MAR 1 2 2003

GETTLER-RYAN INC.

Environmental Health

February 21, 2003 G-R #386498

TO:

Mr. Robert Foss

Cambria Environmental Technology, Inc.

2680 Bishop Drive, Suite 290

San Ramon, CA 94583

CC: Ms. Karen Streich

Chevron Products Company

P.O. Box 6004

San Ramon, California 94583

FROM:

Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568 **RE:** Chevron #206127

(Former Signal Oil Marine Terminal)

2301-2337 Blanding Avenue

Alameda, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1	February 21, 2003	Groundwater Monitoring and Sampling Report First Quarter - Event of January 14, 2003

COMMENTS:

This report is being sent for your review. Please provide any comments/changes and propose any groundwater monitoring modifications for the next event prior to *March* 7, 2003, at which time the final report will be distributed to the following:

cc: Ms. Eva Chu, Alameda County Health Care Services, Dept. of Environmental Health, 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502-6577

Enclosures

MAR 1 2 2003

Environmental Health February 21, 2003

G-R Job #386498

Ms. Karen Streich Chevron Products Company P.O. Box 6004 San Ramon, CA 94583

RE: First Quarter Event of January 14, 2003

Groundwater Monitoring & Sampling Report Chevron #206127 (Former Signal Oil Marine Terminal) 2301-2337 Blanding Avenue Alameda, California

Dear Ms. Streich:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater level was measured and the well was checked for the presence of separate-phase hydrocarbons. Static water level data, groundwater elevation, and separate-phase hydrocarbon thickness (if any) are presented in the attached Table 1. A Groundwater Elevation Map is included as Figure 1.

Groundwater samples were collected from the monitoring well and submitted to a state certified laboratory for analyses. The field data sheet for this event is attached. Analytical results are presented in the table(s) listed below. The chain of custody document and laboratory analytical report are also attached.

Please call if you have any questions or comments regarding this report. Thank you.

