

353 Sacramento Street, Suite 1140 San Francisco, California 94111 FAX 415.391.2216 415.391.1885

Earth and Environmental Technologies

October 8, 1993

Mr. Raymond Elliott PACCAR Automotive, Inc. 7200 Edgewater Drive Oakland, California 94621

Reference: Quarterly Status Report

Grand Auto Facility 4240 East 14th Street

Oakland, California J-6077

Dear Mr. Elliott:

Hart Crowser, Inc. has prepared this Quarterly Status Report on behalf of PACCAR Automotive, Inc. for the above-referenced site. The following sections present summaries of environmental activities completed at the site prior to July 1993 (Previous Site Activities), during the period of July 1, 1993 to September 30, 1993 (Current Activities) and the activities planned for the next quarter, October to December 1993 (Proposed Activities).

PREVIOUS SITE ACTIVITIES

The Grand Auto retail facility is located on an approximate 1.2 acre site. The site is currently used as an auto service and retail merchandise facility. The site was previously used for retail gasoline sales, with underground fuel storage tanks and a car wash with an associated drainage sump. The underground fuel tanks were removed in 1986. In July 1992, Hart Crowser drilled two borings (B-4 and B-5) in the vicinity of the former location of the underground fuel storage tanks (Figure 1).

The car wash sump was removed on August 7, 1992. A soil sample (S2C) was collected from beneath the sump at a depth of 8.5 feet below ground surface (BGS) (Figure 1). Analytical results indicated the presence of petroleum hydrocarbons, halogenated hydrocarbons, and some metals in the soil beneath the sump. A groundwater monitoring well (MW-1) was installed within ten feet southwest of the sump, which, according to regional information, is the downgradient direction. Despite some slightly wet conditions encountered at eight feet BGS, free groundwater was not encountered until approximately 36 feet BGS. There appears to be a discontinuous perching layer at the site at approximately 8 feet BGS. The monitoring well was sampled again on January 19, 1993.

During April 1993, we drilled five soil borings (B-8 to B-12) and converted three of them to groundwater monitoring wells (MW-2, MW-3, MW-4). Hart Crowser also installed a groundwater monitoring well (HC-1) at the neighboring former Super Tire facility. We have included the results from this well as part of the assessment for the Grand Auto site. The wells were developed and then sampled in April 1993. The results of this phase of the assessment were summarized in a report, "Supplemental Site Investigation", June 18, 1993.

CURRENT ACTIVITIES

On August 4, 1993, Hart Crowser measured groundwater elevations in, and collected groundwater samples from, all four groundwater monitoring wells onsite (MW-1, MW-2, MW-3, and MW-4) and from the well at the former Super Tire store (HC-1). Approximately three to four well volumes of water were purged from each monitoring well before the sample was collected. Field parameters including pH, conductivity and temperature were recorded to verify stabilization prior to sampling. Pre-cleaned disposable bailers (single-use) were used to obtain samples from each well. All sampling equipment was decontaminated before use and between wells to minimize the potential for cross-contamination.

Groundwater samples were contained in hydrochloric acid preserved, laboratory cleaned, 40 milliliter glass vials with Teflon lined septa. After labeling, they were promptly stored in a cold ice chest. Strict chain-of-custody procedures were followed throughout sample acquisition, storage, and transport.

Samples were submitted to Superior Precision Analytical, Inc. for analysis of TPH with benzene, toluene, ethylbenzene, and xylene (BTEX) distinction by EPA Methods 5030/8015/8020, halogenated volatile organics by EPA Methods 5030/8010, and total chromium by EPA Method 6010. The laboratory results are summarized in Table 1. Certified Analytical Reports and a copy of the Chain-of-Custody record can be found in Appendix A.

An historic record of TPH and BTEX concentrations for individual wells is presented in Table 2. The analytical results from this sampling were generally consistent with previous results. TPH was detected in all wells, where previously it was detected only in MW-1 and MW-2. However, the laboratory reported that the chromatograph for these samples did not match a typical gasoline pattern. These reported values are probably due to interference from the halogenated compounds also detected in groundwater samples from these wells. Support for this hypothesis is provided in the non-detected to very minor concentrations of BTEX compounds reported for these TPH samples.

The concentrations of halogenated compounds were relatively the same as measured during the previous round of sampling in April 1993. Several of the detected compounds were not, however, detected in August 1993, namely freon, chloroform, trichloroethane, and dichloroethane.

Groundwater elevations measured on August 4, 1993 are presented in Table 3. The groundwater elevations for each well are shown on Figure 2 for this date. The measured groundwater elevations in all the wells was less than one foot higher than in April 1993. The groundwater gradient is again relatively flat, however there does appear to be a slight southwesterly flow direction.

