RECEIVED

By dehloptoxic at 8:56 am, Nov 13, 2006

Groundwater Monitoring Results
First through Fourth Quarter 2005
Cargill Salt – Alameda Facility
Alameda, California

October 20, 2006

Alameda County Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 Attn: Jerry Wickham

RE: Groundwater Monitoring Results, First through Fourth Quarter 2005
Cargill Salt - Alameda Facility, Alameda, California

Dear Mr. Wickham,

The attached report presents the groundwater monitoring results for First through Fourth Quarter 2005 for the Cargill Salt Alameda facility. Results of groundwater transect sampling and the initial sampling of three groundwater monitoring wells installed in November 1999 were reported in the January 31, 2000 submittal, "Groundwater Characterization and Monitoring Well Installation" prepared by Crawford Consulting, Inc. and Conor Pacific/EFW. The monitoring wells were installed to help characterize and monitor the occurrence of volatile organic compounds, primarily tetrachloroethene (PCE) and its breakdown product, trichloroethene (TCE), in groundwater at the site. Since the initial groundwater monitoring well sampling event, groundwater monitoring has been conducted on a quarterly basis. The quarterly monitoring data generally confirm the results of the groundwater transect sampling and initial sampling of the monitoring wells.

Off-site characterization activities, including installation of a fourth groundwater monitoring well, were conducted in November and December 2001 to evaluate the off-site extent of VOCs in the soil and groundwater. The results of these activities were submitted in the August 21, 2002 report "Off-Site Groundwater Characterization" prepared by Conor Pacific/EFW.

A phytoremediation project was implemented at the site in June 2005. Selection of the remedial approach and implementation of the project is documented in Section 4 of the attached report.

To the best of my knowledge the attached report is true, complete, and correct. Should you have any questions concerning the report, please don't hesitate to call me at (510) 790-8625.

Sincerely,

Teri Peterson

Environmental Manager

Groundwater Monitoring Results First through Fourth Quarter 2005

Cargill Salt – Alameda Facility Alameda, California

Prepared for:

Cargill Salt 7220 Central Avenue Newark, California 94560

Prepared by:

Crawford Consulting, Inc.
2 North First Street, 4th Floor
San Jose, CA 95113
(408) 287-9934

Project No. CS1605 October 20, 2006

Contents

1	Introduction	1
	1.1 Background Information	1
	1.1.1 Site Description	1
	1.1.2 Summary of Investigative and Remedial Activities	2
	1.1.3 Source of VOC Impact	3
	1.2 Reporting Period Activities	3
2	Groundwater Flow Analysis	4
	2.1 Water-Level Measurement	
	2.2 Groundwater Flow Direction and Gradient	4
	2.3 Groundwater Velocity	5
3	Groundwater Sampling and Analysis	
	3.1 Sample Collection and Analysis	
	3.2 Analytical Results	
	3.2.1 Quality Control	
	3.2.2 Groundwater Results	
	3.3 Discussion	9
4	Implementation of Phytoremediation Project	11
	4.1 Selection of Phytoremediation Approach	
	4.2 Project Startup	

Professional Certification References Limitations

Tables

Table 1. Groundwater Level Data
Table 2. Relative Percent Difference Based on Duplicate Samples
Table 3. Summary of Groundwater Monitoring Well Data

Illustrations

Figure 1.	Site Location
Figure 2.	Groundwater Monitoring Well Locations
Figure 3.	Graphical Summary of Groundwater Elevation Data
Figure 4.	Groundwater Elevation Contours - March 2005
Figure 5.	Groundwater Elevation Contours – June 2005
Figure 6.	Groundwater Elevation Contours – September 2005
Figure 7.	Groundwater Elevation Contours - December 2005
Figure 8.	VOC Concentrations in Groundwater - March through December 2005
Figure 9.	Graphical Summary of PCE Concentrations
Figure 10.	Hybrid Poplar Planting Grid
Figure 11.	Hybrid Poplar Photographs

Appendices

(presented in electronic format only)

Appendix A. Field Data Sheets

Appendix B. Groundwater Velocity Calculations

Appendix C. Certified Analytical Reports and Chain-of-Custody Documentation

Electronic File

Entire report presented in electronic file format (pdf) on CD-ROM inside back cover.

1 Introduction

Crawford Consulting, Inc. (Crawford) has prepared this report on behalf of Cargill Salt for the Cargill Salt Dispensing Systems Division facility (hereafter, the Site) in Alameda, California.

Results of groundwater transect sampling and the initial sampling of three groundwater monitoring wells installed in November 1999 were presented in the January 31, 2000 report, *Groundwater Characterization and Monitoring Well Installation, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc. and Conor Pacific/EFW). The purpose of the groundwater transect sampling and the monitoring well installation and sampling was to help characterize and monitor the occurrence of volatile organic compounds (VOCs), primarily tetrachloroethene (PCE) and its breakdown product, trichloroethene (TCE), previously detected in groundwater at the Site.

One of the recommendations in the report was to confirm the groundwater analytical results of the newly installed monitoring wells (wells MW-1, MW-2, and MW-3) and the groundwater flow direction and gradient via quarterly monitoring. Since the initial groundwater monitoring well sampling event in November 1999, groundwater monitoring has been conducted on a quarterly basis and reported annually.

Cargill Salt conducted additional characterization activities in November and December 2001 to evaluate the off-site extent of VOCs in the soil and groundwater. Soil and groundwater samples were collected and analyzed from a neighboring residential property and along Clement Avenue, slug tests were performed in the three existing monitoring wells, and a groundwater monitoring well (MW-4) was installed in Clement Avenue.

Background information and a summary of the groundwater monitoring activities for the first through fourth quarters of 2005 are presented below.

1.1 Background Information

A description of the Site and a summary of the development of characterization and monitoring programs for the Site are presented in this section.

1.1.1 Site Description

Alameda is an island on the east side of San Francisco Bay, separated from Oakland by a tidal canal (Figure 1). The Cargill Salt Dispensing Systems Division facility is located on a rectangular lot in an industrial and residential neighborhood. The facility building occupies approximately one-third of the Site and is separated from the vacant, unpaved side of the lot by an asphalt driveway (Figure 2). The Site is bordered by a sheet-metal shop and a residential lot to the northwest, an apartment complex to the southwest, and a residential lot to the southeast.

From 1951 to 1978, the Alameda facility produced salt-dispensing units, which required casting and milling aluminum parts.

Constituents of concern associated with site operations have included casting sands with elevated concentrations of metals, and solvents, machine oils, and grease used in casting and milling operations. As discussed below, previous investigations and remedial activities have investigated and remediated metals and solvents (VOCs) in vadose-zone soil.

1.1.2 Summary of Investigative and Remedial Activities

Cargill Salt initiated site investigative activities in 1993 to determine if facility operations had impacted site soils. Cargill Salt submitted the results of the soil sampling investigation to the Alameda County Environmental Health Services (ACEHS) in October 1993 along with a workplan for excavation and disposal of impacted soils and assessment of potential impact to groundwater (Groundworks Environmental, Inc. [Groundworks], 1993).

After approval of the workplan by ACEHS, Cargill Salt conducted several phases of soil remediation and groundwater characterization. Surficial soils impacted by metals were excavated for disposal off site. Vadose-zone soils with the highest degree of impact by VOCs were also excavated for off-site disposal (see "Soil excavation area" on Figure 2).

The results of these activities were submitted to the ACEHS in a report, *Soil and Groundwater Investigations and Remedial Activities, July 1993 – September 1994, Cargill Salt – Alameda Facility, Alameda, California* (Groundworks, 1995). Recommendations for additional work to further delineate the lateral and vertical extent of VOCs in groundwater beneath the Site were presented in the report.

A workplan for the additional delineation of VOCs in groundwater, *Workplan for Groundwater Characterization and Monitoring Well Installation, 2016 Clement Avenue, Alameda, California* (CCI), was submitted to the ACEHS in July 1999.

After approval of the workplan by the ACEHS, Cargill Salt conducted groundwater sampling and well installation activities during August and November of 1999. The results of these activities were submitted to the ACEHS in a report, *Groundwater Characterization and Monitoring Well Installation*, *Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc. and Conor Pacific/EFW, dated January 31, 2000). Since the initial groundwater monitoring well sampling event in November 1999, groundwater monitoring has been conducted on a quarterly basis and reported annually.

A workplan for remedial investigation activities, *Workplan for Off-Site Characterization, Cargill Salt – Alameda Facility, Alameda, California* (Conor Pacific/EFW), was submitted to the ACEHS in June 2001. After approval of the workplan by the ACEHS, Cargill Salt conducted characterization activities in November and December 2001 to evaluate off-site extent of VOCs in the soil and groundwater. Soil and groundwater samples were collected and analyzed from a neighboring residential property and along Clement Avenue, slug tests were performed in the three existing monitoring wells, and a groundwater monitoring well (MW-4) was installed in Clement Avenue. The results of these activities were submitted to the ACEHS in the August 21, 2002 submittal *Off-Site Groundwater Characterization, Cargill Salt – Alameda Facility, Alameda, California*, prepared by Conor Pacific/EFW.

1.1.3 Source of VOC Impact

As discussed in the 1995 report, the occurrence of VOCs in soils and groundwater at the Site appears to be the result of a discharge or spill to surficial soils at a location near the rear property line at the southwestern corner of the property. The area with the highest degree of chemical impact was delineated prior to excavation and was then excavated using a backhoe and transported off-site for appropriate disposal. It is possible that the VOCs detected in soils and groundwater at this location were associated with waste products from facility operations. The VOCs may be associated with solvents previously used for degreasing operations at the facility, although there are no records indicating use of PCE. Site records indicate that the solvents used for degreasing operations were not PCE-based solvents.

It is also possible that the VOCs and oil and grease are associated with waste products discarded from neighboring properties. There is an apartment complex next to the rear property line of the facility, and the laundry room for this complex is in the utility shed immediately adjacent to the rear property line. This laundry room is only 4 feet away from the area of highest impact to soil. If PCE associated with laundry cleaning products were spilled in this laundry room, it is possible that it could have drained onto the Cargill Salt property.

1.2 Reporting Period Activities

Since the initial sampling and analysis event in November 1999, groundwater monitoring has been conducted on a quarterly basis. This report presents the results of groundwater monitoring data collected during the first through fourth quarters of 2005. For each quarterly period, groundwater levels in the Site monitoring wells were measured, groundwater samples were collected and analyzed, and the groundwater flow direction and gradient were determined. The quarterly monitoring schedule for 2005 is shown below.

Quarter of 2004	Field Dates
First	March 3, 2005
Second	June 10, 2005
Third	September 16, 2005
Fourth	December 6, 2005

Supervision of the quarterly monitoring events was conducted for Cargill Salt by Crawford. Groundwater level measurements and collection of groundwater samples were conducted by Field Solutions, Inc. The groundwater samples for the first through fourth quarters of 2005 were analyzed by STL Chromalab, Inc., a state-certified laboratory in Pleasanton, California.

A phytoremediation project was implemented at the Site in June 2005. Selection of the remedial approach and implementation of the project is documented in Section 4 of this report.

2 Groundwater Flow Analysis

Groundwater levels were measured quarterly and groundwater contour maps were prepared for the first through fourth quarter 2005 reporting period.

2.1 Water-Level Measurement

Water levels in groundwater monitoring wells (MW-1, MW-2, MW-3, and MW-4) were measured each quarter, before any of the groundwater monitoring wells were purged for sampling for the quarterly monitoring event. The groundwater monitoring well locations are shown on Figure 2. The water levels were measured with an electric sounder. The depth to water at each well was recorded on a *Water Level Field Data* sheet (see Appendix A).

The Site groundwater monitoring wells were re-surveyed in September 2006 by CSS Environmental Services in order to provide Geotracker-compliant survey data. Results of the casing elevation survey indicate that each well is approximately 6.4 feet higher than the previous survey conducted in 1999. This difference is due to the use of different datum for the 2006 and 1999 surveys.

The water-level data through the fourth quarter of 2005 are shown on Table 1. The data in Table 1 include the date and time of measurement, the well casing elevation, the measured depth to groundwater, the groundwater elevation, and the change in elevation from the previous measurement. A plot of historical groundwater elevations is shown in Figure 3.

Groundwater levels in the four monitoring wells showed a similar seasonal pattern in 2005 as in the previous five years (see Figure 3). Groundwater levels rose across the Site between the fourth quarter 2004 and first quarter 2005 measurements, reflecting winter-season recharge. Groundwater levels measured in the second and third quarters of 2005 fell relative to the previous quarter, reflecting dissipation of winter-season recharge. Groundwater levels rose between the third and fourth quarter 2005 measurements, reflecting recharge at the beginning of the 2005/2006 winter season.

The groundwater levels recorded during the March 2005 measurement event were the highest levels recorded for each well to date. The depths to water recorded in the Site monitoring wells during the March 2005 event ranged from 1.9 to 2.5 feet.

2.2 Groundwater Flow Direction and Gradient

Groundwater contour maps for the first through fourth quarters of 2005 based on the March, June, September and December 2005 water-level data are shown on Figures 4 through 7.

The groundwater flow direction determined for each quarter of 2005 was to the northeast, consistent with the groundwater flow direction determined previously for the Site. The horizontal hydraulic gradients measured for the first, second, third, and fourth quarters of 2005 were 0.025, 0.017, 0.014, and 0.016, respectively.

2.3 Groundwater Velocity

Average linear groundwater flow velocities (V) were calculated using a form of Darcy's Law,

$$V = Ki/n$$
,

where "K" is the hydraulic conductivity, "i" is the horizontal hydraulic gradient, and "n" is the effective porosity. The groundwater velocity calculations for the 2005 groundwater data are presented in Appendix B.

Using hydraulic conductivity and porosity values determined for saturated native materials at the Site [based on slug tests and laboratory soil testing, respectively (Conor Pacific/EFW, 2002)], and the horizontal hydraulic gradients determined from the quarterly 2005 groundwater contour maps, groundwater flow velocities beneath the Site are calculated to range from 1 to 2 feet per year (ft/yr).

3 Groundwater Sampling and Analysis

This section summarizes the sample collection and analytical methods, presents an evaluation of quality control data, and summarizes the results of the sampling events.

3.1 Sample Collection and Analysis

Groundwater samples were collected March 3, June 10, September 16, and December 6, 2005 from groundwater monitoring wells MW-1, MW-2, MW-3, and MW-4. Dedicated tubing was installed in wells MW-1, MW-2, and MW-3 prior to the first quarter 2000 sampling event and on December 17, 2001 in well MW-4 to facilitate sampling with a peristaltic pump. Dedicated fluorinated ethylene propylene resin (FEP)-lined polyethylene tubing was installed in each monitoring well. The tubing intake was placed about one foot above the well bottom in each of the wells. Viton® dedicated check valves were installed on the tubing intakes to prevent back-flow of water into the well. A short length of dedicated Viton® tubing was installed at the well head for use in a peristaltic pump head. Prior to sample collection for each quarterly monitoring event, the wells were purged using a peristaltic pump. Field parameters (pH, electrical conductivity, temperature, and turbidity) were measured in purged groundwater from each well prior to sampling; these data are recorded on the Sample Collection Field Data sheets presented in Appendix A. After purging, groundwater samples were collected using the peristaltic pump and the dedicated Viton® pump head discharge tubing.

The groundwater samples were analyzed for VOCs using U.S. Environmental Protection Agency (USEPA) Method 8021B. Results for all Method 8010 analytes were reported. The groundwater samples for first through fourth quarter 2005 were delivered with appropriate chain-of-custody documentation to STL Chromalab, Inc., a state-certified laboratory in Pleasanton, California, for chemical analysis.

3.2 Analytical Results

The results of field and laboratory quality control measures and the results of the groundwater monitoring well samples are reviewed in this section. The certified analytical reports and chain-of-custody documentation are presented in Appendix C.

3.2.1 Quality Control

Quality control (QC) samples were analyzed as part of the sampling and analysis program to evaluate the precision and accuracy of the reported groundwater chemistry data. QC samples included both field and laboratory samples. Descriptions of the purpose of specific field and laboratory QC samples used during the sampling and analysis program and an evaluation of field and laboratory QC results are presented below.

Field Quality Control Samples

A field duplicate was used during the first through fourth quarter 2005 sampling program for the Site. A field duplicate is used to assess sampling and analytical precision. The duplicate is collected at a selected well (MW-2 [first, third and fourth quarter 2005] and MW-4 [second quarter 2005]) and then submitted "blind" to the laboratory for analysis with the same batch as the regular sample for the selected well. An estimate of precision is obtained by calculating the relative percent difference (RPD) between the regular sample and the duplicate sample using the following formula:

RPD =
$$[x - y] 100$$

0.5 $(x + y)$

where: [x - y] =the absolute value of the difference in concentration

between the regular sample (x) and the duplicate sample (y).

Laboratory Quality Control Samples

The following types of laboratory QC samples were used during the first through fourth quarter 2005 analytical program for the Site:

- surrogate spikes
- matrix spikes/duplicate matrix spikes

A surrogate spike is a check standard added to a sample in a known amount prior to analysis. Surrogate spikes consist of analytes not normally found in environmental samples and not targeted by the analytical procedure. Surrogate spikes provide information on recovery efficiency by comparing the percent recovery of specific surrogate analyses to statistically derived acceptance limits developed by the USEPA or the laboratory (provided such laboratory-specific limits are stricter than those developed by the USEPA). If the recoveries fall within the acceptance limits for the analytes, the analysis exhibits an acceptable recovery efficiency. Recoveries that fall outside the acceptance limits indicate a potential problem with the recovery efficiency of analytes, which in turn indicates a potential bias with respect to the reported concentration of the environmental samples analyzed in the same batch.

Matrix spikes and duplicate matrix spikes are analyzed by the laboratory for the purpose of providing a quantitative measure of accuracy and precision, and to document the effect that the sample matrix has on the analysis. A selected sample is spiked in duplicate with known concentrations of analytes. The recoveries of the spiked analytes are compared to statistically derived acceptance limits developed by the USEPA or the laboratory (provided such laboratory-specific limits are stricter than those developed by the USEPA). If the recoveries fall within the acceptance limits for the analytes, the analysis has no statistically significant bias (i.e., the analysis is accurate). Recoveries that fall outside of the acceptance limits have a positive or negative bias, depending on whether the recovery is greater or less than the upper or lower acceptance limit, respectively. Analyses where analyte recoveries fall outside the acceptance limits should be regarded as estimates only.

Precision for matrix spikes is measured by calculating the relative percent differences (RPDs) between the measured concentration of analytes in the matrix and the duplicate matrix spike. The following equation is used for matrix spikes:

 $RPD = \underbrace{[MS - MSD] 100}_{0.5 (MS + MSD)}$

where: [MS - MSD] = the absolute value of the difference in

concentration between the matrix spike (MS) and the matrix

spike duplicate (MSD)

First Quarter 2005 Field QC Results

One field duplicate (DUP-1) was analyzed as part of the first quarter 2005 sampling event at the Site. The duplicate sample was collected at groundwater monitoring well MW-2 and was analyzed for halogenated VOCs using USEPA Method 8021B (8010 list). Table 2 summarizes the calculated RPDs for MW-2 and MW-2 duplicate (DUP-1). Of the two parameters for which RPDs could be calculated (see Table 2), two parameters (TCE and PCE) exhibit a low RPD value (i.e., less than 10%) indicative of good precision.

Second Quarter 2005 Field QC Results

One field duplicate (DUP-1) was analyzed as part of the second quarter 2005 sampling event at the Site. The duplicate sample was collected at groundwater monitoring well MW-4 and was analyzed for halogenated VOCs using USEPA Method 8021B (8010 list). Table 2 summarizes the calculated RPDs for MW-4 and MW-4 duplicate (DUP-1). Of the one parameter for which the RPD could be calculated (see Table 2), one parameter (PCE) exhibits a low RPD value (i.e., less than 10%) indicative of good precision.

Third Quarter 2005 Field QC Results

One field duplicate sample (DUP-1) was analyzed as part of the third quarter 2005 sampling event at the Site. The duplicate sample was collected at groundwater monitoring well MW-2 and was analyzed for halogenated VOCs using USEPA Method 8021B (8010 list). Table 2 summarizes the calculated RPDs for MW-2 and MW-2 duplicate (DUP-1). Of the two parameters for which RPDs could be calculated (see Table 2), two parameters (TCE and PCE) exhibit a low RPD value (i.e., less than 10%) indicative of good precision.

Fourth Quarter 2005 Field QC Results

One field duplicate sample (DUP-1) was analyzed as part of the fourth quarter 2005 sampling event at the Site. The duplicate sample was collected at groundwater monitoring well MW-2 and was analyzed for halogenated VOCs using USEPA Method 8021B (8010 list). Table 2 summarizes the calculated RPDs for MW-2 and MW-2 duplicate (DUP-1). Of the two parameters for which RPDs could be calculated (see Table 2), two parameters (TCE and PCE) exhibit a low RPD value (i.e., less than 10%) indicative of good precision.

First through Fourth Quarter 2005 Laboratory QC Results

A review of the first through fourth quarter 2005 field data sheets and laboratory reports (presented in Appendices A and C, respectively) indicates that all analyses were performed within USEPA or California Department of Health Services (DHS) recommended maximum sample holding times.

QC data on surrogate spike recoveries and matrix spike recoveries are presented in the laboratory reports. These data indicate: (1) no surrogate spike recoveries were outside of the laboratory's acceptance limits; (2) no matrix spike or duplicate matrix spike recoveries were outside of the laboratory's control limits; and (3) RPD values for the matrix spikes and duplicate matrix spikes indicate a high overall degree of analytical precision. The laboratory QC data indicate that the results reported herein are of adequate quality for evaluation of site groundwater conditions.

3.2.2 Groundwater Results

The results of VOC analyses for each quarter for 2000 through 2005 are summarized in Table 3, which also shows the VOC results for the initial sampling event for monitoring wells MW-1, MW-2, and MW-3 in November 1999. The results for the 2005 monitoring events are also shown on Figure 8.

PCE and its breakdown products DCE and TCE were the only VOCs detected in groundwater at the Site during the first through fourth quarters of 2005.

For the first through fourth quarters of 2005, the concentrations of PCE detected ranged from 140 to 240 μ g/L in monitoring well MW-1, from 2,500 to 7,300 μ g/L in MW-2, not detected in monitoring well MW-3, and from 0.8 to 1.1 μ g/L in MW-4. The concentration of PCE reported for monitoring well MW-2 for the March 2005 sampling event, 7,300 μ g/L, was the highest concentration reported to date for the well.

The concentrations of TCE detected ranged from 15 to 34 μ g/L in monitoring well MW-1 and from 29 to 78 μ g/L in MW-2. TCE was not detected in MW-3 or MW-4.

The concentrations of DCE detected in monitoring well MW-3 ranged from 0.68 to 2.4 μ g/L. DCE was not detected in MW-1, MW-2 or MW-4.

3.3 Discussion

The results for the year 2005 quarterly monitoring events are generally similar to the results reported for the years 2000 through 2004 quarterly monitoring programs (see Figure 9). Variations in VOC concentrations at monitoring well MW-2 correlate with variations in groundwater elevations at the Site. An increase in VOC concentrations generally follows a rise in groundwater elevations, and a decrease in VOC concentration generally follows a fall in groundwater levels (compare Figures 3 and 9). The variations in VOC concentrations sometimes lag one quarter behind the variations in groundwater elevation.

The concentration of PCE reported for monitoring well MW-2 for the March 2005 sampling event, 7,300 μ g/L, was the highest concentration reported to date for the well. This detection coincided with the highest groundwater levels recorded to date for the Site.

The concentrations of PCE detected in groundwater samples from MW-1 and MW-2 exceed California's primary drinking water standard for PCE, which is 5 μ g/L. The concentrations of TCE

detected in groundwater samples from MW-1 and MW-2 exceed California's primary drinking water standard for TCE, which is also 5 μ g/L.

Although primary drinking water standards are exceeded in on-site groundwater, shallow groundwater in the vicinity of the Site is not considered to be suitable as a source of drinking water (Groundworks, 1995; Hickenbottom and Muir, 1988).

4 Implementation of Phytoremediation Project

After evaluating a number of potential remediation approaches for addressing the VOC concentrations in groundwater at the Site, Cargill Salt selected phytoremediation as the most promising approach. A phytoremediation project was implemented at the Site in June 2005.

4.1 Selection of Phytoremediation Approach

Cargill Salt reviewed a number of remediation approaches for potential implementation at the Alameda site. These included: groundwater extraction, air sparging, a permeable reactive zone (i.e., zero-valent iron wall), chemical oxidation, in-situ reductive dechlorination via enhanced bioremediation, and phytoremediation.

Phytoremediation was considered to be the most promising, cost-effective and least risky approach for reducing VOC concentrations in groundwater at the Site. There are no undesirable breakdown products, and phytoremediation can help to control plume migration. One potential disadvantage is the amount of time that may be required for phytoremediation to be effective: it can take up to 5 to 10 years at a typical site for tree seedlings to reach sufficient size and rooting depth and effectively phytoremediate VOCs in groundwater. However, the shallow groundwater and sandy soil conditions at this site would be expected to help accelerate that timeframe.

Phytoremediation of VOCs in groundwater actually involves several processes, including:

- Rhizodegradation degradation of VOCs by enhanced microbial activity in the rhizosphere (the soil zone that surrounds and is influenced by the roots of plants),
- Phytodegradation (or phytotransformation) degradation of VOCs within the plant tissue,
- Phytovolatilization uptake and transpiration of VOCs from groundwater through the plant tissue into the atmosphere, and
- Hydraulic control limiting the migration of the contaminant plume through groundwater uptake as part of plant evapotranspiration (US EPA 2001; Green and Hoffnagle 2004).

Hybrid poplars have been shown to be effective in remediating VOC concentrations in shallow groundwater. The Site appears to be a good candidate for phytoremediation using hybrid poplars: groundwater is shallow, soils are sandy, VOC impacts are relatively limited in lateral and vertical extent beneath the Site, and the main area of VOC impact is beneath an undeveloped and unpaved portion of the property. The root depth of mature hybrid poplars (about 15 feet) should be sufficient to reach most of the vertical extent of the plume beneath the Site. Also, hybrid poplars have high transpiration rates, and the effective depth of phytoremediation may extend deeper than the root depth through hydraulic uptake from the roots. Groundwater transect sampling conducted in 1999 indicated that the core of the plume occurs between depths of 5 and 14 feet at the southwestern end of the property (near MW-2) and predominantly between depths of 5 and 20 feet at the northeastern end of the property (near MW-1).

After researching the application and effectiveness of phytoremediation, and evaluating the suitability of the Site for phytoremediation using hybrid poplars, Cargill Salt selected phytoremediation as the most promising remediation approach for implementation at the Site.

Mr. Mark Wheeler of Crawford reviewed Cargill Salt's plans for phytoremediation with Mr. Bob Schultz, the ACEHS caseworker, in a phone conversation on March 23, 2005. Mr. Schultz agreed with the plans for implementation of a phytoremediation project at the Site. In order to accommodate the desired schedule for ordering and planting the trees, Mr. Schultz indicated that submittal of workplan would not be necessary. Mr. Schultz requested that a status update be presented in the next monitoring report.

4.2 Project Startup

The phytoremediation project was initiated at the Site in June 2005. Crawford designed, coordinated, and supervised the tree planting program. The project involved planting 96 bare-root trees in a grid of 24 rows. The rows are generally 6 feet apart with trees on 7-foot centers on each row. The rows are offset so that trees are in triangular pattern. The planting grid is shown on Figure 10. In order to plant trees in the area formerly used for parking along the front of the property near monitoring well MW-1, the asphalt was removed by a landscape contractor.

Personnel from Crawford and Field Solutions, Inc. planted the trees on June 13, 2005. The "trees" were actually 4-ft tall, bare-root poles with no foliage. The bare-root stock was furnished by Segal Ranch of Grandview, Washington. Tree planting involved the following tasks:

- Each bare-root tree was checked and any broken or damaged roots were removed. The roots were then soaked in a solution of growth hormone and fertilizer prior to planting.
- Holes approximately 1-foot wide and 1-foot deep were dug. The bare-root trees were planted with a mixture of peat moss, planting soil, native soil, and fertilizer.
- After planting, peat moss mulch was spread on top of each planting site and each plant was hand watered with a transplant solution. Peat moss was also spread in the former parking area where the asphalt had been removed.
- To block roots from spreading under the adjacent Golden Gate Sheet Metal Works property, Root Guard plastic sheeting was installed to a depth of 2 feet along 90 feet of the property boundary. After the trees were planted, a landscape contractor added shredded redwood bark as moisture control to each tree. Shredded bark was also spread across the former parking strip in front. The landscape contractor also installed a drip irrigation system and installed straw wattle around the edge of the planting area near Clement Street. Cargill also installed a new fence around the planting area near Clement Street.

