test Equipment KA 90293 KA 90575 Meter No. NA Calibration Date/Time Rinse III Rinse II Rinse I Wash Decontamination Steam Steam DΙ DÍ Steam Methods DI Steam Tap Hot Hot Tap Hot Tau Hot Тар TSP Cool Other Cool Other Other Cool Other Cool Alconox Other: Vol. (gal): Source: Decon. Notes: Locked: yes (no) Well Integrity: good) fair poor Well Security: (good) fair poor 1 C.V 7.61 gal Factor DTW T.D. Purge Volume (CV) 2"= 0.175 27.83gal Well Diam.: D 2" A 4" 23.47ft. 11.99 ft. 4~ 0.663 feet thick film Floating Product: none sheen Free Product?: Odor: (no) yes Development / Purge Record Replicate 15133 N7.614 NS.22 Time (24-hr) Goals | 15:38V 115:45W 0 Gallons Purged (dev. only) Surged (minutes) ±0.10 7.13 S 7.07 7.08 Hq ±1°C 15 10 T Temperature (°C) 150 14.9 ±10% 1120 Cond. (umhos/cm) A 1/20 1120 ±10% 0.9 R 0.9 0.9 Salinity (%) <50 NTUs Turbidity (NTU's) T ~ NA Coloriess Color ±0.01° 12,24 Depth to Water TÓC Other: Reference Point: Lab Analysis Preserv. Filtration Quantity Volume Type Time Sample # Mc Coursell BTEX, MTBE, TPh-9 Ø VoAs KMW-1 TPH-d LHAMber KMW-1 Sample Lor

<u> </u>			
	Other Observations:		
ĸ			
Ħ			NA NA
1	Final Check: VOAs fre	e of bubbles? yes / no / NA	Well Locked? yes / (no) NA

APPENDIX B – CHAIN OF CUSTODY RECORDS AND CERTIFIED ANALYTICAL LABORATORY REPORTS

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Kleinfelder, Inc.	Client Project ID: #10-3006-13 /012;	Date Sampled: 03/25-03/26/99		
7133 Koll Center Pkwy, #100	Friesman Ranch	Date Received: 03/26/99		
Pleasanton, CA 94566	Client Contact: Neal Siler	Date Extracted: 03/26/99		
	Client P.O:	Date Analyzed: 03/26/99		

04/01/99

Dear Neal:

Enclosed are:

- 1). the results of 13 samples from your #10-3006-13 /012; Friesman Ranch project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly,

