

95 APR 26 PM 2: 05

April 18, 1995

Ms. Madhulla Logan Alameda County Health Agency Department of Environmental Health 80 Swan Way, Room 200 Oakland, California 94621

SUBJECT:

FIRST QUARTER OF 1995

GROUND WATER MONITORING REPORT

JAMES RIVER CORPORATION

2101 WILLIAMS STREET SAN LEANDRO, CALIFORNIA

Dear Ms. Logan:

This report presents the results of the first quarter of 1995 ground water monitoring activities conducted by Environmental Science & Engineering, Inc. (ESE) for the James River Corporation facility at 2101 Williams Street, San Leandro, California (Figure 1). This document was prepared under the supervision of a California Registered Geologist and for the sole use of the James River Corporation and the Alameda County Health Care Services Agency (HCSA), the only intended beneficiaries of our work. No other party may rely on the information contained in this report without prior written consent of ESE.

FIRST QUARTER 1995 GROUND WATER MONITORING

Field Investigation

On February 22, 1995, ground water samples were collected from monitoring wells W-3, W-5, W-6, W-7, W-8, W-9, W-10, and B-1 for chemical analyses. All sampling equipment was decontaminated before sampling activities began and after each sampling event at each well. All ground water sampling was performed according to HCSA requirements and ESE's Standard Operating Procedure No. 3 for Ground Water Monitoring and Sampling from Monitoring Wells (Appendix A). Copies of ESE's ground water sample collection logs are presented in Appendix B.

Before the eight wells were purged and sampled, water-level measurements were obtained using an electronic ground water well sounder with an accuracy of 0.01 foot. The measurements were repeated several times until consecutive measurements differed by less than 0.01 foot. The final measurements were recorded on ESE's sample collection logs.

Each well was purged of at least three well volumes of water using a decontaminated centrifugal pump. Field parameters (consisting of temperature, specific conductance, and pH) were monitored during purging and recorded on the ESE ground water sample collection logs. Samples were collected after the

Ms. Madhulla Logan/ACHA April 18, 1995 Page 2

parameter readings had stabilized. Field parameter measurements for purged water are presented in Table 1 and on ESE's sample collection logs (Appendix B). Due to sampling equipment problems, turbidity was not measured. Turbidity will be measured during future ground water sampling events at the site.

After purging, ground water samples were collected from each well using a new disposable Teflon bailer. To minimize the potential for cross-contamination, a new dropline and a new bailer was used for sample collection at each well. Samples collected for volatile organic analysis (VOA) were decanted into three 40-milliliter VOA vials. In addition, a one-liter amber glass bottle of ground water was collected from wells W-7 and W-8 for analysis of total petroleum hydrocarbons (as diesel and as motor oil). Samples were assigned numbers related to the well of origin, stored on ice, and delivered with a chain-of-custody record to Curtis & Tompkins, Ltd. (a state-certified laboratory) located in Berkeley, California.

One VOA trip blank was also submitted to the laboratory as a quality assurance (QA) check. The purpose of the trip blank was to identify the presence of artifact laboratory chemicals in the sample bottles or contamination of volatile chemicals during transport. This sample was entered on the chain-of-custody form and delivered to the laboratory in the cooler containing the ground water samples.

Ground Water Gradient and Flow Direction

Potentiometric surface elevations collected during the period of June 1994 to February 1995 are presented in Table 2. The direction of ground water flow during this quarter is towards the west at a gradient ranging between 0.003 to 0.006 foot/foot (Figure 2). Ground water flow direction and gradient data are consistent with data collected from previous monitoring periods.

Chemical Analyses

Samples collected on February 22, 1995, were analyzed using EPA Test Methods 8240 and 8015. Figure 3 presents the reported concentration of analytes detected in each well. Table 3 presents reported ground water sample analytical results for the period of June 1994 through February 1995. Chemical analytes and concentrations reported in February 1995 were in most cases, consistent with past reports. Compared to the previous monitoring report, trichloroethane (TCE) concentrations were reported to have increased in well W-6 from 78 micrograms per liter (μ g/L) to 250 μ g/L and in W-7 from 9 μ g/L to 180 μ g/L. Tetrachloroethane (PCE) was also reported to have increased in well W-6 from 120 μ g/L to 320 μ g/L and in well W-7 from 8 μ g/L to 170 μ g/L. The vinyl chloride concentration in W-8 was reported to have increased from nondetectable (less than 10 μ g/L) to 82 μ g/L. In well W-10, the acetone concentration was reported to have increased from 18,000 μ g/L to 47,000 μ g/L.

Cis-1,2 dichloroethene (DCE) concentrations were reported to have decreased in wells W-3, W-6, W-7, and W-9 and increased in wells W-5 and W-8. Vinyl chloride was not detected in well W-7 during this quarterly monitoring period.

ESE collected ground water from wells W-7 and W-8 for analysis of TPH as motor oil (TPH-MO) and diesel (TPH-D). These analyses were first performed during the June 1994 quarterly monitoring event to investigate the extent of a petroleum hydrocarbon release from the abandoned cardboard bailer vault located inside the Flexible Packaging Plant. Peaks on the chromatograph identifying both diesel and

Ms. Madhulla Logan/ACHA April 18, 1995 Page 3

motor oil were reported by the laboratory for well W-8. The sample from well W-8 was reported to contain TPH-D and TPH-MO at 3,100 μ g/L and 1,200 μ g/L, respectively. As stated in the Curtis and Tompkins report, the sample chromatogram for W-8 does not resemble the hydrocarbon standard. A copy of the laboratory report and chains-of-custody documentation are presented in Appendix C.

Conclusions and Recommendations

Results of quarterly ground water sampling and analysis performed during February 1995, indicate that chlorinated hydrocarbons continue to be present in the shallow ground water beneath the James River Facility in San Leandro. Findings are consistent with those collected during the past and are indicative of an upgradient offsite source of chlorinated hydrocarbons.

The next ground water monitoring event is scheduled to take place in May, 1995. If you have any questions regarding this report, please contact either of the undersigned at (510) 685-4053.

Respectfully submitted,

ENVIRONMENTAL SCIENCE & ENGINEERING, INC.

Carl S. Kelley III

Senior Project Scientist

George O. Reid Senior Geologist

Registered Geologist #3608

Attachments: Table 1 Field Parameter Measurements of Water Purged from

Monitoring Wells February 22, 1995

Table 2 Water-Level Measurements

Table 3 Analytical Results for Ground Water Samples

Figure 1 Location Map

Figure 2 Ground Water Level Contour Map

Figure 3 Ground Water Quality Analytical Results

Appendix A ESE Standard Operating Procedure No. 3

Appendix B Sample Collection Logs

Appendix C Analytical Reports with Chain-of-Custody Documentation

f:\6595022\95qt1.WP

TABLE 1

FIELD PARAMETER MEASUREMENTS OF WATER PURGED FROM MONITORING WELLS February 22, 1995

James River Corporation San Leandro, California

Well No.	Gallons Purged	pН	Specific Conductance* (jumhos/cm)	Temperature (°F)	Turbidity (NTU)
B-1	0	8.0	2280	63.5	NC
	20	6.9	2180	64.5	NC
	40	6.6	2200	65.2	NC
W-3	0	6.2	810	62.3	NC
	25	6.3	850	64.5	NC
	50	6.5	840	65	NC
W-5	0	6.4	980	62.1	NC
	5	6.5	910	64.5	NC
	10	6.4	920	65.1	NC
W-6	0	6.5	1020	63.1	NC
	7	6.4	1110	64.9	NC
	15	6.6	1100	64.7	NC
W-7	0	6.4	1010	63.1	NC
	25	6.4	970	63.9	NC
	50	6.2	950	64.2	NC
W-8	0	6.5	2110	65.1	NC
	25	6.4	1210	64.9	NC
	50	6.4	1120	64.8	NC
W-9	0	6.6	NA	NA	NC
	20	6.6	NA	NA	NC
	40	6.8	NA	NA	NC
W10	0	6.4	1410	63.5	NC
	7	6.5	1380	64.1	NC
	15	6.4	1360	63.9	NC

Notes:

NC=Not Completed

* = at 25°C

μπhos/cm = Micromhos per centimeter

⁰F = Degrees Fahrenheit

TABLE 2
WATER-LEVEL MEASURMENTS

James River Corporation San Leandro, California

Well Number	Date	Top of Well Casing Elevation (feet above MSL)	Depth to Water Below Top of Casing (feet)	Water Table Elevation (feet above MSL)
W-1	Jun-94	20.67	11.62	9.05
	Sep-94	20.67	12.27	8.40
	Dec-94	20.67	10.96	9.71
	Feb-95	20.67	10.26	10.41
W-3	Jun-94	20.80	11.82	8.98
	Sep-94	20.80	12.48	8.32
	Dec-94	20.80	11.20	9.60
	Feb-95	20.80	10.52	10.28
VV-4	Jun-94	21.00	11.98	9.02
	Sep-94	21.00	12.63	8.37
	Dec-94	21.00	11.35	9.65
	Feb-95	21.00	10.66	10.34
W-5	Jun-94	21.64	12.64	9.00
	Sep-94	21.64	13.29	8.35
	Dec-94	21.64	12.00	9.64
	Feb-95	21.64	11.32	10.32
W-6	Jun-94	21.05	11.97	9.08
	Sep-94	21.05	12.62	8.43
	Dec-94	21.05	11.35	9.70
	Feb-95	21.05	10.63	10.42
W-7	Jun-94	20.41	12.02	8.39
	Sep-94	20.41	12.63	7.78
	Dec-94	20.41	11.44	8.97
	Feb-95	20.41	10.84	9.57