The hybrid poplar selected for planting was a DN-34 hybrid, a male hybrid that does not produce the cottony seed common to most poplar trees. It tolerates a wide variety of sites but does particularly well on moderately sandy soils. Once the trees they are established they require little or no watering. They can row 4 to 6 feet per year and can reach 50 - 80 feet in height.

Photographs of the bare root trees taken after they were planted on June 13, 2005 and showing growth at $12^{-1/2}$ weeks are shown on Figure 11.

A monitoring and maintenance program is being conducted by a landscaping contractor. This program involves monthly inspection of the trees, inspection and maintenance of the drip irrigation system, and weed control.

Effectiveness of the phytoremediation project will be evaluated as part of the ongoing groundwater monitoring program. Status reports will be included in the groundwater monitoring reports. It is expected that it will take two to three years for the trees and root systems to become established and for the trees to start having a significant effect on VOC concentrations in groundwater at the Site. Tree growth and VOC concentrations will be monitored and evaluated to determine the effectiveness of the phytoremediation project.

Professional Certification

Groundwater Monitoring Results First through Fourth Quarter 2005 Cargill Salt – Alameda Facility Alameda, California

Jana C. Johnston

peat C Reeley

This report has been prepared by CRAWFORD CONSULTING, INC. with the professional certification of the California professional geologist whose signature appears below.

Dana C. Johnston Project Manager

Mark C. Wheeler Principal Geologist

P.G. 4563

References

- Alameda County Environmental Health Services, 1999. Letter to Cargill Salt: Groundwater Monitoring Well Installation at 2016 Clement Avenue, Alameda, CA, May 7, 1999.
- Conor Pacific/EFW, 2001. Workplan for Off-Site Characterization, Cargill Salt Alameda Facility, June 18, 2001.
- ______, 2002. Off-Site Groundwater Characterization, Cargill Salt Alameda Facility, Alameda, California, August 21, 2002.
- Crawford Consulting, Inc., 1999. Workplan for Groundwater Characterization and Monitoring Well Installation, 2016 Clement Avenue, Alameda, California, July 7, 1999.
- ______, 2001. Groundwater Monitoring Results, First through Fourth Quarter 2000, Cargill Salt Alameda Facility, Alameda, California, April 11, 2001
- ______, 2002. Groundwater Monitoring Results, First through Fourth Quarter 2001, Cargill Salt Alameda Facility, Alameda, California, August 14, 2002
- ______, 2003. Groundwater Monitoring Results, First through Fourth Quarter 2002, Cargill Salt Alameda Facility, Alameda, California, August 13, 2003
- ______, 2004. Groundwater Monitoring Results, First through Fourth Quarter 2003, Cargill Salt Alameda Facility, Alameda, California, February 27, 2004
- ______, 2005. Groundwater Monitoring Results, First through Fourth Quarter 2004, Cargill Salt Alameda Facility, Alameda, California, November 7, 2005
- Crawford Consulting, Inc. and Conor Pacific/EFW, 2000. Groundwater Characterization and Monitoring Well Installation, Cargill Salt Alameda Facility, Alameda, California, January 31, 2000.
- Groundworks Environmental, Inc. (Groundworks), 1993. Results of Soil Sampling and Workplan for Remedial Activities, Alameda facility, October 19, 1993.
- ______, 1995. Soil and Groundwater Investigations and Remedial Activities, July 1993 September 1994, Cargill Salt Alameda Facility, Alameda, California, July 31, 1995.
- Hickenbottom, K. S., and Muir, K.S., 1988. Geohydrology and Groundwater-Quality Overview of the East Bay Plain Area, Alameda County, California, 205 (j) Report, prepared for the California Regional Water Quality Control Board, San Francisco Bay Region, by the Alameda County Flood Control and Water Conservation District, June 1988.
- Green, C. and Hoffnagle, A., 2004, Phytoremediation Field Studies Database for Chlorinated Solvents, Pesticides, Explosives, and Metals, Prepared for U.S. Environmental Protection Agency Office of Superfund Remediation and Technology Innovation Washington, DC, August 2004
- U.S. Environmental Protection Agency, 2001, Brownfields Technology Primer: Selecting and Using Phytoremediation for Site Cleanup, U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office Washington, DC 20460 EPA 542-R-01-006, July 2001

Limitations

This report and the evaluations presented herein have been prepared in accordance with generally accepted professional standards and is based solely on the scope of work and services described herein. This report has been prepared solely for the use of Cargill Salt for the purposes noted herein. Any use of this report, in whole or in part, by a third party for other than the purposes noted herein is at such party's sole risk.

Table 1. Groundwater Level Data

			Casing	Depth to	Water	Elev. Change
Well/			Elevation	Water	Elevation	from Last
Piezometer	Date	Time	(feet, MSL)	(feet)	(feet, MSL)	Measurement (feet)
MW-1	11/16/1999	09:56	13.16	3.75	9.41	NA
MW-1	3/30/2000	10:09	13.16	2.81	10.35	0.94
MW-1	5/16/2000	09:43	13.16	3.32	9.84	-0.51
MW-1	7/28/2000	09:11	13.16	3.58	9.58	-0.26
MW-1	11/30/2000	08:36	13.16	3.52	9.64	0.06
MW-1	3/26/2001	08:47	13.16	3.15	10.01	0.37
MW-1	6/25/2001	10:19	13.16	3.53	9.63	-0.38
MW-1	9/28/2001	09:32	13.16	3.96	9.20	-0.43
MW-1	12/17/2001	10:47	13.16	3.23	9.93	0.73
MW-1	3/21/2002	07:28	13.16	2.89	10.27	0.34
MW-1	6/6/2002	08:03	13.16	3.50	9.66	-0.61
MW-1	9/20/2002	08:30	13.16	3.86	9.30	-0.36
MW-1	12/19/2002	08:38	13.16	3.13	10.03	0.73
MW-1	3/4/2003	10:31	13.16	3.08	10.08	0.05
MW-1	6/9/2003	08:32	13.16	3.29	9.87	-0.21
MW-1	9/8/2003	10:02	13.16	3.79	9.37	-0.50
MW-1	12/1/2003	10:16	13.16	3.78	9.38	0.01
MW-1	3/4/2004	09:31	13.16	2.88	10.28	0.90
MW-1	6/2/2004	08:42	13.16	3.45	9.71	-0.57
MW-1	9/14/2004	08:01	13.16	3.87	9.29	-0.42
MW-1	12/8/2004	07:44	13.16	3.23	9.93	0.64
MW-1	3/3/2005	08:07	13.16	2.01	11.15	1.22
MW-1	6/10/2005	07:05	13.16	2.90	10.26	-0.89
MW-1	9/16/2005	08:00	13.16	3.62	9.54	-0.72
MW-1	12/6/2005	08:00	13.16	3.28	9.88	0.34
MW-2	11/16/1999	11:15	16.22	5.22	11.00	NA
MW-2	3/30/2000	10:05	16.22	2.80	13.42	2.42
MW-2	5/16/2000	09:35	16.22	4.13	12.09	-1.33
MW-2	7/28/2000	09:17	16.22	4.85	11.37	-0.72
MW-2	11/30/2000	08:32	16.22	4.75	11.47	0.10
MW-2	3/26/2001	08:40	16.22	3.28	12.94	1.47
MW-2	6/25/2001	12:12	16.22	4.75	11.47	-1.47
MW-2	9/28/2001	12:20	16.22	5.41	10.81	-0.66
MW-2	12/17/2001	10:44	16.22	4.07	12.15	1.34
MW-2	3/28/2002	09:37	16.22	3.40	12.82	0.67
MW-2	6/6/2002	08:11	16.22	4.70	11.52	-1.30
MW-2	9/20/2002	08:34	16.22	5.28	10.94	-0.58
MW-2	12/19/2002	08:45	16.22	3.37	12.85	1.91
MW-2	3/4/2003	10:26	16.22	3.11	13.11	0.26
MW-2	6/9/2003	08:31	16.22	4.16	12.06	-1.05
MW-2	9/8/2003	10:08	16.22	5.26	10.96	-1.10
MW-2	12/1/2003	10:20	16.22	5.05	11.17	0.21
MW-2	3/4/2004	09:34	16.22	2.86	13.36	2.19
MW-2	6/2/2004	08:53	16.22	4.47	11.75	-1.61
MW-2	9/14/2004	07:59	16.22	5.26	10.96	-0.79
MW-2	12/8/2004	08:00	16.22	4.20	12.02	1.06
MW-2	3/3/2005	08:04	16.22	1.90	14.32	2.30
MW-2	6/10/2005	07:09	16.22	3.74	12.48	-1.84
MW-2	9/16/2005	08:08	16.22	4.92	11.30	-1.18
MW-2	12/6/2005	10:58	16.22	4.39	11.83	0.53

Table 1. Groundwater Level Data

			Casing	Depth to	Water	Elev. Change
Well/			Elevation	Water	Elevation	from Last
Piezometer	Date	Time	(feet, MSL)	(feet)	(feet, MSL)	Measurement (feet)
MW-3	11/16/1999	15:43	13.34	4.34	9.00	NA
MW-3	3/30/2000	10:01	13.34	2.77	10.57	1.57
MW-3	5/16/2000	09:46	13.34	3.44	9.90	-0.67
MW-3	7/28/2000	09:05	13.34	3.72	9.62	-0.28
MW-3	11/30/2000	08:34	13.34	3.73	9.61	-0.01
MW-3	3/26/2001	08:54	13.34	3.51	9.83	0.22
MW-3	6/25/2001	10:21	13.34	3.65	9.69	-0.14
MW-3	9/28/2001	09:30	13.34	3.96	9.38	-0.31
MW-3	12/17/2001	10:38	13.34	3.28	10.06	0.68
MW-3	3/21/2002	07:28	13.34	3.10	10.24	0.18
MW-3	6/6/2002	08:07	13.34	3.63	9.71	-0.53
MW-3	9/20/2002	08:25	13.34	3.82	9.52	-0.19
MW-3	12/19/2002	08:42	13.34	3.10	10.24	0.72
MW-3	3/4/2003	10:36	13.34	3.29	10.05	-0.19
MW-3	6/9/2003	08:28	13.34	3.41	9.93	-0.12
MW-3	9/8/2003	10:00	13.34	3.85	9.49	-0.12
MW-3	12/1/2003	10:30	13.34	3.90	9.44	-0.05
MW-3	3/4/2004	09:22	13.34	3.11	10.23	0.79
MW-3	6/2/2004	08:46	13.34	3.53	9.81	-0.42
MW-3	9/14/2004	08:05	13.34	4.07	9.27	-0.54
MW-3	12/8/2004	03.03	13.34	3.73	9.61	0.34
MW-3	3/3/2004	07:53	13.34	2.36	10.98	1.37
MW-3	6/10/2005	07:33	13.34	3.15	10.19	-0.79
MW-3	9/16/2005	08:04	13.34	3.90	9.44	-0.75
	12/6/2005	08:04	13.34	3.35	9.44	0.55
MW-3	12/0/2003	08:04	15.54	3.33	9.99	0.33
MW-4	12/17/2001	10:40	12.43	2.55	9.88	NA
MW-4	3/28/2002	08:05	12.43	3.06	9.37	-0.51
MW-4	6/6/2002	07:57	12.43	2.85	9.58	0.21
MW-4	9/20/2002	08:28	12.43	3.21	9.22	-0.36
MW-4	12/19/2002	08:53	12.43	3.70	8.73	-0.49
MW-4	3/4/2003	10:34	12.43	3.14	9.29	0.56
MW-4	6/9/2003	08:29	12.43	2.82	9.61	0.32
MW-4	9/8/2003	10:04	12.43	3.43	9.00	-0.61
MW-4	12/1/2003	10:14	12.43	3.12	9.31	0.31
MW-4	3/4/2004	09:27	12.43	2.81	9.62	0.31
MW-4	6/2/2004	08:44	12.43	3.34	9.09	-0.53
MW-4	9/14/2004	08:03	12.43	3.51	8.92	-0.17
MW-4	12/8/2004	07:36	12.43	3.10	9.33	0.41
MW-4	3/3/2005	07:44	12.43	2.48	9.95	0.62
MW-4	6/10/2005	07:02	12.43	2.47	9.96	0.01
MW-4	9/16/2005	08:12	12.43	3.23	9.20	-0.76
MW-4	12/6/2005	07:50	12.43	3.17	9.26	0.06
		320				2.00

Key:

NA = Not available

feet, MSL = feet, relative to Mean Sea Level

Casing elevations for all wells were resurveyed on September 6, 2006 by CSS Environmental Services for Geotracker compliance.

Table 2. Relative Percent Difference Based on Duplicate Samples

	First (Quarter 2	005	Second	l Quarter	2005	Third (Quarter 2	005	Fourth (Quarter 2	005
Analysis	Well MW-2 Results	DUP-1 Results	RPD ¹ (%)	Well MW-4 Results	DUP-1 Results	RPD ¹ (%)	Well MW-2 Results	DUP-1 Results	RPD¹ (%)	Well MW-2 Results	DUP-1 Results	RPD ¹ (%)
Organic Compounds (μg/L)												
1,1-Dichloroethene (1,1-DCE)	ND^2	ND	NM^3	ND	ND	NM	ND	ND	NM	ND	ND	NM
Trichloroethene (TCE)	78	81	3.8	ND	ND	NM	29	31	6.7	45	44	2.2
Tetrachloroethene (PCE)	7,300	7,700	5.3	0.98	0.89	9.6	2,500	2,500	0	3,300	3,300	0

¹ RPD = relative percent difference

All other 8010 analytes not detected (by 8021B).

 $^{2 \}text{ ND} = \text{not detected}$

 $^{^{3}}$ NM = not meaningful; RPD cannot be accurately calculated where one or both values are below the method reporting limit.

Table 3. Summary of Groundwater Monitoring Well Data (results measured in μ g/L)

Well No.								MV	V-1								
Field Date	11/16/99	3/30/00	5/16/00	7/28/00	11/30/00	3/26/01	6/25/01	9/28/01	12/17/01	3/21/02	6/6/02	9/20/02	12/19/02	3/4/03	6/9/03	9/8/03	MCL^1
DCE ²	< 50.0	13	< 10	15	14	< 13	14	15	< 13	< 13	<13	<13	< 13	< 10	12	5.2	6
CFC 113 ³	na ⁴	1.4	< 10	< 10	< 8.3	< 50	< 50	< 50	< 50	< 13	< 13	< 13	<13	< 10	< 10	< 5.0	ne ⁵
DCA ⁶	< 50.0	0.8	< 10	< 10	< 4.2	< 13	< 13	< 13	< 13	< 13	< 13	< 13	<13	< 10	< 10	< 5.0	5
Chloroform	< 50.0	0.6*	< 10	< 10	< 8.3	< 13	< 13	< 13	< 13	< 13	< 13	< 13	<13	< 10	< 10	< 5.0	ne
TCA ⁷	< 50.0	1.6	< 10	< 10	< 4.2	< 13	< 13	< 13	< 13	< 13	< 13	< 13	< 13	< 10	< 10	< 5.0	200
TCE ⁸	178	150	190	170	130	180	250	210	190	160	140	190	68	97	90	110	5
PCE ⁹	906	1,400	1,900	1,200	880	1,000	1,400	1,000	1,400	1,100	980	1,100	600	730	770	780	5
Other analytes ¹⁰	nd^{11}	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

 $^{^1}$ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level (in micrograms per liter $[\mu g/L])$

² DCE = 1,1-Dichloroethene

³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane)

⁴ na = not analyzed

⁵ ne = not established or none applicable

⁶ DCA = 1,1-Dichloroethane

⁷ TCA = 1,1,1-Trichloroethane

⁸ TCE = Trichloroethene

⁹ PCE = Tetrachloroethene

¹⁰ All other Method 8010/8021B analytes

¹¹ nd = not detected

^{*} Chloroform detected in equipment blank at 1.6 μ g/L

Table 3. Summary of Groundwater Monitoring Well Data (results measured in μ g/L)

Well No.				MW-1										MW-2					
Field Date	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	11/16/99	3/30/00	5/16/00	7/28/00	11/30/00	3/26/01	6/25/01	9/28/01	12/17/01	MCL^1
DCE ²	8.4	< 5.0	5.8	6.6	< 5.0	< 5.0	< 2.0	< 5.0	< 2.0	< 50.0	< 0.5	< 25	< 25	< 8.3	< 25	< 25	< 25	< 25	6
CFC 113 ³	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	< 2.0	na	< 0.5	< 25	< 25	<17	< 100	< 100	< 100	< 100	ne ⁵
DCA^6	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	< 2.0	< 50.0	< 0.5	< 25	< 25	< 8.3	<25	<25	< 25	< 25	5
Chloroform	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 10	< 4.0	< 50.0	< 0.5	< 25	< 25	<17	< 25	<25	< 25	< 25	ne
TCA ⁷	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 2.0	< 5.0	< 2.0	< 50.0	5.0	< 25	<25	< 8.3	< 25	< 25	< 25	< 25	200
TCE ⁸	130	53	72	81	39	15	23	34	16	< 50	29	53	< 25	20	40	78	< 25	< 25	5
PCE ⁹	850	370	490	620	380	160	180	240	140	840	3,600	3,200	3,300	1,700	2,200	4,400	1,700	1,700	5
Other analytes ¹⁰	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

 $^{^1}$ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level (in micrograms per liter $[\mu g/L])$

² DCE = 1,1-Dichloroethene

³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane)

⁴ na = not analyzed

⁵ ne = not established or none applicable

⁶ DCA = 1,1-Dichloroethane

⁷ TCA = 1,1,1-Trichloroethane

⁸ TCE = Trichloroethene

⁹ PCE = Tetrachloroethene

¹⁰ All other Method 8010/8021B analytes

¹¹ nd = not detected

^{*} Chloroform detected in equipment blank at 1.6 μ g/L

Table 3. Summary of Groundwater Monitoring Well Data (results measured in μ g/L)

Well No.							MW	7-2									
Field Date	3/28/02	6/6/02	9/20/02	12/30/02	3/4/03	6/9/03	9/8/03	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	MCL^1
DCE ²	< 25	< 25	< 25	< 25	< 20	< 20	< 20	< 20	< 20	< 25	< 25	< 20	< 50	<25	< 20	< 25	6
CFC 113 ³	< 25	< 25	<25	< 25	< 20	< 20	< 20	< 20	< 20	< 25	< 25	< 20	< 50	<25	< 20	< 25	ne ⁵
DCA ⁶	< 25	< 25	< 25	< 25	< 20	< 20	< 20	< 20	< 20	< 25	< 25	< 20	< 50	<25	< 20	< 25	5
Chloroform	< 25	< 25	< 25	< 25	< 20	< 20	< 20	< 20	< 20	< 25	< 25	< 20	< 50	<25	<40	< 50	ne
TCA ⁷	< 25	< 25	< 25	< 25	< 20	< 20	< 20	< 20	< 20	< 25	< 25	< 20	< 50	<25	< 20	< 25	200
TCE ⁸	49	52	32	< 25	58	41	28	25	39	49	37	30	78	43	29	45	5
PCE ⁹	3,500	3,800	2,100	1,800	3,900	3,800	2,500	2,500	3,000	4,100	3,800	2,800	7,300	3,600	2,500	3,300	5
Other analytes ¹⁰	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

 $^{^1}$ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level (in micrograms per liter $[\mu g/L])$

² DCE = 1,1-Dichloroethene

³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane)

⁴ na = not analyzed

⁵ ne = not established or none applicable

⁶ DCA = 1,1-Dichloroethane

⁷ TCA = 1,1,1-Trichloroethane

⁸ TCE = Trichloroethene

⁹ PCE = Tetrachloroethene

¹⁰ All other Method 8010/8021B analytes

¹¹ nd = not detected

^{*} Chloroform detected in equipment blank at 1.6 μ g/L

Table 3. Summary of Groundwater Monitoring Well Data (results measured in μ g/L)

Well No.								MV	V-3								
Field Date	11/16/99	3/30/00	5/16/00	7/28/00	11/30/00	3/26/01	6/25/01	9/28/01	12/17/01	3/21/02	6/6/02	9/20/02	12/19/02	3/4/03	6/9/03	9/8/03	MCL^1
DCE ²	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	6
CFC 113 ³	na	< 0.5	< 0.5	< 0.5	< 1.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ne ⁵
DCA^6	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
Chloroform	< 0.500	< 0.5	< 0.5	< 0.5	< 1.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ne
TCA ⁷	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	200
TCE ⁸	< 0.500	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
PCE ⁹	< 0.500	< 0.5	< 0.5	0.8	< 0.5	< 0.5	< 0.5	< 0.5	0.81	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
Other analytes ¹⁰	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

 $^{^1}$ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level (in micrograms per liter $[\mu g/L])$

² DCE = 1,1-Dichloroethene

³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane)

⁴ na = not analyzed

⁵ ne = not established or none applicable

⁶ DCA = 1,1-Dichloroethane

⁷ TCA = 1,1,1-Trichloroethane

⁸ TCE = Trichloroethene

⁹ PCE = Tetrachloroethene

¹⁰ All other Method 8010/8021B analytes

¹¹ nd = not detected

^{*} Chloroform detected in equipment blank at 1.6 μ g/L

Table 3. Summary of Groundwater Monitoring Well Data (results measured in μ g/L)

Well No.				MW-3										MW-4					
Field Date	12/1/03	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	12/17/01	3/28/02	6/6/02	9/20/02	12/19/02	3/4/03	6/9/03	9/8/03	12/1/03	MCL^1
DCE^2	0.51	< 0.5	0.81	< 0.5	< 0.5	0.68	2.4	1.5	1.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	6
CFC 113 ³	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ne ⁵
DCA^6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
Chloroform	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 1.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ne
TCA ⁷	1.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	200
TCE ⁸	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
PCE ⁹	< 0.5	< 0.5	0.90	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.6	2.8	2.0	2.5	1.1	2.1	2.1	1.6	1.6	5
Other analytes ¹⁰	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	

 $^{^1}$ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level (in micrograms per liter $[\mu g/L])$

² DCE = 1,1-Dichloroethene

³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane)

⁴ na = not analyzed

⁵ ne = not established or none applicable

⁶ DCA = 1,1-Dichloroethane

⁷ TCA = 1,1,1-Trichloroethane

⁸ TCE = Trichloroethene

⁹ PCE = Tetrachloroethene

¹⁰ All other Method 8010/8021B analytes

¹¹ nd = not detected

^{*} Chloroform detected in equipment blank at 1.6 μ g/L

Table 3. Summary of Groundwater Monitoring Well Data (results measured in μ g/L)

Well No.			MW	7-4					
Field Date	3/4/04	6/2/04	9/14/04	12/8/04	3/3/05	6/10/05	9/16/05	12/6/05	MCL^1
DCE ²	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	6
CFC 113 ³	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ne ⁵
DCA^6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
Chloroform	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 1.0	< 1.0	ne
TCA ⁷	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	200
TCE ⁸	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	5
PCE ⁹	1.7	1.4	1.3	1.2	0.93	0.98	0.8	1.1	5
Other analytes ¹⁰	nd	nd	nd	nd	nd	nd	nd	nd	

 $^{^1}$ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level (in micrograms per liter [μ g/L])

² DCE = 1,1-Dichloroethene

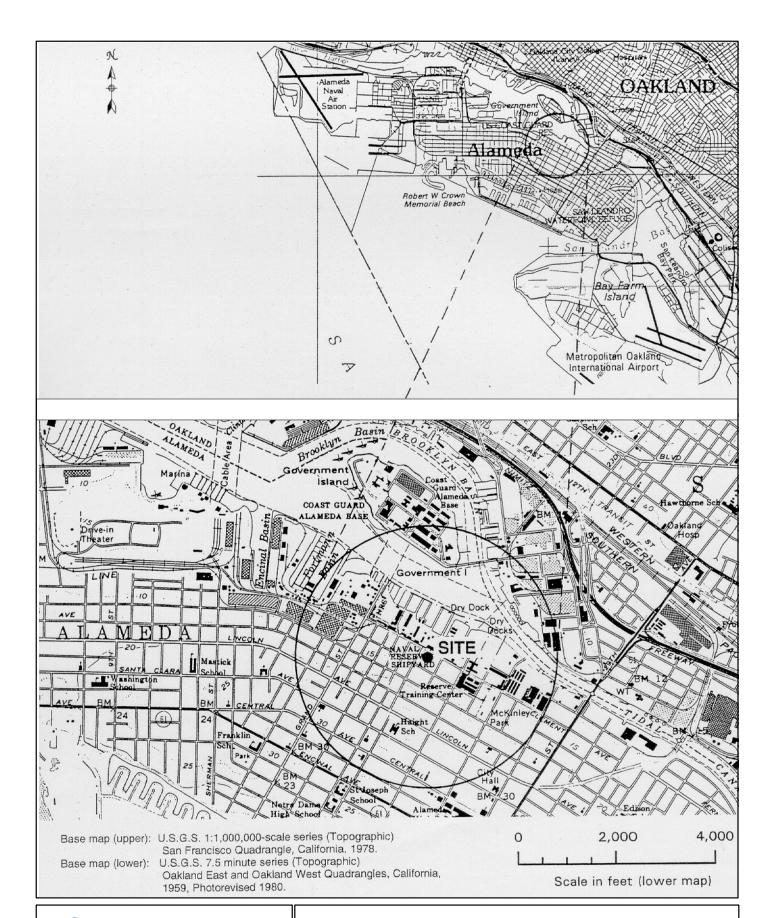
³ CFC 113 = Trichlorotrifluoroethane (1,1,2-Trichloro-1,2,2-trifluoroethane)

⁴ na = not analyzed

⁵ ne = not established or none applicable

⁶ DCA = 1,1-Dichloroethane

⁷ TCA = 1,1,1-Trichloroethane


⁸ TCE = Trichloroethene

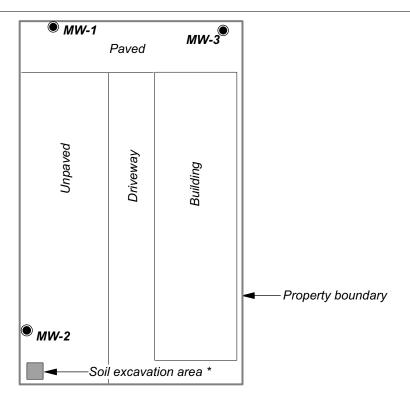
⁹ PCE = Tetrachloroethene

¹⁰ All other Method 8010/8021B analytes

¹¹ nd = not detected

^{*} Chloroform detected in equipment blank at 1.6 μ g/L

Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California


Figure 1. Site Location

MW-4

Curb line (Typ.)

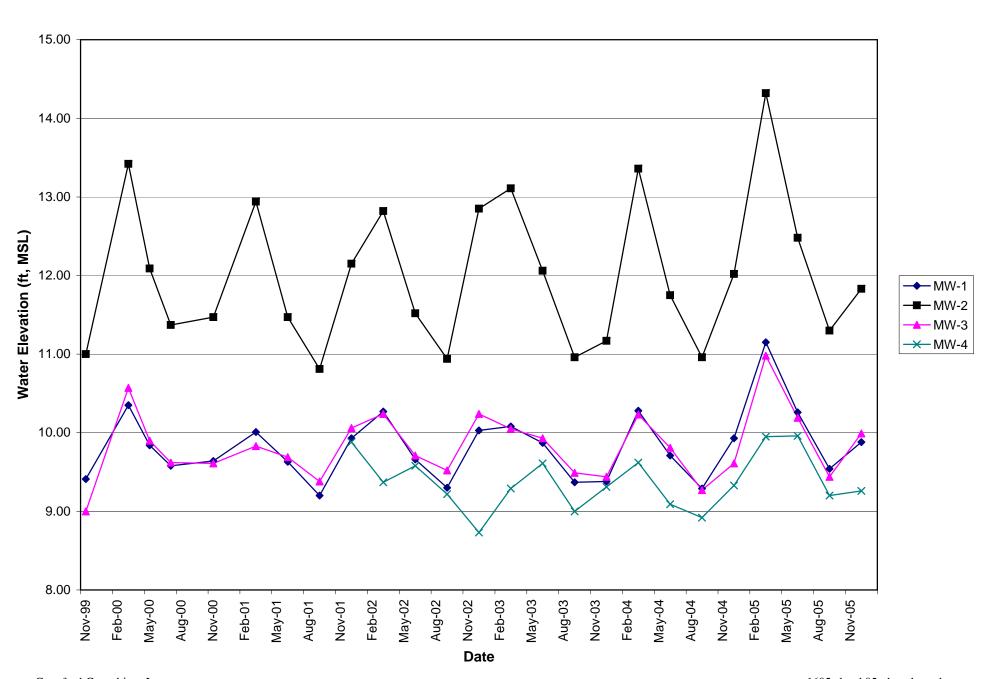
Clement Avenue

EXPLANATION

- Groundwater monitoring well
- * Excavated in February 1994

0 40 Feet
Approximate
Scale

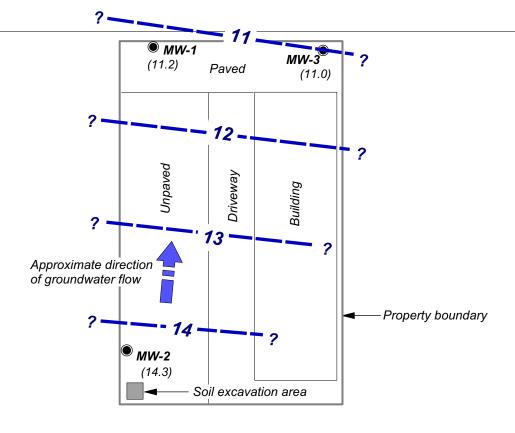
Base map from Conor Pacific/EFW, Off-Site Groundwater Characterization, August 21, 2002.