PROPOSED ACTIVITIES

Future activities proposed for the site include the continuation of quarterly groundwater monitoring. We will also be evaluating the possible presence of fuel conveyance piping associated with the former underground fuel storage tanks. If found, they will be removed and samples will be collected in accordance with the Tri-Valley Regional Board Recommendations.

If you have any questions regarding work at this site, please contact our office at your earliest convenience.

Sincerely,

HART CROWSER, INC.

Eric Schniewind

Project Hydrogeologist

Dharme Rathnayake, P.E.

Technical Manager

ETS/DR:pr

Attachments:

Figure 1 - Site Plan

Figure 2 - Groundwater Elevation Map 8/4/93

Table 1 - Results of Lab. Analysis of GW Samples

Table 2 - Historical GW Quality Data

Table 3 - Monitoring Well Data

Appendix A - Certified Analytical Reports

cc Ms. Lisa Robbins, PACCAR, Inc.

Mr. Paul Smith, Alameda County Health Department

Mr. Richard Hiett, Regional Water Quality Control Board

FIGURES

TABLES.

TABLE 1

Summary of Groundwater Sample Results Grand Auto Facility Oakland, California (in µg/L)

						Spring well
<u>Analyte</u>	<u>Method</u>	<u>MW-1</u>	<u>MW-2</u>	<u>MW-3</u>	<u>MW-4</u>	<u>HC-1</u>
TPH as Gasoline	8015 mod	150*	120*	170*	110*	100*
Benzene	8020	ND 0.3	ND 0.3	0.3	ND 0.3	ND 0.3
Toluene	8020	0.3	0.3	0.4	0.4	ND 0.3
Ethyl Benzene	8020	ND0.3	ND 0.3	ND 0.3	ND 0.3	ND 0.3
Xylenes	8020	ND 0.9				
Chlorinated VOC's	8010	i				
cis 1,2 - Dichloroethene		10	22	ND5	ND 5	15
Trichloroethene		23	110	28	16	27
Tetrachloroethene		290	7.2	(170)	110	83
Metals Chromium	6010	ND 50				

Note: *- does not match typical gasoline pattern. ND X - Denotes chemical not detected at a level of X.

