GROUNDWATER MONITORING WELL INSTALLATION AND SAMPLING REPORT

1353 E. 14th Street
Oakland, California

Project No. 1599

Prepared for

Mr. Norman Foss Foss Lamshade Studios 1340 E. 12th Street Oakland, CA 94606

Prepared by

All Environmental, Inc. 3364 Mt. Diablo Blvd. Lafayette, CA 94549 (510) 283-6000

TABLE OF CONTENTS

1.0 INTROD	UCTION1
2.0 SITE DE	SCRIPTION AND BACKGROUND
3.0 PERMIT	S2
4.0 GEOLO	GY AND HYDROGEOLOGY2
TABLE 1 - V	Water Level Measurements; July 31, 1997
5.0 SOIL BO	RING3
6.0 WELL C	ONSTRUCTION4
7.0 SOIL SA	MPLING4
8.0 WELL D	EVELOPMENT AND SAMPLING4
9.0 ANALY	TICAL RESULTS OF SAMPLES5
	Soil Sample Analytical Data
10.0 SUMM	ARY AND RECOMMENDATIONS7
11.0 REPOR	T LIMITATIONS AND SIGNATURES7
	LIST OF FIGURES
FIGURE 1	SITE LOCATION MAP
FIGURE 2	SOIL BORING AND WELL LOCATION MAP
FIGURE 3	GROUNDWATER MAP
	LIST OF APPENDICES
APPENDIX A	PERMITS AND NOTIFICATION DOCUMENTS
APPENDIX B	GROUNDWATER MONITORING WELL FIELD SAMPLING FORMS, BORING LOG
APPENDIX C	CURRENT LABORATORY ANALYSES WITH CHAIN OF CUSTODY DOCUMENTS

1.0 INTRODUCTION

All Environmental, Inc. (AEI) has prepared this report on behalf of Mr. Norman Foss, in response to Alameda County Health Care Services Agency's (ACHCSA) request for a soil and groundwater investigation at 1353 E. 14th Street in Oakland, California (Figure 1: Site Location Map). The investigation was initiated by the property owner in accordance with the requirements of the ACHCSA. The investigation was conducted to assess solvent contamination present in the groundwater beneath the subject property.

2.0 SITE DESCRIPTION AND BACKGROUND

The subject property currently supports the operation of Style Center Cleaners, a dry cleaning facility. The property has reportedly contained a dry cleaning facility for the last 50 years. A closed-loop dry cleaning machine was installed approximately 5 years age by the current tenant. The floor of the building is wooden with a crawl space separating the floor from the ground. A concrete pad foundation supports the current dry cleaning machine. A small driveway runs the length of the dry cleaning building on the south (Figure 1).

On August 26, 1996, Ms. Madhulla Logan of the ACHCSA requested a soil and groundwater investigation be performed on the property. The investigation was requested to determine if the onsite dry cleaning facility was a source of solvent contamination found in the groundwater at the former General Tire site, located adjacent to the subject property. Three groundwater monitoring wells were installed at the former General Tire site between March, 1992 and September, 1993 by Jonas & Associates, Inc. The wells (labeled MW-1, MW-2 and MW-3) were installed to investigate petroleum hydrocarbon contamination. During quarterly monitoring of the wells, solvents were present in groundwater samples collected from MW-2 at concentrations ranging from 14 µg/l to 44 µg/l.

AEI performed a subsurface investigation at the property on December 13, 1996. The investigation included the advancement of five soil borings (BH-1 through BH-5). Concentrations of tetrachloroethene (PCE) were detected in all analyzed soil samples at concentrations ranging from $8.7 \,\mu\text{g/l}$ to $150 \,\mu\text{g/l}$. Trichlorothene (TCE) and chloroform were detected in the soil at maximum concentrations of $0.45 \,\mu\text{g/kg}$ and $640 \,\mu\text{g/kg}$, respectively. No other volatile halocarbons were detected above the method detection limit. PCE, TCE and chloroform were present in grab groundwater samples collected from four of the soil borings at maximum concentrations of $1100 \,\mu\text{g/l}$, $3.0 \,\mu\text{g/l}$ and $4.8 \,\mu\text{g/l}$, respectively.

Due to the presence of PCE, TCE and chloroform in the groundwater, ACHCSA requested the installation of a groundwater monitoring well down-gradient from the dry cleaning machine. In

AEI

addition, the ACHCSA requested quarterly monitoring of the well in conjunction with the three offsite wells. The following report describes the methods and findings of the single groundwater monitoring well installation and quarterly monitoring.

3.0 PERMITS

Prior to drilling, a work plan, dated June 19, 1997, was submitted and approved by the ACHCSA. A well construction permit was obtained from the Alameda County Public Works Agency (ACPWA). The property owner and operator were notified of the drilling schedule. A copy of the ACPWA permit to perform the soil boring and monitoring well installation is included in Appendix A.

4.0 GEOLOGY AND HYDROGEOLOGY

According to logs of the soil boring advanced by AEI, the near surface sediments beneath the site consist predominantly of silty and sandy clay to approximately fifteen feet below ground surface (bgs). The water-bearing stratum consists of silty sandy clay beginning at approximately 5 feet bgs and present in the borehole until the termination depth of 15 feet bgs.

Water level measurements made during the current groundwater monitoring and sampling episode on July 31, 1997, indicate that the static water beneath the property and adjacent property is located between 5.47 and 8.83 feet bgs. Elevations of the tops of the well casings were surveyed relative to Mean Sea Level (MSL) by Logan Surveying on August 8, 1997. Refer to Appendix B for the Groundwater Monitoring Well Field Sampling Forms.

