

SL 2461 BC -2474

April 26, 2004

Mr. Barney Chan Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, 2nd Floor Alameda, California 94502 Alameda County

APR 2 \$ 2004

Environmental Health

Subject:

Annual Groundwater Monitoring Report Former Seabreeze Yacht Center, Oakland

Dear Mr. Chan:

Please find enclosed for your review the Annual Groundwater Monitoring Report, dated April 5, 2004 for the former Seabreeze Yacht Center, 280 Sixth Avenue, Oakland.

If you have any questions concerning the enclosed document, please contact me at 510-627-1184.

Sincerely,

Douglas P/Herman

Associate Port Environmental Scientist

Cc w/encl:

Betty Graham, RWQCB

Michele Heffes, Port (2 copies)

Diane Heinze, Port

Cc w/o encl.

Barbara Szudy, CRE

Mary Esper, URS

C:\win\mydocs\projects\seabreeze\annual GW monitoring report April 2004



April 5, 2004

Alameda County
APR 2 8 2004

Environmental Health

Mr. Douglas Herman Port of Oakland Environmental Health and Safety Compliance Department 530 Water Street Oakland, CA 94607

Re:

Annual Groundwater Monitoring Report

March 2004

Former Seabreeze Yacht Center, Inc. Site

280 6th Avenue, Oakland, CA

Dear Mr. Herman:

This report documents the groundwater sampling activities performed in March 2004 at the former Seabreeze Yacht Center, Inc. (site) located at 280 6<sup>th</sup> Avenue in Oakland, California (see Figure 1). Annual groundwater monitoring has been conducted during the first quarter of each year since 1998. Groundwater samples were collected quarterly prior to 1998. Monitoring well MW-SB2 was abandoned in December, 2002.

Groundwater samples are analyzed for total petroleum hydrocarbons as diesel (TPH-d) with silica gel cleanup. From 2000 to 2002, the groundwater samples were also analyzed for Methyl Tert-Butyl Ether (MTBE). MTBE was not detected in any well, so in January 2003, the Port requested approval from the Alameda County Health Care Service Agency, Department of Environmental Health (County) to cease testing for MTBE. The County verbally approved deleting MTBE from the analytical parameters for all monitoring wells at the Site.

### FIELD ACTIVITIES

On March 5, 2004, water levels were measured to the nearest 0.01 foot in each well using a Solinst electrical well sounder. The well sounder was decontaminated between each measurement by cleaning with an Alconox® solution and rinsing with deionized water. Wells MW-SB3 and MW-SB4 were purged and sampled on March 5, 2004. Well MW-SB5 was not accessible with a vehicle containing groundwater purge and sampling equipment on March 5, so with the Port's permission, URS sampled this well on March 23, 2004.

Water quality parameters (pH, conductivity, temperature, oxidation reduction potential, and dissolved oxygen) were measured and recorded on standard forms while each well was being purged. Low-flow (minimal drawdown) techniques (EPA, 1995) were used for purging and sampling the wells. Purging continued until the physical parameters of pH, specific conductivity, temperature, and turbidity stabilized. A copy of the field data sheets are included in Attachment A. Sampling was performed from the middle of the screened interval for each well. Purging and sampling equipment were thoroughly cleaned between sampling each well. Purge water was stored in buckets and discharged into the sump at the TOFC site at the Port. For quality assurance and quality control (QA/QC) purposes, one set of duplicate samples was collected from well MW-SB4 and submitted for chemical analyses.

URS Corporation 1333 Broadway, Suite 800 Oakland, CA 94612-1924 Tel: 510.893.3600 Fax: 510.874.3268

Mr. Douglas Herman April 5, 2004 Page 2 of 2

URS coordinated the transfer of water samples and the required analyses with Curtis and Tompkins, Ltd., located in Berkeley, CA. The laboratory is contracted directly to the Port. The Chain of Custody document is provided in Attachment A.

### **QUALITY ASSURANCE**

Analytical results were subjected to a quality assurance evaluation that included review of holding times. method blanks, laboratory control spikes and duplicates, surrogates, and field duplicates. Field duplicate results were in agreement and suggest that the matrix is homogeneous. All quality control elements were within control limits and the analytical results are acceptable for project use.

### ANALYTICAL RESULTS

The current and historical analytical results are summarized in Table 1 and the laboratory report is included in Attachment B. TPH-d was detected in groundwater sample collected from monitoring well MW-SB5 at a concentration of 0.13 mg/L. The hydrocarbon detected in MW-SB5 did not match the diesel standard and was therefore flagged with a "Y".

### GROUNDWATER FLOW DIRECTION

Recently collected and historical groundwater data are summarized in Table 2. The groundwater elevation data collected in March 5, 2004 were used to develop a groundwater elevation contours (Figure 2). Groundwater flow direction is approximately toward the southeast at a gradient of 0.007 ft/ft.

We appreciate the opportunity to work with you on this project. Please contact either Francesca at 510-874-3224 or Mary at 874-3119 if you have any questions or comments.

Sincerely,

URS CORPORATION

hancesca Mosfige

Francesca Motta

Project Geologist

Mary Esper, P.E.

May / Esser

Project Manager

Attachments:

Table 1

Groundwater Analytical Data

Table 2

Groundwater Elevations

Figure 1

Site Location

Figure 2

Monitoring Well Locations and Groundwater Flow Direction, March 2004

Appendix A

Well Purging Data Sheet

Appendix B Laboratory Report

### Table 1 Groundwater Analytical Results Former Seabreeze Yacht Center, Oakland, CA

|            |                        | Metals     | $(mg/L)^1$ | Tota                  | l Petroleum H         | ydrocarbons (n         | (mg/L) <sup>2</sup>  |  |  |
|------------|------------------------|------------|------------|-----------------------|-----------------------|------------------------|----------------------|--|--|
| Sample ID  | Sample Date            | Lead       | Copper     | Diesel                | Bunker C              | Motor Oil              | MTBE                 |  |  |
| MW-SB2     | 4/19/91                | < 0.07     | 0.0481     |                       | :                     |                        |                      |  |  |
|            | 7/9/91                 | < 0.068    | <0.029     |                       | ×==                   |                        | -                    |  |  |
|            | 1/10/94                | < 0.108    | <0.029     |                       |                       | -                      |                      |  |  |
|            | 1/26/94                | 0.00489    | <0.0149    | _                     |                       | -                      |                      |  |  |
|            | 3/6/95                 |            |            | 16.0 <sup>4,5</sup>   | 28.0 <sup>4,5</sup>   | 4.9 <sup>4,5</sup>     |                      |  |  |
|            | 7/1/96                 | < 0.003    | 0.055      | < 0.05                | < 0.3                 |                        |                      |  |  |
|            | 9/16/10                | < 0.003 11 | < 0.005 12 | < 0.05                | <0.5                  | <0.25                  |                      |  |  |
|            | 12/11/96               | 0.0085511  | 0.0035412  | 0.16 <sup>14</sup>    | <0.5                  | <0.25                  |                      |  |  |
|            | 3/14/97                | 0.0031411  | < 0.003 12 | 0.061                 | <0.5                  | < 0.25                 |                      |  |  |
|            | 6/20/97                |            |            | 0.15                  |                       |                        | <u>==</u>            |  |  |
|            | 1/28/98                |            |            | < 0.05 <sup>16</sup>  |                       |                        |                      |  |  |
|            | 1/6/99                 |            |            | < 0.048               |                       |                        |                      |  |  |
|            | 02/04/00 <sup>19</sup> |            |            |                       |                       |                        |                      |  |  |
|            | 1/19/01                |            |            | < 0.05                |                       |                        | < 0.005              |  |  |
|            | 1/24/02                |            |            | < 0.05                |                       |                        | < 0.005              |  |  |
|            | 2/4/03                 |            |            |                       | ed (December 2        |                        |                      |  |  |
| MW-SB2A    | 3/6/95                 |            |            | 18.0 <sup>4,5,6</sup> | 33.0 <sup>4,5,6</sup> | <25.0 <sup>4,5,6</sup> |                      |  |  |
| (MW-SB2    | 7/1/96                 | < 0.003    | 0.065      | 0.17 <sup>7</sup>     | <0.35                 |                        |                      |  |  |
| duplicate) | 9/16/96                | < 0.003 11 | < 0.005 12 | 0.17                  | <0.35                 | < 0.25                 |                      |  |  |
| MW-SB3     | 3/6/95                 |            |            | 2.3 <sup>4,5</sup>    | 5.8 <sup>4,5</sup>    | 1.5 <sup>4,5</sup>     |                      |  |  |
|            | 7/1/96                 | 0.0036     | < 0.01     | < 0.049               | <0.3                  |                        | 9 <del>-10-1</del> 0 |  |  |
|            | 9/16/96                | < 0.003 11 | < 0.005 12 | < 0.054               | <0.5                  | 0.284                  |                      |  |  |
|            | 12/11/96               | < 0.003 11 | < 0.003 12 | 0.19 <sup>14</sup>    | <0.5                  | < 0.25                 |                      |  |  |
|            | 3/14/97                | < 0.003 11 | 0.0052912  | 0.08515               | <0.5                  | <0.25                  |                      |  |  |
|            | 6/20/97                |            |            | 0.15                  |                       |                        |                      |  |  |
|            | 1/28/98                |            |            | < 0.05 <sup>16</sup>  | :==                   |                        |                      |  |  |
|            | 1/6/99                 |            | -          | < 0.049 17            |                       |                        |                      |  |  |
|            | 2/4/00                 |            |            | < 0.05                |                       |                        | < 0.002              |  |  |
|            | 1/19/01                |            |            | < 0.05                |                       |                        | < 0.005              |  |  |
|            | 1/24/02                | -          |            | < 0.05                |                       |                        | < 0.005              |  |  |
|            | 2/4/03                 |            | -          | 0.077 <sup>b</sup>    | -                     |                        |                      |  |  |
|            | 3/5/04                 | 0.1949     | -          | < 0.05                |                       |                        |                      |  |  |
| MW-SB3A    | 6/20/97                |            |            | 0.11                  |                       |                        |                      |  |  |
| (MW-SB3    | 1/28/98                |            |            | < 0.05 <sup>16</sup>  |                       |                        |                      |  |  |
| duplicate) | 1/6/99                 |            |            | 0.13 <sup>7,18</sup>  | j <b></b>             |                        |                      |  |  |
|            | 2/4/00                 |            |            | < 0.05                |                       |                        | < 0.002              |  |  |

Table 1 Groundwater Analytical Results Former Seabreeze Yacht Center, Oakland, CA

|                     |             | Metals         | $(mg/L)^1$            | Tota                  | ıl Petroleum H      | ydrocarbons (m | ıg/L)²          |
|---------------------|-------------|----------------|-----------------------|-----------------------|---------------------|----------------|-----------------|
| Sample ID           | Sample Date | Lead           | Copper                | Diesel                | Bunker C            | Motor Oil      | MTBE            |
| MW-SB4              | 3/3/95      |                |                       | 1.4 <sup>4, 5</sup>   | 3.04                | 0.664          |                 |
|                     | 7/1/96      | 0.014          | 0.013                 | < 0.049               | <0.3                |                |                 |
|                     | 9/16/96     | < 0.003 11     | < 0.005 12            | < 0.05                | <0.5                | < 0.25         |                 |
|                     | 12/11/96    | 0.0046511      | 0.00674 <sup>12</sup> | 0.12 <sup>14</sup>    | <0.5                | <0.25          | _               |
|                     | 3/14/97     | $0.00519^{11}$ | < 0.003 12            | < 0.05                | <0.5                | <0.25          | _               |
|                     | 6/20/97     |                |                       | 0.11                  |                     |                | _               |
|                     | 1/28/98     |                |                       | < 0.05 <sup>16</sup>  |                     |                |                 |
|                     | 1/6/99      |                |                       | < 0.049               |                     |                | _               |
|                     | 2/4/00      |                |                       | < 0.05                |                     |                | < 0.002         |
|                     | 1/19/01     |                |                       | < 0.05                |                     |                | < 0.005         |
|                     | 1/24/02     |                |                       | < 0.05                |                     |                | < 0.005         |
|                     | 2/4/03      |                |                       | < 0.05                |                     |                |                 |
|                     | 3/5/04      |                |                       | < 0.05                |                     |                |                 |
| MW-SB4<br>duplicate | 3/5/04      |                |                       | < 0.05                |                     |                |                 |
| MW-SB5              | 3/6/95      |                |                       | 15.0 <sup>4,5</sup>   | 34.0 <sup>4,5</sup> | 8.14,5         |                 |
| 11111 000           | 7/1/96      | 0.0031         | 0.012                 | < 0.049               | <0.3                |                |                 |
|                     | 9/16/96     | < 0.003 11     | < 0.005 12            | 0.14 <sup>4,13</sup>  | <0.5                | <0.25          |                 |
|                     | 12/11/96    | < 0.00344 11   | <0.003 <sup>12</sup>  | 0.16 <sup>14</sup>    | <0.5                | <0.25          |                 |
|                     | 3/14/97     | < 0.003 11     | 0.00318 <sup>12</sup> | 0.29                  | <0.5                | <0.25          |                 |
|                     | 6/20/97     |                |                       | 0.27                  |                     |                |                 |
|                     | 1/28/98     |                |                       | < 0.0516              |                     |                |                 |
|                     | 1/6/99      |                |                       | < 0.05                |                     |                |                 |
|                     | 2/4/00      |                |                       | < 0.05                |                     |                | < 0.002         |
|                     | 1/19/01     |                | <del></del>           | < 0.05                |                     |                | < 0.005         |
|                     | 1/24/02     |                |                       | < 0.05                |                     |                | < 0.005         |
|                     | 2/4/03      |                |                       | < 0.05                |                     |                |                 |
|                     | 3/23/04     |                |                       | 0.13                  |                     |                |                 |
| MW-SB5A             | 3/6/95      |                |                       | 15.0 <sup>4,5,6</sup> | 31.04,5,6           | 6.94,5,6       |                 |
| (MW-SB5             | 12/11/96    | < 0.003 11     | < 0.003 12            | 0.08114               | <0.5                | <0.25          |                 |
| duplicate)          | 3/14/97     | < 0.003 11     | < 0.003 12            | 0.22                  | < 0.5               | <0.25          | <del>-</del> -> |
|                     | 1/24/02     |                |                       | < 0.05                |                     |                | < 0.005         |

# Table 1 Groundwater Analytical Results Former Seabreeze Yacht Center, Oakland, CA

#### Notes:

< 0.05 = analyte not identified above the given laboratory reporting limit

- -- = not analyzed
- b. Diesel range compounds are significant, no recognizable pattern
- 1. Analytical Method EPA 6010A, unless otherwise noted.
- Analytical Method California DOHS, LUFT Manual (EPA 8015M).
   Samples were subjected to silica gel cleanup (EPA Method 3630) prior to analysis, unless otherwise noted.
- 3. Analytical Method EPA 8020 or 8021B.
- 4. Sample chromatogram does not resemble hydrocarbon standard.
- 5. Samples were not subjected to silica gel cleanup prior to analysis.
- 6. Duplicate sample centrifuged prior to TEPH analyses.
- 7. Sample exhibited fuel pattern which did not resemble standard.
- 8. Analyzed using EPA Method 7420.
- 9. Analyzed using EPA Method 7210.
- 10. Sample also analyzed for mercury, arsenic, cadmium, chromium, iron, nickel, silver, and zinc. All metals were reported below the corresponding laboratory reporting limits except for iron, which was identified at 0.13 mg/L.
- 11. Analyzed using EPA method 7421. Sample filtered by the laboratory prior to analysis.
- 12. Analyzed using EPA Method 7211. Sample filtered by the laboratory prior to analysis.
- 13. Laboratory indicated that miscellaneous peaks were present in the diesel range.
- 14. The laboratory indicated that the analyte was also found in the corresponding method blank at a concentration of 0.063 mg/L as well as in the sample, verifying laboratory contamination. The sample chromatographic pattern matched that of the laboratory contaminant reported in the method blank. Therefore, the reported concentration is a false positive concentration.
- 15. The laboratory indicated that the chromatographic pattern of the sample matches a known laboratory contaminant. Based on telephone correspondence with Mr. Ron Chu of PACE, the laboratory contaminant may be due to contamination of the silica gel used to clean up the sample prior to analysis.
- 16. The corresponding method blank sample (laboratory sample) contained 0.067 mg/L of a hydrocarbon reported to be heavier than diesel. The laboratory indicated that the method blank sample result should not affect the data quality since the collected samples did not contain diesel above the laboratory reporting limit.
- 17. The corresponding duplicate sample, MW-SB3A, was reported to contain diesel above the laboratory reporting limit.
- 18. The laboratory indicated that the sample chromatogram contained heavier hydrocarbons than the diesel standard.

Table 2 Groundwater Elevations Former Seabreeze Yacht Center, Oakland, CA

| Well                | Date     | Time  | Surface<br>Elevation<br>(msl) | TOC Elevation     | Depth to<br>Groundwater (feet) | Groundwater<br>Elevation (msl) |
|---------------------|----------|-------|-------------------------------|-------------------|--------------------------------|--------------------------------|
| MW-SB2 <sup>3</sup> | 4/19/91  | 11:09 | 6.2                           | 7.18              | 5.38                           | 1.8                            |
| I'' ODZ             | 7/9/91   | 11:04 | 0.2                           | 7.10              | 3.7                            | 3.48                           |
| *                   | 1/10/94  | 12:31 |                               |                   | 3.08                           | 4.1                            |
|                     | 1/26/94  | 13:40 |                               |                   | 1.63                           | 5.5                            |
|                     | 11/14/94 | 7:30  |                               |                   | 4.8                            | 2.38                           |
|                     | 11/14/94 | 11:05 |                               |                   | 4.76                           | 2.42                           |
|                     | 11/14/94 | 14:14 |                               |                   | 4.73                           | 2.45                           |
|                     | 11/28/94 | 9:00  |                               |                   | 2.85                           | 4.33                           |
|                     | 3/3/95   | 8:50  |                               |                   | 2.84                           | 4.34                           |
|                     | 6/28/96  | 7:40  |                               |                   | 3.76                           | 3.42                           |
|                     | 9/16/96  | 9:01  |                               |                   | 4.3                            | 2.88                           |
|                     | 12/11/96 | 11:15 |                               |                   | 2                              | 5.18                           |
|                     | 3/12/97  | 9:02  |                               |                   | 3.48                           | 3.7                            |
| l t                 | 6/18/97  | 9:10  |                               |                   | 3.94                           | 3.24                           |
| l t                 | 1/26/98  | 10:02 |                               |                   | 1.65                           | 5.53                           |
|                     | 1/4/99   | 8:11  |                               |                   | 3.3                            | 3.88 <sup>5</sup>              |
|                     | 2/1/00   | 10:20 |                               |                   | 6                              | 6                              |
|                     | 1/17/01  | 9:20  |                               | 8.93 <sup>7</sup> | 3.91                           | 5.02                           |
|                     | 1/22/02  | 9:30  |                               |                   | 4.67                           | 4.26                           |
|                     |          |       | Well Al                       | oandoned in Janua | ry 2003                        |                                |
| MW-SB3 <sup>3</sup> | 11/14/94 | 7:25  | 6.0                           | 8.10              | 8.23                           | -0.13                          |
|                     | 11/14/94 | 11:00 | 15                            |                   | 8.14                           | -0.04                          |
| [                   | 11/14/94 | 14:12 |                               |                   | 8.07                           | 0.03                           |
| [                   | 11/28/94 | 8:53  |                               |                   | 6.32                           | 1.78                           |
|                     | 12/6/94  | 8:37  |                               |                   | 6.15                           | 1.95                           |
| [                   | 3/3/95   | 8:40  |                               |                   | 6.78                           | 1.32                           |
|                     | 6/28/96  | 7:35  |                               |                   | 5.46                           | 2.64                           |
|                     | 9/16/96  | 8:55  |                               |                   | 5.78                           | 2.32                           |
| [                   | 12/11/96 | 10:32 |                               |                   | 5.31                           | 2.79                           |
| [                   | 3/12/97  | 9:05  |                               |                   | 6.03                           | 2.07                           |
|                     | 6/18/97  | 9:12  |                               |                   | 5.5                            | 2.6                            |
| [                   | 1/26/98  | 9:20  |                               |                   | 5.12                           | 2.98                           |
|                     | 1/4/99   | 8:20  |                               |                   | 5.97                           | 2.13                           |
| [                   | 2/1/00   | 9:50  |                               |                   | 5.81                           | 2.29                           |
| [                   | 1/17/01  | 9:15  |                               |                   | 6.04                           | 2.06                           |
|                     | 1/22/02  | 9:00  |                               |                   | 5.33                           | 2.77                           |
|                     | 2/3/03   | 13:12 |                               |                   | 5.3                            | 2.80                           |
|                     | 3/5/04   | 9:57  |                               |                   | 4.64                           | 3.46                           |

Table 2 Groundwater Elevations Former Seabreeze Yacht Center, Oakland, CA

| Well                | Date     | Time  | Surface<br>Elevation<br>(msl) | TOC Elevation (msl) | Depth to<br>Groundwater (feet) | Groundwater<br>Elevation (msl) |
|---------------------|----------|-------|-------------------------------|---------------------|--------------------------------|--------------------------------|
| MW-SB4 <sup>4</sup> | 11/28/94 | 9:02  | 6.6                           | 6.39                | 1.05                           | 5.34                           |
|                     | 3/3/95   | 8:35  |                               |                     | 0.9                            | 5.49                           |
|                     | 6/28/96  | 8:28  |                               |                     | 3.16                           | 3.23                           |
|                     | 9/16/96  | 8:52  |                               |                     | 2.85                           | 3.54                           |
|                     | 12/11/96 | 9:28  |                               |                     | 0.65                           | 5.74                           |
|                     | 3/12/97  | 9:07  |                               |                     | 2.53                           | 3.86                           |
|                     | 6/18/97  | 9:25  |                               |                     | 3.1                            | 3.29                           |
|                     | 1/26/98  | 10:30 |                               |                     | 0.88                           | 5.51                           |
|                     | 1/4/99   | 8:26  |                               |                     | 2.55                           | 3.84                           |
|                     | 2/1/00   | 10:43 |                               |                     | 0.61                           | 5.78                           |
|                     | 1/17/01  | 9:01  |                               |                     | 1.7                            | 4.69                           |
|                     | 1/22/02  | 10:00 |                               |                     | 3.17                           | 3.22                           |
|                     | 2/3/03   | 11:30 |                               |                     | 3.4                            | 2.99                           |
|                     | 3/5/04   | 9:55  |                               |                     | 3.9                            | 2.49                           |
| MW-SB5 <sup>4</sup> | 11/28/94 | 8:40  | 6.9                           | 6.30                | 6.32                           | -0.02                          |
|                     | 3/3/95   | 9:00  |                               |                     | 2.54                           | 3.76                           |
|                     | 6/28/96  | 8:45  |                               |                     | 2.43                           | 3.87                           |
|                     | 9/16/96  | 10:15 |                               |                     | 2.52                           | 3.78                           |
|                     | 12/11/96 | 14:12 |                               |                     | 3.09                           | 3.21                           |
|                     | 3/12/97  | 9:11  |                               |                     | 2.42                           | 3.88                           |
|                     | 6/18/97  | 8:56  |                               |                     | 2.32                           | 3.98                           |
|                     | 1/26/98  | 14:10 |                               |                     | 1.42                           | 4.88                           |
|                     | 1/5/99   | 12:20 |                               |                     | 3.5                            | 2.8                            |
|                     | 2/1/00   | 12:27 |                               |                     | 3.91                           | 2.39                           |
|                     | 1/17/01  | 7:54  |                               |                     | 4.21                           | 2.09                           |
|                     | 1/22/02  | 11:05 |                               |                     | 4.1                            | 2.2                            |
|                     | 2/3/03   | 15:40 |                               |                     | 4.95                           | 1.35                           |
|                     | 3/5/04   | 15:40 |                               |                     | 3.68                           | 2.62                           |

### Table 2

## Groundwater Elevations Former Seabreeze Yacht Center, Oakland, CA

#### Notes:

11/14/94: High tide 9:21; Low tide 15:50. 11/28/94: High tide 7:46.

02/15/95: High tide 5:14 and 18:03; Low tide 23:34. 03/03/95: High tide 13:14; Low tide 7:03.

06/28/96: High tide 11:41 and 22:32; Low tide 4:35 & 09/16/96: High tide 2:57 & 14:57; Low tide 8:23 & 21:07.

12/11/96: High tide 1:02 & 11:47; Low tide 5:35 & 18:30.

03/12/97: High tide 2:17 & 15:02; Low tide 8:23 & 20 06/18/97: High tide 12:18 & 23:07; Low tide 5:15 & 16:49.

01/26/98: High tide 10:10; Low tide 4:00 & 16:57.

01/04/99: High tide 2:21 & 13:06; Low tide 7:13 & 19 01/05/99: High tide 3:07 & 13:54; Low tide 8:09 & 20:37.

02/01/00: High tide 9:01 & 23:19; Low tide 3:03 & 16:08.

01/17/01: High tide 6:38 & 19:47; Low tide 13:25. 01/22/02: High tide 6:16 & 19:58; Low tide 13:25.

02/3/03: High tide 2:05 & 12:59; Low tide 7:07 & 19:35.

### -- = No data

msl = feet above mean sea level

TOC = top of casing

- 1. Well survey conducted by Bates & Bailey 2/8/95.
- 2. Groundwater elevation measured by SOMA; all other elevations measured by BASELINE.
- 3. Well survey conducted by Bates & Bailey 11/18/94.
- 4. Well survey conducted by Bates & Bailey 11/28/94.
- 5. During groundwater sampling activities on 1/4/99, the aboveground well head protection steel outer casing and inner polyvinyl chloride casing of this monitoring well appeared to have been damaged (outer and inner casings were in a slightly slanted position); therefore, groundwater elevation measurements may be skewed.
- 6. During groundwater sampling activities on 1 February 2000, monitoring well MW-SB2 was not found.
- 7. New top of casing elevation establishing in April 2000 after the well was repaired; the well survey is included in Attachment A of the January 2001 annual groundwater monitoring report.

# Former Seabreeze Yacht Center Oakland, CA



**FIGURE 1** Site Location

Source: Baseline Environmental

# MONITORING WELL LOCATIONS AND GROUNDWATER FLOW DIRECTION, MARCH 2004



Seabreeze Yacht Center Sixth Avenue Oakland, California



2

# ATTACHMENT A WELL PURGING DATA SHEET

|                               | lo: 26814551                                                                                                     | Task No: 0                    | 0001                     |             |                                         | Project Name:                                           | Port of Oak | and           |  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|-------------|-----------------------------------------|---------------------------------------------------------|-------------|---------------|--|
|                               | ation: Oakland, CA                                                                                               |                               | Sa                       | mplers:     | F. Motta- J. Paik                       |                                                         |             |               |  |
| Well ID:                      | Well ID: MW-SB3 Date: 3/5/4                                                                                      |                               |                          |             |                                         |                                                         |             |               |  |
| Depth to                      | Depth to Water (DTW)(ft): 4,64 9:57 DTW After Purge (ft): 子. 69 1/:02                                            |                               |                          |             |                                         |                                                         |             |               |  |
| Well Diar                     | Well Diameter (inch): 2 I Measurements Referenced to: TOC                                                        |                               |                          |             |                                         |                                                         |             |               |  |
| Purging ( ) ( ) ( ) ( ) ( X ) | Low-Flow/Micro Purge at least 3 we Equipment:Bailer Disposable Bailer Electric Submergib Peristaltic Pump Other: | ell volumes Samplin ole Pump  | ( )<br>( ) Dis<br>(X) De |             | r (<br>ailer (<br>bing (                | of Water Qualit ) Orion ) YSI 6000 X ) YSI 556 ) Other: |             |               |  |
| Time                          | Temperature                                                                                                      | Conductivity                  | DO                       | ьЦ          | ORP                                     | Turkiduk                                                | Calan       | Other         |  |
| 20                            | (°C)                                                                                                             | 1 -                           |                          | pΗ          |                                         | Turbiduty                                               | Color       | Other         |  |
| (24 hrs)                      | (0)                                                                                                              | (uS/cm)                       | (mg/l)                   | (units)     | (mv)                                    | (NTU's)                                                 |             |               |  |
| 10 45                         | 14.61                                                                                                            | (± 3%)                        | <u>(+ 10%)</u>           | (± 0.1)     | (± 10mV)                                | 4/5                                                     |             |               |  |
| 10 48                         | 14.25                                                                                                            | 3744                          | 0.32                     | 7.99        | -67.1                                   | 567                                                     |             |               |  |
| 10 51                         | 14,16                                                                                                            | 3466                          | 0.24                     | 7.57        | -58.7                                   | 34.5                                                    |             |               |  |
| 10 54                         | 14,21                                                                                                            | 3394                          | 0.44                     | 7.50        | -80.9<br>-80.3                          | 7.5.2                                                   |             |               |  |
| 10 57                         | 14, 43                                                                                                           | 3457                          | 0.15                     | 7.47        | -81.3                                   | 5.58                                                    |             |               |  |
| 10 0 1                        | 14.45                                                                                                            | 3437                          | 0.15                     | 7.47        | -81,5                                   | 2.30                                                    |             |               |  |
|                               |                                                                                                                  |                               |                          |             |                                         |                                                         |             |               |  |
|                               |                                                                                                                  |                               |                          |             |                                         |                                                         |             |               |  |
|                               |                                                                                                                  |                               |                          |             |                                         |                                                         |             |               |  |
| Gallons F                     | ourged: 2                                                                                                        | Pump Rate in L/r              | min (<0.2                | 25 L/30 sec | :): 0.442                               | min                                                     |             |               |  |
| Sampling                      | Time: 1(:00                                                                                                      |                               |                          |             | Bottles: 1 amb                          | per                                                     |             | 8             |  |
|                               | <b>nalysed For:</b><br>el, <del>motor oil, hydra</del>                                                           | <del>ulic fluid)</del> 8015 M |                          |             |                                         |                                                         |             |               |  |
| Duplicate                     | Sample ID:                                                                                                       | Sampling Time:                |                          |             |                                         |                                                         |             |               |  |
| Duplicate                     | Sample Analysed                                                                                                  | l For:                        |                          |             |                                         |                                                         |             |               |  |
| Notes:                        |                                                                                                                  |                               |                          |             | \$                                      |                                                         |             |               |  |
|                               |                                                                                                                  |                               |                          |             | *************************************** |                                                         |             |               |  |
|                               |                                                                                                                  |                               |                          |             |                                         |                                                         |             |               |  |
|                               |                                                                                                                  |                               |                          |             |                                         |                                                         |             | ************* |  |
|                               |                                                                                                                  |                               |                          |             |                                         |                                                         |             |               |  |
|                               |                                                                                                                  |                               |                          |             |                                         |                                                         |             |               |  |

| Project N     | No: 26814551                             | Task No: 0          | 00001     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project Name:  | Port of Oakl  | and        |
|---------------|------------------------------------------|---------------------|-----------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|------------|
|               | ation: Oakland, CA                       |                     |           | mplers:         | F. Motta- J. Paik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . rojoot nume. | T OIL OI Oaki | anu        |
| Well ID:      | MW-534                                   |                     |           | te: 3/5         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |            |
| Depth to      | Water (DTW)(ft):                         | 3.90 9:50           |           |                 | urge (ft): 8,4/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10:37          |               |            |
| Well Dia      | meter (inch): 2                          | 7. 10               |           | asuremen        | its Referenced to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | : TOC          | 30000         |            |
| - Controlle   |                                          |                     |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |            |
|               | Low-Flow/Micro Pu<br>Purge at least 3 we |                     |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |            |
| Purging       | Equipment:                               | Samplin             | ng Equip  | ment:           | Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of Water Quali | tv Kit Used:  |            |
| ( )           | Bailer                                   |                     | ( )       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) Orion        | ty rate obcu. |            |
| ( )           | Disposable Bailer                        |                     |           | posable B       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) YSI 6000     |               |            |
|               | Electric Submergib                       | le Pump             |           | dicated Tu      | and the same of th | F              |               |            |
|               | Peristaltic Pump                         | no i unip           |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X ) YSI 556    |               |            |
|               | Other:                                   |                     | ( ) Ou    | ner:            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) Other:       |               |            |
| ( )           | Other                                    |                     |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |            |
| Time          | Temperature                              | Conductivity        | DO        | рН              | ORP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Turbiduty      | Color         | Other      |
| (24 hrs)      | (°C)                                     | (uS/cm)             | (mg/l)    | (units)         | (mv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (NTU's)        |               |            |
|               |                                          | (± 3%)              | (± 10%)   | ( <u>+</u> 0.1) | (+ 10mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ()             |               |            |
| 1007          | 15.07                                    | 10380               | 0.37      |                 | -166.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14,5           |               |            |
| 1010          | 14,86                                    | 6522                | 0.35      | 7.14            | -154.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52.3           |               |            |
| 10 13         | 14.51                                    | 5642                | 0.46      | 7.08            | -142.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 500.1          |               |            |
| 10 (6         | 14,60                                    |                     | 1.07      | 7.07            | -139.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.9           |               |            |
| 10 20         | 15.58                                    | 9838                | 3,74      | 7.06            | -151.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.53          |               |            |
| 1023          | 15.71                                    | 9260                | 2.13      | 7.15            | -163.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.74           |               |            |
| 1026          | 16.04                                    | 10173               | 3.02      | 7/13            | -159.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.25           |               |            |
|               |                                          |                     |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |            |
| lo            |                                          |                     |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |            |
| Gallons I     | Purged: 2.5                              | Pump Rate in L/     | min (<0.2 | 25 L/30 sed     | ): 0.48R/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | min            |               |            |
| Sampling      | Time: 10.30                              |                     |           |                 | Bottles: 1 ami                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | per            |               |            |
| Sample A      | analysed For:                            |                     |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |            |
|               | sel, <del>motor oil, hydra</del>         | 1' 0 · 1) 0015 M    |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |            |
| iii ii (dies  | sei, motor on, myarat                    | and naid) ou is ivi |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |            |
| Duplicate     | Sample ID:<br>- SBJ-DUP                  | Sampling Time:      | 10:2      | 50              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |            |
| Dunlicate     | Sample Analysed                          | For TOH             | 1-500-    | ,               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |            |
| Dapnoate      | Cample Analysed                          | 1101. 11 11 = 0     | riche     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |            |
| Notes:        | Sample                                   | to ami'n            | 19        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |            |
| ************* |                                          |                     |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |            |
|               |                                          |                     |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |            |
|               |                                          |                     |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               | ********** |
|               |                                          |                     |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |            |
|               |                                          |                     |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |               |            |

|           | 10:2681455                                                                     |                    |          | 2000 (          |                                        | Project Name: | Post of C                                         | aklaus |
|-----------|--------------------------------------------------------------------------------|--------------------|----------|-----------------|----------------------------------------|---------------|---------------------------------------------------|--------|
|           | ation: Oaklama                                                                 | l, CA              | Sa       | mplers: 🤳       | r. Paik-                               | F. Motta      |                                                   |        |
| Well ID:  | UW-SBS                                                                         |                    | Da       | te: 3/5         | 14                                     |               |                                                   |        |
| Depth to  | Water (DTW)(ft):                                                               | 3.68 11:5          | O DT     | W After P       | urge (ft):                             |               |                                                   |        |
| Well Diar | meter (inch):                                                                  |                    | Me       | easuremen       | ts Reference                           | d to: TOC     |                                                   |        |
| Purging   | Low-Flow/Micro Pu<br>Purge at least 3 we<br>Equipment:Bailer Disposable Bailer | ell volumes<br>Sam | ( )      | Baile           | r (<br>ailer (                         | ) YSI 6000    | ty Kit Used:                                      |        |
| ()        | Dedicated Submer                                                               | gible Pump         | (X) De   | dicated Tu      | bing (                                 | X ) YSI 556   |                                                   |        |
| (X)       | Peristaltic Pump<br>Other:                                                     |                    | ( ) Oth  | ner:            | (                                      | ) Other:      | 4/10045-04-14-14-14-14-14-14-14-14-14-14-14-14-14 |        |
| Time      | Temperature                                                                    | Conductivity       | DO       | рН              | ORP                                    | Turbidity     | Depth to                                          | Other  |
| (24 hrs)  | (°C)                                                                           | (uS/cm)            | (mg/l)   | (units)         | (mv)                                   | (NTU's)       | Water (ft)                                        |        |
|           |                                                                                | (+ 3%)             | (± 10%)  | ( <u>+</u> 0.1) | ( <u>+</u> 10mV)                       | (4.5.5)       | (,                                                |        |
|           |                                                                                |                    | (_ ,,,,, |                 |                                        |               |                                                   |        |
|           |                                                                                |                    |          |                 |                                        |               |                                                   |        |
|           |                                                                                |                    |          |                 |                                        |               |                                                   |        |
|           |                                                                                |                    |          |                 |                                        |               |                                                   |        |
|           |                                                                                |                    |          |                 |                                        |               |                                                   |        |
|           |                                                                                |                    |          |                 |                                        |               |                                                   |        |
|           |                                                                                |                    |          |                 |                                        |               |                                                   |        |
|           |                                                                                |                    |          |                 | ****                                   |               |                                                   |        |
| Gallons I |                                                                                | Pump Rate in       | L/min    | •               | , ==================================== |               |                                                   |        |
| Sampling  | g Time:                                                                        |                    |          |                 | Bottles: イズ                            | amber         |                                                   |        |
| Sample A  | Analysed For:<br>Sivel                                                         |                    |          |                 |                                        |               |                                                   |        |
| Duplicate | e Sample ID:                                                                   | Sampling Tin       | ne:      |                 |                                        |               |                                                   |        |
| Duplicate | e Sample Analysed                                                              | l For:             |          |                 |                                        |               |                                                   |        |
|           | Wells was                                                                      | not a              | uersi    | bu f            | o car                                  | . Well v      | vas mo                                            | +      |
|           | l                                                                              |                    |          |                 |                                        |               |                                                   |        |
|           |                                                                                |                    |          |                 |                                        |               |                                                   |        |

|                           | lo: 26814551                                                                                                     | Task No: 0                     | 0001                     |                                      |                           | Project Name                                                      | : Port of Oakla | and   |
|---------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------|--------------------------------------|---------------------------|-------------------------------------------------------------------|-----------------|-------|
|                           | ation: Oakland, CA                                                                                               |                                | Sa                       | mplers:                              | F. Motta- J. Paik         |                                                                   |                 |       |
| Well ID:                  | MW-SBS                                                                                                           |                                |                          | te: 3/2                              |                           |                                                                   |                 |       |
| Depth to                  | Water (DTW)(ft):                                                                                                 | 3.09 9:3                       | O DT                     | W After P                            | urge (ft): 3 . 94         |                                                                   |                 |       |
| Well Diar                 | meter (inch): 2                                                                                                  |                                | I Me                     | asuremen                             | ts Referenced to:         | TOC                                                               |                 |       |
| Purging ( ) ( ) ( ) ( X ) | Low-Flow/Micro Purge at least 3 we Equipment:Bailer Disposable Bailer Electric Submergit Peristaltic Pump Other: | ell volumes Samplin ole Pump   | ( )<br>( ) Dis<br>(X) De | Baile<br>posable Baile<br>dicated Tu | er (<br>ailer (<br>bing ( | of Water Qual<br>) Orion<br>) YSI 6000<br>X ) YSI 556<br>) Other: |                 |       |
| Time                      | Temperature                                                                                                      | Conductivity                   | DO                       | pН                                   | ORP                       | Turbiduty                                                         | Color           | Other |
|                           | (°C)                                                                                                             |                                | 1921 1901                |                                      | 80 310                    | -                                                                 | 00101           | Other |
| (24 hrs)                  | (0)                                                                                                              | (uS/cm)                        | (mg/l)                   | (units)                              | (mv)                      | (NTU's)                                                           |                 |       |
| 9 35                      | 16.98                                                                                                            | (± 3%)                         | (± 10%)                  | ( <u>+</u> 0.1)                      | (± 10mV)                  | 110                                                               | 1 - 1 - 1       |       |
| 938                       | 16.90                                                                                                            | 28114                          | 1.48                     | 6.87                                 | -166.5                    | 11.0                                                              | yellow          |       |
| 941                       | 16.90                                                                                                            | 26355                          | 0.34                     | 6.71                                 | -170, 9<br>-168, 4        | 3.24                                                              |                 |       |
| 364                       | 17.24                                                                                                            | 25198                          | 0,19                     | 6.80                                 | -161.8                    | 3.19                                                              |                 |       |
| 947                       | 17.32                                                                                                            | 25107                          | 0,15                     | 6.81                                 | -16/18                    | 220                                                               |                 |       |
|                           |                                                                                                                  |                                | 1110                     |                                      |                           |                                                                   |                 |       |
|                           |                                                                                                                  |                                |                          |                                      |                           |                                                                   |                 |       |
|                           |                                                                                                                  |                                |                          |                                      |                           |                                                                   |                 |       |
|                           |                                                                                                                  |                                |                          |                                      |                           |                                                                   |                 |       |
| Sampling                  | Purged: (・5<br>g Time: ・タ・4や<br>Analysed For:                                                                    |                                | min (<0.2                | 25 L/30 sed                          | Bottles: 1 amb            |                                                                   |                 |       |
| TPH (dies                 | sel, m <u>eter sil, hydra</u>                                                                                    | <del>ulio flui</del> d) 8015 M |                          |                                      |                           |                                                                   |                 |       |
| Duplicate                 | Sample ID:                                                                                                       | Sampling Time:                 |                          |                                      |                           |                                                                   |                 | ,     |
| Duplicate                 | Sample Analyse                                                                                                   | d For:                         |                          |                                      |                           |                                                                   |                 |       |
| Notes:                    |                                                                                                                  |                                |                          |                                      |                           |                                                                   |                 |       |
|                           |                                                                                                                  |                                |                          |                                      |                           |                                                                   |                 |       |

### URS

500 12th Street, Suite 200 Oakland, CA 94607-4014 (510) 893-3600

### **Chain of Custody Record**

| PROJE                                   | CT NO.    | Porto     | Daklan      | d                                    |                     |            |            |            | ΛN       | IAL'          | /SE           | S        |          |              |          |                               | 20         |                           |                |       |
|-----------------------------------------|-----------|-----------|-------------|--------------------------------------|---------------------|------------|------------|------------|----------|---------------|---------------|----------|----------|--------------|----------|-------------------------------|------------|---------------------------|----------------|-------|
| SAMPL                                   | ERS: (S   | ignature) |             | (A)ir                                | 1016, M             |            |            |            |          |               |               |          |          |              |          | 100                           | Collian    | REMA<br>(Sam<br>preserv   | ple            |       |
| DATE                                    | TIME      | SAM       | IPLE NUMBER | Sample Matrix (S)oil, (W)ater, (A)ir | EPA Method & OIC, M | EPA Method | EPA Method | EPA Method |          |               |               |          |          |              |          | oriente O se sectorial        | io iaquino | handl<br>procedure        | ing            |       |
|                                         | 1070      | MW-3      | EH          | M                                    | X                   |            |            |            |          |               | $\neg$        |          |          | $\neg$       | $\dashv$ | $\exists \exists$             | $\sqcap$   |                           | ٠.:            |       |
|                                         | 1070      |           | 64-DUP      | M                                    | X                   |            |            |            |          |               | $\neg$        |          |          | $\neg$       | $\dashv$ |                               |            | TEH diese<br>silica gel   | ( WH           | ٨     |
| $\forall$                               | 100       | MIV       |             | N                                    | X                   |            |            |            |          |               | $\neg$        | 1        |          |              | $\dashv$ | $\pm i$                       |            | silica gel                | clear          | ii (P |
|                                         |           |           |             |                                      |                     |            |            |            |          |               | $\neg$        |          |          |              |          | +                             | 1          | V                         |                | 1     |
| *************************************** |           |           |             |                                      |                     |            |            |            |          |               | 7             |          |          |              | 1        | $\top$                        |            |                           |                |       |
|                                         |           |           |             |                                      |                     |            |            |            |          |               |               |          |          |              |          |                               |            |                           |                |       |
|                                         |           |           |             |                                      |                     |            |            |            |          |               |               |          |          |              |          |                               |            |                           |                |       |
|                                         |           |           |             |                                      |                     |            |            |            |          |               |               |          |          |              |          |                               |            |                           |                |       |
|                                         |           |           |             |                                      |                     |            |            |            |          |               |               |          |          |              |          |                               |            |                           |                |       |
|                                         |           |           |             |                                      |                     |            |            |            |          |               |               |          |          |              |          |                               |            |                           |                |       |
|                                         |           |           |             |                                      |                     |            |            |            |          |               | _             |          |          |              | _        |                               |            |                           |                |       |
|                                         |           |           |             |                                      |                     |            |            |            | _        |               | _             | $\perp$  |          | _            |          |                               | _          |                           |                |       |
|                                         |           |           |             |                                      |                     |            |            |            | _        |               | _             | 4        |          |              | _        |                               | 4          |                           |                |       |
|                                         |           |           |             |                                      |                     |            |            |            | _        | _             | -             | 4        | _        | -            | _        |                               | $\dashv$   | 8                         |                |       |
|                                         |           |           |             |                                      |                     |            |            | _          |          | -             | -             | -        | -        |              | -        |                               | $\dashv$   |                           |                |       |
|                                         |           | )         |             | _                                    |                     |            | $\dashv$   | -          | -        |               | $\dashv$      | +        | -        | $\dashv$     | +        | $\dashv$                      | $\dashv$   |                           |                |       |
|                                         |           |           |             |                                      |                     |            | -          | $\dashv$   |          |               | +             | $\dashv$ | -        | -            | +        | _                             | $\dashv$   |                           |                |       |
|                                         |           |           |             |                                      |                     |            | $\dashv$   | $\dashv$   |          | -             | $\dashv$      | +        | $\dashv$ | $\dashv$     | +        | +                             | $\dashv$   |                           |                |       |
|                                         |           |           |             | _                                    | _                   |            | $\dashv$   | -          | $\dashv$ |               | $\dashv$      | +        | -        | -            | +        | $\dashv$                      | -          |                           |                |       |
|                                         |           |           |             |                                      |                     |            | -          |            | $\dashv$ |               | $\dashv$      | 1        |          | 1            | $\dashv$ | $\dashv$                      | $\dashv$   |                           |                | *     |
|                                         |           |           |             |                                      |                     |            | 1          |            | $\dashv$ | $\dashv$      | $\dashv$      | +        |          | $\dashv$     | 十        | +                             | $\dashv$   |                           |                |       |
|                                         |           |           |             |                                      |                     |            | -          |            | $\dashv$ | 1             | +             | 1        |          | +            | +        | $\dashv$                      | $\dashv$   |                           |                | - 1   |
|                                         |           |           |             |                                      |                     |            |            |            | $\dashv$ | 1             | $\dashv$      | $\dashv$ |          | $\dashv$     | $\dashv$ | $\dashv$                      | $\dashv$   |                           |                |       |
| 1                                       |           |           |             |                                      |                     |            |            |            | $\dashv$ | +             | +             | $\dashv$ |          | +            | +        | _                             |            |                           | Ç <sup>i</sup> |       |
|                                         |           |           |             |                                      |                     |            | 1          |            |          | 1             | $\dashv$      | 1        |          | +            | -        | $\top$                        | $\dashv$   |                           |                |       |
|                                         |           |           |             |                                      |                     |            |            |            |          |               | 1             | 1        |          |              |          |                               |            |                           |                |       |
|                                         |           |           |             |                                      |                     |            | 1          |            | 1        |               |               |          |          |              |          | $\top$                        | $\exists$  |                           |                |       |
|                                         |           |           |             |                                      |                     |            |            |            |          |               |               |          |          | NUME<br>ONTA |          | OF                            | 1          |                           |                |       |
| RELING<br>(Signatu                      | QUISHED B | y:<br>df( | DATE/TIME   | RECEIVED<br>(Signature)              | BY:                 |            |            |            |          | LINC          | QUISH<br>ure) | HED I    | BY:      |              |          | DATE/I                        | TIME       | RECEIVED E<br>(Signature) | SY:            |       |
| METHO                                   | D OF SHIF | PMENT:    |             | SHIPPED E<br>(Signature)             | BY:                 |            |            |            |          | URII<br>gnati |               |          |          |              |          | RECEI <sup>1</sup><br>(Signat |            | FOR LAB BY                | DATE/TI        | ME    |

# ATTACHMENT B LABORATORY REPORTS



|           | Total Ext       | ractable Hydroca: | rbons           |
|-----------|-----------------|-------------------|-----------------|
| Lab #:    | 171007          | Location:         | Port of Oakland |
| Client:   | URS Corporation | Prep:             | EPA 3520C       |
| Project#: | STANDARD        | Analysis:         | EPA 8015B       |
| Matrix:   | Water           | Sampled:          | 03/05/04        |
| Units:    | ug/L            | Received:         | 03/05/04        |
| Diln Fac: | 1.000           | Prepared:         | 03/08/04        |
| Batch#:   | 89123           | Analyzed:         | 03/10/04        |

Field ID: MW-SB4 Type:

SAMPLE

Lab ID:

171007-001

Analyte

Result

Cleanup Method: EPA 3630C

Diesel C10-C24

Surrogate Hexacosane

%REC Limits

Field ID:

MW-SB4-DUP

Lab ID:

171007-002

Type:

SAMPLE

Cleanup Method: EPA 3630C

Diesel C10-C24

Result

RL

ND

50

Surrogate %REC Limits Hexacosane 53-142

Field ID:

Type:

MW-SB3

Lab ID:

171007-003

SAMPLE

Cleanup Method: EPA 3630C

Analyte
Diesel C10-C24

Result

Surrogate

50

Hexacosane

%REC Limits 53-142 128

Type:

Lab ID:

BLANK

QC243474

Cleanup Method: EPA 3630C

Analyte

Result

Diesel C10-C24

ND

RL 50

Surrogate Hexacosane

%REC Limits

ND= Not Detected RL= Reporting Limit Page 1 of 1



Batch QC Report

|           | Total Ext       | ractable Hydrocar | rbons           |
|-----------|-----------------|-------------------|-----------------|
| Lab #:    | 171007          | Location:         | Port of Oakland |
| Client:   | URS Corporation | Prep:             | EPA 3520C       |
| Project#: | STANDARD        | Analysis:         | EPA 8015B       |
| Matrix:   | Water           | Batch#:           | 89123           |
| Units:    | ug/L            | Prepared:         | 03/08/04        |
| Diln Fac: | 1.000           | Analyzed:         | 03/10/04        |

Type: BS Lab ID: QC243475

Cleanup Method: EPA 3630C

| Analyte        | Spiked | Result | %REC | Limits | 12 P.10 |
|----------------|--------|--------|------|--------|---------|
| Diesel C10-C24 | 2,500  | 2,300  | 92   | 57-128 |         |

| Surrogate  | %REC | Limits |
|------------|------|--------|
| Hexacosane | 110  | 53-142 |

Type:

Cleanup Method: EPA 3630C

Lab ID:

BSD QC243476

| Analyte        | Spiked | Result | %RE | C Limits | RPD | Lim |
|----------------|--------|--------|-----|----------|-----|-----|
| Diesel C10-C24 | 2.500  | 2.171  | 87  | 57-128   | 6   | 3.8 |

| Surrogate  | %REC | Limits |
|------------|------|--------|
| Hexacosane | 100  | 53-142 |

# **CHAIN OF CUSTODY FORM**

|                                           | _                          | kins, Ltd<br>y Since 1878 |                  |                                 |          |                    |          |                   |                  |          |     | C&T                      |               |           |           |         | An     | aly     | ses      | ĺ           |         |          |
|-------------------------------------------|----------------------------|---------------------------|------------------|---------------------------------|----------|--------------------|----------|-------------------|------------------|----------|-----|--------------------------|---------------|-----------|-----------|---------|--------|---------|----------|-------------|---------|----------|
| •                                         | 2323 Fifth S               | Street                    |                  |                                 |          |                    |          |                   |                  |          |     | C&T<br>LOGIN # 171284    | Т             | Т         | T         | Т       | Т      | Т       | Т        | Т           | Т       | Т        |
|                                           | Berkeley, C                |                           |                  |                                 |          |                    |          |                   |                  |          |     |                          | 3             |           |           |         |        |         |          |             |         |          |
|                                           | (510)486-09<br>(510)486-09 |                           |                  |                                 | s        | ampler:            | F        | M,                | 3 k              | ta       | _   | J. Park                  | 7             | 0         |           |         |        |         |          |             |         |          |
| Project No:                               | Post al                    | 1 patte                   | V 4 4            | A                               | - R      | Report To:         | 7        |                   | N                | 1:       | 4   | 2                        | 3             | 3         | -         |         |        |         |          |             |         |          |
| Project No: Port of Oakland Project Name: |                            |                           |                  | Report To: F. MoHa Company: VRS |          |                    |          |                   |                  |          |     | 7                        |               |           |           |         |        |         |          |             |         |          |
|                                           |                            |                           |                  |                                 | _        | company:           |          |                   | -                |          |     |                          | gress         | 2         |           |         |        |         |          |             |         |          |
| Project P.O                               | .:                         |                           |                  |                                 | T        | elephone:          | 5        | 10                | $\gamma_{\ell}$  | 8        | 7-4 | 1,3224                   | 11            | 3         |           |         |        |         |          |             |         |          |
| Turnaround                                | Time: St                   | ourdan                    | d                |                                 | F        | ax: 570            | ),       | 8                 | 70               | 41       | 3   | 168                      | T.            | 2x        |           |         |        |         |          |             |         |          |
|                                           |                            |                           |                  | atrix                           | x        |                    |          | res               |                  |          |     |                          |               | 7         | >         |         |        |         |          |             |         |          |
| Laboratory<br>Number                      | Sample ID.                 | Sampling<br>Date<br>Time  | Soil             | Waste                           | c        | # of<br>Containers | HCL      | H <sub>2</sub> SO | HNO <sub>3</sub> | ICE      |     |                          | N 5/08        | 202       |           |         |        |         |          |             |         |          |
| _                                         | Line CRC                   | 3/23 9.48                 |                  |                                 | Н-       |                    |          |                   |                  |          |     |                          | B             | ic        | $\perp$   | $\perp$ | $\bot$ | $\perp$ | $\perp$  |             |         | L        |
|                                           | SCIC - MIN                 | 1/2 1.40                  | X                | +                               | $\vdash$ |                    |          | -                 |                  | $\vdash$ |     |                          | A             | +         | $\dashv$  | +       | +      | _       | $\perp$  | $\bot$      | 4       | _        |
| >                                         |                            |                           | $\vdash$         | +                               | $\vdash$ |                    |          |                   | _                | Н        | -   |                          | +             | +         | $\dashv$  | +       | +      | +       | +        | +           | +       | ╀        |
|                                           |                            |                           | H                | $\dagger \dagger$               | $\top$   |                    |          |                   |                  |          |     |                          | +             | $\dashv$  | +         | +       | +      | +       | +        | +           | +-      | +        |
| 0                                         |                            |                           |                  |                                 |          |                    |          |                   |                  |          |     |                          | +             | $\dashv$  | $\dashv$  | 十       | 十      | +       | +        | +           | +       | $\vdash$ |
| - + o                                     |                            |                           |                  |                                 |          |                    |          |                   |                  |          |     |                          | 十             | $\forall$ | $\forall$ | +       | $\top$ | $\top$  | +        | +           | +       | +        |
| 0 0 0                                     |                            |                           | Ш                | Ш                               |          |                    |          |                   |                  |          |     |                          |               | $\top$    | 十         |         | 十      | 十       | $\top$   | $\top$      | +       | $\vdash$ |
| r<br>L                                    |                            |                           | $\sqcup$         | $\sqcup$                        |          |                    |          |                   |                  |          |     |                          |               |           |           |         |        | T       |          |             |         |          |
| 0                                         |                            |                           | $\vdash$         | $\sqcup$                        | _        |                    |          |                   |                  |          |     |                          |               |           |           |         |        |         |          |             |         |          |
| 9                                         |                            |                           | $\vdash$         | +                               | _        |                    | _        | _                 |                  |          |     |                          | $\perp$       | _         |           |         |        |         |          |             |         |          |
| _ a                                       |                            |                           | $\vdash$         | H                               | +        | -                  |          | $\dashv$          | -                | -        |     |                          | $\dashv$      | _         | $\dashv$  | $\bot$  | $\bot$ | _       | $\perp$  | 丄           | $\perp$ |          |
|                                           |                            |                           | $\vdash$         | ++                              | +        |                    | $\dashv$ | $\dashv$          | -                | $\dashv$ | -   |                          | +             | _         | -         | _       | +      | +       | $\bot$   | ـ           | ↓_      | <u> </u> |
| Notes:                                    |                            |                           |                  |                                 |          |                    |          |                   |                  | 1        |     | I BIOLICUED DV           | $\rightarrow$ |           |           | <u></u> | يلد    |         |          |             |         | L_       |
|                                           |                            |                           | RELINQUISHED BY: |                                 |          |                    |          |                   | RECEIVED BY:     |          |     |                          |               |           |           | 77      |        |         |          |             |         |          |
|                                           |                            |                           |                  |                                 |          |                    | R        | U                 |                  | <u>e</u> | U   | 2 3 23/4 10,2Z DATE/TIME | 4             | M         | MA        | the     | sh     | th      | JA<br>DA | 13/0<br>TE/ | 4   D.  | 2C<br>E  |
|                                           |                            |                           |                  |                                 |          |                    | _        |                   |                  |          |     | DATE/TIME                |               | 2.300     |           | (       | )      |         | DA       | TE/         | TIME    | :        |
| Received                                  | In Coole                   | 1. A 3 23 03              | <u> </u>         |                                 |          |                    |          |                   |                  |          |     | DATE/TIME                |               |           |           |         |        |         | DA       | TE/         | TIME    |          |
|                                           |                            | / 1                       |                  |                                 | Si       | ianature           |          |                   |                  |          |     |                          |               |           |           | - 10    |        |         |          |             |         |          |



|           | Total Ext       | ractable Hydroca:                  | rbons           |
|-----------|-----------------|------------------------------------|-----------------|
| Lab #:    | 171284          | Location:                          | Port Of Oakland |
| Client:   | URS Corporation | Prep:                              | EPA 3520C       |
| Project#: | STANDARD        | Analysis:                          | EPA 8015B       |
| Field ID: | MW-SB5          | Sampled:                           | 03/23/04        |
| Matrix:   | Water           | Received:                          | 03/23/04        |
| Units:    | ug/L            | Prepared:                          | 03/26/04        |
| Diln Fac: | 1.000           | Analyzed:                          | 03/29/04        |
| Batch#:   | 89705           | 200700-047000000 ■ No. 20070000000 |                 |

Type: Lab ID: SAMPLE

Analyte

171284-001

Cleanup Method: EPA 3630C

Result RL

Diesel C10-C24

130 Y

50

Surrogate %REC Limits Hexacosane 92 53-142

Type: Lab ID:

BLANK QC245736 Cleanup Method: EPA 3630C

Analyte

Result

RL

Diesel C10-C24

ND

50

Surrogate Hexacosane

%REC Limits 103 53-142

Y= Sample exhibits chromatographic pattern which does not resemble standard ND= Not Detected RL= Reporting Limit Page 1 of 1



Batch QC Report

|           | Total Ext       | ractable Hydrocar | rbons           |
|-----------|-----------------|-------------------|-----------------|
| Lab #:    | 171284          | Location:         | Port Of Oakland |
| Client:   | URS Corporation | Prep:             | EPA 3520C       |
| Project#: | STANDARD        | Analysis:         | EPA 8015B       |
| Matrix:   | Water           | Batch#:           | 89705           |
| Units:    | ug/L            | Prepared:         | 03/26/04        |
| Diln Fac: | 1.000           | Analyzed:         | 03/29/04        |

Type: Lab ID: BS

QC245737

Cleanup Method: EPA 3630C

Analyte

Spiked

Result

%REC Limits

78

Diesel C10-C24

2,500

1,961

57-128

Surrogate %REC Limits

Hexacosane

53-142 84

Type: Lab ID: BSD

QC245738

Cleanup Method: EPA 3630C

Analyte Diesel C10-C24

Spiked 2,500

| Result | %REC | . Limits | RPD | ) Lim |
|--------|------|----------|-----|-------|
| 1,903  | 76   | 57-128   | 3   | 38    |

| Surrogate  | %REC | Limits |
|------------|------|--------|
| Hexacosane | 79   | 53-142 |