TABLE 2 HISTORICAL GROUNDWATER QUALITY DATA GRAND AUTO FACILITY OAKLAND, CALIFORNIA

	TPH			ETHYL					
	AS GASOLINE	BENZENE	TOLUENE	BENZENE	XYLENES	DCE	TCE	PCE	CHROMIUM
DATE	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
0.410.400	1504	ND 0.2	NID 0.2	NID 0.2	NID 0.3	11	26	310	NA
									ND 50
									ND 50
									ND 50
8/4/93	150*	ND 0.3	0.3	ND 0.3	ND 0.9	10	23	270	145 30
4/26/93	70	0.8	1.1	ND 0.3	1.0	8.5	32	7.5	ND 50
8/4/93	120*	ND 0.3	0.3	ND 0.3	ND 0.9	22	110	7.2	ND 50
4/26/93	NID 50	ND 0.3	ND 0.3	ND 0.3	ND 0.9	9.7	21	7 9	170
8/4/93	170*	0.3	0.4	ND 0.3	ND 0.9	ND 5	28	170	ND 50
A /26 /93	NID 50	ND 0.3	ND 0.3	ND 0.3	ND 0.9	3.9	17	7 8	60
8/4/93	110*	ND 0.3	0.4	ND 0.3	ND 0.9	ND 5	16	110	ND 50
4 /26 /02	NID 50	NID 0.3	ND 0.3	ND 0.3	ND 0.9	13	22	46	ND 50
8/4/93	100*	ND 0.3	ND 0.3	ND 0.3	ND 0.9	15	27	83	ND 50
	9/10/92 1/19/93 4/26/93 8/4/93 4/26/93 8/4/93 4/26/93 8/4/93 4/26/93 8/4/93	9/10/92 150* 1/19/93 160 4/26/93 57* 8/4/93 150* 4/26/93 70 8/4/93 120* 4/26/93 ND 50 8/4/93 ND 50	DATE (ug/L) (ug/L) 9/10/92 150* ND 0.3 1/19/93 160 ND 1 4/26/93 57* ND 0.3 8/4/93 150* ND 0.3 4/26/93 70 0.8 8/4/93 120* ND 0.3 4/26/93 ND 50 ND 0.3 8/4/93 170* 0.3 4/26/93 ND 50 ND 0.3 8/4/93 110* ND 0.3 4/26/93 ND 50 ND 0.3 4/26/93 ND 50 ND 0.3 ND 0.3 ND 0.3 ND 0.3	DATE (ug/L) (ug/L) (ug/L) 9/10/92 150* ND 0.3 ND 0.3 1/19/93 160 ND 1 ND 3 4/26/93 57* ND 0.3 ND 0.3 8/4/93 150* ND 0.3 0.3 4/26/93 70 0.8 1.1 8/4/93 120* ND 0.3 0.3 4/26/93 ND 50 ND 0.3 ND 0.3 8/4/93 170* 0.3 ND 0.3 4/26/93 ND 50 ND 0.3 ND 0.3 8/4/93 110* ND 0.3 0.4 4/26/93 ND 50 ND 0.3 ND 0.3 ND 0.3 ND 0.3 ND 0.3	DATE (ug/L) (ug/L) (ug/L) (ug/L) 9/10/92 150* ND 0.3 ND 0.3 ND 0.3 1/19/93 160 ND 1 ND 3 ND 0.3 4/26/93 57* ND 0.3 ND 0.3 ND 0.3 8/4/93 150* ND 0.3 0.3 ND 0.3 4/26/93 70 0.8 1.1 ND 0.3 8/4/93 120* ND 0.3 0.3 ND 0.3 4/26/93 ND 50 ND 0.3 ND 0.3 ND 0.3 8/4/93 170* 0.3 ND 0.3 ND 0.3 4/26/93 ND 50 ND 0.3 ND 0.3 ND 0.3 8/4/93 110* ND 0.3 ND 0.3 ND 0.3 4/26/93 ND 50 ND 0.3 ND 0.3 ND 0.3 4/26/93 ND 50 ND 0.3 ND 0.3 ND 0.3 4/26/93 ND 50 ND 0.3 ND 0.3 ND 0.3	DATE (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) 9/10/92 150* ND 0.3 ND 0.3 ND 0.3 ND 0.3 1/19/93 160 ND 1 ND 3 ND 3 ND 3 4/26/93 57* ND 0.3 ND 0.3 ND 0.3 ND 0.9 8/4/93 150* ND 0.3 0.3 ND 0.3 ND 0.9 4/26/93 70 0.8 1.1 ND 0.3 ND 0.3 ND 0.9 4/26/93 120* ND 0.3 0.3 ND 0.3 ND 0.9 4/26/93 ND 50 ND 0.3 ND 0.3 ND 0.3 ND 0.9 4/26/93 ND 50 ND 0.3 ND 0.3 ND 0.3 ND 0.9 4/26/93 ND 50 ND 0.3 ND 0.3 ND 0.3 ND 0.9 4/26/93 ND 50 ND 0.3 ND 0.3 ND 0.3 ND 0.9 4/26/93 ND 50 ND 0.3 ND 0.3 ND 0.3 ND 0.9	DATE (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) 9/10/92 150* ND 0.3 ND 0.3 ND 0.3 ND 0.3 11 1/19/93 160 ND 1 ND 3 ND 3 ND 3 14 4/26/93 57* ND 0.3 ND 0.3 ND 0.3 ND 0.9 8.7 8/4/93 150* ND 0.3 0.3 ND 0.3 ND 0.9 10 4/26/93 70 0.8 1.1 ND 0.3 ND 0.3 ND 0.9 10 4/26/93 120* ND 0.3 0.3 ND 0.3 ND 0.9 9.7 8/4/93 170* 0.3 ND 0.3 ND 0.3 ND 0.3 ND 0.9 9.7 4/26/93 ND 50 ND 0.3 ND 0.3 ND 0.3 ND 0.3 ND 0.9 ND 5 4/26/93 ND 50 ND 0.3 ND 0.3 ND 0.3 ND 0.3 ND 0.9 ND 5 4/26/93 ND 50 ND 0.3 ND 0.3 ND 0.3 ND 0	DATE (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) (ug/L) 9/10/92 150* ND 0.3 ND 0.3 ND 0.3 ND 0.3 11 26 1/19/93 160 ND 1 ND 3 ND 3 ND 3 14 28 4/26/93 57* ND 0.3 ND 0.3 ND 0.3 ND 0.9 8.7 22 8/4/93 150* ND 0.3 0.3 ND 0.3 ND 0.9 10 23 4/26/93 70 0.8 1.1 ND 0.3 1.0 8.5 32 8/4/93 120* ND 0.3 0.3 ND 0.3 ND 0.9 9.7 21 4/26/93 ND 50 ND 0.3 ND 0.3 ND 0.3 ND 0.9 ND 5 28 4/26/93 ND 50 ND 0.3 ND 0.3 ND 0.3 ND 0.9 ND 5 16 4/26/93 ND 50 ND 0.3 ND 0.3 ND 0.3 ND 0.9 ND 5 16 4/26/93	DATE (ug/L) (ug/L)

Notes: ND X - Not detected at detection limit X.