1605fig205.dsf 10/18/06

Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California

Figure 2. Groundwater Monitoring Well Locations

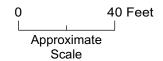
Figure 3. Graphical Summary of Groundwater Elevations



MW-4 (10.0)

Curb line (Typ.)

Clement Avenue



EXPLANATION

Monitoring well

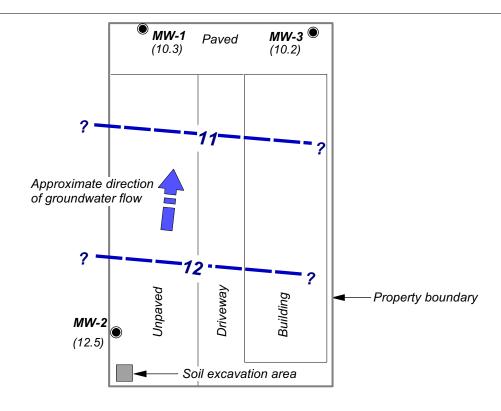
(11.2) Groundwater elevation (Ft.-MSL); measured 3/3/05

?--11-- Groundwater elevation contour (Ft.-MSL)

Base map from Conor Pacific/EFW, Off-Site Groundwater Characterization, August 21, 2002.

1605fig405.dsf 10/9/06

Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California


Figure 4. Groundwater Elevation Contours - March 2005

Curb line (Typ.)

● **MW-4** (10.0)

Clement Avenue

EXPLANATION

Monitoring well

(10.3) Groundwater elevation (Ft.-MSL); measured 6/10/05

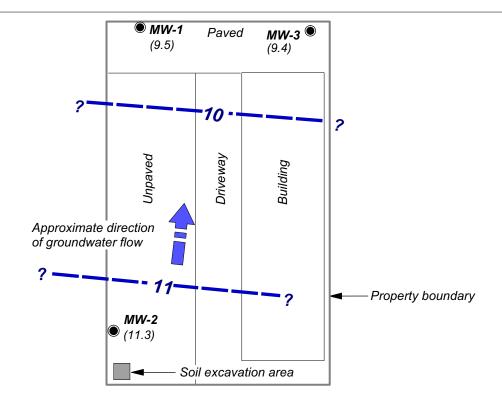
Groundwater elevation contour (Ft.-MSL)

0 40 Feet
Approximate
Scale

Base map from Conor Pacific/EFW, Off-Site Groundwater Characterization, August 21, 2002.

1605fig505.dsf 10/9/06

Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California


Figure 5. Groundwater Elevation Contours - June 2005

Curb line (Typ.)

● **MW-4** (9.2)

Clement Avenue

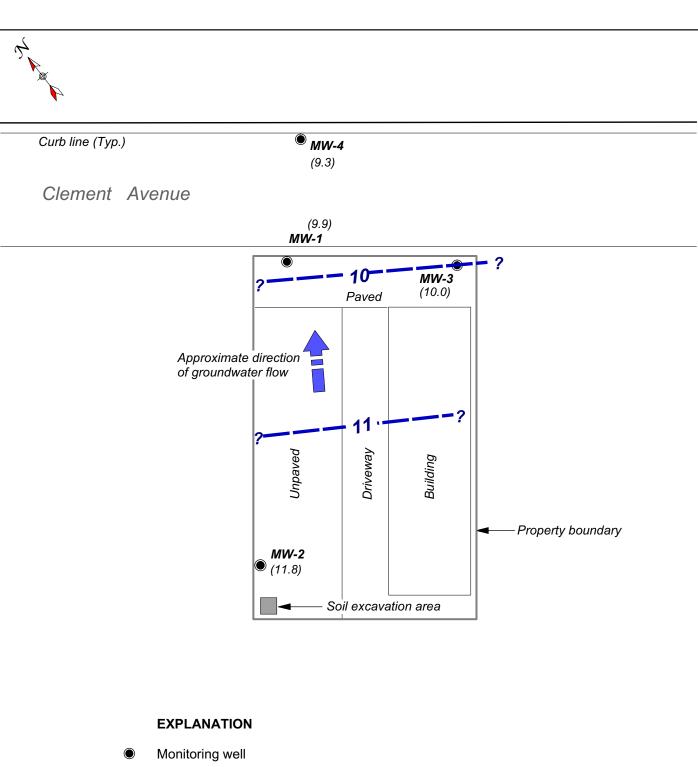
EXPLANATION

Monitoring well

(9.4) Groundwater elevation (Ft.-MSL); measured 9/16/05

?-- 10- Groundwater elevation contour (Ft.-MSL)

0 40 Feet
Approximate
Scale


Base map from Conor Pacific/EFW, Off-Site Groundwater Characterization, August 21, 2002

1605fig605.dsf 10/2/06

Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California

Figure 6. Groundwater Elevation Contours - September 2005

(3.5) Groundwater elevation (Ft.-MSL); measured 12/6/05

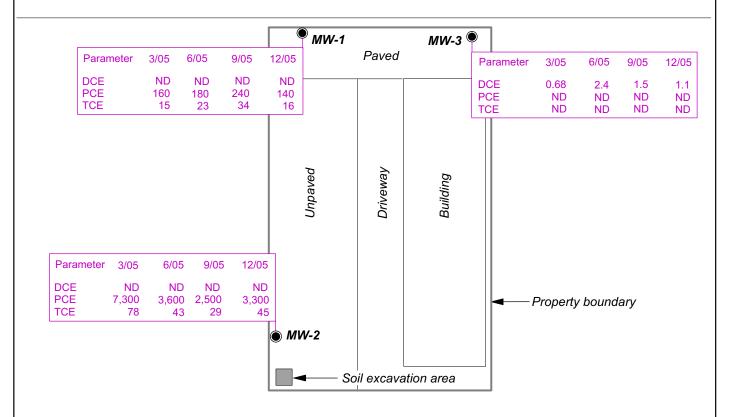
Groundwater elevation contour (Ft.-MSL)

0 40 Feet
Approximate
Scale

Base map from Conor Pacific/EFW, Off-Site Groundwater Characterization, August 21, 2002.

1605fig705.dsf 9/1/06

Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California


Figure 7. Groundwater Elevation Contours - December 2005

Curb line (Typ.)

Clement Avenue

MW-4 **Parameter** 3/05 6/05 9/05 12/05 DCE ND ND ND ND **PCE** 0.93 0.98 8.0 1.1 ND TCE ND ND ND

EXPLANATION

 Groundwater monitoring well location

Analyte concentration

DCE 2.4 PCE ND TCE ND

Analytical parameter

All concentrations reported in micrograms per liter (μ g/L), in groundwater. All other 8010 constituents were below detection limits.

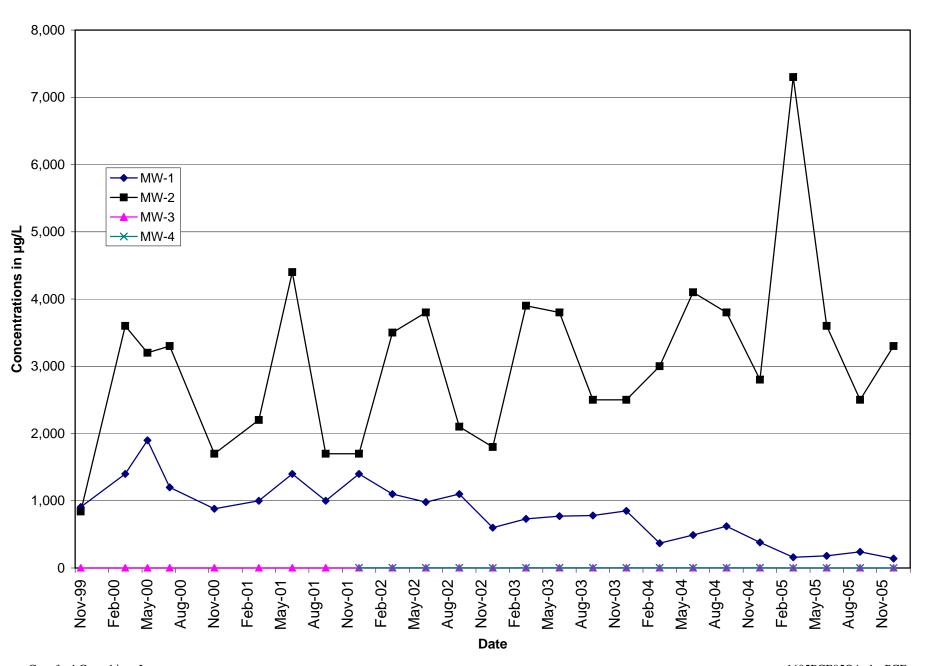
ND = Not detected DCE = 1,1-Dichloroethene PCE = Tetrachloroethene TCE = Trichloroethene

VOCs = Volatile organic compounds

0 40 Feet
Approximate
Scale

Base map from Conor Pacific/EFW, Off-Site Groundwater Characterization, August 21, 2002.

1605fig805.dsf 10/2/06



Project No. CS1605

Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California

Figure 8. VOC Concentrations in Groundwater – March through December 2005

Figure 9. Graphical Summary of PCE Concentrations

← Clement Avenue → MW-1 Asphalt removed from this area Fence for tree planting MW-3 PARKING AREA (Paved) Gate DRIVEWAY **FACILITY** (Paved) BUILDING

EXPLANATION

- Groundwater monitoring well
- Approximate location of hybrid poplar planted 6/13/05

Alameda tree grid.dsf 10/18/06

Project No. CS1605

Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California

Soil excavation area (2/94)

SCALE: 0

Property Line -

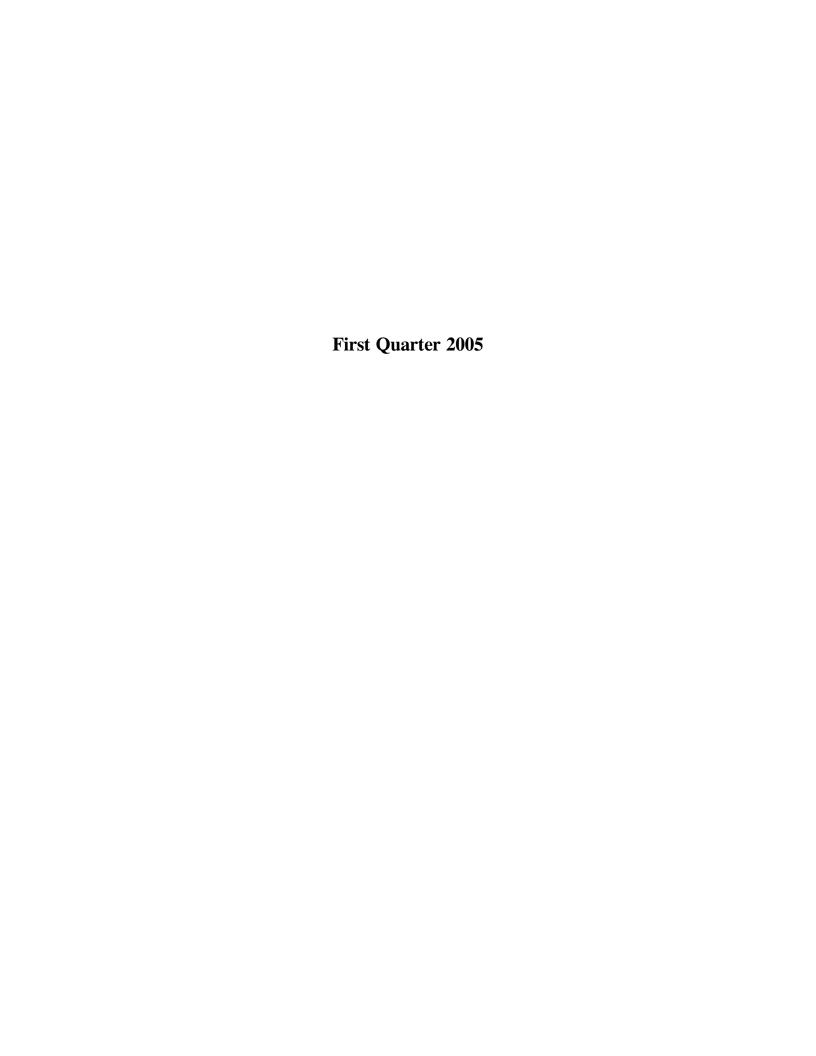
40 FEET

20

Figure 10. Hybrid Poplar Planting Grid

Bare-root trees planted on June 13, 2005 (4-ft rooted cuttings; total of 96 planted)

Growth at 12-1/2 weeks


Alameda tree pics.dsf 10/18/06

Project No. CS1605 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California Figure 11. Hybrid Poplar Photographs

Appendix A

Field Data Sheets

WATER LEVEL FIELD DATA

Cargill Salt Alameda Facility Alameda, California Project No. CS1605

			Depth to	Depth to	
			Water	Water	
Well ID	Date	Time	(1st Msmt.)	(2nd Msmt.)	Comments
			(feet)	(feet)	
	12/08/04	0744	3.23	3.87	
MW-1	3/2/65	0807	201	2.01	watering
	12/08/04	0800	4.20	4.20	
MW-2	3/3/65	08.04	190	190	Watermooy
	12/08/04	0740	3.73	3.73	
MW-3	3/3/65	6753	236	3,36	Waterinboy
	12/08/04	0736	3.10	3.10	
MW-4	3/3/05	07,44	2.48	2.48	

Data Collection

Field measurements by:	Reviewed by:
Print: h. GUEVOTA	Print: J. Buteva
Signature:	Signature Butters
Date:	Date: 3/8/05

Page / of / SAMPLE COLLECTION FIELD DATA Well ID: Project No .: CS1605 Project Name: Alameda Facility Sample ID: Start Date: Location: Alameda, CA Client: Cargill Salt Finish Date: WELL INFORMATION Well depth (ft): Casing diameter (in.): Depth to water (ft): Calculated purge volume (gal.) (3 x casing volume): One casing volume (gal.): One casing volume = πx [casing radius (in.) x 1 ft/12 in.] $^2 x$ [well depth (ft) - depth to water (ft)] x 7.48 gal/ft 3 Gallons per linear ft for casing diameter of: 1" = 0.041 2" = 0.16 4" = 0.65 5" = 1.0 6" = 1.5 8" = 2.6Floating product thickness (ft): Method for checking: Interface probe Clear bailer WELL PURGING (3.785 liters per 1 gallon) Start time: 10 Date purged: 3/3/10 End time: [6 Purging equipment: Submersible pump Bladder pump PVC bailer Teflon bailer Other Purge rate (lpm): Well yield (H/L): Purge water disposal: DRUMMEDONSHE Cumulative Time Vol. Purged pH EC T Color Turbidity (2400 hr) (units) (mS/cm) (° C) (Visual) (Liters) (NTU) 5.0 Total Purged (Liters): WELL SAMPLING End time: 10 U Date sampled: 3 Depth to water (ft) before sampling: Peristaltic pump Sampling equipment: Teflon bailer PVC bailer 60 Weather conditions: Ambient temperature (° F): Well condition/Remarks: Meter calibration: pH

Turbidity

Reviewed by

Purged and sampled by (print):

Temperature

Signature:

Page of SAMPLE COLLECTION FIELD DATA Project No .: CS1605 Well ID: Project Name: Alameda Facility Sample ID: Location: Alameda, CA Start Date: Client: Cargill Salt Finish Date: WELL INFORMATION Depth to water (ft): Casing diameter (in.): Well depth (ft): Calculated purge volume (gal.) (3 x casing volume): One casing volume (gal.): One casing volume = πx [casing radius (in.) x 1 ft/12 in.] $^2 x$ [well depth (ft) - depth to water (ft)] x 7.48 gal/ft 3 Gallons per linear ft for casing diameter of: 1" = 0.041 2" = 0.16 4" = 0.65 5" = 1.0 6" = 1.5 8" = 2.6Floating product thickness (ft): Method for checking: Interface probe Clear bailer WELL PURGING (3.785 liters per 1 gallon) Date purged: Start time: End time: Bladder pump Purging equipment: Submersible pump PVC bailer Teflon bailer Other Well yield (H/L): H 1 Purge rate (lpm): Purge water disposal: Cumulative Time Vol. Purged pH EC Color Turbidity (2400 hr) (Liters) (units) (mS/cm) (° C) (Visual) (NTU) 98,C Cloar Total Purged (Liters): WELL SAMPLING Date sampled: End time: / Depth to water (ft) before sampling: Sampling equipment: Peristaltic pump Bladder pump Teflon bailer PVC bailer Other Weather conditions: Ambient temperature (° F): Well condition/Remarks: Meter calibration: pH Temperature Turbidity Purged and sampled by (print):

Signature:

Reviewed by:

SAMPLE COLLECTION FIELD DATA Project No .: CS1605 Well ID: Project Name: Alameda Facility Sample ID: Location: Alameda, CA Start Date: Client: Cargill Salt Finish Date: WELL INFORMATION Depth to water (ft): 236 Well depth (ft): 17.6Casing diameter (in.): One casing volume (gal.): (Calculated purge volume (gal.) (3 x casing volume): One casing volume = $\pi \times [casing \ radius \ (in.) \times 1 \ ft/12 \ in.]^2 \times [well \ depth \ (ft) - depth \ to \ water \ (ft)] \times 7.48 \ gal/ft^3$ Gallons per linear ft for casing diameter of: 1" = 0.041 2" = 0.16 4" = 0.65 5" = 1.0 6" = 1.5 8" = 2.6Floating product thickness (ft): Method for checking: Interface probe Clear bailer WELL PURGING (3.785 liters per 1 gallon) Date purged: Start time: ()7.17 End time: Purging equipment: Submersible pump Bladder pump PVC bailer Teflon bailer Other Purge rate (lpm): Well yield (H/L): Purge water disposal: DRUMMEDON SITP Cumulative pH Time Vol. Purged EC Color Turbidity (2400 hr) (Liters) (units) (mS/cm) (° C) (Visual) (NTU) Clock e lear Total Purged (Liters): WELL SAMPLING Start time: (19.55 End time: 05:58 Date sampled: Depth to water (ft) before sampling: 15-85 Sampling equipment: Peristaltic pump Bladder pump Teflon bailer Other PVC bailer Savin Weather conditions: Ambient temperature (° F): Well condition/Remarks:

pH

Turbidity

Signat

Crawford Consulting, Inc.

Purged and sampled by (print): k

Temperature

Meter calibration:

	S	AMPLE COI	LLECTION F	IELD DATA		Page of
Project Name: Location: Client: C	CS1605 Alameda Facility Alameda, CA Cargill Salt			Well ID Sample Start Da Finish I	ID: MW_1 ate: 330	5
One casing volum One casing volum Gallons per lined	MATION (in.): \bigcirc The (gal.): \bigcirc The me = π x [casing radiate at thickness (ft): \bigcirc	Calculated pulsus (in.) $x = 1 ft/1$. See of: $1'' = 0.0$	urge volume (gal. $2 \text{ in.} J^2 x \text{ [well dep}$ $41 2'' = 0.16$	$\begin{array}{c} (3 \ x \ casing \ volum) \\ (3 \ x \ casing \ volum) \\ (4)'' = 0.65 5'' = 0.65 \\ \end{array}$	water (ft)] $x 7.48$ = 1.0 6" = 1	gal/ft^3 $5 8'' = 2.6$
	PVC bail	Start time:	Bladder pump on bailer Well yield (H/L	Other	857- eristaltic pump	×
Time (2400 hr)	Cumulativ Vol. Purge (Liters) 5.0 7.7	е	EC (mS/cm)	T (° C) 16.3 19.7	Color (Visual) Olar Clar Clar	Turbidity (NTU) 13.6 9.89 3.16
WELL SAMPLI Date sampled: 5	3/3/05	Itic pump	De _l Bladder pump	End time: pth to water (ft) be Teflon	fore sampling:	1114
Weather condition/F	-	e nn plescoped		Ambient temper	ature (° F):	0
Meter calibration	n: EC 14.6 Temperature 10.6 pled by (print): R.6 Signature:	2 0 1		pH 4 07 Turbidity 7	a) (9.95/0) 5 / LV	w) (405, 4.6

Cargill Request.xls 03/00

Crawford Consulting, Inc.

WATER LEVEL FIELD DATA

Cargill Salt Alameda Facility Alameda, California Project No. CS1605

			Depth to	Depth to		
			Water	Water		
Well ID	Date	Time	(1st Msmt.)	(2nd Msmt.)		Comments
			(feet)	(feet)		
	03/03/05	0807	2.01	2.01		
	.1.1 =		- 0 0			
MW-1	(0/10/0)	0705	2.90	290	Under	Pressure
	03/03/05	0804	1.90	1.90		V
	1 hobs	0000	22.1	221	1	2
MW-2	(8/1,2/2)	0709	3,74	3,74	Under	Prissin
	03/03/05	0753	2.36	2.36		
	10/10/0	001	0 -		,	0
MW-3	O li	0714	3.15	3.15	Undu	Presence
	03/03/05	0744	2.48	2.48		U
	(0/10/00)				OK	
MW-4	W P	0702	2,47	2.47	0	

Data Collection

Field measurements by:	Reviewed by:
Print: Wayle d Jalegas	Print: JECTENS
Signature: Mound J. Hills	Signature: ABulle
Date:	Date: 1 6/11/05

Page | of / SAMPLE COLLECTION FIELD DATA Project No .: CS1605 Well ID: Project Name: Alameda Facility Sample ID: Location: Alameda, CA Start Date: Client: Cargill Salt Finish Date: (0-10-05 WELL INFORMATION Casing diameter (in.): Depth to water (ft): 2,9° Well depth (ft): / 8.3 One casing volume (gal.): 2.44 Calculated purge volume (gal.) (3 x casing volume): One casing volume = πx [casing radius (in.) x 1 ft/12 in.] $^2 x$ [well depth (ft) - depth to water (ft)] x 7.48 gal/ft 3 Gallons per linear ft for casing diameter of: 1" = 0.041 2" = 0.16 4" = 0.65 5" = 1.0 6" = 1.5 8" = 2.6Method for checking: Interface probe X Clear bailer Floating product thickness (ft): WELL PURGING (3.785 liters per 1 gallon) 10-10-05 End time: 0 80 Start time: 0822 Date purged: Purging equipment: Submersible pump

Purge rate (lpm): 0 65 Purge water disposal:	PVC bailer_		well yield (H/L):	hish		
Time (2400 hr) 0879 0837 0843	Cumulative Vol. Purged (Liters) 2.4 4.8	pH (units) 7,52 7,08	EC (mS/cm) 344 334 331	T (°C) 18.5 18.6	Color (Visual) Classy Class	Turbidity (NTU) 95 50 32
Total Purged (Liters):	7.2					
WELL SAMPLING Date sampled: 6-10-			Depth	to water (ft) b	efore sampling:	5, 58
Sampling equipment:	Peristaltic PVC bailer_	pump / Other	Bladder pump _	Teflor	n bailer	
Weather conditions: Well condition/Remarks:	Clouz +	Samples	takin		rature (° F):	67

Turbidity

Crawford Consulting, Inc.

Purged and sampled by (print):

Meter calibration:

EC

Temperature

SAMPLE COLLECTION FIELD DATA

Page <u>/</u> of _/

Project No.: Project Name: Location: Client:	CS1605 Alameda l Alameda, Cargill Sa	CA			Well II Sample Start D Finish	e ID: Mh	0-05
One casing voli Gallons per line	er (in.): ume (gal.): ume = πx ear ft for co	0.54 (casing radius asing diameter of	Calculated put $(in.) \times 1 \text{ ft/}12$ of: $1'' = 0.04$	rge volume (gal.) $in.J^2$ x [well dep II 2" = 0.16	Well d (3 x casing volume) (b) (3 x casing volume) (b) (f(t) - depth to $4'' = 0.65 - 5''$ Interface probe	me): $[$ water (ft)] x 7.4 = 1.0 6" = 1	.5 8" = 2.6
WELL PURGI Date purged: Purging equipm Purge rate (lpm Purge water dis	6-10 ment:	Submersible	Start time: _pump Teflo	Bladder pump on bailer Well yield (H/L	Other	O 9 59 Peristaltic pump	X
Time (2400 hr		Cumulative Vol. Purged (Liters) 2 (4,2)	pH (units) 7.53 7.02 (e.95	EC (mS/cm) 362 369 372	T (°C) 17.0 17.3	Color (Visual) Cloudy Cloudy	Turbidity (NTU) 34 22
Total Purged (I	Liters):	(0.)					
WELL SAMPI Date sampled: Sampling equip	6-18		pump	De _l Bladder pump	End time: _ oth to water (ft) b	efore sampling:	5.12
Weather condition/		Clous	bel.		Ambient tempe	rature (° F):	6 T
Meter calibration	Tempe inpled by (p	erature	aul Le		pH Turbidity Reviewed by:	J3	

SAMPLE COLLECTION FIELD DATA

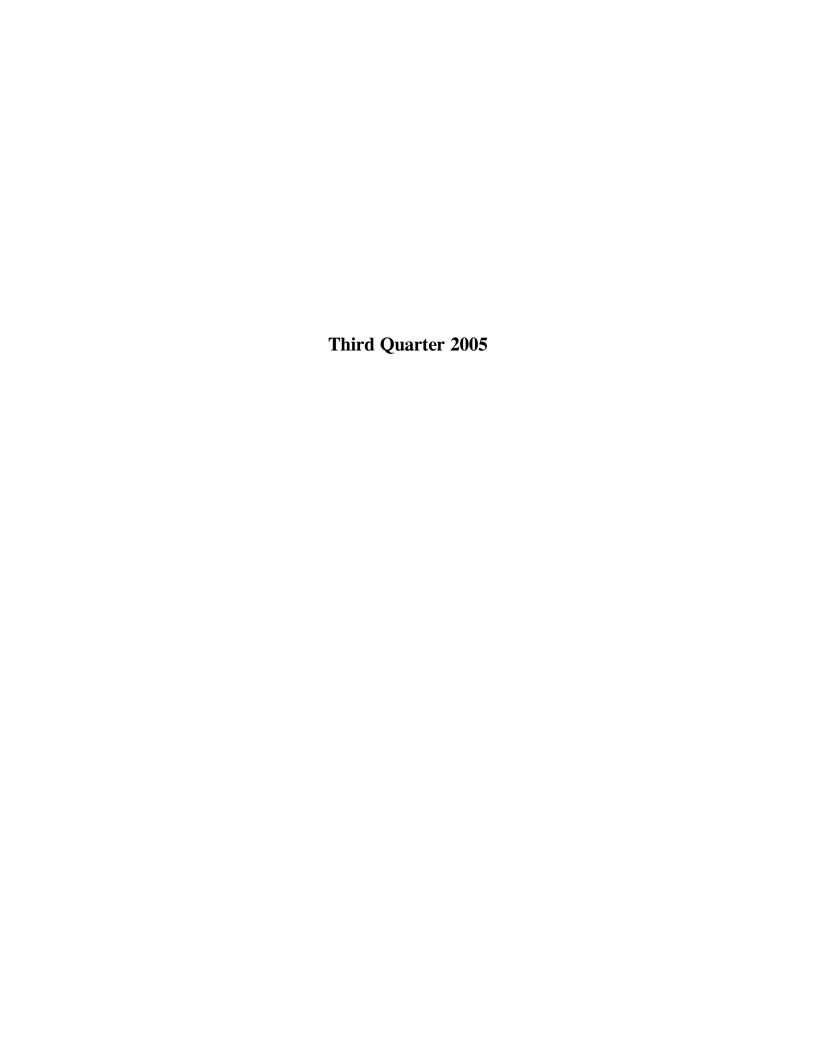
Page _____ of ___

Project No.:	CS1605				Well I	D: //	NW-3	
Project Name:	Alameda F	Facility			Sampl		mw-	
Location:	Alameda,	CA			Start I		(0-10	-05
Client:	Cargill Sal	t			Finish	_	1/4	-05
WELL INFOR	MATION					_		
Casing diamete	er (in.):	10	Depth to water	(ft):3,1_	C Well d	lepth (ft):	17.6	
One casing volu	ume (gal.):	0.59	Calculated pur	ge volume (gal.)	(3 x casing volu	me):	(.	77
One casing voli	$ume = \pi x$	[casing radius	$s(in.) \times 1 ft/12$	$in.J^2 x$ [well dep	th (ft) - depth to	water (ft)] x 7.48 g	al/ft³
Gallons per line	ear ft for co	ising diameter	of: $I'' = 0.041$	2'' = 0.16	4" = 0.65 5"	= 1.0	6" = 1.5	8" = 2.6
Floating produc	et thickness	(ft):	Metho	d for checking:	Interface probe	<u> </u>	Clear bai	ler
WELL PURGI								
Date purged:	6-10-0	5	Start time:	0903	End time:	092	P	
Purging equipn	nent:	Submersible	pump	Bladder pump		Peristaltic	pump 🗸	
950 10 600, 981	a 1	PVC bailer	Teflor	n bailer_	Other ,			
Purge rate (lpm	1): 0 = 2	1		Well yield (H/L)	: Lou)		
Purge water dis	sposal:	47	UMS	D1 5: 4				
		Cumulative				****		77.200
Time (2400 h		Vol. Purged (Liters)	pH (units)	EC (mS/cm)	T (° C)	Col		Turbidity
	109	2.2	2.20	5729	12.3	(Visu		(NTU)
	318	114	7 40	602	1/3	Clou		760
0-	118	1.71.0	411 / -1	to Ismo	+ 0 C 0 2		Le,000	570
			ard dry	To Peo	400 120	110	Le, ares	268.
09-	17	Richarge	7.58	(013	171	Tto	15	120
		Part 10/2	7.00	- Col	1 7001	4	C F	120
				-		-		
					报			
Total Purged (I	Liters):	(e.D	-					
Total Turged (1	Liters).	0.0						
WELL SAMPI								
Date sampled:	6-10-	05	Start time:		End time:			
			,		oth to water (ft) b			15.02
Sampling equip	oment:	Peristaltic	pump	Bladder pump	Teflo	n bailer _		
		PVC bailer_	Other _					1 1
Weather condit	tiona	01	21.21		Ambient tempe	matrima (O	E).	
Well condition	The second secon	T CR	ovey mila	6 . (Ambient tempe	erature (F):	5
	mpls	taker.	(/2001)	arge più	5: 40	Collect	S	Luges
-	1	the re						
Meter calibration		EC			pH			
	Tempe	rature			Turbidity			
Purged and san	npled by (p	rint): Manu	Ul La Galles	95		-		
		ature:	1 11/11		Reviewed by	AB		
	8	Applan	J. Harry			V		

Page of SAMPLE COLLECTION FIELD DATA Project No .: CS1605 Well ID: Project Name: Alameda Facility Sample ID: Location: Alameda, CA Start Date: Client: Cargill Salt Finish Date: WELL INFORMATION Depth to water (ft): 2.57Well depth (ft): Casing diameter (in.): Calculated purge volume (gal.) (3 x casing volume): One casing volume (gal.): 0.6One casing volume = πx [casing radius (in.) x 1 ft/12 in.] $^2 x$ [well depth (ft) - depth to water (ft)] x 7.48 gal/ft 3 Gallons per linear ft for casing diameter of: 1" = 0.041 2" = 0.16 4" = 0.65 5" = 1.0 6" = 1.5 8" = 2.6Floating product thickness (ft): Method for checking: Interface probe WELL PURGING (3.785 liters per 1 gallon) n-10-05 Start time: End time: 6 81/ Date purged: Purging equipment: Submersible pump Bladder pump Peristaltic pump PVC bailer Teflon bailer Other Purge rate (lpm) Well yield (H/L): Purge water disposal: Drum Cumulative Time Vol. Purged EC T Color pH Turbidity (2400 hr) (units) (mS/cm) (° C) (Liters) (Visual) (NTU) lear 0 80 0811 1.6 Total Purged (Liters): WELL SAMPLING Start time: Date sampled: End time: OXI Depth to water (ft) before sampling: Sampling equipment: Peristaltic pump Bladder pump Teflon bailer PVC bailer Other Weather conditions: Ambient temperature (° F): Well condition/Remarks:

Purged and sampled by (print): Wanua L. Gallace
Signature: MA J. Mill

Temperature


vell.