Sincerely,

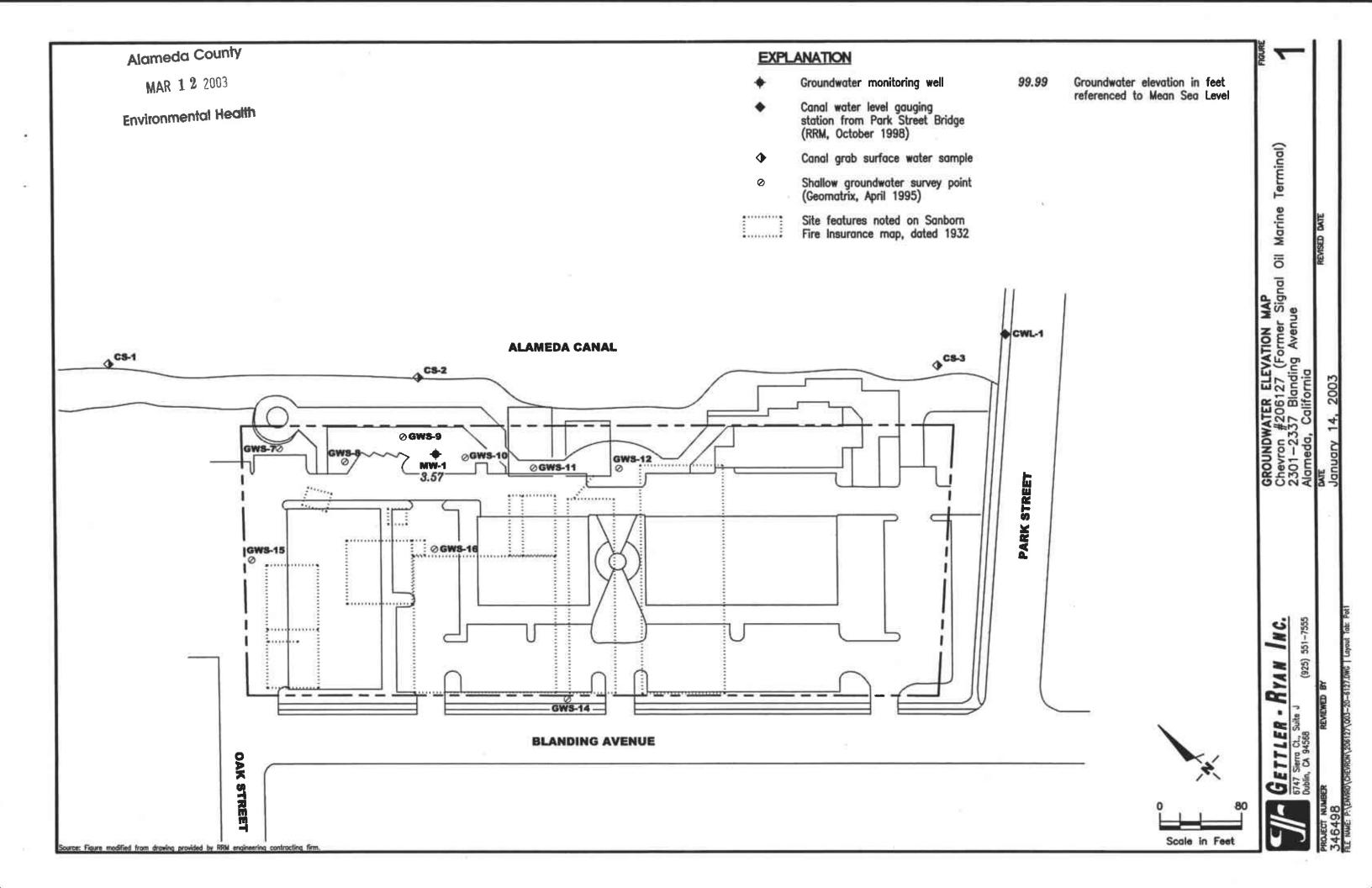
Deanna L. Harding Project Coordinator

-Foe -

Robert C. Mallory

Registered Geologist No. 7285

Groundwater Elevation Map Figure 1:


Groundwater Monitoring Data and Analytical Results Table 1:

Standard Operating Procedure - Groundwater Sampling Attachments:

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

OF CALI

Alameda County

MAR 1 2 2003

Table 1 Groundwater Monitoring Data and Analytical Results Chevron #206127 (Former Signal Oil Marine Terminal)

2301-2337 Blanding Avenue Alameda, California

Environmental Health

WELL ID/	DATE	DTW	GWE	TPH-D	TPH-G	В	T	E	Х	MTBE
TOC*(fi.)	<i></i>	(fl.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
					ď			.eo.o	-50 B	<250
MW-1	01/23/011	7.16		1,100 ^{2,3}	5,210 ⁴	868	<50.0	<50.0	<50.0	<100
10.62	04/09/01	8.12	2.50	1,2006	3,000 ⁵	920	<20	<20	<20	<25
	07/30/01	9.15	1.47	550 ^{3,8}	2,000 ⁷	730	13	<5.0	<5.0	
	10/08/01	7.86	2.76	2,200 ⁹	1,200	120	2.4	5.9	6.4	<2.5
	01/13/02	7.02	3.60	$3,300^3$	930	320	0.78	0.87	3.8	<2.5
	04/08/02	9.60	1.02	1,200 ³	960	50	1.4	2.6	9.0	<2.5
	07/31/02	9.27	1.35	$2,800^3$	930	64	1.4	1.9	11	<5.0
	10/15/02	8.00	2.62	1,000 ³	620	25	0.78	1.4	4.3	<2.5
	01/14/03	7.05	3.57	960 ³	1,600	20	1.3	1.3	<1.5	<2.5
				4.035	.50	<0.50	<0.50	<0.50	<0.50	<2.5
CS-2	07/30/01			140 ^{3,5}	<50		<0.50	<0.50	<1.5	<2.5
	10/08/01			53 ⁹	<50	<0.50		<0.50	<1.5	<2.5
	01/13/02			<50 ³	<50	<0.50	<0.50	<0.50	<1.5	<2.5
	04/08/02			773	<50	<0.50	<0.50		<1.5	<2.5
	07/31/02		_	<50 ³	<50	<0.50	<0.50	<0.50		<2.5
	10/15/02			<50 ³	<50	<0.50	<0.50	<0.50	<1.5	<2.5
	01/14/03	-		<50 ³	<50	<0.50	<0.50	<0.50	<1.5	~4.5
Trip Blank										م
TB-LB	01/23/01				<50.0	< 0.500	<0.500	<0.500	<0.500	<2.50
	04/09/01				<50	< 0.50	<0.50	<0.50	<0.50	<2.5
	07/30/01	<u>.</u>			<50	<0.50	< 0.50	<0.50	<0.50	<2.5
QA	10/08/01				<50	<0.50	< 0.50	<0.50	<1.5	<2.5
•	01/13/02				<50	<0.50	< 0.50	<0.50	<1.5	<2.5
	04/08/02				<50	<0.50	< 0.50	<0.50	<1.5	<2.5
	07/31/02				<50	<0.50	< 0.50	< 0.50	<1.5	<2.5
	10/15/02				<50	< 0.50	<0.50	<0.50	<1.5	<2.5
	01/14/03		_		<50	<0.50	< 0.50	< 0.50	<1.5	<2.5

Alameda County

Table 1 Groundwater Monitoring Data and Analytical Results

MAR 1 2 2003

Chevron #206127 (Former Signal Oil Marine Terminal)

2301-2337 Blanding Avenue Alameda, California

Environmental Health

TPH-G = Total Petroleum Hydrocarbons as Gasoline

(ppb) = Parts per billion

(ft.) = Feet

B = Benzene

-- = Not Measured/Not Analyzed

DTW = Depth to Water

TOC = Top of Casing

EXPLANATIONS:

T = Toluene

CS-2 = Creek Sample

GWE = Groundwater Elevation

E = Ethylbenzene

QA = Quality Assurance/Trip Blank

(msl) = Mean sea level

X = Xylenes

TPH-D = Total Petroleum Hydrocarbons as Diesel

MTBE = Methyl tertiary butyl ether

TOC elevations were surveyed on January 25, 2001, by Virgil Chavez Land Surveying. The benchmark used for the survey was a City of Alameda benchmark being a cut square at the centerline return, south corner of Oak and Blanding, (Benchmark Elevation = 8.236 feet, NGVD 29).