NA - not analyzed

* - does not match typical gasoline pattern

Table 3
Monitoring Well Data

2400 Jefferson Street Napa, California

WELL	TOTAL DEPTH (feet BGS)	SCREENED INTERVAL (feet BGS)	SURFACE ELEVATION (feet above msl)	TOP OF CASING ELEVATION (feet above msl)	DEPTH TO GROUNDWATER (feet BGS)	GROUNDWATER ELEVATION (feet above msl)
MW-1	43	33-43	30.8	30.53	34.93	-4.4
MW-2	45	31-45	30.7	30.41	34.79	-4.38
MW-3	45	30-45	30.7	30.31	34.7	-4.39
MW-4	45	30-45	29.5	29.08	33.47	-4.39
HC-1	42	30-42	28.7	28.33	32.75	-4.42

Notes:

- 1. See Figure 1 for well locations.
- 2. BGS = below ground surface.
- 3. MSL = mean seal level
- 4. Depth to groundwater measured from top of casing in feet on August 4, 1993.

APPENDIX A
Certified Analytical Reports

1555 Burke, Unit ! • San Francisco, California 94124 • (415) 647-2081 / fax (415) 821-7123

HARTCROWSER Inc Attn: Eric Schniewind Project J6077 Reported 08/09/93

E6006- E

TOTAL PETROLEUM HYDROCARBONS

Lab #	Sample Identification	Sampled	Analyzed Matrix
56886- 1	MW-1	08/04/93	08/07/93 Water
56886- 2	MW-2	08/04/93	08/07/93 Water
56886- 3	MW-3	08/04/93	08/07/93 Water
56886- 4	MW-4	08/04/93	08/07/93 Water
56886- 5	HC-1	08/04/93	08/07/93 Water

RESULTS OF ANALYSIS

Laboratory Number	: 56886-1	56886- 2	56886- 3	56886- 4	36006- 3
Casoline:	150*	120*	170*	110* -	100*

150* Casoline: ND<0.3 ND<0.3 ND<0.3 0.3 ND<0.3 enzene: 0.4ND<0.3 0.3 0.3 0.4Toluene: ND<0.3 ND<0.3 ND<0.3 ND<0.3 ND<0.3 Ethyl Benzene: ND<0.9 ND<0.9 ND<0.9 ND<0.9 ND<0.9 ylenes:

Concentration: ug/L ug/L ug/L ug/L ug/L

Does not match typical gasoline pattern.

1555 Burke, Unit I • San Francisco, California 94124 • (415) 647-2081 / fax (415) 821-7123

CERTIFICATE OF ANALYSIS

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS

Page 2 of 2 QA/QC INFORMATION SET: 56886

NA = ANALYSIS NOT REQUESTED

ND = ANALYSIS NOT DETECTED ABOVE QUANTITATION LIMIT

ug/L = parts per billion (ppb)

OIL AND GREASE ANALYSIS By Standard Methods Method 5520F:
Minimum Detection Limit in Water: 5000ug/L

Modified EPA SW-846 Method 8015 for Extractable Hydrocarbons: Minimum Quantitation Limit for Diesel in Water: 50ug/L

EPA SW-846 Method 8015/5030 Total Purgable Petroleum Hydrocarbons: Minimum Quantitation Limit for Gasoline in Water: 50ug/L

EPA SW-846 Method 8020/BTXE
Minimum Quantitation Limit in Water: 0.3ug/L

ANALYTE	MS/MSD RECOVERY	RPD	CONTROL LIMIT
Gasoline:	87/90	3%	75 -1 25
Benzene:	85/81	5%	75-125
Toluene:	91/85	78	75 -12 5
Ethyl Benzene:	106/99	7%	75-125
Xylenes:	109/102	7%	75-125

Senior Chemist Account Manager

825 Arnold Drive, Suite 114 • Martinez, California 94553 • (510) 229-1512 / fax (510) 229-1526

HARTCROWSER Inc. Attn: Eric Schniewind Project J6077 Reported 11-August-1993

ANALYSIS OF CHROMIUM by SW-846 METHOD 6010

Chronology				Laboratory	Number	56886
Identification	Sampled	Received	Extracted	Analyzed	Run #	Lab #
MW-1 MW-2 MW-3 MW-4 HC-1	08/04/93 08/04/93 08/04/93	08/04/93 08/04/93 08/04/93 08/04/93 08/04/93	08/06/93 08/06/93 08/06/93 08/06/93 08/06/93	08/06/93 08/06/93 08/06/93 08/06/93 08/06/93		1 2 3 4 5

825 Arnold Drive, Suite 114 • Martinez, California 94553 • (510) 229-1512 / fax (510) 229-1526

HARTCROWSER Inc.