TABLE 2 (cont)

WATER-LEVEL MEASURMENTS

James River Corporation San Leandro, California

Well Number	Date	Top of Well Casing Elevation (feet above MSL)	Depth to Water Below Top of Casing (feet)	Water Table Elevation (feet above MSL)
W-8	Jun-94	20.50	11.48	9.02
	Sep-94	20.50	12.08	8.42
	Dec-94	20.50	10.85	9.65
	Feb-95	20.50	10.19	10.31
W-9	Jun-94	20,16	11.52	8.64
2000	Sep-94	20.16	12.00	8.16
	Dec-94	20.16	10.92	9.24
	Feb-95	20.16	10.3	9.86
W-10	Jun-94	20.22	12.16	8.06
	Sep-94	20.22	12.85	7.37
	Dec-94	20.22	11.53	8.69
	Feb-95	20.22	10.98	9.24
B-1	Jun-94	20.59	11.6	8.99
	Sep-94	20.59	12.26	8.33
	Dec-94	20.59	10.97	9.62
	Feb-95	20.59	10.28	10.31

TABLE 3

ANALYTICAL RESULTS FOR GROUND WATER SAMPLES

James River Corporation San Leandro, California (Concentrations in ug/L)

Well Name	Sample Date	Benzene	Ethyl- benzene	Toluene	Total Xylenes	TPH Dieset	TPH Motor Oil
W-3	Jun-94	<5	<5	<5	<5	NA	NA
	Sep-94	<5	<5	<5	<5	NA	NA
	Dec-94	<5	<5	<5	<5	NA	NA.
	Feb-95	<5	<5	<5	<5	NA	NA
W-5	Jun-94	<50	<50	<50	<50	NA	NA
	Sep-94	<50	<50	<50	<50	NA	NA
	Dec-94	<50	<50	<50	<50	NA.	NA
	Feb-95	<100	<100	<100	<100	NA	NA
W-6	Jun-94	<5	<5	<5	<5	NA	NA
	Sep-94	<5	<5	<5	<5	NA	NA
	Dec-94	<5	<5	<5	<5	NA	NA
	Feb-95	<10	<10	<10	<10	NA	NA
W-7	Jun-94	<5	<5	<5	<5	130	130
	Sep-94	<5	<5	<5	<5	71	630
	Dec-94	<5	<5	<5	<5	300	120
	Feb-95	<5	<5	<5	<5	<50	<1300
W-8	Jun-94	<5	<5	<5	<5	200	110
	Sep-94	<5	<5	<5	<5	170	870
	Dec-94	<5	<5	<5	<5	450	270
	Feb-95	<5	<5	<5	<5	3100	1200
W-9	Jun-94	<5	<5	<5	<5	NA.	NA
	Sep-94	<5	<5	<5	<5	NA	NA
	Dec-94	<5	<5	<5	<5	NA	NA
	Feb-95	<5	<5	<5	<5	NA	NA
W-10	Jun-94	<2,000	<2,000	<2,000	<2,000	NA	NA
	Sep-94	<2,500	<2,500	<2,500	<2,500	NA	NA
	Dec-94	<500	<500	<500	<500	NA	NA
	Feb-95	<1,300	<1,300	<1,300	<1,300	NA	NA
B-1	Jun-94	<5	<5	<5	<5	NA	NA
	Sep-94	<5	<5	<5	<5	NA	NA
	Dec-94	<5	<5	<5	<5	NA	NA
	Feb-95	<5	<5	<5	<5	NA	NA

TABLE 3 (cont)

ANALYTICAL RESULTS FOR GROUND WATER SAMPLES

James River Corporation San Leandro, California (Concentrations in ug/L)

Well Name	Sample Date	TCE	Vinyl Chloride	PCE	TCA	Cis-1,2DCE	1,1DCA	Acetone	MIBK	1,1-DCE	Carbon Disulfide
W-3	Jun-94	<5	<10	<5	<5	8	45	<20	210	<5	<5
	Sep-94	14	<10	19	<5	8	<5	<20	<10	<5	<5
	Dec-94	<5	<10	<5	<5	61	<5	<20	<10	<5	<5
	Feb-95	<5	<10	<5	<5	11	<5	<20	<10	<5	4
W-5	Jun-94	530	160	3400	<50	1700	<50	<200	<100	<50	<50
	Sep-94	530	140	2500	<50	1300	<50	<200	<100	<50	<50
	Dec-94	350	<100	1800	<50	1600	<50	<200	<100	<50	<50
	Feb-95	290	<200	1900	<100	2100	<100	<400	<200	<100	<100
W-6	Jun-94	310	<10	450	5	100	<5	<20	<10	<5	<5
	Sep-94	230	<10	310	<5	380	<5	<20	<10	<5	<5
	Dec-94	78	<10	120	<5	280	<5	<20	<10	<5	<5
	Feb-95	250	<20	320	<10	24	<10	<40	<20	<10	<10
W-7	Jun-94	240	<10	240	<5	26	<5	<20	<10	<5	<5
	Sep-94	120	<10	86	<5	230	<5	<20	<10	<5	<5
	Dec-94	9	37	8	<5	120	<5	<20	<10	<5	<5
	Feb-95	180	<10	170	<5	17	<5	<20	<10	<5	<5
8-W	Jun-94	<5	280	<5	<5	290	<5	<20	<10	<5	<5
	Sep-94	<5	43	<5	<5	59	<5	<20	<10	<5	<5
	Dec-94	<5	<10	<5	<5	15	<5	<20	<10	<5	<5
	Feb-95	<5	82	<5	<5	79	<5	<20	<10	<5	10
W-9	Jun-94	110	<10	12	5	<5	<5	<20	<10	6	<5
	Sep-94	80	<10	7	<5	30	<5	<20	<10	<5	<5 <5
	Dec-94 Feb-95	<5 3	<10	<5 <5	<5 <5	110	<5 <5	<20	<10	<5 <5	23
	Lep-92	3	<10	<5	<5	63	<5	<20	<10	9	23
W-10	Jun-94	<2,000	<4,000	<2000	<4000	<2000	<2000	150000	4800	<2000	<2000
	Sep-94	<2,500	<5,000	<2500	<2500	<2500	<2500	74000	<5000	<2500	<2500
	Dec-94	<500	<1,000	<500	<500	<500	<500	18000	1600	<500	<500
	Feb-95	<1,300	<2,500	<1300	<1300	<1300	<1300	47000	1300	<1300	<1300
B-1	Jun-94	<5	<10	<5	<5	<5	<5	27	<10	<5	<5
	Sep-94	<5	<10	<5	<5	<5	<5	66	<10	<5	<5
	Dec-94	<5	<10	<5	<5	<5	<5	23	<10	<5	<5
	Feb-95	<5	<10	<5	<5	<5	<5	62	<10	<5	53

Notes:

NA = Not Analyzed

<5 = Not detected at the listed concentration.

MiBK= Listed in laboratory reports as 4-Methyl-2-pentanone

Appendix A

ESE Standard Operating Procedure No. 3

ENVIRONMENTAL SCIENCE & ENGINEERING, INC. CONCORD, CALIFORNIA OFFICE

STANDARD OPERATING PROCEDURE NO. 3 FOR GROUND-WATER MONITORING AND SAMPLING FROM MONITORING WELLS

Environmental Science & Engineering, Inc. (ESE) typically performs ground-water monitoring at project sites on a quarterly basis. As part of the monitoring program an ESE staff member will first gauge the depth to water and free product (if present) in each well, then collect ground-water samples from each well. Depth to water measurements are taken by lowering an electric fiberglass tape measure into the well and recording the occurrence of water in feet below a fixed datum set on the top of the well-casing. If free-phase liquid hydrocarbons (free product) are known or suspected to be present in the well, then an electric oil/water interface probe is used to determine the depth to the occurrence of ground-water and the free product in feet below the fixed datum on the top of the well-casing. Depth to water and depth to product measurements are measured and recorded within an accuracy of 0.005-foot. The electric tape and the electric oil/water interface probe are washed with an Alconox® detergent and tap water solution then rinsed with tap water between uses in different wells.

Ground-water samples are collected from a well subsequent to purging a minimum of three to four well-casing volumes of ground water from the well, if the well bails dry prior to the removal of the required minimum volume, then the samples are collected upon the recovery of the ground water in that well to 80% of its initial static level. Ground water is typically purged from monitoring wells using either a hand-operated positive displacement pump, constructed of polyvinylchloride (PVC); a new (precleaned), disposable polyethylene bailer; or, a variable-flow submersible pump, constructed of stainless steel and Teflon®. The hand pumps and the submersible pumps are cleaned between each use with an Alconox® detergent and tap water solution followed by a tap water rinse. During the well purging process the conductivity, pH and temperature of the ground water are monitored by the ESE staff member. Ground-water samples are collected from the well subsequent to the stabilization of the of the conductivity, pH and temperature of the purge water, and the removal of four well-casing volumes of ground-water (unless the well bails dry). The parameters are deemed to have stabilized when two consecutive measurements are within 10% of each other, for each respective parameter. The temperature, pH, conductivity and purge volume measurements, and observations of water clarity and sediment content will be documented by the ESE staff member on ESE Ground-Water Sampling Data Forms.