- Well development performed.
- Laboratory report indicates unidentified hydrocarbons <C16. 2
- TPH-D with silica gel cleanup.
- Laboratory report indicates weathered gasoline C6-C12.
- Laboratory report indicates discrete peaks.
- Laboratory report indicates diesel C9-C24 + unidentified hydrocarbons <C16.
- Laboratory report indicates gasoline C6-C12.
- Laboratory report indicates unidentified hydrocarbons C9-C24.
- Analysis performed without silica gel cleanup although was requested on the Chain of Custody.

MAR 1 2 2003

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Environmental Health

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Products Company, the purge water and decontamination water generated during sampling activities is transported by IWM to McKittrick Waste Management located in McKittrick. California.

Add/Replaced Lock: _____

Alameda County

MAR 1 2 2003

WELL MONITORING/SAMPLING

	LIE	LD DATA SI	1661		onmeniai He alt h
evronTexaco	#20 <u>6127</u>	7J	ob Number: 38	6498	
01-2337 Bland	ling Ave	nue E	vent Date:	1.14.03	(inclu
			Sampler:	FT	
۱ - د	W	ell Condition: _	OK		
1 in.		Volume	3/4"= 0.02 1	"= 0.04 2"= 0.17	3"= 0.38
7.40 ft.		I		= 1.02 6"= 1.50	12"= 5.80
7.05 ft.		<u> </u>			e 10
10.35 xVF	-113-	_= <u>1:15</u>	x3 (case volume) = Est		
	S	line Equipment:			
/	·	-			
		-		Depth to Water:	
				Hydrocarbon Thickr	
		•		Visual Confirmation	/Description:
	·		,	Skimmer / Absorba	nt Sock (circle one)
			1	Amt Removed from	Skimmer:9
				Product Transferre	0 to:
gpm. NØ	Sedime	e:	Volume:		ORP
Volume	pН	(umhos/cm)	_	(mail)	
		(Dimioscin)	© F)	(mg/L)	(mV)
(gal.)	1.13	57.5	16.7	(mg/c)	(mV)
(gal.)	1.13 7.14	57.5	16.7	(mgc)	(mV)
(gal.) 1.5 3.0	1.13 7.14	57.5	16.7	(1191)	(mV)
(gal.) 1.5 3.0	1.13 7.14	57.5	16.7	(1191)	(mV)
(gal.) 1.5 3.0	1.13 7.14	57.5	16.7	(1191)	(mV)
(gal.) 1.5 3.0	1.13 2.14 2.14	57.5 60.3 66.2	16.7 17.0 17.3	(IIIg/L)	(mV)
(gal.) 1.5 3.0 5.0	1.13 7.14 7.14	57.5	16.7 17.0 17.3 FORMATION		ANALYSES
(gal.) 1.5 3.0 5.0 (#) CONTAINER	1.13 2.14 2.14	57.5 C0.3 C6.2 BORATORY IN	16.7 17.0 17.3 FORMATION E LABORATORY LANCASTER	/ ТРН-G(8015)ВТ	
(gal.) 1.5 3.0 5.0	LA REFRIG.	57.5 CO.3 CG.2 BORATORY IN	16.7 17.0 17.3 FORMATION		ANALYSES
(gal.) 1.5 3.0 5.0 (#) CONTAINER 3 x voa vial	LA REFRIG. YES	57.5 60.3 66.2 BORATORY IN PRESERV. TYP	16.7 17.0 17.3 FORMATION E LABORATORY LANCASTER	/ ТРН-G(8015)ВТ	ANALYSES
(gal.) 1.5 3.0 5.0 (#) CONTAINER 3 x voa vial	LA REFRIG. YES	57.5 60.3 66.2 BORATORY IN PRESERV. TYP	16.7 17.0 17.3 FORMATION E LABORATORY LANCASTER	/ ТРН-G(8015)ВТ	ANALYSES
(gal.) 1.5 3.0 5.0 (#) CONTAINER 3 x voa vial	LA REFRIG. YES	57.5 60.3 66.2 BORATORY IN PRESERV. TYP	16.7 17.0 17.3 FORMATION E LABORATORY LANCASTER	/ ТРН-G(8015)ВТ	ANALYSES
(gal.) 1.5 3.0 5.0 (#) CONTAINER 3 x voa vial	LA REFRIG. YES	57.5 60.3 66.2 BORATORY IN PRESERV. TYP	16.7 17.0 17.3 FORMATION E LABORATORY LANCASTER	/ ТРН-G(8015)ВТ	ANALYSES
	01-2337 Bland ameda, CA 3 - \ 2" in. 7.40 ft. 7.05 ft. 10.35 xVF	O1-2337 Blanding Average ameda, CA U 1 in. 1.40 ft. 1.05 ft. Very Press Discr Othe Sedime No If yes, Tim	O1-2337 Blanding Avenue ameda, CA Well Condition: Volume Factor (VF) Sampling Equipment: Disposable Bailer Pressure Bailer Discrete Bailer Other: Other: Volume Factor (VF) Sampling Equipment: Disposable Bailer Pressure Bailer Discrete Bailer Other: Other: Yourne Volume Conductivity	O1-2337 Blanding Avenue ameda, CA Well Condition: Volume 3/4"= 0.02 1 Factor (VF) 4"= 0.66 5" Sampling Equipment: Disposable Bailer Pressure Bailer Discrete Bailer Other: Weather Conditions: Graduativity Weather Conductivity Temperature Volume: Conductivity Temperature	### Pressure Bailer Other: Sampling Equipment: Disposable Bailer Other: Skimmer / Absorba Amt Removed from Product Transferre Pressure Bailer Other: Skimmer / Absorba Amt Removed from Product Transferre Pressure Discrete Bailer Other: Skimmer / Absorba Amt Removed from Product Transferre Pressure Discrete Bailer Other: Skimmer / Absorba Amt Removed from Product Transferre Pressure Discrete Bailer Other: Skimmer / Absorba Amt Removed from Product Transferre Pressure Discrete Bailer Pressure Bailer Press