Attn: Eric Schniewind

Project J6077 Reported 11-August-1993

Laboratory Number	Sample I	dentificat	ion	Ma	atrix
56886- 1 56886- 2 56886- 3 56886- 4 56886- 5	MW-1 MW-2 MW-3 MW-4 HC-1			Wa Wa Wa	ater ater ater ater ater
Laboratory Number:		S OF ANALY 56886- 2		56886- 4	56886- 5
TOTAL CHROMIUM:	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05
Concentration:	mg/L	mg/L	mg/L	mg/L	mg/L

825 Arnold Drive, Suite 114 • Martinez, California 94553 • (510) 229-1512 / fax (510) 229-1526

Quality Assurance and Control Data - Water

Laboratory Number 56886

pmpound	Method Blank (mg/L)	PQL (mg/L)	Average Spike Recovery (%)	Limits (%)	RPD (%)	
TOTAL CHROMIUM:	ND<0.05	0.05	96%	75-125	1%	

Definitions:

D = Not Detected

PQL = Practical Quantitation Limit

C File No. 56886

RPD = Relative Percent Difference

8/12/93

Senior Analyst

Page 3 of 3

Certified Laboratories

RECEIVED AND 2 B 1993 50 87% APRICE OF THE Chain of Custody and Analysis Request page___of__ Section 1 **Turn Around Time** Superior Precision Analytical, Inc. From: Superior Precision Analytical, Inc. (circle one) 1555 Burke St. Unit I 72 Hrs Same Day P.O. Box 1545 San Francisco, CA 92124 5 Day 24 Hrs Martinez, California 94553 Phone No. (415) 647-2081 Fax No. (415) 821-7123 10 Day 48 Hrs Contact: ERIC SCHWIEWIND Work Subcontracted to: J6077 P.O. No. Section II: Analysis Request 5 Metals: CHRONISM TOTAL Sampling Remarks Number of Containers S = Soil A = Air W = Water Chevron 8080 (pest. and PCB's) Non-Chevron Client Laboratory *Please Fax Results** Sample Sample Identification Identification Matrix K-0 MW-1 NORMAL 5 MW-2 MW-3 5 MW-4 HC-1 9 10 11 12 Date/Time Lab please initial the following: Relinquished by Date/Time Received by . Samples Stored in Ice
Appropriate Containers Organization #ART CROWSER 8/4/93 /4/5 Organization Date/Time Received by Date/Time Relinquished by ———— Samples Preserved

Organization

Received by

Organization

Date/Time

femeno

Date/Time

Organization _____

Relinquished by ---

Organization —

VOAs without Headspace

Comments _____

825 Arnold Drive, Suite 114 • Martinez, California 94553 • (510) 229-1512 / fax (510) 229-1526

HARTCROWSER Inc.

Attn: Eric Schniewind

Project J6077 Reported 12-August-1993

HALOGENATED VOLATILE ORGANICS by EPA SW-846 Methods 5030/8010.

Chronology				Laboratory	Number	56886
Identification	Sampled	Received	Extracted	Analyzed	Run #	Lab #
MW-1 MW-2 MW-3 MW-4 HC-1	08/04/93 08/04/93 08/04/93	08/04/93 08/04/93 08/04/93 08/04/93 08/04/93	/ / / / / / / / / / / / / / / / / / / /	08/09/93 08/12/93 08/09/93 08/10/93 08/10/93		1 2 3 4 5

825 Arnold Drive, Suite 114 • Martinez, California 94553 • (510) 229-1512 / fax (510) 229-1526

HARTCROWSER Inc.

Project J6077

Attn: Eric Schniewind

Reported 12-August-1993

HALOGENATED VOLATILE ORGANICS by EPA SW-846 Methods 5030/8010.

Laboratory Number	Sample	Identifica	tion	M	atrix
56886- 1 56886- 2 56886- 3 56886- 4 56886- 5	MW-1 MW-2 MW-3 MW-4 HC-1			W W	ater ater ater ater ater
Laboratory Number: 50	RESU 6886- 1	LTS OF ANAL 56886- 2	YSIS 56886- 3	56886- 4	56886- 5
Chloromethane/Vinyl Ch Bromomethane: Chloroethane: Trichlorofluoromethane 1,1-Dichloroethene: Dichloromethane: t-1,2-Dichloroethene: 1,1-Dichloroethane: c-1,2-Dichloroethane: Chloroform: 1,1,1-Trichloroethane: Carbon tetrachloride: 1,2-Dichloroethane: Trichloroethene: c-1,3-Dichloropropene: 1,2-Dichloropropene: 1,2-Dichloropropene: 1,2-Trichloroethane: 1,1,2-Trichloroethane: Chlorobenzene: Dibromochloromethane: Chlorobenzene: 1,2-Tetrachloroeth 1,3-Dichlorobenzene: 1,2-Dichlorobenzene: 1,4-Dichlorobenzene:	ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5	ND<2.4 ND<1.2	ND<10 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5	ND<10 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5 ND<5	ND<1 ND<0.5
Concentration:	ug/L	ug/L	ug/L	ug/L	ug/L

Page 2 of 3

825 Arnold Drive, Suite 114 • Martinez, California 94553 • (510) 229-1512 / fax (510) 229-1526

HALOGENATED VOLATILE ORGANICS by EPA SW-846 Methods 5030/8010. Quality Assurance and Control Data - Water

