August 13, 2003 Alameda County Dept. of Environmental Health Hazardous Materials Division 1131 Harbor Bay Parkway Alameda, California 94502-6577 Attn: eva chu RE: Groundwater Monitoring Results, First through Fourth Quarter 2002 Cargill Salt – Alameda Facility, Alameda, California Dear Ms. chu, The attached report presents the groundwater monitoring results for First through Fourth Quarter 2002 for the Cargill Salt Alameda facility. Results of groundwater transcet sampling and the initial sampling of three groundwater monitoring wells installed in November 1999 were reported in the January 31, 2000 submittal, "Groundwater Characterization and Monitoring Well Installation" prepared by Crawford Consulting, Inc. and Conor Pacific/EFW. The monitoring wells were installed to help characterize and monitor the occurrence of volatile organic compounds, primarily tetrachloroethene (PCE) and its breakdown product, trichloroethene (TCE), in groundwater at the site. Since the initial groundwater monitoring well sampling event, groundwater monitoring has been conducted on a quarterly basis. The quarterly monitoring data generally confirm the results of the groundwater transect sampling and initial sampling of the monitoring wells. Off-site characterization activities, including installation of a fourth groundwater monitoring well, were conducted in November and December 2001 to evaluate the off-site extent of VOCs in the soil and groundwater. The results of these activities were submitted in the August 21, 2002 report "Off-Site Groundwater Characterization" prepared by Conor Pacific/EFW. To the best of my knowledge the attached report is true, complete, and correct. Should you have any questions concerning the report, please don't hesitate to call me at (510) 790-8625. Sincerely, Teri Peterson Environmental Manager # Alameda County AUG 1 3 2003 **Environmental Health** Groundwater Monitoring Results First through Fourth Quarter 2002 Cargill Salt – Alameda Facility Alameda, California # Groundwater Monitoring Results First through Fourth Quarter 2002 Cargill Salt - Alameda Facility Alameda, California Prepared for: Cargill Salt 7220 Central Avenue Newark, California 94560 Prepared by: Crawford Consulting, Inc. 2 North First Street, 4th Floor San Jose, CA 95113 Project No. CS1605 August 13, 2003 # **Contents** | 1 Introduction | 1 | |--|---| | 1.1 Background Information | , | | 1.1.1 Site Description | 1 | | 1.1.2 Summary of Investigative and Remedial Activities | 2 | | 1.1.3 Source of VOC Impact | 3 | | 1.2 Reporting Period Activities | 3 | | 2 Groundwater Flow Analysis | 4 | | 2.1 Water-Level Measurement. | | | 2.2 Groundwater Flow Direction and Gradient | | | 3 Groundwater Sampling and Analysis | 5 | | 3.1 Sample Collection and Analysis | 5 | | 3.2 Analytical Results | 5 | | 3.2.1 Quality Control | 5 | | 3.2.2 Groundwater Results | 8 | | 3.3 Discussion | | | Professional Certification | | | References | | | Limitations | | # **Tables** | Table I. | Groundwater Level Data | |----------|--| | Table 2. | Relative Percent Difference Based on Duplicate Samples | | Table 3. | Summary of Groundwater Monitoring Well Data | # Illustrations | Figure 1. | Site Location | |-----------|---| | Figure 2. | Groundwater Monitoring Well Locations | | Figure 3. | Graphical Summary of Groundwater Elevation Data | | Figure 4. | Groundwater Elevation Contours - March 2002 | | Figure 5. | Groundwater Elevation Contours - June 2002 | | Figure 6. | Groundwater Elevation Contours - September 2002 | | Figure 7. | Groundwater Elevation Contours - December 2002 | | Figure 8. | VOC Concentrations in Groundwater - March through December 2002 | | - | Graphical Summary of PCE Concentrations | # **Appendices** ## (presented in electronic format only) | | Field Data Sheets | |-------------|---| | Appendix B. | Certified Analytical Reports and Chain-of-Custody Documentation | # **Electronic File** Report presented in electronic file format (pdf) on CD-ROM inside back cover. ## 1 Introduction Crawford Consulting, Inc. (Crawford) has prepared this report on behalf of Cargill Salt for the Cargill Salt Dispensing Systems Division facility (hereafter, the Site) in Alameda, California. Results of groundwater transect sampling and the initial sampling of three groundwater monitoring wells installed in November 1999 were presented in the January 31, 2000 report, *Groundwater Characterization and Monitoring Well Installation, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc. and Conor Pacific/EFW). The purpose of the groundwater transect sampling and the monitoring well installation and sampling was to help characterize and monitor the occurrence of volatile organic compounds (VOCs), primarily tetrachloroethene (PCE) and its breakdown product, trichloroethene (TCE), previously detected in groundwater at the Site. One of the recommendations in the report was to confirm the groundwater analytical results of the newly installed monitoring wells (wells MW-1, MW-2, and MW-3) and the groundwater flow direction and gradient via quarterly monitoring. Since the initial groundwater monitoring well sampling event, groundwater monitoring has been conducted on a quarterly basis. The results of the first two years of quarterly monitoring were reported in *Groundwater Monitoring Results, First through Fourth Quarter 2000, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc., April 11, 2001) and *Groundwater Monitoring Results, First through Fourth Quarter 2001, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc., August 14, 2002). A workplan for off-site characterization was prepared by Conor Pacific and submitted to the Alameda County Department of Environmental Health (ACEHS) on June 19, 2001. After approval of the workplan by the ACEHS, Cargill Salt conducted characterization activities in November and December 2001 to evaluate the off-site extent of VOCs in the soil and groundwater. Soil and groundwater samples were collected and analyzed from a neighboring residential property and along Clement Avenue, slug tests were performed in the three existing monitoring wells, and a groundwater monitoring well (MW-4) was installed in Clement Avenue. The results of these activities were submitted to the ACEHS in the August 21, 2002 report Off-Site Groundwater Characterization, Cargill Salt – Alameda Facility, Alameda, California, prepared by Conor Pacific/EFW. Background information and a summary of the reporting period activities for the first through fourth quarters of 2002 are presented below. # 1.1 Background Information A description of the Site and a summary of the development of characterization and monitoring programs for the Site are presented in this section. #### 1.1.1 Site Description Alameda is an island on the east side of San Francisco Bay, separated from Oakland by a tidal canal (Figure 1). The Cargill Salt Dispensing Systems Division facility is located on a rectangular lot in an industrial and residential neighborhood. The facility building occupies approximately one-third of the site and is separated from the vacant, unpaved side of the lot by an asphalt driveway (Figure 2). The site is bordered by a sheet-metal shop and a residential lot to the northwest, an apartment complex to the southwest, and a residential lot to the southeast. From 1951 to 1978, the Alameda facility produced salt-dispensing units, which required casting and milling aluminum parts. Casting now occurs off site; the facility still mills and repairs salt-dispensing units. Constituents of concern associated with site operations have included casting sands with elevated concentrations of metals, and solvents, machine oils, and grease used in casting and milling operations. As discussed below, previous investigations and remedial activities have investigated and remediated metals and solvents (VOCs) in vadose-zone soil. ## 1.1.2 Summary of Investigative and Remedial Activities Cargill Salt initiated site investigative activities in 1993 to determine if facility operations had impacted site soils. Cargill Salt submitted the results of the soil sampling investigation to the Alameda County Environmental Health Services (ACEHS) in October 1993 along with a workplan for excavation and disposal of impacted soils and assessment of potential impact to groundwater (Groundworks Environmental, Inc. [Groundworks], 1993). After approval of the workplan by ACEHS, Cargill Salt conducted several phases of soil remediation and groundwater characterization. Surficial soils impacted by metals were excavated for disposal off site. Vadose-zone soils with the highest degree of impact by VOCs were also excavated for off-site disposal (see "Soil excavation area" on Figure 2). The results of these activities were submitted to the ACEHS in a report, Soil and Groundwater Investigations and Remedial Activities, July 1993 – September 1994, Cargill Salt – Alameda Facility, Alameda, California (Groundworks, 1995). Recommendations for additional work to further delineate the lateral and vertical extent of VOCs in groundwater beneath the site were presented in the report. A workplan for the additional delineation of VOCs in groundwater, Workplan for Groundwater Characterization and Monitoring Well Installation, 2016 Clement Avenue, Alameda, California (CCI), was submitted to the ACEHS in July 1999. After approval of the workplan by the ACEHS, Cargill Salt conducted groundwater sampling and well installation activities during August and November of 1999. The results of these activities were submitted to the ACEHS in a report, *Groundwater Characterization and Monitoring Well Installation, Cargill Salt – Alameda