Reviewed by: Bellies

Turbidity

DUR-

Meter calibration:

WATER LEVEL FIELD DATA

Cargill Salt Alameda Facility Alameda, California Project No. CS1605

			Depth to	Depth to	
Well ID	Date	Time	Water (1st Msmt.)	Water (2nd Msmt.)	Comments
			(feet)	(feet)	Commonic
	06/10/05	0705	2.90	2.90	
MW-1	9/16/05	0100	3,42	3.42	
	06/10/05	0709	3.74	3.74	
MW-2	9/14/05	0808	4,92	4,92	
	06/10/05	0714	3.15	3.15	
MW-3	9/14/05	0804	3.90	3,90	
	06/10/05	0702	2.47	2.47	
MW-4	9/14/05	0812	3,23	3.23	

Data Collection

Field measurements by:	Reviewed by:
Print: Manuel L. Gallegos	Print: J. Butova
Signature:	Signature: Abulenz
Date: 9-14-05	Date: 9/26/65

		SAI	MPLE COL	LECTION F	IELD DATA		Page _ of
Project No.: Project Name: Location: Client:	CS1605 Alameda l Alameda, Cargill Sa	CA			Well I Sampl Start I Finish	e ID:	J-1 N-1 -16-05
One casing volu One casing volu Gallons per line	er (in.): μ ume (gal.): μ	Co. K9 x [casing radiu. asing diameter	Calculated puts $(in.) \times 1 \text{ ft/12}$ of: $1'' = 0.04$	rge volume (gal. $in.J^2$ x [well depth of I 2" = 0.16	Well of $(3 \times casing \ volume)$ (3 × casing volume) Well of $(6t)$ - depth to $(4'')$ = 0.65 5" Interface probe	water (ft)] $x 7.46$ = 1.0 6" = 1	8 gal/ft^3 $.5 8" = 2.6$
WELL PURGE Date purged: Purging equipm Purge rate (lpm Purge water dis	<u>9-1(</u> nent:	Submersible PVC bailer	Start time: _e pump Teflo	Bladder pump on bailer Well yield (H/L	-	1108 Peristaltic pump	<u>X</u>
110	r) 51	Cumulative Vol. Purged (Liters) 3.4 [0.8] [0.2]	pH (units) 6,77 6,75 6,76	EC (mS/cm) 350 355 352	T (°C) 21.3 21.5 21.3	Color (Visual) Clear Clear	Turbidity (NTU) 13 (17) 13 (17) 14
Total Purged (I		10.2					
	9-	Peristalti	c pump X	De Bladder pump	End time: pth to water (ft) to Teflo	pefore sampling: on bailer	5,89
Weather condition.		Cloudy	Jang	dis fa	7	erature (° F):	
Meter calibrati	Temp	erature	1 m L. 6	a 1	pH Turbidity Reviewed by	Ys.	<u>/pc</u>

SAMPLE COLLECTION FIELD DATA

Page / of /

Project No.:	CS1003				Well		
Project Name:					Sampl	le ID: Mh	1-2
Location:	Alameda,	CA			Start I	Date: 9-	16-05
Client:	Cargill Sa	alt			Finish	Date:	7-16-05
WELL INFOR	MATION						
THE STATE OF THE S		10		1100		17	_
Casing diameter	-			r (ft): 4,92			.5
One casing vol				rge volume (gal.)			154
				$in.J^2$ x [well dep			
				2" = 0.16			
Floating produ	ct thickness	s (ft):	> Metho	od for checking:	Interface probe	e <u>×</u> Clear	bailer
		liters per 1 gal	1,500				
Date purged:	9-16	-05	Start time:	10,09 Bladder pump	End time:	1030	
Purging equipm	ment:	Submersible	pump	Bladder pump		Peristaltic pump	X
		PVC bailer	Teflo	n bailer			
Purge rate (lpn	n <u>):</u>	0.7	70 Pal	Well yield (H/L)			
Purge water di	sposal:	Drum.) on	2:71	1		
		Cumulative					
Time		Vol. Purged	pH	EC	T	Color	Turbidity
(2400 h	70	(Liters)	(units)	(mS/cm)	19.D	(Visual)	(NTU)
102	15	3.8	127	220	17.2	-	22
102	0	5,8	0 72	203	677	Clear	03
(0)	,,,	_5,0	41 +5	232	- [1,]	(401	82
							
							-
T-+-1 D 1 0	T '	F0					
Total Purged (Liters):	5.10					
WELL CAMP	LDIC						
WELL SAMPI				1021		10011	
Date sampled:	9-16	.05	Start time: _	1031	End time:		1 28
			J	Dep	th to water (ft) l	before sampling:	6,38
Sampling equip	pment:			Bladder pump	Teflo	on bailer	
		PVC bailer_	Other				
Weather condi	tiona	Mouds	1 10-0		A malaismet to man	erature (° F):	65
Well condition		- Cique	(00)	I. CV	Ambient tempe	erature (° F):	0
wen condition	/ Kemai ks.	411	Jum 7	us turi	1.		
* Dus	21 +0	ikn @	this 1	wil.			
Meter calibrati	ion:	EC			pН		
	Temp	erature			Turbidity		
Purged and sar	mpled by (r	print): Nanu	11 6 Bu	Man		- 1	
J		nature:	10 11/	4	Reviewed by	Xb	10c
	Sig.	nature.	1. repe		Keviewed by	7)	

SAMPLE COLLECTION FIELD DATA

Page 1 of 1

Project No.:	CS1605				Well II	1.1		
Project Name:	Alameda	Facility			Sample	ID: MW-	3	
Location: Alameda, CA				Start Date: Q 16-05				
Client:	Cargill Sa	ılt			Finish	Date: 5-14	-07	
WELL INFOR		10	Depth to water	er (ft): 3,9	OWell d	epth (ft): 17.	U	
One casing vol	lume (gal.):	: 0,54	Calculated pu	rge volume (gal.)	(3 x casing volu	me): (6	8	
One casing vol	$lume = \pi$	x [casing radius	s (in.) x 1 ft/12	$in.J^2 x [well dep$	th (ft) - depth to	water (ft)] x 7.48	gal/ft ³	
Gallons per lin	near ft for c	asing diamet er	of: $1" = 0.04$	2" = 0.16	4" = 0.65 5"	= 1.0 6" = 1	5 8" = 2.6	
Floating produ				od for checking:				
					•			
WELL PURG	ING (3.785	liters per 1 gal	llon)					
l			Start time:	0911	End time:	0950		
Date purged:			-			Peristaltic pump	X	
Purging equip	ment:			Bladder pump		Peristantic pump_		
		PVC bailer		on bailer	Other	0 1		
Purge rate (lpr	-	0.10	1 Pol	Well yield (H/L)	:	000		
Purge water di	isposal:	Drum	5 ON	Sith				
Time	0	Cumulative Vol. Purged	pН	EC	Т	Color	Turbidity	
(2400 1		(Liters)	(units)	(mS/cm)	(° C)	(Visual)	(NTU)	
097		2.1	750	520	17.4	Clear	23	
093		加力	7.79	576		Clear	17	
	50	7.4	5.72	576	18,0	0/1601	50	
		_ (0. /	1127				-	
		- / //						
Total Purged	(Liters):	6.4						
WELL SAMP						1		
Date sampled:	: G-16-	0,5	Start time:	0952	End time:	0954		
				Dep	oth to water (ft) l	pefore sampling:	15,77	
Sampling equi	ipment:	Peristalti	c pump 🗶	Bladder pump	Teflo	on bailer	,	
		PVC bailer	Other					
			7				, –	
Weather cond	litions:	Cloudy	10001		Ambient tempe	erature (° F):	65	
Well condition	n/Remarks:	All'	Sample	staken				
		-						
		FG						
Meter calibra				-				
	Temp	perature	//	0 11	i urbidity			
Purged and sa	ampled by (print): Ma	nul his	16//1905				
0		gnature;	12 11		Reviewed by	Sh	1 pc	
	SI	Similar of the	1. Juli		- Noviewed by	1	-	
		(*)	1			V		

Page of SAMPLE COLLECTION FIELD DATA Project No .: CS1605 Well ID: Project Name: Alameda Facility Sample ID: Location: Alameda, CA Start Date: Client: Cargill Salt Finish Date: WELL INFORMATION Depth to water (ft): 3, 23 Well depth (ft): Casing diameter (in.): One casing volume (gal.): (0, 4) Calculated purge volume (gal.) (3 x casing volume): One casing volume = πx [casing radius (in.) x 1 ft/12 in.] $^2 x$ [well depth (ft) - depth to water (ft)] x 7.48 gal/ft 3 Gallons per linear ft for casing diameter of: 1" = 0.041 2" = 0.16 4" = 0.65 5" = 1.0 6" = 1.5 8" = 2.6Floating product thickness (ft): Method for checking: Interface probe Clear bailer WELL PURGING (3.785 liters per 1 gallon) End time: 085 Start time: Date purged: Submersible pump Bladder pump Peristaltic pump Purging equipment: PVC bailer Teflon bailer Other Well yield (H/L): HiG Purge rate (lpm): Purge water disposal: Cumulative EC T Color Turbidity Time Vol. Purged pH (mS/cm) (° C) (Visual) (2400 hr) (Liters) (units) (NTU) 16001 20,5 22 Total Purged (Liters): WELL SAMPLING 6-05 Start time: 0655 Date sampled: End time: 0858 Depth to water (ft) before sampling: Peristaltic pump Bladder pump Teflon bailer Sampling equipment: Other PVC bailer Ambient temperature (° F): Weather conditions: Well condition/Remarks:

Meter calibration: EC 4660 /1, 460 pH 703-)

Temperature Turbidity (10/-

Purged and sampled by (print): Manuel L. Callego>
Signature: Mall Moll Reviewed by:

WATER LEVEL FIELD DATA

Cargill Salt Alameda Facility Alameda, California Project No. CS1605

			Depth to	Depth to	
			Water	Water	
Well ID	Date	Time	(1st Msmt.)	(2nd Msmt.)	Comments
			(feet)	(feet)	
MW-1	12665	0900	3.28	3,28	Wateringer, well under pressur-
MW-2	12/6/05	08:00	37878	3,35	wellor Lugtoringov
MW-3	126/05	08:04	335	3.35	weller
MW-4	121005	07:50	3,17	317	well or watering

Data Collection

Field measurements by: Print: Signature: 265	Print: But eVG Signature: 12-6-0

Page / of / SAMPLE COLLECTION FIELD DATA Project No .: Well ID: CS1605 Project Name: Alameda Facility Sample ID: Location: Alameda, CA Start Date: Client: Cargill Salt Finish Date: WELL INFORMATION Depth to water (ft): 330 Well depth (ft): Casing diameter (in.): Calculated purge volume (gal.) (3 x casing volume): One casing volume (gal.): 00 One casing volume = $\pi \times [casing \ radius \ (in.) \times 1 \ ft/12 \ in.]^2 \times [well \ depth \ (ft) - depth \ to \ water \ (ft)] \times 7.48 \ gal/ft^3$ Gallons per linear ft for casing diameter of: 1" = 0.041 2" = 0.16 4." = 0.65 5" = 1.0 6" = 1.5 8" = 2.6Floating product thickness (ft): Method for checking: Interface probe Clear bailer WELL PURGING End time: 10 45 16/05 Start time: // Date purged: Purging equipment: Submersible pump Bladder pump Peristaltic pump. P∀C bailer Teflon bailer Other Well yield (H/L): Purge rate: Purge water disposal: Druvnne Dons Cumulative Time Vol. Purged pH EC T Color Turbidity (µS/cm) (Visual or NTU) (2400 hr) (Visual) (gal.) Total Purged (gal.): 84696 WELL SAMPLING 12/6/05 Start time: 10-46 End time: Date sampled: Depth to water (ft) before sampling: Sampling equipment: Peristaltic pump Bladder pump Teflon bailer Other PVC bailer Weather conditions: Ambient temperature (° F): US ollectel Well condition/Remarks: Meter calibration: SEE MW-3 pH Temperature Turbidity

Purged and sampled by (print):

Signature:

Reviewed by:

SAMPLE COLLECTION FIELD DATA Page of	
Project No.: CS1605 Project Name: Alameda Facility Location: Alameda, CA Client: Cargill Salt Well ID: MW-2 Sample ID: MW-2 Start Date: 12/4/05 Finish Date: 12/4/05	
WELL INFORMATION Casing diameter (in.): Depth to water (ft): Well depth (ft): Well depth (ft): One casing volume (gal.): One casing volume = π x [casing radius (in.) x 1 ft/12 in.] x [well depth (ft) - depth to water (ft)] x 7.48 gal/ft Gallons per linear ft for casing diameter of: 1" = 0.041 2" = 0.16 4." = 0.65 5" = 1.0 6" = 1.5 8" = 2.6 Floating product thickness (ft): Method for checking: Interface probe Clear bailer	
WELL PURGING Date purged: 12	
WELL SAMPLING Date sampled: 10.38 End time: 11.43 Depth to water (ft) before sampling: Sampling equipment: Peristaltic pump Bladder pump Teflon bailer PVC bailer Other	
Weather conditions: Well condition/Remarks: DUP COLUMN Ambient temperature (° F): Well condition/Remarks: DUP COLUMN Ambient temperature (° F): PUP COLUMN Ambient temperature (° F): PUP COLUMN Ambient temperature (° F): PH Turbidity Purged and sampled by (print): Signature: Reviewed by: Reviewed by:	

Page) of SAMPLE COLLECTION FIELD DATA Project No .: CS1605 Well ID: Project Name: Alameda Facility Sample ID: Location: Alameda, CA Start Date: Client: Cargill Salt Finish Date: WELL INFORMATION 10 Depth to water (ft): 335 Well depth (ft): Casing diameter (in.): One casing volume (gal.): Calculated purge volume (gal.) (3 x casing volume): One casing volume = πx [casing radius (in.) x 1 ft/12 in.] $^2 x$ [well depth (ft) - depth to water (ft)] x 7.48 gal/ft³ Gallons per linear ft for casing diameter of: 1" = 0.041 2" = 0.16 4." = 0.65 5" = 1.0 6" = 1.5 8" = 2.6Floating product thickness (ft): 17 Method for checking: Interface probe Clear bailer WELL PURGING End time: ()910 Start time: Date purged: Purging equipment: Submersible pump Bladder pump Peristaltic pump Teflon bailer PVC bailer Other Well yield (H/L): LOW Purge rate: 24 MMPDONSITE Purge water disposal: Cumulative Vol. Purged pH T Time EC Color Turbidity (° C) (Visual or NTU) (µS/cm) (Visual) (2400 hr) Total Purged (gal.): WELL SAMPLING Start time: 0910 End time: Of (O Date sampled: Depth to water (ft) before sampling: 15.05 Sampling equipment: Peristaltic pump Bladder pump PVC bailer Other 40 Ambient temperature (° F): Weather conditions: Well condition/Remarks: 134,10 (1002,1000) (103,400) Meter calibration: Temperature

Crawford Consulting, Inc.

Purged and sampled by (print):

Signature:

1605fds.xls 03/00

Reviewed by:

		SAM	PLE COLI	LECTION FI	ELD DATA		Page of
Project No.: Project Name: Location: Client:	Alameda, Cargill Sa	CA			Well II Sample Start D Finish	ate:	1405 1405
	er (in.): ume (gal.): ume = πx ear ft for co	(casing radius asing diameter of	(in.) $x \ 1 \ ft/12$ of: $1'' = 0.04$	rge volume (gal.) $in.J^2$ x [well dep I 2" = 0.16	(3 x casing volume) (3 x casing volume) (4," = 0.65 5" Interface probe	water (ft)] $x 7$. = 1.0 6" =	100 (E.)
WELL PURGI Date purged: Purging equipn Purge rate: Purge water dis	12/1 nent:	Submersible PVC bailer Submersible PVC bailer Cumulative		09'70 Bladder pump n bailer Well yield (H/L	Other	Peristaltic pumj	15:54
Time (2400 h		Vol. Purged (gal.) 3.5 5.0	pH (units) 7.25 7.02 7.11	EC (µS/cm)	T (°C) 19.7 17.6 17.7	Color (Visual) Clar Clear	Turbidity (Visual of NTV)
Total Purged (gal.):	159					
WELL SAMPl Date sampled: Sampling equip	nlu	Peristaltic PVC bailer	Start time:	Dep Bladder pump	End time Coth to water (ft) b		:1232
Weather condition		Clear F	Hlsample	scotlecrep	Ambient tempe	rature (° F):	50
Meter calibrati	Tempe mpled by (p	EC granture print):	E M	W3	pHTurbidityReviewed by:	XB	

1605fds.xls 03/00

Crawford Consulting, Inc.

Appendix B

Groundwater Velocity Calculations

APPENDIX B GROUNDWATER VELOCITY CALCULATIONS

FOR CARGILL ALAMEDA SITE, 2005 DATA

GROUNDWATER VELOCITY FORMULA

V = Ki/n where:

V = average linear groundwater velocity i = hydraulic gradient<math>K = hydraulic conductivity i = hydraulic gradient n = effective porosity

PARAMETERS

Range of hydraulic conductivity values (K) from slug tests:

Well	K (cm/sec)
MW-1	0.00002
MW-2	0.00002
MW-3	0.000003
	MW-1 MW-2

Highest measured K = 0.00002

Porosity (n) = 33% (from laboratory analysis of boring B21 soil sample)

Hydraulic gradient (i) calculated from groundwater contours:

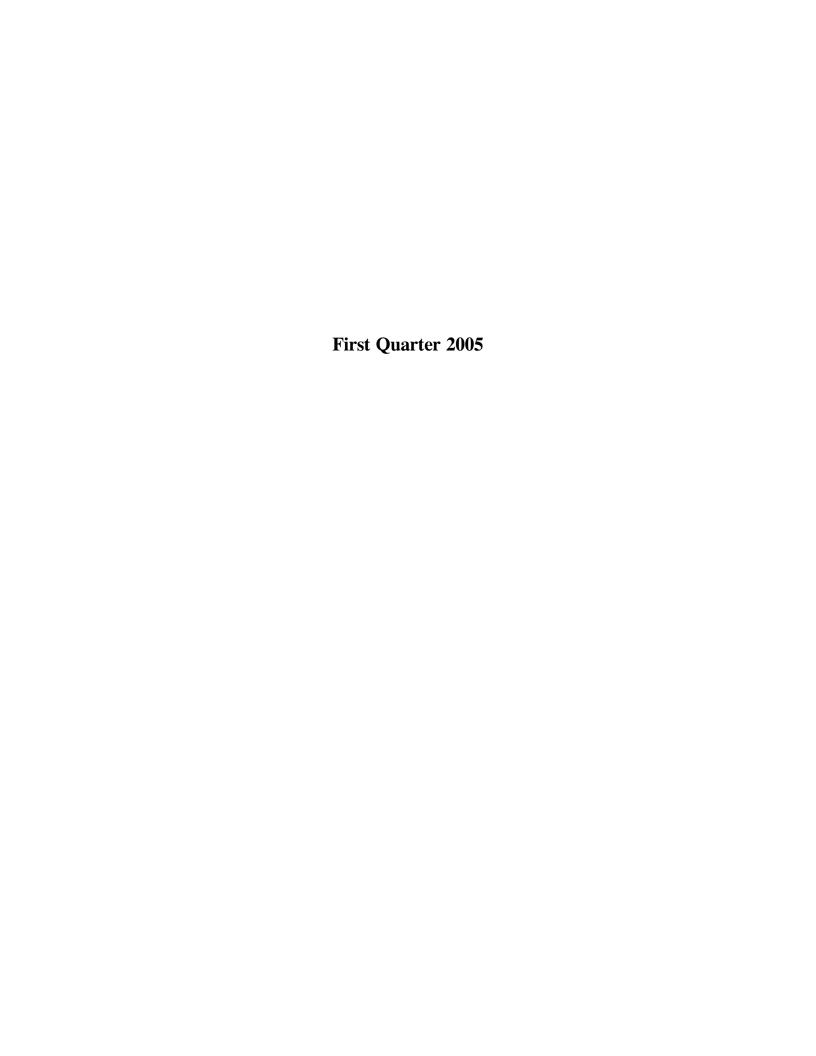
March 2005 0.025 June 2005 0.017 September 2005 0.014 December 2005 0.016

UNIT CONVERSIONS

1 day = 86,400 sec 1 cm/sec = 2,834.65 ft/day1 foot = 30.48 cm 1 cm/sec = 1,034,645.67 ft/yr

CALCULATED VELOCITIES

	Flow	K	i	n	V
Measurement Event	Direction	(cm/sec)	(ft/ft)		(ft/yr)
March 2005	NE	0.00002	0.025	0.33	2
June 2005	NE	0.00002	0.017	0.33	1
September 2005	NE	0.00002	0.014	0.33	1
December 2005	NE	0.00002	0.016	0.33	1


Calculations and assumptions prepared by:

Date: 10/3/2006

Crawford Consulting, Inc.

plante (. Wheeler

Appendix C Certified Analytical Reports and Chain-of-Custody Documentation

Submission#: 2005-03-0099

Crawford Consulting INC.

March 16, 2005

2 North First Street 4th Floor San Jose, CA 95113-1212

Attn.: Mark Wheeler

Project#: CS1605

Project: Alameda Facility

Attached is our report for your samples received on 03/03/2005 12:45 This report has been reviewed and approved for release. Reproduction of this report is permitted only in its entirety.

Please note that any unused portion of the samples will be discarded after 04/17/2005 unless you have requested otherwise.

We appreciate the opportunity to be of service to you. If you have any questions, please call me at (925) 484-1919.