Laboratory Number 56886

Chloromethane/Vinyl Ch: ND<1 1 Bromomethane: ND<0.5 0.5 Chloroethane: ND<0.5 0.5 Trichlorofluoromethane: ND<0.5 0.5 I.1-Dichloroethene: ND<0.5 0.5 I.1-Dichloroethene: ND<0.5 0.5 Dichloromethane: ND<0.5 0.5 I.1-Dichloroethene: ND<0.5 0.5 I.1-Dichloroethene: ND<0.5 0.5 I.1-Dichloroethene: ND<0.5 0.5 C-1,2-Dichloroethene: ND<0.5 0.5 Chloroform: ND<0.5 0.5 I.1,1-Trichloroethane: ND<0.5 0.5 I.1,1-Trichloroethane: ND<0.5 0.5 Carbon tetrachloride: ND<0.5 0.5 I.2-Dichloroethane: ND<0.5 0.5 Trichloroethane: ND<0.5 0.5 I.2-Dichloropropene: ND<0.5 0.5 I.2-Dichloropropene: ND<0.5 0.5 I.2-Dichloropropene: ND<0.5 0.5 I.2-Dichloropropene: ND<0.5 0.5 I.1,2-Trichloroethane: ND<0.5 0.5 I.1,2-Trichloroethane: ND<0.5 0.5 I.1,2-Trichloroethane: ND<0.5 0.5 I.1,2-Trichloroethane: ND<0.5 0.5 Intrachloropropene: ND<0.5 0.5 Intrachloroethane: ND<0.5 0.5 Intrac	Compound	Method Blank (ug/L)	PQL (ug/L)	Average Spike Recovery (%)	Limits (%)	RPD (%)	
### Stromomethane: ND<0.5	Chloromethane/Vinyl Ch:	ND<1	1				
Trichlorofluoromethane: ND<0.5		ND<0.5	0.5				
1,1-Dichloroethene: ND<0.5	Chloroethane:	ND<0.5					
Dichloromethane: ND<0.5				_			
t-1,2-Dichloroethene: ND<0.5				98%	75-125	16%	
1,1-Dichloroethane: ND<0.5 0.5							
C-1,2-Dichloroethene: ND<0.5 0.5 Chloroform: ND<0.5 0.5 1,1,1-Trichloroethane: ND<0.5 0.5 Carbon tetrachloride: ND<0.5 0.5 1,2-Dichloroethane: ND<0.5 0.5 Trichloroethene: ND<0.5 0.5 C-1,3-Dichloropropene: ND<0.5 0.5 1,2-Dichloropropene: ND<0.5 0.5 1,2-Dichloropropene: ND<0.5 0.5 1,2-Dichloropropene: ND<0.5 0.5 1,1,2-Trichloroethane: ND<0.5 0.5 Tetrachloroethane: ND<0.5 0.5 Tetrachloroethane: ND<0.5 0.5 Tetrachloroethane: ND<0.5 0.5 Tetrachloroethane: ND<0.5 0.5 Tetrachloroethene: ND<0.5 0.5 Tetrachloroethane: ND<0.5 0.5 Tetrachloroethene: ND<0.5 0.5 Thirdenest ND<0.							
Chloroform: ND<0.5 0.5 1,1,1-Trichloroethane: ND<0.5 0.5 Carbon tetrachloride: ND<0.5 0.5 1,2-Dichloroethane: ND<0.5 0.5 Trichloroethene: ND<0.5 0.5 C-1,3-Dichloropropene: ND<0.5 0.5 1,2-Dichloropropane: ND<0.5 0.5 1,2-Dichloropropene: ND<0.5 0.5 1,2-Dichloropropene: ND<0.5 0.5 Bromodichloromethane: ND<0.5 0.5 1,1,2-Trichloroethane: ND<0.5 0.5 Tetrachloroethene: ND<0.5 0.5 Dibromochloromethane: ND<0.5 0.5 Chlorobenzene: ND<0.5 0.5 Bromoform: ND<0.5 0.5 1,1,2,2-Tetrachloroeth: ND<0.5 0.5 1,3-Dichlorobenzene: ND<0.5 0.5 1,3-Dichlorobenzene: ND<0.5 0.5 1,2-Dichlorobenzene: ND<0.5 0.5 1,2-Dichlorobenzene: ND<0.5 0.5 1,4-Dichlorobenzene: ND<0.5 0.5 1,4-Dichlorobenzene: ND<0.5 0.5							
1,1,1-Trichloroethane: ND<0.5							
Carbon tetrachloride: ND<0.5							
1,2-Dichloroethane: ND<0.5							