The water level measurements were collected in order to calculate the groundwater gradient and flow direction. Based on these measurements, the groundwater flow is southeast at a gradient between 0.05 and 0.08 feet per foot. The groundwater flow direction is depicted in Figure 3. Water elevations to date are summarized in the following table:

TABLE 1 - Water Level Measurements; July 31, 1997

		roman and China Sanara Se. Thomas and add delighter and se	grade and advisor of the	Bijan jan a kongwense, knobe site
Well Number	AL-II	/AVV-17	MW-2*	MW-3*
		. i restrungstansete er of the dae lest est pup i franciseder ebr Libias del dae dae dae de est tot eggrangstruk.	Anna de Arthur Jaron (1944) Burgardo de Laterra de Arthur (1944) Burgardo de Arthur (1944) Burgardo de Arthur (1944) Burgardo de Arthur (1944)	Property of the control of the contr
Depth to Water (feet)	Signatura dalla arradordi dalla della dell		692	
Depth of Well (feet)	#15:0:::::::::::::::::::::::::::::::::::	60	16.0	60
Well Elevation (top of casing).	20.42	8-29	20:18	
Groundwater Elevation		0.28	3.04	
(feet above msl)		4666 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 (400)	所では、 のの理解的できません。 のでは、 のでは

^{*} Well installed by Jonas & Associates

5.0 SOIL BORING

On July 3, 1997, one soil boring was advanced at the site in the location shown on Figure 2. The soil boring was later converted to a groundwater monitoring will labeled AE-1. AE-1 was advanced in the driveway of the subject property, down-gradient from the dry cleaning machine.

A Mobile B-61 rotary drill with 6.25" I.D. by 10.5" O.D. hollow stem augers was used to drill the boring. Drilling proceeded to a depth of 15.0 feet during the advancement of each boring. Soil samples were collected at depths of 3.0, 5.0 and 8.0 feet with a hammer-driven California Modified split spoon sampler. The sampler, containing two-inch diameter brass sample tubes, was advanced ahead of the auger tip by successive hammer blows. Boring logs were maintained during drilling by one of AEI's geologists using the Unified Soil Classification System. The logs are presented in Appendix B. Cuttings generated during drilling were stored on-site in 55 gallon drums for future off-site disposal.

6.0 WELL CONSTRUCTION

The single soil boring was converted to groundwater monitoring well AE-1. The well was constructed with 4.5 feet of 2" flush threaded blank Schedule 40 PVC blank casing, and 14.5 feet of .020" factory-slotted well screen that was installed through the hollow auger. The blank casing extends from 0.5 feet to 4.5 feet bgs. The slotted casing extends from 4.5 feet to near the total depth of the borings, 15.0 feet bgs. The well screens were fitted with a flush-threaded bottom cap. No. 3 Monterey sand was poured through the augers to form a sand pack from the bottom of the wells to 2.5 feet bgs (2 feet above the slotted well screen). Approximately 1 foot of bentonite pellets were placed above the sand and hydrated with tap water. The remainder of the boring was filled to about 0.5 feet below grade with neat cement grout. A flush mounted traffic rated well box was installed over the casing, and an expanding, locking water tight inner cap was placed on the casing top. Refer to the boring logs (Appendix B) for a visual description of the well construction.

7.0 SOIL SAMPLING

Undisturbed soil samples were collected at depths of 3.0, 5.0 and 8.0 feet bgs from the boring during drilling and labeled S-1, S-2 and S-3, respectively. Since groundwater was encountered at approximately 9.0 feet bgs during drilling, no samples were collected from greater than 8.0 feet bgs. The soil samples were screened in the field with a portable organic meter. No significant readings were observed during the soil screening process.

All soil samples were put in a cooler with wet ice and transported under proper chain of custody to McCampbell Analytical, Inc. of Pacheco, California.

8.0 WELL DEVELOPMENT AND SAMPLING

The well was developed on July 25, 1997. The well was developed by bailing water into a 55 gallon drum until the water appeared to be reasonably clear with a minimum of 10 well volumes removed. The bailed water was turbid at first, but became clear by the end of the well development. The water level returned to a static level in approximately 30 minutes. The Groundwater Monitoring Well Field Sampling Form is included in Appendix B.

Groundwater samples were collected from AE-1 and from wells MW-1 and MW-2 on July 31, 1997. Depth to groundwater was measured prior to purging the three wells. Groundwater depth measurements were collected from MW-3, however, groundwater samples were not collected from this well due to its distance from the potential source. AE-1, MW-1 and MW-2 were purged by bailing water into a 55 gallon drum until the groundwater temperature, pH and conductivity stabilized. The groundwater samples were collected using clean disposable bailers. Water was poured from the bailers into 40 ml VOA vials and capped so that no head space or visible air bubbles were within the sample containers. The samples were labeled and placed on ice in a cooler. The samples were transported to McCampbell Analytical, Inc., with chain of custody documents, for analysis.

9.0 ANALYTICAL RESULTS OF SAMPLES

Groundwater and soil samples were analyzed at McCampbell Analytical, Inc. of Pacheco, California (State Certification #1644). Two soil samples from the boring and groundwater samples from the four wells were submitted for chemical analyses for Volatile Halocarbons (EPA method 601/8010)).

Tetrachloroethene (PCE) was detected in the 3 foot soil sample at a concentration of 23 μ g/kg. No PCE was detected in the soil sample collected at 8 feet bgs from the boring. No other volatile halocarbons were detected above the laboratory method detection limit of 5.0 μ g/kg.

Refer to the following table (Table 2) for a summary of the soil sample analyses.

TABLE 2 - Soil Sample Analytical Data

, 		
Sample Number Depth	Volatile	Halocarbons* PCE (ug/kg)
AE-1,S-1,3	AND THE CONTROL OF TH	
AE-1,\$32,8		<5.0

^{*} All unlisted Volatile Halocarbons were not detected above the method detection limit of 5.0 μ g/kg μ g/kg = micrograms per kilogram (ppb) NA = Not Analyzed

No volatile halocarbons were detected in groundwater samples collected from the on-site well, AE-1.