Add/Replaced Lock:

GETTLER-RYAN INC.

WELL MONITORING/SAMPLING **FIELD DATA SHEET**

ite Address: ChevronTexaco #206127 2301-2337 Blanding Avenue		27	Event Date:	386498	1.14.03				
		 	anig Av		•	1.	_ (inclus		
City:	Alamed	la, CA			Sampler:		_		
Well ID	Cs -		۷	Vell Condition:	"Cn	1212	SAM	olc'	_
Well Diameter Total Depth Depth to Water	<u> </u>	ft.		Volume Factor (VF	3/4"= 0.02) 4"= 0.66	1"= 0.04 5"= 1.02	2"= 0.17 6"= 1.50	3"= 0.38 12"= 5.80	
 	4	xv	F	= <u></u>	x3 (case volume) =	Estimated P	urge Volume:	ge	ıl,
Purge Equipment: Disposable Bailer			Disp	npling Equipment		Time Ba Depth to	Product:		2400 hrs) (2400 hrs)
Stainless Steel Baild Stack Pump Suction Pump Grundfos	er	\neq	Disc	ssure Bailer crete Bailer er:		Hydroca Visual C	Confirmation/D	ss: escription:	
Other:						Amt Rei Amt Rei	moved from S	Sock (circle on kimmer: Vell: to:	gal
						—		1	
Start Time (pure	ne):		Weat	her Conditions:					
Start Time (pure Sample Time/D		26 / 1.11		her Conditions: Water Color	-	FDL In	Odor:	NO.	_
Sample Time/D)ate: 8:		1.03	Water Color	CLER	n.	Odor:	_N0	-
	Pate: 8: 2	gpm.	4.03 Sedim		CLER)rt		NO	- - -
Sample Time/D Purging Flow R	Pate: 8: 2 Rate: ter?	gpm.	4.03 Sedim	Water Color ent Description	CLER	98 C		ORP (mV)	- - - -
Sample Time/D Purging Flow R Did well de-wat	Pate: 8: 2 Rate: ter?	gpm.	1.03 Sedimo f yes, Tim	Water Color ent Description ne: Conductivity	Volume:	98 C	al. 0.0.	ORP	— — — — — — — — — — — — —
Sample Time/D Purging Flow R Did well de-wat	Pate: 8: 2 Rate: ter?	gpm.	1.03 Sedimo f yes, Tim	Water Color ent Description ne: Conductivity	Volume:	98 C	al. 0.0.	ORP	
Sample Time/D Purging Flow R Did well de-wat	Pate: 8: 2 Rate: ter?	gpm.	Sedime f yes, Tim	Water Color ent Description ne: Conductivity	Volume:	98 C	al. 0.0.	ORP	
Sample Time/D Purging Flow R Did well de-wat Time (2400 hr.)	Pate: 8: 7 Rate: void (9	gpm.	Sedime f yes, Tim	Water Color ent Description ne: Conductivity (u mhos/cm)	Volume: Temperature (C/F)	ge (n	al. D.O. ng/L)	ORP (mV)	
Sample Time/D Purging Flow R Did well de-wat Time (2400 hr.)	Pate: 8: 7 Rate: void (9	gpm.	Sedimont of yes, Time pH	Water Color ent Description ne: Conductivity (u mhos/cm)	Volume: Temperature (C/F)	ge (n	ANA	ORP (mV)	
Sample Time/D Purging Flow R Did well de-wat Time (2400 hr.)	Pate: 8: 7 Rate: void (9	gpm. lume pal.) NTAINER x voa vial	Sedimore f yes, Time pH LA REFRIG.	Water Color ent Description ne: Conductivity (u mhos/cm) BORATORY INI PRESERV. TYPE	Volume: Temperature (C/F) FORMATION LABORATOR LANCASTER	ge (n	ANA	ORP (mV)	
Sample Time/D Purging Flow R Did well de-wat Time (2400 hr.)	Pate: 8: 7 Rate: void (9	gpm. lume pal.) NTAINER x voa vial	Sedimore f yes, Time pH LA REFRIG.	Water Color ent Description ne: Conductivity (u mhos/cm) BORATORY INI PRESERV. TYPE	Volume: Temperature (C/F) FORMATION LABORATOR LANCASTER	ge (n	ANA	ORP (mV)	
Sample Time/D Purging Flow R Did well de-wat Time (2400 hr.)	(#) CO	gpm. lume pal.) NTAINER x voa vial	Sedimore f yes, Time pH LA REFRIG.	Water Color ent Description ne: Conductivity (u mhos/cm) BORATORY INI PRESERV. TYPE	Volume: Temperature (C/F) FORMATION LABORATOR LANCASTER	ge (n	ANA	ORP (mV)	