Ground-water samples are collected by lowering a new (precleaned), disposable polyethylene bailer into the well using new, disposable nylon cord. The filled bailer is retrieved, emptied, then filled again. The ground water from this bailer is decanted into appropriate laboratory supplied glassware and/or plastic containers (if sample preservatives are required, they are added to the empty containers at the laboratory prior to the sampling event). The containers are filled carefully so that no headspace is present to avoid volatilization of the sample. The filled sample containers are then labeled and placed in a cooler with ice for transport under chain of custody documentation to the designated analytical laboratory. The ESE staff member will document the time and method of sample collection, and the type of sample containers and preservatives (if any) used. These facts will appear on the ESE Ground-Water Sampling Data Forms. ESE will collect a duplicate ground-water sample from one well for every ten wells sampled at each site. The duplicate will be a blind sample (its well designation will be unknown to the laboratory). The duplicate sample is for Quality Assurance and Quality Control (QA/QC) purposes, and provides a check on ESE sampling procedures and laboratory sample handling procedures. When VOCs are included in the laboratory analyses, ESE will include a trip blank, if required, in the cooler with the ground-water samples for analysis for the identical VOCs. The trip blank is supplied by the laboratory and consists of deionized water. The trip blank is for QA/QC purposes and provides a check on both ESE and laboratory sample handling and storage procedures. Since disposable bailers are used for sample collection, and are not reused, no equipment blank (rinsate) samples are collected.

Appendix B

Sample Collection Logs

PROJECT NAME: 14MES RIV PROJECT NO.: 65-95-02 DATE: 2/22/95		SAMPLE LOCATION I.D.: AW - SAMPLER: PAUL MARSOEN PROJECT MANAGER: BANK MILLER
CASING DIAMETER 2" 4"X Other	SAMPLE TYPE Ground Water Surface Water Treat. Influent	WELL VOLUMES PER UNIT Well Casing I.D. (inches) Gal/Ft. 2.0 0.1632
DEPTH TO PRODUCT: 6 (ft.) DEPTH TO WATER: 10, 26 (ft.) DEPTH OF WELL: 38, 77 (ft.)	Treat. Effluent Other PRODUCT THICKNESS: WATER COLUMN: WELL CASING VOLUME:_	(ft.) (3 or 4 WSV): (gal
Volume (GAL)	pH E.C. (Units) (Micromhos)	Temperature Turbid.
INSTRUMENT CALIBRATION pH/COND./TEMP.: TYPE TURBIDITY: TYPE	·	TE: TIME: BY: TE: TIME: BY:
PURGE METHODDisplacement Pump	Other Submersible Pump	SAMPLE METHOD Bailer (Teflon/PVC/SS)DedicatedBailer (Disposable)Other
SAMPLES COLLECTED SAMPLE SAMPLE DUPLICATE SPLIT FIELD BLANK COMMENTS:	TIME DATE AUT SAMPLED	
SAMPLER: 4090 Nelson Avenue, Suite)	Concord, CA 94520	CT MANAGER Phone (510) 685-5323

Concord, CA 94520

Phone (510) 685-4053

PROJECT NAME: JAME: PROJECT NO: 65-9: DATE: 726. 27, 93	3 RIVER CORP.	SAMPLE LOCATION I.D.: SAMPLER: Y. Morsda PROJECT MANAGER: SA	
CASING DIAMETER	SAMPLE TYPE	WELL VOL	UMES PER UNIT
2" 4" Other	Ground Water Surface Water Treat. Influent Treat. Effluent Other	Well Casing <u>I.D. (inches</u> 2.0 <u>4.0</u> 6.0	
DEPTH TO PRODUCT: DEPTH TO WATER: 10s 2 DEPTH OF WELL: 37.20	<u>'_ (ft.) WATER COLUMN: 26, 6°</u>	(ft.) MINIMUM PURGE ((ft.) (3 or 4 WCV): 57. (gal) ACTUAL VOLUME (2 (na
Volume (GAL) 1256 1300 25 1305	(Units) (Micromhos) X/000 6:2 6:3 0:85	62,30	
pH/COND./TEMP.: TYP TURBIDITY: TYP	DN DE Harlac PUNIT#9308/ADAT DE DAT	E: 722/95- TIME: 80m. E: TIME:	BY: VM
PURGE METH	OD	SAMPLE METH	OD
Displacement Pump Bailer (Teflon/PVC/SS)	Other XSubmersible Pump	Bailer (Teflon/PVC/SS) Bailer (Disposable)	Dedicated Other
SAMPLES COLLECTED			
SAMPLE DUPLICATE SPLIT FIELD BLANK	D TIME DATE 13/D 7/22	LAB ANA CURTIS: TOMPKIAS E	LYSES <u>EPA 8</u> 240
COMMENTS:		·	·
= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	/		1
SAMPLER: 4090 Nelson Avenue, Suite J	PROJECT Concord, CA 94520	CT MANAGER Phone (510) 685-4053	Fax (510) 685-5323

X CILCUMP Company	ı				2.1	
PROJECT NAME: JAMES RIV	ER CORPORATION	SAMPI	LE LOCATION	ч I.D.:_ <i>W</i>	-4	
PROJECT NO.: 65-95-027	2	SAMPI	LER: PAUL	MARSDEN		
DATE: 2/22/45		PROJE	ECT MANAGE	R:	duciel	
CASING DIAMETER	SAMPLE TYPE	E	WE	LL VOLUM	ES PER UN	IIT
2"	Ground Water_ Surface Water			l Casing (inches)	Gal/Ft.	
Other	Treat. Influent_		· · · · · · · · · · · · · · · · · · ·	2.0	0.1632	
	Treat. Effluent_		4	1.0	0.6528	
,	Other	<u> </u>	6	6.0	1.4690	
DEPTH TO PRODUCT: 6 (f) DEPTH TO WATER: 10.66 (f) DEPTH OF WELL: 38.0 4 (f) Volume	t.) WATER COLUMN:_ t.) WELL CASING VOL	(ft.) _UME:(gal)	MINIMUM P (3 or 4 WCV ACTUAL VO	/):		(gal) (gal)
TIME (GAL)	•	•	(F°)	(NTU)	Othe	er
	The same of the sa					
			The second of th			
						_
						<u>-</u>
INSTRUMENT CALIBRATION						
pH/COND./TEMP.: TYPE	UNIT#	DATE.	Titer.		5)/	
TURBIDITY: TYPE_	UNIT#		TIME: TIME:_		BY: BY:	-
		. 5,			D1	_
PURGE METHOD			SAMPLE	METHOD		
Displacement Pump Bailer (Teflon/PVC/SS)	Other Submersible Pump		er (Teflon/PV er (Disposabl		Dedicat Other	ed
SAMPLES COLLECTED						
SAMPLE W-4	TIME	DATE	LAB	ANALYS	SES	
DUPLICATE W-1	_ NOT SAMA	L <u>ep</u>				
SPLIT					_	
FIELD BLANK					- -	
COMMENTS:						
	•					
					-)	
ROMA	0			11	/	
SAMPLER:		PROJECT MANA		_///(
4090 Nelson Avenue, Suite J	Concord, CA 94520	Phone (5	10) 685-4953	/ Fax	(510) 685-5323	

A CILCORP Company	_		
PROJECT NAME: JAMES PROJECT NO.: 65-95 DATE: 76 27,95	FINER CORP.	SAMPLE LOCATION I.D SAMPLER: <u>faul f</u> PROJECT MANAGER:	Josdan
		Ú	,
CASING DIAMETER	SAMPLE TYPE	WELL V	OLUMES PER UNIT
2" 4" Other	Ground Water Surface Water Treat. Influent Treat. Effluent Other	Well Cas <u>I.D. (incl</u> <u>2.0</u> 4.0 6.0	
DEPTH TO PRODUCT: DEPTH TO WATER: 1/13 TO DEPTH OF WELL: 34,92	<u>((ft.) Water Column:_ ∠3</u>	S: (ft.) MINIMUM PURG (ft.) (35) 4-WGV): E3.7 (gal) ACTUAL VOLUM	//. < (gal
Volume (GAL)	pH E.C. (Units) (Micromi	hos) (F°) (N	bid. TU) Other
INSTRUMENT CALIBRATIC pH/COND./TEMP.: TYP		DATE: 7/27/61- TIME: 4-	n. 777
TURBIDITY: TYP	Effyloe 9 UNIT# <u>9300 ff</u> [E UNIT# [DATE: TIME:	BY:
PURGE METH	OD	SAMPLE ME	THOD
Displacement Pump Bailer (Teflon/PVC/SS)	Other XSubmersible Pump	Bailer (Teflon/PVC/SS _ <u>X_</u> Bailer (Disposable)	6)Dedicated Other
SAMPLES COLLECTED			
SAMPLE W- DUPLICATE SPLIT FIELD BLANK	D TIME D 2/2	DATE LAB A	NALYSES EPA 8240
COMMENTS: 2656	Contow for 1	ocks on site	•
SAMPLER: 4090 Nelson Avenue, Suite I	Concord, CA 94520	DJECT MANAGER Phone (510) 685-4053	F. (510) (57 5000
, = ====,	Concord, CA 74520	1 HOUR (210) 002-4030	Fax (510) 685-5323