Trichloroethene: ND<0.5 0.5 98% 75-125 10% c-1,3-Dichloropropene: ND<0.5 0.5 1,2-Dichloropropene: ND<0.5 0.5 t-1,3-Dichloropropene: ND<0.5 0.5 Bromodichloromethane: ND<0.5 0.5 1,1,2-Trichloroethane: ND<0.5 0.5 Tetrachloroethene: ND<0.5 0.5 Dibromochloromethane: ND<0.5 0.5 Chlorobenzene: ND<0.5 0.5 Bromoform: ND<0.5 0.5 1,1,2,2-Tetrachloroeth: ND<0.5 0.5 1,3-Dichlorobenzene: ND<0.5 0.5 1,2-Dichlorobenzene: ND<0.5 0.5 1,4-Dichlorobenzene: ND<0.5 0.5 1,4-Dichlorobenzene: ND<0.5 0.5							
C-1,3-Dichloropropene: ND<0.5 0.5 1,2-Dichloropropene: ND<0.5 0.5 t-1,3-Dichloropropene: ND<0.5 0.5 Bromodichloromethane: ND<0.5 0.5 1,1,2-Trichloroethane: ND<0.5 0.5 Tetrachloroethene: ND<0.5 0.5 Dibromochloromethane: ND<0.5 0.5 Chlorobenzene: ND<0.5 0.5 Bromoform: ND<0.5 0.5 1,1,2,2-Tetrachloroeth: ND<0.5 0.5 1,3-Dichlorobenzene: ND<0.5 0.5 1,2-Dichlorobenzene: ND<0.5 0.5 1,4-Dichlorobenzene: ND<0.5 0.5 1,4-Dichlorobenzene: ND<0.5 0.5 1,4-Dichlorobenzene: ND<0.5 0.5				00%	75 105	108	
1,2-Dichloropropane: ND<0.5 0.5 t-1,3-Dichloropropene: ND<0.5 0.5 Bromodichloromethane: ND<0.5 0.5 1,1,2-Trichloroethane: ND<0.5 0.5 Tetrachloroethene: ND<0.5 0.5 Dibromochloromethane: ND<0.5 0.5 Chlorobenzene: ND<0.5 0.5 Bromoform: ND<0.5 0.5 1,1,2,2-Tetrachloroeth: ND<0.5 0.5 1,3-Dichlorobenzene: ND<0.5 0.5 1,2-Dichlorobenzene: ND<0.5 0.5 1,4-Dichlorobenzene: ND<0.5 0.5 1,4-Dichlorobenzene: ND<0.5 0.5				986	75-125	10.9	
## 1,3-Dichloropropene: ND<0.5							
Bromodichloromethane: ND<0.5 0.5 1,1,2-Trichloroethane: ND<0.5 0.5 Tetrachloroethene: ND<0.5 0.5 Dibromochloromethane: ND<0.5 0.5 Chlorobenzene: ND<0.5 0.5 Bromoform: ND<0.5 0.5 1,1,2,2-Tetrachloroeth: ND<0.5 0.5 1,3-Dichlorobenzene: ND<0.5 0.5 1,2-Dichlorobenzene: ND<0.5 0.5 1,4-Dichlorobenzene: ND<0.5 0.5 1,4-Dichlorobenzene: ND<0.5 0.5							
1,1,2-Trichloroethane: ND<0.5 0.5 Tetrachloroethene: ND<0.5 0.5 Dibromochloromethane: ND<0.5 0.5 Chlorobenzene: ND<0.5 0.5 Bromoform: ND<0.5 0.5 1,1,2,2-Tetrachloroeth: ND<0.5 0.5 1,3-Dichlorobenzene: ND<0.5 0.5 1,2-Dichlorobenzene: ND<0.5 0.5 1,4-Dichlorobenzene: ND<0.5 0.5 1,4-Dichlorobenzene: ND<0.5 0.5							
Tetrachloroethene: ND<0.5 0.5 Dibromochloromethane: ND<0.5 0.5 Chlorobenzene: ND<0.5 0.5 Bromoform: ND<0.5 0.5 1,1,2,2-Tetrachloroeth: ND<0.5 0.5 1,3-Dichlorobenzene: ND<0.5 0.5 1,2-Dichlorobenzene: ND<0.5 0.5 1,4-Dichlorobenzene: ND<0.5 0.5							
Dibromochloromethane: ND<0.5 0.5							
Chlorobenzene: ND<0.5 0.5 111% 75-125 11% Bromoform: ND<0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5							
Bromoform: ND<0.5 0.5 1,1,2,2-Tetrachloroeth: ND<0.5 0.5 1,3-Dichlorobenzene: ND<0.5 0.5 1,2-Dichlorobenzene: ND<0.5 0.5 1,4-Dichlorobenzene: ND<0.5 0.5				111%	75-125	11%	
1,1,2,2-Tetrachloroeth: ND<0.5 0.5 1,3-Dichlorobenzene: ND<0.5 0.5 1,2-Dichlorobenzene: ND<0.5 0.5 1,4-Dichlorobenzene: ND<0.5 0.5							
1,3-Dichlorobenzene: ND<0.5 0.5 1,2-Dichlorobenzene: ND<0.5 0.5 1,4-Dichlorobenzene: ND<0.5 0.5							
1,2-Dichlorobenzene: ND<0.5 0.5 1,4-Dichlorobenzene: ND<0.5 0.5	1 3-Dichlorobenzene						
_1,4-Dichlorobenzene: ND<0.5 0.5							
Definitions:	Definitions:						