You can also contact me via email. My email address is: dsharma@stl-inc.com

Dimple Sharma Project Manager

Sincerely,

haema

Submission: 2005-03-0099

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: CS1605 Received: 03/03/2005 12:45

Alameda Facility

Samples Reported

Sample Name	Date Sampled	Matrix	Lab#
MW-1	03/03/2005 10:39	Water	1
MW-2	03/03/2005 11:19	Water	2
MW-3	03/03/2005 09:59	Water	3
MW-4	03/03/2005 08:58	Water	4
DUP-1	03/03/2005	Water	5
TB-1	03/03/2005	Water	6

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: CS1605 Received: 03/03/2005 12:45

Alameda Facility

Prep(s): 5030B Test(s): 8260B

 Sample ID:
 MW-1
 Lab ID:
 2005-03-0099 - 1

 Sampled:
 03/03/2005 10:39
 Extracted:
 3/14/2005 12:33

 Matrix:
 Water
 QC Batch#:
 2005/03/14-01.60

		D.	I,	D'' ('		
Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Dichlorodifluoromethane	ND	10	ug/L	10.00	03/14/2005 12:33	
Vinyl chloride	ND	5.0	ug/L	10.00	03/14/2005 12:33	
Chloroethane	ND	10	ug/L	10.00	03/14/2005 12:33	
Trichlorofluoromethane	ND	10	ug/L	10.00		
1,1-Dichloroethene	ND	5.0	ug/L	10.00	03/14/2005 12:33	
Methylene chloride	ND	50	ug/L	10.00	03/14/2005 12:33	
trans-1,2-Dichloroethene	ND	5.0	ug/L	10.00	03/14/2005 12:33	
cis-1,2-Dichloroethene	ND	5.0	ug/L	10.00	03/14/2005 12:33	
1,1-Dichloroethane	ND	5.0	ug/L	10.00	03/14/2005 12:33	
Chloroform	ND	5.0	ug/L	10.00	03/14/2005 12:33	
1,1,1-Trichloroethane	ND	5.0	ug/L	10.00	03/14/2005 12:33	
Carbon tetrachloride	ND	5.0	ug/L	10.00	03/14/2005 12:33	
1,2-Dichloroethane	ND	5.0	ug/L	10.00	03/14/2005 12:33	
Trichloroethene	15	5.0	ug/L	10.00	03/14/2005 12:33	
1,2-Dichloropropane	ND	5.0	ug/L	10.00	03/14/2005 12:33	
Bromodichloromethane	ND	5.0	ug/L	10.00	03/14/2005 12:33	
2-Chloroethylvinyl ether	ND	5.0	ug/L	10.00	03/14/2005 12:33	
trans-1,3-Dichloropropene	ND	5.0	ug/L	10.00	03/14/2005 12:33	
cis-1,3-Dichloropropene	ND	5.0	ug/L	10.00	03/14/2005 12:33	
1,1,2-Trichloroethane	ND	5.0	ug/L	10.00	03/14/2005 12:33	
Tetrachloroethene	160	5.0	ug/L	10.00	03/14/2005 12:33	
Dibromochloromethane	ND	5.0	ug/L	10.00	03/14/2005 12:33	
Chlorobenzene	ND	5.0	ug/L	10.00	03/14/2005 12:33	
Bromoform	ND	20	ug/L	10.00	03/14/2005 12:33	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	10.00	03/14/2005 12:33	
1,3-Dichlorobenzene	ND	5.0	ug/L	10.00	03/14/2005 12:33	
1,4-Dichlorobenzene	ND	5.0	ug/L	10.00	03/14/2005 12:33	
1,2-Dichlorobenzene	ND	5.0	ug/L	10.00	03/14/2005 12:33	
Trichlorotrifluoroethane	ND	5.0	ug/L	10.00	03/14/2005 12:33	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: CS1605 Received: 03/03/2005 12:45

Alameda Facility

Prep(s): 5030B Test(s): 8260B

 Sample ID:
 MW-1
 Lab ID:
 2005-03-0099 - 1

 Sampled:
 03/03/2005 10:39
 Extracted:
 3/14/2005 12:33

 Matrix:
 Water
 QC Batch#:
 2005/03/14-01.60

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Chloromethane	ND	10	ug/L	10.00	03/14/2005 12:33	
Bromomethane	ND	10	ug/L	10.00	03/14/2005 12:33	
Surrogate(s)						
4-Bromofluorobenzene	93.8	79-118	%	10.00	03/14/2005 12:33	
1,2-Dichloroethane-d4	97.5	78-117	%	10.00	03/14/2005 12:33	
Toluene-d8	95.2	77-121	%	10.00	03/14/2005 12:33	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: CS1605 Received: 03/03/2005 12:45

Alameda Facility

Prep(s): 5030B Test(s): 8260B

 Sample ID:
 MW-2
 Lab ID:
 2005-03-0099 - 2

 Sampled:
 03/03/2005 11:19
 Extracted:
 3/15/2005 12:23

 Matrix:
 Water
 QC Batch#:
 2005/03/15-1A.60

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Dichlorodifluoromethane	ND	100	ug/L	100.00	03/15/2005 12:23	
Vinyl chloride	ND	50	ug/L	100.00	03/15/2005 12:23	
Chloroethane	ND	100	ug/L	100.00	03/15/2005 12:23	
Trichlorofluoromethane	ND	100	ug/L	100.00	03/15/2005 12:23	
1,1-Dichloroethene	ND	50	ug/L	100.00	03/15/2005 12:23	
Methylene chloride	ND	500	ug/L	100.00	03/15/2005 12:23	
trans-1,2-Dichloroethene	ND	50	ug/L	100.00	03/15/2005 12:23	
cis-1,2-Dichloroethene	ND	50	ug/L	100.00	03/15/2005 12:23	
1,1-Dichloroethane	ND	50	ug/L	100.00	03/15/2005 12:23	
Chloroform	ND	50	ug/L	100.00	03/15/2005 12:23	
1,1,1-Trichloroethane	ND	50	ug/L	100.00	03/15/2005 12:23	
Carbon tetrachloride	ND	50	ug/L	100.00	03/15/2005 12:23	
1,2-Dichloroethane	ND	50	ug/L	100.00	03/15/2005 12:23	
Trichloroethene	78	50	ug/L	100.00	03/15/2005 12:23	
1,2-Dichloropropane	ND	50	ug/L	100.00	03/15/2005 12:23	
Bromodichloromethane	ND	50	ug/L	100.00	03/15/2005 12:23	
2-Chloroethylvinyl ether	ND	50	ug/L	100.00	03/15/2005 12:23	
trans-1,3-Dichloropropene	ND	50	ug/L	100.00	03/15/2005 12:23	
cis-1,3-Dichloropropene	ND	50	ug/L	100.00	03/15/2005 12:23	
1,1,2-Trichloroethane	ND	50	ug/L	100.00	03/15/2005 12:23	
Tetrachloroethene	7300	50	ug/L	100.00	03/15/2005 12:23	
Dibromochloromethane	ND	50	ug/L	100.00	03/15/2005 12:23	
Chlorobenzene	ND	50	ug/L	100.00	03/15/2005 12:23	
Bromoform	ND	200	ug/L	100.00	03/15/2005 12:23	
1,1,2,2-Tetrachloroethane	ND	50	ug/L	100.00	03/15/2005 12:23	
1,3-Dichlorobenzene	ND	50	ug/L	100.00	03/15/2005 12:23	
1,4-Dichlorobenzene	ND	50	ug/L	100.00	03/15/2005 12:23	
1,2-Dichlorobenzene	ND	50	ug/L	100.00	03/15/2005 12:23	
Trichlorotrifluoroethane	ND	50	ug/L	100.00	03/15/2005 12:23	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: CS1605 Received: 03/03/2005 12:45

Alameda Facility

Prep(s): 5030B Test(s): 8260B

 Sample ID:
 MW-2
 Lab ID:
 2005-03-0099 - 2

 Sampled:
 03/03/2005 11:19
 Extracted:
 3/15/2005 12:23

 Matrix:
 Water
 QC Batch#:
 2005/03/15-1A.60

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Chloromethane	ND	100	ug/L	100.00	03/15/2005 12:23	
Bromomethane	ND	100	ug/L	100.00	03/15/2005 12:23	
Surrogate(s)						
4-Bromofluorobenzene	107.4	79-118	%	100.00	03/15/2005 12:23	
1,2-Dichloroethane-d4	110.4	78-117	%	100.00	03/15/2005 12:23	
Toluene-d8	107.7	77-121	%	100.00	03/15/2005 12:23	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: CS1605 Received: 03/03/2005 12:45

Alameda Facility

Prep(s): 5030B Test(s): 8260B

 Sample ID:
 MW-3
 Lab ID:
 2005-03-0099 - 3

 Sampled:
 03/03/2005 09:59
 Extracted:
 3/14/2005 12:00

 Matrix:
 Water
 QC Batch#:
 2005/03/14-01.60

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Dichlorodifluoromethane	ND	1.0	ug/L	1.00	03/14/2005 12:00	
Vinyl chloride	ND	0.50	ug/L	1.00	03/14/2005 12:00	
Chloroethane	ND	1.0	ug/L	1.00	03/14/2005 12:00	
Trichlorofluoromethane	ND	1.0	ug/L	1.00	03/14/2005 12:00	
1,1-Dichloroethene	0.68	0.50	ug/L	1.00	03/14/2005 12:00	
Methylene chloride	ND	5.0	ug/L	1.00	03/14/2005 12:00	
trans-1,2-Dichloroethene	ND	0.50	ug/L	1.00	03/14/2005 12:00	
cis-1,2-Dichloroethene	ND	0.50	ug/L	1.00	03/14/2005 12:00	
1,1-Dichloroethane	ND	0.50	ug/L	1.00	03/14/2005 12:00	
Chloroform	ND	0.50	ug/L	1.00	03/14/2005 12:00	
1,1,1-Trichloroethane	ND	0.50	ug/L	1.00	03/14/2005 12:00	
Carbon tetrachloride	ND	0.50	ug/L	1.00	03/14/2005 12:00	
1,2-Dichloroethane	ND	0.50	ug/L	1.00	03/14/2005 12:00	
Trichloroethene	ND	0.50	ug/L	1.00	03/14/2005 12:00	
1,2-Dichloropropane	ND	0.50	ug/L	1.00	03/14/2005 12:00	
Bromodichloromethane	ND	0.50	ug/L	1.00	03/14/2005 12:00	
2-Chloroethylvinyl ether	ND	0.50	ug/L	1.00	03/14/2005 12:00	
trans-1,3-Dichloropropene	ND	0.50	ug/L	1.00	03/14/2005 12:00	
cis-1,3-Dichloropropene	ND	0.50	ug/L	1.00	03/14/2005 12:00	
1,1,2-Trichloroethane	ND	0.50	ug/L	1.00	03/14/2005 12:00	
Tetrachloroethene	ND	0.50	ug/L	1.00	03/14/2005 12:00	
Dibromochloromethane	ND	0.50	ug/L	1.00	03/14/2005 12:00	
Chlorobenzene	ND	0.50	ug/L	1.00	03/14/2005 12:00	
Bromoform	ND	2.0	ug/L	1.00	03/14/2005 12:00	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1.00	03/14/2005 12:00	
1,3-Dichlorobenzene	ND	0.50	ug/L	1.00	03/14/2005 12:00	
1,4-Dichlorobenzene	ND	0.50	ug/L	1.00	03/14/2005 12:00	
1,2-Dichlorobenzene	ND	0.50	ug/L	1.00	03/14/2005 12:00	
Trichlorotrifluoroethane	ND	0.50	ug/L	1.00	03/14/2005 12:00	
Chloromethane	ND	1.0	ug/L	1.00	03/14/2005 12:00	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: CS1605 Received: 03/03/2005 12:45

Alameda Facility

Prep(s): 5030B Test(s): 8260B

Sample ID: **MW-3** Lab ID: 2005-03-0099 - 3 Sampled: 03/03/2005 09:59 Extracted: 3/14/2005 12:00

Matrix: Water QC Batch#: 2005/03/14-01.60

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Bromomethane	ND	1.0	ug/L	1.00	03/14/2005 12:00	
Surrogate(s)						
4-Bromofluorobenzene	94.5	79-118	%	1.00	03/14/2005 12:00	
1,2-Dichloroethane-d4	94.8	78-117	%	1.00	03/14/2005 12:00	
Toluene-d8	92.8	77-121	%	1.00	03/14/2005 12:00	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: CS1605 Received: 03/03/2005 12:45

Alameda Facility

Prep(s): 5030B Test(s): 8260B

 Sample ID:
 MW-4
 Lab ID:
 2005-03-0099 - 4

 Sampled:
 03/03/2005 08:58
 Extracted:
 3/14/2005 14:13

 Matrix:
 Water
 QC Batch#:
 2005/03/14-01.60

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Dichlorodifluoromethane	ND	1.0	ug/L	1.00	03/14/2005 14:13	
Vinyl chloride	ND	0.50	ug/L	1.00	03/14/2005 14:13	
Chloroethane	ND	1.0	ug/L	1.00	03/14/2005 14:13	
Trichlorofluoromethane	ND	1.0	ug/L	1.00	03/14/2005 14:13	
1,1-Dichloroethene	ND	0.50	ug/L	1.00	03/14/2005 14:13	
Methylene chloride	ND	5.0	ug/L	1.00	03/14/2005 14:13	
trans-1,2-Dichloroethene	ND	0.50	ug/L	1.00	03/14/2005 14:13	
cis-1,2-Dichloroethene	ND	0.50	ug/L	1.00	03/14/2005 14:13	
1,1-Dichloroethane	ND	0.50	ug/L	1.00	03/14/2005 14:13	
Chloroform	ND	0.50	ug/L	1.00	03/14/2005 14:13	
1,1,1-Trichloroethane	ND	0.50	ug/L	1.00	03/14/2005 14:13	
Carbon tetrachloride	ND	0.50	ug/L	1.00	03/14/2005 14:13	
1,2-Dichloroethane	ND	0.50	ug/L	1.00	03/14/2005 14:13	
Trichloroethene	ND	0.50	ug/L	1.00	03/14/2005 14:13	
1,2-Dichloropropane	ND	0.50	ug/L	1.00	03/14/2005 14:13	
Bromodichloromethane	ND	0.50	ug/L	1.00	03/14/2005 14:13	
2-Chloroethylvinyl ether	ND	0.50	ug/L	1.00	03/14/2005 14:13	
trans-1,3-Dichloropropene	ND	0.50	ug/L	1.00	03/14/2005 14:13	
cis-1,3-Dichloropropene	ND	0.50	ug/L	1.00	03/14/2005 14:13	
1,1,2-Trichloroethane	ND	0.50	ug/L	1.00	03/14/2005 14:13	
Tetrachloroethene	0.93	0.50	ug/L	1.00	03/14/2005 14:13	
Dibromochloromethane	ND	0.50	ug/L	1.00	03/14/2005 14:13	
Chlorobenzene	ND	0.50	ug/L	1.00	03/14/2005 14:13	
Bromoform	ND	2.0	ug/L	1.00	03/14/2005 14:13	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1.00	03/14/2005 14:13	
1,3-Dichlorobenzene	ND	0.50	ug/L	1.00	03/14/2005 14:13	
1,4-Dichlorobenzene	ND	0.50	ug/L	1.00	03/14/2005 14:13	
1,2-Dichlorobenzene	ND	0.50	ug/L	1.00	03/14/2005 14:13	
Trichlorotrifluoroethane	ND	0.50	ug/L	1.00	03/14/2005 14:13	
Chloromethane	ND	1.0	ug/L	1.00	03/14/2005 14:13	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: CS1605 Received: 03/03/2005 12:45

Alameda Facility

Prep(s): 5030B Test(s): 8260B

Sample ID: **MW-4** Lab ID: 2005-03-0099 - 4
Sampled: 03/03/2005 08:58 Extracted: 3/14/2005 14:13

Matrix: Water QC Batch#: 2005/03/14-01.60

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Bromomethane	ND	1.0	ug/L	1.00	03/14/2005 14:13	
Surrogate(s)						
4-Bromofluorobenzene	92.0	79-118	%	1.00	03/14/2005 14:13	
1,2-Dichloroethane-d4	100.1	78-117	%	1.00	03/14/2005 14:13	
Toluene-d8	94.6	77-121	%	1.00	03/14/2005 14:13	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: CS1605 Received: 03/03/2005 12:45

Alameda Facility

Prep(s): 5030B Test(s): 8260B

 Sample ID:
 DUP-1
 Lab ID:
 2005-03-0099 - 5

 Sampled:
 03/03/2005
 Extracted:
 3/15/2005 12:57

 Matrix:
 Water
 QC Batch#:
 2005/03/15-1A.60

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Dichlorodifluoromethane	ND	100	ug/L	100.00	03/15/2005 12:57	
Vinyl chloride	ND	50	ug/L	100.00	03/15/2005 12:57	
Chloroethane	ND	100	ug/L	100.00	03/15/2005 12:57	
Trichlorofluoromethane	ND	100	ug/L	100.00	03/15/2005 12:57	
1,1-Dichloroethene	ND	50	ug/L	100.00	03/15/2005 12:57	
Methylene chloride	ND	500	ug/L	100.00	03/15/2005 12:57	
trans-1,2-Dichloroethene	ND	50	ug/L	100.00	03/15/2005 12:57	
cis-1,2-Dichloroethene	ND	50	ug/L	100.00	03/15/2005 12:57	
1,1-Dichloroethane	ND	50	ug/L	100.00	03/15/2005 12:57	
Chloroform	ND	50	ug/L	100.00	03/15/2005 12:57	
1,1,1-Trichloroethane	ND	50	ug/L	100.00	03/15/2005 12:57	
Carbon tetrachloride	ND	50	ug/L	100.00	03/15/2005 12:57	
1,2-Dichloroethane	ND	50	ug/L	100.00	03/15/2005 12:57	
Trichloroethene	81	50	ug/L	100.00	03/15/2005 12:57	
1,2-Dichloropropane	ND	50	ug/L	100.00	03/15/2005 12:57	
Bromodichloromethane	ND	50	ug/L	100.00	03/15/2005 12:57	
2-Chloroethylvinyl ether	ND	50	ug/L	100.00	03/15/2005 12:57	
trans-1,3-Dichloropropene	ND	50	ug/L	100.00	03/15/2005 12:57	
cis-1,3-Dichloropropene	ND	50	ug/L	100.00	03/15/2005 12:57	
1,1,2-Trichloroethane	ND	50	ug/L	100.00	03/15/2005 12:57	
Tetrachloroethene	7700	50	ug/L	100.00	03/15/2005 12:57	
Dibromochloromethane	ND	50	ug/L	100.00	03/15/2005 12:57	
Chlorobenzene	ND	50	ug/L	100.00	03/15/2005 12:57	
Bromoform	ND	200	ug/L	100.00	03/15/2005 12:57	
1,1,2,2-Tetrachloroethane	ND	50	ug/L	100.00	03/15/2005 12:57	
1,3-Dichlorobenzene	ND	50	ug/L	100.00	03/15/2005 12:57	
1,4-Dichlorobenzene	ND	50	ug/L	100.00	03/15/2005 12:57	
1,2-Dichlorobenzene	ND	50	ug/L	100.00	03/15/2005 12:57	
Trichlorotrifluoroethane	ND	50	ug/L	100.00	03/15/2005 12:57	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: CS1605 Received: 03/03/2005 12:45

Alameda Facility

Prep(s): 5030B Test(s): 8260B

 Sample ID:
 DUP-1
 Lab ID:
 2005-03-0099 - 5

 Sampled:
 03/03/2005
 Extracted:
 3/15/2005 12:57

 Matrix:
 Water
 QC Batch#:
 2005/03/15-1A.60

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Chloromethane	ND	100	ug/L	100.00	03/15/2005 12:57	
Bromomethane	ND	100	ug/L	100.00	03/15/2005 12:57	
Surrogate(s)						
4-Bromofluorobenzene	106.3	79-118	%	100.00	03/15/2005 12:57	
1,2-Dichloroethane-d4	112.5	78-117	%	100.00	03/15/2005 12:57	
Toluene-d8	108.3	77-121	%	100.00	03/15/2005 12:57	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: CS1605 Received: 03/03/2005 12:45

Alameda Facility

Prep(s): 5030B Test(s): 8260B

 Sample ID:
 TB-1
 Lab ID:
 2005-03-0099 - 6

 Sampled:
 03/03/2005
 Extracted:
 3/14/2005 18:01

 Matrix:
 Water
 QC Batch#:
 2005/03/14-01.60

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Dichlorodifluoromethane	ND	1.0	ug/L	1.00	03/14/2005 18:01	
Vinyl chloride	ND	0.50	ug/L	1.00	03/14/2005 18:01	
Chloroethane	ND	1.0	ug/L	1.00	03/14/2005 18:01	
Trichlorofluoromethane	ND	1.0	ug/L	1.00	03/14/2005 18:01	
1,1-Dichloroethene	ND	0.50	ug/L	1.00	03/14/2005 18:01	
Methylene chloride	ND	5.0	ug/L	1.00	03/14/2005 18:01	
trans-1,2-Dichloroethene	ND	0.50	ug/L	1.00	03/14/2005 18:01	
cis-1,2-Dichloroethene	ND	0.50	ug/L	1.00	03/14/2005 18:01	
1,1-Dichloroethane	ND	0.50	ug/L	1.00	03/14/2005 18:01	
Chloroform	2.4	0.50	ug/L	1.00	03/14/2005 18:01	
1,1,1-Trichloroethane	ND	0.50	ug/L	1.00	03/14/2005 18:01	
Carbon tetrachloride	ND	0.50	ug/L	1.00	03/14/2005 18:01	
1,2-Dichloroethane	ND	0.50	ug/L	1.00	03/14/2005 18:01	
Trichloroethene	ND	0.50	ug/L	1.00	03/14/2005 18:01	
1,2-Dichloropropane	ND	0.50	ug/L	1.00	03/14/2005 18:01	
Bromodichloromethane	ND	0.50	ug/L	1.00	03/14/2005 18:01	
2-Chloroethylvinyl ether	ND	0.50	ug/L	1.00	03/14/2005 18:01	
trans-1,3-Dichloropropene	ND	0.50	ug/L	1.00	03/14/2005 18:01	
cis-1,3-Dichloropropene	ND	0.50	ug/L	1.00	03/14/2005 18:01	
1,1,2-Trichloroethane	ND	0.50	ug/L	1.00	03/14/2005 18:01	
Tetrachloroethene	ND	0.50	ug/L	1.00	03/14/2005 18:01	
Dibromochloromethane	ND	0.50	ug/L	1.00	03/14/2005 18:01	
Chlorobenzene	ND	0.50	ug/L	1.00	03/14/2005 18:01	
Bromoform	ND	2.0	ug/L	1.00	03/14/2005 18:01	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1.00	03/14/2005 18:01	
1,3-Dichlorobenzene	ND	0.50	ug/L	1.00	03/14/2005 18:01	
1,4-Dichlorobenzene	ND	0.50	ug/L	1.00	03/14/2005 18:01	
1,2-Dichlorobenzene	ND	0.50	ug/L	1.00	03/14/2005 18:01	
Trichlorotrifluoroethane	ND	0.50	ug/L	1.00	03/14/2005 18:01	
Chloromethane	ND	1.0	ug/L	1.00	03/14/2005 18:01	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: CS1605 Received: 03/03/2005 12:45

Alameda Facility

Prep(s): 5030B Test(s): 8260B

Sample ID: **TB-1** Lab ID: 2005-03-0099 - 6
Sampled: 03/03/2005 Extracted: 3/14/2005 18:01

Matrix: Water QC Batch#: 2005/03/14-01.60

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Bromomethane	ND	1.0	ug/L	1.00	03/14/2005 18:01	
Surrogate(s)						
4-Bromofluorobenzene	94.7	79-118	%	1.00	03/14/2005 18:01	
1,2-Dichloroethane-d4	102.5	78-117	%	1.00	03/14/2005 18:01	
Toluene-d8	98.0	77-121	%	1.00	03/14/2005 18:01	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: CS1605 Received: 03/03/2005 12:45

Alameda Facility

	Batch QC Report	
Prep(s): 5030B Method Blank	Water	Test(s): 8260B QC Batch # 2005/03/14-01.60
MB: 2005/03/14-01.60-003		Date Extracted: 03/14/2005 11:03

Compound	Conc.	RL	Unit	Analyzed	Flag
Dichlorodifluoromethane	ND	1.0	ug/L	03/14/2005 11:03	
Vinyl chloride	ND	0.5	ug/L	03/14/2005 11:03	
Chloroethane	ND	1.0	ug/L	03/14/2005 11:03	
Trichlorofluoromethane	ND	1.0	ug/L	03/14/2005 11:03	
1,1-Dichloroethene	ND	0.5	ug/L	03/14/2005 11:03	
Methylene chloride	ND	5.0	ug/L	03/14/2005 11:03	
trans-1,2-Dichloroethene	ND	0.5	ug/L	03/14/2005 11:03	
cis-1,2-Dichloroethene	ND	0.5	ug/L	03/14/2005 11:03	
1,1-Dichloroethane	ND	0.5	ug/L	03/14/2005 11:03	
Chloroform	ND	0.5	ug/L	03/14/2005 11:03	
1,1,1-Trichloroethane	ND	0.5	ug/L	03/14/2005 11:03	
Carbon tetrachloride	ND	0.5	ug/L	03/14/2005 11:03	
1,2-Dichloroethane	ND	0.5	ug/L	03/14/2005 11:03	
Trichloroethene	ND	0.5	ug/L	03/14/2005 11:03	
1,2-Dichloropropane	ND	0.5	ug/L	03/14/2005 11:03	
Bromodichloromethane	ND	0.5	ug/L	03/14/2005 11:03	
2-Chloroethylvinyl ether	ND	0.5	ug/L	03/14/2005 11:03	
trans-1,3-Dichloropropene	ND	0.5	ug/L	03/14/2005 11:03	
cis-1,3-Dichloropropene	ND	0.5	ug/L	03/14/2005 11:03	
1,1,2-Trichloroethane	ND	0.5	ug/L	03/14/2005 11:03	
Tetrachloroethene	ND	0.5	ug/L	03/14/2005 11:03	
Dibromochloromethane	ND	0.5	ug/L	03/14/2005 11:03	
Chlorobenzene	ND	0.5	ug/L	03/14/2005 11:03	
Bromoform	ND	2.0	ug/L	03/14/2005 11:03	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	03/14/2005 11:03	
1,3-Dichlorobenzene	ND	0.5	ug/L	03/14/2005 11:03	
1,4-Dichlorobenzene	ND	0.5	ug/L	03/14/2005 11:03	
1,2-Dichlorobenzene	ND	0.5	ug/L	03/14/2005 11:03	
Trichlorotrifluoroethane	ND	0.5	ug/L	03/14/2005 11:03	
Chloromethane	ND	1.0	ug/L	03/14/2005 11:03	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

Toluene-d8

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: CS1605 Received: 03/03/2005 12:45

93.9

Alameda Facility

	Bato	h QC Report			
Prep(s): 5030B Method Blank MB: 2005/03/14-01.60-003		Water	Da	Test(s) QC Batch # 2005/03/1 ate Extracted: 03/14/200	
Compound	Conc.	RL	Unit	Analyzed	Flag
Bromomethane	ND	1.0	ug/L	03/14/2005 11:03	
4-Bromofluorobenzene	93.8	79-118	%	03/14/2005 11:03	
1,2-Dichloroethane-d4	97.6	78-117	%	03/14/2005 11:03	

77-121

%

03/14/2005 11:03

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Prep(s): 5030B **Method Blank**

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: CS1605 Received: 03/03/2005 12:45

Alameda Facility

MB: 2005/03/15-1A.60-027

Batch QC Report	
Water	Test(s): 8260B QC Batch # 2005/03/15-1A.60
	Date Extracted: 03/15/2005 10:27

Compound	Conc.	RL	Unit	Analyzed	Flag
Bromodichloromethane	ND	0.5	ug/L	03/15/2005 10:27	
Bromoform	ND	2.0	ug/L	03/15/2005 10:27	
Bromomethane	ND	1.0	ug/L	03/15/2005 10:27	
Carbon tetrachloride	ND	0.5	ug/L	03/15/2005 10:27	
Chlorobenzene	ND	0.5	ug/L	03/15/2005 10:27	
Chloroethane	ND	1.0	ug/L	03/15/2005 10:27	
Chloroform	ND	0.5	ug/L	03/15/2005 10:27	
Chloromethane	ND	1.0	ug/L	03/15/2005 10:27	
Dibromochloromethane	ND	0.5	ug/L	03/15/2005 10:27	
1,2-Dichlorobenzene	ND	0.5	ug/L	03/15/2005 10:27	
1,3-Dichlorobenzene	ND	0.5	ug/L	03/15/2005 10:27	
1,4-Dichlorobenzene	ND	0.5	ug/L	03/15/2005 10:27	
Dichlorodifluoromethane	ND	1.0	ug/L	03/15/2005 10:27	
1,1-Dichloroethane	ND	0.5	ug/L	03/15/2005 10:27	
1,2-Dichloroethane	ND	0.5	ug/L	03/15/2005 10:27	
1,1-Dichloroethene	ND	0.5	ug/L	03/15/2005 10:27	
cis-1,2-Dichloroethene	ND	0.5	ug/L	03/15/2005 10:27	
trans-1,2-Dichloroethene	ND	0.5	ug/L	03/15/2005 10:27	
1,2-Dichloropropane	ND	0.5	ug/L	03/15/2005 10:27	
cis-1,3-Dichloropropene	ND	0.5	ug/L	03/15/2005 10:27	
trans-1,3-Dichloropropene	ND	0.5	ug/L	03/15/2005 10:27	
Methylene chloride	ND	5.0	ug/L	03/15/2005 10:27	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	03/15/2005 10:27	
Tetrachloroethene	ND	0.5	ug/L	03/15/2005 10:27	
1,1,1-Trichloroethane	ND	0.5	ug/L	03/15/2005 10:27	
1,1,2-Trichloroethane	ND	0.5	ug/L	03/15/2005 10:27	
Trichloroethene	ND	0.5	ug/L	03/15/2005 10:27	
Trichlorofluoromethane	ND	1.0	ug/L	03/15/2005 10:27	
Trichlorotrifluoroethane	ND	0.5	ug/L	03/15/2005 10:27	
Vinyl chloride	ND	0.5	ug/L	03/15/2005 10:27	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: CS1605 Received: 03/03/2005 12:45

Alameda Facility

	Batch QC Report	
Prep(s): 5030B		Test(s): 8260B
Method Blank	Water	QC Batch # 2005/03/15-1A.60
MB: 2005/03/15-1A.60-027		Date Extracted: 03/15/2005 10:27

Compound	Conc.	RL	Unit	Analyzed	Flag
Surrogates(s)					
4-Bromofluorobenzene	95.9	79-118	%	03/15/2005 10:27	
1,2-Dichloroethane-d4	102.7	78-117	%	03/15/2005 10:27	
Toluene-d8	98.3	77-121	%	03/15/2005 10:27	
2-Chloroethylvinyl ether	ND	0.5	ug/L	03/15/2005 10:27	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: CS1605 Received: 03/03/2005 12:45

Alameda Facility

Batch QC Report

Prep(s): 5030B Test(s): 8260B

Laboratory Control Spike Water QC Batch # 2005/03/14-01.60

LCS 2005/03/14-01.60-029 Extracted: 03/14/2005 Analyzed: 03/14/2005 10:29

LCSD

Compound	Conc. ug/L		Exp.Conc.	Recovery %		RPD	Ctrl.Lim	Ctrl.Limits %		Flags	
	LCS	LCSD		LCS	LCSD	%	Rec.	RPD	LCS	LCSD	
1,1-Dichloroethene	20.5		20.0	102.5			65-125	20			
Trichloroethene	18.8		20.0	94.0			74-134	20			
Chlorobenzene	22.0		20.0	110.0			61-121	20			
Surrogates(s)											
4-Bromofluorobenzene	475		500	95.0			79-118				
1,2-Dichloroethane-d4	479		500	95.8			78-117				
Toluene-d8	466		500	93.2			77-121				

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: CS1605 Received: 03/03/2005 12:45

Alameda Facility

Batch QC Report

Prep(s): 5030B Test(s): 8260B

Laboratory Control Spike Water QC Batch # 2005/03/15-1A.60

LCS 2005/03/15-1A.60-054 Extracted: 03/15/2005 Analyzed: 03/15/2005 09:54

LCSD

Compound	Conc. ug/L		Exp.Conc. Recovery %		RPD Ctrl.Limits %			Flags		
The state of the s	LCS	LCSD		LCS	LCSD	%	Rec.	RPD	LCS	LCSD
Chlorobenzene 1,1-Dichloroethene Trichloroethene	21.9 20.4 18.1		20 20 20	109.5 102.0 90.5			61-121 65-125 74-134			
Surrogates(s) 4-Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8	510 486 482		500 500 500	102.0 97.2 96.4			79-118 78-117 77-121			

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

MS:

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

2005/03/14-01.60-007

Project: CS1605 Received: 03/03/2005 12:45

Alameda Facility

Batch QC Report

Prep(s): 5030B Test(s): 8260B

Matrix Spike (MS/MSD) Water QC Batch # 2005/03/14-01.60

Lab ID:

MW-1 >> MS 2005-03-0099 - 001 Extracted: 03/14/2005

Analyzed: 03/14/2005 13:07 Dilution: 10.00

03/14/2005 13:40 MSD: 2005/03/14-01.60-040 Extracted: 03/14/2005 Analyzed:

Dilution: 10.00

Compound	Conc.	ug	/L	Spk.Level	R	ecovery	%	Limits	%	Fl	ags
Compound	MS	MSD	Sample	ug/L	MS	MSD	RPD	Rec.	RPD	MS	MSD
1,1-Dichloroethene Trichloroethene	214 215	218 206	1.11 14.6	200 200	106.4 100.2	108.4 95.7	1.9 4.6	65-125 74-134	20 20		
Chlorobenzene Surrogate(s)	228	237	ND	200	114.0	118.5	3.9	61-121	20		
4-Bromofluorobenzene 1,2-Dichloroethane-d4	455 461	458 495		500 500	90.9 92.1	91.6 99.0		79-118 78-117			
Toluene-d8	461	469		500	92.2	93.8		77-121			

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: CS1605 Received: 03/03/2005 12:45

Alameda Facility

Batch QC Report

Prep(s): 5030B Test(s): 8260B

Matrix Spike (MS / MSD) Water QC Batch # 2005/03/15-1A.60

MS/MSD Lab ID: 2005-03-0172 - 001

MS: 2005/03/15-1A.60-004 Extracted: 03/15/2005 Analyzed: 03/15/2005 14:04

Dilution: 10.00

MSD: 2005/03/15-1A.60-037 Extracted: 03/15/2005 Analyzed: 03/15/2005 14:37

Dilution: 10.00

Compound	Conc.	ug,	/L	Spk.Level	R	ecovery	%	Limits	%	Fla	ags
	MS	MSD	Sample	ug/L	MS	MSD	RPD	Rec.	RPD	MS	MSD
Chlorobenzene 1,1-Dichloroethene Trichloroethene	248 245 272	245 253 271	ND 8.05 66	200 200 200	124.0 118.5 103.0	122.5 122.5 102.5	1.2 3.3 0.5	61-121 65-125 74-134	20 20 20	M4	M4
Surrogate(s) 4-Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8	537 577 527	535 600 531		500 500 500	107.4 115.4 105.4	107.0 120.0 106.2	0.0	79-118 78-117 77-121	20		S 7

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: CS1605 Received: 03/03/2005 12:45

Alameda Facility

Legend and Notes

Analysis Flag

L2

Reporting limits were raised due to high level of analyte present in the sample.