Duyle Ryde for Edward Hamilton, Lab Director

HI	KLEINFE	·	,	الحجب	1448	<u>d</u>	ŹK	Fa,			,		· ·		/ / RECEIVING LAB	
PROJECT NO. 10 -3000 L.P. NO.			uch	NO.	TYPE	á		`	*			//	//	//	/ McCampbell	
(P.O. NO.	Michel V SAMPLE I.D.	· · · · · · · · · · · · · · · · · · ·	<u> </u>	OF CON- TAINERS	OF CON- TAINERS	Signal Signal		T. J.		9/		//	//	//	INSTRUCTIONS/HEMA	808 6
MM/DD/YY	TIME HH-MM-SS	SAMPLE I.D.	water	4	liter t VGAS	/ <i>\$</i> } X	\ <u>'</u> \'	19/	'	H	+	_	\Box	+	0	8087
1 3/15/99 2 3/25/99		KMW-5	Water	4	Vates	\mathbf{x}			2 12						0.6	1088
	12:55	KMW-4	water	4	liters 1/0A)	X	X.	_							08	189
4	13:45	MW - 3			1, texas		X	-	_			+			0.8	090
5 V	15:10	KMW-2		4	u	1	<u>X</u> X		<u> </u>		+				<u></u>	19 9 1
6 3/25/99	16:50	KMW-1 KMW-7	1,1	6	1 text	1	$\frac{2}{x}$	××	<u> </u>		+				08	1092
	1055	rmw-6	+V	6	11			×Χ								660
9 3/210/99	1100	KMW-6A		5		X	Κ.	×				—			[·	094
0 3/26/99	1115	Creek 1	- - -	5		 ``	X	X			_	+				095
3/26/99		Creat 2	+	<u>5</u>		1	<u>X</u> X	_ X	<u> </u>		+	╁╌			*	096 _
12 3/24/99	1120	Creek 3 TrioBlank	 \	4	1	 	x		 	 	1	+				097 -
13 3/25/99 14		I IVID BIANCE														
15								· .					_		08	098
16		100		—		-			<u> </u>		\Rightarrow		Ŀ	 		na jest projection a
17		LOV	· · · · · ·								1	+			Section Control	र सहस्र १५० छ १ रहाँ होत
18				 		+	,71	<u> </u>			\dashv	╁┈			Septiminary Communication Comm	<u>agagetik, i kirti≥iakaga k</u>
20	1				-										and the second second	
Relinquished b	a Mahone	3/24/99 4:25	Received by: (Signatu Regelved by: (Signatu	_{juu}		Instrut * Cl	Filean	lemarks: Her up	and prise	prepto a	. w/ naly 45,1	silic sil	a g	el ilter	Send Results to: Neal Siler KLEINFELDER 7133 KOLL CENTER SUITE 100 PLEASANTON, CA 94 925 (510) 484-1700	PARKWAY 1566
Relinquished t	y: (Signature)	Date/Time F	Received for Laborato	ry by: (Signa	iture)] ,	Phi	- 10	ana	lysis	·				Attn. 70-X 923 IST 2	5838
M-60		White - Sampler	. <u></u> .	• •	CH	AIN	OF	CU.	ST(DY		•			Pink - Lab Copy No 31	05

X

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Kleinfelder, Inc.	Client Project ID: #10-3006-13 /012;	Date Sampled: 03/25-03/26/99			
7133 Koll Center Pkwy, #100	Friesman Ranch	Date Received: 03/26/99			
Pleasanton, CA 94566	Client Contact: Neal Siler	Date Extracted: 03/27-04/01/99			
	Client P.O:	Date Analyzed: 03/27-04/01/99			

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline*, with Methyl tert-Butyl Ether* & BTEX*

EPA methods 5030, modified 8015, and 8020 or 602; California RWQCB (SF Bay Region) method GCFID(5030)

Lab ID	Client ID	Matrix	TPH(g) ⁺	МТВЕ	Benzene	Toluene	Ethylben- zene	Xylenes	% Recovery Surrogate
08086	KMW-8	W	ND	ND	ND	ND	ND	ND	103
08087	KMW-5	w	ND	ND	ND	ND	ND	ND	102
08088	KMW-4	w	ND	ND	ND	ND	ND	ND	100
08089	KMW-3	W	ND	ND	ND	ND	ND	ND	101
08090	KMW-2	W	ND	ND	ND	ND	ND	ND	104
08091	KMW-1	w	ND	ND	ND	ND	ND	ND	104
08092	KMW-7	W	4300,a,h	ND<70	19	16	56	270	106
08093	KMW-6	W	7000,a	ND<100	160	5.1	270	200	105
08094	KMW-6A	W	6700,a	ND<100	170	6.5	270	200	106
08095	Creek 1	w	ND	ND	ND	ND	ND	ND	107
08096	Creek 2	W	ND	ND	ND	ND	ND	ND	104
08097	Creek 3	w	ND	ND	ND	ND	ND	ND	101
08098	Trip Blank	W	ND	ND	ND	ND	ND	ND	102
	Limit unless e stated; ND	W	50 ug/L	5.0	0.5	0.5	0.5	0.5	
means t above tl	not detected ne reporting limit	S	1.0 mg/kg	0.05	0.005	0.005	0.005	0.005	