A GILCORP Company			
PROJECT NAME: JAMES PROJECT NO.: 65-95-	RIVER CORP.	SAMPLE LOCATION J.D.: SAMPLER:	d
DATE: 716 22, 95		PROJECT MANAGER:	BART MILER
		·	
CASING DIAMETER	SAMPLE TYPE	WELL VO	LUMES PER UNIT
2"	Ground Water_	Well Casin	ng
4" Other	Surface Water		
Ollion	Treat. Influent Treat. Effluent	<u>2.0</u> 	0.1632
	Other	4.0 6.0	0.6528 1.4690
DEPTH TO PRODUCT: Ø (DEPTH TO WATER: 10に3 (DEPTH OF WELL: 37.64 (ft.) WATER COLUMN: 2	S:(ft.) MINIMUM PURGE 27.0/(ft.) (3 or *****CV): ME:4/(gal) ACTUAL VOLUME	17 (001)
Volume	pH E.C	C. Temperature Turb	i d.
TIME (GAL)	(Units) (Micron		J) Other
1570	$\frac{\chi_{00}}{6.5}$		
1572	6.4 /11	64.90	.
15-14 15	6.6	\$ 64.70	
		<u> </u>	
INSTRUMENT CALIBRATION			
NU/COND /FEND - TYPE !	11 1 9 Gans	-//-/	- 11
pH/COND./TEMP.: TYPEZ TURBIDITY: TYPE_	Mycle c 9 UNIT#9308A UNIT#	DATE: 2/22/55 TIME: 8 am DATE: TIME:	BY: 2 /
PURGE METHOD		SAMPLE METI	1 OD
Displacement Pump	Out		
	Other X_Submersible Pump	Bailer (Teflon/PVC/SS) _X_Bailer (Disposable)	Dedicated Other
SAMPLES COLLECTED			
ID SAMPLE W-6	TIME (ALYSES
DUPLICATE	1520 4	22/95 CURTIS: TOMPKINS E	<u>la ez</u> yo
SPLIT			
FIELD BLANK			
COMMENTS:			-
-			
	A		
	// · ·	1	/(
SAMPLER:		OJECT MANAGER	
4090 Nelson Avenue, Suite J	Concord, CA 94520	Phone (510) 685-4953	Fax (510) 685-5323

SAMPLE COLLECTION LOG

A CILCORP Company						
PROJECT NAME:	MES RIVER -95-022	CORP.		SAMPLE LOC SAMPLER:	ATION I.D.:	N-3
DATE: Fib. 27,	9s ⁻			PROJECT MA	NAGER: BADT	MUER
CASING DIAMETER		SAMPLE TY	PE		WELL VOLUM	IES PER UNIT
2"		Ground Wate			Well Casing	
Other		Surface Wate Treat, Influen			I.D. (inches)	Gal/Ft.
		Treat. Effluent			2.0 4.0	0.1632 0.6528
		Other			6.0	1.4690
DEPTH TO PRODUCT: DEPTH TO WATER: 10 DEPTH OF WELL: 3	<u>>&Y</u> (ft.) W	RODUCT THICK ATER COLUMN ELL CASING VO	: 25 <u>.3</u>	(ft.) (3 or 4	UM PURGE VOI WCV):	9,5 (gal)
	olume	pН	E.C.	Temperature		•
1 11VIE (6	GAL)		licromhos) ಗಿರು ಎ	(F°)	(NTU)	Other
[40]	σ		1,01	63.10		
1404	3	6.4 De	92	63.90		
1405 S		<u>- 12</u>	7.95	64,20		
			-		<u> </u>	
INSTRUMENT CALIBE pH/COND./TEMP.: TURBIDITY:		? UNIT# <u>930%</u> UNIT#	A DATE:	<u> </u>	IE: <u>Ya</u>	BY: VM
PURGE N					MPLE METHOD	J
Displacement Pump Bailer (Teflon/PVC/		er nersible Pump	,	Bailer (Teflo ∠Bailer (Disp	n/PVC/SS)	Dedicated Other
SAMPLES COLLECTE						
SAMPLE	W-7	TIME 1:410	DATE	LAB	ANALY	
DUPLICATE	1/0 - 7	7710	42475	Calcust	Tompicijs <u>EPA 82</u>	10/8015m
SPLIT					 	-
FIELD BLANK						
COMMENTS:				·		
			<u> </u>			11
W ((Who.				11/	
SAMPLED: V 4990 Nelson Avenue, Si	11/000	6		MANAGER	D 111	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	πική	Concord, CA 94520	ı	Phone (510) 685-40 _.	53 'Fax	(510) 685-5323

PROJECT NAME: JAME	3 RIVER CORP.	SAMPLE LOCATION I.D.:	
PROJECT NO: 65-95	5-022	SAMPLER 20, VMC 1901	W-8
DATE: 7,6, 27,95		PROJECT MANAGER: BA	et diver
•			
CASING DIAMETER	SAMPLE TYPE	WELL VOLUM	JES PER UNIT
2"	Ground Water_	Well Casing	
2" 4"	Surface Water	I.D. (inches)	Gal/Ft_
Other	Treat. Influent	2.0	0.1632
	Treat. Effluent	4.0	0.6528
	Other	6.0	1.4690
DEPTH TO PRODUCT: DEPTH TO WATER: 1019 DEPTH OF WELL: 35.5	(ft.) PRODUCT THICKNESS:(ft.) WATER COLUMN:	(ft.) MINIMUM PURGE VOI 34 (ft.) (3 of 4 WOV) : 4 <i>G</i> 7654 (gal) ACTUAL VOLUME PUR	LUME (ga
Volum TIME (GAL)	F	Temperature Turbid.	
TIME (GAL)	(Units) (Micromho	s) (F°) (NTU)	Other
1420	6,5 2,11	65.1°	<u> </u>
1424 75	4.4 1,21	64.90	
428 50	6.4 1.12	64.80	
	_		·
			
INSTRUMENT CALIBRATION	ON	•	
pH/COND./TEMP.: TYPE TURBIDITY: TYPE	PE <i>ffylae 9</i> UNIT# <u>93081+</u> DA PE UNIT# DA	TIME: TIME:	BY: 1/1/ BY:
PURGE METH	IOD	SAMPLE METHOD	I
Displacement Pump Bailer (Teflon/PVC/SS)	Other _X_Submersible Pump	Bailer (Teflon/PVC/SS)Bailer (Disposable)	Dedicated Other
SAMPLES COLLECTED			
0	ID TIME DA	TE LAB ANALYS	SES.
SAMPLE V-	1435 2/22/		40/8015~
DUPLICATE SPLIT			—
FIELD BLANK		·	
			_
COMMENTS:			
			7
	V 1 -	- 4	/
SAMPLER:	Wash-	ECT MANAGED TO	-
4090 Nelson Avenue, Suite J	Concord, CA 94520	ECT MANAGER Phone (510) 685-4053 Fax	(510) 685-5323

PROJECT NAME: JAME PROJECT NO.: 65-95 DATE: 2/22/95	3 RIVER CORP.	SAMPLE LOCATION I.D.:_ SAMPLER: <i>PAULMARS</i> PROJECT MANAGER:	W-9 BANT MILLER
CASING DIAMETER	SAMPLE TYPE	WELL VO	LUMES PER UNIT
2" 4" Other	Ground Water	Well Casin I.D. (inche 2.0 4.0 6.0	
DEPTH TO PRODUCT: DEPTH TO WATER: 10:36 DEPTH OF WELL: 31:15	(ft.) WATER COLUMN: Za 8	(ft.) MINIMUM PURGE (ft.) (3 or 4 WCV): (13.6 (gal) ACTUAL VOLUME	(cal
Volume (GAL) 1344 0 1344 20 1352 40	(Units) (Micromho	Temperature Turbi	
INSTRUMENT CALIBRATIC	N		
pH/COND./TEMP.: TYP TURBIDITY: TYP		ATE: TIME: ATE: TIME:	BY: BY:
PURGE METH	OD	SAMPLE METH	HOD
Displacement Pump Bailer (Teflon/PVC/SS)	Other Submersible Pump	Bailer (Teflon/PVC/SS) Bailer (Disposable)	Dedicated Other
SAMPLES COLLECTED			
SAMPLE U- DUPLICATE SPLIT FIELD BLANK COMMENTS:	D TIME DA /222		ALYSES 18240/
SAMPLER: 4090 Melson Avenue, Suite J	Concord, CA 94520	JECT MANAGER Phone (510) 685-4053	Fax (510) 685-5323

···,			
PROJECT NAME: JAMES RIV PROJECT NO.: 65-95-02: DATE: 77.95	LER CORP.	SAMPLE LOCATION I.D.: SAMPLER: V. Marsa PROJECT MANAGER: 2	in
		TROOLOT MANAGER	ALLER
•			
CASING DIAMETER	SAMPLE TYPE	WELL VO	DLUMES PER UNIT
2" 4"	Ground Water	Well Casi	ng
	Surface Water	<u>I.D. (inche</u>	
Other	Treat. Influent	2.0	0.1632
	Treat. Effluent Other	<u>4.0</u> 6.0	0.6528
	Other	6.0	1.4690
DEPTH TO PRODUCT: (ft.) DEPTH TO WATER: /0.98 (ft.) DEPTH OF WELL: /6 . 20 (ft.)	WATER COLUMN: <u> </u>	(ft.) MINIMUM PURGE (ft.) (3 or 4 WCV): 5.73. (gal) ACTUAL VOLUME	/\
Volume	pH E.C.	Temperature Turb	id.
TIME (GAL)	(Units) (Micromhos)	•	
<u>1208</u>	X1000		_ cloudy
1440	6H 1,39	6416	<u>clear</u>
1442 7	605 1.36	63 90	
1444 15	6.4		
INSTRUMENT CALIBRATION pH/COND./TEMP.: TYPE Hydr TURBIDITY: TYPE	/ 0 UNIT# <u>\$308 /</u> DAT UNIT# DAT	TE:2/23/95-TIME:80m	BY: BY:
PURGE METHOD		SAMPLE MET	HOD
	Other Jubmersible Pump	Bailer (Teflon/PVC/SS) Bailer (Disposable)	Dedicated Other
SAMPLES COLLECTED			
SAMPLE W-(U)	TIME DAT		ALYSES
DUPLICATE	$\frac{1130}{7}$	25 CURTIS! TOMPKINS	EPA BZYO
SPLIT			-
FIELD BLANK			
COMMENTS:		·	·
10.1			
SAMPLER: The May	de ponis	CT MANAGER	/ _L / -
4090 Nelson Avenue, Suite J	Concord, CA 94520	Phone (510) 685-4058	Fax (510) 685-5323
(•		. 44 (010) 003-3323

PROJECT NAME: JAMES RIV PROJECT NO: 65-95-02 DATE: 746, 22, 95	ER CORP.	SAMPLE LOCATION I.D.: SAMPLERY. Marsd PROJECT MANAGER:	B-1 PART MILLER
CASING DIAMETER	SAMPLE TYPE	WELL VO	LUMES PER UNIT
2" 4" Other	Ground Water Surface Water Treat. Influent Treat. Effluent Other	Well Casin <u>I.D. (inche</u> 2.0 <u>4.0</u> 6.0	•
DEPTH TO PRODUCT: (ft.) DEPTH TO WATER: / C 28 (ft.) DEPTH OF WELL: 47, / S (ft.)	WATER COLUMN: 〈フ・	(ft.) MINIMUM PURGE Z (ft.) (3 or JWC V): 24.7 (gal) ACTUAL VOLUME	44 (nal)
Volume TIME (GAL) 1208 3 1219 20 1215 70	pH E.C. (Units) (Micromhos 8.0 ************************************	Temperature Turb (S) (F°) (NTC 2,28 63,50 64,50 65,720	J) Other
INSTRUMENT CALIBRATION pH/COND./TEMP.: TYPE/yda TURBIDITY: TYPE/	<u>c 9</u> UNIT# <u>\$30<!--</u--> DA UNIT# DA</u>	TE: 2/12/95 TIME: 80 TE: TIME:	BY:
PURGE METHOD		SAMPLE METI	HOD
	Other ubmersible Pump	Bailer (Teflon/PVC/SS) _k_Bailer (Disposable)	Dedicated Other
SAMPLES COLLECTED			•
SAMPLE DUPLICATE SPLIT FIELD BLANK	TIME DAT	TE LAB AN CURTIS: TOMPKINS E	ALYSES <u>EPA 8</u> 240
COMMENTS: need to fish out	Stinger Tube.		
SAMPLER: July Morl 4090 Melson Avenue, Suite	C PROJE Concord, CA 94520	ECT MANAGER Phone (510) 685-4053	Fax (510) 685-5323

Appendix C

ANALYTICAL REPORTS WITH CHAIN-OF-CUSTODY DOCUMENTS

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Environmental Science & Engineering 4090 Nelson Avenue Suite J Concord, CA 94520

Date: 11-MAR-95 Lab Job Number: 119999

Project ID: 65-95-022

Location: James River Corporation

Reviewed by: May Plessae

This package may be reproduced only in its entirety.

Berkeley

Irvine

LABORATORY NUMBER: 119999

CLIENT: Environmental Science & Engineering DATE RECEIVED: 02/23/95

PROJECT ID: 65-95-022

LOCATION: JAMES RIVER CORPORATION

DATE SAMPLED: 02/22/95

DATE EXTRACTED: 02/27/95 DATE ANALYZED: 02/28/95

DATE REPORTED: 03/11/95

BATCH NO: 19211

Extractable Petroleum Hydrocarbons in Aqueous Solutions California DOHS Method LUFT Manual October 1989

LAB ID	SAMPLE ID	DIESEL RANGE (ug/L)	MOTOR OIL RANGE (ug/L)	SURROGATE RECOVERY (Hexacosane)
119999-004 119999-005	W-7 W-8	ND(50) 3,100*	ND(1300) 1,200*	87 % 76 %
METHOD BLANK	N/A	ND(50)	ND(1300)	91 %

Surrogate recovery limits: 60% - 150%

ND = Not detected at or above the reporting limit; reporting limit indicated in parentheses.

* Sample chromatogram does not resemble hydrocarbon standard.

QA/QC SUMMARY: BS/BSD

______________________ 2 (Limit: <25) RPD,% RECOVERY, % 107 (Limits: 75 - 125)

CLIENT: Environmental Science & Engineering

PROJECT ID: 65-95-022

LOCATION: JAMES RIVER CORPORATION

SAMPLE ID: W-3

DATE SAMPLED: 02/22/95 DATE RECEIVED: 02/23/95 DATE ANALYZED: 03/02/95 DATE REPORTED: 03/11/95

BATCH NO: 19240

EPA METHOD 8240: VOLATILE ORGANICS IN WATER

COMPOUND	Result ug/L	Reporting Limit (ug/L)
Chloromethane	ND	10
Bromomethane	ИD	10
Vinyl chloride	ND	· 10
Chloroethane	ND	10
Methylene chloride	ND	20
Acetone	ND	20
Carbon disulfide	Detected (4)	5
Trichlorofluoromethane	ND	5
1,1-Dichloroethene	ND	5
1,1-Dichloroethane	ND	5
trans-1,2-Dichloroethene	ND	5
cis-1,2-Dichloroethene	. 11	5
Chloroform	ND	5
Freon 113	ND	5
1,2-Dichloroethane	ND	5
2-Butanone	ND	10
1,1,1-Trichloroethane	ND	5
Carbon tetrachloride	ND	5
Vinyl acetate	ND	50
Bromodichloromethane	ND	5
1,2-Dichloropropane	ND	5
cis-1,3-Dichloropropene	ND	5
Trichloroethene	ND	5
Dibromochloromethane	ND	5
1,1,2-Trichloroethane	ND	5
Benzene	ND	5
trans-1,3-Dichloropropene	ND	5
Bromoform	ND	5
2-Hexanone	ND	10
4-Methyl-2-pentanone	ND	10
1,1,2,2-Tetrachloroethane	ND	5
Tetrachloroethene	ND	5
Toluene	ND	5
Chlorobenzene	ND	5
Ethyl benzene	ND	5
Styrene	ND	5 .
Total xylenes	ND	5

ND = Not detected at or above reporting limit SURROGATE RECOVERIES

1,2-Dichloroethane-d4	. 97 %
Toluene-d8	87 %

Bromofluorobenzene 85 %

CLIENT: Environmental Science & Engineering

PROJECT ID: 65-95-022

LOCATION: JAMES RIVER CORPORATION

SAMPLE ID: W-5

DATE SAMPLED: 02/22/95
DATE RECEIVED: 02/23/95
DATE ANALYZED: 03/08/95
DATE REPORTED: 03/11/95

BATCH NO: 19357

EPA METHOD 8240: VOLATILE ORGANICS IN WATER

COMPOUND	Result	Reporting
	\mathtt{ug}/\mathtt{L}	${ t Limit}$ (ug/L)
Chloromethane	ND	200
Bromomethane	ND	200
Vinyl chloride	ND	200
Chloroethane	ND	200
Methylene chloride	ND	400
Acetone	ND	400
Carbon disulfide	ND	100
Trichlorofluoromethane	ND	100
1,1-Dichloroethene	ND	100
1,1-Dichloroethane	ND	100
trans-1,2-Dichloroethene	ND	100
cis-1,2-Dichloroethene	2,100	100
Chloroform	ND	100
Freon 113	ND	100
1,2-Dichloroethane	ND	100
2-Butanone	ND	200
1,1,1-Trichloroethane	ND	100
Carbon tetrachloride	ND	100
Vinyl acetate	ND	1,000
Bromodichloromethane	ND	100
1,2-Dichloropropane	ND	100
cis-1,3-Dichloropropene	ND	100
Trichloroethene	290	100
Dibromochloromethane	ND	100
1,1,2-Trichloroethane	ND	100
Benzene	ND	100
trans-1,3-Dichloropropene	ND	100
Bromoform	ND	100
2-Hexanone	ND	200
4-Methyl-2-pentanone	ND	200
1,1,2,2-Tetrachloroethane	ND	100
Tetrachloroethene	1,900	100
Toluene	ND	100
Chlorobenzene	ND	100
Ethyl benzene	ND	100
Styrene	ND	100
Total xylenes	ND	100
	212	+ • •

ND = Not detected at or above reporting limit SURROGATE RECOVERIES

1,2-Dichloroethane-d4	95	옿	
Toluene-d8	85	%	
Bromofluorobenzene	90	<u>ક</u>	

CLIENT: Environmental Science & Engineering

PROJECT ID: 65-95-022

LOCATION: JAMES RIVER CORPORATION

SAMPLE ID: W-6

DATE SAMPLED: 02/22/95 DATE RECEIVED: 02/23/95 DATE ANALYZED: 03/08/95 DATE REPORTED: 03/11/95

BATCH NO: 19357

EPA METHOD 8240: VOLATILE ORGANICS IN WATER

COMPOUND	Result	Reporting
	\mathtt{ug}/\mathtt{L}	Limit (ug/L)
Chloromethane	ND	20
Bromomethane	ND	20
Vinyl chloride	ND	20
Chloroethane	ND	20
Methylene chloride	ND	40
Acetone	ND	40
Carbon disulfide	ND	10
Trichlorofluoromethane	ND	10
1,1-Dichloroethene	ИD	10
1,1-Dichloroethane	ИD	10
trans-1,2-Dichloroethene	ND	10
cis-1,2-Dichloroethene	2	4 10
Chloroform	ND	10
Freon 113	ND	10
1,2-Dichloroethane	ND	10
2-Butanone	ND	20
1,1,1-Trichloroethane	ND	10
Carbon tetrachloride	ND	10
Vinyl acetate	ND	100
Bromodichloromethane	ND	10
1,2-Dichloropropane	ND	10
cis-1,3-Dichloropropene	ND	10
Trichloroethene	25	0 10
Dibromochloromethane	ND	10
1,1,2-Trichloroethane	ND	10
Benzene	ND	10
trans-1,3-Dichloropropene	ND	10
Bromoform	ND	10
2-Hexanone	ND	20
4-Methyl-2-pentanone	ND	20
1,1,2,2-Tetrachloroethane	ND	10
Tetrachloroethene	32	
Toluene	ND	10
Chlorobenzene	ND	10
Ethyl benzene	ND	10
Styrene	ND	10
Total xylenes	ND	10
		

ND = Not detected at or above reporting limit SURROGATE RECOVERIES

1,2-Dichloroethane-d4	96	%
Toluene-d8	87	ક
Bromofluorobenzene	83	8

CLIENT: Environmental Science & Engineering

PROJECT ID: 65-95-022

LOCATION: JAMES RIVER CORPORATION

SAMPLE ID: W-7

DATE SAMPLED: 02/22/95
DATE RECEIVED: 02/23/95
DATE ANALYZED: 03/02/95
DATE REPORTED: 03/11/95

BATCH NO: 19260

EPA METHOD 8240: VOLATILE ORGANICS IN WATER

COMPOUND	Result	Reporting
	ug/L	Limit (ug/L)
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl chloride	ИD	10
Chloroethane	ND	10
Methylene chloride	ND	20
Acetone	ND	20
Carbon disulfide	ND	5
Trichlorofluoromethane	ND	5
1,1-Dichloroethene	ND	5
1,1-Dichloroethane	ND	5
trans-1,2-Dichloroethene	ND	5
cis-1,2-Dichloroethene	1	17 5
Chloroform	ND	5
Freon 113	ND	5
1,2-Dichloroethane	ND	5
2-Butanone	ND	10
1,1,1-Trichloroethane	ND	5
Carbon tetrachloride	ND	5
Vinyl acetate	ND	50
Bromodichloromethane	ND	5
1,2-Dichloropropane	ИD	5
cis-1,3-Dichloropropene	ND	5
Trichloroethene	18	30 5
Dibromochloromethane	ND	5
1,1,2-Trichloroethane	ND	5
Benzene	ИD	5
trans-1,3-Dichloropropene	ND	5
Bromoform	ND	5
2-Hexanone	ND	10
4-Methyl-2-pentanone	ND	10
1,1,2,2-Tetrachloroethane	ND	5
Tetrachloroethene	17	70 5
Toluene	ND	5
Chlorobenzene	ND	5
Ethyl benzene	ND	5
Styrene	ND	5
Total xylenes	ND	5

ND = Not detected at or above reporting limit SURROGATE RECOVERIES

1,2-Dichloroethane-d4	97	ફ
Toluene-d8	91	१
Bromofluorobenzene	84	왕

CLIENT: Environmental Science & Engineering

PROJECT ID: 65-95-022

LOCATION: JAMES RIVER CORPORATION

SAMPLE ID: W-8

DATE SAMPLED: 02/22/95 DATE RECEIVED: 02/23/95 DATE ANALYZED: 03/02/95 DATE REPORTED: 03/11/95

BATCH NO: 19260

EPA METHOD 8240: VOLATILE ORGANICS IN WATER

COMPOUND	Result ug/L		Reporting Limit (ug/L)
Chloromethane	ND		10
Bromomethane	ND		10
Vinyl chloride		82	10
Chloroethane	ND		10
Methylene chloride	ND		20
Acetone	ND		20
Carbon disulfide		10	5
Trichlorofluoromethane	ND		5
1,1-Dichloroethene	ND		5
1,1-Dichloroethane	ND		5
trans-1,2-Dichloroethene	ND		5
cis-1,2-Dichloroethene		79	5
Chloroform	ND		5
Freon 113	ND		- 5
1,2-Dichloroethane	ND		5
2-Butanone	ND		10
1,1,1-Trichloroethane	ND		5
Carbon tetrachloride	ND		5
Vinyl acetate	ND		50
Bromodichloromethane	ND		5
1,2-Dichloropropane	ND		5
cis-1,3-Dichloropropene	ND		5
Trichloroethene	ND		5
Dibromochloromethane	ND		5
1,1,2-Trichloroethane	ND		5
Benzene	ND		5
trans-1,3-Dichloropropene	ND		5
Bromoform	ND		5
2-Hexanone	ND		10
4-Methyl-2-pentanone	ND		10
1,1,2,2-Tetrachloroethane	ND		5
Tetrachloroethene	ND		5
Toluene	ND		5
Chlorobenzene	ND		5
Ethyl benzene	ND		5
Styrene	ND		5
Total xylenes	ND		5
.			

ND = Not detected at or above reporting limit SURROGATE RECOVERIES

1,2-Dichloroethane-d4	95 %
Toluene-d8	87 %
Bromofluorobenzene	89 %

CLIENT: Environmental Science & Engineering

PROJECT ID: 65-95-022

LOCATION: JAMES RIVER CORPORATION

SAMPLE ID: W-9

DATE SAMPLED: 02/22/95
DATE RECEIVED: 02/23/95
DATE ANALYZED: 03/02/95

DATE REPORTED: 03/11/95

BATCH NO: 19240

EPA METHOD 8240: VOLATILE ORGANICS IN WATER

COMPOUND	Result	Reporting
Chloromethane	ug/L ND	Limit (ug/L)
Bromomethane	ND	10 10
Vinyl chloride	ND	
Chloroethane	ND ND	10
	ND ND	10
Methylene chloride Acetone		20
Carbon disulfide	ND	20
	23	5
Trichlorofluoromethane	ND	5
1,1-Dichloroethene	ND	5
1,1-Dichloroethane	ND	5
trans-1,2-Dichloroethene	ND	5
cis-1,2-Dichloroethene	63	5
Chloroform	ND	5
Freon 113	ND	5
1,2-Dichloroethane	ND	5
2-Butanone	ND	10
1,1,1-Trichloroethane	ND	5
Carbon tetrachloride	ND	5
Vinyl acetate	ND	50
Bromodichloromethane	ND	5
1,2-Dichloropropane	ND	5
cis-1,3-Dichloropropene	ND	5
Trichloroethene	Detected (3)	5
Dibromochloromethane	ND	5
1,1,2-Trichloroethane	ND	5
Benzene	ND	5
trans-1,3-Dichloropropene	ND	5
Bromoform	ND	5
2-Hexanone	ND	10
4-Methyl-2-pentanone	ND	10
1,1,2,2-Tetrachloroethane	ND	5
Tetrachloroethene	ND	5
Toluene	ND	5
Chlorobenzene	ND	5
Ethyl benzene	ND	5
Styrene	ир	5
Total xylenes	ND	5
*		

ND = Not detected at or above reporting limit SURROGATE RECOVERIES

1,2-Dichloroethane-d4	94	%
Toluene-d8	88	웅
Bromofluorobenzene	88	%

CLIENT: Environmental Science & Engineering

PROJECT ID: 65-95-022

LOCATION: JAMES RIVER CORPORATION

SAMPLE ID: W-10

DATE SAMPLED: 02/22/95
DATE RECEIVED: 02/23/95
DATE ANALYZED: 03/08/95
DATE REPORTED: 03/11/95

BATCH NO: 19357

EPA METHOD 8240: VOLATILE ORGANICS IN WATER

COMPOUND	Result	Reporting
01.1	ug/L	Limit (ug/L)
Chloromethane	ND	2,500
Bromomethane	ND	2,500
Vinyl chloride	ND	2,500
Chloroethane	ND	2,500
Methylene chloride	ND	5,000
Acetone	47,000	5,000
Carbon disulfide	ND	1,300
Trichlorofluoromethane	ND	1,300
1,1-Dichloroethene	ND	1,300
1,1-Dichloroethane	ND	1,300
trans-1,2-Dichloroethene	ND	1,300
cis-1,2-Dichloroethene	ND	1,300
Chloroform	ND	1,300
Freon 113	ND	1,300
1,2-Dichloroethane	ND	1,300
2-Butanone	ND	2,500
1,1,1-Trichloroethane	ND	1,300
Carbon tetrachloride	ND	1,300
Vinyl acetate	ND	13,000
Bromodichloromethane	ND	1,300
1,2-Dichloropropane	ND	1,300
cis-1,3-Dichloropropene	ND	1,300
Trichloroethene	ND	1,300
Dibromochloromethane	ND	1,300
1,1,2-Trichloroethane	ND	1,300
Benzene	ND	1,300
trans-1,3-Dichloropropene	ND	1,300
Bromoform	ND	1,300
2-Hexanone	ND	2,500
4-Methyl-2-pentanone	Detected(1300)	2,500
1,1,2,2-Tetrachloroethane	ND,	1,300
Tetrachloroethene	ND	1,300
Toluene	ND	1,300
Chlorobenzene	ND	1,300
Ethyl benzene	ND	1,300
Styrene	ND	1,300
Total xylenes	ND	1,300
-		,