Result Flag

M4

MS/MSD spike recoveries were above acceptance limits. See blank spike (LCS).

S7

Surrogate recoveries higher than acceptance limits.

SEVERN
TRENT
SERVICES

STL San Francisco

1220 Quarry Lane • Pleasanton CA 94566-4756 Phone: (925) 484-1919 • Fax: (925) 484-1096

Email: info@chromalab.com

	1 ,	rence #:	10.	234	4
Date 3/3	105	_ Page _	1	01_	

Chain of Custody 2005-03-0099 From Analysis request Mark Wheeler Proj.Mgr ED8 TPH (EPA 8015, 8020/8021)

Class w/ CBTEX CMTBE D 8310 Crawford Consulting, Inc. ☐ Silica ON D Company Organic Carbon (415.1) ☐ Petroleu Pesticides (EPA 8081) PCBs (EPA 8082) Hexavalent Chromium pH (24h hold time for H Purgeable Halocarbons (HVOCs) (EPA 8010/8021) Fuel Oxygenates (8260B) MTBE □Full List □DCA, Semivolatiles (EPA 8270) 2 North First Street, 4th Floor Address Iron (6010/7420) Manganese (6010/7420) CAM17 Metals (EPA 6010/7470/7471) 00 LEO. Volatile Organics (VOCs) (EPA 8021B) TEPH (EPA 8015M) Gel □ 8270 San Jose, CA 95113 W.E.T (STLC) TCLP mber of Containers Spec Cond. TSS Sampler (Şignature) 0 Total Lead Š Fax/Email Phone (408) 287-9934 (408) 287-9937 Total 00 Sample ID 쿨 Date Time Mat Pres H20 HCI MW-1 X 039 3 HCI MW-2 H20 X 3 3/3/6 H20 HC X MW-3 3 MW-4 H20 HCI X 3 H20 HCI DUP-1 X 3 H2O HCI TB-1 X 3 1) Relinguished by: 2) Relinquished by: Project Info. 3) Relinquished by: Sample Receipt Project Name: # of Containers: Alameda Facility Signatury Signature Time Signature Time Project#: Head Space: CS1605 PO#: Printed Name Temp: Date Printed Name Date Field Solutions Inc. (408) 281-2322 Conforms to record: Company Company Company 1) Received by: Other 2) Received by: 3) Received by (Laboratory): Std 5 A T 72h 48h 24h Day Report: Routine □Level 2 □Level 3 □Level 4 Signature Signature Time Signature Time Special Instructions / Comments 5, Bullocy Please provide fax preliminary results to Crawford Printed Name Printed Name Consulting at the number listed above. Date Printed Name Date Please refer to Project File for detection limits and report MRLs Company Company only. 5/11/2001

Crawford Consulting INC.

June 29, 2005

2 North First Street 4th Floor San Jose, CA 95113-1212

Attn.: Mark Wheeler

Project#: cs 1605

Project: Alameda Facility

Attached is our report for your samples received on 06/10/2005 11:08 This report has been reviewed and approved for release. Reproduction of this report is permitted only in its entirety.

Please note that any unused portion of the samples will be discarded after 07/25/2005 unless you have requested otherwise.

We appreciate the opportunity to be of service to you. If you have any questions, please call me at (925) 484-1919.

You can also contact me via email. My email address is: dsharma@stl-inc.com Sincerely,

Dimple Sharma Project Manager

haema

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

Samples Reported

Sample Name	Date Sampled	Matrix	Lab #
MW-1	06/10/2005 08:43	Water	1
MW-2	06/10/2005 09:59	Water	2
MW-3	06/10/2005 09:35	Water	3
MW-4	06/10/2005 08:11	Water	4
DUP-1	06/10/2005	Water	5
TB-1	06/10/2005	Water	6

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

Prep(s): 5030B Test(s): 8260B

 Sample ID:
 MW-1
 Lab ID:
 2005-06-0268 - 1

 Sampled:
 06/10/2005 08:43
 Extracted:
 6/24/2005 00:22

 Matrix:
 Water
 QC Batch#:
 2005/06/23-01.60

0		Б	L 1 1 . 24	Dil di	A l l	- 1
Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Dichlorodifluoromethane	ND	4.0	ug/L	4.00	06/24/2005 00:22	
Vinyl chloride	ND	2.0	ug/L	4.00	06/24/2005 00:22	
Chloroethane	ND	4.0	ug/L	4.00	06/24/2005 00:22	
Trichlorofluoromethane	ND	4.0	ug/L	4.00	06/24/2005 00:22	
1,1-Dichloroethene	ND	2.0	ug/L	4.00	06/24/2005 00:22	
Methylene chloride	ND	20	ug/L	4.00	06/24/2005 00:22	
trans-1,2-Dichloroethene	ND	2.0	ug/L	4.00	06/24/2005 00:22	
cis-1,2-Dichloroethene	ND	2.0	ug/L	4.00	06/24/2005 00:22	
1,1-Dichloroethane	ND	2.0	ug/L	4.00	06/24/2005 00:22	
Chloroform	ND	2.0	ug/L	4.00	06/24/2005 00:22	
1,1,1-Trichloroethane	ND	2.0	ug/L	4.00	06/24/2005 00:22	
Carbon tetrachloride	ND	2.0	ug/L	4.00	06/24/2005 00:22	
1,2-Dichloroethane	ND	2.0	ug/L	4.00	06/24/2005 00:22	
Trichloroethene	23	2.0	ug/L	4.00	06/24/2005 00:22	
1,2-Dichloropropane	ND	2.0	ug/L	4.00	06/24/2005 00:22	
Bromodichloromethane	ND	2.0	ug/L	4.00	06/24/2005 00:22	
trans-1,3-Dichloropropene	ND	2.0	ug/L	4.00	06/24/2005 00:22	
cis-1,3-Dichloropropene	ND	2.0	ug/L	4.00	06/24/2005 00:22	
1,1,2-Trichloroethane	ND	2.0	ug/L	4.00	06/24/2005 00:22	
Tetrachloroethene	180	2.0	ug/L	4.00	06/24/2005 00:22	
Dibromochloromethane	ND	2.0	ug/L	4.00	06/24/2005 00:22	
Chlorobenzene	ND	2.0	ug/L	4.00	06/24/2005 00:22	
Bromoform	ND	8.0	ug/L	4.00	06/24/2005 00:22	
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	4.00	06/24/2005 00:22	
1,3-Dichlorobenzene	ND	2.0	ug/L	4.00	06/24/2005 00:22	
1,4-Dichlorobenzene	ND	2.0	ug/L	4.00	06/24/2005 00:22	
1,2-Dichlorobenzene	ND	2.0	ug/L	4.00	06/24/2005 00:22	
Trichlorotrifluoroethane	ND	2.0	ug/L	4.00	06/24/2005 00:22	
Chloromethane	ND	4.0	ug/L	4.00	06/24/2005 00:22	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

Matrix:

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

Water

Prep(s): 5030B Test(s): 8260B

 Sample ID:
 MW-1
 Lab ID:
 2005-06-0268 - 1

 Sampled:
 06/10/2005 08:43
 Extracted:
 6/24/2005 00:22

Analysis Flag: L2 (See Legend and Note Section)

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Bromomethane	ND	4.0	ug/L	4.00	06/24/2005 00:22	
Surrogate(s)						
4-Bromofluorobenzene	91.6	79-118	%	4.00	06/24/2005 00:22	
1,2-Dichloroethane-d4	101.1	78-117	%	4.00	06/24/2005 00:22	
Toluene-d8	86.6	77-121	%	4.00	06/24/2005 00:22	

QC Batch#: 2005/06/23-01.60

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

Prep(s): 5030B Test(s): 8260B

 Sample ID:
 MW-2
 Lab ID:
 2005-06-0268 - 2

 Sampled:
 06/10/2005 09:59
 Extracted:
 6/24/2005 19:16

 Matrix:
 Water
 QC Batch#:
 2005/06/24-2A.06

		T	I			
Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Dichlorodifluoromethane	ND	50	ug/L	50.00	06/24/2005 19:16	
Vinyl chloride	ND	25	ug/L	50.00	06/24/2005 19:16	
Chloroethane	ND	50	ug/L	50.00	06/24/2005 19:16	
Trichlorofluoromethane	ND	50	ug/L	50.00	06/24/2005 19:16	
1,1-Dichloroethene	ND	25	ug/L	50.00	06/24/2005 19:16	
Methylene chloride	ND	250	ug/L	50.00	06/24/2005 19:16	
trans-1,2-Dichloroethene	ND	25	ug/L	50.00	06/24/2005 19:16	
cis-1,2-Dichloroethene	ND	25	ug/L	50.00	06/24/2005 19:16	
1,1-Dichloroethane	ND	25	ug/L	50.00	06/24/2005 19:16	
Chloroform	ND	25	ug/L	50.00	06/24/2005 19:16	
1,1,1-Trichloroethane	ND	25	ug/L	50.00	06/24/2005 19:16	
Carbon tetrachloride	ND	25	ug/L	50.00	06/24/2005 19:16	
1,2-Dichloroethane	ND	25	ug/L	50.00	06/24/2005 19:16	
Trichloroethene	43	25	ug/L	50.00	06/24/2005 19:16	
1,2-Dichloropropane	ND	25	ug/L	50.00	06/24/2005 19:16	
Bromodichloromethane	ND	25	ug/L	50.00	06/24/2005 19:16	
trans-1,3-Dichloropropene	ND	25	ug/L	50.00	06/24/2005 19:16	
cis-1,3-Dichloropropene	ND	25	ug/L	50.00	06/24/2005 19:16	
1,1,2-Trichloroethane	ND	25	ug/L	50.00	06/24/2005 19:16	
Tetrachloroethene	3600	25	ug/L	50.00	06/24/2005 19:16	
Dibromochloromethane	ND	25	ug/L	50.00	06/24/2005 19:16	
Chlorobenzene	ND	25	ug/L	50.00	06/24/2005 19:16	
Bromoform	ND	100	ug/L	50.00	06/24/2005 19:16	
1,1,2,2-Tetrachloroethane	ND	25	ug/L	50.00	06/24/2005 19:16	
1,3-Dichlorobenzene	ND	25	ug/L	50.00	06/24/2005 19:16	
1,4-Dichlorobenzene	ND	25	ug/L	50.00	06/24/2005 19:16	
1,2-Dichlorobenzene	ND	25	ug/L	50.00	06/24/2005 19:16	
Trichlorotrifluoroethane	ND	25	ug/L	50.00	06/24/2005 19:16	
Chloromethane	ND	50	ug/L	50.00	06/24/2005 19:16	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

Prep(s): 5030B Test(s): 8260B

 Sample ID:
 MW-2
 Lab ID:
 2005-06-0268 - 2

 Sampled:
 06/10/2005 09:59
 Extracted:
 6/24/2005 19:16

 Matrix:
 Water
 QC Batch#:
 2005/06/24-2A.06

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Bromomethane	ND	50	ug/L	50.00	06/24/2005 19:16	
Surrogate(s)						
4-Bromofluorobenzene	104.0	79-118	%	50.00	06/24/2005 19:16	
1,2-Dichloroethane-d4	107.9	78-117	%	50.00	06/24/2005 19:16	
Toluene-d8	102.0	77-121	%	50.00	06/24/2005 19:16	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

Prep(s): 5030B Test(s): 8260B

Sample ID: **MW-3** Lab ID: 2005-06-0268 - 3 Sampled: 06/10/2005 09:35 Extracted: 6/24/2005 12:07

> 6/24/2005 12:07 6/26/2005 17:57

Matrix: QC Batch#: 2005/06/24-1A.60

2005/06/26-01.60 2005/06/26-01.60

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Dichlorodifluoromethane	ND	1.0	ug/L	1.00	06/24/2005 12:07	
Vinyl chloride	ND	0.50	ug/L	1.00	06/24/2005 12:07	
Chloroethane	ND	1.0	ug/L	1.00	06/26/2005 17:57	
Trichlorofluoromethane	ND	1.0	ug/L	1.00	06/24/2005 12:07	
1,1-Dichloroethene	2.4	0.50	ug/L	1.00	06/24/2005 12:07	
Methylene chloride	ND	5.0	ug/L	1.00	06/24/2005 12:07	
trans-1,2-Dichloroethene	ND	0.50	ug/L	1.00	06/24/2005 12:07	
cis-1,2-Dichloroethene	ND	0.50	ug/L	1.00	06/24/2005 12:07	
1,1-Dichloroethane	ND	0.50	ug/L	1.00	06/24/2005 12:07	
Chloroform	ND	0.50	ug/L	1.00	06/24/2005 12:07	
1,1,1-Trichloroethane	ND	0.50	ug/L	1.00	06/24/2005 12:07	
Carbon tetrachloride	ND	0.50	ug/L	1.00	06/24/2005 12:07	
1,2-Dichloroethane	ND	0.50	ug/L	1.00	06/24/2005 12:07	
Trichloroethene	ND	0.50	ug/L	1.00	06/24/2005 12:07	
1,2-Dichloropropane	ND	0.50	ug/L	1.00	06/24/2005 12:07	
Bromodichloromethane	ND	0.50	ug/L	1.00	06/24/2005 12:07	
trans-1,3-Dichloropropene	ND	0.50	ug/L	1.00	06/24/2005 12:07	
cis-1,3-Dichloropropene	ND	0.50	ug/L	1.00	06/24/2005 12:07	
1,1,2-Trichloroethane	ND	0.50	ug/L	1.00	06/24/2005 12:07	
Tetrachloroethene	ND	0.50	ug/L	1.00	06/24/2005 12:07	
Dibromochloromethane	ND	0.50	ug/L	1.00	06/24/2005 12:07	
Chlorobenzene	ND	0.50	ug/L	1.00	06/24/2005 12:07	
Bromoform	ND	2.0	ug/L	1.00	06/24/2005 12:07	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1.00	06/24/2005 12:07	
1,3-Dichlorobenzene	ND	0.50	ug/L	1.00	06/24/2005 12:07	
1,4-Dichlorobenzene	ND	0.50	ug/L	1.00	06/24/2005 12:07	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

Prep(s): 5030B Test(s): 8260B

Sample ID: **MW-3** Lab ID: 2005-06-0268 - 3 Sampled: 06/10/2005 09:35 Extracted: 6/24/2005 12:07

> 6/24/2005 12:07 6/26/2005 17:57

Matrix: Water QC Batch#: 2005/06/24-1A.60

2005/06/26-01.60 2005/06/26-01.60

Compound Conc. RL Unit Dilution Analyzed Flag 1.2-Dichlorobenzene ND 0.50 1.00 06/24/2005 12:07 ug/L Trichlorotrifluoroethane 0.50 1.00 ND ug/L 06/24/2005 12:07 Chloromethane ND 1.0 ug/L 1.00 06/24/2005 12:07 1.00 Bromomethane ND 1.0 ug/L 06/24/2005 12:07 Surrogate(s) 79-118 1.00 | 06/24/2005 12:07 92.0 % 4-Bromofluorobenzene 4-Bromofluorobenzene 98.6 79-118 % 1.00 06/26/2005 17:57 1.2-Dichloroethane-d4 116.2 78-117 % 1.00 | 06/26/2005 17:57 1,2-Dichloroethane-d4 78-117 % 1.00 82.6 06/24/2005 12:07 Toluene-d8 93.4 77-121 % 1.00 06/26/2005 17:57 Toluene-d8 86.9 77-121 % 1.00 06/24/2005 12:07

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

Prep(s): 5030B Test(s): 8260B

 Sample ID:
 MW-4
 Lab ID:
 2005-06-0268 - 4

 Sampled:
 06/10/2005 08:11
 Extracted:
 6/24/2005 14:01

 Matrix:
 Water
 QC Batch#:
 2005/06/24-1A.60

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Dichlorodifluoromethane	ND	1.0	ug/L	1.00	06/24/2005 14:01	
Vinyl chloride	ND	0.50	ug/L	1.00	06/24/2005 14:01	
Chloroethane	ND	1.0	ug/L	1.00	06/24/2005 14:01	
Trichlorofluoromethane	ND	1.0	ug/L	1.00	06/24/2005 14:01	
1,1-Dichloroethene	ND	0.50	ug/L	1.00	06/24/2005 14:01	
Methylene chloride	ND	5.0	ug/L	1.00	06/24/2005 14:01	
trans-1,2-Dichloroethene	ND	0.50	ug/L	1.00	06/24/2005 14:01	
cis-1,2-Dichloroethene	ND	0.50	ug/L	1.00	06/24/2005 14:01	
1,1-Dichloroethane	ND	0.50	ug/L	1.00	06/24/2005 14:01	
Chloroform	ND	0.50	ug/L	1.00	06/24/2005 14:01	
1,1,1-Trichloroethane	ND	0.50	ug/L	1.00	06/24/2005 14:01	
Carbon tetrachloride	ND	0.50	ug/L	1.00	06/24/2005 14:01	
1,2-Dichloroethane	ND	0.50	ug/L	1.00	06/24/2005 14:01	
Trichloroethene	ND	0.50	ug/L	1.00	06/24/2005 14:01	
1,2-Dichloropropane	ND	0.50	ug/L	1.00	06/24/2005 14:01	
Bromodichloromethane	ND	0.50	ug/L	1.00	06/24/2005 14:01	
trans-1,3-Dichloropropene	ND	0.50	ug/L	1.00	06/24/2005 14:01	
cis-1,3-Dichloropropene	ND	0.50	ug/L	1.00	06/24/2005 14:01	
1,1,2-Trichloroethane	ND	0.50	ug/L	1.00	06/24/2005 14:01	
Tetrachloroethene	0.98	0.50	ug/L	1.00	06/24/2005 14:01	
Dibromochloromethane	ND	0.50	ug/L	1.00	06/24/2005 14:01	
Chlorobenzene	ND	0.50	ug/L	1.00	06/24/2005 14:01	
Bromoform	ND	2.0	ug/L	1.00	06/24/2005 14:01	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1.00	06/24/2005 14:01	
1,3-Dichlorobenzene	ND	0.50	ug/L	1.00	06/24/2005 14:01	
1,4-Dichlorobenzene	ND	0.50	ug/L	1.00	06/24/2005 14:01	
1,2-Dichlorobenzene	ND	0.50	ug/L	1.00	06/24/2005 14:01	
Trichlorotrifluoroethane	ND	0.50	ug/L	1.00	06/24/2005 14:01	
Chloromethane	ND	1.0	ug/L	1.00	06/24/2005 14:01	
Bromomethane	ND	1.0	ug/L	1.00	06/24/2005 14:01	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

Prep(s): 5030B Test(s): 8260B

Sample ID: **MW-4** Lab ID: 2005-06-0268 - 4

Sampled: 06/10/2005 08:11 Extracted: 6/24/2005 14:01

Matrix: Water QC Batch#: 2005/06/24-1A.60

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Surrogate(s)						
4-Bromofluorobenzene	91.7	79-118	%	1.00	06/24/2005 14:01	
1,2-Dichloroethane-d4	95.7	78-117	%	1.00	06/24/2005 14:01	
Toluene-d8	85.9	77-121	%	1.00	06/24/2005 14:01	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

Prep(s): 5030B Test(s): 8260B

 Sample ID:
 DUP-1
 Lab ID:
 2005-06-0268 - 5

 Sampled:
 06/10/2005
 Extracted:
 6/24/2005 14:34

 Matrix:
 Water
 QC Batch#:
 2005/06/24-1A.60

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Dichlorodifluoromethane	ND	1.0	ug/L	1.00	06/24/2005 14:34	
Vinyl chloride	ND	0.50	ug/L	1.00	06/24/2005 14:34	
Chloroethane	ND	1.0	ug/L	1.00	06/24/2005 14:34	
Trichlorofluoromethane	ND	1.0	ug/L	1.00	06/24/2005 14:34	
1,1-Dichloroethene	ND	0.50	ug/L	1.00	06/24/2005 14:34	
Methylene chloride	ND	5.0	ug/L	1.00	06/24/2005 14:34	
trans-1,2-Dichloroethene	ND	0.50	ug/L	1.00	06/24/2005 14:34	
cis-1,2-Dichloroethene	ND	0.50	ug/L	1.00	06/24/2005 14:34	
1,1-Dichloroethane	ND	0.50	ug/L	1.00	06/24/2005 14:34	
Chloroform	ND	0.50	ug/L	1.00	06/24/2005 14:34	
1,1,1-Trichloroethane	ND	0.50	ug/L	1.00	06/24/2005 14:34	
Carbon tetrachloride	ND	0.50	ug/L	1.00	06/24/2005 14:34	
1,2-Dichloroethane	ND	0.50	ug/L	1.00	06/24/2005 14:34	
Trichloroethene	ND	0.50	ug/L	1.00	06/24/2005 14:34	
1,2-Dichloropropane	ND	0.50	ug/L	1.00	06/24/2005 14:34	
Bromodichloromethane	ND	0.50	ug/L	1.00	06/24/2005 14:34	
trans-1,3-Dichloropropene	ND	0.50	ug/L	1.00	06/24/2005 14:34	
cis-1,3-Dichloropropene	ND	0.50	ug/L	1.00	06/24/2005 14:34	
1,1,2-Trichloroethane	ND	0.50	ug/L	1.00	06/24/2005 14:34	
Tetrachloroethene	0.89	0.50	ug/L	1.00	06/24/2005 14:34	
Dibromochloromethane	ND	0.50	ug/L	1.00	06/24/2005 14:34	
Chlorobenzene	ND	0.50	ug/L	1.00	06/24/2005 14:34	
Bromoform	ND	2.0	ug/L	1.00	06/24/2005 14:34	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1.00	06/24/2005 14:34	
1,3-Dichlorobenzene	ND	0.50	ug/L	1.00	06/24/2005 14:34	
1,4-Dichlorobenzene	ND	0.50	ug/L	1.00	06/24/2005 14:34	
1,2-Dichlorobenzene	ND	0.50	ug/L	1.00	06/24/2005 14:34	
Trichlorotrifluoroethane	ND	0.50	ug/L	1.00	06/24/2005 14:34	
Chloromethane	ND	1.0	ug/L	1.00	06/24/2005 14:34	
Bromomethane	ND	1.0	ug/L	1.00	06/24/2005 14:34	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

Prep(s): 5030B Test(s): 8260B

 Sample ID:
 DUP-1
 Lab ID:
 2005-06-0268 - 5

 Sampled:
 06/10/2005
 Extracted:
 6/24/2005 14:34

 Matrix:
 Water
 QC Batch#:
 2005/06/24-1A.60

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Surrogate(s)						
4-Bromofluorobenzene	88.8	79-118	%	1.00	06/24/2005 14:34	
1,2-Dichloroethane-d4	97.2	78-117	%	1.00	06/24/2005 14:34	
Toluene-d8	86.2	77-121	%	1.00	06/24/2005 14:34	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

Prep(s): 5030B Test(s): 8260B

 Sample ID:
 TB-1
 Lab ID:
 2005-06-0268 - 6

 Sampled:
 06/10/2005
 Extracted:
 6/23/2005 23:48

 Matrix:
 Water
 QC Batch#:
 2005/06/23-01.60

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Dichlorodifluoromethane	ND	1.0	ug/L	1.00	06/23/2005 23:48	
Vinyl chloride	ND	0.50	ug/L	1.00	06/23/2005 23:48	
Chloroethane	ND	1.0	ug/L	1.00	06/23/2005 23:48	
Trichlorofluoromethane	ND	1.0	ug/L	1.00	06/23/2005 23:48	
1,1-Dichloroethene	ND	0.50	ug/L	1.00	06/23/2005 23:48	
Methylene chloride	ND	5.0	ug/L	1.00	06/23/2005 23:48	
trans-1,2-Dichloroethene	ND	0.50	ug/L	1.00	06/23/2005 23:48	
cis-1,2-Dichloroethene	ND	0.50	ug/L	1.00	06/23/2005 23:48	
1,1-Dichloroethane	ND	0.50	ug/L	1.00	06/23/2005 23:48	
Chloroform	ND	0.50	ug/L	1.00	06/23/2005 23:48	
1,1,1-Trichloroethane	ND	0.50	ug/L	1.00	06/23/2005 23:48	
Carbon tetrachloride	ND	0.50	ug/L	1.00	06/23/2005 23:48	
1,2-Dichloroethane	ND	0.50	ug/L	1.00	06/23/2005 23:48	
Trichloroethene	ND	0.50	ug/L	1.00	06/23/2005 23:48	
1,2-Dichloropropane	ND	0.50	ug/L	1.00	06/23/2005 23:48	
Bromodichloromethane	ND	0.50	ug/L	1.00	06/23/2005 23:48	
trans-1,3-Dichloropropene	ND	0.50	ug/L	1.00	06/23/2005 23:48	
cis-1,3-Dichloropropene	ND	0.50	ug/L	1.00	06/23/2005 23:48	
1,1,2-Trichloroethane	ND	0.50	ug/L	1.00	06/23/2005 23:48	
Tetrachloroethene	ND	0.50	ug/L	1.00	06/23/2005 23:48	
Dibromochloromethane	ND	0.50	ug/L	1.00	06/23/2005 23:48	
Chlorobenzene	ND	0.50	ug/L	1.00	06/23/2005 23:48	
Bromoform	ND	2.0	ug/L	1.00	06/23/2005 23:48	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1.00	06/23/2005 23:48	
1,3-Dichlorobenzene	ND	0.50	ug/L	1.00	06/23/2005 23:48	
1,4-Dichlorobenzene	ND	0.50	ug/L	1.00	06/23/2005 23:48	
1,2-Dichlorobenzene	ND	0.50	ug/L	1.00	06/23/2005 23:48	
Trichlorotrifluoroethane	ND	0.50	ug/L	1.00	06/23/2005 23:48	
Chloromethane	ND	1.0	ug/L	1.00	06/23/2005 23:48	
Bromomethane	ND	1.0	ug/L	1.00	06/23/2005 23:48	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