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP and SPLP extracts in ug/L

[&]quot; cluttered chromatogram; sample peak coelutes with surrogate peak

[&]quot;The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment; j) no recognizable pattern.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Kleinfelder, Inc. 7133 Koll Center Pkwy, #100 Pleasanton, CA 94566		Client Pro Friesman	oject ID: #10-3006-13 /012; Ranch	Date Sampled: 03/25-03/26/99 Date Received: 03/26/99		
		Client Co	ontact: Neal Siler	Date Extracted:	03/26/99	
			D:	Date Analyzed:	03/28-04/01/99	
	_ ,	•	table Hydrocarbons as Diesel v		-	
Lab ID	Client ID	Matrix	TPH(d) ⁺		% Recovery Surrogate	
08086	KMW-8	w	ND		102	
08087	KMW-5	w	ND	ND		
08088	KMW-4	w	ND	ND		
08089	KMW-3	w	ND		101	
08090	KMW-2	w	ND		103	
08091	KMW-1	W	ND		103	
08092	KMW-7	w	1200,d,b,h		108	
08093	KMW-6	w	1700,d,b		104	
08094	KMW-6A	w	1700,d,b		102	
08095	Creek 1	w	ND		104	
08096	Creek 2	w	ND		97	
08097	Creek 3	w	ND			
08098	Trip Blank	w	W ND			
	All samples were	e centrifuged	and decanted to avoid sediment pr	ior to their extraction		
	imit unless otherwise	W	50 ug/L			
	ans not detected above eporting limit	S	1.0 mg/kg			

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP / STLC / SPLP extracts in ug/L

[&]quot;cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

^{*}The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) medium boiling point pattern that does not match diesel (?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~5 vol. % sediment.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Kleinfelder, Inc.			Project ID: #10-	-3006-13 /012;	Date Sampled: 03/25-03/26/99		
	enter Pkwy, #100		an Ranch		Date Received: 03	/26/99	
Pleasanton,	CA 94566	Client	Contact: Neal S	iler	Date Extracted: 03	3/26/99	
		Client	P.O:		Date Analyzed: 03	3/26/99	
EPA analytical	methods 6010/200.7, 239	0.2+	Lea	d*			
Lab ID	Client ID	Matrix	Extraction °	Lea	d*	% Recovery Surrogate	
08092	KMW-7	w	Dissolved	0.0	22	NA	
08093	KMW-6	W	Dissolved	NI)	NA	
						\ - \-	
1/2/ 1/2/				A . A W		1-2-00	
			<u> </u>				
				- 1011			
				. ,			
							
Penarting I	imit unless otherwise	S	TTLC	3.0 m	ng/kg	18 E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
stated; ND me	ans not detected above	w	TTLC	0.005	005 mg/L		
the reporting limit			STLC,TCLP	0.2 n	ng/L		

^{*} soil and sludge samples are reported in mg/kg, wipe samples in ug/wipe, and water samples and all STLC / SPLP / TCLP extracts in mg/L
*Lead is analysed using EPA method 6010 (ICP)for soils, sludges, STLC & TCLP extracts and method 239.2 (AA Furnace) for water samples

[°] EPA extraction methods 1311(TCLP), 3010/3020(water,TTLC), 3040(organic matrices,TTLC), 3050(solids,TTLC); STLC - CA Title 22

[#] surrogate diluted out of range; N/A means surrogate not applicable to this analysis

[&]amp; reporting limit raised due matrix interference

i) liquid sample that contains greater than ~2 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations.

QC REPORT FOR HYDROCARBON ANALYSES

Date: 03/29/99 Matrix: WATER

	Concent	ration	(ug/L)		% Reco	very	
Analyte	Sample			Amount			RPD
	(#05350)	MS	MSD	Spiked	MS	MSD	
	! 					 	
TPH (gas)	0.0	100.0	99.8	100.0	100.0	99.8	0.2
Benzene	0.0	9.6	9.3	10.0	96.0	93.0	3.2
Toluene	0.0	9.9	9.4	10.0	99.0	94.0	5.2
Ethyl Benzene	0.0	10.1	9.7	10.0	101.0	97.0	4.0
Xylenes	0.0	30.1	28.7	30.0	100.3	95.7	4.8
TPH(diesel)	0.0	8338	8132	7500	111	108	2.5
	ļ						
TRPH (oil & grease)	 0 	27400	26500	23700	116	112	3.3
	l	. .					