Chevron California Region Analysis Request/Chain of Custody

4 Lancaster La	aboratories	MAR 12				A	cct. #:	1	09 9 9 (24		F ampk	or L e #:_	ancast 39	er La 7 <i>9</i>	iboral	orles	use - 5	only	SCR#:		
Where quality is a sci	ence. Env	vironment	Health) (一))	<u>ر</u>			Ø£	W 1,	// <u>/</u> ///	3_	,	\nal	yses i	lequ	este	<u>ر ک</u>	(0)	8 1			
20612		36498 Glob		<u> </u>	_	Matri	ix						Pres	ervati	on C	odes	<u>. </u>		_	4	rvative Code	
Facility #:	·			^^	ı	•			IF	1		_		\vdash	+	+	╂	╁╾		H = HCI N = HNO ₃	T = Thios B = NaOl	
Site Address: 2301	-2337 BLANDING			 -	_	τ		ļ			Cleanup							1		S = H ₂ SO ₄	O = Othe	<u> </u>
Chevron PM: KS	Lead (Consultant: D	elta/G-R		1	<u>ο</u> 0	,	E S	100	1	<u>2</u>						-				orting needed	
Consultant/Office: G-R,	Inc., 6747 Sierra	Court, Dub	lin, Ca 94	1568		Potable NPDES		Containers	151 14		<u>ii</u>					Ì				Must meet	lowest detection 8260 compo	on limits unds
Consultant Prj. Mgr. Dear	nna L. Harding	(Deann	a@grinc.	com)	1		3		□ 8021 8		S)									8021 MTBE		
Consultant Phone #925-	551-7555	_ Fax #: <u>92</u>	<u> 5-551-78</u>	99			7	Total Number of	8260	GRO	TPH 8015 MOD DRO 22 Silica Gel		88	7421							ghest hit by 82	60 .
Sampler:F	RANK TERRIN	<u>iuor</u>					□ ¥	Ĕ	BTEX + MTBE 8260	§	QQ	5	Oxygenates	Lead 7420 🖂			1	1			i hits by 8260	
Service Order #:		on SAR:		Grab		ā	ľ	ž	¥ †	TPH 8015 MOD	8015	8260 full scan	ð	7420							oxy s on highe	
		Date Collected	Time Collected	Grab	S	Water	oil 🗆	ğ		표	王	9828		E E				<u> </u>	↓_	<u> </u>	oxy s on all hit	<u> </u>
Sample Identification	QA	1.14.03	Ooneoloa		十	W		2	X	X							.	- ↓	<u> </u>	Comments	/ Remarks	
		1							L,	ļ. <u>.</u>	ļ.,	<u> </u>	<u> </u>	$\bot \bot$	-		-	┼-	╀	-{		
	CS- 2		0826	X	_	$oxed{\bot}$	-	5		X	X		\vdash	 	+	-	╁	┼-	╀╌	1		
	MW -1	4	0900	K^{\perp}	╀	.▼	+	5	X	<u> </u>	X	├	├	╁┼	+	-	╂┈	+-	╁╌	1		
		<u> </u>		\vdash	╁	╁	╁	-	 	+-		┼		 	\dashv	- -	1	†	十	1		
	<u> </u>			+-+	╁	╁	╅╸	T	┞	一	\vdash	1]		
		 		╁┼	十		1				T.						_		╀.	_		
	·····								L		L	$oldsymbol{\perp}$	<u> </u>	\bot	_	_ -	-	-	-	_		
						1	<u> </u>		╄	<u> </u>	igspace	} _	↓ —	1-1	-			┥—	+-	4		
					+	4—	+	 	╁	1	╁	+	\vdash	┼┼		+	+		+	-		
		} ——	<u> </u>	+	╫	+	+	+	╁	╁╌	╁	+-	╁	+ 1	+	+		1	1-	1		
		<u> </u>	Relingi	uishe rt b		<u>.</u>					Τ	Date	•]	Time	R	ecgiv	d by	: //		\wedge	Date	Time
Turnaround Time Requ	ested (TAT) (please circ	ele)	L a	<u>. لات</u>	Ī,	مولا		<u></u>			4			1625		<u> </u>	<u> </u>	64	ध्य	1'may		1625 Time
	72 hour 48 hour 4 day 5 day	7	Relini	uished	y: `` ^		,				1	Date	13	Time 1433	⇃▝	leceiv	T 'S		ን ብ	ne	H563	
24 hour	4 day 5 day			uished b		<u> </u>	32	2	7		7	Date		Time		Receiv					Date	Time
Data Package Options (_											.,		_					-
	oe I — Fuil Coelt Deliverable not need	bet		uished b				orrier: Other	\ 1	Ωĩ	<i>y</i> 2	つ <i>(</i> づ	n	<u> </u>	F	Receiv	éd þy	10	 ماسار	y Y Kla	Date	Time 3/30
WIP (RWQCB)			UPS	rature U	pon F		-		/	C°	<u>" (</u>	<u>اسالي</u>	<i>g_</i> •		-	Custod	y Sea	<u>* / -</u>			No 1/0/23	, <u>, , , , , , , , , , , , , , , , , , </u>
Disk										-												7/20/04