Prep(s): 5030B Test(s): 8260B

 Sample ID:
 TB-1
 Lab ID:
 2005-06-0268 - 6

 Sampled:
 06/10/2005
 Extracted:
 6/23/2005 23:48

 Matrix:
 Water
 QC Batch#:
 2005/06/23-01.60

Compound	Conc.	RL	Unit	Dilution	Analyzed	Flag
Surrogate(s)						
4-Bromofluorobenzene	92.3	79-118	%	1.00	06/23/2005 23:48	
1,2-Dichloroethane-d4	100.6	78-117	%	1.00	06/23/2005 23:48	
Toluene-d8	86.4	77-121	%	1.00	06/23/2005 23:48	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Prep(s): 5030B **Method Blank**

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

MB: 2005/06/23-01.60-044

Batch QC Report	
Water	Test(s): 8260B QC Batch # 2005/06/23-01.60
	Date Extracted: 06/23/2005 10:44

				ı	
Compound	Conc.	RL	Unit	Analyzed	Flag
Dichlorodifluoromethane	ND	1.0	ug/L	06/23/2005 10:44	
Vinyl chloride	ND	0.5	ug/L	06/23/2005 10:44	
Chloroethane	ND	1.0	ug/L	06/23/2005 10:44	
Trichlorofluoromethane	ND	1.0	ug/L	06/23/2005 10:44	
1,1-Dichloroethene	ND	0.5	ug/L	06/23/2005 10:44	
Methylene chloride	ND	5.0	ug/L	06/23/2005 10:44	
trans-1,2-Dichloroethene	ND	0.5	ug/L	06/23/2005 10:44	
cis-1,2-Dichloroethene	ND	0.5	ug/L	06/23/2005 10:44	
1,1-Dichloroethane	ND	0.5	ug/L	06/23/2005 10:44	
Chloroform	ND	0.5	ug/L	06/23/2005 10:44	
1,1,1-Trichloroethane	ND	0.5	ug/L	06/23/2005 10:44	
Carbon tetrachloride	ND	0.5	ug/L	06/23/2005 10:44	
1,2-Dichloroethane	ND	0.5	ug/L	06/23/2005 10:44	
Trichloroethene	ND	0.5	ug/L	06/23/2005 10:44	
1,2-Dichloropropane	ND	0.5	ug/L	06/23/2005 10:44	
Bromodichloromethane	ND	0.5	ug/L	06/23/2005 10:44	
trans-1,3-Dichloropropene	ND	0.5	ug/L	06/23/2005 10:44	
cis-1,3-Dichloropropene	ND	0.5	ug/L	06/23/2005 10:44	
1,1,2-Trichloroethane	ND	0.5	ug/L	06/23/2005 10:44	
Tetrachloroethene	ND	0.5	ug/L	06/23/2005 10:44	
Dibromochloromethane	ND	0.5	ug/L	06/23/2005 10:44	
Chlorobenzene	ND	0.5	ug/L	06/23/2005 10:44	
Bromoform	ND	2.0	ug/L	06/23/2005 10:44	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	06/23/2005 10:44	
1,3-Dichlorobenzene	ND	0.5	ug/L	06/23/2005 10:44	
1,4-Dichlorobenzene	ND	0.5	ug/L	06/23/2005 10:44	
1,2-Dichlorobenzene	ND	0.5	ug/L	06/23/2005 10:44	
Trichlorotrifluoroethane	ND	0.5	ug/L	06/23/2005 10:44	
Chloromethane	ND	1.0	ug/L	06/23/2005 10:44	
Bromomethane	ND	1.0	ug/L	06/23/2005 10:44	

06/23/2005 10:44

06/23/2005 10:44

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

1,2-Dichloroethane-d4

Toluene-d8

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

100.4

87.6

Alameda Facility

Batch QC Report						
Prep(s): 5030B Method Blank MB: 2005/06/23-01.60-044		Water	Da	Test(s QC Batch # 2005/06/2 ate Extracted: 06/23/200		
Compound	Conc.	RL	Unit	Analyzed	Flag	
Surrogates(s) 4-Bromofluorobenzene	92.4	79-118	%	06/23/2005 10:44		

78-117

77-121

%

%

Date Extracted: 06/24/2005 12:41

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Prep(s): 5030B **Method Blank**

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

MB: 2005/06/24-1A.60-046

Batch QC Report	
	Test(s): 8260B
Water	QC Batch # 2005/06/24-1A.60

Compound Conc. RL Unit Analyzed Flag 06/24/2005 12:41 Bromodichloromethane ND 0.5 ug/L Bromoform ND 2.0 ug/L 06/24/2005 12:41 Bromomethane ND 1.0 ua/L 06/24/2005 12:41 0.5 Carbon tetrachloride ND ug/L 06/24/2005 12:41 Chlorobenzene ND 0.5 ug/L 06/24/2005 12:41 Chloroethane ND 06/24/2005 12:41 1.0 ug/L Chloroform ND 0.5 ua/L 06/24/2005 12:41 Chloromethane ND ug/L 1.0 06/24/2005 12:41 06/24/2005 12:41 Dibromochloromethane ND 0.5 ug/L ND 0.5 1,2-Dichlorobenzene ug/L 06/24/2005 12:41 1,3-Dichlorobenzene ND 0.5 ug/L 06/24/2005 12:41 1.4-Dichlorobenzene ND 0.5 ug/L 06/24/2005 12:41 Dichlorodifluoromethane ND 1.0 ug/L 06/24/2005 12:41 0.5 1,1-Dichloroethane ND ug/L 06/24/2005 12:41 ug/L 1,2-Dichloroethane ND 0.5 06/24/2005 12:41 1,1-Dichloroethene ND 0.5 ug/L 06/24/2005 12:41 cis-1.2-Dichloroethene ND 0.5 06/24/2005 12:41 ug/L trans-1,2-Dichloroethene ND 0.5 ug/L 06/24/2005 12:41 1,2-Dichloropropane ND 0.5 ug/L 06/24/2005 12:41 cis-1,3-Dichloropropene ND 0.5 ug/L 06/24/2005 12:41 0.5 trans-1,3-Dichloropropene ND ug/L 06/24/2005 12:41 Methylene chloride ND 5.0 ug/L 06/24/2005 12:41 1,1,2,2-Tetrachloroethane ND 0.5 ug/L 06/24/2005 12:41 Tetrachloroethene ND 0.5 ug/L 06/24/2005 12:41 1,1,1-Trichloroethane ND 0.5 ug/L 06/24/2005 12:41 1,1,2-Trichloroethane ND 0.5 06/24/2005 12:41 ug/L Trichloroethene ND 0.5 ug/L 06/24/2005 12:41 Trichlorofluoromethane ND 1.0 06/24/2005 12:41 ug/L Trichlorotrifluoroethane ND 0.5 ug/L 06/24/2005 12:41 Vinyl chloride ND 0.5 ug/L 06/24/2005 12:41

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

Prep(s): 5030B Test(s): 8260B Method Blank Water QC Batch # 2005/06/24-1A.60 MB: 2005/06/24-1A.60-046 Date Extracted: 06/24/2005 12:41		Batch QC Report	
	Method Blank	Water	QC Batch # 2005/06/24-1A.60

Compound	Conc.	RL	Unit	Analyzed	Flag
Surrogates(s)					
4-Bromofluorobenzene	91.8	79-118	%	06/24/2005 12:41	
1,2-Dichloroethane-d4	84.6	78-117	%	06/24/2005 12:41	
Toluene-d8	87.6	77-121	%	06/24/2005 12:41	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Prep(s): 5030B **Method Blank**

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

Batch QC Report	
	Test(s): 8260B
Water	QC Batch # 2005/06/24-2A.06

MB: 2005/06/24-2A.06-015 Date Extracted: 06/24/2005 17:30

_	Τ_	1	T		
Compound	Conc.	RL	Unit	Analyzed	Flag
Bromodichloromethane	ND	0.5	ug/L	06/24/2005 17:30	
Bromoform	ND	2.0	ug/L	06/24/2005 17:30	
Bromomethane	ND	1.0	ug/L	06/24/2005 17:30	
Carbon tetrachloride	ND	0.5	ug/L	06/24/2005 17:30	
Chlorobenzene	ND	0.5	ug/L	06/24/2005 17:30	
Chloroethane	ND	1.0	ug/L	06/24/2005 17:30	
Chloroform	ND	0.5	ug/L	06/24/2005 17:30	
Chloromethane	ND	1.0	ug/L	06/24/2005 17:30	
Dibromochloromethane	ND	0.5	ug/L	06/24/2005 17:30	
1,2-Dichlorobenzene	ND	0.5	ug/L	06/24/2005 17:30	
1,3-Dichlorobenzene	ND	0.5	ug/L	06/24/2005 17:30	
1,4-Dichlorobenzene	ND	0.5	ug/L	06/24/2005 17:30	
Dichlorodifluoromethane	ND	1.0	ug/L	06/24/2005 17:30	
1,1-Dichloroethane	ND	0.5	ug/L	06/24/2005 17:30	
1,2-Dichloroethane	ND	0.5	ug/L	06/24/2005 17:30	
1,1-Dichloroethene	ND	0.5	ug/L	06/24/2005 17:30	
cis-1,2-Dichloroethene	ND	0.5	ug/L	06/24/2005 17:30	
trans-1,2-Dichloroethene	ND	0.5	ug/L	06/24/2005 17:30	
1,2-Dichloropropane	ND	0.5	ug/L	06/24/2005 17:30	
cis-1,3-Dichloropropene	ND	0.5	ug/L	06/24/2005 17:30	
trans-1,3-Dichloropropene	ND	0.5	ug/L	06/24/2005 17:30	
Methylene chloride	ND	5.0	ug/L	06/24/2005 17:30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	06/24/2005 17:30	
Tetrachloroethene	ND	0.5	ug/L	06/24/2005 17:30	
1,1,1-Trichloroethane	ND	0.5	ug/L	06/24/2005 17:30	
1,1,2-Trichloroethane	ND	0.5	ug/L	06/24/2005 17:30	
Trichloroethene	ND	0.5	ug/L	06/24/2005 17:30	
Trichlorofluoromethane	ND	1.0	ug/L	06/24/2005 17:30	
Trichlorotrifluoroethane	ND	0.5	ug/L	06/24/2005 17:30	
Vinyl chloride	ND	0.5	ug/L	06/24/2005 17:30	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

Batch QC Report						
Prep(s): 5030B Method Blank MB: 2005/06/24-2A.06-015		Water		Test(s QC Batch # 2005/06/2 te Extracted: 06/24/20		
Compound	Conc.	RL	Unit	Analyzed	Flag	
• ()	1					

Compound	Conc.	RL	Unit	Analyzed	Flag
Surrogates(s)					
4-Bromofluorobenzene	101.8	79-118	%	06/24/2005 17:30	
1,2-Dichloroethane-d4	104.0	78-117	%	06/24/2005 17:30	
Toluene-d8	100.2	77-121	%	06/24/2005 17:30	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

	Batch QC Report	
Prep(s): 5030B Method Blank	Water	Test(s): 8260B QC Batch # 2005/06/26-01.60
MB: 2005/06/26-01.60-016		Date Extracted: 06/26/2005 14:16

Compound	Conc.	RL	Unit	Analyzed	Flag
Dichlorodifluoromethane	ND	1.0	ug/L	06/26/2005 14:16	
Vinyl chloride	ND	0.5	ug/L	06/26/2005 14:16	
Chloroethane	ND	1.0	ug/L	06/26/2005 14:16	
Trichlorofluoromethane	ND	1.0	ug/L	06/26/2005 14:16	
1,1-Dichloroethene	ND	0.5	ug/L	06/26/2005 14:16	
Methylene chloride	ND	5.0	ug/L	06/26/2005 14:16	
trans-1,2-Dichloroethene	ND	0.5	ug/L	06/26/2005 14:16	
cis-1,2-Dichloroethene	ND	0.5	ug/L	06/26/2005 14:16	
1,1-Dichloroethane	ND	0.5	ug/L	06/26/2005 14:16	
Chloroform	ND	0.5	ug/L	06/26/2005 14:16	
1,1,1-Trichloroethane	ND	0.5	ug/L	06/26/2005 14:16	
Carbon tetrachloride	ND	0.5	ug/L	06/26/2005 14:16	
1,2-Dichloroethane	ND	0.5	ug/L	06/26/2005 14:16	
Trichloroethene	ND	0.5	ug/L	06/26/2005 14:16	
1,2-Dichloropropane	ND	0.5	ug/L	06/26/2005 14:16	
Bromodichloromethane	ND	0.5	ug/L	06/26/2005 14:16	
trans-1,3-Dichloropropene	ND	0.5	ug/L	06/26/2005 14:16	
cis-1,3-Dichloropropene	ND	0.5	ug/L	06/26/2005 14:16	
1,1,2-Trichloroethane	ND	0.5	ug/L	06/26/2005 14:16	
Tetrachloroethene	ND	0.5	ug/L	06/26/2005 14:16	
Dibromochloromethane	ND	0.5	ug/L	06/26/2005 14:16	
Chlorobenzene	ND	0.5	ug/L	06/26/2005 14:16	
Bromoform	ND	2.0	ug/L	06/26/2005 14:16	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	06/26/2005 14:16	
1,3-Dichlorobenzene	ND	0.5	ug/L	06/26/2005 14:16	
1,4-Dichlorobenzene	ND	0.5	ug/L	06/26/2005 14:16	
1,2-Dichlorobenzene	ND	0.5	ug/L	06/26/2005 14:16	
Trichlorotrifluoroethane	ND	0.5	ug/L	06/26/2005 14:16	
Chloromethane	ND	1.0	ug/L	06/26/2005 14:16	
Bromomethane	ND	1.0	ug/L	06/26/2005 14:16	

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

Toluene-d8

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

94.5

Alameda Facility

	Bato	h QC Report			
Prep(s): 5030B Method Blank MB: 2005/06/26-01.60-016		Water	Da	Test(s QC Batch # 2005/06/2 ate Extracted: 06/26/200	
Compound	Conc.	RL	Unit	Analyzed	Flag
Surrogates(s) 4-Bromofluorobenzene 1,2-Dichloroethane-d4	100.8 110.5	79-118 78-117	% %	06/26/2005 14:16 06/26/2005 14:16	

77-121

%

06/26/2005 14:16

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

Batch QC Report

Prep(s): 5030B Test(s): 8260B

Laboratory Control Spike Water QC Batch # 2005/06/23-01.60

LCS 2005/06/23-01.60-010 Extracted: 06/23/2005 Analyzed: 06/23/2005 10:10

Compound	Conc.	ug/L	Exp.Conc.	Recov	ery %	RPD	Ctrl.Lin	nits %	Fla	igs
	LCS	LCSD		LCS	LCSD	%	Rec.	RPD	LCS	LCSD
1,1-Dichloroethene	17.5		20.0	87.5			65-125	20		
Trichloroethene	15.9		20.0	79.5			74-134	20		
Chlorobenzene	19.6		20.0	98.0			61-121	20		
Surrogates(s)										
4-Bromofluorobenzene	468		500	93.6			79-118			
1,2-Dichloroethane-d4	474		500	94.8			78-117			
Toluene-d8	455		500	91.0			77-121			

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

Batch QC Report

Prep(s): 5030B Test(s): 8260B

Laboratory Control Spike Water QC Batch # 2005/06/24-1A.60

LCS 2005/06/24-1A.60-045 Extracted: 06/24/2005 Analyzed: 06/24/2005 10:45

Compound	Conc.	ug/L	Exp.Conc.	Recov	ery %	RPD	Ctrl.Lim	nits %	Fla	ags
	LCS	LCSD		LCS	LCSD	%	Rec.	RPD	LCS	LCSD
Chlorobenzene 1,1-Dichloroethene Trichloroethene	19.6 18.2 16.1		20 20 20	98.0 91.0 80.5			61-121 65-125 74-134			
Surrogates(s) 4-Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8	460 454 432		500 500 500	92.0 90.8 86.4			79-118 78-117 77-121			

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

Batch QC Report

Prep(s): 5030B Test(s): 8260B

Laboratory Control Spike Water QC Batch # 2005/06/24-2A.06

LCS 2005/06/24-2A.06-022 Extracted: 06/24/2005 Analyzed: 06/24/2005 04:19

Compound	Conc.	ug/L	Exp.Conc.	Recov	ery %	RPD	Ctrl.Lin	nits %	Fla	ıgs
	LCS	LCSD		LCS	LCSD	%	Rec.	RPD	LCS	LCSD
Chlorobenzene 1,1-Dichloroethene	19.0 17.7		1000 1000	95.0 88.5			61-121 65-125			
Trichloroethene Surrogates(s)	18.4		1000	92.0			74-134			
4-Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8	501 524 504		500 500 500	100.2 104.8 100.8			79-118 78-117 77-121			

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

Batch QC Report

Prep(s): 5030B Test(s): 8260B

Laboratory Control Spike Water QC Batch # 2005/06/26-01.60

LCS 2005/06/26-01.60-054 Extracted: 06/26/2005 Analyzed: 06/26/2005 12:54

Compound	Conc.	ug/L	Exp.Conc.	Recov	very %	RPD	Ctrl.Lin	nits %	Fla	ags
p	LCS	LCSD		LCS	LCSD	%	Rec.	RPD	LCS	LCSD
1,1-Dichloroethene Trichloroethene Chlorobenzene	18.3 16.7 19.8		20.0 20.0 20.0	91.5 83.5 99.0			65-125 74-134 61-121			
Surrogates(s) 4-Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8	495 546 471		500 500 500	99.0 109.2 94.2			79-118 78-117 77-121			

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

Batch QC Report

Prep(s): 5030B Test(s): 8260B

Matrix Spike (MS / MSD) Water QC Batch # 2005/06/23-01.60

MW-1 >> MS Lab ID: 2005-06-0268 - 001

MS: 2005/06/23-01.60-055 Extracted: 06/24/2005 Analyzed: 06/24/2005 00:55

Dilution: 4.00

MSD: 2005/06/23-01.60-028 Extracted: 06/24/2005 Analyzed: 06/24/2005 01:28

Dilution: 4.00

Compound	Conc. ug/L		/L	Spk.Level	Recovery %		Limits %		Flags		
Compound	MS	MSD	Sample	ug/L	MS	MSD	RPD	Rec.	RPD	MS	MSD
1,1-Dichloroethene Trichloroethene Chlorobenzene	74.6 84.7 78.5	73.9 86.7 77.2	1.90 22.7 ND	80.0 80.0 80.0	90.9 77.5 98.1	90.0 80.0 96.5	1.0 3.2 1.6	65-125 74-134 61-121	20 20 20		
Surrogate(s) 4-Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8	464 496 436	459 494 439		500 500 500	92.8 99.2 87.2	91.8 98.8 87.8		79-118 78-117 77-121			

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

Batc	h O	CR	۵n	ort
Date	in u	いって	ep	ort

Prep(s): 5030B Test(s): 8260B

Matrix Spike (MS/MSD) Water QC Batch # 2005/06/24-1A.60

MS/MSD Lab ID: 2005-06-0287 - 001

MS: 2005/06/24-1A.60-041 Extracted: 06/24/2005 Analyzed: 06/24/2005 15:41

5.00

Dilution: MSD: 2005/06/24-1A.60-015 Extracted: 06/24/2005 Analyzed: 06/24/2005 16:15

> Dilution: 5.00

Compound	Conc.	ug/	/L	Spk.Level	R	ecovery	%	Limits	%	Fla	ags
Compound	MS	MSD	Sample	ug/L	MS	MSD	RPD	Rec.	RPD	MS	MSD
Chlorobenzene	97.3	94.9	ND	100	97.3	94.9	2.5	61-121	20		
1,1-Dichloroethene	88.2	87.4	1.5	100	86.7	85.9	0.9	65-125	20		
Trichloroethene	272	271	190	100	82.0	81.0	1.2	74-134	20		
Surrogate(s)											
4-Bromofluorobenzene	464	473		500	92.8	94.7		79-118			
1,2-Dichloroethane-d4	508	475		500	101.7	95.1		78-117			
Toluene-d8	433	434		500	86.5	86.8		77-121			

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

Batch QC Report

Prep(s): 5030B Test(s): 8260B

Matrix Spike (MS/MSD) Water QC Batch # 2005/06/24-2A.06

MW-2 >> MS Lab ID: 2005-06-0268 - 002

MS: 2005/06/24-2A.06-020 Extracted: 06/24/2005 Analyzed: 06/24/2005 19:52

> 50.00 Dilution:

MSD: 2005/06/24-2A.06-021 Extracted: 06/24/2005 Analyzed: 06/24/2005 20:28

> 50.00 Dilution:

Compound	Conc.	Conc. ug/L		Spk.Level	R	Recovery %		Limits %		Flags	
, , , , , , , , , , , , , , , , , , ,	MS	MSD	Sample	ug/L	MS	MSD	RPD	Rec.	RPD	MS	MSD
Chlorobenzene	1020	991	0.915	1000	101.9	99.0	2.9	61-121	20		
1,1-Dichloroethene	1010	1000	0.741	1000	100.9	99.9	1.0	65-125	20		
Trichloroethene	1020	1010	42.9	1000	97.7	96.7	1.0	74-134	20		
Surrogate(s)											
4-Bromofluorobenzene	520	524		500	104.0	104.8		79-118			
1,2-Dichloroethane-d4	542	530		500	108.5	106.0		78-117			
Toluene-d8	504	509		500	100.8	101.8		77-121			

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

Alameda Facility

Batch QC Report

Prep(s): 5030B Test(s): 8260B

Matrix Spike (MS / MSD) Water QC Batch # 2005/06/26-01.60

MS/MSD Lab ID: 2005-06-0443 - 001

MS: 2005/06/26-01.60-017 Extracted: 06/26/2005 Analyzed: 06/26/2005 16:17

Dilution: 1.00

MSD: 2005/06/26-01.60-050 Extracted: 06/26/2005 Analyzed: 06/26/2005 16:50

Dilution: 1.00

Compound	Conc.	Conc. ug/L		L Spk.Level		Recovery %			Limits %		ags
	MS	MSD	Sample	ug/L	MS	MSD	RPD	Rec.	RPD	MS	MSD
1,1-Dichloroethene	19.2	19.4	ND	20.0	96.0	97.0	1.0	65-125	20		
Trichloroethene	16.7	17.2	ND	20.0	83.5	86.0	2.9	74-134	20		
Chlorobenzene	20.4	20.9	ND	20.0	102.0	104.5	2.4	61-121	20		
Surrogate(s)											
4-Bromofluorobenzene	495	506		500	99.0	101.2		79-118			
1,2-Dichloroethane-d4	552	570		500	110.4	114.0		78-117			
Toluene-d8	463	466		500	92.6	93.2		77-121			

Halogenated Volatile Organic Compounds by 8021B/8260B

Crawford Consulting INC.

Attn.: Mark Wheeler

2 North First Street 4th Floor San Jose, CA 95113-1212

Phone: (408) 287-9934 Fax: (408) 287-9937

Project: cs 1605 Received: 06/10/2005 11:08

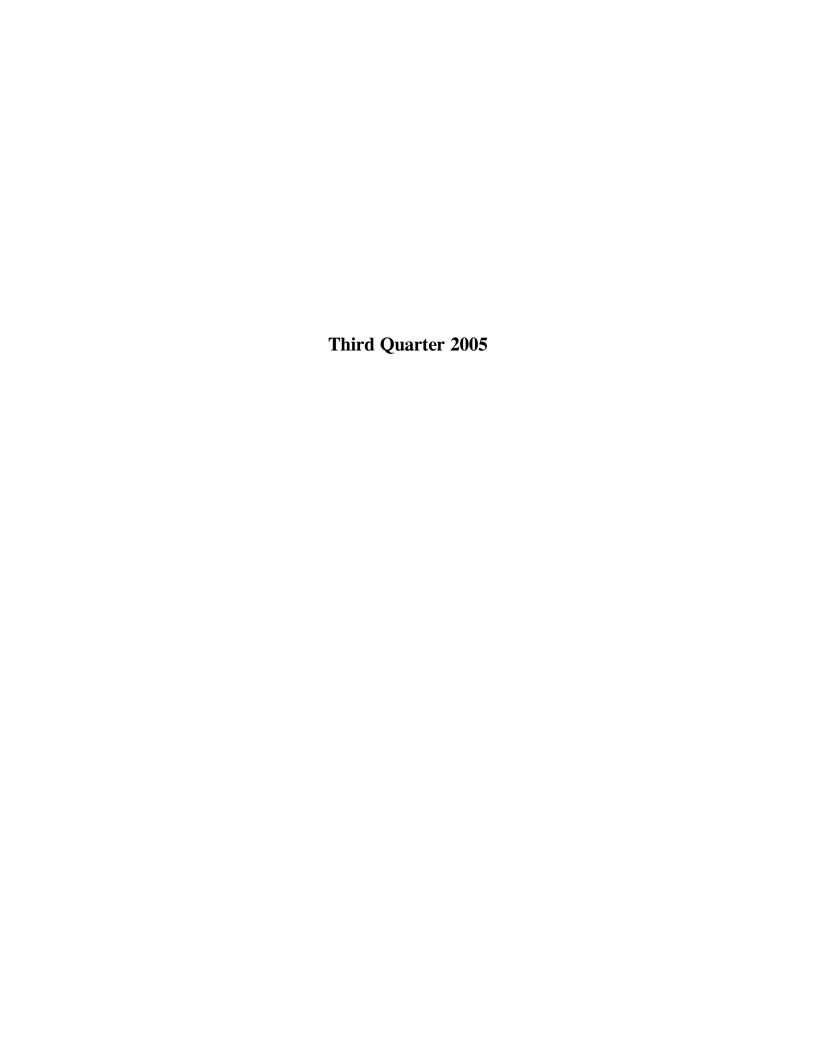
Alameda Facility

Legend and Notes

Analysis Flag

L2

Reporting limits were raised due to high level of analyte present in the sample.


