

3480 Buskirk Avenue Pleasant Hill, CA 94523-4342 P.O. Box 8045 Walnut Creek, CA 94596-1220 (415) 937-9010 FAX (415) 937-9026

91 FEB 28 AM 11: 35

January 26, 1991

Mr. Robert Wenning
Engineering Manager
James River Corporation
2101 Williams Street
San Leandro, California 94577

11-5081-02/3

Subject: Third Quarter Groundwater Monitoring Report,

James River Corporation, Flexible Packaging Plant,

2101 Williams Street, San Leandro, California

Dear Mr. Wenning:

This letter report presents the methods and results of the third quarterly groundwater sampling conducted on September 6 and 7, 1990 at the subject facility. This work was performed under the terms and conditions of our engineering services agreement dated December 8, 1988, and your Purchase Order No. SL02826-EE dated February 6, 1990.

#### Background

A brief discussion of the site history is presented in "First Quarterly Groundwater Monitoring Report, James River Corporation Flexible Packaging Plant", dated July 10, 1990.

#### Field Methods

Ten groundwater monitoring wells have been installed at the site, in the locations shown on Figure 1. Groundwater samples were collected from nine of the ten existing monitoring wells. A groundwater sample could not be collected from well W2 because the well casing is blocked, preventing the pump suction line from reaching groundwater.

Prior to sample collection, 3 to 5 well volumes of water were purged from each well using a gasoline powered centrifugal pump. As each well was purged, the specific conductance, pH, and temperature of the groundwater were measured. The purpose of monitoring these parameters was to ensure that all stagnant water present in the well casing was removed prior to sample collection. Samples were collected after these parameters had stabilized. Data sheets presenting these measurements are included as Attachment A. Water produced during purging of monitoring wells was stored on-site in sealed 55-gallon drums



Figure 1 Site Map

Mr Robert Wenning January 26, 1991 Page 3 of 10

for proper disposal or treatment by James River pending receipt of laboratory analyses.

Samples were collected with a Teflon bailer equipped with a bottom emptying device and placed into 40 milliliter, glass sample vials equipped with a Teflon septum. The vials were provided by Brown and Caldwell Analytical (BCA). The vials were filled so that no head space was present in the sample container. Samples were stored in a chilled ice chest until delivery to BCA. Standard chain-of-custody procedures were followed during sample handling.

The bailer and suction line of the pump were washed with laboratory-grade detergent and rinsed with tap water between sample locations. A new length of rope was attached to the bailer prior to sampling each well to prevent cross-contamination of samples.

### Analytical Methods

Groundwater samples were submitted for analysis to BCA on September 7, 1990. The samples were analyzed for purgeable priority pollutant organic chemicals using EPA test method 8240. This test method uses gas chromatography/mass spectrometry methods. The analytical method is described in detail in the EPA Publication SW-846, "Test Methods for Evaluating Solid Waste", November 1986.

#### Groundwater Quality Results

Analytical results for the third quarter samples are summarized in Table 1 (columns identified as September 1990). Only constituents present above method detection limits are included. Analytical results for samples collected in the first and second quarterly sampling events (March and June 1990) are included for comparison purposes. The chain-of-custody form and laboratory analytical reports for the second quarter samples are included as Attachment B. The following paragraphs summarize significant findings.

Alcohol, Acetates, and Acetone. Alcohols were detected in wells W4, W5, and W8 by semi-quantified methods. Isopropanol was identified in wells W4 and W5 at concentrations of 1,000 and 100 micrograms per liter (ug/l), respectively. Methylethanol was identified in well W8 at a concentration of 90 ug/l.

No acetate was detected in third quarter samples. Acetate levels have declined from several thousand milligrams per liter (mg/l) in 1984 (Harding-Lawson Associates).

Acetone was detected in wells W4, W6 and W8 at concentrations ranging from 17 to 330,000 micrograms per liter (ug/1). Levels

Table 1. Analytical Results - Quarterly Groundwater Monitoring

| Wall Identification W1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   |                                                                                              |                                                                                    | W3                                           |                                                       |                                                                                    | W4                                                                               |                                                                            |                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Well Identification<br>Sampling Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mar-90                                            | Jun-90                                                                                       | Sep-90                                                                             | Mar-90                                       |                                                       | Sep-90                                                                             | Mar-90                                                                           | Jun-90                                                                     | Sep-90                                                                                |
| - 25 A-170 A-174 A-174 S-174 A-174 A | 1100                                              | M. Miller B. M. and                                                                          |                                                                                    |                                              |                                                       |                                                                                    |                                                                                  |                                                                            |                                                                                       |
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |                                                                                              |                                                                                    | 1                                            |                                                       |                                                                                    |                                                                                  |                                                                            |                                                                                       |
| Purgeable Organic<br>Compounds, ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |                                                                                              |                                                                                    |                                              |                                                       |                                                                                    |                                                                                  |                                                                            |                                                                                       |
| 1,1,1-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene cis-1,2-Dichloroethene 2-Hexanone Acetone Ethylbenzene Methyl Ethyl Ketone Tetrachloroethene Toluene Total Xylene Isomers Trichloroethene Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <500 <500 <500 <500 <500 <500 <500 <10000 <500 <5 | <2000 <2000 <2000 <2000 <2000 <2000 180,000 <2000 <40000 <2000 <2000 <2000 <2000 <2000 <2000 | <1<br><1<br><1<br>-<br>320<br>35<br><10<br><1<br>990<br>330<br>7<br>2<br>58<br>100 | <5 <5 <5 <400 <5 <50 <5 <100 29 <5 <5 130 24 | <2 2 2 140 <2 <20 <2 <40 340 <2 <2 <2 200 <2 2 200 <2 | <1<br>3<br><1<br>-<br>130<br><1<br><10<br><1<br><20<br>190<br><1<br>2<br>140<br>14 | <500 <500 <500 <500 <500 <500 400,000 <500 <10000 <500 1,200 <500 <500 <500 <500 | <200 <200 <200 <200 350 <200 60,000 <200 <4000 390 400 <200 <200 <200 <200 | <1<br><1<br><1<br>-<br>120<br>900<br>17<br>13<br>1,000<br>40<br>450<br>99<br>14<br>41 |
| Semi-Quantified Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |                                                                                              |                                                                                    |                                              |                                                       |                                                                                    |                                                                                  |                                                                            |                                                                                       |
| C5H1002 Ester<br>C6H12O Ketone<br>C6 Hydrocarbon<br>C7H14O3 Ester<br>C9H18O Ketone<br>Diisopropyl Ether<br>Di-N-Propyl Ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                 | -                                                                                            | 10<br>-<br>-<br>-<br>-                                                             | -<br>-<br>-<br>30                            | -<br>-<br>-<br>40<br>-                                | -<br>-<br>-<br>-<br>5                                                              | -                                                                                | -                                                                          | 20<br>-<br>7<br>7<br>-<br>-                                                           |
| Isopropanol Methylethanol Methylethylacetate N-Butylether Thiobismethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                 | -                                                                                            | -<br>-<br>-<br>-                                                                   | -                                            | -<br>-<br>-<br>-                                      | -<br>-<br>-<br>-<br>-                                                              | 10,000                                                                           | -<br>-<br>-<br>-                                                           | 1,000<br>-<br>-<br>20<br>500                                                          |

#### Notes:

- ug/l = micrograms per liter
- 2. \* denotes duplicate sample
- 3. Well W2 is damaged and is no longer sampled.
- 4. indicates not reported
- 5. Semi-quantified results based upon comparison of total ion count of the compound with that of the nearest internal standard.

Analytical Results - Quarterly Groundwater Monitoring (continued) Table 1.

|                                                                                                                                                                                                                                         |                                                           | ***                                                                                            |                                                       | W6                                                                  |                                                                    |                                                                             | M7<br>Mar-90 Jun-90 Sep-90                                                                   |                                                                     |                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| Well Identification                                                                                                                                                                                                                     | Mar-90                                                    | W5                                                                                             | Sep-90                                                | Mar-90                                                              | Jun-90                                                             | Sep-90                                                                      | Mar-90                                                                                       | Jun-90                                                              | Sep-90                                                               |
| Sampling Date                                                                                                                                                                                                                           | Mar                                                       | Van.                                                                                           |                                                       |                                                                     |                                                                    |                                                                             |                                                                                              |                                                                     |                                                                      |
| PARAMETER                                                                                                                                                                                                                               |                                                           |                                                                                                |                                                       |                                                                     |                                                                    |                                                                             |                                                                                              |                                                                     |                                                                      |
| Purgeable Organic<br>Compounds, ug/1                                                                                                                                                                                                    |                                                           |                                                                                                |                                                       |                                                                     |                                                                    |                                                                             | _                                                                                            |                                                                     | <5                                                                   |
| 1,1,1-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene cis-1,2-Dichloroethene 2-Hexanone Acetone Ethylbenzene Methyl Ethyl Ketone Tetrachloroethene Toluene Total Xylene Isomers Trichloroethene Vinyl Chloride | <20 <20 <20 <20 1,900 <20 <20 <400 5,600 <20 <20 <400 190 | <50<br><50<br><50<br><50<br>4,200<br><50<br><500<br><1000<br>2,100<br><50<br><50<br>340<br>300 | <20 <20 <20 - 2,900 <20 <200 <400 670 <20 <20 170 220 | <20 <20 <20 <20 <20 <20 <20 <20 <200 <20 <400 1,700 <20 <20 <20 <20 | <5<br><5<br><5<br><5<br><5<br><50<br><5<br><100<br>940<br><5<br><5 | <5<br><5<br><5<br>-<br>7<br><5<br>74<br><5<br><100<br>980<br><5<br><5<br><5 | <5<br><5<br><5<br><5<br>72<br><5<br><50<br><5<br><100<br>740<br><5<br><5<br><25<br><40<br><5 | <5<br><5<br><5<br><5<br><50<br><5<br><100<br>590<br><5<br><10<br><5 | <5<br><5<br><5<br><5<br><50<br><5<br><100<br>680<br><5<br><270<br><5 |
| Semi-Quantified Results                                                                                                                                                                                                                 |                                                           |                                                                                                |                                                       |                                                                     |                                                                    |                                                                             |                                                                                              |                                                                     | _                                                                    |
| C5H1002 Ester                                                                                                                                                                                                                           | -                                                         | -                                                                                              | -                                                     | -                                                                   | -                                                                  | -                                                                           | -                                                                                            | _                                                                   | _                                                                    |
| C6H12O Ketone                                                                                                                                                                                                                           | _                                                         |                                                                                                | -                                                     | -                                                                   | -                                                                  | -                                                                           | _                                                                                            | _                                                                   | _                                                                    |
| C6 Hydrocarbon                                                                                                                                                                                                                          | -                                                         | -                                                                                              | -                                                     | 1 -                                                                 | -                                                                  | 11.5                                                                        |                                                                                              | _                                                                   | _                                                                    |
| C7H14O3 Ester                                                                                                                                                                                                                           | -                                                         | -                                                                                              | -                                                     | -                                                                   | -                                                                  | - 5                                                                         |                                                                                              | _                                                                   | -                                                                    |
| C9H18O Ketone                                                                                                                                                                                                                           | _                                                         | -                                                                                              | -                                                     | -                                                                   |                                                                    | _                                                                           | _                                                                                            | _                                                                   | _                                                                    |
| Diisopropyl Ether                                                                                                                                                                                                                       | -                                                         | ÷                                                                                              |                                                       | _                                                                   | _                                                                  | _                                                                           | -                                                                                            | _                                                                   | _                                                                    |
| Di-N-Propyl Ether                                                                                                                                                                                                                       | : e:                                                      | -                                                                                              |                                                       | 1 - 1                                                               | _                                                                  | -                                                                           | 1 -                                                                                          | _                                                                   | _                                                                    |
| Isopropanol                                                                                                                                                                                                                             |                                                           | -                                                                                              | 100                                                   | 1 -                                                                 | _                                                                  |                                                                             | _                                                                                            | -                                                                   | -                                                                    |
| Methylethanol                                                                                                                                                                                                                           |                                                           | -                                                                                              | -                                                     | _                                                                   | _                                                                  | 2                                                                           | -                                                                                            | -                                                                   | -                                                                    |
| Methylethylacetate                                                                                                                                                                                                                      | -                                                         |                                                                                                | -                                                     | -                                                                   | _                                                                  | (A)                                                                         | -                                                                                            | -                                                                   | -                                                                    |
| N-Butylether<br>Thiobismethane                                                                                                                                                                                                          | -                                                         | 17                                                                                             | u \$                                                  | -                                                                   | -                                                                  | <b></b> €                                                                   |                                                                                              |                                                                     |                                                                      |

#### Notes:

- ug/1 = micrograms per liter
   \* denotes duplicate sample
- 3. Well W2 is damaged and is no longer sampled.
- 4. indicates not reported
  5. Semi-quantified results based upon comparison of total ion count of the compound with that of the nearest internal standard.

|                                                                                                                                                                                                                                         | -        | W8                                                                                         |                                                                                        |                                                                         | W9                                          |                                                                          |                                                                    | B1                                       |                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------|------------------------------------------|
| Well Identification                                                                                                                                                                                                                     | Mar-90   | Tun-90                                                                                     | Sep-90                                                                                 | Mar-90                                                                  | Jun-90                                      | Sep-90                                                                   | Mar-90                                                             | Jun-90                                   | Sep-90                                   |
| Sampling Date                                                                                                                                                                                                                           | Mar 30 I | V.411                                                                                      |                                                                                        |                                                                         |                                             |                                                                          |                                                                    |                                          |                                          |
| PARAMETER                                                                                                                                                                                                                               |          |                                                                                            |                                                                                        |                                                                         |                                             |                                                                          |                                                                    |                                          |                                          |
| Purgeable Organic<br>Compounds, ug/1                                                                                                                                                                                                    |          |                                                                                            |                                                                                        |                                                                         |                                             |                                                                          |                                                                    |                                          |                                          |
| 1,1,1,Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene cis-1,2-Dichloroethene 2-Hexanone Acetone Ethylbenzene Methyl Ethyl Ketone Tetrachloroethene Toluene Total Xylene Isomers Trichloroethene Vinyl Chloride | <1000    | <1000 <1000 <1000 <1000 <1000 <1000 <20000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 <1000 | <1<br><1<br><1<br>-<br>31<br>4,100<br>330,000<br><1<br>3,200<br>1<br>87<br>7<br>3<br>5 | <1<br><1<br><1<br><1<br><1<br><10<br><10<br><20<br>13<br><1<br><1<br><1 | <1 <1 <1 <1 <1 <1 <1 <10 <20 23 <1 <1 28 <1 | 5<br>1<br>4<br>-<br><1<br><10<br><1<br><20<br>20<br><1<br><1<br>26<br><1 | <1 <1 <1 <1 <2 <1 <1 <20 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | <1 <1 <1 <1 <1 <10 <1 <20 <2 <1 <1 <1 <1 | <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < |
| Semi-Quantified Results                                                                                                                                                                                                                 |          |                                                                                            |                                                                                        |                                                                         |                                             |                                                                          |                                                                    |                                          |                                          |
|                                                                                                                                                                                                                                         | ١ ـ      | _                                                                                          | _                                                                                      | 7.2                                                                     | 200                                         | -                                                                        | -                                                                  | -                                        | -                                        |
| C5H1002 Ester<br>C6H120 Ketone                                                                                                                                                                                                          | l -      |                                                                                            | -                                                                                      |                                                                         | -                                           | -                                                                        | -                                                                  | _                                        | -                                        |
| C6 Hydrocarbon                                                                                                                                                                                                                          | 1 -      | _ "                                                                                        | _                                                                                      | -                                                                       |                                             | 175                                                                      | _                                                                  | -                                        | _                                        |
| C7H14O3 Ester                                                                                                                                                                                                                           | l –      |                                                                                            | _                                                                                      |                                                                         |                                             | -                                                                        | 1 -                                                                | -                                        | _                                        |
| C9H18O Ketone                                                                                                                                                                                                                           |          | _                                                                                          | 8                                                                                      | -                                                                       | -                                           | -                                                                        | _                                                                  | _                                        | _                                        |
| Diisopropyl Ether                                                                                                                                                                                                                       | -        | -                                                                                          | _                                                                                      | -                                                                       | -                                           | () <del>(4)</del>                                                        |                                                                    | _                                        | -                                        |
| Di-N-Propyl Ether                                                                                                                                                                                                                       | -        | _                                                                                          | -                                                                                      | -                                                                       | ~                                           | -                                                                        |                                                                    | _                                        | _                                        |
| Isopropanol                                                                                                                                                                                                                             | -        |                                                                                            | -                                                                                      | -                                                                       | *                                           | - 5                                                                      | W =                                                                | _                                        | ***                                      |
| Methylethanol                                                                                                                                                                                                                           | -        | -                                                                                          | 90                                                                                     | = 1                                                                     | - 5                                         | 3                                                                        |                                                                    | **                                       | _                                        |
| Methylethylacetate                                                                                                                                                                                                                      | -        | -                                                                                          | _                                                                                      | 3.5                                                                     | 5.                                          |                                                                          |                                                                    | _                                        | _                                        |
| N-Butylether                                                                                                                                                                                                                            | -        | -                                                                                          | _                                                                                      |                                                                         | 20                                          |                                                                          |                                                                    | -                                        | _                                        |
| Thiobismethane                                                                                                                                                                                                                          | -        | _                                                                                          | 500                                                                                    |                                                                         |                                             |                                                                          |                                                                    |                                          |                                          |

#### Notes:

- ug/l = micrograms per liter
- 2. \* denotes duplicate sample
- Well W2 is damaged and is no longer sampled.
- 4. indicates not reported
- 5. Semi-quantified results based upon comparison of total ion count of the compound with that of the nearest internal standard.

Mr Robert Wenning January 26, 1991 Page 7 of 10

of acetone in well W8 are comparable to those detected in previous quarterly sampling events. The reported acetone concentrations of 17 ug/l in well W4 and non-detectable (<10 ug/l) in well W1, represent significant decreases when compared with previous quarterly results. This may be related to sampling or laboratory errors. The fourth quarterly sampling in December 1990 will aid in determining whether this apparent decrease is erroneous. Prior to the third quarter reported concentration of 74 ug/l, no acetone has been identified in well W6. The source of acetone in the groundwater has not been determined.

Purgeable Organic Chemicals. The hydrocarbons toluene, tetrachloroethylene or perchloroethene (PCE), trichloroethylene (TCE), 1,2-dichloroethane (1,2-DCA), cis-1,2-dichloroethene (cis-1,2-DCE), 2-Hexanone, Methyl Ethyl Ketone (MEK), xylenes, and vinyl chloride were identified in shallow groundwater samples collected this quarter. Due to changes in detection limits between samples collected this quarter and those previously collected, comparisons between sampling events cannot be made for all constituents. However, where comparisons are possible, the data indicate that, in general, concentrations of organic compounds in the shallow groundwater are decreasing.

Exceptions to this trend are the concentrations of PCE and TCE in wells W6 and W7, which increased slightly. MEK and 2-Hexanone were previously reported as semi-quantified compounds, thus direct comparisons between third quarter and earlier samples are not possible.

#### Groundwater Flow

Water levels were measured with an electric water level sounder in each monitoring well on September 6, 1990. Groundwater elevations were calculated using top-of-casing elevations as reported in an April 10, 1986 Harding-Lawson Associates report. Groundwater elevation data are summarized in Table 2. Data collected in previous quarterly sampling events are included for comparison purposes.

Groundwater levels have decreased in all wells when compared to the June data. Decreases average 1.03 feet. The reduction in groundwater elevation is probably a seasonal variation related to precipitation.

Figure 2 illustrates the configuration of the shallow groundwater in the vicinity of the site based on the September 6, 1990 measurements Groundwater flows west, toward San Francisco Bay, under a hydraulic gradient of approximately 0.002 feet per foot. This gradient is equal to that calculated from the June 1990 data. San Francisco Bay is located approximately one-half mile west-southwest of the site.

Mr Robert Wenning January 26, 1991 Page 8 of 10

Table 2 Groundwater Elevation, feet above mean sea level

| Monitoring | Top of Casing |          | Date     |          |  |
|------------|---------------|----------|----------|----------|--|
| Well       | Elevation     | 5-Mar-90 | 6-Jun-90 | 6-Sep-90 |  |
| NA7 4      | 20.67         | 8.73     | 8,67     | 7,52     |  |
| W-1<br>W-2 | 20.07         | 7.58     | 7.22     | 6.20     |  |
| W-3        | 20.80         | 8.59     | 8.48     | 7.43     |  |
| W-4        | 21.00         | 8.80     | 8.78     | 7.50     |  |
| W-5        | 21.64         | 8.42     | 8.37     | 7.42     |  |
| W-6        | 21.05         | 8.73     | 8.58     | 7.52     |  |
| W-7        | 20.41         | 8.03     | 7.77     | 6.94     |  |
| W-8        | 20.50         | 8.66     | 8.55     | 7.52     |  |
| W-9        | 20.16         | 8.24     | 8.11     | 7.16     |  |
| B-1        | 20.59         | 8.66     | 8.43     | 7.47     |  |

### Notes:

Top of casing elevation data from Harding-Lawson Associates, 1986. Well B-1 monitors a deeper groundwater zone. Well W2 is damaged. Water level data questionable.



Mr Robert Wenning January 26, 1991 Page 10 of 10

The groundwater mound in the vicinity of the former tank location, denoted by the 7.5 foot contour interval on Figure 2, may be a result of removing the relatively impermeable asphalt in that location to conduct tank and pipeline removal. Increased infiltration of precipitation and/or surface runoff may be occurring in the area where no asphalt is present, causing groundwater levels to rise. The asphalt was replaced upon completion of pipeline removal. Future water level monitoring will aid in determining whether the mound is an actual hydrologic feature or is related to increased infiltration.

#### Summary

Acetates were not detected in the groundwater samples collected this quarter. Alcohols were detected by semi-quantified methods in wells W4, W5, and W8. Acetone was detected in wells W4, W6, and W8. Acetone levels have declined in wells W1 and W4 when compared with previously collected data. With the exception of PCE and TCE in well W6 and W7, concentrations of purgeable organic constituents have generally decreased when compared to previous analytical results.

Groundwater levels have decreased in all wells when compared to data collected in September 1990. The decrease probably reflects seasonal variations related to precipitation. Groundwater in the vicinity of the James River Corporation site flows southwest, toward San Francisco Bay.

We appreciate this opportunity to be of service to you. Please contact me if you have any questions or comments regarding this report.

Very truly yours,

BROWN AND CALDWELL

Donna L. Courington

Project Manager

DLC:dc

Enclosures

cc: Mr. Larry Seto, Alameda County Health Agency

Mr. Lester Feldman, San Francisco Regional Water Quality

Control Board

Donna Contester



### 1 0 2 FIELD DATA

| B NAME: AMUES        | Rwen                                             |                         | CLIE     | NT:                                   |                      |                        |           |                                        |  |  |
|----------------------|--------------------------------------------------|-------------------------|----------|---------------------------------------|----------------------|------------------------|-----------|----------------------------------------|--|--|
| CATION: San          |                                                  | }                       | CONT     | CONTACT:                              |                      |                        |           |                                        |  |  |
| B NO:                | 6031-02<br>9-6-90 19.7-90                        |                         |          | PHONE:                                |                      |                        |           |                                        |  |  |
| TE:                  |                                                  |                         |          | MDARY:                                |                      |                        |           |                                        |  |  |
| oJ. MGR:             | Courington                                       |                         | PHO      | Æ:                                    | -4                   |                        |           |                                        |  |  |
| ELD PERSONNEL:       | Hallock                                          |                         |          |                                       |                      |                        |           |                                        |  |  |
|                      |                                                  |                         |          |                                       |                      |                        |           |                                        |  |  |
| INSTRUMENT:          | ·                                                | SER. NO:                |          | on 4.0 =                              | pH 7.6 =             |                        | pH 10.0   | <u> </u>                               |  |  |
| DUCTIVITY INSTRUMENT | :                                                |                         | SER. NO: |                                       | INTERNAL CAL         | IBRATION P             | ERFORMED  | (YES)/(NO) ·                           |  |  |
| HER INSTRUMENTATION: | •                                                |                         |          |                                       | · <del>·······</del> | ·                      |           |                                        |  |  |
|                      |                                                  |                         | 11 11 11 |                                       | 4                    | العند (14 أنا الماديد) | <u>γ</u>  |                                        |  |  |
| 200 - 0100           | 1 Stop at Store                                  | 5 to reple              | 464 5    | upplies y                             | tewers, 1            | oto snes               | 4         | 1-4                                    |  |  |
|                      | Arecord at                                       | =3 <sub>0</sub> +1= 1/1 | 74 1/24  | Bak                                   | centir               | L RIN                  | auga      | Ments                                  |  |  |
|                      | 7                                                |                         |          |                                       |                      | 0 1: 1:                | Ų.        |                                        |  |  |
|                      | for down the                                     | mover                   | et uh    | Surage                                |                      |                        |           |                                        |  |  |
|                      | io-nired 311                                     |                         |          |                                       |                      |                        |           | 1 + 1                                  |  |  |
|                      |                                                  |                         |          |                                       |                      |                        |           | +++++                                  |  |  |
| 10                   | -\ (4') 13.15<br>-2 (2') 13.62<br>-3 (4'') 13.31 |                         |          | W-6                                   | (2)                  | 3,53                   |           |                                        |  |  |
|                      | 2 (2") 13.82                                     |                         |          | w-1                                   | (4) 13               | 47                     | .   .   . |                                        |  |  |
|                      | -3 (4") 17171                                    |                         |          | 11)-P                                 | 14) 12               | 98                     |           |                                        |  |  |
| 120                  | 3 (4°) 13.37<br>4 (4°) 13,5                      | 01                      |          | $\omega$ $\omega$ $\omega$            | 720 12               | 00'                    | 7         | 0.70                                   |  |  |
|                      | -5 (Z") 14:21                                    | //                      |          | $\omega_{i}$                          | (4") i=              |                        |           | asierea                                |  |  |
|                      |                                                  |                         |          | 10 - 1                                | (4.)                 | 714                    | 111       |                                        |  |  |
|                      |                                                  |                         |          |                                       |                      |                        |           |                                        |  |  |
| - Gl                 | and arding                                       | of SC 1                 | neres    | : A                                   | 0, 99                | 1,                     | ++.       | <u> </u>                               |  |  |
|                      | 01                                               |                         |          |                                       |                      |                        |           |                                        |  |  |
| 530 Dan              | upled 5                                          | wells to                | day      |                                       |                      | ,                      |           |                                        |  |  |
| $\hat{\Omega}$       | have                                             | wells to<br>neworle,    | Jan Jan  | Dala                                  | ed drei              | ims                    |           |                                        |  |  |
|                      |                                                  |                         |          |                                       |                      |                        |           |                                        |  |  |
| 1019 14              | ente i                                           | see. we                 | 1715     | 5                                     |                      |                        |           |                                        |  |  |
|                      |                                                  |                         |          | · · · · · · · · · · · · · · · · · · · |                      |                        |           |                                        |  |  |
|                      |                                                  |                         |          |                                       |                      |                        | +         |                                        |  |  |
|                      |                                                  |                         |          |                                       |                      |                        |           |                                        |  |  |
|                      |                                                  |                         |          |                                       |                      |                        |           |                                        |  |  |
|                      |                                                  |                         |          |                                       |                      |                        |           | 1                                      |  |  |
|                      |                                                  |                         | 1 1      |                                       |                      |                        |           | ************************************** |  |  |
|                      |                                                  | <b>↓</b>                | -        |                                       |                      |                        | ! ; ` .   | 4                                      |  |  |
| <u> </u>             |                                                  |                         | <u> </u> | ·                                     |                      | <u>_</u>               |           | SHEET NO.                              |  |  |
|                      |                                                  |                         |          | <u></u>                               |                      |                        | DATE      |                                        |  |  |
| IOR NUMBER           |                                                  |                         | SUBJECT  |                                       |                      |                        |           |                                        |  |  |



### FIELD DATA

| NAME: JAMUS YUEK                                                                                         | CL                    | IENT:                                 |                                                   | lad                                   |                                                    |
|----------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------|---------------------------------------------------|---------------------------------------|----------------------------------------------------|
| ATION:                                                                                                   |                       | NTACT:                                |                                                   |                                       |                                                    |
| No:                                                                                                      | PH PH                 | ONE:                                  |                                                   | <u></u>                               |                                                    |
| HO: 9790                                                                                                 | SE                    | CONDARY:                              |                                                   |                                       |                                                    |
| J. NGR:                                                                                                  | PH                    | ONE:                                  |                                                   | ·····                                 | ·                                                  |
| LD PERSONNEL:                                                                                            |                       |                                       |                                                   |                                       |                                                    |
| ETY OFFICER: NA                                                                                          | S PLAN ONSITE? (YES). | /(NO) WEATNES                         | R:                                                |                                       |                                                    |
| INSTRUMENT: SER.                                                                                         | . NO:                 | pH 4.0 =                              | pit 7.0 =                                         | p# 10.0 =                             |                                                    |
| DUCTIVITY INSTRUMENT:                                                                                    | SER. NO: _            |                                       | INTERNAL CALIBRAT                                 | ION PERFORMED (                       | YES)/(NO)                                          |
| ER INSTRUMENTATION:                                                                                      | <del></del>           |                                       |                                                   | <del> </del>                          |                                                    |
|                                                                                                          |                       |                                       |                                                   |                                       |                                                    |
|                                                                                                          |                       |                                       |                                                   |                                       |                                                    |
|                                                                                                          |                       |                                       |                                                   |                                       |                                                    |
|                                                                                                          |                       |                                       |                                                   |                                       |                                                    |
| 300 0900 Pewe to site                                                                                    | 1 such your           | ce.                                   |                                                   |                                       |                                                    |
| Enginesiane<br>5-14 Self S                                                                               | offure to c           | outen                                 | deun ren                                          | novel at                              |                                                    |
| 374 544 3                                                                                                | tomae, inc            | 10 WA TYLL                            | us us ma                                          | CE OFM                                | <del>  •        </del>                             |
|                                                                                                          |                       | i                                     | la sua una la |                                       | 1 - 4 4 - 4                                        |
| 9958 Standards                                                                                           | 3014 5                | I meters                              | 74                                                | 10,00                                 | 7                                                  |
| <del>▐<u></u>▐▐▗▊▄▊▗▊▄▙▄▙▄▋▄</del> ▊▄ <del>▄</del> ▄▄▄╃▄┩▄▊ <sub>▃</sub> ▄▘▗▙▗▊▃▄▘▗▋▖▗░▗▋▗▗░▗▍▗░▕▗░▕▗▘▗░ |                       | i                                     |                                                   | e to to summit the term               | <del>  -   -   -   -   -   -   -   -   -   -</del> |
| 1030 fineshed w9                                                                                         | met with              | bood for                              | relight dizi                                      | ver to                                | <u> </u>                                           |
| Move deum                                                                                                | - requests            | a anony                               | cerc qui a                                        | eun Ci                                | Julot 1                                            |
| 2000 Look for Bolo                                                                                       | to locate             | the M                                 | T - RECK                                          | L 1230.                               |                                                    |
|                                                                                                          |                       |                                       |                                                   |                                       |                                                    |
| 310 Invision sampling                                                                                    | , decou ?             | pack vel                              | ude                                               |                                       | <u> </u>                                           |
| 340 104 31                                                                                               |                       | V                                     |                                                   |                                       |                                                    |
|                                                                                                          |                       |                                       | ,                                                 |                                       |                                                    |
| 1410 Delivered samp                                                                                      | les 16CA              |                                       |                                                   |                                       |                                                    |
| 430 + 5 PXPH                                                                                             |                       |                                       |                                                   | +                                     | .                                                  |
| <u> </u>                                                                                                 |                       |                                       |                                                   |                                       |                                                    |
| <u> </u>                                                                                                 |                       | , , , , , , , , , , , , , , , , , , , |                                                   |                                       | 11                                                 |
|                                                                                                          |                       |                                       |                                                   | 1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. |                                                    |
|                                                                                                          |                       |                                       |                                                   |                                       | 1                                                  |
|                                                                                                          |                       |                                       |                                                   |                                       |                                                    |
|                                                                                                          |                       |                                       |                                                   |                                       |                                                    |
|                                                                                                          |                       |                                       |                                                   |                                       | 1                                                  |
|                                                                                                          |                       |                                       |                                                   |                                       |                                                    |
| 3 T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                  |                       |                                       |                                                   | s                                     | HEET NO.                                           |
|                                                                                                          |                       |                                       |                                                   | _                                     |                                                    |
| OB NUMBER                                                                                                | SUBJECT               |                                       |                                                   | DATE /                                |                                                    |

| GROUNDWATER | DATA |
|-------------|------|
| <br>        |      |

| ,           | <b>⇔</b> . |       |
|-------------|------------|-------|
| Well ID     | BL         | Casir |
| Static W.L  | 13.12      | Borei |
| Well Volume |            | Casir |

Casing Dia.

Borehole Dia,

Casing Above L.S.

| Time | p.H.    | TEMPERATURE | CONDUCTIVITY | Gallons<br>Removed | Remarks |
|------|---------|-------------|--------------|--------------------|---------|
| 1136 | 7.11    | 18.8        | 370          | 18                 | Clear   |
| 1141 | 7.17    | 18.8        | 320          | 36                 | "       |
| 1144 | 4.21    | 18.8        | 320          | 53                 | //      |
|      |         |             |              |                    |         |
| 1150 | Samples |             |              |                    |         |
|      | ·       |             |              |                    |         |
|      |         |             |              |                    |         |
|      |         |             |              |                    |         |
|      |         |             |              |                    |         |
|      |         |             |              |                    |         |
| •    | ·       | ,           |              |                    |         |
|      |         |             |              |                    |         |
|      |         |             |              |                    |         |
|      |         |             |              |                    |         |
|      |         |             |              |                    |         |
|      |         |             |              |                    | ·       |
|      | •.      |             |              |                    |         |
|      |         |             |              |                    |         |
|      |         |             |              |                    |         |

### $\underline{CAPACITIES} - \textbf{Gallons per Linear Foot}$

| BC GRO      | UNDWATER DATA | 1                 |      | BC Personnel 5H<br>Job Number 5081-02 |
|-------------|---------------|-------------------|------|---------------------------------------|
| <del></del> | <u>,</u>      | •                 |      | Date 4-6-90                           |
| Well ID.    | $w \cdot l$   | Casing Dia.       | _A`` | Pump Used IRash                       |
| Static W.L. | 13.15         | Borehale Dia.     |      | Samples Collected 8240                |
| Weil Volume |               | Casing Above L.S. |      | Other                                 |

| Time       | p.il.  | TEMPERATURE | CONDUCTIVITY | Gallons<br>Removed | Brae Remarks                                                     |
|------------|--------|-------------|--------------|--------------------|------------------------------------------------------------------|
| 1434       | 6.8    | 20,4        | 340          | 18                 | Beight orange particulate<br>mild musty ador, slightle<br>cloudy |
|            |        |             |              |                    | cloudy                                                           |
| 1441       | 6.28   | 20.0        | 330          | 30                 | fower partides, clearing                                         |
| 1445       | 6.28   | 19.9        | 330          | 53                 | " "                                                              |
|            |        |             |              |                    |                                                                  |
| 1455       | Sample | Q           |              |                    |                                                                  |
|            |        |             |              |                    |                                                                  |
| ` <u> </u> |        |             |              |                    |                                                                  |
|            |        |             |              |                    |                                                                  |
| ,          |        |             |              |                    |                                                                  |
|            |        |             |              |                    |                                                                  |
|            |        |             |              |                    |                                                                  |
|            |        |             |              |                    |                                                                  |
|            |        |             |              |                    |                                                                  |
|            |        |             |              |                    |                                                                  |
|            |        |             |              |                    |                                                                  |
|            | ••     |             |              |                    |                                                                  |
|            |        |             |              |                    |                                                                  |
|            |        |             |              |                    |                                                                  |

<u>CAPACITIES</u> — Gallons per Linear Foot

| BC GROUNDWATER DATA |                   |             | BC Personnel 54 Job Number 5551 Date 9-7 |
|---------------------|-------------------|-------------|------------------------------------------|
| Well ID             | Casing Dia.       | 4"          | Pump Used IRash                          |
| Static W.L. 13.37   | Borehole Dia.     |             | Samples Collected                        |
| Well Volume         | Casing Above L.S. | <del></del> | Other                                    |

| Time | <b>p.</b> H. | TEMPERATURE | CONDUCTIVITY | Gallons<br>Removed                    | Remarks                                                                        |
|------|--------------|-------------|--------------|---------------------------------------|--------------------------------------------------------------------------------|
| 1245 | 6.93         | 19.9        | 340          | KB                                    | Clear, yellowish, ador<br>Clear, idparticles, mild ador<br>Clear, v. yout ador |
| 1250 | 696          | 19.2        | 330          | 36                                    | Clear, il particles, mild ador                                                 |
| 1255 | 10.85        | 19.5        | 330          | 53                                    | Clear, v. yout odor                                                            |
|      | ur.          |             |              |                                       | U                                                                              |
| 1305 | Samps        | hed -       | Samples      | contain                               | boronou diborous                                                               |
|      | U            | ·           | particle     |                                       | D                                                                              |
|      |              |             | U            | · · · · · · · · · · · · · · · · · · · |                                                                                |
|      |              |             |              |                                       |                                                                                |
|      | ,            |             |              |                                       |                                                                                |
|      |              |             |              |                                       |                                                                                |
|      |              |             |              |                                       |                                                                                |
|      |              |             |              |                                       |                                                                                |
|      |              |             |              | "                                     |                                                                                |
|      |              |             |              |                                       |                                                                                |
|      |              |             |              |                                       |                                                                                |
|      |              |             |              |                                       |                                                                                |
|      | <b>6.</b>    |             |              | <u> </u>                              |                                                                                |
|      |              |             |              |                                       |                                                                                |
|      |              |             |              |                                       |                                                                                |

<u>CAPACITIES</u> - Gallons per Linear Foot

| EC | GROUNDWATER | DATA |
|----|-------------|------|
|    |             | -    |

| Weil ID     | W.4  | Casing Dia.      | 4" |
|-------------|------|------------------|----|
| Static W.L  | 13.5 | Borehole Dia.    |    |
| Wall Volume |      | Coeing Above I S |    |

| BC Personnel _                   | <u>===</u> |
|----------------------------------|------------|
| Job Number _                     | 5031-02    |
| Date _                           | 9-7-90     |
| Pump Used<br>Samples Collected _ | Trash      |
| Jumples Conscied_                |            |
| <b>Ω</b> + hα                    |            |

|      |        |             |              | •                    | <b>&gt;</b>                 |
|------|--------|-------------|--------------|----------------------|-----------------------------|
| Time | p.tl.  | TEMPERATURE | CONDUCTIVITY | Gallons<br>Removed   | Remarks                     |
| 1118 | 10.38  | 19.6        | 360          | 18                   | grey, cloudy, very strong   |
| 1122 | 6.44   | 19.3        | 360          | 36                   | Clearing, odor still strong |
| 1128 | 6.53   | 19.4        | 340          | 53                   | " "                         |
|      |        |             |              |                      |                             |
| 1135 | Sample | ed - =      | amples c     | pritaen W            | mero715                     |
|      | ()     |             | bolack p     | outaen W<br>exticles |                             |
|      |        |             | . 0          |                      |                             |
|      |        |             |              |                      |                             |
|      |        |             |              |                      |                             |
|      |        |             |              |                      |                             |
|      |        |             |              |                      |                             |
|      |        |             |              |                      |                             |
|      |        |             |              |                      |                             |
|      |        |             |              |                      |                             |
|      |        |             |              |                      |                             |
|      |        |             |              |                      |                             |
|      |        |             |              |                      |                             |
|      |        |             |              |                      |                             |
|      |        |             |              |                      |                             |

<u>CAPACITIES</u> - Gallons per Linear Foot

| BC GROUNDWATER DATA |   |
|---------------------|---|
| <del></del>         | - |

|          | DO I GLACIMEL TO THE TANK THE |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Job Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | Date 9-6-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | Pump Used TRASh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <u> </u> | Samples Collected 8240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <u> </u> | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Weil ID.    | <u>w-5</u> | Casing Dia.       | ?" |
|-------------|------------|-------------------|----|
| Static W.L. | 14.22      | Borehole Dia.     |    |
| Well Volume |            | Casing Above L.S. |    |

|         |          |             |              | •                  | <b>*</b>                      |
|---------|----------|-------------|--------------|--------------------|-------------------------------|
| Time    | p.H.     | TEMPERATURE | CONDUCTIVITY | Gallons<br>Removed | Remarks                       |
| 1337    | 6.92     | 19.1        | 320          | 18                 | grapish, cloudy<br>mild odore |
| 1340    | 6.95     | 19.1        | 320          | 36                 | Cleanna, Slightly cloudy      |
| 1345    | 6,74     | 19.3        | 310          | 53                 | Cleaning, slightly cloudy     |
|         |          |             |              |                    | · ·                           |
| 1355    | Jamshed  | - Samo      | es thick     | areu (sal          | (4)                           |
| 1418    | Resample | ed - Vo     | As from      | Juest sa           | upling broke                  |
|         | -        | (4          | Ut in thr    | eads on c          | ab?)                          |
|         |          |             |              | U                  | 9                             |
|         |          |             |              |                    |                               |
|         |          |             |              |                    | -                             |
|         |          |             |              |                    |                               |
|         |          |             |              |                    |                               |
|         |          |             |              |                    |                               |
|         |          |             |              |                    |                               |
|         | -        |             |              |                    |                               |
|         |          |             |              |                    |                               |
|         | 4-       |             |              |                    |                               |
|         |          |             |              |                    | 1                             |
|         |          |             |              |                    |                               |
| <u></u> | <u> </u> | L           | <u> L</u>    | 1                  | <u> </u>                      |

CAPACITIES - Gallons per Linear Foot

| BC | GROUNDWATER      | DATA |
|----|------------------|------|
|    | OLIO OLIO HALLET | DUIL |

BC Personnel ON Job Number 508 Date 9 1

| Well ID.    | W-60  |
|-------------|-------|
| Static W.L. | 13.53 |

Well Volume .

Casing Dia.

Borehole Dia.

Casing Above L.S.

Samples Collected 8245
Other\_\_\_\_\_

3

| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | p.H.   | TEMPERATURE | CONDUCTIVITY | Gallons<br>Removed | Remarks |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|--------------|--------------------|---------|
| 1513<br>1510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.1    | 19.4        | 330          | 18                 | Clear   |
| 1518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.07   | 19.2        | 320          | 36                 | 71      |
| 1523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.03   | 19.2        | 320          | 53                 | и       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |             |              |                    |         |
| 1530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample | ed :        |              |                    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 0    |             |              |                    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |             |              | ,                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -      |             |              |                    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |             |              |                    |         |
| a de la companya de l |        |             |              |                    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |             |              |                    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |             |              |                    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |             |              |                    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |             |              |                    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |             |              |                    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |             |              |                    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |             | <u> </u>     |                    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •      |             |              |                    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |             |              |                    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |             | 1            | 1                  |         |

 $\underline{CAPACITIES} - \text{Gallons per Linear Foot}$ 

| BC | GROUNDWATER        | DATA     |
|----|--------------------|----------|
|    | 011001101111111111 | D13 (11) |

|             | 11)-87  |
|-------------|---------|
| Well ID.    | 10-75-1 |
| Static W.L. | 12.68   |
| Well Volume |         |

| Casing Dia.       | 4" |
|-------------------|----|
| Borehole Dia.     |    |
| Casing Above L.S. |    |

| BC Personne Tolking Job Number Tolking Date Tolking | <del>-</del><br>- |
|-----------------------------------------------------|-------------------|
| Pump Used Samples Collected                         | -                 |

Other\_\_\_\_

| Time   | p.it.  | TEMPERATURE | CONDUCTIVITY | Gallons<br>Removed              | Remarks         |
|--------|--------|-------------|--------------|---------------------------------|-----------------|
| 1155   | 7.09   | 19.0        | 280          | <z< td=""><td>Algare-</td></z<> | Algare-         |
| 1203   | 6,93   | 15.4        | 240          | 36.                             | 11              |
| 1207   | 696    | 18.7        | 300          | 哲的                              | n ·             |
|        |        |             |              |                                 |                 |
| 1216 3 | empled | - Sample    | contain      | s many                          | abrous parheles |
|        | U      | V           |              |                                 | V               |
|        |        |             |              |                                 |                 |
|        |        |             |              |                                 |                 |
|        |        |             |              |                                 |                 |
|        |        |             |              |                                 |                 |
|        |        |             |              |                                 |                 |
|        |        |             |              |                                 |                 |
| •      |        |             |              | ·                               |                 |
|        |        |             |              |                                 |                 |
|        |        |             |              |                                 |                 |
|        |        |             |              |                                 |                 |
|        | •      |             |              |                                 |                 |
|        |        |             |              |                                 |                 |
|        |        |             | , ,          |                                 |                 |

CAPACITIES - Gallons per Linear Foot

| PC. | GROUNDWATER  | ΠΔΤΔ |
|-----|--------------|------|
|     | ONCONDINATEN | UATA |

|             | 0 //                                            |                   | Au |
|-------------|-------------------------------------------------|-------------------|----|
| Well ID.    | <u> 10 4                                   </u> | Casing Dia.       | 4  |
| Static W.L. | 12.99.                                          | Borehole Dia.     |    |
| Well Volume |                                                 | Casina Above L.S. |    |

BC Personnel \_ Job Number \_ Date.

| Pump Used.        | Trasic |
|-------------------|--------|
| Samples Collected | 9240   |
| Other_            |        |

| Time | p.H.    | TEMPERATURE | CONDUCTIVITY | Gallons<br>Removed | Remarks                           |
|------|---------|-------------|--------------|--------------------|-----------------------------------|
| 1248 | 6.45    | 19.1        | 520          | 18                 | Goed odor<br>Cloudy, Expervescrit |
| 1251 | 6.45    | 18.6        | 600          | 36                 | ν "                               |
| 1255 | 6.4     | 18.8        | 480          | 53                 | u ··                              |
|      |         |             |              |                    |                                   |
| 1305 | Sampled | - Sany      | e contain    | s Hack,            | pold particles                    |
|      | V       | U           |              |                    | U                                 |
|      |         |             |              |                    |                                   |
|      |         |             |              |                    |                                   |
|      |         |             |              |                    |                                   |
|      |         |             |              |                    |                                   |
|      |         |             |              |                    |                                   |
|      |         |             |              |                    |                                   |
|      |         |             | ***          |                    |                                   |
|      |         |             |              |                    |                                   |
|      |         |             |              |                    |                                   |
|      |         |             |              |                    |                                   |
|      | ۵۰      |             |              |                    |                                   |
|      |         |             |              |                    |                                   |
|      |         |             |              |                    |                                   |

<u>CAPACITIES</u> — Gallons per Linear Foot

| GROUNDWATER | DATA |
|-------------|------|

Well ID.
Static W.L.
Well Volume

Casing Dia.

Borehole Dia.

Casing Above L.S.

Job Number <u>50\$1.02</u>
Date <u>9.7.90</u>
Pump Used <u>Trask</u>
Samples Collected <u>8240</u>
Other

BC Personnel

|      |        |             |              | Gallons   | <i>9</i> .                               |
|------|--------|-------------|--------------|-----------|------------------------------------------|
| Time | p.H.   | TEMPERATURE | CONDUCTIVITY | Removed   | Remarks                                  |
| 1000 | 6,13   | 18.9        | 340          | 18        | Sightly doudy                            |
| 1003 | 6.97   | 18,7        | 340          | 36        | Stightly cloudy Clearing Slightly Cloudy |
| 1007 | 7.16   | 18.9 .      | 330          | 53        | Cloudy                                   |
|      |        |             |              |           |                                          |
| 1015 | Sample | l - San     | ples cle     | er, but a | contain particles                        |
|      | U      | wh          | ite blace    | k, and c  | oloved                                   |
|      |        |             |              |           |                                          |
|      | ,      |             |              |           |                                          |
|      |        |             |              |           |                                          |
|      |        |             |              |           |                                          |
|      |        |             |              |           |                                          |
|      |        |             |              |           |                                          |
|      |        |             |              |           |                                          |
|      |        | ,           |              |           |                                          |
|      |        |             |              |           |                                          |
|      |        |             |              |           |                                          |
|      | ••     |             |              |           |                                          |
|      |        |             |              |           |                                          |
|      |        |             |              |           |                                          |

<u>CAPACITIES</u> — Gallons per Linear Foot

### ATTACHMENT B

### CHAIN OF CUSTODY FORM/ LABORATORY ANALYTICAL REPORTS

### CHAIN OF CUSTODY RECORD

Disposal arrangements: \_

☐ 801 Western Avenue, Glendale, CA 91201 (818) 247-5737 ☐ 1200 Pacifico Avenue Anaheim CA 92805 (714) 978-0113

BCA Log Number 2004 139

| Client na               | Client name PCPU / Cities Russ Project or PO# 5081.02 |                    |                                              |            |                                        |                                                                 | 2                  |                                       |                       | /                    | /_/            |         | A    | nalyses | require                                      | d /              | /                | ,                          |                |                                               |
|-------------------------|-------------------------------------------------------|--------------------|----------------------------------------------|------------|----------------------------------------|-----------------------------------------------------------------|--------------------|---------------------------------------|-----------------------|----------------------|----------------|---------|------|---------|----------------------------------------------|------------------|------------------|----------------------------|----------------|-----------------------------------------------|
| Address                 | ا حسرهاردر:                                           | <del>~ \ / /</del> | · Joseph                                     | <u> </u>   | <u> </u>                               | Phone # 937 - 90                                                |                    | )                                     |                       | ,                    | Ι.             | / .     | / ,  | / ,     | /                                            | Ι,               | //               | / <sub>\$\$\varphi\$</sub> |                |                                               |
| City, Stat              | e, Zip                                                |                    |                                              |            | Report attention                       | Courinator                                                      |                    |                                       |                       |                      |                |         |      |         |                                              |                  |                  |                            |                |                                               |
| Lab<br>Sample<br>number | Date<br>sampled                                       | Time<br>sampled    | Type*<br>See key<br>below                    | Sampled by | Dandy II                               | allock                                                          | Nu                 | mber<br>of<br>tainers                 | 6                     | ÿ)                   |                | /       | //   | /       | /                                            |                  |                  | Rema                       | arks           |                                               |
| 1                       | 9.790                                                 | 1150               | GW                                           | B 1        |                                        |                                                                 | ,                  | 2                                     | 2                     |                      |                |         |      |         |                                              |                  |                  |                            |                |                                               |
| 2                       | 9.6.90                                                |                    | {                                            | W-L        |                                        |                                                                 |                    |                                       |                       |                      |                |         |      |         |                                              |                  |                  |                            |                | V 1 4                                         |
| <b>3</b> )              | 4.7                                                   | 1305               |                                              | W-3        |                                        |                                                                 |                    |                                       |                       |                      |                |         |      |         | :                                            |                  | <del></del>      |                            |                |                                               |
| 4                       | 4-2-                                                  | 1135               |                                              | W-4        |                                        |                                                                 |                    |                                       |                       |                      |                |         |      |         |                                              |                  |                  |                            |                |                                               |
| 5                       | 96                                                    | 1418               |                                              | W 5        |                                        |                                                                 |                    |                                       |                       |                      |                |         |      |         | ļ                                            |                  |                  |                            | ·              |                                               |
| 6                       | 4.6                                                   | 1530               | · .                                          | W.6        |                                        |                                                                 |                    | ļ .                                   |                       |                      |                |         |      |         |                                              |                  |                  |                            |                |                                               |
| 7                       | 9.6                                                   | 1215               |                                              | W7         |                                        |                                                                 |                    |                                       |                       |                      |                |         | •    |         | <u> </u>                                     |                  |                  |                            |                |                                               |
|                         | 9.6                                                   | 1305               |                                              | W 5        | •                                      |                                                                 | <u> </u>           | 1                                     |                       |                      |                |         |      |         | -                                            |                  |                  |                            |                |                                               |
| 4                       | 9.7                                                   | 1015               | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \        | W.9        |                                        | <u>, , , , , , , , , , , , , , , , , , , </u>                   | <del> </del> -     | <u>v</u>                              | ~                     |                      |                |         | ,    |         |                                              |                  |                  |                            |                | <u></u> .                                     |
|                         |                                                       |                    |                                              |            |                                        |                                                                 |                    | ····•                                 |                       |                      |                |         |      |         |                                              |                  |                  | <u> </u>                   |                |                                               |
|                         |                                                       |                    | <u>. </u>                                    |            | <u> </u>                               |                                                                 | $\vdash$           |                                       | <u> </u>              | <u> </u>             |                |         |      |         |                                              |                  |                  |                            |                |                                               |
|                         |                                                       | Signatur           | <u>                                     </u> | <u> </u>   |                                        | Print Name                                                      | <del>'</del>       |                                       | <u> </u>              | <u> </u>             | <u>!</u>       | Compa   | ny   |         | <u>.                                    </u> |                  |                  | Date                       |                | Time                                          |
| Relinqui                | shed by                                               | 2                  |                                              |            | Dard                                   | 1 Hallode                                                       |                    | Ŧ                                     | 30                    | P2)                  |                |         |      |         |                                              |                  | (                | 7-7-9                      | ìd             | 210                                           |
| Received                | i by                                                  | <u>ر</u>           |                                              |            | 3                                      | .)                                                              |                    | · · · · · · · · · · · · · · · · · · · |                       | word Disa            |                |         |      |         |                                              |                  |                  |                            |                | -                                             |
| Relinqui                | shed by                                               |                    | , -                                          |            |                                        | /                                                               |                    |                                       |                       |                      | <u>)</u>       |         |      |         |                                              | <del></del>      |                  |                            | _              | <u>/                                     </u> |
| Received by             |                                                       |                    |                                              |            |                                        |                                                                 | _/                 |                                       |                       |                      |                |         |      |         |                                              | 4                |                  |                            |                |                                               |
| Relinqui                | shed by                                               |                    | <u>Q</u>                                     | ·          |                                        |                                                                 | _                  |                                       |                       |                      |                |         |      |         |                                              |                  |                  | 7 ~ 4                      | 2-             |                                               |
| Receive                 | d by Laborator                                        | y )//.             | Date                                         |            | Monte                                  | 7 Sco11                                                         |                    |                                       | L                     | <u> </u>             | A              |         |      |         |                                              |                  | I`.              | 7.9                        |                | 2:19                                          |
|                         | IALYTICA<br>Powell Street, I                          | L                  | 94608 (415)                                  | 428-2300   | Note: Samples are dis<br>Hazardous sam | carded 30 days after results<br>ples will be returned to client | are rep<br>or disp | orted un<br>osed of                   | less oth<br>at client | er arran<br>'s exper | gement<br>1se. | s are m | ade. | •KI     | EY: AQ<br>W—Gro                              | -Aque<br>oundwat | ous NA<br>er SO- | Nonaqueous<br>-Soil OTOt   | s SL-<br>her P | -Sludge<br>E—Petroleum                        |

LOG NO: E90-09-139

Received: 07 SEP 90 Reported: 20 SEP 90

REVISED 10-8-90

Ms. Donna Courington Brown and Caldwell 3480 Buskirk Avenue Pleasant Hill, California 94523

Project: 5081-02

| REPORT OF ANALYTICAL RESULTS Page |                       |              |              |              |           |                   |
|-----------------------------------|-----------------------|--------------|--------------|--------------|-----------|-------------------|
| LOG NO                            | SAMPLE DESCRIPTION, O | DATE SAMPLED |              |              |           |                   |
| 09-139-1                          | B-1                   |              |              |              |           | 07 SEP 90         |
|                                   | W-1                   |              |              |              |           | 06 SEP 90         |
|                                   | W-3                   |              |              |              |           | 07 SEP 90         |
| ••                                | V-4                   |              |              |              |           | 07 SEP 90         |
|                                   | W-5                   |              |              |              |           | 06 SEP 90         |
| PARAMETER                         |                       | 09-139-1     | 09-139-2     | 09-139-3     | 09-139-4  | 09-139-5          |
| Purgeable                         | Priority Pollutants   |              |              |              |           | 00 10 00          |
| Date Analy                        | -                     | 09.13.90     | 09.13.90     |              | 09.13.90  | 09.13.90          |
| Date Extra                        |                       | 09.13.90     | 09.13.90     |              | 09.13.90  | 09.13.90<br>20    |
| Dilution :                        | Factor, Times         | 1            | 1            | 1            | 1         | <20<br><20        |
| 1,1,1-Tri                         | chloroethane, ug/L    | <1           | <1           | <1           | <1<br><1  | <20<br><20        |
| 1,1,2,2-Tetrachloroethane, ug/L   |                       | . <1         | <1           | <1           | <1        | <20<br><20        |
| 1,1,2-Trichloroethane, ug/L       |                       | <1           | <1           | <1           | <1        | <20<br><20        |
| 1,1-Dichl                         | oroethane, ug/L       | <1           | <1           | 3            | <1        | <20<br><20        |
| 1,1-Dichl                         | oroethene, ug/L       | <1           | <1           | <1           | <1        | ₹20<br><b>₹20</b> |
|                                   | oroethane, ug/L       | <1           | <1           | <1           | <1        | <20               |
| 1,2-Dichl                         | orobenzene, ug/L      | <1           | <b>&lt;1</b> | <b>&lt;1</b> | <1        | <20<br><20        |
| 1,2-Dichl                         | oropropane, ug/L      | <1           | <1           | <1           | <1<br><1  | <20<br><20        |
| 1,3-Dichl                         | orobenzene, ug/L      | <1           | <1           | <1           | <1<br><1  | <20<br><20        |
|                                   | orobenzene, ug/L      | <1           | <1<br>       | <1           | <1<br><1  | <20<br><20        |
| 2-Chloroe                         | thylvinylether, ug/L  | <1           | <1           | <1           | 900       | <20<br><20        |
| 2-Hexanon                         | e, ug/L               | <1           | 35           | <1           | 900<br><1 | <20<br><20        |
| 4-Methyl-                         | 2-Pentanone, ug/L     | <1           | <1           | <1<br><10    | 17        | <200              |
| Acetone,                          |                       | <10          | <10          | <10          | <10       | <200              |
| Acrolein,                         | ug/L "                | <10          | <10          | <10<br><10   | <10       | <200              |
| Acrylonit                         | rile, ug/L            | <10          | <10          |              | <10<br><1 | <20               |
|                                   | loromethane, ug/L     | <1           | <1           | <b>&lt;1</b> | <1        | <20<br><20        |
|                                   | nane, ug/L            | <1           | <1           | <1<br><1     | <1<br><1  | <20               |
| Benzene,                          | ug/L                  | <1           | <1           | <1           | <b>\1</b> | 120               |

LOG NO: E90-09-139

Received: 07 SEP 90 Reported: 20 SEP 90

Ms. Donna Courington
Brown and Caldwell
3480 Buskirk Avenue
Pleasant Hill, California 94523

Project: 5081-02

| REPORT OF ANALYTICAL RESULTS Page 2                                   |                                                |               |               |          |          |                                     |  |
|-----------------------------------------------------------------------|------------------------------------------------|---------------|---------------|----------|----------|-------------------------------------|--|
| LOG NO                                                                | OG NO SAMPLE DESCRIPTION, GROUND WATER SAMPLES |               |               |          |          | DATE SAMPLED                        |  |
| ••                                                                    | B-1<br>W-1                                     |               |               |          |          | 07 SEP 90<br>06 SEP 90<br>07 SEP 90 |  |
| 09-139-4                                                              | W-3<br>W-4<br>W-5                              |               |               |          |          | 07 SEP 90<br>06 SEP 90              |  |
| 09-139-5<br>PARAMETER                                                 |                                                | 09-139-1      | 09-139-2      | 09-139-3 | 09-139-4 | 09-139-5                            |  |
| Bromoform,                                                            | ng/L                                           | <1            | <1            | <1       | <1       | <20                                 |  |
| Chlorobenz                                                            |                                                | <1            | <1            | <1       | <1       | <20                                 |  |
|                                                                       |                                                | <1            | <1            | <1       | <1       | <20                                 |  |
| Carbon Tetrachloride, ug/L                                            |                                                | <1            | · <1          | <1       | <1       | <20                                 |  |
| Chloroethane, ug/L                                                    |                                                | <1            | <1            | <1       | <1       | <20                                 |  |
| Chloroform, ug/L                                                      |                                                | <1            | <1            | <1       | <1       | <20                                 |  |
| Chloromethane, ug/L                                                   |                                                | <1            | <1            | <1       | <1       | <20                                 |  |
| Carbon Disulfide, ug/L<br>Dibromochloromethane, ug/L                  |                                                | <1            | <1            | <1       | <1       | <20                                 |  |
|                                                                       |                                                | <1            | <1            | <1       | 13       | <20                                 |  |
| Ethylbenz                                                             |                                                | ⟨1            | <1            | <1       | <1       | <20                                 |  |
| Freon 113                                                             |                                                | <20           | 990           | <20      | 1000     | <400                                |  |
|                                                                       | hyl ketone, ug/L<br>chloride, ug/L             | <b>&lt;</b> 5 | <b>&lt;</b> 5 | <5       | <5       | <100                                |  |
| •                                                                     |                                                | <1            | <1            | <1       | <1       | <20                                 |  |
| Styrene,                                                              | <del>-</del>                                   | <b>&lt;</b> 1 | 58            | 140      | 14       | 170                                 |  |
|                                                                       | ethene, ug/L<br>fluoromethane, ug/L            | <1            | <1            | <1       | <1       | <20                                 |  |
|                                                                       |                                                | <1            | 7             | <1       | 450      | <20                                 |  |
| Toluene,                                                              | roethene, ug/L                                 | 3             | 330           | 190      | 40       | 670                                 |  |
|                                                                       |                                                | <1            | <1            | <1       | <1       | <20                                 |  |
|                                                                       | tate, ug/L                                     | <1            | 100           | 14       | 41       | 220                                 |  |
| Vinyl chloride, ug/L<br>Total Xylène Isomers, ug/L                    |                                                | <1            | 2             | 2        | 99       | <20                                 |  |
|                                                                       |                                                | 2             | 320           | 130      | 120      | 2900                                |  |
| <pre>cis-1,2-Dichloroethene, ug/L cis-1,3-Dichloropropene, ug/L</pre> |                                                | <1            | <1            | <1       | <1       | <20                                 |  |
|                                                                       | !-Dichloroethene, ug/L                         |               | <1            | <1       | <1       | <20                                 |  |



LOG NO: E90-09-139

Received: 07 SEP 90 Reported: 20 SEP 90

Ms. Donna Courington Brown and Caldwell 3480 Buskirk Avenue Pleasant Hill, California 94523

Project: 5081-02

### REPORT OF ANALYTICAL RESULTS

Page 3

| LOG NO                                                   | SAMPLE DESCRIPTION, O                                         | ROUND WATE | R SAMPLES |          | DA'                | TE SAMPLED                                                    |
|----------------------------------------------------------|---------------------------------------------------------------|------------|-----------|----------|--------------------|---------------------------------------------------------------|
| 09-139-1<br>09-139-2<br>09-139-3<br>09-139-4<br>09-139-5 | B-1<br>W-1<br>W-3<br>W-4<br>W-5                               |            |           |          |                    | 07 SEP 90<br>06 SEP 90<br>07 SEP 90<br>07 SEP 90<br>06 SEP 90 |
| PARAMETER                                                |                                                               | 09-139-1   | 09-139-2  | 09-139-3 | 09-139-4           | 09-139-5                                                      |
| trans-1,3-                                               | Dichloropropene, ug/L                                         | <1         | <1        | <1       | <1                 | <20                                                           |
| C5H1002 E<br>C6H120 Ke<br>C6-Hydroc                      | ified Results ** ster, ug/L tone, ug/L arbon, ug/L ster, ug/L |            | 10        |          | 200<br>20<br><br>7 |                                                               |
|                                                          | tone, ug/L<br>yl Ether, ug/L<br>ol, ug/L                      |            |           | 5<br>    | 1000               | 100                                                           |
| N-Butylet                                                | her, ug/L<br>ethane, ug/L                                     |            |           |          | 20<br>500          |                                                               |

\*\* Quantification based upon comparison of total ion count of the compound with that of the nearest internal standard.

LOG NO: E90-09-139

Received: 07 SEP 90 Reported: 20 SEP 90

Ms. Donna Courington
Brown and Caldwell
3480 Buskirk Avenue
Pleasant Hill, California 94523

Project: 5081-02

### REPORT OF ANALYTICAL RESULTS

Page 4

| LOG NO                   | SAMPLE DESCRIPTION, GROUND | WATER SAMPLES |                | DA'      | TE SAMPLED   |
|--------------------------|----------------------------|---------------|----------------|----------|--------------|
| 09-139-6                 | W-6                        |               |                |          | 06 SEP 90    |
| 09-139-7                 | W-7                        |               |                |          | 06 SEP 90    |
|                          | W-8                        |               |                |          | 06 SEP 90    |
| 09-139-9                 | W-9                        |               |                |          | 07 SEP 90    |
| PARAMETER                |                            | 09-139-6      | 09-139-7       | 09-139-8 | 09-139-9     |
| Purgeable                | Priority Pollutants        |               |                |          |              |
| Date Analy               |                            | 09.13.90      | 09.13.90       |          | 09.13.90     |
| Date Extr                |                            | 09.13.90      | 09.13.90       | _        |              |
| Dilution                 | Factor, Times              | 5             | 5              | 1        | 1            |
| 1,1,1-Tri                | chloroethane, ug/L         | <5            | <b>&lt;</b> 5  | <1       | 5            |
| 1,1,2,2-T                | etrachloroethane, ug/L     | <b>&lt;</b> 5 | <b>&lt;</b> 5  | <1       | <1           |
| 1,1,2-Tri                | chloroethane, ug/L         | <b>≺</b> 5    | <b>&lt;</b> 5  | <1       | <1           |
| 1,1-Dichloroethane, ug/L |                            | <5            | <5             | <1       | 1            |
| 1,1-Dichloroethene, ug/L |                            | <5            | <b>&lt;</b> 5  | <1       | 4            |
|                          | oroethane, ug/L            | <5            | <b>&lt;</b> 5  | <1       | <1           |
| 1,2-Dichl                | orobenzene, ug/L           | <b>&lt;</b> 5 | <5             | <1       | <1           |
|                          | oropropane, ug/L           | <5            | <5             | <1       | <1           |
|                          | orobenzene, ug/L           | <5            | <5             | <1       | <1           |
|                          | orobenzene, ug/L           | <5            | <5             | <1       | <1           |
|                          | thylvinylether, ug/L       | <5            | <5             | <1       | <1           |
| 2-Hexanon                | e, ug/L                    | <5            | <5             | 4100     | <1           |
| 4-Methyl-                | 2-Pentanone, ug/L          | <b>&lt;</b> 5 | <b>&lt;</b> 5  | <1       | <1           |
| Acetone,                 | ug/L                       | 74            | <50            | 330000   | <10          |
| Acrolein,                |                            | <50           | <50            | <10      | <10          |
| •                        | rile, ug/Ľ                 | <50           | <b>&lt;</b> 50 | <10      | <10          |
|                          | loromethane, ug/L          | <b>&lt;</b> 5 | <5             | <1       | <1<br><1     |
|                          | ane, ug/L                  | <b>&lt;</b> 5 | <5             | <1       | <b>&lt;1</b> |
| Benzene,                 |                            | <5            | <5             | <1       | <1<br><1     |
| Bromoform                | <del>-</del>               | <5            | <5             | <1       |              |

LOG NO: E90-09-139

Received: 07 SEP 90 Reported: 20 SEP 90

Ms. Donna Courington
Brown and Caldwell
3480 Buskirk Avenue
Pleasant Hill, California 94523

Project: 5081-02

### REPORT OF ANALYTICAL RESULTS

Page 5

| LOG NO                                                                                                                                                                                                                                                              | SAMPLE DESCRIPTION, GROUND                                                                                                                                             | WATER SAMPLES |                                                                                                                         | DA                                       | TE SAMPLED                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------|
| 09-139-8                                                                                                                                                                                                                                                            | W-6<br>W-7<br>W-8<br>W-9                                                                                                                                               |               |                                                                                                                         |                                          | 06 SEP 90<br>06 SEP 90<br>06 SEP 90<br>07 SEP 90 |
| PARAMETER                                                                                                                                                                                                                                                           |                                                                                                                                                                        | 09-139-6      | 09-139-7                                                                                                                | 09-139-8                                 | 09-139-9                                         |
| Chlorobenze Carbon Tet: Chloroethar Chloroform Chloromethar Chloromethar Carbon Dis Dibromochl Ethylbenze Freon 113, Methyl eth Methylene Styrene, u Trichloroe Trichlorof Toluene, u Tetrachlor Vinyl acet Vinyl chlor Total Xyle cis-1,2-Di cis-1,3-Di trans-1,2- | rachloride, ug/L ne, ug/L , ug/L ane, ug/L ulfide, ug/L oromethane, ug/L ne, ug/L ug/L yl ketone, ug/L chloride, ug/L g/L thene, ug/L luoromethane, ug/L oethene, ug/L |               | \$5<br>\$5<br>\$5<br>\$5<br>\$5<br>\$5<br>\$5<br>\$100<br>\$20<br>\$5<br>\$70<br>\$5<br>\$5<br>\$5<br>\$5<br>\$5<br>\$5 | <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <         |

LOG NO: E90-09-139

Received: 07 SEP 90 Reported: 20 SEP 90

Ms. Donna Courington
Brown and Caldwell
3480 Buskirk Avenue
Pleasant Hill, California 94523

Project: 5081-02

# REPORT OF ANALYTICAL RESULTS ESCRIPTION, GROUND WATER SAMPLES

Page 6

| LOG NO                                       | SAMPLE DESCRIPTION,                         | GROUND WATER | SAMPLES  |          | DAT            | TE SAMPLED                                       |
|----------------------------------------------|---------------------------------------------|--------------|----------|----------|----------------|--------------------------------------------------|
| 09-139-6<br>09-139-7<br>09-139-8<br>09-139-9 | W-6<br>W-7<br>W-8<br>W-9                    |              | <u>-</u> |          |                | 06 SEP 90<br>06 SEP 90<br>06 SEP 90<br>07 SEP 90 |
| PARAMETER                                    |                                             |              | 09-139-6 | 09-139-7 | 09-139-8       | 09-139-9                                         |
| C9H18O, u<br>Methyleth                       | ified Results ** g/L anol, ug/L thane, ug/L |              |          | <br>     | 8<br>90<br>500 |                                                  |

\*\* Quantification based upon comparison of total ion count of the compound with that of the nearest internal standard.

This report has been revised to correct the omission of the detected acetone from sample 9009139-8. HJF 10.05.90

Sim D. Lessley, Ph/D., Laboratory Director