ANALYTICAL RESULTS

Prepared for:

JAN 3 0 2003

MIL line is will

ChevronTexaco 6001 Bollinger Canyon Rd L4319 FTTL EK-KYAN INC

San Ramon

CA 94583-0904 CA 94583

925-842-8582

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 838081. Samples arrived at the laboratory on Thursday, January 16, 2003. The PO# for this group is 99011184 and the release number is STREICH.

Client Description

QA-T-030114 CS-2-W-030114 MW-1-W-030114 NA Water Grab Water Grab Water Lancaster Labs Number 3979156

3979157 3979158

1 COPY TO

Delta Env. C/O Gettler-Ryan

Attn: Deanna L. Harding

Questions? Contact your Client Services Representative Teresa L Cunningham at (717) 656-2300.

Respectfully Submitted,

Steven A. Skiles Sr.Chemist

Alameda County

MAR 1 2 2983

Environmental Health

Page 1 of 1

3979156 Lancaster Laboratories Sample No.

Collected:01/14/2003 00:00

Account Number: 10905

Submitted: 01/16/2003 09:30

ChevronTexaco

Reported: 01/28/2003 at 11:57

6001 Bollinger Canyon Rd L4310

Discard: 02/28/2003

QA-T-030114

Water

San Ramon

CA 94583-0904 CA 94583

Facility# 206127 Job# 386498

GRD

2301-2337 Blanding-Alamed NA

NΑ

				As Received		Dilution
CAT			As Received	Method Detection	Units	Factor
No.	Analysis Name	CAS Number	Result	Limit	Onics	FACLOI
01729	TPH-GRO - Waters					
01730	TPH-GRO - Waters	n.a.	N.D.	50.	ug/l	1
08214	The reported concentration of TI gasoline constituents eluting prostart time. Site-specific MS/MSD samples were was performed to demonstrate problem. BTEX, MTBE (8021)	rior to the C6 re not submitte	n-hexane) TFH-0 ed for the proje	GRO range		
00214	DIM, MIDS (0021)					
00776	Benzene	71-43-2	N.D.	0.50	ug/l	1
00777	Toluene	108-88-3	N.D.	0.50	ug/l	1
00778	Ethylbenzene	100-41-4	N.D.	0.50	ug/l	1
00779	Total Xylenes	1330-20-7	N.D.	1.5	ug/l	1
00780	Methyl tert-Butyl Ether	1634-04-4	N.D.	2.5	ug/l	1
	A site-specific MSD sample was was performed to demonstrate pr	not submitted ecision and ac	for the project. curacy at a bato	A LCS/LCSD h level.		,

State of California Lab Certification No. 2116

CAT		Laboratory	Chro	nicle Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01729	TPH-GRO - Waters	N. CA LUFT Gasoline Method	1	01/17/2003 16:51	K. Robert Caulfeild- James	
08214	BTEX, MTBE (8021)	SW-846 8021B	1	01/17/2003 16:51	K. Robert Caulfeild- James	1
01146	GC VOA Water Prep	SW-846 5030B	1	01/17/2003 16:51	K. Robert Caulfeild- James	n.a.