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

[%] Rec. = (MS - Sample) / amount spiked \times 100

QC REPORT FOR SVOCs (EPA 8270/625/525)

Date: 04/04/99-04/05/99 Matrix: WATER

	Concentr	ation	(ug/Kg,m	:			
Analyte	Sample		1	Amount			RPD
	(#04264) 	MS	MSD	Spiked	MS	MSD	
Phenol	 0	49	44	100	49	44	21.5
2-Chlorophenol	Ö	44	35	100	44	35	22.8
1, 4-Dichlorobenzene	o	49	39	100	49	39	22.7
N-nitroso-di-n-propyl	- 0	50	40	100	50	40	22.2
1, 2, 4-Trichlorobenz	0	53	40	100	53	40	28.0
4-Chloro-3-methylphen	0	60	45	100	60	45	28.6
4-Nitrophenol	0	55	52	100	55	52	5.6
Acenaphthene	0	70	49	100	70	49	35.3
2, 4- Dinitrotoluene	0	43	34	100	43	34	23.4
Pentachlorophenol	0	49	48	100	49	48	2.1
Pyrene	0	67	63	100	67	63	6.2

[%] Rec. = (MS - Sample) / amount spiked x 100

RPD = $(MS - MSD) / (MS + MSD) \times 2 \times 100$

QC REPORT FOR METALS

Date: 03/26/99

Matrix: WATER

Extraction:

DISSOLVED

	Concenti	ration			% Reco	very	
Analyte	(mg	g/L)		Amount			RPD
	Sample	MS	MSD	Spiked	MS	MSD	
		37/3			37/7	3T / D	3T / T
Arsenic	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Selenium	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Molybdenum	N/A	N/A	N/A	A/N	N/A	N/A	N/A
Silver	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Thallium	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Barium	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Nickel	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chromium	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Vanadium	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Beryllium	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Zinc	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Copper	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Antimony	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lead	0.0	4.9	5.0	5.0	99	100	1.8
Cadmium	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cobalt	N/A	N/A	N/A	N/A	N/A	A/N	N/A
Mercury	N/A	N/A	N/A	N/A	N/A	N/A	N/A

% Rec. = (MS - Sample) / amount spiked x 100 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

APPENDIX C – HISTORICAL WATER LEVEL MEASUREMENTS

HISTORICAL GROUNDWATER ELEVATION DATA FRIESMAN RANCH PROPERTY LIVERMORE, ALAMEDA COUNTY, CALIFORNIA

WELL	SAMPLING	WATER	FREE-	GROUNDWATER
NUMBER	DATE	LEVEL FROM	PRODUCT THICKNESS	ELEVATIONS USGS Datum
		T.O.C.		
		(feet)	(feet)	(Ft. Above MSL)
		•		
KMW-1	3/25/99	11.99	0.00	358.13
	1/12/99	12.97	0.00	357.15
	12/28/98	12.72	0.00	357.40
	9/8/97	12.82	0.00	357.30
KMW-2	3/25/99	13.19	0.00	357.53
	1/12/99	14.32	0.00	356.40
	12/28/98	14.08	0.00	356.64
	9/8/97	14.28	0.00	356.44
KMW-3	3/25/99	11.59	0.00	357.51
]	1/12/99	15.13	0.00	353.97
	12/28/98	12.39	0.00	356.71
	9/8/97	12.34	0.00_	356.76
KMW-4	3/25/99	12.89	0.00	356.91
	1/12/99	14.40	0.00	355.40
	12/28/98	13.76	0.00	356.04
	9/8/97	13.76	0.00	356.04
KMW-5	3/25/99	13.27	0.00	356.25
	1/12/99	15.32	0.00	354.20
	12/28/98	14.17	0,00	355.35
	9/8/97	14.24	0.00	355.28
KMW-6	3/25/99	13.22	0.00	356.86
	1/12/99	14.47	0.00	355.61
	12/28/98	14.16	0.00	355.92
	9/8/97	14.28	0.00	355.80
KMW-7	3/25/99	12.12	0.00	357.92
	1/12/99	13.15	0.00	356.89
	12/28/98	12.91	0.00	357.13
KMW-8	3/25/99	12.48	0.00	356.13
	1/12/99	13.70	0.00	354.91
	12/28/98	13.37	0.00	355.24