ND = Not detected at or above reporting limit SURROGATE RECOVERIES

1,2-Dichloroethane-d4	94 %
Toluene-d8	86 %
Bromofluorobenzene	85 %

LABORATORY NUMBER: 119999-008 DATE SAMPLED: 02/22/95

CLIENT: Environmental Science & Engineering DATE RE

PROJECT ID: 65-95-022

LOCATION: JAMES RIVER CORPORATION

SAMPLE ID: B-1

DATE RECEIVED: 02/23/95 DATE ANALYZED: 03/08/95

DATE REPORTED: 03/11/95

BATCH NO: 19357

EPA METHOD 8240: VOLATILE ORGANICS IN WATER

COMPOUND	Result ug/L		Reporting Limit (ug/L)
Chloromethane	ND		10
Bromomethane	ND		10
Vinyl chloride	ND	•	10
Chloroethane	ND	:	10
Methylene chloride	ND		20
Acetone		62	20
Carbon disulfide		53	5
Trichlorofluoromethane	ND		5
1,1-Dichloroethene	ND		5
1,1-Dichloroethane	ND		5
trans-1,2-Dichloroethene	ND		5
cis-1,2-Dichloroethene	ND		5
Chloroform	ND		5
Freon 113	ND		5
1,2-Dichloroethane	ND		5
2-Butanone	ND		10
1,1,1-Trichloroethane	ND		5
Carbon tetrachloride	ND		5
Vinyl acetate	ND		50
Bromodichloromethane	ND		5
1,2-Dichloropropane	ND		5
cis-1,3-Dichloropropene	ND		5
Trichloroethene	ND		5
Dibromochloromethane	ND		5
1,1,2-Trichloroethane	ND		5
Benzene	ND		. 5
trans-1,3-Dichloropropene	ND		5
Bromoform	ND		5
2-Hexanone	ND		10
4-Methyl-2-pentanone	ND		10
1,1,2,2-Tetrachloroethane	ND		5
Tetrachloroethene	ND		5
Toluene	ND		5
Chlorobenzene	ND		5
Ethyl benzene	ND		5
Styrene	ND		5·
Total xylenes	ND		5
			ŭ

ND = Not detected at or above reporting limit SURROGATE RECOVERIES

1,2-Dichloroethane-d4	98 % _
Toluene-d8	87 %

Bromofluorobenzene 88 %

CLIENT: Environmental Science & Engineering

PROJECT ID: 65-95-022

LOCATION: JAMES RIVER CORPORATION

SAMPLE ID: TRIP BLANK

DATE SAMPLED: 02/22/95 DATE RECEIVED: 02/23/95 DATE ANALYZED: 03/02/95 DATE REPORTED: 03/11/95

BATCH NO: 19260

EPA METHOD 8240: VOLATILE ORGANICS IN WATER

COMPOUND	Result	Reporting
	ug/L	Limit (ug/L)
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl chloride	ND	10
Chloroethane	ND	10
Methylene chloride	ND	20
Acetone	ND	20
Carbon disulfide	ND	5
Trichlorofluoromethane	ND	5
1,1-Dichloroethene	ИD	5
1,1-Dichloroethane	ND	5
trans-1,2-Dichloroethene	ND	5
cis-1,2-Dichloroethene	ND	5
Chloroform	ND	5
Freon 113	ND	5 5
1,2-Dichloroethane	ND	5 5
2-Butanone	ND	10
1,1,1-Trichloroethane	ND	10 5
Carbon tetrachloride	ND	5 5
Vinyl acetate	ND	
Bromodichloromethane	ND	50
1,2-Dichloropropane		5
cis-1,3-Dichloropropene	ND ND	5
Trichloroethene		5
Dibromochloromethane	ND	5
1,1,2-Trichloroethane	ND	5
Benzene	ND	<u>5</u>
trans-1,3-Dichloropropene	ND	5
Bromoform	ND	5
2-Hexanone	ND	5
4-Methyl-2-pentanone	ND	10
1,1,2,2-Tetrachloroethane	ND	10
Tetrachloroethene	ND	5
Toluene	ND	5
	ND	5
Chlorobenzene	ND	5
Ethyl benzene	ND	5
Styrene	ND	5
Total xylenes	ND	5

ND = Not detected at or above reporting limit SURROGATE RECOVERIES

	1,2-Dichloroethane-d4	96	Q.
		90	•
	Toluene-d8	91	8
1	Bromofluorobenzene		0
	DI OMOTINGINE	85	る

LABORATORY NUMBER: 119999 METHOD BLANK CLIENT: Environmental Science & Engineering DATE ANALYZED: 03/02/95 DATE REPORTED: 03/11/95

BATCH NO: 19240

EPA METHOD 8240: VOLATILE ORGANICS IN WATER

COMPOUND	Result	Reporting
	\mathtt{ug}/\mathtt{L}	Limit (ug/L)
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl chloride	ND	10
Chloroethane	ND	10
Methylene chloride	ND	20
Acetone	ND	20
Carbon disulfide	ND	5
Trichlorofluoromethane	ND	5
1,1-Dichloroethene	ND	5
1,1-Dichloroethane	ND	5
trans-1,2-Dichloroethene	ND	5
cis-1,2-Dichloroethene	ND	5
Chloroform	ND	5
Freon 113	ND	5
1,2-Dichloroethane	ND	5
2-Butanone	ND	10
1,1,1-Trichloroethane	ND	5
Carbon tetrachloride	ND	5
Vinyl acetate	ND	50
Bromodichloromethane	ND	5
1,2-Dichloropropane	ND	5
cis-1,3-Dichloropropene	ND	5
Trichloroethene	ND	5
Dibromochloromethane	ND	5
1,1,2-Trichloroethane	ND	5
Benzene	ND	5
trans-1,3-Dichloropropene	ND	5
Bromoform	ND	5
2-Hexanone	ND	10
4-Methyl-2-pentanone	ND	10
1,1,2,2-Tetrachloroethane	ND	5
Tetrachloroethene	ND	5
	ND	5
Toluene	ND	5
Chlorobenzene	ND	5 5
Ethyl benzene		
Styrene	ND	5
Total xylenes	ND	5

ND = Not detected at or above reporting limit SURROGATE RECOVERIES

1,2-Dichloroethane-d4	94	%
Toluene-d8	86	8
Bromofluorobenzene	87	%

LABORATORY NUMBER: 119999 METHOD BLANK CLIENT: Environmental Science & Engineering

DATE ANALYZED: 03/02/95 DATE REPORTED: 03/11/95

BATCH NO: 19260

EPA METHOD 8240: VOLATILE ORGANICS IN WATER

COMPOUND	Result	Reporting
Chloromethane	ug/L ND	Limit (ug/L)
Bromomethane	ND	10
Vinyl chloride		10
Chloroethane	ND	10
Methylene chloride	ND	10
Acetone	ND	20
Carbon disulfide	ND	20
	ND	5
Trichlorofluoromethane	ND	5
1,1-Dichloroethene	ND	5
1,1-Dichloroethane	ND	5
trans-1,2-Dichloroethene	ND	5
cis-1,2-Dichloroethene	ND	5
Chloroform	ND	5
Freon 113	ND	5
1,2-Dichloroethane	ND	5
2-Butanone	ND	10
1,1,1-Trichloroethane	ND	5
Carbon tetrachloride	ND	5
Vinyl acetate	ND	50
Bromodichloromethane	ND	5
1,2-Dichloropropane	ND	5
cis-1,3-Dichloropropene	ND	5
Trichloroethene	ND	5
Dibromochloromethane	ND	5
1,1,2-Trichloroethane	ND	5
Benzene	ND	5
trans-1,3-Dichloropropene	ND	5
Bromoform	ND ND	
2-Hexanone		5
4-Methyl-2-pentanone	ND	10
	ND	10
1,1,2,2-Tetrachloroethane	ND	5
Tetrachloroethene	ND	5
Toluene	ND	5
Chlorobenzene	ND	5
Ethyl benzene	ND	5
Styrene	ND	5
Total xylenes	ND	5

ND = Not detected at or above reporting limit SURROGATE RECOVERIES

=======================================	 	========	====
1,2-Dichloroethane-d4	. 90	5 %	
Toluene-d8	2.0)	

Bromofluorobenzene 90 %

LABORATORY NUMBER: 119999 METHOD BLANK CLIENT: Environmental Science & Engineering

DATE ANALYZED: 03/08/95 DATE REPORTED: 03/11/95

BATCH NO: 19357

EPA METHOD 8240: VOLATILE ORGANICS IN WATER

COMPOUND	Result ug/L	Reporting Limit (ug/L)
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl chloride	. ND	10
Chloroethane	ND	10
Methylene chloride	ND	20
Acetone	ND	20
Carbon disulfide	ND	5
Trichlorofluoromethane	ND	5
1,1-Dichloroethene	ND	5
1,1-Dichloroethane	ND	5
trans-1,2-Dichloroethene	ND	5
cis-1,2-Dichloroethene	ND	5
Chloroform	ND	5
Freon 113	ND	5
1,2-Dichloroethane	ND	5
2-Butanone	ND	10
1,1,1-Trichloroethane	ND	5
Carbon tetrachloride	ND	5
Vinyl acetate	ND	50
Bromodichloromethane	ND	5
1,2-Dichloropropane	ND	5
cis-1,3-Dichloropropene	ND	5
Trichloroethene	ND	5
Dibromochloromethane	ND	5
1,1,2-Trichloroethane	ND	5
Benzene	ND	5
trans-1,3-Dichloropropene	ND	5
Bromoform	ND	5
2-Hexanone	ND	10
4-Methyl-2-pentanone	ND	10
1,1,2,2-Tetrachloroethane	ND	5
Tetrachloroethene	ND	5
Toluene	ND	5
Chlorobenzene	ND	5
Ethyl benzene	ND	5
Styrene	ND	5
Total xylenes	ND	5