STL ChromaLab

Date/Time

1220 Quarry Lane, Pleasanton, CA 94566

115760 2005-06-6HZEBTODY/LABORATORY ANALYSIS REQUEST FORM

6-10-05 (925) 484-1919 FAX (925) 484-1096 Project Name: Alameda Facility Analysis Requested Project Number: CS1605 Project Manager: Mark Wheeler Company/Address: Crawford Consulting, Inc. 'olatile Organics (VOC 2 x 500 ml glass H₂SO₄ 2 North First St. 4th Floor 500 ml plastic H2SO4 Pb (7421); As (7060) San Jose, CA 95113 Volatile Organics 2 x 40 ml vial HCl 500 ml plastic NP 500 ml plastic NP oH, Conductivity Phone: (408) 287-9934 Chloride, Nitrate Same as Metals 3 x 40 ml vial (408) 287-9937 EPA 8021B) Total Phenols PHEBTEX COD, TKN Sampler's Signature: MLI Hall REMARKS LAB Sample Sample LD. Matrix Time LD. Date 3 6/005 Jater X MW-1 3 61005 X MW-2 3 Water 6/10/05 MW-3 X 6/10/05 Water MW-4 X water (0/10/9) X DUP-1 water 6/10/- i TB-1 X TURNAROUND REQUIREMENTS. REPORT REQUIREMENTS INVOICE INFORMATION SAMPLE RECEIPT I. Routine Report 24 hr 48 hr 5 day Shipping VIA x II. Report (includes DUP, MS Standard (5 working days) MSD, as required, may be Provide Verbal Proliminary Results charged as samples) x Provide pdf Residu III. Data Validation Report (includes All Raw Data) RWQCB. 1:08 Date/Time 06-10-05 Date/Time (MDLs/PQLs/TRACE#) Relinquished By Special Instructions/Comments: Signature Signature Printed Name Printed Name Please pdf results to: Mark Wheeler mark@crawfordconsulting.com Finn Firm Date/Time

ANALYTICAL REPORT

Job Number: 720-41-1

Job Description: Alameda Facility CS 1605

For:

Crawford Consulting Inc 2 North First Street 4th Floor San Jose, CA 95113-1212

Attention: Mark Wheeler

Dimple Sharma Project Manager I

dsharma@stl-inc.com

Sharma

10/04/2005

cc: Dana Johnston

METHOD SUMMARY

Client: Crawford Consulting Inc Job Number: 720-41-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds by GC/MS (Low Level)	720	SW846 8260	В
Purge-and-Trap	720		SW846 5030B

LAB REFERENCES:

720

METHOD REFERENCES:

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: Crawford Consulting Inc Job Number: 720-41-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-41-1	MW-1	Water	09/16/2005 1109	09/16/2005 1235
720-41-2	MW-2	Water	09/16/2005 1031	09/16/2005 1235
720-41-3	MW-3	Water	09/16/2005 0952	09/16/2005 1235
720-41-4	MW-4	Water	09/16/2005 0855	09/16/2005 1235
720-41-5FD	DUP-1	Water	09/16/2005 0000	09/16/2005 1235
720-41-6TB	TB-1	Water	09/16/2005 0000	09/16/2005 1235

LOGIN SAMPLE RECEIPT CHECK LIST

Client: Crawford Consulting Inc Job Number: 720-41-1

Login Number: 41

Check List Description: Standard Sample Receipt Checklist

Question	T/F/NA	Comment
Radioactivity is at or below background levels?	NA	
The cooler's custody seal is present and intact?	NA	
The cooler or samples do not appear to have been compromised or tampered with	? True	
Samples were received on Ice?	True	
Containers are not broken or leaking?	True	
There are no samples present with short holding-time parameters?	True	
Quick TAT was not requested?	True	
COC is present?	True	
COC is filled out in ink and legible?	True	
COC is filled out completely?	True	
COC includes all required signatures?	True	
Sample containers have legible labels?	True	
COC matches up to all samples in the cooler?	True	
Sample ID's on containers match exactly the sample ID's on COC?	True	
Appropriate sample containers are used?	True	
Sample collection date/times are provided?	False	No time collected for DUP-1 or TB-1
Samples are received within Holding Time?	True	
Cooler Temperature is acceptable: <6 degC, with no frozen samples?	True	
Cooler Temperature is recorded?	True	
Sample bottles are completely filled?	True	
There is sufficient volume for all the requested analyses?	True	
Appropriate sample preservatives were used?	True	
Aqueous inorganic sample pHs are acceptable?	True	
Aqueous semi-volatile organics sample pHs are acceptable?	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter?	True	
MS/MSD was not requested and not extra volume was sent?	True	
Samples do not require splitting or compositing?	True	
Multiphase samples are not present?	True	
Trip Blank was not provided/required?	False	TB-1 was provided.
A sample discrepancy report is not needed?	True	

Client: Crawford Consulting Inc Job Number: 720-41-1

Client Sample ID: MW-1

 Lab Sample ID:
 720-41-1
 Date Sampled:
 09/16/2005
 1109

 Client Matrix:
 Water
 Date Received:
 09/16/2005
 1235

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-611 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200509\09

Dilution: 10 Initial Weight/Volume: 40 mL Date Analyzed: 09/22/2005 1941 Final Weight/Volume: 40 mL

Date Prepared: 09/22/2005 1941

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		5.0
1,1-Dichloroethane	ND		5.0
Dichlorodifluoromethane	ND		5.0
Vinyl chloride	ND		5.0
Chloroethane	ND		10
Trichlorofluoromethane	ND		10
Methylene Chloride	ND		50
trans-1,2-Dichloroethene	ND		5.0
cis-1,2-Dichloroethene	ND		5.0
Chloroform	ND		10
1,1,1-Trichloroethane	ND		5.0
Carbon tetrachloride	ND		5.0
1,2-Dichloroethane	ND		5.0
Trichloroethene	34		5.0
1,2-Dichloropropane	ND		5.0
Dichlorobromomethane	ND		5.0
trans-1,3-Dichloropropene	ND		5.0
cis-1,3-Dichloropropene	ND		5.0
1,1,2-Trichloroethane	ND		5.0
Tetrachloroethene	240		5.0
Chlorodibromomethane	ND		5.0
Chlorobenzene	ND		5.0
Bromoform	ND		5.0
1,1,2,2-Tetrachloroethane	ND		5.0
1,3-Dichlorobenzene	ND		5.0
1,4-Dichlorobenzene	ND		5.0
1,2-Dichlorobenzene	ND		5.0
Chloromethane	ND		10
Bromomethane	ND		10
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0
EDB	ND		5.0
1,2,4-Trichlorobenzene	ND		10

Client: Crawford Consulting Inc Job Number: 720-41-1

Client Sample ID: MW-2

 Lab Sample ID:
 720-41-2
 Date Sampled:
 09/16/2005
 1031

 Client Matrix:
 Water
 Date Received:
 09/16/2005
 1235

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-611 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200509\09

Dilution: 40 Initial Weight/Volume: 40 mL
Date Analyzed: 09/22/2005 2014 Final Weight/Volume: 40 mL

Date Prepared: 09/22/2005 2014

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		20
1,1-Dichloroethane	ND		20
Dichlorodifluoromethane	ND		20
Vinyl chloride	ND		20
Chloroethane	ND		40
Trichlorofluoromethane	ND		40
Methylene Chloride	ND		200
trans-1,2-Dichloroethene	ND		20
cis-1,2-Dichloroethene	ND		20
Chloroform	ND		40
1,1,1-Trichloroethane	ND		20
Carbon tetrachloride	ND		20
1,2-Dichloroethane	ND		20
Trichloroethene	29		20
1,2-Dichloropropane	ND		20
Dichlorobromomethane	ND		20
trans-1,3-Dichloropropene	ND		20
cis-1,3-Dichloropropene	ND		20
1,1,2-Trichloroethane	ND		20
Tetrachloroethene	2500		20
Chlorodibromomethane	ND		20
Chlorobenzene	ND		20
Bromoform	ND		20
1,1,2,2-Tetrachloroethane	ND		20
1,3-Dichlorobenzene	ND		20
1,4-Dichlorobenzene	ND		20
1,2-Dichlorobenzene	ND		20
Chloromethane	ND		40
Bromomethane	ND		40
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		20
EDB	ND		20
1,2,4-Trichlorobenzene	ND		40

Client: Crawford Consulting Inc Job Number: 720-41-1

Client Sample ID: MW-3

 Lab Sample ID:
 720-41-3
 Date Sampled:
 09/16/2005
 0952

 Client Matrix:
 Water
 Date Received:
 09/16/2005
 1235

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-621 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200509\09

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 09/23/2005 1940 Final Weight/Volume: 40 mL

Date Prepared: 09/23/2005 1940

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	1.5		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0

Client: Crawford Consulting Inc Job Number: 720-41-1

Client Sample ID: MW-4

 Lab Sample ID:
 720-41-4
 Date Sampled:
 09/16/2005
 0855

 Client Matrix:
 Water
 Date Received:
 09/16/2005
 1235

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-621 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200509\09

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 09/23/2005 2014 Final Weight/Volume: 40 mL

Date Prepared: 09/23/2005 2014

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	0.80		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0

Client: Crawford Consulting Inc Job Number: 720-41-1

Client Sample ID: DUP-1

 Lab Sample ID:
 720-41-5FD
 Date Sampled:
 09/16/2005
 0000

 Client Matrix:
 Water
 Date Received:
 09/16/2005
 1235

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-621 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200509\09

Dilution: 40 Initial Weight/Volume: 40 mL
Date Analyzed: 09/23/2005 2047 Final Weight/Volume: 40 mL

Date Prepared: 09/23/2005 2047

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		20
1,1-Dichloroethane	ND		20
Dichlorodifluoromethane	ND		20
Vinyl chloride	ND		20
Chloroethane	ND		40
Trichlorofluoromethane	ND		40
Methylene Chloride	ND		200
trans-1,2-Dichloroethene	ND		20
cis-1,2-Dichloroethene	ND		20
Chloroform	ND		40
1,1,1-Trichloroethane	ND		20
Carbon tetrachloride	ND		20
1,2-Dichloroethane	ND		20
Trichloroethene	31		20
1,2-Dichloropropane	ND		20
Dichlorobromomethane	ND		20
trans-1,3-Dichloropropene	ND		20
cis-1,3-Dichloropropene	ND		20
1,1,2-Trichloroethane	ND		20
Tetrachloroethene	2500		20
Chlorodibromomethane	ND		20
Chlorobenzene	ND		20
Bromoform	ND		20
1,1,2,2-Tetrachloroethane	ND		20
1,3-Dichlorobenzene	ND		20
1,4-Dichlorobenzene	ND		20
1,2-Dichlorobenzene	ND		20
Chloromethane	ND		40
Bromomethane	ND		40
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		20
EDB	ND		20
1,2,4-Trichlorobenzene	ND		40

Client: Crawford Consulting Inc Job Number: 720-41-1

Client Sample ID: TB-1

 Lab Sample ID:
 720-41-6TB
 Date Sampled:
 09/16/2005
 0000

 Client Matrix:
 Water
 Date Received:
 09/16/2005
 1235

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-611 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200509\09

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 09/22/2005 1728 Final Weight/Volume: 40 mL

Date Prepared: 09/22/2005 1728

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0

DATA REPORTING QUALIFIERS

Lab Section Qualifier Description

Client: Crawford Consulting Inc Job Number: 720-41-1

QC Association Summary

Client Sample ID	Client Matrix	Method	Prep Batch
11			
Lab Control Spike	Water	8260B	
Lab Control Spike Duplicate	Water	8260B	
Method Blank	Water	8260B	
MW-1	Water	8260B	
MW-2	Water	8260B	
TB-1	Water	8260B	
21			
Lab Control Spike	Water	8260B	
Lab Control Spike Duplicate	Water	8260B	
Method Blank	Water	8260B	
MW-3	Water	8260B	
MW-4	Water	8260B	
DUP-1	Water	8260B	
	Lab Control Spike Lab Control Spike Duplicate Method Blank MW-1 MW-2 TB-1 Lab Control Spike Lab Control Spike Lab Control Spike Duplicate Method Blank MW-3 MW-4	Lab Control Spike Water Lab Control Spike Duplicate Water Method Blank Water MW-1 Water MW-2 Water TB-1 Water Lab Control Spike Water Lab Control Spike Duplicate Water Method Blank Water Method Blank Water MW-3 Water MW-4 Water	Lab Control Spike Water 8260B Lab Control Spike Duplicate Water 8260B Method Blank Water 8260B MW-1 Water 8260B MW-2 Water 8260B TB-1 Water 8260B Lab Control Spike Water 8260B Lab Control Spike Water 8260B Method Blank Water 8260B Method Blank Water 8260B MW-3 Water 8260B MW-4 Water 8260B

Client: Crawford Consulting Inc Job Number: 720-41-1

Method Blank - Batch: 720-611 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-611/5 Analysis Batch: 720-611 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200509\09

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 09/22/2005 1220 Final Weight/Volume: 40 mL

Date Analyzed: 09/22/2005 1220 Date Prepared: 09/22/2005 1220

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0

Client: Crawford Consulting Inc Job Number: 720-41-1

Laboratory Control/ Method: 8260B
Laboratory Control Duplicate Recovery Report - Batch: 720-611 Preparation: 5030B

LCS Lab Sample ID: LCS 720-611/4 Analysis Batch: 720-611 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200509\092205

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 09/22/2005 1147 Final Weight/Volume: 40 mL Date Prepared: 09/22/2005 1147

LCSD Lab Sample ID: LCSD 720-611/3 Analysis Batch: 720-611 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200509\092205\l

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 09/22/2005 1655 Final Weight/Volume: 40 mL Date Prepared: 09/22/2005 1655

% Rec. LCS LCSD **RPD RPD Limit** LCS Qual LCSD Qual Analyte Limit 1,1-Dichloroethene 80 83 65 - 125 4 20 Trichloroethene 94 74 - 134 20 88 6 89 20 Chlorobenzene 92 61 - 121 3

Client: Crawford Consulting Inc Job Number: 720-41-1

Method Blank - Batch: 720-621 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-621/6 Analysis Batch: 720-621 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200509\09

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 09/23/2005 1330 Final Weight/Volume: 40 mL

Date Analyzed: 09/23/2005 1330 Date Prepared: 09/23/2005 1330

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0

Client: Crawford Consulting Inc Job Number: 720-41-1

Laboratory Control/ Method: 8260B
Laboratory Control Duplicate Recovery Report - Batch: 720-621 Preparation: 5030B

LCS Lab Sample ID: LCS 720-621/5 Analysis Batch: 720-621 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200509\092305

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 09/23/2005 1257 Final Weight/Volume: 40 mL Date Prepared: 09/23/2005 1257

LCSD Lab Sample ID: LCSD 720-621/4 Analysis Batch: 720-621 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200509\092305\l

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 09/23/2005 1801 Final Weight/Volume: 40 mL Date Prepared: 09/23/2005 1801

% Rec. LCS **LCSD RPD RPD Limit** LCS Qual LCSD Qual Analyte Limit 1,1-Dichloroethene 91 99 65 - 125 20 8 Trichloroethene 95 74 - 134 2 20 97 20 Chlorobenzene 97 93 61 - 121 5

STL ChromaLab

1220 Quarry Lane, Pleasanton, CA 94566

CHAIN OF CUSTODY / LABORATORY ANALYSIS REQUEST FORM

(925) 484-1919 FAX (925) 484-1096 Service Request: Project Name: Alameda Facility Analysis Requested Project Number: CS1605 Project Manager: Mark Wheeler Company/Address: Crawford Consulting, Inc. Jolatile Organics (VOCs) Volatile Organics (8010) 2 x 500 ml glass H 2SO4 2 North First St. 4th Floor Number of Containers 500 ml plastic H2SO4 Pb (7421); As (7060) San Jose, CA 95113 3 x 40 ml vial HCL 2 x 40 ml vial HCl Phone: (408) 287-9934 500 ml plastic NP pH, Conductivity 500 ml plastic NP Chloride, Nitrate Same as Metals (408) 287-9937 Fax: Fotal Phenols TPHgBTEX COD, TKN Sampler's Signature: MA Stal REMARKS Sample LAB Sample I.D. Date Time I.D. Matrix MW-1 X MW-2 X water MW-3 X MW-4 X DUP-1 X Water TB-1 X Received By TURNAROUND REQUIREMENTS REPORT REQUIREMENTS INVOICE INFORMATION SAMPLE RECEIPT I. Routine Report 48 hr 5 day x II. Report (includes DUP, MS Shipping VIA: x Standard (5 working days) MSD, as required, may be Shipping #: Printed Name Provide Verbal Preliminary Results charged as samples) x Provide pdf Results III. Data Validation Report (includes All Raw Data) RWQCB Date/Time (MDLs/POLs/TRACE#) Special Instructions/Comments: Relinquished By Signature Signature Please refer to Project File for detection limits and report MRLs only Please pdf results to: Printed Name Printed Name Dana Johnston dana@crawfordconsulting.com Firm Firm Date/Time Date/Time

ANALYTICAL REPORT

Job Number: 720-823-1

Job Description: Alameda Facility CS 1605

For:

Crawford Consulting Inc 2 North First Street 4th Floor San Jose, CA 95113-1212

Attention: Mark Wheeler

Marine

Dimple Sharma
Project Manager I
dsharma@stl-inc.com

12/15/2005

cc: Dana Johnston

METHOD SUMMARY

Client: Crawford Consulting Inc Job Number: 720-823-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds by GC/MS (Low Level)	STL-SF	SW846 8260	3
Purge-and-Trap	STL-SF		SW846 5030B

LAB REFERENCES:

STL-SF = STL-San Francisco

METHOD REFERENCES:

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: Crawford Consulting Inc Job Number: 720-823-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-823-1	MW-1	Water	12/06/2005 1046	12/06/2005 1300
720-823-2	MW-2	Water	12/06/2005 1038	12/06/2005 1300
720-823-3	MW-3	Water	12/06/2005 0905	12/06/2005 1300
720-823-4	MW-4	Water	12/06/2005 0955	12/06/2005 1300
720-823-5	DUP-1	Water	12/06/2005 0000	12/06/2005 1300
720-823-6	TB-1	Water	12/06/2005 0000	12/06/2005 1300

Client: Crawford Consulting Inc Job Number: 720-823-1

Client Sample ID: MW-1

 Lab Sample ID:
 720-823-1
 Date Sampled:
 12/06/2005
 1046

 Client Matrix:
 Water
 Date Received:
 12/06/2005
 1300

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-2991 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\data\200512\12

Dilution: 4.0 Initial Weight/Volume: 40 mL Date Analyzed: 12/13/2005 1542 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		2.0
1,1-Dichloroethane	ND		2.0
Dichlorodifluoromethane	ND		2.0
Vinyl chloride	ND		2.0
Chloroethane	ND		4.0
Trichlorofluoromethane	ND		4.0
Methylene Chloride	ND		20
trans-1,2-Dichloroethene	ND		2.0
cis-1,2-Dichloroethene	ND		2.0
Chloroform	ND		4.0
1,1,1-Trichloroethane	ND		2.0
Carbon tetrachloride	ND		2.0
1,2-Dichloroethane	ND		2.0
Trichloroethene	16		2.0
1,2-Dichloropropane	ND		2.0
Dichlorobromomethane	ND		2.0
trans-1,3-Dichloropropene	ND		2.0
cis-1,3-Dichloropropene	ND		2.0
1,1,2-Trichloroethane	ND		2.0
Tetrachloroethene	140		2.0
Chlorodibromomethane	ND		2.0
Chlorobenzene	ND		2.0
Bromoform	ND		4.0
1,1,2,2-Tetrachloroethane	ND		2.0
1,3-Dichlorobenzene	ND		2.0
1,4-Dichlorobenzene	ND		2.0
1,2-Dichlorobenzene	ND		2.0
Chloromethane	ND		4.0
Bromomethane	ND		4.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2.0
EDB	ND		2.0
1,2,4-Trichlorobenzene	ND		4.0

Client: Crawford Consulting Inc Job Number: 720-823-1

Client Sample ID: MW-2

 Lab Sample ID:
 720-823-2
 Date Sampled:
 12/06/2005
 1038

 Client Matrix:
 Water
 Date Received:
 12/06/2005
 1300

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-3046 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\\data\200512\\12

Dilution: 50 Initial Weight/Volume: 40 mL Date Analyzed: 12/14/2005 1529 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		25
1,1-Dichloroethane	ND		25
Dichlorodifluoromethane	ND		25
Vinyl chloride	ND		25
Chloroethane	ND		50
Trichlorofluoromethane	ND		50
Methylene Chloride	ND		250
trans-1,2-Dichloroethene	ND		25
cis-1,2-Dichloroethene	ND		25
Chloroform	ND		50
1,1,1-Trichloroethane	ND		25
Carbon tetrachloride	ND		25
1,2-Dichloroethane	ND		25
Trichloroethene	45		25
1,2-Dichloropropane	ND		25
Dichlorobromomethane	ND		25
trans-1,3-Dichloropropene	ND		25
cis-1,3-Dichloropropene	ND		25
1,1,2-Trichloroethane	ND		25
Tetrachloroethene	3300		25
Chlorodibromomethane	ND		25
Chlorobenzene	ND		25
Bromoform	ND		50
1,1,2,2-Tetrachloroethane	ND		25
1,3-Dichlorobenzene	ND		25
1,4-Dichlorobenzene	ND		25
1,2-Dichlorobenzene	ND		25
Chloromethane	ND		50
Bromomethane	ND		50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		25
EDB	ND		25
1,2,4-Trichlorobenzene	ND		50

Client: Crawford Consulting Inc Job Number: 720-823-1

Client Sample ID: MW-3

 Lab Sample ID:
 720-823-3
 Date Sampled:
 12/06/2005 0905

 Client Matrix:
 Water
 Date Received:
 12/06/2005 1300

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-3046 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\\data\200512\\12

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 12/14/2005 1456 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	1.1		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0

Client: Crawford Consulting Inc Job Number: 720-823-1

Client Sample ID: MW-4

 Lab Sample ID:
 720-823-4
 Date Sampled:
 12/06/2005 0955

 Client Matrix:
 Water
 Date Received:
 12/06/2005 1300

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-2991 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\\data\200512\\12

Dilution: 1.0 Initial Weight/Volume: 40 mL Date Analyzed: 12/13/2005 1755 Final Weight/Volume: 40 mL

Date Analyzed: 12/13/2005 1755 Final Date Prepared: 12/13/2005 1755

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	1.1		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0

Client: Crawford Consulting Inc Job Number: 720-823-1

Client Sample ID: DUP-1

 Lab Sample ID:
 720-823-5
 Date Sampled:
 12/06/2005 0000

 Client Matrix:
 Water
 Date Received:
 12/06/2005 1300

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-3046 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\\data\200512\\12

Dilution: 50 Initial Weight/Volume: 40 mL Date Analyzed: 12/14/2005 1602 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		25
1,1-Dichloroethane	ND		25
Dichlorodifluoromethane	ND		25
Vinyl chloride	ND		25
Chloroethane	ND		50
Trichlorofluoromethane	ND		50
Methylene Chloride	ND		250
trans-1,2-Dichloroethene	ND		25
cis-1,2-Dichloroethene	ND		25
Chloroform	ND		50
1,1,1-Trichloroethane	ND		25
Carbon tetrachloride	ND		25
1,2-Dichloroethane	ND		25
Trichloroethene	44		25
1,2-Dichloropropane	ND		25
Dichlorobromomethane	ND		25
trans-1,3-Dichloropropene	ND		25
cis-1,3-Dichloropropene	ND		25
1,1,2-Trichloroethane	ND		25
Tetrachloroethene	3300		25
Chlorodibromomethane	ND		25
Chlorobenzene	ND		25
Bromoform	ND		50
1,1,2,2-Tetrachloroethane	ND		25
1,3-Dichlorobenzene	ND		25
1,4-Dichlorobenzene	ND		25
1,2-Dichlorobenzene	ND		25
Chloromethane	ND		50
Bromomethane	ND		50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		25
EDB	ND		25
1,2,4-Trichlorobenzene	ND		50

Client: Crawford Consulting Inc Job Number: 720-823-1

Client Sample ID: TB-1

 Lab Sample ID:
 720-823-6
 Date Sampled:
 12/06/2005 0000

 Client Matrix:
 Water
 Date Received:
 12/06/2005 1300

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method: 8260B Analysis Batch: 720-3046 Instrument ID: Varian 3900F

Preparation: 5030B Lab File ID: c:\saturnws\\data\200512\\12

Dilution: 1.0 Initial Weight/Volume: 40 mL

Date Analyzed: 12/14/2005 1423 Final Weight/Volume: 40 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0

DATA REPORTING QUALIFIERS

Lab Section Qualifier Description

Client: Crawford Consulting Inc Job Number: 720-823-1

QC Association Summary

Lab Sample ID	Client Sample ID	Client Matrix	Method	Prep Batch
GC/MS VOA				
Analysis Batch:720-2	2991			
LCS 720-2991/5	Lab Control Spike	Water	8260B	
MB 720-2991/6	Method Blank	Water	8260B	
720-823-1	MW-1	Water	8260B	
720-823-4	MW-4	Water	8260B	
Analysis Batch:720-3	3046			
LCS 720-3046/4	Lab Control Spike	Water	8260B	
MB 720-3046/5	Method Blank	Water	8260B	
720-823-2	MW-2	Water	8260B	
720-823-3	MW-3	Water	8260B	
720-823-5	DUP-1	Water	8260B	
720-823-6	TB-1	Water	8260B	

Client: Crawford Consulting Inc Job Number: 720-823-1

Method Blank - Batch: 720-2991 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-2991/6 Analysis Batch: 720-2991 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200512\12

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL

Date Analyzed: 12/13/2005 1118 Final Weight/Volume: 40 mL Date Prepared: 12/13/2005 1118

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0

Client: Crawford Consulting Inc Job Number: 720-823-1

Laboratory Control Sample - Batch: 720-2991

Method: 8260B Preparation: 5030B

Lab Sample ID: LCS 720-2991/5

Client Matrix: Water Dilution: 1.0

Date Analyzed: 12/13/2005 1045 Date Prepared: 12/13/2005 1045 Analysis Batch: 720-2991

Prep Batch: N/A

Units: ug/L

Instrument ID: Varian 3900F

Lab File ID: c:\saturnws\data\200512\12

Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1-Dichloroethene	20.0	18	88	65 - 125	
Trichloroethene	20.0	18	92	74 - 134	
Chlorobenzene	20.0	19	96	61 - 121	

Client: Crawford Consulting Inc Job Number: 720-823-1

Method Blank - Batch: 720-3046 Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-3046/5 Analysis Batch: 720-3046 Instrument ID: Varian 3900F

Client Matrix: Water Prep Batch: N/A Lab File ID: c:\saturnws\data\200512\12

Dilution: 1.0 Units: ug/L Initial Weight/Volume: 40 mL Date Analyzed: 12/14/2005 1031 Final Weight/Volume: 40 mL

Date Analyzed: 12/14/2005 1031 Final W Date Prepared: 12/14/2005 1031

Analyte	Result	Qual	RL
1,1-Dichloroethene	ND		0.50
1,1-Dichloroethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
Vinyl chloride	ND		0.50
Chloroethane	ND		1.0
Trichlorofluoromethane	ND		1.0
Methylene Chloride	ND		5.0
trans-1,2-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
Chloroform	ND		1.0
1,1,1-Trichloroethane	ND		0.50
Carbon tetrachloride	ND		0.50
1,2-Dichloroethane	ND		0.50
Trichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
Dichlorobromomethane	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Chlorodibromomethane	ND		0.50
Chlorobenzene	ND		0.50
Bromoform	ND		1.0
1,1,2,2-Tetrachloroethane	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,2-Dichlorobenzene	ND		0.50
Chloromethane	ND		1.0
Bromomethane	ND		1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
EDB	ND		0.50
1,2,4-Trichlorobenzene	ND		1.0

Client: Crawford Consulting Inc Job Number: 720-823-1

Laboratory Control Sample - Batch: 720-3046

Method: 8260B Preparation: 5030B

Lab Sample ID: LCS 720-3046/4

Client Matrix: Water Dilution: 1.0

Date Analyzed: 12/14/2005 0941 Date Prepared: 12/14/2005 0941 Analysis Batch: 720-3046

Prep Batch: N/A

Units: ug/L

Instrument ID: Varian 3900F

Lab File ID: c:\saturnws\data\200512\12

Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1-Dichloroethene	20.0	18	92	65 - 125	
Trichloroethene	20.0	19	97	74 - 134	
Chlorobenzene	20.0	20	101	61 - 121	

STL ChromaLab

720-823

CHAIN OF CUSTODY / LABORATORY ANALYSIS REQUEST FORM

1220 Quarry Lane, Pleasa	anton, CA 94566	10		•			Serv	ice Re	enne:	st:											Date:	2/	, (05
(925) 484-1919 FAX (925) 484-1096 Project Name: Alameda Facility				Γ	Service Request: Analysis Requested																		
Project Number: CS Project Manager: Da Company/Address: Cr 2 2 Sa Phone: (40	51605 ina Johnston awford Consulting North First St, 4th in Jose, CA 95113	ı Floor			Number of Containers	Volatile Organics (VOCs)	(EPA 8021B)	Pb (7421); As (7060)	Same as Metals	COD, TKN 500 ml plastic H ₂ SO ₄	Chloride, Nitrate	500 ml plastic NP	pH, Conductivity	500 ml plastic NP			Volatile Organics (8010) 2 x 40 ml vial	TPHgBTEX	2 x 40 ml vial HCl				REMARKS
Sample I.D.	Date	Time	LAB I.D.	Sample Matrix																			TENP 49
MW-1	12/6/45	10:46		il atel	3												X					_	
MW-2	12/6/05	'		rugker	3												X					-	
MW-3	12/6/05			Vejer	3						_						X						
MW-4	121665			inten	3											\perp	<u>X</u>					-	
DUP-1	12/6/05			Wester	3	\perp				-							X	_				_	
TB-1	12/6/05			water	2			-						_			X	_				-	
					<u> </u>	╀			-				_		_			-				+	
					-						<u> </u>	-	-	·-		1						+-	
Relingu	ished By		Receiv	red By	┼-	TURN	NAROUN	D REQU	JIREN	MENTS					MENTS	_	invo	ICE I	NFORM	IATION		SA	MPLE RECEIPT
Signature Printer Parm Printed Name Printed Name Printed Name Firm Firm		x Due D	24 br 48 hr 5 day X Standard (5 working days) Provide Verbal Preliminary Results X Provide pdf Results ue Date				•	I. Routine Report X II. Report (includes DUP, MS MSD, as required, may be charged as samples) III. Data Validation Report (includes All Raw Data) RWQCB (MDLs/PQLs/TRACE#)					P.O. #				Shipping VIA: Shipping #: Condition:						
	sished By		Receiv		Spec		nstruc				dete					MRI	s only			· · · · · · · · · · · · · · · · · · ·			
Signature Signature Printed Name Printed Name			$\frac{1}{2}$	Please refer to Project File for detection limits and report MRLs only Please pdf results to: Dana Johnston dana@crawfordconsulting.com																			
Firm Firm										dan	ia@0	Jraw(C	naco	nisuli	ung.co	111							
Date/Time		Date/Tin	ne																				

LOGIN SAMPLE RECEIPT CHECK LIST

Client: Crawford Consulting Inc Job Number: 720-823-1

Login Number: 823

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	NA	
The cooler's custody seal, if present.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present	True	
Samples do not require splitting or compositing	True	