Lancaster, PA 17605-2425

Page 1 of 2

Lancaster Laboratories Sample No. WW 3979157

Collected: 01/14/2003 08:26 by FT Account Number: 10905

Submitted: 01/16/2003 09:30 ChevronTexaco

Reported: 01/28/2003 at 11:57 6001 Bollinger Canyon Rd L4310

Discard: 02/28/2003

CS-2-W-030114 Grab Water San Ramon CA 94583-0904 CA 94583

Facility# 206127 Job# 386498 GRD

2301-2337 Blanding-Alamed

CS-2-

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
02202	TPH-DRO CALUFT(Water) w/Si Gel	n.a.	N.D.	50.	ug/l	1
	According to the California LUFT Range Organics was performed by to that of our #2 fuel oil refer hydrocarbons). Site-specific MS/MSD samples wer	peak area compence standard e not submitte	earison of the sam (between C10 and d for the project	ple pattern C28 normal . A LCS/LCSD		
	was performed to demonstrate pre	cision and acc	curacy at a batch	level.		
01729	TPH-GRO - Waters					
01730	TPH-GRO - Waters	n.a.	N.D.	50.	ug/l	1
	The reported concentration of Tr gasoline constituents eluting pr start time. A site-specific MSD sample was r was performed to demonstrate pre	rior to the C6	n-hexane) TPH-GN) for the project. I	RO range A LCS/LCSD		
08214	BTEX, MTBE (8021)					
00776	Benzene	71-43-2	N.D.	0.50	ug/l	1
00777	Toluene	108-88-3	N.D.	0.50	ug/l	1
00778	Ethylbenzene	100-41-4	N.D.	0.50	ug/l	1
00779	Total Xylenes	1330-20-7	N.D.	1.5	ug/l	1
00780	Methyl tert-Butyl Ether	1634-04-4	N.D.	2.5	ug/l	1
	A site-specific MSD sample was was performed to demonstrate pr					

State of California Lab Certification No. 2116

		Laboratory	Chro:	nicle		
CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Pactor
02202	TPH-DRO CALUFT(Water) w/Si	CALUFT-DRO/8015B, Modified	1	01/21/2003 14:28	Tracy A Cole	1
01729	Gel TPH-GRO - Waters	N. CA LUFT Gasoline Method	1	01/17/2003 08:45	Martha L Seidel	1
08214	BTEX, MTBE (8021)	SW-846 8021B	1	01/17/2003 08:45	Martha L Seidel	1
01146	GC VOA Water Prep	SW-846 5030B	1	01/17/2003 08:45	Martha L Seidel	n.a.
07003	Extraction - DRO (Waters)	CALUFT-DRO/8015B, Modified	1	01/20/2003 10:30	Aubri L Peters	1

#=Laboratory MethodDetection Limit exceeded target detection limit
N.D.=Not detected at or above 11 New Holland Pike

MEMBER

DO Boy 19425

PO Box 12425 Lancaster, PA 17605-2425

Alameda County

MAR 1 2 2003

Environmental Health

Page 2 of 2

Lancaster Laboratories Sample No. WW 3979157

Collected:01/14/2003 08:26

ከህ ጀጥ

Account Number: 10905

Submitted: 01/16/2003 09:30

Reported: 01/28/2003 at 11:57

Discard: 02/28/2003

CS-2-W-030114

Grab

Water

ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon

CA 94583-0904 CA 94583

Facility# 206127 Job# 386498 2301-2337 Blanding-Alamed

GRD

CS-2-

PO Box 12425 Lancaster, PA 17605-2425

Page 1 of 2

3979158 Lancaster Laboratories Sample No.

Account Number: 10905 Collected:01/14/2003 09:00

Submitted: 01/16/2003 09:30

Reported: 01/28/2003 at 11:57

Discard: 02/28/2003

MW-1-W-030114 Grab

Water

ChevronTexaco

San Ramon

6001 Bollinger Canyon Rd L4310

As Received

CA 94583-0904 CA 94583

Dilution

Factor

1

1

1

1

n.a.

GRD Facility# 206127 Job# 386498

2301-2337 Blanding-Alamed

ALA-1

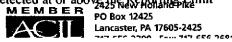
CAT

No.

02202

Analysis Name

CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
02202	TPH-DRO CALUFT(Water) w/Si Gel	n.a.	960.	50.	ug/l	1
	According to the California LUFT Range Organics was performed by to that of our #2 fuel oil refer hydrocarbons). Site-specific MS/MSD samples wer was performed to demonstrate pre-	peak area comp ence standard e not submitte	earison of the sam (between C10 and d for the project	ple pattern C28 normal A LCS/LCSD		
01729	TPH-GRO - Waters					
01730	TPH-GRO - Waters	n.a.	1,600.	50.	ug/l	1
	The reported concentration of TI gasoline constituents eluting prostart time. A site-specific MSD sample was reasonable was performed to demonstrate pro-	rior to the C6 not submitted :	(n·hexane) TPH-Gi for the project.	RO range A LCS/LCSD		
08214	BTEX, MTBE (8021)					
00776	Benzene	71-43-2	20.	0.50	ug/l	1
00777	Toluene	108-88-3	1.3	0.50	ug/l	1
00778	Ethylbenzene	100-41-4	1.3	0.50	ug/l	1
00779	Total Xylenes	1330-20-7	N.D.	1.5	ug/l	1
00780	Methyl tert-Butyl Ether	1634-04-4	N.D.	2.5	ug/l	1
	A site-specific MSD sample was was performed to demonstrate pr					•


State of California Lab Certification No. 2116

		Analysis	
Method	Trial#	Date and Time	Analyst
CALUFT-DRO/8015B, Modified	1	01/21/2003 14:51	Tracy A Cole