ND = Not detected at or above reporting limit SURROGATE RECOVERIES

1,2-Dichloroethane-d4	91 %
Toluene-d8	87 %
Bromofluorobenzene	97 °

8240 Laboratory Control Sample Report

Lab No:

QC86175

LCS Datafile: CC122

Date Analyzed: 01-MAR-95

ATR

Matrix:

WATER

Operator:

Batch No: 19240 425060234022

Compound	Instrdg	SpikeAmt	% Rec	: Limits
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	55.2	50	110 %	61-145%
	50.1	50	100 %	71-120%
	49.9	50	100 %	76-127%
	49.1	50	98 %	76-125%
	47.9	50	96 %	75-130%
Surrogate Recoveries				
1,2-Dichloroethane-d4	50.8	50	102 %	75-143%
Toluene-d8	44.5	50	89 %	77-134%
Bromofluorobenzene	44.9	50	90 %	65-129%

Results within Specifications - PASS

Note: Instrument C and D surrogates based on LCS data

8240 Laboratory Control Sample Report

Lab No:

QC86261

LCS Datafile: CC203

Date Analyzed: 02-MAR-95

Operator:

ATR

Matrix: Batch No: WATER

19260 425061121003

Compound	Instrdg	SpikeAmt	% Rec	Limits
1,1-Dichloroethene	53.5	50	107 %	61-145%
Trichloroethene	50.8	50	102 %	71-120%
Benzene	49.7	50	99 %	76-127%
Toluene	50.6	50	101 %	76-125%
Chlorobenzene	49.7	50	99 %	75-130%
Surrogate Recoveries				
1,2-Dichloroethane-d4	46.3	50	93 %	75-143%
Toluene-d8	45.8	50	92 %	77-134%
Bromofluorobenzene	45.3	50	91 %	65-129%

Results within Specifications - PASS

Note: Instrument C and D surrogates based on LCS data

8240 Laboratory Control Sample Report

Lab No:

QC86804

LCS Datafile: CC803

Date Analyzed: 08-MAR-95

Operator:

ATR

Matrix:

Batch No:

WATER

425067126003 19357

Compound	Instrdg	SpikeAmt	% Rec	Limits
1,1-Dichloroethene	62.6	50	125 %	61-145%
Trichloroethene	50.7	50	101 %	71-120%
Benzene	55.4	50	111 %	76-127%
Toluene	55.7	50	111 %	76-125%
Chlorobenzene	52.8	50	106 %	75-130%
Surrogate Recoveries				-
1,2-Dichloroethane-d4	44.4	50	89 %	75-143%
Toluene-d8	45.7	50	91 %	77-134%
Bromofluorobenzene	44.9	50	90 %	65-129%

Results within Specifications - PASS

Note: Instrument C and D surrogates based on LCS data

8240 MS/MSD Report

Matrix Sample Number: 119999-001

Date Analyzed: 02-MAR-95

Lab No: QC86178 QC86179

Spike File:

Matrix: WATER

Spike Dup File: CC127

CC126

Batch No: 19240 425061021026 425061027027 425061014025 Analyst: ATR

	Instrdg	SpikeAmt	% Rec	Limits
MS RESULTS				
1,1-Dichloroethene	50.7	50	101 %	61-145%
Trichloroethene	50.1	50	99 %	71-120%
Benzene	48.2	50	95 %	
Toluene	47.7	50	94 %	
Chlorobenzene	47.3	50	95 %	75-130%
Surrogate Recoveries				
1,2-Dichloroethane-d4	49.5	50	99 %	75-143%
Toluene-d8	43.7	50	87 %	77-134%
Bromofluorobenzene	44.1	50	88 %	65-129%
	•			
MSD RESULTS				
1,1-Dichloroethene	49.6	50	99 %	61-145%
Trichloroethene	50.3	50	99 %	71-120%
Benzene	49.2	50	97 %	76-127%
Toluene	48	50	95 %	76-125%
Chlorobenzene	48	50	96 %	75-130%
Surrogate Recoveries				
1,2-Dichloroethane-d4	51.4	50	103 %	75-143%
Toluene-d8	43.3	50	87 %	77-134%
Bromofluorobenzene	44.9	50	90 %	65-129%
MATRIX RESULTS				
1,1-Dichloroethene	0			
Trichloroethene	0.72			
Benzene	0.671			
Toluene	0.597			
Chlorobenzene	0			
222 232				
RPD DATA	2 0-			. 440
1,1-Dichloroethene Trichloroethene	2 %			< 14%
	1 %			< 14%
Benzene Toluene	2 %			< 11%
Chlorobenzene	1 % 1 %			< 13%
Curotobeuseue	T 42			< 13%

Results within Specifications - PASS

Curtis & Tompkins, Ltd 8240 MS/MSD Report

Matrix Sample Number: 119999-005

Date Analyzed:

02-MAR-95

Lab No: QC86264 QC86265

Spike File: CC216

Matrix: WATER

Spike Dup File: CC217

Batch No: 19260 425061209016 425061215017 425061147007 Analyst: ATR

	Instrdg	SpikeAmt	% Rec	Limits
MS RESULTS				
1,1-Dichloroethene	47	50	94 %	61-145%
Trichloroethene	51.3	50	100 %	71-120%
Benzene	48.2	50	96 %	76-127%
Toluene	47.8	50	95 %	76-125%
Chlorobenzene	48.4	50	97 %	75-130%
Surrogate Recoveries		**		
1,2-Dichloroethane-d4	52.4	50	105 %	75-143%
Toluene-d8	45.2	50	90 %	77-134%
Bromofluorobenzene	45.2	50	90 %	65-129%
MSD RESULTS				
1,1-Dichloroethene	49.2	50	00 %	C3 14E9
Trichloroethene	51.6	50 50	99 % 100 %	61-145% 71-120%
Benzene	47.7	50	100 %	71-120% 76-127%
Toluene	46	50	95 % 91 %	76-127% 76-125%
Chlorobenzene	46.6	50	93 %	75-130%
Surrogate Recoveries				
1,2-Dichloroethane-d4	51	50	102 %	75-143%
Toluene-d8	42.7	50	85 %	
Bromofluorobenzene	42.6	50	85 %	65-129%
MATRIX RESULTS		·		
	- 0			
Trichloroethene	1.42			
Benzene	0			
Toluene	0.507			
Chlorobenzene	0			
RPD DATA				
1,1-Dichloroethene	5 %			< 14%
Trichloroethene	1 %			< 14%
Benzene	1 %			< 11%
Toluene	4 %			< 13%
Chlorobenzene	4 %			< 13%
				- · · ·

Results within Specifications - PASS

DATE 2/22/95 PAGE (OF	CHAIN OF CUSTO	DY RECORD	Environmental
PROJECT NAME JAMES RIVER CORPORATION	ANALYSES TO BE PERFOR	MED MATRIX	Science &
ADDRESS ZIOI WILLIAMS ST.	_	M N C	Engineering, Inc.
SAN LEANORO, CA	10 2 8	M U O M N N N N N N N N N N N N N N N N N N	4090 Nelson Avenue Phone (510) 685-4053
PROJECT NO. 65-95-022		A M N B T E A I R I N N N N N N N N N	Fax (510) 685-5323
SAMPLED BY You Morschen	_	X OEFR	DEN DVC
LAB NAME Custis & Tompkins.	THE COLUMN THE PROPERTY OF THE	WARDIN F R	REMARKS (CONTAINER, SIZE, ETC.)
SAMPLE # DATE TIME LOCATION	تتلقة تفاصله المساوحين والمساوين والمساوين	MATRIX WATER 3	2/)
1 W-3 2/22 1310 Sonlands		WATER 3	300cs
2 W-5 1 1570 1 3 W-6 1520		1 3	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 4	1 Sites 3 Voas
Y W-7 1470 5 W-8 1435		" 4	1/1/25 31/0028.
-6 W-9 1358		" 3	3000-8
7 W-10 1450		1 3	17 10
8 8-1 1230		" 3 ⁻	11 . 7
9 TRIP BLANK		<u> </u>	100an
			<u> </u>
	PROPERTY DE L'AL MARTINE	date time 2227	TOTAL NUMBER OF CONTAINERS
RELINQUISHED BY: (signature)	RECEIVED BY: (signature)	- / - / - / - A	
2/	gado.		RT SPECIAL SHIPMENT S TO: REQUIREMENTS COLD TRANSPORT
3.	0 1)	BARTN	liver COLD HANSIGE
4.		ESE	
5.			SAMPLE RECEIPT
INSTRUCTIONS TO LABORATORY (ha		e, etc.):	CHAIN OF CUSTODY SEALS
NORMAL TAT. INVOICE TO ESE	:		REC'D GOOD CONDIN/COLD
			CONFORMS TO RECORD