Concentrations of 1,1-dichlorethane (1,1-DCA), 1,1-dichloroethene (1,1-DCE), cis- and trans-1,2dichloroethene (1,2-DCE), tetrachloroethene (PCE), trichloroethene (TCE), and vinyl chloride were detected in the two off-site wells. Refer to Table 3 for the concentrations of volatile halocarbons present in the off-site wells.

TABLE 3 - Volatile Halocarbon* Groundwater Sample Analytical Data

Well Number	HIPDCAT	111DCE		trans –	PCE	TCE	Vinyl :
	(181)	(LgA)	12-DCE	1,2-DCE	(µg/l):	2011 PM (1211 2011 PM (1211	Chloride
			(με/ι):	(µg/l)	HATCH OF THE		(ugI)
APPLICATION OF THE PROPERTY OF	30.5		50	.	05.		(
**************************************	0.63			11.505	0.5		
The second secon	日本日本の東京の東京の日本日本の日本日本の日本日本の日本日本日本日本日本日本日本日本日本日本日本日					A STATE OF THE STA	THE SHIPPERS THE STATE OF THE S
en la			NS	NS	The NS		
Heaten and a comment of the comment	2.0	6.0			50 cm	50	

^{*} All unlisted Volatile Halocarbons (EPA method 601) were not detected above the method detection limit of 0.5 µg/l $\mu g/l = micrograms per liter (ppb)$

NS = Not Sampled

Laboratory results and chain of custody documentation are included in Appendix C.

10.0 SUMMARY AND RECOMMENDATIONS

AEI installed a single groundwater monitoring well, down-gradient from the on-site drycleaning operations to assess the impact to groundwater. The subsurface investigation included logging the borehole under the supervision of a professional geologist, soil sampling and analyses, well development, and groundwater sampling and analyses.

Minor concentrations of PCE were detected in the soil at 3 feet bgs in the on-site boring. No concentrations of PCE were detected in the soil sample collected at 8 feet bgs.

No volatile halocarbons were detected in the groundwater samples collected from the on-site well. Concentrations of volatile halocarbons were detected in samples collected from both of the off-site wells. The highest concentrations of volatile halocarbons were present in groundwater samples collected from off-site well MW-2. Cis-1,2-DCE, PCE, TCE and vinyl chloride were detected in MW-2 at concentrations exceeding published MCLs.

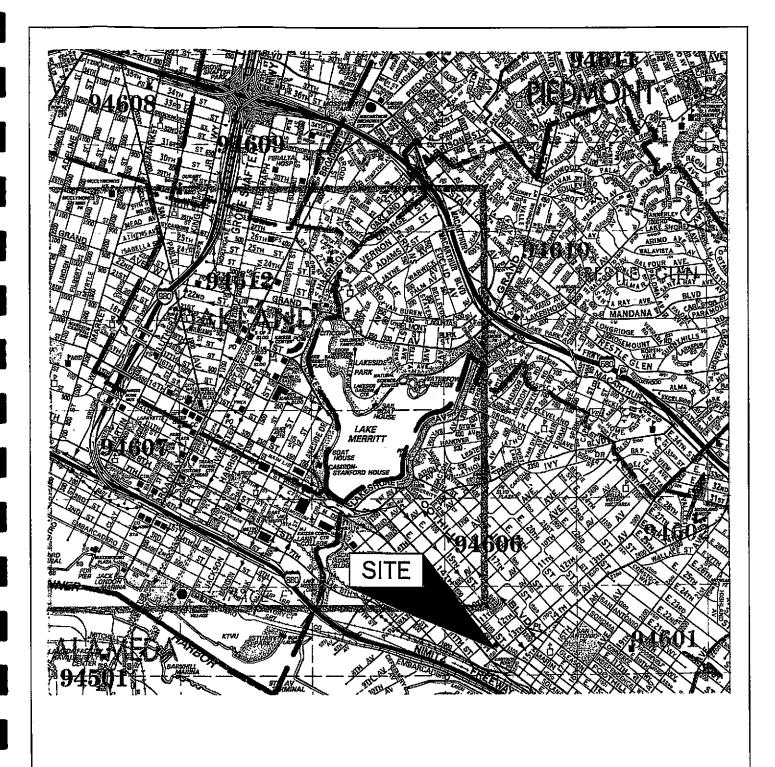
Based upon the results of the groundwater monitoring installation and sampling, the source of the groundwater contamination does not appear to be the on-site dry cleaning machine. AEI recommends the continued quarterly groundwater monitoring of the on-site well. Groundwater level measurements should be collected from the three off-site wells on a quarterly basis and samples should be analyzed from the off-site wells on a semi-annual basis.

11.0 REPORT LIMITATIONS AND SIGNATURES

This report presents a summary of work completed by All Environmental, Inc., including observations and descriptions of site conditions. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide required information, but it cannot be assumed that they are entirely representative of all areas not sampled. All conclusions and recommendations are based on these analyses, observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document.

These services were performed in accordance with generally accepted practices in the environmental engineering and construction field which existed at the time and location of the work.