TPH-DRO CALUFT (Water) w/Si Martha L Seidel 01729 TPH-GRO - Waters N. CA LUFT Gasoline 01/17/2003 10:22 Method Martha L Seidel 01/17/2003 10:22 08214 BTEX, MTBE (8021) SW-846 8021B 1 01/17/2003 10:22 Martha L Seidel SW-846 5030B 1 01146 GC VOA Water Prep Aubri L Peters CALUFT-DRO/8015B, 01/20/2003 10:30 07003 Extraction - DRO (Waters) Modified

Laboratory Chronicle

#=Laboratory MethodDetection Limit exceeded target detection limit N.D.=Not detected at or above 1910 in the Honard Pike Monard Pike

Alameda County

MAR 1 2 2003

Environmental Health

Page 2 of 2

Lancaster Laboratories Sample No. 3979158

Collected:01/14/2003 09:00

by FT

Account Number: 10905

Submitted: 01/16/2003 09:30

Reported: 01/28/2003 at 11:57

Discard: 02/28/2003

MW-1-W-030114

Grab

Water

ChevronTexaco

6001 Bollinger Canyon Rd L4310

San Ramon

GRD

CA 94583-0904 CA 94583

Facility# 206127 Job# 386498 2301-2337 Blanding-Alamed

ALA-1

#=Laboratory MethodDetection Limit exceeded target detection limit N.D.=Not detected at or above the Reporting Sinfit MEMBER PO Box 12425

Lancaster, PA 17605-2425

Page 1 of 2

Quality Control Summary

Client Name: ChevronTexaco

Group Number: 838081

Reported: 01/28/03 at 11:57 AM

Laboratory Compliance Quality Control

Analysis Name	Blank Resu <u>lt</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD Limits	RPD	RPD Max
				70150				
Batch number: 03016A51A			3979157-39	13120	105	80-118	2	30
Benzene	N.D.	. 2	ug/l	107		82-119	2	30
Toluene	N.D.	. 2	ug/l	103	101		2	30
Ethylbenzene	N.D.	.2	ug/l	101	99	81-119		30
Total Xylenes	N.D.	,6 .3	ug/l	103	102	82-120	1	
Methyl tert-Butyl Ether	N.D.	.3	ug/l	103	98	79-127	4	30
TPH-GRO - Waters	N.D.	50.	ug/l	111	112	74-116	1	30
Batch number: 03017A53A	Sample nu	mber(s):	3979156					
Benzene	N.D.	. 2	ug/l	94	111	80-118	17	30
Toluene	N.D.	.2	uq/1	101	113	82-119	11	30
Ethylbenzene	N.D.	.2	ug/l	93	108	81-119	15	30
Total Xylenes	N.D.	.6	ug/l	93	107	82-120	14	30
	N.D.	.3	ug/l	97	106	79-127	9	30
Methyl tert-Butyl Ether TPH-GRO - Waters	N.D.	50.	ug/l	105	100	74-116	5	30
Batch number: 030180004A	Sample nu	umber(s):	3979157-3	979158			_	. 20
TPH-DRO CALUFT(Water) w/Si Gel	N.D.	50.	ug/l	80	85	54-120	6	20

Sample Matrix Quality Control

	MS	MSD	MS/MSD		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	<u>RPD</u>	<u>max</u>	Conc	Conc	RPD	<u>Max</u>
Batch number: 03016A51A Benzene Toluene Ethylbenzene Total Xylenes Methyl tert-Butyl Ether TPH-GRO - Waters	Sample 120 114 111 113 106 113	number	(s): 397915 83-130 87-129 86-133 86-132 66-140 74-132	7-39 79 1	58				
Batch number: 03017A53A Benzene Toluene Ethylbenzene Total Xylenes Methyl tert-Butyl Ether	Sample 105 112 105 106 95	number	(s): 397915 83-130 87-129 86-133 86-132 66-140	6					

Surrogate Quality Control

Analysis Name: BTEX, MTBE (8021)

Batch number: 03016A51A

Trifluorotoluene-F Trifluorotoluene-P

3979157	95	90
3979158	118	101
Blank	96	92
LCS	100	93

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

Alameda County

MAR 1 2 2003

Environmental Health $^{\text{Page 2 of 2}}$

Quality Control Summary

71-130

'Client Name: ChevronTexaco

Group Number: 838081

Reported: 01/28/03 at 11:57 AM

Surrogate Quality Control

92 99 LCSD 93 104 MS

57-146 Analysis Name: BTEX, MTBE (8021)

Batch number: 03017A53A

Limits:

Trifluorotoluene-P Trifluorotoluene-F

3979156 99 100 109 Blank 101 105 LCS 99 LCSD 101 98 MS

71-130 57-146 Limits:

Analysis Name: TPH-DRO CALUFT(Water) w/Si Gel Batch number: 030180004A

Orthoterphenyl

3979157 91 3979158 92 97 Blank LCS LCSD 97

59-139 Limits:

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The background result was more than four times the spike added.