Facility, Alameda, California* (Crawford Consulting, Inc. and Conor Pacific/EFW, dated January 31, 2000). The results of the 2000 quarterly groundwater monitoring activities were submitted to the ACEHS in a report, *Groundwater Monitoring Results, First through Fourth Quarter 2000, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc., April 11, 2001). The results of the 2001 quarterly groundwater monitoring activities were submitted to the ACEHS in a report, *Groundwater Monitoring Results, First through Fourth Quarter 2001, Cargill Salt – Alameda Facility, Alameda, California* (Crawford Consulting, Inc., August 14, 2002). A workplan for remedial investigation activities, Workplan for Off-Site Characterization, Cargill Salt – Alameda Facility, Alameda, California, was submitted to the ACEHS in June 2001. After approval of the workplan by the ACEHS, Cargill Salt conducted characterization activities in November and December 2001 to evaluate off-site extent of VOCs in the soil and groundwater. Soil and groundwater samples were collected and analyzed from a neighboring residential property and along Clement Avenue, slug tests were performed in the three existing monitoring wells, and a groundwater monitoring well (MW-4) was installed in Clement Avenue. The results of these activities were submitted to the ACEHS in the August 21, 2002 submittal Off-Site Groundwater Characterization, Cargill Salt – Alameda Facility, Alameda, California, prepared by Conor Pacific/EFW. ## 1.1.3 Source of VOC Impact As discussed in the 1995 report, the occurrence of VOCs in soils and groundwater at the site appears to be the result of a discharge or spill to surficial soils at a location near the rear property line at the southwestern corner of the property. The area with the highest degree of chemical impact was delineated prior to excavation and was then excavated using a backhoe and transported off-site for appropriate disposal. It is possible that the VOCs detected in soils and groundwater at this location were associated with waste products from facility operations. The VOCs may be associated with solvents previously used for degreasing operations at the facility, although there are no records indicating use of PCE. Site records indicate that the solvents used for degreasing operations were not PCE-based solvents. It is also possible that the VOCs and oil and grease are associated with waste products discarded from neighboring properties. There is an apartment complex next to the rear property line of the facility, and the laundry room for this complex is in the utility shed immediately adjacent to the rear property line. This laundry room is only 4 feet away from the area of highest impact to soil. If PCE associated with laundry cleaning products were spilled in this laundry room, it is possible that it could have drained onto the Cargill Salt property. # 1.2 Reporting Period Activities Three groundwater monitoring wells (MW-1, MW-2, and MW-3) were installed, sampled, and analyzed in November 1999. A fourth groundwater monitoring well (MW-4) was installed, sampled, and analyzed in December 2001. Since the initial sampling and analysis event in November 1999, groundwater monitoring has been conducted on a quarterly basis. This report presents the results of groundwater monitoring data collected during the first through fourth quarters of 2002. Groundwater levels in the Site monitoring wells were measured, groundwater samples were collected and analyzed, and the groundwater flow direction and gradient were determined. The quarterly monitoring schedule for 2002 is shown below. | Quarter of 2002 | Field Dates | |-----------------|-----------------------| | First | March 21 and 28, 2002 | | Second | June 6, 2002 | | Third | September 20, 2002 | | Fourth | December 19, 2002 | Supervision of the quarterly monitoring events was conducted for Cargill Salt by Crawford. Groundwater level measurements and collection of groundwater samples were conducted by Field Solutions, Inc. The groundwater samples for the first through fourth quarters of 2002 were analyzed by Severn Trent Laboratories, Inc., STL San Francisco, a state-certified laboratory in Pleasanton, California. # 2 Groundwater Flow Analysis Groundwater levels were measured and groundwater contour maps were prepared for the first through fourth quarter 2002 reporting period. #### 2.1 Water-Level Measurement Water levels in groundwater monitoring wells (MW-1, MW-2, MW-3, and MW-4) were measured each quarter, before any of the groundwater monitoring wells were purged for sampling for the quarterly monitoring event. The groundwater monitoring well locations are shown on Figure 2. The water levels were measured with an electric sounder. The depth to water at each well was recorded on a Water Level Field Data sheet (see Appendix A). The water-level data through the fourth quarter of 2002 are shown on Table 1. The data in Table 1 include the date and time of measurement, the well casing elevation, the measured depth to groundwater, the groundwater elevation, and the change in elevation from the previous measurement. A plot of historical groundwater elevations is shown in Figure 3. Groundwater levels in the on-site wells (MW-1, MW-2, and MW-3) showed a similar seasonal pattern in 2002 as in the previous two years (see Figure 3). Groundwater levels rose across the Site between the fourth quarter 2001 and first quarter 2002 measurements, reflecting winter-season recharge. Groundwater levels measured in the second and third quarters of 2002 fell relative to the previous quarter, reflecting dissipation of winter-season recharge. Groundwater levels rose between the third and fourth quarter 2002 measurements, reflecting recharge for the beginning of the 2002/2003 winter season. Off-site downgradient well MW-4 showed a different seasonal response than exhibited by the on-site wells (see Figure 3). The seasonal variation exhibited by MW-4 may indicate a more delayed seasonal response than exhibited by the on-site wells, or may indicate recharge in the MW-4 area is affected by other factors in addition to rainfall. #### 2.2 Groundwater Flow Direction and Gradient Groundwater contour maps for the first through fourth quarters of 2002 based on the March, June, September and December 2002 water-level data are shown on Figures 4 through 7. The groundwater flow direction determined for each quarter of 2002 was to the northeast, consistent with the groundwater flow direction determined in September 1994, November 1999 and the first through fourth quarters 2000 and 2001. The horizontal hydraulic gradients measured for the first, second, third, and fourth quarters of 2002 were (0.020, 0.015, 0.012, 0.022), respectively. # 3 Groundwater Sampling and Analysis This section summarizes the sample collection and analytical methods, presents an evaluation of quality control data, and summarizes the results of the sampling events. # 3.1 Sample Collection and Analysis Groundwater samples were collected March 21 and 28, June 6, September 20, and December 19, 2002 from groundwater monitoring wells MW-1, MW-2, MW-3, and MW-4. Prior to the first quarter 2000 sampling event, dedicated tubing was installed in wells MW-1, MW-2, and MW-3 and on December 17, 2001 in well MW-4 to facilitate sampling with a peristaltic pump. Dedicated fluorinated ethylene propylene resin (FEP)-lined polyethylene tubing was installed in each monitoring well. The tubing intake was placed about one foot above the well bottom in each of the wells. Viton® dedicated check valves were installed on the tubing intakes to prevent back-flow of water into the well. A short length of dedicated Viton® tubing was installed at the well head for use in a peristaltic pump head. Prior to sample collection for each quarterly monitoring event, the wells were purged using a peristaltic pump. Field parameters (pH, electrical conductivity, temperature, and turbidity) were measured in purged groundwater from each well prior to sampling; these data are recorded on the Sample Collection Field Data sheets presented in Appendix A. After purging, groundwater samples were collected using the peristaltic pump and the dedicated Viton® pump head discharge tubing. The groundwater samples were analyzed for VOCs using U.S. Environmental Protection Agency (USEPA) Method 8021B. Results for all Method 8010 analytes were reported. The groundwater samples for first through fourth quarter 2002 were delivered with appropriate chain-of-custody documentation to STL Chromalab, Inc., a state-certified laboratory in Pleasanton, California, for chemical analysis. # 3.2 Analytical Results The results of field and laboratory quality control measures and the results of the groundwater monitoring well samples are reviewed in this section. The certified analytical reports and chain-of-custody documentation are presented in Appendix B. ## 3.2.1 Quality Control Quality control (QC) samples were analyzed as part of the sampling and analysis program to evaluate the precision and accuracy of the reported groundwater chemistry data. QC samples included both field and laboratory samples. Descriptions of the purpose of specific field and laboratory QC samples used during the sampling and analysis program and an evaluation of field and laboratory QC results are presented below. #### Field Quality Control Samples A field duplicate was used during the first through fourth quarter 2002 sampling program for the site. A field duplicate is used to assess sampling and analytical precision. The duplicate is collected at a selected well (MW-1) and then submitted "blind" to the laboratory for analysis with the same batch as the regular sample for the selected well. An estimate of precision is obtained by calculating the relative percent difference (RPD) between the regular sample and the duplicate sample using the following formula: RPD = $$[x-y]100$$ 0.5 $(x + y)$ where: [x - y] = the
absolute value of the difference in concentration between the regular sample (x) and the duplicate sample (y). #### Laboratory Quality Control Samples The following types of laboratory QC samples were used during the first through fourth quarter 2002 analytical program for the Site: - surrogate spikes - matrix spikes/duplicate matrix spikes A surrogate spike is a check standard added to a sample in a known amount prior to analysis. Surrogate spikes consist of analytes not normally found in environmental samples and not targeted by the analytical procedure. Surrogate spikes provide information on recovery efficiency by comparing the percent recovery of specific surrogate analyses to statistically derived acceptance limits developed by the USEPA or the laboratory (provided such laboratory-specific limits are stricter than those developed by the USEPA). If the recoveries fall within the acceptance limits for the analytes, the analysis exhibits an acceptable recovery efficiency. Recoveries that fall outside the acceptance limits indicate a potential problem with the recovery efficiency of analytes, which in turn indicates a potential bias with respect to the reported concentration of the environmental samples analyzed in the same batch. Matrix spikes and duplicate matrix spikes are analyzed by the laboratory for the purpose of providing a quantitative measure of accuracy and precision, and to document the effect that the sample matrix has on the analysis. A selected sample is spiked in duplicate with known concentrations of analytes. The recoveries of the spiked analytes are compared to statistically derived acceptance limits developed by the USEPA or the laboratory (provided such laboratory-specific limits are stricter than those developed by the USEPA). If the recoveries fall within the acceptance limits for the analytes, the analysis has no statistically significant bias (i.e., the analysis is accurate). Recoveries that fall outside of the acceptance limits have a positive or negative bias, depending on whether the recovery is greater or less than the upper or lower acceptance limit, respectively. Analyses where analyte recoveries fall outside the acceptance limits should be regarded as estimates only. Precision for matrix spikes is measured by calculating the relative percent differences (RPDs) between the measured concentration of analytes in the matrix and the duplicate matrix spike. The following equation is used for matrix spikes: $RPD = \underbrace{[MS - MSD] 100}_{0.5 (MS + MSD)}$ where: [MS - MSD] = the absolute value of the difference in concentration between the matrix spike (MS) and the matrix spike duplicate (MSD) First Quarter 2002 Field QC Results One field duplicate (DUP-1) was analyzed as part of the first quarter 2002 sampling event at the Site. The duplicate sample was collected at groundwater monitoring well MW-1 and was analyzed for halogenated VOCs using USEPA Method 8021B (8010 list). Table 2 summarizes the calculated RPDs for MW-1 and MW-1 duplicate (DUP-1). Of the two parameters for which RPDs could be calculated (see Table 2), two parameters (TCE and PCE) exhibit a low RPD value (i.e., less than 10%) indicative of good precision. #### Second Quarter 2002 Field QC Results One field duplicate (DUP-1) was analyzed as part of the second quarter 2002 sampling event at the Site. The duplicate sample was collected at groundwater monitoring well MW-1 and was analyzed for halogenated VOCs using USEPA Method 8021B (8010 list). Table 2 summarizes the calculated RPDs for MW-1 and MW-1 duplicate (DUP-1). Of the two parameters for which RPDs could be calculated (see Table 2), two parameters (TCE and PCE) exhibit a low RPD value (i.e., less than 10%) indicative of good precision. #### Third Quarter 2002 Field QC Results One field duplicate sample (DUP-1) was analyzed as part of the third quarter 2002 sampling event at the Site. The blank sample was collected at groundwater monitoring well MW-1 and was analyzed for halogenated VOCs using USEPA Method 8021B (8010 list). Table 2 summarizes the calculated RPDs for MW-1 and MW-1 duplicate (DUP-1). Of the two parameters for which RPDs could be calculated (see Table 2), two parameters (TCE and PCE) exhibit a low RPD value (i.e., less than 10%) indicative of good precision. #### Fourth Quarter 2002 Field QC Results One field duplicate sample (DUP-1) was analyzed as part of the fourth quarter 2002 sampling event at the Site. The blank sample was collected at groundwater monitoring well MW-1 and was analyzed for halogenated VOCs using USEPA Method 8021B (8010 list). Table 2 summarizes the calculated RPDs for MW-1 and MW-1 duplicate (DUP-1). Of the three parameters for which RPDs could be calculated (see Table 2), three parameters (1,1-Dichloroethene, TCE and PCE) exhibit a low RPD value (i.e., less than 10%) indicative of good precision. ## First through Fourth Quarter 2002 Laboratory QC Results A review of the first through fourth quarter 2002 field data sheets and laboratory reports (presented in Appendices A and B, respectively) indicates that all analyses were performed within USEPA or California Department of Health Services (DHS) recommended maximum sample holding times. QC data on surrogate spike recoveries and matrix spike recoveries are presented in the laboratory reports. These data indicate: (1) no surrogate spike recoveries were outside of the laboratory's acceptance limits; (2) no matrix spike or duplicate matrix spike recoveries were outside of the laboratory's control limits; and (3) RPD values for the matrix spikes and duplicate matrix spikes indicate a high overall degree of analytical precision. The laboratory QC data indicate that the results reported herein are of adequate quality for evaluation of site groundwater conditions. #### 3.2.2 Groundwater Results The results of VOC analyses for each quarter for 2000 through 2002 are summarized in Table 3, which also shows the VOC results for the initial sampling event for monitoring wells MW-1, MW-2, and MW-3 in November 1999. The results for the 2002 monitoring events are also shown on Figure 8. PCE and its breakdown product TCE were the only VOCs detected in groundwater at the Site during the first through fourth quarters of 2002. For the first through fourth quarters of 2002, the concentrations of PCE detected ranged from 600 to 1,100 μ g/L in monitoring well MW-1, from 1,800 to 3,800 μ g/L in MW-2, and from 1.1 to 2.8 μ g/L in MW-4. PCE was not detected at MW-3 during the first through fourth quarters of 2002. The concentrations of TCE detected ranged from 68 to 190 μ g/L in monitoring well MW-1 and from 32 to 52 μ g/L in MW-2. TCE was not detected in MW-3 or MW-4. Several parameters were detected at low concentrations in monitoring well MW-1 during the first quarter 2000 sampling event that were not detected in November 1999 and then were not detected in subsequent quarters (see Table 3). However, this may be primarily an artifact of the variations in the detection limits reported by the laboratory: detection limits for these parameters were higher for other quarters than for the first quarter of 2000. Crawford has coordinated with the lab to obtain consistent detection limits for subsequent sampling events. However, due to the elevated PCE levels in the samples, the lab needs to dilute the samples and is unable to reach the low levels obtained in the first quarter 2000. #### 3.3 Discussion The results for the year 2002 quarterly monitoring events are generally similar to the results reported for the years 2000 and 2001 quarterly monitoring programs (see Figure 9). As noted in last year's quarterly monitoring summary report, variations in VOC concentrations correlate with variations in groundwater elevations at the site. An increase in VOC concentrations follows a rise in groundwater elevations, and a decrease in VOC concentration follows a fall in groundwater levels (compare Figures 3 and 9). The variations in VOC concentrations tend to lag one quarter behind the variations in groundwater elevation. The concentrations of PCE detected in groundwater samples from MW-1 and MW-2 exceed California's primary drinking water standard for PCE, which is 5 μ g/L. The concentrations of TCE detected in groundwater samples from MW-1 and MW-2 exceed California's primary drinking water standard for TCE, which is also 5 μ g/L. Although primary drinking water standards are exceeded in on-site groundwater, shallow groundwater in the vicinity of the site is not considered to be suitable as a source of drinking water (Groundworks, 1995; Hickenbottom and Muir, 1988). # **Professional Certification** Groundwater Monitoring Results First through Fourth Quarter 2002 Cargill Salt – Alameda Facility Alameda, California This report has been prepared by CRAWFORD CONSULTING, INC. with the professional certification of the California registered geologist whose signature appears below. Dana C. Johnston Dava C. Johnston sul (wheele Project Manager Mark C. Wheeler Principal Geologist R.G. 4563 # References - Alameda County Environmental Health Services (ACEHS), 1999. Letter to Cargill Salt: "Groundwater Monitoring Well Installation at 2016 Clement Avenue, Alameda, CA", May 7, 1999. - Crawford Consulting, Inc. (CCI), 1999. "Workplan for Groundwater Characterization and Monitoring Well Installation, 2016 Clement Avenue, Alameda, California", July 7, 1999. - , 2001. "Groundwater Monitoring Results, First through Fourth Quarter 2000, Cargill Salt Alameda Facility, Alameda, California", April 11, 2001 - Crawford Consulting, Inc. (CCI) and Conor Pacific/EFW, 2000. "Groundwater Characterization and Monitoring Well Installation, Cargill Salt Alameda Facility, Alameda, California", January 31, 2000. - Groundworks Environmental, Inc. (Groundworks), 1993. "Results of soil sampling and workplan for remedial activities, Alameda facility", October 19, 1993. - ______, 1995. Soil and Groundwater
Investigations and Remedial Activities, July 1993 September 1994, Cargill Salt Alameda Facility, Alameda, California, July 31, 1995. - Hickenbottom, K. S., and Muir, K.S., 1988. Geohydrology and Groundwater-Quality Overview of the East Bay Plain Area, Alameda County, California, 205 (j) Report, prepared for the California Regional Water Quality Control Board, San Francisco Bay Region, by the Alameda County Flood Control and Water Conservation District, June 1988. # Limitations This report and the evaluations presented herein have been prepared in accordance with generally accepted professional standards and is based solely on the scope of work and services described herein. This report has been prepared solely for the use of Cargill Salt for the purposes noted herein. Any use of this report, in whole or in part, by a third party for other than the purposes noted herein is at such party's sole risk. Table 1. Groundwater Level Data | Well/
Piezometer Date Elevation
(feet, MSL) Water
(feet) Elevation
(feet, MSL) from Las
Measuremen MW-1 11/16/1999 09:56 6.75 3.75 3.00 N/A MW-1 3/30/2000 10:09 6.75 2.81 3.94 0.99 MW-1 5/16/2000 09:43 6.75 3.32 3.43 -0.5 MW-1 11/30/2000 08:36 6.75 3.58 3.17 -0.20 MW-1 11/30/2000 08:36 6.75 3.53 3.22 3.23 0.00 MW-1 12/26/2001 08:47 6.75 3.15 3.60 0.3 MW-1 6/25/2001 10:19 6.75 3.53 3.22 -0.3 MW-1 12/17/2001 10:19 6.75 3.53 3.22 -0.3 MW-1 12/17/2001 10:47 6.75 3.23 3.52 -0.7 MW-1 12/17/2002 08:30 6.75 3.29 3.86 0.3 <tr< th=""><th></th><th></th><th></th><th>Casing</th><th>Depth to</th><th>Water</th><th>Elev. Change</th></tr<> | | | | Casing | Depth to | Water | Elev. Change | |--|--------------|------------|--------|-------------|----------|-------|--------------| | NW-1 11/16/1999 09:56 6.75 3.75 3.00 N/MW-1 3/30/2000 10:09 6.75 2.81 3.94 0.94 | Wel1/ | | | | - | | from Last | | MW-1 11/16/1999 09:56 6.75 3.75 3.00 N/2 MW-1 3/30/2000 10:09 6.75 2.81 3.94 0.94 MW-1 5/16/2000 09:43 6.75 3.32 3.43 4.5 MW-1 7/28/2000 09:11 6.75 3.58 3.17 0.22 MW-1 11/30/2000 08:36 6.75 3.52 3.23 0.00 MW-1 11/30/2000 08:36 6.75 3.52 3.23 0.00 MW-1 3/26/2001 10:19 6.75 3.15 3.60 0.3 MW-1 6/25/2001 10:19 6.75 3.15 3.60 0.3 MW-1 9/28/2001 09:32 6.75 3.96 2.79 0.4 MW-1 12/17/2001 10:47 6.75 3.23 3.52 0.79 MW-1 3/21/2002 07:28 6.75 2.89 3.86 0.3 MW-1 3/21/2002 08:03 6.75 3.50 3.25 0.70 MW-1 9/20/2002 08:03 6.75 3.50 3.25 0.6 MW-1 9/20/2002 08:03 6.75 3.50 3.25 0.6 MW-1 12/19/2002 08:30 6.75 3.50 3.25 0.6 MW-1 12/19/2002 08:30 6.75 3.80 3.25 0.6 MW-2 11/16/1999 11:15 9.81 5.22 4.59 N/2 MW-2 5/16/2000 09:35 9.81 2.80 7.01 2.4 MW-2 5/16/2000 09:15 9.81 5.22 4.59 N/2 MW-2 11/30/2000 08:32 9.81 4.75 5.06 0.10 MW-2 11/30/2000 08:32 9.81 4.75 5.06 0.10 MW-2 11/30/2001 12:12 9.81 4.75 5.06 0.10 MW-2 12/17/2001 10:44 9.81 4.75 5.06 0.10 MW-2 3/26/2001 12:12 9.81 4.75 5.06 0.10 MW-2 12/17/2001 10:44 3/28/2001 09:37 9.81 3.40 6.41 0.6 MW-2 9/20/2002 08:34 9.81 5.28 4.53 0.0.5 MW-2 12/17/2001 10:44 9.81 4.77 5.74 1.3 MW-2 9/20/2002 08:34 9.81 5.28 4.53 0.0.5 MW-3 3/30/2000 09:05 6.92 3.77 3.20 0.5 MW-3 3/30/2000 09:05 6.92 3.77 3.20 0.0.2 MW-3 3/30/2000 09:05 6.92 3.77 3.20 0.0.2 MW-3 3/36/2000 09:05 6.92 3.77 3.13 3.62 0.1 MW-3 3/28/2000 09:05 6.92 3.72 3.20 0.20 6/6/2002 08:05 6.92 3.55 3.55 3.30 0.00 MW-3 12/19/2000 08:25 6.92 3.82 3.10 3.82 0.10 MW-3 12/19/2000 | | Date | Time | | | | | | MW-1 3/30/2000 10:09 6.75 2.81 3.94 0.99 MW-1 5/16/2000 09:43 6.75 3.32 3.43 MW-1 7/28/2000 09:11 6.75 3.58 3.17 -0.2c MW-1 11/30/2000 08:36 6.75 3.52 3.23 0.00 MW-1 13/26/2001 08:47 6.75 3.15 3.60 0.37 MW-1 6/25/2001 10:19 6.75 3.53 3.22 -0.31 MW-1 6/25/2001 10:19 6.75 3.53 3.22 -0.31 MW-1 12/17/2001 10:47 6.75 3.53 3.22 -0.31 MW-1 12/17/2001 10:47 6.75 3.53 3.52 0.77 MW-1 3/21/2002 07:28 6.75 3.96 2.79 -0.44 MW-1 12/17/2001 09:32 6.75 3.86 0.39 MW-1 6/6/2002 08:03 6.75 3.50 3.25 -0.6 MW-1 9/20/2002 08:30 6.75 3.50 3.25 -0.6 MW-1 12/19/2002 08:38 6.75 3.13 3.62 0.77 MW-2 11/16/1999 11:15 9.81 5.22 4.59 N/ MW-2 3/30/2000 10:05 9.81 2.80 7.01 2.4 MW-2 5/16/2000 09:35 9.81 4.13 5.68 -1.3 MW-2 7/28/2000 09:17 9.81 4.85 4.96 -0.7 MW-2 11/130/2000 08:32 9.81 4.75 5.06 0.10 MW-2 9/28/2001 12:12 9.81 4.75 5.06 0.10 MW-2 9/28/2001 12:12 9.81 4.75 5.06 -1.4 MW-2 9/28/2001 12:12 9.81 4.75 5.06 -1.4 MW-2 9/28/2001 12:12 9.81 4.75 5.06 -1.4 MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.3 MW-2 9/28/2001 12:20 9.81 5.41 4.40 -0.6 MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.3 MW-2 9/28/2001 12:20 9.81 5.41 4.40 -0.6 MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.3 MW-2 9/28/2001 12:20 9.81 5.41 4.40 -0.6 MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.3 MW-2 9/20/2002 08:34 9.81 5.28 4.53 -0.5 MW-3 3/36/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 3/36/2000 09:06 6.92 3.74 3.44 3.48 -0.6 MW-3 3/36/2000 09:06 6.92 3.72 3.20 -0.2 MW-3 11/36/1999 15:43 6.92 3.72 3.20 -0.2 MW-3 11/36/2000 09:06 6.92 3.72 3.20 -0.2 MW-3 11/36/2000 09:06 6.92 3.72 3.20 -0.2 MW-3 3/26/2001 08:34 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 11/30/2000 08:34 6.92 3.51 3.41 0.2 MW-3 3/26/2001 10:38 6.92 3.66 3.27 -0.1 MW-3 11/30/2000 08:34 6.92 3.66 3.29 3.00 0.2 MW-3 12/19/2002 08:45 6.92 3.63 3.29 -0.5 MW-3 9/28/2001 00:38 6.92 3.66 3.27 -0.1 MW-3 12/19/2002 08:42 6.92 3.60 3.82 3.10 0.2 MW-3 12/19/2002 08:42 6.92 3.60 3.20 3.29 0.55 | 1 ICZOINCLCI | Date | 111110 | (loct, MBE) | (1001) | | | | MW-1 5/16/2000 09:43 6.75 3.32 3.43 -0.5 MW-1 7/28/2000 09:11 6.75 3.58 3.17 -0.22 MW-1 11/30/2000 08:36 6.75 3.52 3.23 0.00 MW-1 3/26/2001 08:47 6.75 3.15 3.60 0.33 MW-1 6/25/2001 10:19 6.75 3.53 3.22 -0.33 MW-1 9/28/2001 09:32 6.75 3.96 2.79 -0.44 MW-1 12/17/2001 10:47 6.75 3.23 3.52 0.77 MW-1 3/21/2002 07:28 6.75 3.23 3.52 0.73 MW-1 6/6/2002 08:03 6.75 3.86 2.79 -0.44 MW-1 12/17/2001 00:47 6.75 3.23 3.52 0.73 MW-1 6/6/2002 08:03 6.75 3.86 2.89 3.86 0.33 MW-1 12/19/2002 08:38 6.75 3.86 2.89 -0.34 MW-1 12/19/2002 08:38 6.75 3.13 3.62 0.77 MW-2 3/30/2000 10:05 9.81 2.80 7.01 2.44 MW-2 5/16/2000 09:35 9.81 4.13 5.68 -1.33 MW-2 7/28/2000 09:17 9.81 4.85 4.96 -0.77 MW-2 11/30/2000 08:32 9.81 4.75 5.06 0.14 MW-2 12/17/2001 10:44 9.81 4.75 5.06 0.14 MW-2 9/28/2001 12:20 9.81 5.41 4.40 -0.66 MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.33 MW-2 6/6/2002 08:34 9.81 5.28 4.53 MW-2 9/28/2000 09:37 9.81 3.40 6.41 0.66 MW-2 12/19/2002 08:34 9.81 5.28 4.53 MW-2 12/19/2000 08:35 9.81 4.70 5.11 -1.34 MW-2 9/28/2000 10:01 6.92 2.77 4.15 1.5 MW-3 3/30/2000 10:01 6.92 2.77 4.15 1.5 MW-3 3/30/2000 10:01 6.92 3.72 3.20 -0.2 MW-3 11/16/1999 15:43 6.92 3.73 3.19 -0.0 MW-3 11/16/1999 15:43 6.92 3.73 3.19 -0.0 MW-3 11/16/1999 15:43 6.92 3.73 3.19
-0.0 MW-3 12/19/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 12/19/2000 08:35 6.92 3.63 3.29 0.55 MW-3 12/19/2000 08:42 6.92 3.60 3.20 3.20 0.295 MW-3 12/19/2000 08:42 6.92 3.60 3.20 3.20 0.295 MW-3 12/19/2000 08:42 6.92 3.60 3.20 3.20 0.55 MW-4 12/17/2001 10:40 6.01 2.55 3.46 N MW-4 12/17/2001 10:40 6.01 2.55 3.46 N MW-4 12/17/2001 10:4 | MW-1 | 11/16/1999 | 09:56 | | | | NA | | MW-1 1/30/2000 09:11 6.75 3.58 3.17 -0.22 MW-1 11/30/2000 08:36 6.75 3.52 3.23 0.00 MW-1 3/26/2001 10:19 6.75 3.55 3.60 0.3 MW-1 9/28/2001 09:32 6.75 3.53 3.22 -0.3 MW-1 9/28/2001 09:32 6.75 3.53 3.22 -0.3 MW-1 12/17/2001 10:47 6.75 3.23 3.52 0.7 MW-1 12/17/2001 10:47 6.75 3.23 3.52 0.7 MW-1 3/21/2002 07:28 6.75 2.89 3.86 0.3 MW-1 9/20/2002 08:03 6.75 3.86 2.89 3.86 0.3 MW-1 9/20/2002 08:30 6.75 3.86 2.89 -0.3 MW-1 12/19/2002 08:38 6.75 3.13 3.62 0.7 MW-2 11/16/1999 11:15 9.81 5.22 4.59 MW-2 3/30/2000 10:05 9.81 2.80 7.01 2.4 MW-2 5/16/2000 09:35 9.81 4.13 5.68 -1.3 MW-2 7/28/2000 09:17 9.81 4.85 4.96 -0.7 MW-2 11/30/2000 08:32 9.81 4.13 5.68 -1.3 MW-2 11/30/2000 08:32 9.81 4.75 5.06 0.11 MW-2 9/28/2001 12:12 9.81 4.75 5.06 0.14 MW-2 9/28/2001 12:12 9.81 4.75 5.06 0.14 MW-2 9/28/2001 10:44 9.81 4.07 5.74 1.3 MW-2 9/28/2001 10:44 9.81 4.07 5.74 1.3 MW-2 9/28/2001 09:37 9.81 3.40 6.41 0.6 MW-2 12/17/2001 00:44 9.81 4.07 5.74 1.3 MW-2 9/28/2001 09:37 9.81 3.40 6.41 0.6 MW-2 12/19/2002 08:34 9.81 5.28 4.53 -0.5 MW-3 3/30/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 5/16/2000 09:66 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 09:66 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 09:34 6.92 3.73 3.19 -0.0 MW-3 11/16/1999 15:43 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 09:34 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 09:36 0.2 MW-3 11/30/2000 09:36 6.92 3.72 3.20 0.2 MW-3 11/30/2000 09:36 6.92 3.72 3.20 0.2 MW-3 11/30/2000 09:36 6.92 3.72 3.20 0.2 MW-3 11/30/2000 09:30 6.92 3.96 2.96 -0.3 MW-3 12/19/2002 08:42 6.92 3.10 3.82 0.1 MW-3 29/20/2002 08:42 6.92 3.10 3.82 0.1 MW-4 12/17/2001 10:40 6 | MW-1 | 3/30/2000 | 10:09 | | | | 0.94 | | MW-1 11/30/2000 08:36 6.75 3.52 3.23 0.00 MW-1 3/26/2001 08:47 6.75 3.15 3.60 0.3 MW-1 6/25/2001 10:19 6.75 3.53 3.22 -0.3 MW-1 9/28/2001 09:32 6.75 3.96 2.79 -0.4 MW-1 12/17/2001 10:47 6.75 3.23 3.52 0.7 MW-1 3/21/2002 07:28 6.75 2.89 3.86 0.3 MW-1 3/21/2002 08:03 6.75 3.50 3.25 -0.6 MW-1 9/20/2002 08:03 6.75 3.50 3.25 -0.6 MW-1 12/19/2002 08:30 6.75 3.50 3.25 -0.6 MW-1 12/19/2002 08:38 6.75 3.50 3.25 -0.6 MW-1 12/19/2002 08:38 6.75 3.13 3.62 0.7 MW-2 11/16/1999 11:15 9.81 5.22 4.59 N/2 MW-2 3/30/2000 10:05 9.81 2.80 7.01 2.4 MW-2 5/16/2000 09:35 9.81 4.13 5.68 -1.3 MW-2 7/28/2000 09:17 9.81 4.85 4.96 -0.7 MW-2 11/30/2000 08:32 9.81 4.75 5.06 0.16 MW-2 9/28/2001 08:40 9.81 3.28 6.53 1.4 MW-2 6/25/2001 12:20 9.81 5.41 4.40 -0.6 MW-2 12/17/2001 10:44 9.81 4.75 5.06 -1.4 MW-2 3/28/2002 08:31 9.81 4.75 5.06 -1.4 MW-2 3/28/2002 08:34 9.81 4.75 5.06 -1.4 MW-2 3/28/2002 08:34 9.81 3.28 6.53 MW-2 12/19/2002 08:45 9.81 3.37 6.44 1.3 MW-2 3/28/2000 09:37 9.81 3.40 6.41 0.6 MW-2 3/28/2001 10:10 6.92 2.77 4.15 1.3 MW-2 3/28/2000 09:46 6.92 3.44 3.48 -0.6 MW-3 11/16/1999 15:43 6.92 4.34 2.58 N/2 MW-3 3/30/2000 10:01 6.92 2.77 4.15 1.5 MW-3 3/30/2000 10:01 6.92 2.77 4.15 1.5 MW-3 3/36/2000 09:46 6.92 3.73 3.19 -0.0 MW-3 11/16/1999 15:43 6.92 3.73 3.19 -0.0 MW-3 11/16/1999 15:43 6.92 3.73 3.19 -0.0 MW-3 11/16/1999 15:43 6.92 3.74 3.28 -0.5 MW-3 11/16/1999 15:43 6.92 3.73 3.19 -0.0 MW-3 11/16/1999 15:43 6.92 3.73 3.90 2.96 -0.3 MW-3 11/16/1999 15:43 6.92 3.73 3.90 2.96 0.26 MW-3 11/16/1990 15:43 6.92 3.73 3.19 -0.0 MW-3 11/16/1990 15:43 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:34 6.92 3.73 3.19 -0.0 MW-3 11/16/1990 15:43 6.92 3.73 3.10 3.82 0.1 MW-3 12/19/2002 08:45 6.92 3.63 3.29 0.5 MW-3 12/19/2002 08:25 6.92 3.82 3.10 3.82 0.1 MW-3 12/19/2002 08:45 6.92 3.82 3.10 0.1 MW-3 12/19/2002 08:45 6.92 3.82 3.10 0.1 MW-3 12/19/2002 08:45 6.92 3.82 3.10 0.1 | MW-1 | 5/16/2000 | 09:43 | | | | -0.51 | | MW-1 3/26/2001 08:47 6.75 3.15 3.60 0.3' MW-1 6/25/2001 10:19 6.75 3.53 3.22 -0.3' MW-1 9/28/2001 09:32 6.75 3.53 3.22 -0.3' MW-1 12/17/2001 10:47 6.75 3.23 3.52 0.7' MW-1 12/17/2001 10:47 6.75 3.23 3.52 0.7' MW-1 3/21/2002 07:28 6.75 2.89 3.86 0.3' MW-1 9/20/2002 08:03 6.75 3.50 3.25 -0.6' MW-1 9/20/2002 08:30 6.75 3.86 2.89 -0.3' MW-1 12/19/2002 08:38 6.75 3.13 3.62 0.7' MW-2 11/16/1999 11:15 9.81 5.22 4.59 NW MW-2 3/30/2000 10:05 9.81 2.80 7.01 2.4' MW-2 5/16/2000 09:35 9.81 4.13 5.68 -1.3' MW-2 7/28/2000 09:17 9.81 4.85 4.96 -0.7' MW-2 11/30/2000 08:32 9.81 4.75 5.06 0.10' MW-2 3/26/2001 08:40 9.81 3.28 6.53 1.4' MW-2 3/26/2001 12:12 9.81 4.75 5.06 0.10' MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.3' MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.3' MW-2 9/20/2002 08:31 9.81 4.70 5.11 -1.3' MW-2 9/20/2002 08:34 9.81 5.28 4.53 -0.5' MW-2 12/19/2002 08:34 9.81 5.28 4.53 -0.5' MW-2 12/19/2000 09:05 6.92 3.74 4.5 1.5' MW-3 3/30/2000 09:05 6.92 3.72 3.20 -0.2' MW-3 11/16/1999 15:43 6.92 4.34 2.58 N/ MW-3 11/16/1999 15:43 6.92 4.34 3.48 -0.6' MW-3 11/16/1999 15:43 6.92 4.34 3.48 -0.6' MW-3 11/16/1999 15:43 6.92 4.34 3.48 -0.6' MW-3 11/16/1999 15:43 6.92 3.72 3.20 -0.2' 3.73 3.19 -0.0' MW-3 11/16/1999 15:43 6.92 3.72 3.20 -0.2' MW-3 11/16/1999 15:43 6.92 3.72 3.72 3.20 -0.2' MW-3 11/16/1999 15:43 6.92 3.75 3.70 3.19 -0.0' MW-3 11/19/2000 08:54 6.92 3.75 3.86 3.29 -0.5' MW-3 3/26/2001 08:54 6.92 3.51 3.80 3.60 | MW-1 | 7/28/2000 | | | | | -0.26 | | MW-1 6/25/2001 10:19 6.75 3.53 3.22 -0.38 MW-1 9/28/2001 09:32 6.75 3.96 2.79 -0.48 MW-1 12/17/2001 10:47 6.75 3.23 3.52 0.79 MW-1 3/21/2002 07:28 6.75 2.89 3.86 0.39 MW-1 6/6/2002 08:03 6.75 3.50 3.25 -0.6 MW-1 9/20/2002 08:30 6.75 3.50 3.25 -0.6 MW-1 9/20/2002 08:38 6.75 3.86 2.89 -0.39 MW-1 12/19/2002 08:38 6.75 3.13 3.62 0.79 MW-2 11/16/1999 11:15 9.81 5.22 4.59 N/2 MW-2 11/16/1999 11:15 9.81 5.22 4.59 N/2 MW-2 5/16/2000 09:35 9.81 2.80 7.01 2.44 MW-2 5/16/2000 09:35 9.81 4.13 5.68 -1.33 MW-2 7/28/2000 09:17 9.81 4.85 4.96 -0.79 MW-2 11/30/2000 08:32 9.81 4.75 5.06 0.14 MW-2 3/26/2001 08:40 9.81 3.28 6.53 1.49 MW-2 6/25/2001 12:12 9.81 4.75 5.06 0.14 MW-2 6/25/2001 12:12 9.81 4.75 5.06 -1.44 MW-2 9/28/2001 10:44 9.81 4.07 5.74 1.3 MW-2 3/28/2002 09:37 9.81 3.40 6.41 0.66 MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.3 MW-2 9/20/2002 08:34 9.81 5.28 4.53 -0.5 MW-2 12/19/2002 08:34 9.81 5.28 4.53 -0.5 MW-2 12/19/2002 08:34 9.81 5.28 4.53 -0.5 MW-2 12/19/2000 09:46 6.92 3.77 4.15 1.5 MW-3 11/16/1999 15:43 6.92 4.34 2.58 N/2 MW-3 11/30/2000 09:46 6.92 3.77 4.15 1.5 MW-3 11/16/1999 15:43 6.92 4.34 3.48 -0.6 MW-3 11/16/1999 15:43 6.92 3.73 3.19 -0.0 3/26/2001 08:54 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:54 6.92 3.75 3.82 3.64 0.6 MW-3 3/26/2001 08:54 6.92 3.75 3.82 3.10 3.82 0.1 MW-3 6/6/2002 08:07 6.92 3.63 3.29 -0.5 MW-3 9/20/2002 08:25 6.92 3.82 3.10 3.82 0.1 MW-3 12/19/2002 08:42 6.92 3.10 3.82 0.1 | MW-1 | 11/30/2000 | 08:36 | | | | 0.06 | | MW-1 9/28/2001 09:32 6.75 3.96 2.79 -0.42 MW-1 12/17/2001 10:47 6.75 3.23 3.52 0.73 MW-1 3/21/2002 07:28 6.75 2.89 3.86 0.33 MW-1 6/6/2002 08:03 6.75 3.50 3.25 -0.6 MW-1 9/20/2002 08:30 6.75 3.86 2.89 -0.33 MW-1 12/19/2002 08:38 6.75 3.13 3.62 0.73 MW-2 11/16/1999 11:15 9.81 5.22 4.59 N/4 MW-2 3/30/2000 10:05 9.81 2.80 7.01 2.44 MW-2 5/16/2000 09:35 9.81 4.13 5.68 -1.33 MW-2 7/28/2000 09:17 9.81 4.85 4.96 -0.73 MW-2 11/30/2000 08:32 9.81 4.75 5.06 0.14 MW-2 3/26/2001 08:40 9.81 3.28 6.53 1.44 MW-2 6/25/2001 12:12 9.81 4.75 5.06 -1.44 MW-2 9/28/2001 12:20 9.81 5.41 4.40 -0.66 MW-2 12/17/2001 10:44 9.81 5.41 4.40 -0.66 MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.33 MW-2 6/6/2002 08:31 9.81 4.70 5.11 -1.31 MW-2 9/28/2000 09:65 9.81 5.28 4.53 -0.5 MW-2 12/19/2002 08:34 9.81 5.28 4.53 -0.5 MW-2 12/19/2002 08:34 9.81 5.28 4.53 -0.5 MW-3 11/16/1999 15:43 6.92 4.34 2.58 N/4 MW-3 5/16/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 08:54 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:54 6.92 3.51 3.41 0.2 MW-3 3/26/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 9/28/2001 10:38 6.92 3.72 3.20 -0.2 MW-3 11/16/1909 15:43 6.92 3.51 3.41 0.2 MW-3 1/16/1909 15:43 6.92 3.72 3.20 -0.2 MW-3 11/16/1909 15:43 6.92 3.72 3.20 -0.2 MW-3 11/16/1909 15:43 6.92 3.73 3.19 -0.0 MW-3 5/16/2000 09:46 6.92 3.77 4.15 1.5 MW-3 5/16/2000 09:46 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 08:54 6.92 3.51 3.41 0.2 MW-3 3/26/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 3/26/2001 10:38 6.92 3.28 3.64 0.6 MW-3 3/26/2001 09:30 6.92 3.96 2.96 -0.3 MW-3 12/17/2001 10:38 6.92 3.28 3.64 0.6 MW-3 3/21/2002 08:25 6.92 3.82 3.10 3.82 0.1 MW-3 12/17/2001 10:38 6.92 3.10 3.82 0.1 MW-3 12/19/2002 08:45 6.92 3.10 3.82 0.1 | MW-1 | 3/26/2001 | | | | | 0.37 | | MW-1 12/17/2001 10:47 6.75 3.23 3.52 0.75 MW-1 3/21/2002 07:28 6.75 2.89 3.86 0.3 MW-1 6/6/2002 08:03 6.75 3.50 3.25 -0.6 MW-1 9/20/2002 08:30 6.75 3.86 2.89 -0.3 MW-1 12/19/2002 08:38 6.75 3.13 3.62 0.75 MW-2 11/16/1999 11:15 9.81 5.22 4.59 N/2 MW-2 3/30/2000 10:05 9.81 2.80 7.01 2.4 MW-2 5/16/2000 09:35 9.81 4.13 5.68 -1.3 MW-2 7/28/2000 09:17 9.81 4.85 4.96 -0.7 MW-2 11/30/2000 08:32 9.81 4.75 5.06 0.14 MW-2 3/26/2001 08:40 9.81 3.28 6.53 1.4 MW-2 6/25/2001 12:12 9.81 4.75 5.06 0.14 MW-2 9/28/2001 12:20 9.81 4.75 5.06 0.14 MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.3 MW-2 3/28/2002 09:37 9.81 3.40 6.41 0.66 MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.3 MW-2 3/28/2002 08:34 9.81 4.70 5.11 -1.3 MW-2 9/20/2002 08:34 9.81 5.28 4.53 -0.5 MW-2 12/19/2002 08:34 9.81 5.28 4.53 -0.5 MW-3 11/16/1999 15:43 6.92 4.34 2.58 N/2 MW-3 5/16/2000 09:06 6.92 3.77 4.15 MW-3 5/16/2000 09:06 6.92 3.72 3.20 -0.2 MW-3 3/26/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 3/26/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 3/26/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 9/28/2002 08:25 6.92 3.82 3.10 3.82 0.7 MW-3 12/17/2001 10:38 6.92 3.51 3.41 0.2 MW-3 3/26/2001 09:30 6.92 3.72 3.20 -0.2 MW-3 3/26/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 12/17/2001 10:38 6.92 3.51 3.41 0.2 MW-3 3/26/2001 09:30 6.92 3.72 3.20 -0.2 MW-3 3/26/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 9/28/2002 08:25 6.92 3.82 3.10 3.82 0.1 MW-3 12/17/2001 10:38 6.92 3.51 3.41 0.2 MW-3 9/28/2002 08:25 6.92 3.82 3.10 3.82 0.1 MW-3 12/17/2001 10:38 6.92 3.63 3.29 -0.5 MW-3
12/17/2001 10:38 6.92 3.82 3.10 0.1 MW-3 12/17/2001 10:40 6.01 2.55 3.46 N/2 MW-4 12/17/2001 10:40 6.01 2.55 3.46 N/2 MW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | MW-1 | 6/25/2001 | 10:19 | | 3.53 | | -0.38 | | MW-1 3/21/2002 07:28 6.75 2.89 3.86 0.36 MW-1 6/6/2002 08:03 6.75 3.50 3.25 -0.6 MW-1 9/20/2002 08:30 6.75 3.50 3.25 -0.6 MW-1 12/19/2002 08:38 6.75 3.13 3.62 0.7 MW-2 11/16/1999 11:15 9.81 5.22 4.59 N/2 MW-2 3/30/2000 10:05 9.81 2.80 7.01 2.45 MW-2 5/16/2000 09:35 9.81 4.13 5.68 -1.33 MW-2 7/28/2000 09:17 9.81 4.85 4.96 -0.7 MW-2 11/30/2000 08:32 9.81 4.75 5.06 0.16 MW-2 11/30/2000 08:32 9.81 4.75 5.06 0.16 MW-2 6/25/2001 12:12 9.81 5.24 6.53 1.45 MW-2 9/28/2001 12:20 9.81 5.41 4.40 -0.66 MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.3 MW-2 3/28/2002 09:37 9.81 4.70 5.74 1.3 MW-2 9/20/2002 08:34 9.81 4.70 5.11 -1.31 MW-2 9/20/2002 08:34 9.81 5.28 4.53 -0.5 MW-2 12/19/2002 08:34 9.81 5.28 4.53 -0.5 MW-3 11/16/1999 15:43 6.92 4.34 2.58 N/2 MW-3 5/16/2000 09:46 6.92 3.44 3.48 -0.6 MW-3 7/28/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 3/28/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 3/26/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 3/26/2001 10:21 6.92 3.65 3.29 -0.5 MW-3 9/20/2002 08:34 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 3/26/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 3/26/2001 10:38 6.92 3.96 2.96 -0.3 MW-3 3/21/2002 08:25 6.92 3.82 3.10 3.82 0.1 MW-3 12/17/2001 10:38 6.92 3.28 3.64 N/2 MW-3 3/21/2002 08:25 6.92 3.82 3.10 3.82 0.1 MW-3 12/17/2001 10:38 6.92 3.82 3.10 0.1 MW-3 12/17/2001 10:38 6.92 3.82 3.10 3.82 0.1 MW-3 12/17/2001 10:38 6.92 3.28 3.64 N/2 MW-3 3/28/2002 08:25 6.92 3.10 3.82 0.1 MW-3 12/17/2001 10:38 6.92 3.28 3.64 N/2 MW-3 12/17/2001 10:38 6.92 3.28 3.64 N/2 MW-3 3/26/2002 08:45 6.92 3.10 3.82 0.1 MW-3 12/17/2001 10:38 6.92 3.28 3.64 N/2 MW-3 3/26/2002 08:45 6.92 3.10 3.82 0.1 MW-3 12/17/2001 10:38 6.92 3.28 3.63 3.29 -0.5 MW-3 12/17/2001 10:40 6.01 2.55 3.46 N/2 MW-4 12/17/2001 10:40 6.01 2.55 3.46 N/2 MW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | MW-1 | 9/28/2001 | 09:32 | 6.75 | | | -0.43 | | MW-1 6/6/2002 08:03 6.75 3.50 3.25 -0.6 MW-1 9/20/2002 08:30 6.75 3.86 2.89 -0.3 MW-1 12/19/2002 08:38 6.75 3.13 3.62 0.7 MW-2 11/16/1999 11:15 9.81 5.22 4.59 N/ MW-2 3/30/2000 10:05 9.81 2.80 7.01 2.4 MW-2 5/16/2000 09:35 9.81 4.13 5.68 -1.3 MW-2 7/28/2000 09:17 9.81 4.85 4.96 -0.7 MW-2 11/30/2000 08:32 9.81 4.75 5.06 0.11 MW-2 3/26/2001 08:40 9.81 3.28 6.53 1.4 MW-2 6/25/2001 12:12 9.81 4.75 5.06 -1.4 MW-2 9/28/2001 12:20 9.81 4.75 5.06 -1.4 MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.3 MW-2 3/28/2002 09:37 9.81 3.40 6.41 0.6 MW-2 3/28/2002 08:11 9.81 4.70 5.11 -1.3 MW-2 9/20/2002 08:34 9.81 3.37 6.44 1.9 MW-2 12/19/2002 08:45 9.81 3.37 6.44 1.9 MW-3 11/16/1999 15:43 6.92 4.34 2.58 N/ MW-3 3/30/2000 10:01 6.92 2.77 4.15 1.5 MW-3 5/16/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 08:34 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:54 6.92 3.73 3.19 -0.0 MW-3 12/17/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 9/28/2001 09:30 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 3/26/2001 08:54 6.92 3.65 3.27 -0.1 MW-3 9/28/2001 09:30 6.92 3.65 3.27 -0.1 MW-3 12/17/2001 10:38 6.92 3.65 3.27 -0.1 MW-3 12/19/2002 08:42 6.92 3.10 3.82 0.1 MW-3 12/17/2001 10:38 6.92 3.68 3.64 0.6 MW-3 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | MW-1 | 12/17/2001 | 10:47 | 6.75 | 3.23 | | 0.73 | | MW-1 9/20/2002 08:30 6.75 3.86 2.89 -0.30 MW-1 12/19/2002 08:38 6.75 3.13 3.62 0.77 MW-2 11/16/1999 11:15 9.81 5.22 4.59 N/ MW-2 3/30/2000 10:05 9.81 2.80 7.01 2.4: MW-2 5/16/2000 09:35 9.81 4.13 5.68 -1.3: MW-2 7/28/2000 09:17 9.81 4.85 4.96 -0.7: MW-2 11/30/2000 08:32 9.81 4.75 5.06 0.16 MW-2 11/30/2001 08:40 9.81 3.28 6.53 1.4: MW-2 6/25/2001 12:12 9.81 4.75 5.06 0.16 MW-2 9/28/2001 12:20 9.81 5.41 4.40 -0.6 MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.3: MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.3: MW-2 9/28/2002 09:37 9.81 3.40 6.41 0.6 MW-2 6/6/2002 08:11 9.81 4.70 5.11 -1.3: MW-2 9/20/2002 08:34 9.81 5.28 4.53 -0.5: MW-2 12/19/2002 08:45 9.81 3.37 6.44 1.9 MW-3 11/16/1999 15:43 6.92 4.34 2.58 N/ MW-3 3/30/2000 10:01 6.92 2.77 4.15 1.5 MW-3 5/16/2000 09:46 6.92 3.74 3.49 3.48 -0.6 MW-3 7/28/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 9/28/2001 08:54 6.92 3.51 3.41 0.2 MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 12/17/2001 10:38 6.92 3.51 3.41 0.2 MW-3 12/17/2001 10:38 6.92 3.63 3.29 -0.5 MW-3 12/17/2001 10:38 6.92 3.82 3.64 0.6 MW-3 3/28/2002 08:25 6.92 3.82 3.10 3.82 0.1 MW-3 6/6/2002 08:42 6.92 3.10 3.82 0.1 MW-3 12/17/2001 10:40 6.01 2.55 3.46 N/ MW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | MW-1 | 3/21/2002 | 07:28 | 6.75 | 2.89 | | 0.34 | | MW-1 12/19/2002 08:38 6.75 3.13 3.62 0.7. MW-2 11/16/1999 11:15 9.81 5.22 4.59 N/4 MW-2 3/30/2000 10:05 9.81 2.80 7.01 2.4. MW-2 5/16/2000 09:35 9.81 4.13 5.68 -1.3. MW-2 7/28/2000 09:17 9.81 4.85 4.96 -0.7. MW-2 11/30/2000 08:32 9.81 4.75 5.06 0.10 MW-2 3/26/2001 08:40 9.81 3.28 6.53 1.4. MW-2 6/25/2001 12:12 9.81 4.75 5.06 -1.4. MW-2 9/28/2001 12:20 9.81 4.75 5.06 -1.4. MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.3. MW-2 12/18/2002 09:37 9.81 3.40 6.41 0.6 MW-2 3/28/2002 09:37 9.81 3.40 6.41 0.6 MW-2 6/6/2002 08:11 9.81 4.70 5.71 -1.3 MW-2 9/20/2002 08:34 9.81 5.28 4.53 -0.5 MW-2 12/19/2002 08:45 9.81 3.37 6.44 1.9 MW-3 11/16/1999 15:43 6.92 4.34 2.58 N/4 MW-3 3/30/2000 10:01 6.92 2.77 4.15 1.5 MW-3 3/16/2000 09:46 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 08:54 6.92 3.71 3.19 -0.0 MW-3 3/26/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 9/28/2001 10:38 6.92 3.96 2.96 -0.3 MW-3 12/17/2001 10:38 6.92 3.63 3.29 -0.5 MW-3 12/17/2001 10:38 6.92 3.28 3.64 0.6 MW-3 9/28/2002 08:07 6.92 3.63 3.29 -0.5 MW-3 12/17/2001 10:38 6.92 3.63 3.29 -0.5 MW-3 12/17/2001 10:38 6.92 3.63 3.29 -0.5 MW-3 9/20/2002 08:25 6.92 3.82 3.10 3.82 0.1 MW-3 12/17/2001 10:40 6.01 2.55 3.46 N/4 MW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | MW-1 | 6/6/2002 | 08:03 | 6.75 | 3.50 | | -0.61 | | MW-2 11/16/1999 11:15 9.81 5.22 4.59 N/2 MW-2 3/30/2000 10:05 9.81 2.80 7.01 2.44 MW-2 5/16/2000 09:35 9.81 4.13 5.68 -1.33 MW-2 7/28/2000 09:17 9.81 4.85 4.96 -0.7 MW-2 11/30/2000 08:32 9.81 4.75 5.06 0.14 MW-2 3/26/2001 08:40 9.81 3.28 6.53 1.44 MW-2 6/25/2001 12:12 9.81 4.75 5.06 -1.4 MW-2 9/28/2001 12:20 9.81 5.41 4.40 -0.6 MW-2 12/17/2001 10:44 9.81 5.41 4.40 -0.6 MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.3 MW-2 3/28/2002 09:37 9.81 3.40 6.41 0.6 MW-2 6/6/2002 08:11 9.81 4.70 5.11 -1.31 MW-2 9/20/2002 08:34 9.81 5.28 4.53 -0.5 MW-2 12/19/2002 08:45 9.81 3.37 6.44 1.9 MW-3 11/16/1999 15:43 6.92 4.34 2.58 N/2 MW-3 3/30/2000 10:01 6.92 2.77 4.15 1.5 MW-3 5/16/2000 09:46 6.92 3.44 3.48 -0.6 MW-3 7/28/2000 09:05 6.92 3.72 3.20 40.2 MW-3 11/30/2000 08:34 6.92 3.71 3.40 0.2 MW-3 11/30/2000 08:34 6.92 3.72 3.20 40.2 MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 11/30/2000 08:34 6.92 3.72 3.20 40.2 MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 3/28/2001 09:30 6.92 3.65 3.27 -0.1 MW-3 9/28/2001 09:30 6.92 3.65 3.27 -0.1 MW-3 9/28/2001 09:30 6.92 3.65 3.27 -0.1 MW-3 1/21/2001 10:38 6.92 3.82 3.10 3.82 0.1 MW-3 6/6/2002 08:07 6.92 3.63 3.29 -0.5 MW-3 9/20/2002 08:25 6.92 3.82 3.10 3.82 0.1 MW-3 12/17/2001 10:40 6.01 2.55 3.46 N/2 MW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | MW-1 | 9/20/2002 | 08:30 | 6.75 | 3.86 | | -0.36 | | MW-2 3/30/2000 10:05 9.81 2.80 7.01 2.4' MW-2 5/16/2000 09:35 9.81 4.13 5.68 -1.3' MW-2 7/28/2000 09:17 9.81 4.85 4.96 -0.7' MW-2 11/30/2000 08:32 9.81 4.75 5.06 0.1' MW-2 3/26/2001 08:40 9.81 3.28 6.53 1.4' MW-2 6/25/2001 12:12 9.81 4.75 5.06 -1.4' MW-2 9/28/2001 12:20 9.81 5.41 4.40 -0.6 MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.3' MW-2 3/28/2002 09:37 9.81 3.40 6.41 0.6' MW-2 3/28/2002 09:37 9.81 3.40 6.41 0.6' MW-2 12/17/2001 10:44 9.81 4.70 5.11 -1.3' MW-2 9/20/2002 08:34 9.81 5.28 4.53 -0.5' MW-2 12/19/2002 08:45 9.81 3.37 6.44 1.9 MW-3 11/16/1999 15:43 6.92 4.34 2.58 N/ MW-3 3/30/2000 10:01 6.92 2.77 4.15 1.5' MW-3 5/16/2000 09:46 6.92 3.44 3.48 -0.6' MW-3 7/28/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:54 6.92 3.51 3.41 0.2 MW-3 9/28/2001 10:21 6.92 3.55 3.27 -0.1' MW-3 9/28/2001 10:21 6.92 3.65 3.27 -0.1' MW-3 9/28/2001 10:38 6.92 3.96 2.96 -0.3 MW-3 12/17/2001 10:38 6.92 3.28 3.64 0.6 MW-3 9/28/2001 09:30 6.92 3.96 2.96 -0.3 MW-3 12/17/2001 10:38 6.92 3.82 3.10 3.82 0.1 MW-3 6/6/2002 08:05 6.91 3.06 2.95 -0.5 MW-4 12/17/2001 10:40 6.01 2.55 3.46 N/ MW-3 12/19/2002 08:42 6.92 3.10 3.82 0.7 | MW-1 | 12/19/2002 | 08:38 | 6.75 | 3.13 | 3.62 | 0.73 | | MW-2 5/16/2000 09:35 9.81 4.13 5.68 -1.33 MW-2 7/28/2000 09:17 9.81 4.85 4.96 -0.7 MW-2 11/30/2000 08:32 9.81 4.75 5.06 0.10 MW-2 3/26/2001 08:40 9.81 3.28 6.53 1.44 MW-2 6/25/2001 12:12 9.81 4.75 5.06 -1.4 MW-2 9/28/2001 12:20 9.81 5.41 4.40 -0.6 MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.3 MW-2 3/28/2002 09:37 9.81 3.40 6.41 0.6 MW-2 3/28/2002 08:11 9.81 4.70 5.11 -1.33 MW-2 6/6/2002 08:11 9.81 4.70 5.11 -1.33 MW-2 9/20/2002 08:34 9.81 5.28 4.53 -0.5 MW-2 12/19/2002 08:45 9.81 3.37 6.44 1.9 MW-3 11/16/1999 15:43 6.92 4.34 2.58 N/4 MW-3 3/30/2000 10:01 6.92 2.77 4.15 1.5 MW-3 3/30/2000 09:46 6.92 3.44 3.48 -0.6 MW-3 7/28/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:54 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 9/28/2001 09:30 6.92 3.96 2.96 -0.3 MW-3 12/17/2001 10:38 6.92 3.28 3.64 0.6 MW-3 3/21/2002 08:25 6.92 3.28 3.63 3.29 -0.5 MW-3 12/17/2001 10:38 6.92 3.28 3.63 3.29 -0.5 MW-3 12/17/2001 10:38 6.92 3.28 3.64 0.6 MW-3 3/21/2002 08:07 6.92 3.28 3.63 3.29 -0.5 MW-3 12/17/2001 10:38 6.92 3.82 3.10 3.82 0.1 MW-3 12/17/2001 10:40 6.01 2.55 3.46 N/4 MW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | MW-2 | 11/16/1999 | 11:15 | 9.81 | 5.22 | | NA | | MW-2 7/28/2000 09:17 9.81 4.85 4.96 -0.7 MW-2 11/30/2000 08:32 9.81 4.75 5.06 0.16 MW-2 3/26/2001 08:40 9.81 3.28 6.53 1.4 MW-2
6/25/2001 12:12 9.81 4.75 5.06 -1.44 MW-2 9/28/2001 12:20 9.81 5.41 4.40 -0.6 MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.3 MW-2 3/28/2002 09:37 9.81 3.40 6.41 0.6 MW-2 6/6/2002 08:11 9.81 4.70 5.11 -1.3 MW-2 9/20/2002 08:34 9.81 5.28 4.53 -0.5 MW-2 12/19/2002 08:45 9.81 3.37 6.44 1.9 MW-3 11/16/1999 15:43 6.92 4.34 2.58 N/2 MW-3 3/30/2000 10:01 6.92 2.77 4.15 1.5 MW-3 5/16/2000 09:46 6.92 3.44 3.48 -0.6 MW-3 7/28/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:54 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:54 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:54 6.92 3.73 3.19 -0.0 MW-3 1/17/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 9/28/2001 09:30 6.92 3.96 2.96 -0.3 MW-3 12/17/2001 10:38 6.92 3.28 3.64 0.6 MW-3 3/21/2002 08:25 6.92 3.28 3.63 3.29 -0.5 MW-3 9/20/2002 08:25 6.92 3.82 3.10 3.82 0.1 MW-3 12/17/2001 10:40 6.01 2.55 3.46 N/2 MW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | MW-2 | 3/30/2000 | 10:05 | 9.81 | 2.80 | | 2.42 | | MW-2 11/30/2000 08:32 9.81 4.75 5.06 0.16 MW-2 3/26/2001 08:40 9.81 3.28 6.53 1.44 MW-2 6/25/2001 12:12 9.81 4.75 5.06 -1.44 MW-2 9/28/2001 12:20 9.81 5.41 4.40 -0.6 MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.3 MW-2 3/28/2002 09:37 9.81 3.40 6.41 0.6 MW-2 6/6/2002 08:11 9.81 4.70 5.11 -1.36 MW-2 6/6/2002 08:34 9.81 5.28 4.53 -0.5 MW-2 12/19/2002 08:34 9.81 3.37 6.44 1.9 MW-3 11/16/1999 15:43 6.92 4.34 2.58 N/ MW-3 3/30/2000 10:01 6.92 2.77 4.15 1.5 MW-3 5/16/2000 09:46 6.92 3.44 3.48 -0.6 MW-3 7/28/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:54 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:54 6.92 3.51 3.41 0.2 MW-3 9/28/2001 09:30 6.92 3.65 3.27 -0.1 MW-3 9/28/2001 09:30 6.92 3.65 3.27 -0.1 MW-3 12/17/2001 10:38 6.92 3.28 3.64 0.6 MW-3 3/21/2002 08:07 6.92 3.63 3.29 -0.5 MW-3 12/17/2001 10:38 6.92 3.82 3.10 3.82 0.1 MW-3 12/17/2001 10:40 6.01 2.55 3.46 N/ MW-3 12/17/2001 10:40 6.01 2.55 3.46 N/ MW-4 12/17/2001 10:40 6.01 2.55 3.46 N/ MW-4 12/17/2001 10:40 6.01 2.55 3.46 N/ MW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | MW-2 | 5/16/2000 | 09:35 | 9.81 | 4.13 | 5.68 | -1.33 | | MW-2 3/26/2001 08:40 9.81 3.28 6.53 1.4' MW-2 6/25/2001 12:12 9.81 4.75 5.06 -1.4' MW-2 9/28/2001 12:20 9.81 5.41 4.40 -0.6 MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.3 MW-2 3/28/2002 09:37 9.81 3.40 6.41 0.6' MW-2 13/28/2002 08:11 9.81 4.70 5.11 -1.3' MW-2 6/6/2002 08:11 9.81 4.70 5.11 -1.3' MW-2 9/20/2002 08:34 9.81 5.28 4.53 -0.5' MW-2 12/19/2002 08:45 9.81 3.37 6.44 1.9 MW-3 11/16/1999 15:43 6.92 4.34 2.58 N/ MW-3 3/30/2000 10:01 6.92 2.77 4.15 1.5' MW-3 5/16/2000 09:46 6.92 3.44 3.48 -0.6' MW-3 7/28/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 08:34 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:54 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:54 6.92 3.51 3.41 0.2 MW-3 6/25/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 9/28/2001 09:30 6.92 3.96 2.96 -0.3 MW-3 12/17/2001 10:38 6.92 3.28 3.64 0.6 MW-3 3/21/2002 07:28 6.92 3.10 3.82 0.1 MW-3 6/6/2002 08:07 6.92 3.82 3.10 3.82 0.1 MW-3 12/19/2002 08:42 6.92 3.10 3.82 0.1 MW-3 12/19/2002 08:42 6.92 3.10 3.82 0.7 MW-4 12/17/2001 10:40 6.01 2.55 3.46 N/ MW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | MW-2 | 7/28/2000 | 09:17 | 9.81 | 4.85 | 4.96 | -0.72 | | MW-2 3/26/2001 08:40 9.81 3.28 6.53 1.4' MW-2 6/25/2001 12:12 9.81 4.75 5.06 -1.4' MW-2 9/28/2001 12:20 9.81 5.41 4.40 -0.6 MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.3- MW-2 3/28/2002 09:37 9.81 3.40 6.41 0.6 MW-2 6/6/2002 08:11 9.81 4.70 5.11 -1.3 MW-2 9/20/2002 08:34 9.81 5.28 4.53 -0.5 MW-2 12/19/2002 08:45 9.81 3.37 6.44 1.9 MW-3 11/16/1999 15:43 6.92 4.34 2.58 N/4 MW-3 3/30/2000 10:01 6.92 2.77 4.15 1.5 MW-3 5/16/2000 09:46 6.92 3.44 3.48 -0.6 MW-3 7/28/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 08:34 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:54 6.92 3.51 3.41 0.2 MW-3 6/25/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 9/28/2001 09:30 6.92 3.96 2.96 -0.3 MW-3 12/17/2001 10:38 6.92 3.28 3.64 0.6 MW-3 3/26/2002 08:05 6.92 3.28 3.63 3.29 -0.5 MW-3 9/20/2002 08:25 6.92 3.82 3.10 3.82 0.1 MW-3 6/6/2002 08:07 6.92 3.63 3.29 -0.5 MW-3 12/19/2002 08:42 6.92 3.10 3.82 0.1 MW-3 12/19/2002 08:25 6.92 3.82 3.10 3.82 0.1 MW-3 12/19/2002 08:25 6.92 3.82 3.10 3.82 0.1 MW-4 12/17/2001 10:40 6.01 2.55 3.46 N/4 MW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | MW-2 | 11/30/2000 | 08:32 | 9.81 | 4.75 | 5.06 | 0.10 | | MW-2 6/25/2001 12:12 9.81 4.75 5.06 -1.4′ MW-2 9/28/2001 12:20 9.81 5.41 4.40 -0.6′ MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.3· MW-2 3/28/2002 09:37 9.81 3.40 6.41 0.6′ MW-2 6/6/2002 08:11 9.81 4.70 5.11 -1.3′ MW-2 9/20/2002 08:34 9.81 5.28 4.53 -0.5′ MW-2 12/19/2002 08:45 9.81 3.37 6.44 1.9 MW-3 11/16/1999 15:43 6.92 4.34 2.58 N/ MW-3 3/30/2000 10:01 6.92 2.77 4.15 1.5′ MW-3 5/16/2000 09:46 6.92 3.44 3.48 -0.6′ MW-3 7/28/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 08:34 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 10:01 6.92 2.77 4.15 1.5′ MW-3 7/28/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 10:01 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 10:04 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:54 6.92 3.51 3.41 0.2 MW-3 6/25/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 9/28/2001 09:30 6.92 3.96 2.96 -0.3 MW-3 12/17/2001 10:38 6.92 3.28 3.64 0.6 MW-3 3/21/2002 07:28 6.92 3.10 3.82 0.1 MW-3 9/20/2002 08:25 6.92 3.82 3.63 3.29 -0.5 MW-3 12/19/2002 08:42 6.92 3.10 3.82 0.1 MW-4 12/17/2001 10:40 6.01 2.55 3.46 N/ MW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | | | 08:40 | | 3.28 | 6.53 | 1.47 | | MW-2 9/28/2001 12:20 9.81 5.41 4.40 -0.66 MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.3 MW-2 3/28/2002 09:37 9.81 3.40 6.41 0.6 MW-2 6/6/2002 08:11 9.81 4.70 5.11 -1.3 MW-2 9/20/2002 08:34 9.81 5.28 4.53 -0.5 MW-2 12/19/2002 08:45 9.81 3.37 6.44 1.9 MW-3 11/16/1999 15:43 6.92 4.34 2.58 N/4 MW-3 3/30/2000 10:01 6.92 2.77 4.15 1.5 MW-3 5/16/2000 09:46 6.92 3.44 3.48 -0.6 MW-3 7/28/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:54 6.92 3.51 3.41 0.2 MW-3 6/25/2001 | | | | | 4.75 | 5.06 | -1.47 | | MW-2 12/17/2001 10:44 9.81 4.07 5.74 1.3 MW-2 3/28/2002 09:37 9.81 3.40 6.41 0.6 MW-2 6/6/2002 08:11 9.81 4.70 5.11 -1.3 MW-2 9/20/2002 08:34 9.81 5.28 4.53 -0.5 MW-2 12/19/2002 08:45 9.81 3.37 6.44 1.9 MW-3 11/16/1999 15:43 6.92 4.34 2.58 MW-3 3/30/2000 10:01 6.92 2.77 4.15 1.5 MW-3 5/16/2000 09:46 6.92 3.44 3.48 -0.6 MW-3 7/28/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:54 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:54 6.92 3.51 3.41 0.2 MW-3 6/25/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 9/28/2001 09:30 6.92 3.96 2.96 -0.3 MW-3 12/17/2001 10:38 6.92 3.28 3.64 0.6 MW-3 3/21/2002 07:28 6.92 3.28 3.64 0.6 MW-3 3/21/2002 07:28 6.92 3.10 3.82 0.1 MW-3 9/20/2002 08:25 6.92 3.10 3.82 0.1 MW-3 9/20/2002 08:25 6.92 3.82 3.10 -0.1 MW-3 9/20/2002 08:25 6.92 3.82 3.10 3.82 0.1 MW-3 12/19/2002 08:42 6.92 3.10 3.82 0.7 MW-4 12/17/2001 10:40 6.01 2.55 3.46 N/2 MW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | | | | | 5.41 | 4.40 | -0.66 | | MW-2 3/28/2002 09:37 9.81 3.40 6.41 0.66 MW-2 6/6/2002 08:11 9.81 4.70 5.11 -1.36 MW-2 9/20/2002 08:34 9.81 5.28 4.53 -0.56 MW-2 12/19/2002 08:45 9.81 3.37 6.44 1.9 MW-3 11/16/1999 15:43 6.92 4.34 2.58 N/A MW-3 3/30/2000 10:01 6.92 2.77 4.15 1.5 MW-3 5/16/2000 09:46 6.92 3.44 3.48 -0.6 MW-3 7/28/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:54 6.92 3.51 3.41 0.22 MW-3 6/25/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 9/28/2001 09:30 6.92 3.96 2.96 -0.3 MW-3 12/17/2001 10:38 6.92 3.28 3.64 0.6 MW-3 3/21/2002 07:28 6.92 3.10 3.82 0.1 MW-3 6/6/2002 08:07 6.92 3.63 3.29 -0.5 MW-3 9/20/2002 08:25 6.92 3.82 3.10 3.82 0.1 MW-3 12/19/2002 08:42 6.92 3.10 3.82 0.7 MW-4 12/17/2001 10:40 6.01 2.55 3.46 N/A MW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | | | | | | 5.74 | 1.34 | | MW-2 6/6/2002 08:11 9.81 4.70 5.11 -1.31 MW-2 9/20/2002 08:34 9.81 5.28 4.53 -0.55 MW-2 12/19/2002 08:45 9.81 3.37 6.44 1.9 MW-3 11/16/1999 15:43 6.92 4.34 2.58 NAMW-3 3/30/2000 10:01 6.92 2.77 4.15 1.55 MW-3 5/16/2000 09:46 6.92 3.44 3.48 -0.66 MW-3 7/28/2000 09:05 6.92 3.72 3.20 -0.22 MW-3 11/30/2000 08:34 6.92 3.72 3.20 -0.22 MW-3 11/30/2000 08:54 6.92 3.73 3.19 -0.00 MW-3 3/26/2001 08:54 6.92 3.51 3.41 0.22 MW-3 6/25/2001 10:21 6.92 3.65 3.27 -0.15 MW-3 9/28/2001 09:30 6.92 3.96 2.96 -0.33 MW-3 12/17/2001 10:38 6.92 3.28 3.64 0.66 MW-3 3/21/2002 07:28 6.92 3.10 3.82 0.1 MW-3 6/25/2002 08:05 6.92 3.63 3.29 -0.55 MW-3 9/20/2002 08:25 6.92 3.10 3.82 0.1 MW-3 9/20/2002 08:25 6.92 3.10 3.82 0.7 MW-3 12/19/2002 08:42 6.92 3.10 3.82 0.7 MW-4 12/17/2001 10:40 6.01 2.55 3.46 NAMW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | | | | | 3.40 | 6.41 | 0.67 | | MW-2 9/20/2002 08:34 9.81 5.28 4.53 -0.50 MW-2 12/19/2002 08:45 9.81 3.37 6.44 1.9 MW-3 11/16/1999 15:43 6.92 4.34 2.58 NA MW-3 3/30/2000 10:01 6.92 2.77 4.15 1.5 MW-3 5/16/2000 09:46 6.92 3.44 3.48 -0.6 MW-3 7/28/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:54 6.92 3.51 3.41 0.2 MW-3 6/25/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 9/28/2001 09:30 6.92 3.96 2.96 -0.3 MW-3 12/17/2001 10:38 6.92 3.28 3.64 0.6 MW-3 3/21/2002 07:28 6.92 3.10 3.82 0.1 MW-3 9/20/2002 | | | | | 4.70 | 5.11 | -1.30 | | MW-2 12/19/2002 08:45 9.81 3.37 6.44 1.9 MW-3 11/16/1999 15:43 6.92 4.34 2.58 N// MW-3 3/30/2000 10:01 6.92 2.77 4.15 1.5 MW-3 5/16/2000 09:46 6.92 3.44 3.48 -0.6 MW-3 7/28/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:54 6.92 3.51 3.41 0.2 MW-3 6/25/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 9/28/2001 09:30 6.92 3.96 2.96 -0.3 MW-3 12/17/2001 10:38 6.92 3.28 3.64 0.6 MW-3 3/21/2002 07:28 6.92 3.10 3.82 0.1 MW-3 9/20/2002 08:07 6.92 3.63 3.29 -0.5 MW-3 12/19/2002 | | | 08:34 | | 5.28 | 4.53 | -0.58 | | MW-3 3/30/2000 10:01 6.92 2.77 4.15 1.5 MW-3 5/16/2000 09:46 6.92 3.44 3.48 -0.6 MW-3 7/28/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3
3/26/2001 08:54 6.92 3.51 3.41 0.22 MW-3 6/25/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 9/28/2001 09:30 6.92 3.96 2.96 -0.3 MW-3 12/17/2001 10:38 6.92 3.28 3.64 0.6 MW-3 3/21/2002 07:28 6.92 3.10 3.82 0.1 MW-3 6/6/2002 08:07 6.92 3.63 3.29 -0.5 MW-3 9/20/2002 08:25 6.92 3.82 3.10 3.82 0.1 MW-3 9/20/2002 08:25 6.92 3.82 3.10 3.82 0.1 MW-3 12/19/2002 08:42 6.92 3.10 3.82 0.7 MW-4 12/17/2001 10:40 6.01 2.55 3.46 NM-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | MW-2 | 12/19/2002 | 08:45 | 9.81 | 3.37 | 6.44 | 1.91 | | MW-3 5/16/2000 09:46 6.92 3.44 3.48 -0.6 MW-3 7/28/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:54 6.92 3.51 3.41 0.2 MW-3 6/25/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 9/28/2001 09:30 6.92 3.96 2.96 -0.3 MW-3 12/17/2001 10:38 6.92 3.28 3.64 0.6 MW-3 3/21/2002 07:28 6.92 3.10 3.82 0.1 MW-3 6/6/2002 08:07 6.92 3.63 3.29 -0.5 MW-3 9/20/2002 08:25 6.92 3.82 3.10 3.82 0.1 MW-3 9/20/2002 08:25 6.92 3.82 3.10 3.82 0.1 MW-3 12/19/2002 08:42 6.92 3.10 3.82 0.7 MW-4 12/17/2001 10:40 6.01 2.55 3.46 NW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | MW-3 | 11/16/1999 | 15:43 | 6.92 | 4.34 | 2.58 | NA | | MW-3 5/16/2000 09:46 6.92 3.44 3.48 -0.66 MW-3 7/28/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:54 6.92 3.51 3.41 0.2 MW-3 6/25/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 9/28/2001 09:30 6.92 3.96 2.96 -0.3 MW-3 12/17/2001 10:38 6.92 3.28 3.64 0.6 MW-3 3/21/2002 07:28 6.92 3.10 3.82 0.1 MW-3 9/20/2002 08:07 6.92 3.63 3.29 -0.5 MW-3 9/20/2002 08:25 6.92 3.82 3.10 -0.1 MW-4 12/17/2001 10:40 6.01 2.55 3.46 N/2 MW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | MW-3 | 3/30/2000 | 10:01 | 6.92 | 2.77 | | 1.57 | | MW-3 7/28/2000 09:05 6.92 3.72 3.20 -0.2 MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:54 6.92 3.51 3.41 0.2 MW-3 6/25/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 9/28/2001 09:30 6.92 3.96 2.96 -0.3 MW-3 12/17/2001 10:38 6.92 3.28 3.64 0.6 MW-3 3/21/2002 07:28 6.92 3.10 3.82 0.1 MW-3 6/6/2002 08:07 6.92 3.63 3.29 -0.5 MW-3 9/20/2002 08:25 6.92 3.82 3.10 -0.1 MW-3 12/19/2002 08:42 6.92 3.10 3.82 0.7 MW-4 12/17/2001 10:40 6.01 2.55 3.46 N/4 MW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | | | | 6.92 | 3.44 | 3.48 | -0.67 | | MW-3 11/30/2000 08:34 6.92 3.73 3.19 -0.0 MW-3 3/26/2001 08:54 6.92 3.51 3.41 0.2 MW-3 6/25/2001 10:21 6.92 3.65 3.27 -0.1 MW-3 9/28/2001 09:30 6.92 3.96 2.96 -0.3 MW-3 12/17/2001 10:38 6.92 3.28 3.64 0.6 MW-3 3/21/2002 07:28 6.92 3.10 3.82 0.1 MW-3 6/6/2002 08:07 6.92 3.63 3.29 -0.5 MW-3 9/20/2002 08:25 6.92 3.82 3.10 -0.1 MW-3 12/19/2002 08:42 6.92 3.82 3.10 -0.1 MW-4 12/17/2001 10:40 6.01 2.55 3.46 NAM-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | | | 09:05 | 6.92 | 3.72 | 3.20 | -0.28 | | MW-3 3/26/2001 08:54 6.92 3.51 3.41 0.22 MW-3 6/25/2001 10:21 6.92 3.65 3.27 -0.14 MW-3 9/28/2001 09:30 6.92 3.96 2.96 -0.3 MW-3 12/17/2001 10:38 6.92 3.28 3.64 0.6 MW-3 3/21/2002 07:28 6.92 3.10 3.82 0.1 MW-3 6/6/2002 08:07 6.92 3.63 3.29 -0.5 MW-3 9/20/2002 08:25 6.92 3.82 3.10 -0.1 MW-3 12/19/2002 08:42 6.92 3.82 3.10 -0.1 MW-4 12/17/2001 10:40 6.01 2.55 3.46 New 4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | | | | | 3.73 | 3.19 | -0.01 | | MW-3 6/25/2001 10:21 6.92 3.65 3.27 -0.1- MW-3 9/28/2001 09:30 6.92 3.96 2.96 -0.3 MW-3 12/17/2001 10:38 6.92 3.28 3.64 0.6 MW-3 3/21/2002 07:28 6.92 3.10 3.82 0.1 MW-3 6/6/2002 08:07 6.92 3.63 3.29 -0.5 MW-3 9/20/2002 08:25 6.92 3.82 3.10 -0.1 MW-3 12/19/2002 08:42 6.92 3.82 3.10 -0.1 MW-4 12/17/2001 10:40 6.01 2.55 3.46 NAM-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | | | | 6.92 | 3.51 | 3.41 | 0.22 | | MW-3 9/28/2001 09:30 6.92 3.96 2.96 -0.3 MW-3 12/17/2001 10:38 6.92 3.28 3.64 0.6 MW-3 3/21/2002 07:28 6.92 3.10 3.82 0.1 MW-3 6/6/2002 08:07 6.92 3.63 3.29 -0.5 MW-3 9/20/2002 08:25 6.92 3.82 3.10 -0.1 MW-3 12/19/2002 08:42 6.92 3.10 3.82 0.7 MW-4 12/17/2001 10:40 6.01 2.55 3.46 NAMW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | | | | | 3.65 | 3.27 | -0.14 | | MW-3 12/17/2001 10:38 6.92 3.28 3.64 0.6 MW-3 3/21/2002 07:28 6.92 3.10 3.82 0.1 MW-3 6/6/2002 08:07 6.92 3.63 3.29 -0.5 MW-3 9/20/2002 08:25 6.92 3.82 3.10 -0.1 MW-3 12/19/2002 08:42 6.92 3.10 3.82 0.7 MW-4 12/17/2001 10:40 6.01 2.55 3.46 No.6 MW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | | | | | 3.96 | 2.96 | -0.31 | | MW-3 3/21/2002 07:28 6.92 3.10 3.82 0.1 MW-3 6/6/2002 08:07 6.92 3.63 3.29 -0.5 MW-3 9/20/2002 08:25 6.92 3.82 3.10 -0.1 MW-3 12/19/2002 08:42 6.92 3.10 3.82 0.7 MW-4 12/17/2001 10:40 6.01 2.55 3.46 No.4 MW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | | | | 6.92 | 3.28 | 3.64 | 0.68 | | MW-3 6/6/2002 08:07 6.92 3.63 3.29 -0.5
MW-3 9/20/2002 08:25 6.92 3.82 3.10 -0.1
MW-3 12/19/2002 08:42 6.92 3.10 3.82 0.7
MW-4 12/17/2001 10:40 6.01 2.55 3.46 No.2
MW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | | | | | | 3.82 | 0.18 | | MW-3 9/20/2002 08:25 6.92 3.82 3.10 -0.1
MW-3 12/19/2002 08:42 6.92 3.10 3.82 0.7
MW-4 12/17/2001 10:40 6.01 2.55 3.46 NA
MW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | | | | | 3.63 | 3.29 | -0.53 | | MW-3 12/19/2002 08:42 6.92 3.10 3.82 0.7 MW-4 12/17/2001 10:40 6.01 2.55 3.46 N/ MW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | | | | | 3.82 | 3.10 | -0.19 | | MW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | | | | | | 3.82 | 0.72 | | MW-4 3/28/2002 08:05 6.01 3.06 2.95 -0.5 | MW-4 | 12/17/2001 | 10:40 | 6.01 | | | NA | | | | | | | 3.06 | | -0.51 | | 11111 010/2002 07.57 | MW-4 | 6/6/2002 | 07:57 | 6.01 | 2.85 | 3.16 | 0.21 | | MW-4 9/20/2002 08:28 6.01 3.21 2.80 -0.3 | MW-4 | | 08:28 | 6.01 | | | -0.36 | | MW-4 12/19/2002 08:53 6.01 3.70 2.31 -0.4 | MW-4 | 12/19/2002 | 08:53 | 6.01 | 3.70 | 2.31 | -0.49 | Key: NA = Not available feet, MSL = feet, relative to Mean Sea Level Table 2. Relative Percent Difference Based on Duplicate Samples | | First Qu | arter 200 | er 2002 Second Quarter 2002 Third Quarter | | | uarter 20 | Fourth Quarter 2002 | | | | | | |------------------------------|-------------------------|------------------|---|-------------------------|------------------|-------------------------|-------------------------|------------------|-------------|-------------------------|------------------|----------------------| | Analysis | Well
MW-1
Results | DUP-1
Results | RPD ¹
(%) | Well
MW-1
Results | DUP-1
Results | RPD ¹
(%) | Well
MW-1
Results | DUP-1
Results | RPD¹
(%) | Well
MW-1
Results | DUP-1
Results | RPD ¹ (%) | | Organic Compounds (μg/L) | | | | | | | | | | | | | | 1,1-Dichloroethene (1,1-DCE) | ND^2 | ND | NM ³ | ND | ND | NM | ND | ND_ | NM | ND | ND | 0 | | Trichloroethene (TCE) | 160 | 160 | 0 | 140 | 140 | 0 | 190 | 190 | 0 | 68 | 74 | 8.4 | | Tetrachloroethene (PCE) | 1,100 | 1,000 | 9.5 | 980 | 950 | 3.1 | 1,100 | 1,000 | 9.5 | 600 | 570 | 5.1 | ¹ RPD = relative percent difference All other 8021B/8010 analytes not detected. ² ND = not detected ³ NM = not meaningful; RPD cannot be accurately calculated where one or both values are below the method reporting limit. Table 3. Summary of Groundwater Monitoring Well Data (results measured in $\mu g/L$) | Well N | 0. | | | | | | MW-1 | | | | | | | | |----------------------|--------------------------|---------|---------|---------|----------|---------|---------|---------|----------|---------|--------|---------|----------|-----------------| | Field Da | ite 11/16/99 | 3/30/00 | 5/16/00 | 7/28/00 | 11/30/00 | 3/26/01 | 6/25/01 | 9/28/01 | 12/17/01 | 3/21/02 | 6/6/02 | 9/20/02 | 12/19/02 | MCL | | PCE ² | 006 | 1 400 | 1 000 | 1 200 | oon | 1 000 | 1,400 | 1,000 | 1,400 | 1,100 | 980 | 1,100 | 600 | 5 | | | 906 | 1,400 | 1,900 | 1,200 | 880 | 1,000 | - | - | · | | | | | | | TCE ³ | 178 | 150 | 190 | 170 | 130 | 180 | 250 | 210 | 190 | 160 | 140 | 190 | 68 | 5 | | DCE⁴ · | < 50.0 | 13 | < 10 | 15 | 14 | < 13 | 14 | 15 | < 13 | < 13 | < 13 | < 13 | <13 | 6 | | CFC 113 ⁵ | na ⁶ | 1.4 | < 10 | < 10 | < 8.3 | < 50 | < 50 | < 50 | < 50 | < 13 | < 13 | < 13 | < 13 | ne ⁷ | | DCA ⁸ | < 50.0 | 0.8 | < 10 | < 10 | <4.2 | <13 | < 13 | <13 | < 13 | < 13 | < 13 | < 13 | < 13 | 5 | | Chloroform | < 50.0 | 0.6* | < 10 | < 10 | < 8.3 | <13 | < 13 | <13 | < 13 | <13 | < 13 | < 13 | <13 | ne | | TCA ⁹ | < 50.0 | 1.6 | < 10 | < 10 | <4.2 | < 13 | <13 | <13 | < 13 | < 13 | <13 | <13 | <13 | 200 | | All other Method | | | | | | | | | | | | | | | | 8010/8021B analytes | n d ¹⁰ | nd | #### Notes: $^{^{1}}$ MCL = California Primary Drinking Water Standard - Maximum Contaminant Level (in micrograms per liter [$\mu g/L$]) ² PCE = Tetrachloroethene ³ TCE = Trichloroethene ⁴ DCE = 1,1-Dichloroethene ⁵ CFC 113 = Trichlorotrifluoroethane ⁶ na = not analyzed ⁷ ne = not established or none applicable ⁸ DCA = 1,1-Dichloroethane ⁹ TCA = 1,1,1-Trichloroethane ¹⁰ nd = not detected ^{*} Chloroform detected in equipment blank at 1.6 μ g/L Table 3. Summary of Groundwater Monitoring Well Data (results measured in $\mu g/L$) | V | Well No. | | | | | | | MW-2 | | | | | | | | |----------------------|----------|----------|---------|---------|---------|----------|---------|---------|---------|----------|---------|--------|---------|----------|-----------------| | Fi | eld Date | 11/16/99 | 3/30/00 | 5/16/00 | 7/28/00 | 11/30/00 | 3/26/01 | 6/25/01 | 9/28/01 | 12/17/01 | 3/28/02 | 6/6/02 | 9/20/02 | 12/30/02 | MCL1 | | | | | | | | | | | | i. | | | | | | | PCE ² | | 840 | 3,600 | 3,200 | 3,300 | 1,700 | 2,200 | 4,400 | 1,700 | 1,700 | 3,500 | 3,800 | 2,100 | 1,800 | 5 | | TCE ³ | | < 50 | 29 | 53 | < 25 | 20 | 40 | 78 | <25 | <25 | 49 | 52 | 32 | < 25 | 5 | | DCE ⁴ | | < 50.0 | < 0.5 | <25 | < 25 | < 8.3 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | 6 | | CFC 113 ⁵ | | na | < 0.5 | <25 | < 25 | < 17 | < 100 | < 100 | < 100 | < 100 | <25 | <25 | <25 | <25 | ne ⁵ | | DCA ⁸ | | < 50.0 | < 0.5 | <25 | <25 | < 8.3 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | 5 | | Chloroform | | < 50.0 | < 0.5 | < 25 | <25 | < 17 | < 25 | <25 | <25 | <25 | <25 | <25 | <25 | <25 | ne | | TCA ⁹ | | < 50.0 | 5.0 | <25 | < 25 | < 8.3 | < 25 | <25 | <
25 | <25 | <25 | <25 | <25 | <25 | 200 | | All other Method | | | | | | | | | | | | | | | | | 8010/8021B analytes | | nd ~- | Table 3. Summary of Groundwater Monitoring Well Data (results measured in $\mu g/L$) | | Well No. | | | | | | | MW-3 | | | | | | | | |----------------------|------------|----------|---------|---------|---------|----------|---------|---------|---------|----------|---------|--------|---------|----------|------------------| | | Field Date | 11/16/99 | 3/30/00 | 5/16/00 | 7/28/00 | 11/30/00 | 3/26/01 | 6/25/01 | 9/28/01 | 12/17/01 | 3/21/02 | 6/6/02 | 9/20/02 | 12/19/02 | MCL ¹ | | | | | | | | | | | | | | | | | | | PCE ² | | < 0.500 | < 0.5 | < 0.5 | 0.8 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | 0.81 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | 5 | | TCE ³ | | < 0.500 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | 5 | | DCE ⁴ | | < 0.500 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | 6 | | CFC 113 ⁵ | | na | < 0.5 | < 0.5 | < 0.5 | <1.0 | < 2.0 | < 2.0 | < 2.0 | < 2.0 | < 2.0 | < 0.5 | < 0.5 | < 0.5 | ne⁵ | | DCA ⁸ | | < 0.500 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | 5 | | Chloroform | | < 0.500 | < 0.5 | < 0.5 | < 0.5 | <1.0 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | ne | | TCA ⁹ | | < 0.500 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | 200 | | All other Method | | | | | | | | | | | | | | | | | 8010/8021B analytes | | nd ••• | Table 3. Summary of Groundwater Monitoring Well Data (results measured in $\mu g/L$) | Well No. | | MW-4 | | | | | | | | |----------------------|----------|---------|--------|---------|----------|------------------|--|--|--| | Field Date | 12/17/01 | 3/28/02 | 6/6/02 | 9/20/02 | 12/19/02 | MCL ¹ | | | | | | | | | | | | | | | | PCE ² | 2.6 | 2.8 | 2.0 | 2.5 | 1.1 | 5 | | | | | TCE ³ | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | 5 | | | | | DCE ⁴ | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | 6 | | | | | CFC 113 ⁵ | < 2.0 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | ne ⁵ | | | | | DCA ⁸ | < 0.5 | < 0.5 | < 0.5 | < 0.5 | <0.5 | 5 | | | | | Chloroform | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | ne | | | | | TCA ⁹ | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | 200 | | | | | All other Method | | | | | | | | | | | 8010/8021B analytes | nd | nd | nd | nd | nd | | | | | Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California Figure 1. Site Location Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California Figure 2. Facility Layout Figure 3. Graphical Summary of Groundwater Elevations Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California Figure 4. Groundwater Elevation Contours - March 2002 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California Figure 6. Groundwater Elevation Contours - September 2002 CRAWFORD CONSULTING INC. Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California Figure 7. Groundwater Elevation Contours - December 2002 Cargill Salt Dispensing Systems Division 2016 Clement Avenue, Alameda, California Figure 8. VOC Concentrations in Groundwater – March through December 2002 Figure 9. Graphical Summary of PCE Concentrations