Jeznifer Pucci


Project Manager

Michael Carey, CEC & Engineering Geologist

STATE OF CALIFORNIE

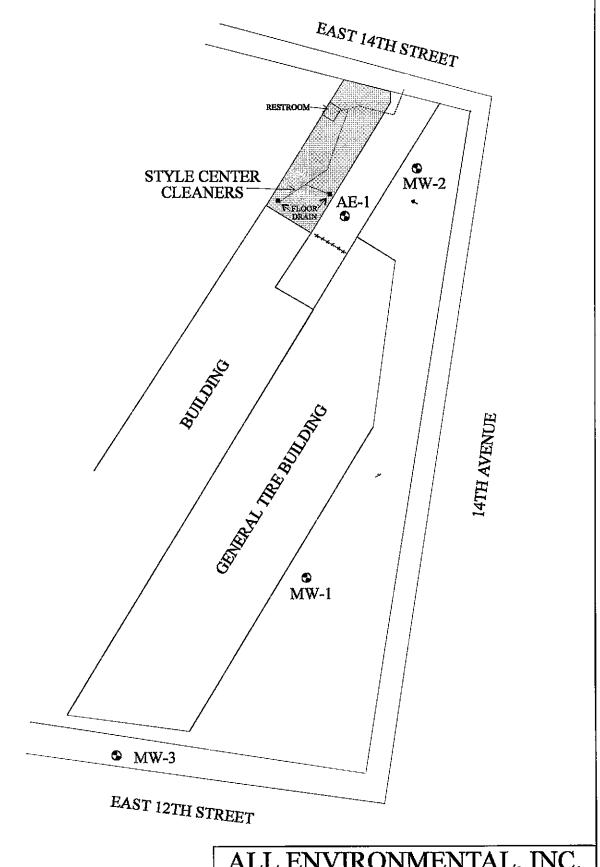
C.E.G. 1351

AEI

N

FROM: THOMAS BROS. MAPS

ALL ENVIRONMENTAL, INC. 3364 MT. DIABLO BOULEVARD, LAFAYETTE


SCALE: 1 IN = 1/4 MI DATE: 6 NOVEMBER 97 APPROVED BY:

DRAWN BY:

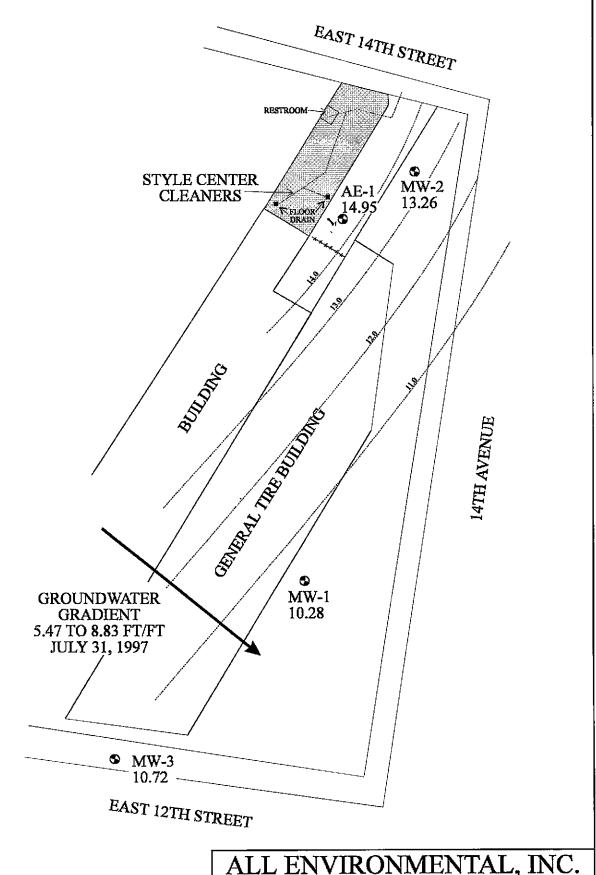
REVISED:

SITE LOCATION MAP

1353 E. 14TH STREET OAKLAND, CALIFORNIA DRAWING NUMBER: FIGURE 1

ALL ENVIRONMENTAL, INC. 3364 MT. DIABLO BOULEVARD, LAFAYETTE, CA

SCALE: 1 IN = 40 FT


DATE: 8/8/97

SOIL BORING AND MONITORING WELL LOCATION MAP

1353 E. 14TH STREET
OAKLAND, CALIFORNIA

DRAWING NUMBER:
FIGURI

FIGURE 2

ALL ENVIRONMENTAL, INC. 3364 MT. DIABLO BOULEVARD, LAFAYETTE, CA

SCALE: 1 IN = 40 FT

DATE: 7/31/97

GROUNDWATER MAP

1353 E. 14TH STREET OAKLAND, CALIFORNIA DRAWING NUMBER: FIGURE 3

APPENDIX A PERMITS AND NOTIFICATION DOCUMENTS

oc as of the 10.00 Thenchican conduct with his step of a section

COUNTY OF ALAMEDA PUBLIC WORKS AGENCY 951 Turner Court, Hayward, CA 94545 (510) 670-5543

DATE: 7/3/97

FAX TRANSMITTAI	No of Pages (including cover):
ALL GAVIRONASTALL IN	
T JENNIPER PASSE	R
	0
FAX. (\$10) 28. 1 2121	FAX: (510) 670-5262
Should you have problems receiving th	is FAX transmittal, please call: (510) 670-5248
SUBJECT: WELL PERMIT AF	PLICATION
TRANSMITTING THE FOLLOWI	NG:

JUL-01-1997 09:05

P.01 15102836121

ZONE 7 WATER AGENCY

5997 PARKSIDE DRIVE PLEASANTON, CALIFORNIA 94588

VOICE (\$10) 484-2600 FAX (510) 462-3914

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
LOCATION OF PROJECT	PERMIT NUMBER 97 WROLD
1353 E. 14th Street	LOCATION NUMBER
Oakland, CA 94606	
CLIENT	
Name Mr. Norman Foss	PERMIT CONDITIONS
Address 1340 E 12th Streetwice (510) 534-4133	
City Oakland Zip 94506	Circled Permit Requirements Apply
APPLICANT	
Name All Environmental, Inc.	(A) GENERAL
Tanada San San San San San San San San San Sa	
Address 3364 Mt Diablo B Mode (510) 283-6121	A permit application should be submitted so as to arrive at the
City <u>Lafavette</u> Zp 94549	
	2. Submit to Zone 7 within 60 days after completion of permitted
TYPE OF PROJECT	work the original Department of Water Resources Water Well
Well Construction Geotechnical Investigation	Drillers Report or equivalent for well Projects, or drilling logs
Cathodic Protection General	and location sketch for geotechnical projects. 3. Permit is void if project not becam within 90 days of accordial.
Water Supply Contemination	 Permit is void if project not begun within 90 days of approval date.
Monitoring X Well Destruction	(8.) WATER WELLS, INCLUDING PIEZOMETERS
	Minimum surface seal thickness is two inches of cament grout
PROPOSED WATER SUPPLY WELL USE	placed by tremie.
Domestic Industrial Other	Minimum seel depth is 50 feet for municipal and inclustrial wells
Municipal Irrigation	or 20 feet for diamestic and irrigation wells unless a lesser
	depth is specially approved. Minimum seel depth for
ORILLING METHOD:	monitoring wells is the maximum depth practicable or 20 feet.
Mud Rotary Air Rotary Auger X	C. GEOTECHNICAL. Backfill bore hole with compacted curtings or
Cable Other	heavy bentonite and upper two feet with compacted material. In
	areas of known or suspected contamination, tremied cement grout
OFILLER'S LICENSE NO. 485165	shall be used in place of compacted cuttings.
	D. CATHODIC. Fill hale above anode zone with concrete placed by
WELL PROJECTS	tremie.
Drill Hole Diameter <u>6</u> in. Meximum	E. WELL DESTRUCTION. See attached.
Casing Diameter 2 in. Depth 18 it.	
Surface Seal Depth 3 ft. Number 1	
GEOTECHNICAL PROJECTS	
Number of Borings Meximum	
Hole Olameter in. Depth it.	
	·
STIMATED STARTING DATE 7/3/97	1
ESTIMATED COMPLETION DATE 7/3/97	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	Approved Oate 7/3/97
hereby agree to comply with all requirements of this permit and Alameda	7
County Ordinance No. 73-68.	
WPLICANCS /	
SIGNATURE LUCEL DATE 197	91992
, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·

APPENDIX B

GROUNDWATER MONITORING WELL FIELD SAMPLING FORMS AND BORING LOG

Well Casing Seal at Grad Well Cap &		4 th Street			Samp	ling: 7/31/97
Job Number Project Add Well Casing Seal at Grad Well Cap &	r: 1599 Iress: 1353 E. 1	4 th Street				1411S. 11J1/J1
Well Casing Seal at Grad Well Cap &		4 th Street		ivame (pler: DR
Seal at Grad Well Cap &	Diameter (2°/				·····	
Seal at Grad Well Cap &	Diameter (2"/	MON	ITORI	ING WE	ELL D.	ATA
Seal at Grad Well Cap &	~			2"		
Well Cap &	de Type and (good		
	Lock OK/Re	place	$\neg \neg$	OK		
Elevation o	f Top of Casing			20.42		
Depth of W				15.0		
Depth to W	ater (DTW)			5.47		
Water Elev	ation			14.95		
Three Well	Volumes (galle	ns)*				
	ng: (TD - DTW			4.5		
	ng: (TD - DTW					
	ng: (TD - DTW					
	ıme Purged (ga			5.0		
Appearance	of Purge Wate	r		greenish		
		GRO	IINDX	VATER	SAMP	PLES
Number of	Samples/Contai		011011	2-40ml		
	Sumpress Contract					
Time	Vol Remvd	Temp C	pF	1 0	ond	Comments
	(gal)		•		mS)	
· · ·	1	64.9	6.72	8	91	
	2	64.7	6.80	9	21	
	3	65.2	7.00	9	20	
	4	65.2	7.00	9	24	
	5	65.1	7.00	9	19	
	GOL 5 555 55	20.7				ge time & percent, etc.)

					ING FO	TER MONITORING WELI DRM		
		Monito	oring V	Well N	umber:	MW-1		
Project N	ame: Foss	· · · · · ·	 .	Date	of Samp	oling: 7/31/97		
	ber: 1599					pler: DR		
Project A	ddress: 1353 E.	14th Street						
		MON	ITOR	ING V	WELL D	ATA		
Well Cas	ing Diameter (2"/			2"	··· LLLL D			
	rade Type and			good	l			
Well Cap	& Lock OK/R	eplace		OK				
	of Top of Casing	3		18.2	9			
	Well (TD)			16.0				
	Water (DTW)			8.01				
Water Ele				10.2	8			
	ell Volumes (galle							
	sing: (TD - DTW			3.8				
	sing: (TD - DTW							
	sing: (TD - DTW							
	olume Purged (ga			4.0				
Appearan	ice of Purge Wate	:r 		Clear, colorless				
		GRO	UNDV	VATE	R SAME	PLES		
Number o	of Samples/Conta	iner Size		2-40	ml voas			
Time	Vol Remvd	Temp C	pl	H	Cond	Comments		
 	(gal)	61.6	ļ		(mS)			
	1	64.6	7 = 7		992			
	3	64.9	6.76		858			
	4	65.7	7.40		861			
		65.3	6.48		859			
		 						
		<u> </u>	<u> </u>					
	COMMENT	S (i.e., sam	ple od	or, we	Il rechare	ge time & percent, etc.)		
		(,	. F . T . G . G			or mine on heronic errol		

ALL	ENVIRONME			ROUN MPLIN		TER MONITORING WELL PRM	
		Monito	ring V	Vell Nui	nber:]	MW-2	
Project Na	ame: Foss			Date o	f Samp	oling: 7/31/97	
Job Numb	er: 1599			Name	of Sam	pler: DR	
Project Ac	idress: 1353 E. 1	4 th Street					
		MON	ITOR	ING W	ELL D	ATA	
Well Casi	ng Diameter (2"/	4"/6")		4"			
Seal at Gr	ade Type and (Condition		good		-	
	& Lock OK/R			OK			
	of Top of Casing	-		20.18			
Depth of V	Well (TD)			16.0			
	Water (DTW)	· · · · · · · · · · · · · · · · · · ·		6.92			
Water Ele	vation			13.26			
Three We	ll Volumes (gallo	ns)*					
2" cas	sing: (TD - DTW)(0.16)(3)		17			
4" cas	sing: (TD - DTW)(0.65)(3)					
6" cas	sing: (TD - DTW)(1.44)(3)					
Actual Vo	lume Purged (ga	llons)		16			
Appearan	ce of Purge Wate	r		Clear, colorless			
			UNDW	VATER	SAMI	PLES	
Number o	f Samples/Conta	iner Size		2-40ml voas			
Time	Vol Remvd	Temp C	p F		Cond	Comments	
	(gal)				mS)		
	1	64.7	6.6		62		
	4	65.9	6.4		658		
	8	65.9	6.5		76		
	12	64.9	7.0		33		
	66.0	6.7	8	51			
	J	<u> </u>	L				
	COMMENT	S (i.e., sam	ple ode	or, well	recharg	ge time & percent, etc.)	
				-			

ALL	ENVIRONME				UNDWA LING FO	TER MONITORING WELL DRM		
		Monito	ring V	Well 1	Number:	MW-3		
Project Na	me: Foss	· · · · · · · · · · · · · · · · · · ·		Dat	e of Same	oling: 7/31/97		
Job Numb						npler: DR		
Project Ac	ldress: 1353 E.	4 th Street						
		MON	ITOR	ING	WELL D	DATA		
Well Casin	ng Diameter (2"/			2"				
Seal at Gra	ade Type and (Condition		goo	d			
	& Lock OK/Re			OK				
	of Top of Casing	5		19.	55			
Depth of V				16.0)			
	Vater (DTW)			8.83	3			
Water Elev				10.1	72			
	l Volumes (gallo			_				
	ing: (TD - DTW							
4" cas	ing: (TD - DTW)(0.65)(3)						
	ing: (TD - DTW		_					
	lume Purged (ga							
Appearance	e of Purge Wate	r				_		
	<u> </u>							
			UNDV		ER SAMI	PLES		
Number of	Samples/Contai	ner Size		NA				
Time	Vol Remvd (gal)	Temp C	pI	<u>H</u>	Cond (mS)	Comments		
	(8)				(MIS)	-		
		-						
		·	-		-			
	COMMENT	S (i.e., sam	ple odo	эг, we	ell recharg	ge time & percent, etc.)		
				_				

ŀ

PROJEC	CT: FOSS #1599	LOG OF WELL	WMBER: AE-I
BORING	LOC.: DOWNGRADIENT FROM DRY CLEANING MACHINE	ELEVATION, TOC:	23.420
DRILLIN	NG CONTRACTOR: GREGG DRILLING	START DATE: 7/3/97	end date: 7/8/97
DRILLIN	IG METHOD: HOLLOW STEM AUGER	TOTAL DEPTH: 15'	SCREEN INT: 4.5-15.0°
DRILLIN	IG EQUIPMENT: RHINO	DEPTH TO WATER: 5.5	CASING: 2" PVC
	NG METHOD: 2" DRIVE SAMPLER	LOGGED BY: JSA	
	R WEIGHT and FALL: na	RESPONSIBLE PRO	
DEPTH feet)	s DESCRIPTION	SAMPLE CO. NO. FOR STANDARD STORMS CO.	WELL CONSTRUCTION DETAILS
AB	0.5 - 4.5; Silty Clay; mod. yellowish brown (10YR 5/4); gravel up to 1/8". 4.5 - 15.0; Sandy Silty Clay; mod. yellowish brow (10YR 5/4); 80% fines, 20% sand; med., some grame; very moist. Borehole terminated at 15' bgs.	s-1\\ S-1\\ S-2\\ S-3\\ -	Universal Well Cover Locking Wing Nut Neat Cement Grout Blank SCH 40 PVC (2") Bentonite No. 3 Monterey Sand O20" Slotted Well Screen
	ALL ENVIRONMENTAL	L, INC.	page 1 of 1
L		·	

APPENDIX C

CURRENT LABORATORY ANALYSES WITH CHAIN OF CUSTODY DOCUMENTS

110 Second Avenue South, #D7, Pacheco, CA 94553
Telephone: 510-798-1620 Fax: 510-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

All Environmental, Inc.	Client Project ID: #1599; Foss	Date Sampled: 07/31/97
3364 Mt. Diablo Blvd.		Date Received: 07/31/97
Lafayette, CA 94549	Client Contact: Jennifer Pucci	Date Extracted: 07/31/97
	Client P.O:	Date Analyzed: 07/31/97

08/07/97

Dear Jennifer:

Enclosed are:

- 1). the results of 3 samples from your #1599; Foss project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly,

Edward Hamilton, Lab Director

110 Second Avenue South, #D7, Pacheco, CA 94553
Telephone: 510-798-1620 Fax: 510-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

All Environmental, Inc.	Client Project ID	- #1500- Face	Date Sample	Date Sampled: 07/31/97				
3364 Mt. Diablo Blvd.	Chem Troject ib	Date Received: 07/31/97						
3304 Mt. Diabio Biva.								
Lafayette, CA 94549	Client Contact: Je	ennifer Pucci	Date Extracte	Date Extracted: 07/31/97				
	Client P.O:		Date Analyze	Date Analyzed: 08/01-08/04/97				
EPA method 601 or 8010	Volatile	Halocarbons		<u></u>				
Lab ID	79258	79259	79260					
Client ID	MW-1	MW-2	AE-1					
Matrix	W	W	W	**				
Compound		Concent	ration	<u> </u>				
Bromodichloromethane	ND	ND<1.0	ND					
Bromoform ^(b)	ND	ND<1.0	ND .					
Bromomethane	ND	ND<1.0	ND					
Carbon Tetrachloride(c)	ND	ND<1.0	ND					
Chlorobenzene	ND	ND<1.0	ND					
Chloroethane	ND	ND<1.0	ND	·				
2-Chloroethyl Vinyl Ether ^(d)	ND	ND<1.0	ND					
Chloroform (e)	ND	ND<1.0	ND					
Chloromethane	ND	ND<1.0	ND					
Dibromochloromethane	ND	ND<1.0	ND					
1,2-Dichlorobenzene	ND	ND<1.0	ND					
1,3-Dichlorobenzene	ND	ND<1.0	ND					
t,4-Dichlorobenzene	ND	ND<1.0	ND					
Dichlorodifluoromethane	ND	ND<1.0	ND					
1,1-Dichloroethane	0.63	ND<1.0	ND					
1,2-Dichloroethane	ND	ND<1.0	ND					
1,1-Dichloroethene	ND	1.4	ND	_				
cis 1,2-Dichloroethene	0.80	46	ND					
trans 1,2-Dichloroethene	ND	1.9	ND					
1,2-Dichloropropane	ND	ND<1.0	ND					
cis 1,3-Dichloropropene	ND	ND<1.0	ND					
trans 1,3-Dichloropropene	ND	ND<1.0	ND					
Methylene Chloride ^(f)	ND	ND<1.0	ND					
1,1,2,2-Tetrachloroethane	ND	ND<1.0	ND					
Tetrachloroethene	ND	27	ND					
1,1,1-Trichloroethane	ND	ND<1.0	ND					
1,1,2-Trichloroethane Trichloroethene	ND ND	ND<1.0	ND					
Trichlorofluoromethane	ND ND		ND					
Vinyl Chloride®	ND ND	ND<1.0	ND	-				
% Recovery Surrogate			ND					
% Recovery Surrogate Comments	103	103	102					
Comments				li .				

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil and sludge samples in ug/kg, wipe samples in ug/wipe Reporting limit unless otherwise stated: water/TCLP/SPLP extracts, ND<0.5ug/L; soils and sludges, ND<5ug/kg; wipes, ND<0.2ug/wipe ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

⁽b) tribromomethane; (c) tetrachloromethane; (d) (2-chloroethoxy) ethene; (e) trichloromethane; (f) dichloromethane; (g) chloroethene; (h) a lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~5 vol. % sediment; (j) sample diluted due to high organic content.

QC REPORT FOR EPA 8010/8020/EDB

Date: 08/01/97

Matrix: Water

	Con	centrat	ion (ug/I	% Rec			
Analyte	Sample			Amount			RPD
	#(78138) MS	MSD	Spiked	MS	MSD	
ļ	.			1	.		
1,1-DCE	0.0	8.6	8.6	10.0	86	86	0.0
Trichloroethene	0.0	8.6	8.7	10.0	86	87	1.2
EDB	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chlorobenzene	0.0	9.0	9.1	10.0	90	91	1.1
Benzene	N/A	N/A	N/A	N/A	. N/A	N/A	N/A
Toluene	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Chlorobz (PID)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	<u> </u>				.		

% Rec. = (MS - Sample) / amount spiked x 100

RPD = $(MS - MSD) / (MS + MSD) \times 2 \times 100$

ALL ENVIRONMENTAL, INC. 3364 Mt. Diablo Boulevard

9154xa/e179.doc

Chain of Custody

Lafayette, CA 94549 (510) 283-6000 FAX: (510) 283-6121

DATE: 7/3//97 PAGE: OF: 1

(010) 200 0000		'								·							
AEI PROJECT MANAGER: JEWNITER PULCI PROJECT NAME: FOSS			ANALYSIS REQUEST							AINERS							
PROJECT NUMBER: 1599 SIGNATURE: Destry TOTAL # OF CONTAINERS: 6 RECD. GOOD COND./COLD: YES		TPH Gasoling (RPA Silsoling	Saotine 5090.801	1EX (EPA 602.8020) Diesel 3510.23	PURGUALLARO	4. OIL & CAR.	LEAD (471LE ORGAN	8240) Metals	STLC CAM 17 (RPA 133, 17	RCI REACTOUTY, CO	STATE OF CONTRACTORY	0/0		NUMBER OF CONTAINERS		
SAMPLE I.D.	DATE	TIME	MATRIX	EE	<u> </u>	Z E E		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	25	ૢૼૢ૽ૼૺૼૼ	\$ 55	ĔĨ	<u> </u>		8		
MW-1	2/31/97		W											X			2
mw-2	f tr		W											X			2
AG-1	f e		W						-					X		_	2
								i						 			FOR
•														3		792	50%
·										ļ	ļ			1		792	15 9
		··							<u></u>		ļ						
							·				ļ			1		792	DU.
											5000	On o Bar					
					ICF		!		2000	EEVATI	7005	OEG M		loil			
100 to					C O.	D CON			APPE	PRAT							
					1124	D SPAC	E ABSE	IT 1	CONT	OPRIAT AINEKS						_	
									·	ļ						<u></u>	
ANALYTICAL LAB	TICAL INC	R	ELINQUISHED	BY : 1)		IVED B		1 1	RELIN	QUISH	ED BY:	2	RI	ECEIVED	BY:	2
ADDRESS OF SACHEGO, CA. 9455	UTH, #D7		Signature			Sign	ature.	<u> </u>		Sig	nature		-		Signature		
PHONE: () FAX: (INSTRUCTIONS/COMMENTS:			Printed Name	/	-0.	Printe	ed Name			Prin	ted Nar	ne	- -	P	rinted Na	me	
510-798-1620 P	hone	[Aご Company		[Mr Com	pany	.1 1		C	ompany				Company	,	
51U-798-1622 (ax	Time	Sils pm Date	7/31/57	Time	<u>5:15</u>	PM Dat	e731	9 Tim	ie		ate	Ti	me		ate	

110 Second Avenue South, #D7, Pacheco, CA 94553 Telephone: 510-798-1620 Fax: 510-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

All Environmental, Inc.	Client Project ID: #1599; Foss	Date Sampled: 07/03/97					
3364 Mt. Diablo Blvd.		Date Received: 07/03/97					
Lafayette, CA 94549	Client Contact: Jennifer Pucci	Date Extracted: 07/03/97					
	Client P.O:	Date Analyzed: 07/03/97					

07/10/97

Dear Jennifer:

Enclosed are:

- 1). the results of 2 samples from your #1599; Foss project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly,

Edward Hamilton, Lab Director

110 Second Avenue South, #D7, Pacheco, CA 94553
Telephone: 510-798-1620 Fax: 510-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

All Environmental, Inc.	Client Project II	D: #1599; Foss	Date Sampled: 07/03/97 Date Received: 07/03/97 Date Extracted: 07/03/97				
3364 Mt. Diablo Blvd.							
Lafayette, CA 94549	Client Contact:	Jennifer Pucci					
	Client P.O:		Date Analyzed: 07/03/97				
			Dute Milliy Zed. 07/03/57				
EPA method 601 or 8010	Volatil	le Halocarbons					
Lab ID	78308	78310					
Client ID	AE-1, 3'	AE-1, 8'					
Matrix	S	S					
Compound	·	Concen	tration				
Bromodichloromethane	ND	ND					
Bromoform ^(b)	ND	ND					
Bromomethane	ND	ND	· · · · · · · · · · · · · · · · · · ·				
Carbon Tetrachloride(c)	ND	ND					
Chlorobenzene	ND	ND					
Chloroethane	ND	ND					
2-Chloroethyl Vinyl Ether ^(d)	ND .	ND					
Chloroform (e)	ND	ND					
Chloromethane	ND	ND					
Dibromochloromethane	ND	ND					
1,2-Dichlorobenzene	ND	ND					
1,3-Dichlorobenzene	ND	ND					
1,4-Dichlorobenzene	ND	ND					
Dichlorodifluoromethane	ND	ND					
1,1-Dichloroethane	ND	ND					
1,2-Dichloroethane	ND	ND					
1,1-Dichloroethene	ND	ND					
cis 1,2-Dichloroethene	ND	ND					
trans 1,2-Dichloroethene	ND	ND					
1,2-Dichloropropane	ND	ND					
cis 1,3-Dichloropropene	ND	ND					
trans 1,3-Dichloropropene	ND	ND					
Methylene Chloride ^(f)	ND	ND					
1,1,2,2-Tetrachloroethane	ND	ND					
Tetrachloroethene	23	ND					
1,1,1-Trichloroethane	ND	ND					
1,1,2-Trichloroethane	ND	ND					
Trichloroethene	ND	ND					
Trichlorofluoromethane	ND	ND					
Vinyl Chloride ^(g)	ND	ND					
% Recovery Surrogate	96	98					
Comments							

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil and sludge samples in ug/kg, wipe samples in ug/wipe Reporting limit unless otherwise stated: water/TCLP/SPLP extracts, ND<0.5ug/L; soils and sludges, ND<5ug/kg; wipes, ND<0.2ug/wipe ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

⁽b) tribromomethane; (c) tetrachloromethane; (d) (2-chloroethoxy) ethene; (e) trichloromethane; (f) dichloromethane; (g) chloroethene; (h) a lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~5 vol. % sediment; (j) sample diluted due to high organic content.

QC REPORT FOR EPA 8010/8020/EDB

Date: 07/03/97

Matrix: Soil

	Conce	ntrati	on (ug/kg	3)	% Reco		
Analyte	Sample (#75866)	MS	MSD	Amount Spiked	 MS 	MSD	RPD
1,1-DCE	0	114	111	100	114	111	2.7
Trichloroethene EDB	0 0	100 80	97 81	100 100	100 80	97 81	3.0 1.2
Chlorobenzene	0 	102	101	100	102	101	1.0
Benzene Toluene	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Chlorobz (PID)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	<u> </u>						

RPD = $(MS - MSD) / (MS + MSD) \times 2 \times 100$

[%] Rec. = (MS - Sample) / amount spiked x 100

5 DAY TAT

3364 Mt. Diablo Boulevard

Lafayette, CA 94549

DATE: 7/3/97 PAGE: __LOF: 1

(510) 283-6000 FAX: (510) 283-6121 8972XALE 169 AEI PROJECT MANAGER: JENN FOR PUCCE NUMBER OF CONTAINERS ANALYSIS REQUEST PROJECT NAME: FOSS PROJECT NUMBER: 159 0 SIGNATURÉ.___ TOTAL # OF CONTAINERS: RECD. GOOD COND./COLD: SAMPLE I.D. DATE TIME **MATRIX** AE-1,31 7397 905 SDLC 7397 SOLL AE-1,5' 907 HOUD AE-1,8' 7397 915 501C 78308 78309 VOAS (OLG | METALS (OTHER 78310 COOD CONDITION J ANALYTICALIAIR MCCAMPRELL RECEIVED BY: RELINQUISHED BY: RECEIVED BY: vai Licca Signature Signature Signature MAT H. Vices Printed Name Printed Name INSTRUCTIONS/COMMENTS: Configura Company Company Company