NOTES:

G.S. = Ground Surface

T.O.C. = Top of casing. All measurements in feet relative to top of casing. USGS = United States Geological Survey
All wells have 4" ID casing = 0.65 gallons per casing length (foot).

APPENDIX D - HISTORICAL GROUNDWATER CHEMISTRY

HISTORICAL GROUNDWATER CHEMISTRY FRIESMAN RANCH PROPERTY LIVERMORE, ALAMEDA COUNTY, CALIFORNIA

WELL	SAMPLE	TPH-D	трн.с	BENZENE	TOLUENE	ETHYL	TOTAL	MTBE	PAHs	LEAD
NUMBER	COLLECTION DATE	(µg/L)	(μg/L)	(µg/L)	(µg/L)	BENZENE (µg/L)	XYLENES (µg/L)	(µg/L)	(µg/L)	(µg/L)
KMW-1	3/25/99	<50	<50	< 0.5	<0.5	<0.5	<0.5	<5.0	-	-
	12/28/98	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	7.8
đup.	12/28/98	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	5.9
- 1	9/8/97	<50	<50	< 0.5	<0.5	<0.5	<0.5	<5.0	<10	-
KMW-2	3/25/99	<50	<50	< 0.5	<0.5	<0.5	<0.5	<5.0	-	-
	12/28/98	<50	<50	< 0.5	<0.5	<0.5	<0.5	<5.0	<10	<5.0
	9/8/97	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	_
KMW-3	3/25/99	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	- 1
	12/28/98	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	<5.0
	9/8/97	<50	<50	<0.5	< 0.5	<0.5	<0.5	<5.0	<10	-
KMW-4	3/25/99	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	-
	12/28/98	<50	<50	< 0.5	<0.5	<0.5	<0.5	<5.0	<10	7.5
	9/8/97	<50	<50	< 0.5	<0.5	<0.5	<0.5	<5.0	<10	-
KMW-5	3/25/99	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-	-
	12/28/98	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	8.5
1	9/8/97	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	-
dup.	9/8/97	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	-
KMW-6	3/26/99	1,700, d,b	7,000, a	160	5.1	270	200	<100**	100*	<5.0
dup.	3/26/99	1,700, đ,b	6,700, a	170	6.5	270	200	<100**	100*	-
·	12/28/98	1,800, d	3,200, a	86	3.6	140	90	<50**	130*	15
İ	9/8/97	3,200, d	13,000, a	250	14	560	490	<150**	140*	-
KMW-7	3/25/99	1,200 d,b	4,300, a,h	19	16	56	270	<70**	23*	22
	12/28/98	1,000, d,h	9,100, a,h	23	17	190	700	<70**	110*	38
KMW-8	3/25/99	<50	<50	<0.5	<0.5	< 0.5	<0.5	<5.0	-	-
	12/28/98	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	<10	12

Notes:

TPH-D Total Petroleum Hydrocarbons as Diesel

TPH-G	Total Petroleum Hydrocarbons as Gasoline
MTBE	Methyl Tertiary-Butyl Ether
PAHs	Polynuclear Aromatic Hydrocarbons
MCL	Cal/EPA Maximum Contaminant Level
μg/L	Micrograms per Liter (approx. equal to parts per billion)
< 0.5	Not detected at or above the laboratory method reporting limit
a	Unmodified or weakly modified gasoline is significant
d	Gasoline range compounds are significant
h	Lighter than water immiscible sheen is present
*	Naphthalene only, all other chemicals were <20 μg/L
**	Reporting limit raised due to high presence of TPH-g
-	Not analyzed
	Wells KMW-7 and KMW-8 installed on December 23, 1998