ND = Not Detected

PQL = Practical Quantitation Limit

QC File No. 56886

RPD = Relafive Perfent Difference

B/18/93

Senior Analyst

Page 3 of 3

	RECEIVED AND 2 0 400										17		1000					
Section I	Ch	ai	n	of	C	us	to	dy	1 8	<u>an</u>	d Anal	ysi	is	R	pe	uest page of		
From: Superior Precision Analytical, Inc.									Turn Around Time				Conceins Bracisian Analytical Inc					
1555 Burke St. Unit I									(circle one)			Superior Precision Analytical, Inc. P.O. Box 1545						
San Francisco, CA 92124								- 1	Same Day 72 Hrs 24 Hrs 5 Day					P.O. Box 1545				
Phone No. (415) 647-2081 Fax No. (415) 821-7123								1	24 Hrs 5 Day Martinez, California 94553 48 Hrs 10 Day					lartinez, California 94553				
								·	40 1	nrs 10 bay	ــــــــــــــــــــــــــــــــــــــ							
12.00c								۰ ۱	Work Subcontracted to: MTZ									
P.O. No. <u>56886</u>																		
Section II: Anal	ysis Rec	ues	t §							· - 7			- 1					
Laboratory Sample Identification	S = Soil A = Air Xi. W = Water Xi.	1M17	Metals: Total Mona	418.1	8270	8080 (pest. and PCB's)	8010				Client Sample Identification	Number of Containers	Preservative (yes or no)			Sampling Remarks Chevron Non-Chevron **Please Fax Results** Superior		
	W		$\overline{}$				$\overline{}$				mw-/	3	4			<i>y</i>		
1 56886-/	1	 									mw-Z	3						
	 		Ś				\searrow	 			mw-3	3						
$\frac{3}{4}$ $-\frac{9}{4}$	 		$\overline{\mathbf{x}}$				\times				mw-g	3		<u> </u>				
5 -5			X				$\geq \leq$				HC-1	3	0			<u>55 400</u>		
6	W	1										ļ	1 1		. N	g of fig. took		
7												<u> </u>		5375	_	containers		
8	<u> </u>		1						<u>L</u>	<u> </u>					75 jor	revoil		
9												<u> </u>		1	1 477 181 1 477 181	tot koedopace		
10												 	 					
11				\Box			ļ			₩		├			1 1.	<u> </u>		
12					<u> </u>	<u> </u>	<u> </u>	<u> </u>		1 0		Dat		<u> </u>	1	the second second		
Relinquished by Kurnero Organization SuftRior 85 8/4					113	Date/Time Received			tion	on Autoria			Date/Time			Lab please initial the following: Samples Stored in Ice Appropriate Containers		
Relinquished by ———————					Dat	Date/Time Receive			=] Date	hara/ mua			Samples Preserved		
Organization					 _	Organizatio							Date/Time			VOAs without Headspace Comments		
Relinquished by ———————————————————————————————————						Date/Time Received by				· · ·			~+/ 1689	_				
Organization ———	Code Direction																	

1: [RECEIVED A116 2 0 1993 Chain of Custody and Analysis Request page__of__ **Turn Around Time** Superior Precision Analytical, Inc. Superior Precision Analytical, Inc. (circle one) 1555 Burke St. Unit I 72 Hrs Same Day P.O. Box 1545 San Francisco, CA 92124 5 Day 24 Hrs Martinez, California 94553 Phone No. (415) 647-2081 Fax No. (415) 821-7123 10 Day 48 Hrs ERIC SCHWIEWIND Work Subcontracted to: J6677 Section It: Analysis Request CHRONIUM/FORK Sampling Remarks Number of Containers RIEZ Chevron S = Soil A = W = Water Non-Chevron Client Laboratory *Please Fax Results* Sample Sample Identification Identification Metrx X 20 MW-1 NORMAZ 5 mw-2 mw-3 5 MW-4 HC-1

armeno

Date/Time

8/4/93 1415

Date/Time

Date/Time

Received by _

Organization -

Received by

Organization

Received by

Organization

Data/Time

Data/Time

Date/Time

4/531420

Lab please initial the following:

Samples Stored in Ice

Appropriate Containers

VOAs without Headspace ____

Semples Preserved _____

Comments _

Section |

Contact:

P.D. No.

Relinquished by

Relinquished by —

Relinquished by ----

Organization ____

Organization ----

Organization #ART CROWSBR

From: