

July 30, 2002

Mr. Barney Chan Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, 2nd Floor Alameda, California 94502

Subject:

Monitoring Well Installation, Groundwater Monitoring, and Soil

Excavation Report, Gray & Reynolds Development Site, Embarcadero

Cove, Oakland

Dear Mr. Chan:

Please find enclosed for your review the report "Monitoring Well Installation, Groundwater Monitoring, and Soil Excavation Report, Gray & Reynolds Development Site, Embarcadero Cove, Oakland," dated July 24, 2002. This report is submitted to fulfill the Port's requirements under the memorandum of understanding (MOU) between the Port, ACHCSA, and the RWQCB dated May 15, 2002. The MOU was ratified by ACHCSA on May 30, 2002 and the RWQCB on June 5, 2002. An excerpt from the MOU is provided below. The tasks that have been completed to date and documented in the enclosed report are shown in *italics*:

- 1. The site is now LOP site R00002445;
- 2. The Port will remove MW-1 by excavation with a permit from Alameda County Public Works Agency. The excavation's approximate dimension will be 10 x 10 feet to the depth of the shallow groundwater, which is approximately 5 feet. Monitoring Well MW-1 would be in the center of excavation. Excavated soil will be sampled for off-site disposal. The excavation will be back-filled with clean material after an excess amount of ORC has been introduced into the open excavation. The County will be notified 72 hours prior to the excavation and associated field work.
- 3. A new well, MW-5, will be installed in the presumed down gradient direction from the former tank location to the northeast, in the sidewalk along Embarcadero Road.
- 4. The on-site wells (minus the removed MW-1) and MW-5 will be sampled in April and June 2002. Thereafter, on-site wells, MW-2 through MW-4, will be abandoned.
- 5. Monitoring well MW-5 will be sampled additionally in September and December 2002.
- 6. If the groundwater conditions indicate a stable or diminishing plume, the site will be recommended for closure by the County in approximately December 2002.
- 7. The SFRWQCB will provide a letter to the Port, as soon as possible, indicating that site development is feasible.

530 Water Street ■ Jack London Square ■ P.O. Box 2064 ■ Oakland, California 94604–2064 Telephone: (510) 627-1100 ■ Facsimile: (510) 627-1826 ■ Web Page: www.portofoakland.com

8. No requirement for a deed restriction or risk management plan for the site is foreseen. Construction at the site will have to be undertaken in accordance with an appropriate health and safety plan.

As you can see, the Port of Oakland has completed task 1 through task 3, and a portion of task number 4. Monitoring wells MW-2-through MW-4 will be abandoned as soon as we receive approval from your office.....

Please note that the SFRWQCB has not satisfied task number 7 by providing a letter to Gray & Reynolds that development is feasible. Also, we understand that the SFRWQCB contact for this case is now Ms. Betty Graham and no longer Mr. Chuck Headlee.

If you have any questions, please do not hesitate to contact me at (510) 627-1184.

Sincerely

Douglas P. Herman

Associate Port Environmental Scientist

Encl:

Monitoring Well Installation, Groundwater Monitoring, and Soil Excavation

Report

Cc w/encl:

Dan Gray Tom Bender Barbara Szudy

Betty Graham, RWQCB

Cc w/o encl:

Chris Alger, Iris Environmental

Robert Marinai, Cambria Environmental

Chuck Headlee, RWQCB

MONITORING WELL INSTALLATION, GROUNDWATER MONITORING, AND SOIL EXCAVATION REPORT

Gray & Reynolds Development Site Embarcadero Cove 1275 Embarcadero Oakland, California

July 24, 2002

Prepared for:

Port of Oakland EH&SC Department 530 Water Street Oakland, California 94607

Prepared by:

Iris-Cambria Environmental, J.V.

1615 Broadway, Suite 1003 Oakland, California 94612 1144 65th Street, Suite B Oakland, California 94602

Robert Marinai, R.G. Senior Project Geologist Christopher S. Alger, C.E.G., C.Hg Principal Engineering Geologist

<u>Tak</u>	ple of Contents Page
Intr	oduction1
Site	Description1
S	nitoring Well Installation and Monitoring2 ioil Analytical Results2 iroundwater Analytical Results2 ite Hydrogeology3
Tar	nk Pit Excavation, Monitoring Well Destruction, and ORC Placement3
Cor	nclusions and recommendations4
Ref	erences6
1- 2- 3- 4- 5-	Site Vicinity Map Site Plan Hydrocarbon Concentrations in Groundwater on May 3, 2002 Hydrocarbon Concentrations in Groundwater on June 10, 2002 Groundwater Elevation Contours on May 3, 2002 Groundwater Elevation Contours on July 2, 2002
1- 2- 3- 4- 5-	Soil Analytical Data – Light-Range Petroleum Hydrocarbons and MTBE Soil Analytical Data – Heavy-Range Petroleum Hydrocarbons and SVOCs Soil Analytical Data – PAHs Soil Analytical Data – Stockpile Analysis Groundwater Analytical and Elevation Data – Light-Range Petroleum Hydrocarbons and MTBE Groundwater Analytical and Elevation Data – Heavy-Range Petroleum Hydrocarbons and
U-	Official distribution and Elevation Data - nearly-Range Fettoleum nydrocaroons and

APPENDICES

SVOCs

- A- Field Activity Descriptions
- B- Soil Boring Log / Well Construction Diagram
- C- Standard Field Procedures for Soil Borings and Monitoring Wells
- D- Permits
- E- Well Sampling Forms
- F- Survey Data
- G- Laboratory Analytical Reports
- H- Soil Disposal Manifests

INTRODUCTION

Iris-Cambria Environmental, J.V. (Iris-Cambria), has prepared this *Monitoring Well Installation, Groundwater Monitoring, and Soil Excavation Report* for the property located at 1275 Embarcadero, Oakland, California (Site) on behalf of the Port of Oakland (Port) to facilitate redevelopment of the property by Gray & Reynolds Properties, Inc. (Gray & Reynolds) for commercial use. The tasks reported in this document were performed in accordance with an agreement reached between the Alameda County Health Care Agency (ACHCA), the San Francisco Bay Region Water Quality Control Board (SFRWQCB), and the Port, on April 12, 2002. This document describes the recent soil excavation and groundwater monitoring activities and presents results of soil and groundwater sampling that occurred during April, May, and June 2002.

The work performed by Iris-Cambria included the following:

- Installation and development of monitoring well MW-5;
- Completion of two rounds of groundwater sampling;
- Excavation of approximately 60 cubic yards (cu yd) of soil from the former tank area;
- Abandonment of monitoring well MW-1 during excavation activities;
- Introduction of oxygen release compound (ORC) into the former tank excavation pit; and,
- Backfill of the excavation with compacted, imported fill.

SITE DESCRIPTION

The Site is located at 1275 Embarcadero, Oakland, California (Figure 1). Current Site surface features include a parking lot and a vacant former restaurant. The Port owns the Site, and Gray & Reynolds is proposing it for commercial redevelopment.

Past investigations at the Site are described in the following documents: Draft Review of Existing Site Conditions and Environmental Risk Evaluation (Henshaw Associates, Inc., 2001 a), Soil and Groundwater Sampling and Analysis Workplan (Henshaw Associates, Inc., 2001 b), Soil and Groundwater Investigation and Workplan (Baseline Environmental Consulting, August 13, 2001), and Site Investigation and Screening-Level Risk Assessment Report (Iris-Cambria, 2002a).

MONITORING WELL INSTALLATION AND MONITORING

Iris-Cambria installed groundwater monitoring well MW-5 at the Site on April 26, 2002. Description of the installation activities is presented in Appendix A. The well location is illustrated on Figure 2, and the boring log and well completion details are presented in Appendix B. Standard well installation and sampling procedures are presented in Appendix C. The drilling permit is presented in Appendix D.

The monitoring well location was selected based on the April 12, 2002 Agency agreement regarding the Site which specified that a well be installed downgradient (northeastward) from the former underground storage tank (UST) at a location near the eastern Site boundary.

Well sampling forms and survey data are presented in Appendices E and F, respectively. The results of the field investigation are presented below.

Soil Analytical Results

Three soil samples collected from the MW-5 borehole were analyzed for total petroleum hydrocarbons as gasoline (TPHg); total petroleum hydrocarbons as diesel (TPHd) and total petroleum hydrocarbons as motor oil (TPHmo) with silica gel cleanup; benzene, toluene, ethylbenzene, and total xylenes (BTEX); methyl tertiary-butyl ether (MTBE); and polynuclear aromatic hydrocarbons (PAHs). Soil analytical results are presented in Tables 1, 2, and 3. The laboratory analytical report is presented in Appendix G.

Chemicals detected in soil from MW-5 included TPHd, TPHmo, and PAHs. No TPHg, BTEX, or MTBE was detected in MW-5 soil samples. The maximum total petroleum hydrocarbons were detected in the soil sample collected from the 10.0-10.5 feet below ground surface (ft bgs) interval, with a TPHmo concentration of 14 milligrams per kilogram (mg/kg) and a TPHd concentration of 22 mg/kg; a duplicate sample collected from the 10.5-11.0 ft bgs interval displayed a TPHmo concentration of 12 mg/kg and a TPHd concentration of 26 mg/kg.

Groundwater Analytical Results

Groundwater was sampled from wells MW-1 through MW-5 on May 3, 2002 and wells MW-2 through MW-5 on June 10, 2002. Samples were analyzed for TPHg, TPHd, TPHmo, BTEX, and MTBE. Figures 3 and 4 present groundwater concentrations of TPHg, TPHd, TPHmo, and BTEX detected during the May 3, 2002 and June 10, 2002 sampling events, respectively.

Highest chemical concentrations were found in the north and northeast portion of the Site furthest away from the Bay during both sampling events. MW-1 yielded the most elevated concentrations of TPHg and TPHd; MW-4 yielded the most elevated concentrations of BTEX constituents. TPHg and BTEX were not detected in monitoring wells MW-2 and MW-5. MTBE was not detected in any well.

The analytical results for groundwater testing are summarized in Tables 5 and 6. The laboratory analytical reports are presented in Appendix G.

Site Hydrogeology

During the May 3, 2002 monitoring event, groundwater at the Site was encountered at depths ranging from 5.5 to 7.29 ft bgs. Groundwater elevations measured during the monitoring event reflected an east-northeastern groundwater gradient of 0.025 ft/ft (Figure 5). During the July 2, 2002 gauging, groundwater at the Site was encountered at depths ranging from 5.58 to 7.44 ft. bgs, also reflecting an eastern groundwater gradient of 0.025 ft/ft (Pigure 6).

Previous monitoring events conducted at the Site prior to the installation of MW-5 reported a more northeastwardly groundwater gradient. Therefore, the groundwater elevations observed in MW-5 are consistent with historical groundwater flow directions, and substantiate the previously reported interpretation that a localized feature is influencing groundwater levels and effecting a groundwater movement away from the Bay.

TANK PIT EXCAVATION, MONITORING WELL DESTRUCTION, AND ORC PLACEMENT

On May 15, 2002 Foss Environmental Services excavated approximately 60 cubic yards of soil from a 10 ft by 10 ft area to 11 ft bgs. The excavation area was centered on monitoring well MW-1, which was removed during the excavation activity. The well abandonment was approved by the ACHCSA and a well destruction permit was obtained from the Alameda County Public Works Agency. A copy of the destruction permit is included in Appendix D. The excavation and well location are illustrated on Figure 2. Field activities are described in Appendix A.

The area was excavated until the MW-1 well box and approximately 7 ft of screen and casing was exposed. A cable was attached to the well casing, and the entire casing and screen were removed intact using the backhoe. The casing and screen was compared against monitoring well records to confirm that the entire structure had been removed. After the well was removed, the excavation

was continued down to a total depth of 11 ft bgs. An estimated total of approximately 60 cubic yards of soil was removed. Excavated soil was stockpiled at the rear of the parking lot where it was placed on and covered with visqueen. Upon completion of the excavation work, no standing water was observed in the hole, though some seepage was observed at the bottom perimeter of the hole.

One hundred and twenty pounds of Regenesis Brand, Oxygen Release Compounds (ORC) was distributed evenly across the floor and sides of the excavation using the bucket of the backhoe. Geotextile fabric was then laid across the floor and sides of the excavation. The excavation was backfilled with low density, coarse aggregate fill, placed in 6-inch lifts, and compacted using a vibraplate attached to the backhoe. The aggregate fill was extended up to within 16 inches of ground surface. Another layer of geotextile was then placed on top of the aggregate fill, and the remainer of the excavation was backfilled with compacted baserock to grade.

A four-point composite soil sample (S1-A,B,C,D) was collected from the soil stockpile for disposal profiling. The soil sample was analyzed for TPHg, TPHd, BTEX, volatile organic compounds (VOCs), and CAM 17 metals. No MTBE was detected in the composite soil sample. The maximum total petroleum hydrocarbon detection was 450 mg/kg TPHg. Analytical results are presented in Table 4.

The soil stockpile was transported by Foss Environmental Services under manifest to Forward Landfill, Inc. for disposal. Copies of the manifests are presented in Appendix H.

CONCLUSIONS AND RECOMMENDATIONS

Monitoring well MW-5 was installed on April 26, 2002, in accordance with the April 12, 2002 agreement between the ACHCSA, SFRWQCB, and the Port. In addition, MW-1 was abandoned by excavation, and approximately 60 cubic yards of hydrocarbon-impacted soil were excavated from the former UST location. The bottom of the excavation pit was treated with ORC to enhance degradation of residual hydrocarbons. Monitoring wells MW-1 through MW-5 were sounded and sampled on May 3, 2002. Subsequent to the destruction of monitoring well MW-1, wells MW-2 through MW-5 were sampled on June 10, 2002 and sounded on July 2, 2002. Based on field observations and the results of laboratory analysis of soil and groundwater, the following conclusions have been made:

• Water levels observed in MW-5 support previous findings of a local northeastern groundwater gradient. Gradient direction appears to be in a more easterly direction than

previously reported, and was interpreted as east-northeasterly to easterly based on well gauging data collected on May 3, 2002 and July 2, 2002. This slight shift in groundwater gradients may be due to the addition of the MW-5 data point and the removal of the MW-1 data point.

- The detection of TPHd at low concentrations in groundwater collected from monitoring well MW-5 during both sampling events indicates that the well is in communication with Site groundwater and therefore provides significant characterization of conditions at the property boundary for the Site.
- Groundwater concentrations of TPHg, TPHd, TPHmo, and BTEX reported in samples from the May 3 and June 10 sampling events were similar to concentrations reported in previous sampling events.

Aestresit till kölülün 2002 groundwaterssampling-event-are-similar-to-therMay 2002 event sverige som sverige som statistick betrakks. Amerika opene Apall 12 Agentyagreement besimplemented Specifically:

Wellaw verse sampled would into naturals in September and December 2002 to p

REFERENCES

Bascline Environmental Consulting. Soil and Groundwater Investigation and Workplan. Gray & Reynolds Development Project. Embarcadero Cove, Oakland, California. August 13, 2001.

California Regional Water Quality Control Board, San Francisco Bay Region, Groundwater Committee. East Bay Plain Groundwater Basin Beneficial Use Evaluation Report. June 1999.

Henshaw Associates, Inc. Draft Review of Existing Site Conditions and Environmental Risk Evaluation. Embarcadero Cove Project, Oakland, California. March 14, 2001 a.

Henshaw Associates, Inc. Soil and Groundwater Sampling and Analysis Workplan. Embarcadero Cove Project, Oakland, California. April 23, 2001 b.

Iris-Cambria Environmental, JV. Site Investigation and Screening-Level Risk Assessment Report. Gray and Reynolds Development Site. Embarcadero Cove, 1275 Embarcadero, Oakland, California. January 17, 2002 a.

Iris-Cambria Environmental, JV. Proposal to Perform Soil Excavation, Well Installation, and Monitoring. Gray and Reynolds Development Site. Embarcadero Cove, 1275 Embarcadero, Oakland, California. April 17, 2002 b.

Figures

1275 Embarcadero Embarcadero Cove Project Oakland, California

Vicinity Map

CAMBRIA

1275 Embarcadero Embarcadero Cove Project Oakland, California

Site Plan

1275 Embarcadero Embarcadero Cove Project Oakland, California

Hydrocarbon Concentrations in Groundwater

1275 Embarcadero Embarcadero Cove Project Oakland, California

Hydrocarbon Concentrations in Groundwater

1275 Embarcadero Embarcadero Cove Project Oakland, California

Groundwater Elevation Contours

1275 Embarcadero Embarcadero Cove Project Oakland, California

Groundwater Elevation Contours

Table 1: Soil Analytical Data - Light-Range Petroleum Hydrocarbons and MTBE - 1275 Embarcadero, Oakland, CA

Sample	Date	Sample	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
ID	Sampled	Depth (ft)			m	g/kg	· · · · · · · · · · · · · · · · · · ·	
Baseline Samples			-					
RN-A1;1 5-2	05/01/01	1.5		< 0 005	< 0 005	< 0 005	< 0 005	< 10
RN-A2;1-1.5	05/01/01	10		< 0 005	< 0 005	< 0 005	< 0.005	< 1.0
RN-A3,0.5-1	05/01/01	0.5		< 0.005	< 0 005	< 0 005	< 0.005	< 1.0
ζN-A4,1.0-1.5	05/01/01	1 0		< 0.005	< 0 005	< 0 005	< 0.005	< 1.0
RN-B1,1-1 5	05/01/01	1 0		< 0 005	< 0.005	< 0 005	< 0.005	< 1.0
RN-B2;1-1 5	05/01/01	1.0		< 0 005	< 0.005	< 0 005	< 0 005	< 1.0
SB-1;0 75-1 25	05/01/01	0 75	< 1.1	< 0.0056	< 0.0056	< 0 0056	< 0 0056	
SB - 1;3-3.5	05/01/01	3 0	< 10	0.013	< 0 0052	< 0 0052	< 0 0052	
SB-1A,0-0 5	05/02/01	0.0	< 1.1	< 0 0054	< 0.0054	< 0 0054	< 0 0054	
SB-1A;5-5.5	05/02/01	5.0	500	< 0 130	I 1	5 0	16.1	
SB-1B,1-1 5	05/02/01	10	< 1.0	< 0 005	< 0 005	< 0.005	0 0074	
SB-2,1-1.5	05/01/01	1.0	< .98	< 0 0049	< 0 0049	< 0.0049	< 0 0049	
SB-2,4-4 5	05/01/01	4 0	< 1.1	< 0 0054	< 0 0054	< 0.0054	< 0 0054	
SB-2C;0-0.5	05/02/01	0.0	< 0.96	< 0 0048	< 0.0048	< 0 0048	< 0 0048	
SB-2C;3-3.5	05/02/01	3 0	< 10	< 0.0052	< 0 0052	< 0 0052	< 0 0052	
Cambria Samples								
SB-A-3 5	08/30/01	3 5	< 1.0	< 0 005	< 0 005	< 0.005	< 0.005	< 0.05
SB-B-3.5	08/30/01	3.5	< 1 0	< 0 005	< 0 005	< 0 005	< 0.005	< 0.05
SB - D-3.5	08/30/01	3.5	< 1.0	< 0 005	< 0.005	< 0 005	< 0.005	< 0.05
SB-E-3.5	08/30/01	3.5	1.4	0.014	0 0080	< 0.005	0.026	< 0.05
SB-F-3.5	08/30/01	3.5	2.5	0.021	0.010	< 0.005	0 005	< 0.05
И-1-5	09/17/01	5.0	2,300	1.8	3.7	48	7.2	5.1
4W-1-8.3	10/09/01	8.3	30	0.48	0.067	0 70	0 52	<0.05
/W-2-5.0	10/09/01	5 0	7.5	0.027	0 051	0.041	0 087	<0.05
1W-3-5 0	10/09/01	5 0	16	< 0 005	< 0.005	< 0 005	< 0 005	<0.05
1W-4-5 3	10/09/01	5.3	34	0.70	0.068	0.41	0 97	<0.05

Table 1: Soil Analytical Data - Light-Range Petroleum Hydrocarbons and MTBE - 1275 Embarcadero, Oakland, CA

Sample	Date	Sample	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE		
ID	Sampled	Depth (ft)	mg/kg							
Current Cambria Inv	vestigation			······································	 	· · · · · · · · · · · · · · · · · · ·				
MW-5-7.0	04/26/02	7 0	<1	< 0 005	< 0 005	< 0 005	< 0 005	<0.05		
MW-5-10.0	04/26/02	10.0	<1	< 0 005	< 0 005	< 0 005	< 0 005	<0.05		
MW-5-10.5D*	04/26/02	10.5	<1	< 0.005	< 0 005	< 0.005	< 0.005	<0.05		
Urban Area Ecoto	Commercial Worker sk-Based sed for Protection of Axicity-Based		source] ^t 11,000 400 	0.39 2 l 25	89 8.4 150	220 24	210 sat 1	69 1		
Construction Worker Human Health Ris			16,000	16	520 sat	230 sat	210 sat	4900		

Abbreviations and Methods:

ft = feet

mg/kg = milligrams per kilogram

-- = not available, not analyzed, or does not apply

MTBE = methyl tert-butyl ether by EPA Method 8020

Benzene, toluene, ethylbenzene, and xylenes by EPA Method 8020 or 8021B

TPHg = total petroleum hydrocarbons as gasoline by EPA Methods modified 8015, 5030, and 8020 or 602

sat = saturation limit

Notes:

Bolded values indicate exceedance of soil screening values.

^{*}Duplicate Sample.

¹ Soil screening values from RWQCB's (2000) Table B-2.

² Soil screening values from RWQCB's (2000) Table K-3

Table 2: Soil Analytical Data - Heavy-Range Petroleum Hydrocarbons and SVOCs - 1275 Embarcadero, Oakland, CA

_					bis(2-ethylhexyl)		2 - methyl			
Sample	Date	Sample	PHAT	TPHmo	phthalate	Fluoranthene	naphthalene	Naphthalene	Pyrene	
ID	Sampled	Depth (ft)				mg/kg				
Baseline Samples ¹						·				
RN-A1,1.5-2	05/01/01	1 5				4-	••	< 0 0046		
RN-A2;1-1.5	05/01/01	10	••					< 0.005		
RN-A3;0.5-1	05/01/01	0 5						< 0.005		
RN-A4;1 0-1.5	05/01/01	1 0				V.		< 0 0046	77	
RN-B1,1-1 5	05/01/01	1.0						< 0 0049		
RN-B2,1-1.5	05/01/01	1.0						< 0 0047		
SB-1;0.75-1.25	05/01/01	0.75	62 ²	**	< 0 33	< 0 33	< 0.33	< 0.33		
SB-1,3-3 5	05/01/01	3 0	13 ²		0.61	< 0.33	< 0.33	< 0.33	< 0.33	
SB-1A;0-0.5	05/02/01	0.0	240 ²		< 6.60	< 6 60	< 6.60	< 6 60	< 0.33	
SB-1A,5-5 5	05/02/01	5 0	40²		< 0.33	< 0.33	2.2		< 6 60	
SB-1B;1-1.5	05/02/01	1.0	60 ²			- 0 33	2.2	2 2	< 0 33	
SB-2;1-1.5	05/01/01	1.0	43 ²		< 0 33	< 0.33	< 0.33	< 0.33		
SB-2,4-4.5	05/01/01	4.0	43 ²		< 0.33	< 0.33	< 0.33	< 0.33	< 0.33	
SB-2C;0-0.5	05/02/01	0.0	25²	***					< 0 33	
SB-2C;3-3.5	05/02/01	3.0	372				••	 		
Cambria Samples										
SB-A-3.5	08/30/01	3.5	1.4	5 2	**	< 0.25		< 0.25	< 0.25	
SB-B-3.5	08/30/01	3.5	< 10	< 5.0		< 0.062	~ **	< 0.062	< 0.062	
SB-D-3.5	08/30/01	3 5	< 1.0	< 5 0		< 0.062		< 0.062	< 0.062	
SB-E-3.5	08/30/01	3.5	2.4	6.1		< 0.062	••	< 0.002	< 0.062	
SB - F-3 5	08/30/01	3.5	4 6	16	40	< 0.25		< 0.25	< 0.062	
M-1-5	09/17/01	5.0	850	97						
MW-1-8.3	10/09/01	8.3	5.7	< 5.0	< 0.33	< 0.33	< 0.33	< 0.33 / 0.583	< 0.33	
MW-2-5.0	10/09/01	5.0	74	300	< 1.0	< 1.0	< 1.0	< 1.0 / < 0 005 ³		
AW-3-5 0	10/09/01	5.0	17	160	< 0.33	< 0.33	< 0.33	< 0.33 / < 0.005 ³	< 10	
MW-4-5.3	10/09/01	5 3	8.3	10	< 0.33	< 0.33		0.33 / < 0.003 0 62 / 0 62 ³	< 0.33	
			0.0	10	~ 0.55	~ U 33	< 0.33	0.027.0.62	< 0.33	

Table 2: Soil Analytical Data - Heavy-Range Petroleum Hydrocarbons and SVOCs - 1275 Embarcadero, Oakland, CA

Sample ID	Date Sampled	Sample Depth (ft)	TPHd ◀	TPHmo	bis(2-ethylhexyl) phthalate	Fluoranthene mg/kg	2 - methyl naphthalene	Naphthalene	Pyrene
Current Cambria In	vestigation								
MW-5-7 0	04/26/02	7 0	8 6	15	•	••		**	
MW-5-10.0	04/26/02	100	14	22	•-				
MW-5-10 5D*	04/26/02	10 5	12	26					
Soil Screening Value	:s								
Surface Soil (<3 m)	Commercial Worker	[non-drinking water	source] 4						
Human Health Ri	sk-Based	_	11,000	11,000	180	6,000	280	5 7	11,000
	sed for Protection of A	Aquatic Life	500	1,000	530	60	0 25	4.9	55
Urban Area Ecoto	xicity-Based		••			40		40	
Construction Worker	. 5							• •	
Human Health Ru	ck-Based		16,000	16,000	1,200	12,000	18,000	450	16,000

Abbreviations and Methods:

ft = feet

mg/kg = milligrams per kilogram

-- = not available, not analyzed, or does not apply

TPHd = total petroleum hydrocarbons as diesel by EPA method 8015

TPHd analyses with silica gel clean-up prior to extraction unless otherwise noted

TPHmo = total petroleum hydrocarbons as motor oil by EPA method 8015

SVOC = semi-volatile organic compounds by EPA Method 8270 (modified 8100)

and 3550 or 625 and 3510 unless otherwise noted

Notes:

Only those compounds above laboratory reporting limits are shown

Bolded values indicate exceedance of soil screening values.

^{*}Duplicate sample

Baseline samples analyzed for SVOCs by EPA Method 8260 or 8270

² No silica gel cleanup performed, prepared by shaker table

³ Analyzed by EPA Method 8270 and additionally by EPA Method 8260

⁴ Soil screening values from RWQCB's (2000) Table B-2

⁵ Soil screening values from RWQCB's (2000) Table K-3.

Table 3: Soil Analytical Data - PAHs - 1275 Embarcadero, Oakland, CA

	Sample ID	Date Sampled	Sample Depth (ft)	A Gentle of Am.	Benzold Film.	Benzo Chr.	Renew Chily		we/kg —	Dihenz	Phoramacon.	na language	Phononing.	A Price of the Control of the Contro
	Current Cambria	Investigation							-		*			
	MW-5-7.0	04/26/02	70	8 5	16	11	23	33	<50	25	23	28	<50	86
	MW-5-10.0	04/26/02	10.0	54	50	34	45	110	23	71	200	120	17	540
	MW-5-10.5D	04/26/02	10 5	73	67	45	43	140	25	86	220	91	17	570
Consti	wither Table !	C-3 ppb.		12000	/200	12000	12(10)	1200	/20800	<u>3√00</u>	12(106)	/2000	18(106)	

Abbreviations and Methods:

mg/kg = milligrams per kilogram

PAH = polynuclear aromatic hydrocarbons by EPA Methods 8310 and 3510

Notes:

Only those compounds above laboratory reporting limits are shown

Table 4: Soil Analytical Data - Stockpile Analysis - 1275 Embarcadero, Oakland, CA

Abbreviations and Methods:

mg/kg = mill:grams per kilogram
TPHd by EPA Method 8015C
TPHg by modified EPA Method 8015Cm
Parentheses indicate analysis by EPA Method 8021B
VOCs by EPA Method 8260B
Metals by EPA Method 6010C/200.7

Notes:

Only those compounds above laboratory reporting limits are shown

Table 5: Groundwater Analytical and Elevation Data - Light-Range Petroleum Hydrocarbons and MTBE - 1275 Embarcadero, Oakland, CA

Sample ID <i>TOC</i>	Date Sampled	Groundwater Elevation	Depth to Water	TPHg	Benzene	Toluene	Ethylbenzene µg/L	Xylenes	МТВЕ
(ft)	,	(ft ')	(ft)				μg/L		
Baseline Grab S	Samples					· · · · · · · · · · · · · · · · · · ·			
SB-1	05/01/01			80,000	8,600	8,200	3,900	14,600	
SB-1A	05/02/01			25,000	260	170	760	2,290	
SB-2	05/01/01			< 50	< 0.5	< 0.5	< 0.5	< 0.5	
Cambria Grab S	Samples								
SB-A	08/30/01			< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5 0
SB-B	08/30/01			< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50
SB-D	08/30/01			< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5 0
SB-E	08/30/01			39,000	3,200	750	1,200	3,600	< 200
SB-F	08/30/01			< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
Cambria Monit	oring Well Sample		······································		<u> </u>				···-
MW-1	10/12/01	4 88	7.15						
12 03	10/19/01	4 81	7.13 7.22	11,000		300			
	12/05/01 2	5 33	6.70	13,000	900	300	470	1,000	
	12/05/01 3	4 74	7 29	3,100	1,300 270	180	1,200	860	< 20
	12/19/01 4	4.95	7 08	5,100		12	150	74	< 5 0
	05/03/02	6.12	5.91	20,000	1,400	160	 580		
	***************************************	5,72	3.71	#0,000	1,400	100	580	630	<500
MW-2	10/12/01	5.71	5.75						
11 46	10/19/01	5,52	5.94	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
	12/05/01 2	6 11	5.35	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5 0
	12/05/01 3	5.66	5 80	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
	12/19/01 4	5 65	5.81					~ U 3	< 3.0
	05/03/02	6.46	5.00	< 50	< 0.5	< 0.5	ş < 0.5	< 0.5	< 5 O
	6/10/2002 7	6 57	4.89	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50
MW-3	10/12/01	5,89	6.60						
12 49	10/19/01 5	5.84	6.65	290	2.0	 66	 0.54		
	12/05/01 2.5	6.69	5.8	310	0.72	2.2		12	
	12/05/01 3.5	5.54	6 95	320	0.84	2.2	< 0.5 < 0.5	< 0.5	< 5 0
	12/19/01 4	6 10	6.39	520	U.04 	20		0.76	< 5 0
	05/03/02	7 29	5.20	280	0.74	0.87			
	6/10/2002 7	7.44	5.05	220			< 0.5	0 76	< 5 0
	0/10/2002	1.44	5.05	220	< 0.5	1	< 0.5	< 0.5	<

Table 5: Groundwater Analytical and Elevation Data - Light-Range Petroleum Hydrocarbons and MTBE - 1275 Embarcadero, Oakland, CA

Sample ID <i>TOC</i>	Date Sampled	Groundwater Elevation	Depth to Water	трнg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
(ft)	Jampiea	(ft ¹)	(ft))	ag/L ———		···
MW-4	10/12/01	4.98	8.15	<u> </u>				•-	
13 13	10/19/01	4 91	8.22	44,000	1,900	270	1,500	3,300	**
	12/05/01 2	5.61	7 52	13,000	120	28	170	3,300	- 10
	12/05/01 3	5.08	8.05	20,000	420	78	390	870	< 10
	12/19/01 4	5 09	8.04			76 	370 		< 20
	05/03/02	6.93	6.20	19,000	1,500	240	730	1,400	
	6/10/2002 7	7.15	5.98	28,000	1,700	230	930	2,100	<1,000 <500
1W-5	05/03/02	5.50	4.69	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 50
10 19	6/10/2002 7	5.58	4 61	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5 0
rip Blank					**		u.		
В	12/05/01	•		< 50	< 0 5	< 0 5	< 0.5	< 0 5	< 50
		···							
	creening Values °								
ndoor Air Impa					84	76,000	170,000 sol	150,000	290000
quatic Life Pro	otection			3,700 °	700 ^b	5,000 b	430 °	13 ^d	8,000 °

Abbreviations and Methods:

ft = feet

μg/L = micrograms per liter

-- = not available, not analyzed, or does not apply

msi = mean sea level

Benzene, toluene, ethylbenzene, and xylenes by EPA Method 8020

MTBE = methyl tert-butyl ether by EPA Method 8020

TPHg = total petroleum hydrocarbons as gasoline by EPA Methods modified 8015, 5030, and 8020 or 602

TOC Elev. (ft) = top of casing elevation in feet (Port of Oakland datum)

Depth to water in monitoring wells is ft below TOC.

sol = solubility threshold

Notes:

Bolded values indicate exceedance of groundwater screening values

- ^a California Toxic Rule, Saltwater Criteria for Continuous Concentration
- ^b USEPA Saltwater Chronic Lowest Observable Effect Level
- ^c USEPA Saltwater Acute Lowest Observable Effect Level
- d USDOE Freshwater Chronic Preliminary Remedial Goal
- * RWQCB Saltwater Criteria for Continuous Concentration (interim)

Elevation in feet, Port of Oakland datum

² Wells gauged between 6.00 am and 6:30 am on 12/5 near lower high tide.

³ Wells gauged between 11 40 am and 12-00 pm on 12/5 near higher high tide

⁴ Wells gauged between 9.00 pm and 9:15 pm on 12/19 at lower low tide.

Sample was collected pre-purge.

⁶ Goundwater screening values from RWQCB's (2000) Table F-2, F-4a, b, and c

⁷ Depth to water measurement collected on July 2, 2002

Table 6: Groundwater Analytical and Elevation Data - Heavy-Range Petroleum Hydrocarbons, SVOCs and PAHs 1275 Embarcadero, Oakland, CA

Samula ID	P. A.			India.	A LANGE CONTRACTOR OF THE PARTY	Made of the state	onew Sign	Pathapate Filiporam.	non, Take	ouspeller 2 - Mach Man. 2	oughen Wheek	aron de la constante de la con	ou o
Sample ID TOC	Date	Groundwater	Depth to	<u> </u>		∕ ₹	<u>/ 3</u>	/ 🕸	/ ~ 2	1 2 2	<u>/ ~</u> *	<u> </u>	
(ft)	Sampled	Elevation (ft 1)	Water					– μg/L					
Baseline Grab	Samples	(it)	(ft)				•						
SB-1	05/01/01			2,900		< 94	-04	.01		* 60			
SB-1A	05/02/01			800		< 94 < 96	< 94 <9.6	< 94 <9.6		260	610	< 94	< 94
SB-2	05/01/01			180		< 97	< 9.0 < 9.7	< 9.0 < 9.7		130 < 9.7	170	<96	<96
	03/01/01			180		~ 9 1	< y /	\ y /		< 9 /	< 97	< 9.7	< 9 7
Cambria Grab	Samples												
SB-A	08/30/01			1,500	7,200	< 10		< 10			< 10	< 10	< 10
SB-B	08/30/01			63	550	< 10		< 10			< 10	< 10	< 10
SB-D	08/30/01			1,100	3,400	< 10		11			< 10	< 10	11
SB-E	08/30/01			5,800	350	< 50		< 50			370	< 50	< 50
SB-F	08/30/01			480	1,400	< 10		< 10			< 10	< 10	< 10
								<u> </u>					
	toring Well Sam												
MW-I	10/12/01	4.88	7.15										***
12.03	10/19/01 12/05/01 ²	4.81	7.22	3,300	< 250	< 10	< 10	< 10		54	66	< 10	< 10
	12/05/01 - 12/05/01 - 12/05/01	5.33	6.70	3,800	< 250	72		< 10	150	220	360	< 10	< 10
	12/05/01 ⁵	4.74	7.29	680	< 250	96		< 1.0	18	14	22	1.3	< 1 0
	5/3/2002 ⁸	4 95	7.08							••	•-		
	5/3/2002	6 12	5 91	5,300	450								
MW-2	10/12/01	5.71	5.75										
11.46	10/12/01	5.52	5.73 5.94	210	460	< 10	 < 10	 < 10		- 10			
	12/5/01 2	6.11	5.35	150	560	< 0.5		< 0.25		< 10	< 10	< 10	< 10
	12/05/01 3, 4	5 66	5.80	75	270	< 0.5			< 1.0	< 1.0	< 0.25	< 0.25	< 0 25
	12/19/01 5	5.65	5.81		270			< 0 25	< 10	< 1.0	< 0.25	< 0 25	< 0 25
	5/3/2002 8	6.46	5.00	440	440								
	6/10/2002 °	0.40	5.00	740									

Table 6: Groundwater Analytical and Elevation Data - Heavy-Range Petroleum Hydrocarbons, SVOCs and PAHs 1275 Embarcadero, Oakland, CA

Sample ID TOC (ft)	Date Sampled	Groundwater Elevation (ft ')	Depth to Water (ft)	Thum	Tehno (Haray.	Diog. cony.	OH μg/L	John John John John John John John John	2. meiny	Naphu.	Juny House	
MW-3	10/12/01	5.89	6.60										
12 49	10/19/01 6	5.84	6 65	1,600	1,300	< 25	< 25	< 25		670	420	< 25	< 25
	12/05/01 2.6	6.69	5.80	480	480	< 0.5		< 0.25	< 1.0	< 1.0	< 0.25	< 0.25	< 0.25
	12/05/01 3, 6	5 54	6.95	530	550	< 0.5		< 0.25	< 10	< 10	< 0.25	< 0.25	0.23
	12/19/01 3	6 10	6 39	••				·			- 0 25	- 0 23	
	5/3/2002 ⁸	7.29	5.2	770	430			J-	••				
	6/10/2002 9	7.44	5.05	390	470	<10*		<10*			<10*	<50*	<10*
MW-4	10/12/01	4.98	8.15								•-		
13.13	10/19/01	4.91	8.22	33,000	900	< 50	< 50	< 50		< 50	< 50	< 50	< 50
	12/05/01 2	5.61	7.52	6,400	430	24		< 10	99	190	60	18	< 10
	12/05/01 3	5.08	8.05	5,400	450	21		< 10	100	180	96	12	< 10
	12/19/01 5	5.09	8.04							7	J.		
	5/3/2002 8	6.93	6.20	3,600	300							•	
	6/10/2002 9	7.15	5.98	4,500	<250	<50*		<50*			250*	<250*	<50*
MW-5	5/3/2002 ⁸	5.50	4.69	74	<250	-	**	••		**			
10 19	6/10/2002 9	5 58	4 61	110	330	<10*		<10*			<10*	<50*	<10*
Groundwater S	creening Values ⁷											/	
Indoor Air Imp	acts						••		26,000 soi	26,000 sol	9,200		135 sol
Aquatic Life Pr	rotection			640°	640 ª	310 ^g	32 °	11 °	2 1 ^d	2.1 d	2,350 °	4 6 ^f	300 °

Table 6: Groundwater Analytical and Elevation Data - Heavy-Range Petroleum Hydrocarbons, SVOCs and PAHs 1275 Embarcadero, Oakland, CA

Sample ID Date Groundwater Depth to TOC Sampled Elevation Water (ft) (ft) (ft)	hālyr halyr ha
Abbreviations and Methods:	Notes:
ft = feet	Elevation in feet, Port of Oakland datum
µg/L ≈ micrograms per liter	2 Wells gauged between 6 00 am and 6.30 am on 12/5 near lower high tide.
= not available, not analyzed, or does not apply	3 Wells gauged between 11.40 am and 12.00 pm on $12/5$ near higher high tide
msi = mean sea level	SVOC extraction performed past standard 7day hold time per SW-846 Table 2-36 Revision 3,
$TOC\ Elev\ (ft) = top\ of\ casing\ elevation\ in\ feet\ (Port\ of\ Oakland\ datum)$	⁵ Wells gauged between 9.00 pm and 9 15 pm on 12/19 at lower low tide
TPHd analyses with silica gel clean-up prior to extraction unless otherwise noted	⁶ Sample was collected pre-purge
TPHmo = total petroleum hydrocarbons as motor oil by EPA method 8015	⁷ Goundwater screening values from RWQCB's (2000) Table F-2, F-4a, b, and c
SVOC = semi-volatile organic compound analyses performed by	8 Sample was analyzed without silica gel clean-up
EPA Method 8270 (modified 8100) and 3550 unless otherwise noted	⁹ Depth to water measurement collected on July 2, 2002.
PAH = polynuclear aromatic hydrocarbon analyses performed by	* PAH analysis
EPA Method 8270D	Bolded values indicate exceedance of groundwater screening values.
TPHd = total petroleum hydrocarbons as diesel by EPA method 8015, and 3550 or 3510	^a RWQCB Saltwater and Freshest Water Criteria
Only those compounds above laboratory reporting limits are shown	b USEPA Freshwater Chronic Ecotoxicity Criteria
Depth to water in monitoring wells is ft below TOC.	CUSEPA Saltwater Chronic Ecotoxicity Criteria
sol = solubility threshold	d USDOE Freshwater Chronic Preliminary Remedial Goal
	 USEPA Saltwater Acute Lowest Observable Effect Level
	f USEPA Saltwater Crierion for Continuous Concentration
	⁸ Ontario Ministry of Environment and Energy Drinking Water Screening Level

APPENDIX A

Field Activity Descriptions

APPENDIX A

FIELD ACTIVITY DESCRIPTIONS

April 2002 Monitoring Well Installation

Field activities completed during the installation of monitoring well MW-5 are presented below. The discussion is organized according to the nature of the individual activity.

Field Date: April 26, 2002.

Scope of Work: Iris-Cambria advanced one (1) boring and completed it as a

monitoring well. Three soil samples were collected from the boring. The well was developed and sampled per Tri-Regional procedural

guidelines.

Personnel Present: Ian Young, Cambria Senior Staff Geologist; and Robert Marinai,

R.G., Cambria Project Geologist.

Drilling Company: Gregg Drilling of Martinez, California (C-57 License No. 485165).

Drilling Methods: Hollow-stem auger drill rig. The boring was hand-augered to 5 ft bgs

as a safeguard to prevent damage to subsurface utilities.

Boring Depths: Prior to well installation, the boring was drilled to depths of 12 ft

bgs.

Soil Sampling: Soil samples were collected continuously from all borings during

drilling and logged in accordance with the Unified Soil Classification

System.

Well Development: On April 29, 2002, Iris-Cambria developed monitoring well MW-5.

Well depth measurements are included in Appendix E.

Groundwater Gauging: Groundwater was gauged during sampling in Site wells May 3, 2002.

Well caps were removed and water levels allowed to equilibrate for at least 15 minutes and until stable. During each gauging event, all four wells were gauged within a 30-minute time period. Field forms

are included in Appendix D.

Groundwater Sampling: All five (5) site wells were sampled on May 5, 2002. The samples

collected for volatile analyses were placed in 40-ml VOAs while samples collected for petroleum hydrocarbons were placed in 1 liter unpreserved ambers. The sample bottles were labeled and placed in

a cooled container for transport to McCampbell Analytical in Pacheco, California. Cambria's standard sampling procedures are presented in Appendix C. Well sampling forms are included in

Appendix F

Chemical Analysis: Soil and groundwater samples were sent under chain of custody

control to McCampbell Analytical, Inc., of Pacheco, California, and analyzed for: TPHg by EPA Method 8015; TPHd and TPHmo by EPA Method 8015 with silica-gel cleanup; and BTEX by EPA Method 8020. Soil samples were also analyzed for PAHs by EPA Methods 8310 and 3510. Laboratory analytical results are included

in Appendix G.

Well Survey: Virgil Chavez Land Surveying of Vallejo, California, (State of

California Licensed Land Surveyor No. 6323) surveyed the well top of casing (TOC) elevations of all wells relative to Port datum TP184

on June 4, 2002. Survey data is presented in Appendix F.

Waste Disposal: All soil cuttings and well development and purge water were left

onsite in DOT-approved, 55-gallon drums pending disposal by the

Port.

May 2002 Soil Excavation and ORC Placement

Field activities completed during the excavation of the former tank location are presented below. The discussion is organized according to the nature of the individual activity.

Field Date: May 15, 2002.

Scope of Work: Iris-Cambria excavated approximately 45 cubic yards of soil from an

area 10 ft by 10 ft wide and 11 ft deep, centered on monitoring well MW-1. Well MW-1 was abandoned in the process and removed in its entirety. One hundred and twenty (120) lbs of oxygen releasing compound was distributed across the floor of the excavation, and the

excavation backfilled with clean, imported fill.

Personnel Present: Ian Young, Cambria Senior Staff Geologist; Mary Hollad-Ford,

Cambria Project Geologist; and Robert Marinai, R.G., Cambria

Project Geologist.

Excavation Company: Foss Environmental Services of Alameda, California.

Excavation Methods: CAT 416Cit backhoe excavator.

Soil Stockpile Sampling: A four-point soil sample was collected from stockpiled soil.

Chemical Analysis: Soil samples were sent under chain of custody control to

McCampbell Analytical, Inc., of Pacheco, California, and analyzed for: TPHg by EPA Method 8015; TPHd by EPA Method 8015 with silica-gel cleanup; BTEX by EPA Method 8020; VOCs by EPA Method 8260B; and metals by EPA Method 6010. Laboratory

analytical results are included in Appendix G.

Waste Disposal: All excavated soil was stockpiled onsite on visqueen pending

disposal by the Port.

APPENDIX B

Soil Boring Log / Well Construction Diagram

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

BORING/WELL LOG

CLIENT NAME	Port of Oakland	BORING/WELL NAME MW-5	
JOB/SITE NAME	Embarcadero Cove	DRILLING STARTED 26-Apr-02	
LOCATION	1275 Embarcadero, Oakland, CA	DRILLING COMPLETED 26-Apr-02	
PROJECT NUMBER	458-1705	WELL DEVELOPMENT DATE (YIELD)	NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION	Not Surveyed
DRILLING METHOD	Hollow-stem auger	TOP OF CASING ELEVATION NA	
BORING DIAMETER	8"	SCREENED INTERVAL. 4 to 12 ft	bgs
LOGGED BY	I. Young	DEPTH TO WATER (First Encountered)	7.5 ft (26-Apr-02)
REVIEWED BY	R. Marınai, RG# 5479	DEPTH TO WATER (Static)	NA <u>Y</u>
REMARKS	Hand augered to 5 ft bgs, located in sidewalk appro	eximately 9 ft south of driveway.	

	APPENDIX C
S	Standard Field Procedures for Soil Borings and Monitoring Wells

CAMBRIA

STANDARD FIELD PROCEDURES FOR SOIL BORINGS AND MONITORING WELLS

This document presents standard field methods for drilling and sampling soil borings and installing, developing and sampling groundwater monitoring wells. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

SOIL BORINGS

Objectives

Soil samples are collected to characterize subsurface lithology, assess whether the soils exhibit obvious hydrocarbon or other compound vapor or staining, and to collect samples for analysis at a State-certified laboratory. All borings are logged using the Unified Soil Classification System by a trained geologist working under the supervision of a California Registered Geologist (RG).

Soil Boring and Sampling

Soil borings are typically drilled using hollow-stem augers or direct-push technologies such as the Geoprobe[®]. Soil samples are collected at least every five ft to characterize the subsurface sediments and for possible chemical analysis. Additional soil samples are collected near the water table and at lithologic changes. Samples are collected using lined split-barrel or equivalent samplers driven into undisturbed sediments at the bottom of the borehole.

Drilling and sampling equipment is steam-cleaned prior to drilling and between borings to prevent cross-contamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPA-approved detergent.

Sample Analysis

Sampling tubes chosen for analysis are trimmed of excess soil and capped with Teflon tape and plastic end caps. Soil samples are labeled and stored at or below 4° C on either crushed or dry ice, depending upon local regulations. Samples are transported under chain-of-custody to a State-certified analytic laboratory.

Field Screening

One of the remaining tubes is partially emptied leaving about one-third of the soil in the tube. The tube is capped with plastic end caps and set aside to allow hydrocarbons to volatilize from the soil. After ten to fifteen minutes, a portable volatile vapor analyzer measures volatile hydrocarbon vapor concentrations in the tube headspace, extracting the vapor through a slit in the cap. Volatile vapor analyzer measurements are used along with the field observations, odors, stratigraphy and groundwater depth to select soil samples for analysis.

CAMBRIA

Water Sampling

Water samples, if they are collected from the boring, are either collected using a driven Hydropunch[®] type sampler or are collected from the open borehole using bailers. The groundwater samples are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.

Grouting

If the borings are not completed as wells, the borings are filled to the ground surface with cement grout poured or pumped through a tremie pipe.

MONITORING WELL INSTALLATION, DEVELOPMENT AND SAMPLING

Well Construction and Surveying

Groundwater monitoring wells are installed to monitor groundwater quality and determine the groundwater elevation, flow direction and gradient. Well depths and screen lengths are based on groundwater depth, occurrence of hydrocarbons or other compounds in the borehole, stratigraphy and State and local regulatory guidelines. Well screens typically extend 10 to 15 ft below and 5 ft above the static water level at the time of drilling. However, the well screen will generally not extend into or through a clay layer that is at least three ft thick.

Well casing and screen are flush-threaded, Schedule 40 PVC. Screen slot size varies according to the sediments screened, but slots are generally 0.010 or 0.020 inches wide. A rinsed and graded sand occupies the annular space between the boring and the well screen to about one to two ft above the well screen. A two ft thick hydrated bentonite seal separates the sand from the overlying sanitary surface seal composed of Portland type I,II cement.

Well-heads are secured by locking well-caps inside traffic-rated vaults finished flush with the ground surface. A stovepipe may be installed between the well-head and the vault cap for additional security.

The well top-of-casing elevation is surveyed with respect to mean sea level and the well is surveyed for horizontal location with respect to an onsite or nearby offsite landmark.

CAMBRIA

Well Development

Wells are generally developed using a combination of groundwater surging and extraction. Surging agitates the groundwater and dislodges fine sediments from the sand pack. After about ten minutes of surging, groundwater is extracted from the well using bailing, pumping and/or reverse air-lifting through an eductor pipe to remove the sediments from the well. Surging and extraction continue until at least ten well-casing volumes of groundwater are extracted and the sediment volume in the groundwater is negligible. This process usually occurs prior to installing the sanitary surface seal to ensure sand pack stabilization. If development occurs after surface seal installation, then development occurs 24 to 72 hours after seal installation to ensure that the Portland cement has set up correctly.

All equipment is steam-cleaned prior to use and air used for air-lifting is filtered to prevent oil entrained in the compressed air from entering the well. Wells that are developed using air-lift evacuation are not sampled until at least 24 hours after they are developed.

Groundwater Sampling

Depending on local regulatory guidelines, three to four well-casing volumes of groundwater are purged prior to sampling. Purging continues until groundwater pH, conductivity, and temperature have stabilized. Groundwater samples are collected using bailers or pumps and are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.

F:\TEMPLATE\SOPs\Wells-borings-gw.wpd

APPENDIX D

Permits

APR-25-02 THU 05:17 PM

ALAMEDA COUNTY PUBLIC WORKS AGENCY

WATER RESOURCES SECTION
399 FI.MHURST ST. HAYWARD CA. 94544-1395
PHONE (510) 670-5551
FAX (510)782-1939

APPLICANTS: PLEASE ATTACH A SITE MAP FOR ALL DRILLING PERMIT APPLICATIONS DESTRUCTION OF WELLS OVER 45 FEET REQUIRES A SEPARATE PERMIT APPLICATION

DRILL	DRILLING PERMIT APPLICATION						
POR APPLICANT TO COMPLETE	FOR OFFICE USE						
The Embarcaders & 1275 Stabarcaders in orlidard	PERMIT NUMBER _WUL-0469_ WELL NUMBER						
	PERMIT CONDITIONS						
Name Port of Oakland Dous Herman Address 530 Water St. Phone 510-627-1184 City, Dakland, CA 7ip 94607	Circled Permit Requirements Apply A. GENESIAI. 1. A permit application should be submitted so as to arrive at the ACPWA office five days prior to proposed starting date.						
MULICANT NOIR R. Elena Ramirez Iris Fourtammental Fox 510, 834.4199	2) Submit to ACPWA within 60 days after completion of permitted original Department of Water Resources. Well Completion Report.						
Addres 1615 Broadway, 42 1007 Phone 50.834.4747 City Dakland, CA Zip 94612	3. Permit is void if project not begun within 90 days of approval date						
	B. WATER SUPPLY WELLS						
TYPE OF PROJECT	 Minimum surface seal thickness is two inches of cement grout placed by tremie. 						
Well Construction Georgenical Investigation Cathodic Protection 11 George U Water Supply U Conformation U	2 Minimum scal digith is 50 feet for municipal and industrial webs of 20 feet for domestic and irrigation wells unless a lesser depth is specially approved.						
Monitoring Well Destruction (I	GROUNDWATER MONITURING WELLS INCLUDING PERSONE FER						
PROPONED WATER SUPPLY WELL USE New Doubestic (1 Replacement Donestic U	1. Minimum surface scal thickness is two meter of cement grout placed by tremie.						
Municipal II traigation U Inchristal Other U	 Minimum soul depth for monitoring wells is the maximum depth practicable or 20 feet. 						
DEHLING METHOD:	D. GEOTECHNICAL						
Mod Rolary 11 Art Rolary 11 Auger V	Backfill bure hole by trende with coment grout or coment grouvs and mixture. Upper two-three feet replaced in kind or with compacted cuttings.						
DRIBJER'S NAME Gregg Drilling	E. CATHODIC Fill hole anode zone with ennergic placed by mensie.						
DRILLER'S LICENSE NO. 485165	D. WELL DESTRUCTION Attached or Specified on pennit application.						
WELL PROJECTS O	G. SPECIAL CONDITIONS						
Prin Hole Diameter 8 in Maximum Casing Diameter 22 in Depth 15 it. Surface Seal Depth 3 8 Owner's Well Number MW-5	NOTE: One application must be submitted for each well or well destruction. Multiple borings on one application are acceptable for generalized and contamination investigations.						
GENTECHNICAL PROJECTS Number of Borings Maximum Hole Diameter in Depth	1-Tan						
PSTIMATED STARTING DATE 4 26 02 ESTIMATED COMPLETION DATE 5 26 02	APPROVED WAY						
Hereby agree to comply with all requirements of this perint and Akaneda County Ordinance	No. 73-68.						
APPENDANT'S SIGNATURE R. Elina Ranure DATE 4/23	510) 670 6633						
PI FASE PRINT NAME R. Heye Ramirez Royan	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						

May-14-02

10:49am

From-Irls Environmental

510 834 4189

T-552 P 003/003 F-473

ALAMEDA COUNTY PUBLIC WORKS AGENCY

WATER RESOURCES SECTION 199 ELMHURST ST. HAYWARD CA. 94544-1395 PHONE (519) 670-5564 PAX (510)782-1939

APPLICANTS: PLEASE ATTACH A SITE MAP FOR ALL DRILLING PERMIT APPLICATIONS DESTRUCTION OF WELLS OVER 45 FEET REQUIRES A SEPARATE PERMIT APPLICATION

DRILLIN	IG PERMIT APPLICATION
LOCATION OF PROJECT 1235 Embaveadoro Oaksieud	PERMIT NUMBER WOZ-0513 WELL NUMBER
CUENT O LA CALLA JOS	PERMIT CONDITIONS Chalest Period Requirements Apply
CIVENT Part of Oakland - Doug Herman Address 530 Natur St. Phone 510. 622-1184 Clo Oakland CA 20 94607	A. GENERAL 1. A permit application should be subardued to as to arrive at the ACPWA office five days prior to recorded souther date.
APPLICANT Norm R. AMA Ramirez Irus Andromes Let av 510 834-4159	L Sybria to ACPWA width 60 days after completion of permitted original Department of Wood Resources-Will Completion Report.
Address 1615 Brigadina, Moon 510, 834-4747 City Oakland 20 74612	 Petrist is vaid if project not begun whiten 90 days of approved date
	D. WATER SUPPLY WELLS
type of Project	 Asimipuo surfice esci foldinera is two inches of centera group placed by brende.
Wen Computation Geographical Investigation Computer Supply D Communication D Water Supply D Communication D	 Minimum and depth is 50 feet for musicipal and hodustrial wells or 20 feet for demossic and kelgadon wells unless a lesser depth is speckely approved.
Monitoring D Well Description	c. Groundwater monitoring wells including piezometers
ROPOSED WATER SUPPLY WELL USE New Demonds Q Replacement Domestic D	 Minimum surface real thickness is two below of comen grow placed by conia.
U pologicii U pologicii U pologicii U pologicii U Diner U	2. Minimus soul dans for monturing wells is the maximum depth practicable or 20 fear
DEPLING METHOD: MICH ROLLY O ATRULY O ALCO DE COLOR O ODER O	D. GECTECHNICAL Bucken bose hoje by neprie with economy gradit of convoid group and mixture. Upper two-tures had replaced in blad or with compacted comings.
RELER'S NAME VEW Drilling	E. CATHODIC Fill bole mode zone with concrete placed by tetale,
PRILLER'S LICENSE NO	Anached or Specified on points application
Drill Hoto Demoner & ta. Mandrahm Castray Disnasary isa. Dept. 15 R Sinface Stal Dopth 18 C Owner's Well Number 11 W ~ 1	G. SPECIAL CONDITIONS NOTE: One application must be cubmitted for each well or well University, Multiple begings on one application are acceptable for geotyclinical and contamination investigations.
BOTECHNICAL PROJECTS Fighter of Bothest in Dopuk	
STIMATED STARTING DATE May 15, 2002	APPROVED DATE 5-14-02
hereby Agree is comply with all requirements of this permit and Alamada Country Ordinance	e Nu. 73-69L JAMES YOU
PPI ICANT'S SIGNATUDE K. ELLE KUM DATE OTIL LEASE PRODUTNAME R. HEMA RAMINE ROY, 221.	
ALTO AND	·· \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

APPENDIX E

Well Sampling Forms

WELL DEPTH MEASUREMENTS

Well ID	Time	Product Depth	Water Depth	Product Thickness	Well Depth	Comments
MW-1	3:35		5.91		14.80	
MW-2	3:30		5.0 D		14.80	
MN-3	3:25		5. 🕭 🖯		12.60	
MW-4	3:20		6.20		14.25	
MW-5	3:15		4.69		12.00	
			-			
		·				
	_	-				
					-	·
						•

Project Name: Embarcadero Cove	Project Number: 458-1774
Measured By: 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	Date: 5-3-02

Project Name: Embarcadero Cove	Cambria Mgr: IY	Well ID: MW-1
Project Number: 458-1774	Date:05/ 03 /02	Well Yield:
Site Address:	Sampling Method:	Well Diameter: 2" pvc
1275 Embarcadero Oakland, Ca	Disposable bailer	Technician(s): SG
Initial Depth to Water: 5.91	Total Well Depth: 14.80	Water Column Height: 8,89
Volume/ft: 0.16	1 Casing Volume: 1, 5 3	3 Casing Volumes: 4.61
Purging Device: disposable bailer	Did Well Dewater?:	Total Gallons Purged: 5
Start Purge Time: 6:10	Stop Purge Time: 6:24	Total Time: 14 mins

| Casing Volume = Water column height x Volume/ft (gallons) | 2" 0 16 | 4" 0 65 | 6" 1 47

Time	Casing Volume	Temp.	рН	Cond.	Comments
6:15	1.5	16.1	7.41	3999	
6:20	3	15.9	7.29	3959	
6:25	5	15.9	7.25	3995	

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW-I	05/03/02	6:30	4VOAs	HCL	TPHg BTEX MTBE	8020/8260
			Amber		ТРН	8015

D.\TEMPLATE\FORMS\FIELD\WELLSAMP\WPD\ NSM\\$731794

Project Name: Embarcadero Cove	Cambria Mgr: IY	Well ID: MW-2	
Project Number: 458-1774	Date:05/ 03 /02	Well Yield:	
Site Address:	Sampling Method:	Well Diameter: 2" pvc	
1275 Embarcadero Oakland, Ca	Disposable bailer	Technician(s): SG	
Initial Depth to Water: 5.00	Total Well Depth: 14.80	Water Column Height: 4.80	
Volume/ft: 0.16	1 Casing Volume: 1.56	3 Casing Volumes: 4.70	
Purging Device: disposable bailer	Did Well Dewater?: 🕠	Total Gallons Purged: 5	
Start Purge Time: 5:25	Stop Purge Time: 5.39	Total Time: 14 mins	

 Well Diam.
 Volume/ft (gallons)

 1 Casing Volume = Water column height x Volume/ft
 2" 0 16

 4" 0.65

 6" 1 47

Time	Casing Volume	Temp.	pН	Cond.	Comments
5:30	1.5	15.9	7.14	3999	
5:35	3	15.9	7.19	3999	
5:35 5:40	5	15.9	7.21	3999	
			<u> </u>	<u>l</u> l	

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW-2	05/03/02	5:45	4VOAs	HCL	TPHg BTEX MTBE	8020/8260
			Amber		ТРНа	8015

D.\TEMPLATE\FORMS\FIELD\WELL\\AMP\\WPD\\NSM\\5/31/94

Project Name: Embarcadero Cove	Cambria Mgr: IY	Well ID: MW-3	
Project Number: 458-1774	Date:05/ 03 /02	Well Yield:	
Site Address: 1275 Embarcadero	Sampling Method:	Well Diameter: 2" pvc	
Oakland, Ca	Disposable bailer	Technician(s): SG	
Initial Depth to Water: 5.20	Total Well Depth: 12-60	Water Column Height: 7.40	
Volume/ft: 0.16	1 Casing Volume: 1.18	3 Casing Volumes: 3.55	
Purging Device: disposable bailer	Did Well Dewater?:	Total Gallons Purged: 3.5	
Start Purge Time: 4:48	Stop Purge Time: 4;54	Total Time: \umans	

1 Casing Volume = Water column height x Volume/ ft

Well Diam.	Volume/ft (gallons
2"	0 16
4"	0.65
6"	1 47

Time	Casing Volume	Тетр.	рН	Cond.	Comments
4:50	1.5	15.8	7.27	3999	
4:5D 4:52	3	_15.9	7.21	3999	
4:55	Ч	15.8	7.20	3999	
		· 			
					

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW-3	05/03/02	5:00	4VOAs	HCL	TPHg BTEX MTBE	8020/8260
			Amber		TPHd	8015

D.\TEMPLATE\FORMS\FIELD\WELLSAMP\WPD\NSM\5/31/94

Project Name: Embarcadero Cove	Cambria Mgr: IY	Well ID: MW-4
Project Number: 458-1774	Date:05/ 03 /02	Well Yield:
Site Address:	Sampling Method:	Well Diameter: 2" pvc
1275 Embarcadero Oakland, Ca	Disposable bailer	Technician(s): SG
Initial Depth to Water: 6.20	Total Well Depth: 14.25	Water Column Height: 8.65
Volume/ft: 0.16	1 Casing Volume: 1.28	3 Casing Volumes: 3.86
Purging Device: disposable bailer	Did Well Dewater?: no	Total Gallons Purged: 4
Start Purge Time: 4:25	Stop Purge Time: 4.39	Total Time: 14 mins

1 Casing Volume = Water column height x Volume/ft.

2"
0 16
4"
0 65
6"
1 47

Time	Casing Volume	Temp.	pН	Cond.	Comments
4:30	1.5	159	7.20	3999	
4:40	3	15.8	7.20	3999	
4:40	4	15.7	7.24	3999	
			·		

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW-4	05/03/02	4:45	4VOAs	HCL	TPHg BTEX MTBE	8020/8260
			Amber		ТРНа	8015

DATEMPLATENFORMSVIELDAWELLSAMP WPD NSM 5/31/94

Project Name: Embarcadero Cove	Cambria Mgr: IY	Well ID: MW-5
Project Number: 458-1774	Date:05/ 03 /02	Well Yield:
Site Address:	Sampling Method:	Well Diameter: 2" pvc
1275 Embarcadero Oakland, Ca	Disposable bailer	Technician(s): SG
Initial Depth to Water: 4.69	Total Well Depth: 12-00	Water Column Height: 7.31
Volume/ft: 0.16	1 Casing Volume: 1.16	3 Casing Volumes: 3.50
Purging Device: disposable bailer	Did Well Dewater?: 10	Total Gallons Purged: 3.5
Start Purge Time: 3;40	Stop Purge Time: 3.54	Total Time: 14 mins

Volume/ft (gallons) 0 16 Well Diam. I Casing Volume = Water column height x Volume/ ft 4" 6" 0.65

1 47

Time	Casing Volume	Temp.	рН	Cond.	Comments
3:45	1.5	15.9	7.25	3999	
3', 50	2	15.9	7.27	3999	
3:55	3	15.9	7.13	3999	
<u></u>					
<u></u>					
	<u> </u>		<u></u>		

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW-5	05/03/02	4:00	4VOAs	HCL	ТРНg ВТЕХ МТВЕ	8020/8260
			Amber		TPHd	8015

D TEMPLATE FORMS FELD WELLS AMP WPD NSM 5/31/94

Groundwater Monitoring Field Sheet

Well ID	Time	DTP	DTW	Product Thickness	Amount of Product Removed	Casing Diam.	Comment
MU-2	2:40		4.39				
MW-3	2:35		5.05				
MW-4	2:30		- SS				
MW-5	2.45		21.67.69				
				<u>. </u>			
		-					

Project Name: Embacca desp Cove	Project Number/Task: 458-1779-002
Measured By:	Date: 7-2-02

APPENDIX F

Survey Data

Virgil Chavez Land Surveying

312 Georgia Street, Suite 225 Vallejo, California 94590-5907 (707) 553-2476 • Fax (707) 553-8698

June 5, 2002

Project No.: 2003-37

Rob Marinai Cambria Environmental 1144-65th Street, Suite C Oakland, CA 94608

Subject:

Monitoring Well Survey

Port of Oakland 1275 Embarcadero Oakland, CA

Dear Rob:

This is to confirm that we have proceeded at your request to survey the ground water monitoring wells located at the above referenced location. The survey was completed on June 4, 2002. The benchmark for this survey was a Port of Oakland benchmark "TP184". The latitude, longitude and coordinates are for top of casings and are based on the California State Coordinate System, Zone III (NAD83) as per the Port of Oakland Record of Survey map recorded in Book 18 of Surveys, Page 50. Benchmark Elevation 13.42 feet (Port of Oakland Datum).

Latitude Longitude Northing **Easting** Elev. Desc. 11.72 RIM MW-2 37.7876824 -122.25084402114007.51 6055751.15 11.46 TOC MW-2 12.79 RIM MW-3 37.7877898 -122.2509711 2114047.29 6055715.16 12.49 TOC MW-3 13.28 RIM MW-4 37.7879037

37.7879037 -122.2508868 2114088.29 6055740.30 13.13 TOC MW-4 37.7878807 -122.2506888 2114078.83 6055797.35 10.19 TOC MW-5

No. 6323
Eug. 12.31.02

Prof CALIFORNIA

Sincerely,

Virgil D. Chavez,PLS 6323

APPENDIX G

Laboratory Analytical Reports

McCampbell Analytical Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone 925-798-1620 Fax 925-798-1622
http://www.mccampbell.com/E-mail_main@mccampbell.com/

Cambria Env Technology	Client Project ID: #458-1789;	Date Sampled: 04/26/02
1144 65th Street, Suite C	Embarcadero Cove	Date Received. 04/30/02
Oakland, CA 94608	Client Contact: Rob Marinai	Date Extracted: 04/30/02
	Client P O:	Date Analyzed. 05/01/02-05/02/02

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction :	method. SW5030B	ine Kange	(00-012) +0	12ttie Fryuroca Analytical n	nethods, SW802		n Diga and		Work Orde	r 0204481
Lab ID	Client ID	Matrix	TPH(g)	МТВЕ	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-5-7.0	S	ND	ND	МD	ND	ND	ND	1	106
002A	MW-5-100	S	ND	ND	ND	ND	ND	ND	1	112
003A	MW-5-10.5D	S	ND	ND	ND	ND	ND	ND	1	109
	-									
			······································					,		
			······							·

*water and vapor samples are reported in ug/L, soil and sludge samples in mg/kg, wipe samples in ug/wipe, and TCLP extracts in ug/L.

5

0.05

0.5

0.005

0.5

0.005

0.5

0.005

0.5

0.005

ug/L

mg/Kg

DF = dilution factor.

Reporting Limit for DF =1;

ND means not detected at or

above the reporting limit

cluttered chromatogram; sample peak coelutes with surrogate peak.

W

50

1

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) no recognizable pattern.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 McCampbell Analytical Inc. Telephone 925-798-1620 Fax 925-798-1622 http://www.mccampbell.com/E-mail_main@mccampbell.com Client Project ID. #458-1789; Cambria Env. Technology Date Sampled. 04/26/02 Embarcadero Cove Date Received. 04/30/02 1144 65th Street, Suite C Date Extracted: 04/30/02 Client Contact: Rob Marinai Oakland, CA 94608 Client P.O.: Date Analyzed. 05/01/02

traction m	nethod. SW3550C		Analytical methods: S'	W8015C	Work O	order: 02044
Lab ID	Chent ID	Matrix	TPH(d)	ТРН(то)	DF	% SS
001A	MW-5-70	S	8.6,g,b	15	1	99 3
002A	MW-5-100	S	14,g,b	22	ı	98.3
003A	MW-5-10.5D	S	12,g,b	26	1	104
			····			
		-	<u></u>			
		<u> </u>	~			<u></u>
	Limit for DF =1; not detected at or	W S	NA	NA 5		g/L g/Kg

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP / STLC / SPLP extracts in

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax . 925-798-1622 http://www.mccampbell.com/E-mail: main@mccampbell.com/

Cambria Envir	onmental Technol et, Suite C	Chent Project Embarcadero	t ID: #458-1789; Cove	Date Sampled: 04/26/02 Date Received: 04/30/02 Date Extracted: 04/30/02 Date Analyzed: 05/01-05/02/02			
Oakland, CA 9	94608	Client Contac	ct: Rob Marinai				
		Client P.O:					
EPA methods 831		natic Hydrocarbon	s (PAH / PNA) by L	iquid Chromatograp	hy		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Lab ID	0204481-001A	0204481-002A	0204481-003A	Repo	rting Limit	
	Client ID	MW-5-7.0	MW-5-10 0	MW-5-10 5D		W, STLC	

EPA methods 8310 and 3310					
Lab ID	0204481-001A	0204481-002A	0204481-003A	Report	ting Limit
Client ID	MW-5-7.0	MW-5-10 0	MW-5-10 5D	_ s	w, stl
Matrix	S	S	S	3	TCLP
Compound		Concentration*		ug/kg	ug/L
Acenaphthene	ND	ND<10	ND<10	50	N/A
Acenaphthylne	ND	ND<10	ND<10	50	N/A
Anthracene	ND	ND<10	ND<10	50	N/A
Benzo(a)anthracene	8.5	54	73	5 0	N/A
Benzo(b)fluoranthene	16	50	67	5 0	N/A
Benzo(k)fluoranthene	11	34	45	5.0	N/A
Benzo(g,h,1)perylene	23	45	43	50	N/A
Benzo(a)pyrene	33	110	140	50	N/A
Chrysene	ND	23	25	5.0	N/A
Dibenzo(a,h)anthracene	25	71	86	5.0	N/A
Fluoranthene	23	200	220	5.0	N/A
Fluorene	ND	ND<10	ND<10	50	N/A
Indeno(1,2,3-cd)pyrene	28	120	91	5.0	N/A
Naphthalene	ND	ND<10	ND<10	50	N/A
Phenanthrene	ND	17	17	50	N/A
Pyrene	86	540	570	5.0	N/A
% Recovery Surrogate 1	100	103	104		
% Recovery Surrogate 2	108	102	103		
Comments					

^{*} water and vapor samples are reported in ug/L, soil and sludge samples in mg/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in ug/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

⁽h) a lighter than water immiscible sheen is present; (i) liquid sample that contains >~5 vol % sediment; (j) sample diluted due to high organic content.

surrogate diluted out of range or surrogate coelutes with another peak

QC SUMMARY REPORT FOR SW8021B/8015Cm

BatchID: 1597

Matrix: S

WorkOrder 0204481

EPA Method: SW802	1B/8015Cm E	xtraction:	SW5030E	3	Ext. Date:	4/30/02	Spiked Sample ID: N/A				
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance Criteria (
Compound	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
TPH(gas)	N/A	0 60	N/A	N/A	N/A	89.4	109	20	80	120	
мтве	N/A	0 10	N/A	N/A	N/A	82.3	90.4	94	80	120	
Benzene	N/A	0.10	N/A	N/A	N/A	85 6	104	20	80	120	
Toluene	N/A	0.10	N/A	N/A	N/A	89 3	111	22	80	120	
Ethylbenzene	N/A	0.10	N/A	N/A	N/A	90.4	107	16	80	120	
Xylenes	N/A	0.30	N/A	N/A	N/A	89.7	107	17	80	120	
%SS	N/A	0.10	N/A	N/A	N/A	105	801	3 1	80	120	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions NONE

MS = Matrix Spike; MSD ≈ Matrix Spike Duplicate; LCS = Laboratory Control Sample, LCSD = Laboratory Control Sample Duplicate; RPD ≈ Relative Percent Deviation.

N/A = not enough sample to perform matrix spike, or analyte concentration in sample exceeds spike amount.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

* MS and / or MSD spike recoveries may not be near 100% or their RPDs near 0% if: a) the sample is inhomogeneous AND contains significant concentrations of analyze relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone 925-798-1620 Fax 925-798-1622
http://www.mccampbell.com/E-mail:/main@mccampbell.com/

QC SUMMARY REPORT FOR SW8015C

BatchID: 1600

Matrix: S

WorkOrder: 0204481

EPA Method: SW8015C	Extraction: SW3550C			2	Ext. Date:	4/30/02	Spiked Sample ID: N/A				
Compound	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
Compound	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
TPH(d)	N/A	150	N/A	N/A	N/A	91.4	89.9	1.7	70	130	
%SS1	N/A	50	N/A	N/A	N/A	94 7	94 6	0 032	70	130	
%SS2	N/A	50	N/A	N/A	N/A	97 8	96 6	1.3	70	130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike, MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike, or analyte concentration in sample exceeds spike amount

% Recovery = 100 * (MS-Sample)/(Amount Spiked); RPD = 100 * (MS - MSD)/(MS + MSD) * 2.

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

QC REPORT

SVOCs (EPA 8270/625/525)

Date: 05/01/02	Extractio	n: N/A			Matrix:	Soil	
		Concen	tration:	mg/kg	%Rec	overy	
Compound	Sample	MS	MSD	Amount Spiked	MS	MSD	RPD
SampleID: 50102					Instrume	<u>nt</u> G	C-8
Surrogate1	ND	980.0	980.0	1000.00	98	98	0.0
Pyrene	ND	770.0	780.0	1000.00	77	78	1.3
Pentachlorophenol	ND	1320.0	1320.0	2000.00	66	66	0.0
2,4-Dinitrotoluene	ND	760.0	740.0	1000.00	76	74	27
4-Nitrophenol	ND	1220.0	1220.0	2000.00	61	61	0.0
Acenaphtene	ND	790.0	780.0	1000.00	79	78	1.3
4-Chloro-3-metylphenol	ND	1460.0	1480.0	2000.00	73	74	1.4
1,2,4-trichlorobenzene	ND	900.0	840.0	1000.00	90	84	6.9
N-nitroso-di-n-propyl	ND	850.0	870.0	1000 00	85	87	2.3
1,4-Dichlorobenzene	ND	870.0	860.0	1000.00	87	86	1.2
2-Chlorophenol	ND	1640.0	1680.0	2000.00	82	84	2.4
Phenol	ND	1460.0	1460.0	2000.00	73	73	0.0

% Re covery =
$$\frac{(MS-Sample)}{AmountSpiked}$$
 100
$$(MS-MSD)$$

CHAIN OF CUSTODY RECORD McCAMPBELL ANALYTICAL, INC. 110 2 AVENUE SOUTH, #D7 TURN AROUND TIME B' PACHECO, CA 94553 RUSH 24 HOUR 48 HOUR 5 DAY Telephone: (925) 798-1620 Fax: (925) 798-1622 Report To: Rob Missing - Bill To: Portos Oskland - Don Analysis Request Other Comments Company: Cambria Environmental Technology 1144 65th Street, Suite C BTEX & TPH & Gas (602/8020 + 8015)/ MTBE Oakland, CA 94608 Total Petroleum Hydrocarbons (418 1) Fax: (510) 420-9170 Tele: (510) 420-0700 Project #: 458-1789 Project Name: Embarradera Cours BTEX ONLY (EPA 602 / 8020) EPA 608 / 8080 PCB's ONLY Project Location: 1275 Embarradera Cova Lead (7240/7421/239.2/6010) Sampler Signature: EPA 624 / 8240 / 8250 COHTEM TPH as Diesel (8015) SAMPLING MATRIX PRESERVED PAH's / PNA's by Type Containers EPA 625 / 8270 EPA 601 / 8010 EPA 608 / 8080 # Containers SAMPLE ID LOCATION Air Sludge Other Time Date HNO, HC Se MW-5-7.0 4/76/0 9:25, 9.35 MW-5-10.0 MW-5- 0.5D 9.350 Relinquished Bye Time: Silico gel classup for TPH, ... I TPHmo Received By:

120

1410

Relinquished By:

Date: Time: Received By: , 4/30 (525 March)

McCampbell Analytical Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0204481

Client:

Cambria Env. Technology 1144 65th Street, Suite C Oakland, CA 94608 TEL:

(510) 420-0700

FAX: ProjectNo:

(510) 420-9170 #458-1789; Emb

PO:

30-Apr-02

								Requested Tests	- 5		
Sample ID	ClientSamplD	Matrix	Collection Date	Bottle	SW8015C	, 8021B/801	5 SW8310	l			;
0204481-001	MW-5-7 0	Soil	4/26/02 9:25:00 AM	 - · ·	 ; A	A	- · - A	· ·			[
0204481-002	MW-5-10.0	Soil	4/26/02 9:35:00 AM		A	1 A	A			<u> </u>	
0204481-003	MW-5-10.5D	Soil	4/26/02 9:35:00 AM		A	A	A	1 .			

Comments:

Date/Time		Date/Time
Relinquished by:	Received by:	
Relinquished by:	Received by:	
Relinquished by:	Received by:	

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone 925-798-1620 Fax 925-798-1622
http://www.mccampbell.com/E-mail/main@mccampbell.com/

Cambria Env. Technology	Client Project ID #458-1774-002;	Date Sampled: 05/03/02
1144 65th Street, Suite C	Embaradero Cove	Date Received: 05/08/02
,	Client Contact: Ian Young	Date Extracted: 05/09/02-05/14/02
Oakland, CA 94608	Chent P O.:	Date Analyzed: 05/09/02-05/14/02

	Gasolir	e Rang	e (C6-C12) Vo	latile Hydroca	rbons as G	asoline wit	h BTEX and	MTBE*		
Extraction :	method SW5030B			Analytical n	nethods: SW802	1B/8015Cm			Work Orde	r: 0205105
Lab ID	Client ID	Matrix	ТРН(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% \$S
001A	MW-I	w	20,000,a,ı	ND<500	1400	160	580	630	100	113
002A	MW-2	w	ND	ND	ND	ND	ND	ND	ı	113
003A	MW-3	w	280,a	ND	0.74	0 87	ND	DM	1	97,4
004A	MW-4	w	19,000,a	ND<1000	1500	240	730	1400	200	105
005A	MW-S	w	ND	ND	ND	ND	ND	ND	1	99.8
	A F4 000 000 000 000 000 000 000 000 000									
	· ···									
										-
								· · · · ·		
	g Limit for DF =1;	w	50	5.0	0.5	0.5	0.5	0.5	บุ	z/L
	ND means not detected at or above the reporting limit		1.0	0.05	0.005	0.005	0.005	0.005	mg	/Kg

*water and vapor samples are reported in ug/L, soil and sludge samples in mg/kg, wipe samples in ug/wipe, and TCLP extracts in ug/L.

DF = dilution factor

above the reporting limit

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol % sediment, j) no recognizable pattern.

Edward Hamilton, Lab Director

l Analytical In

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone 925-798-1620 Fax 925-798-1622
http://www.mccampbell.com/E-mail/main@mccampbell.com/

Cambria Env. Technology	Client Project ID: #458-1774-002;	Date Sampled: 05/03/02
1144 65th Street, State C	Embaradero Cove	Date Received: 05/08/02
Oakland, CA 94608	Client Contact: Jan Young	Date Extracted: 05/08/02
Cariana, CA 24000	Chent P.O.:	Date Analyzed: 05/08/02-05/09/02

xtraction method S'	W3510C		Analytical methods, SW8015C		Work O	der 020510
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
205105- 0 01B	MW-1	w	5300, d ,b	450	ı	88.7
205105-002B	MW-2	w	440,c/m	440	1	86 2
205105-003B	MW-3	w	770,d,b g,f	430	1	89.0
205105-004B	MW-4	w	3600, d	300	1	93 9
205105-005B	MW-5	w	74,b,g	ND	ı	98.2
	-					
		- 				
Reporting L	imit for DF =1;	w	50	250	με	/L
	ot detected at or reporting limit	S	NA	NA	mg	/Kg

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP / STLC / SPLP extracts in ug/L

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil, n) stoddard solvent.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract

QC SUMMARY REPORT FOR SW8021B/8015Cm

BatchID: 1738

Matrix W

WorkOrder: 0205105

EPA Method	SW8021B/801	5Cm E	xtraction	SW5030B	,	Ext Date	5/08/02	\$	piked Samp	le ID 02051	01-001A
Companied		Sample	Spiked	MS*	MSD*	IMS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
Compound	_ •	μg/L	μg/Ł	% Rec	% Rec	% RPD	% Rec	% Rec	% RPD	Low	High
TPH(gas)		ND	60	105	102	3 10	108	104	3 8	80	120
MTBE		ND	10	107	99 7	6 63	93 5	915	2 2	80	120
Benzene		ND	10	106	109	2 42	108	111	2 1	80	120
Toluene	-	ND	10	107	109	1 61	109	111	2.0	80	120
Ethylbenzene		ND	10	108	109	0 877	110	109	0 75	80	120
Xylenes		ND	30	110	107	3 08	113	110	3 0	80	120
%SS		105	10	103	106	2 28	103	105	2 5	80	120

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions NONE

MS = Matrix Spike, MSD = Matrix Spike Duplicate, LCS = Laboratory Control Sample, LCSD = Laboratory Control Sample Duplicate, RPD = Relative Percent Deviation

N/A = not enough sample to perform matrix spike, or analyte concentration in sample exceeds spike amount

% Recovery = 100 * (MS-Sample) / (Amount Spiked), RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

' MS and / or MSD spike recoveries may not be near 100% or their RPDs near 0% if: a) the sample is inhomogeneous AND contains significant concentrations of analyze relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery

110 2nd Avenue South, #D7. Pacheco, CA 94553-5560 Felephone 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com/E-mail_main@mccampbell.com/

QC REPORT

EPA 8015m + 8020

Date: 05/08/02	Extraction	EPA :	5030		Matrix:	Water		
		Concen	tration:	ug/L	%Rec	overy		
Compound	Sample	MS	MSD	Amount Spiked	MS	MSD	RPD	
SampleID 50802				7	Instrumen	t GC-	2 A	-
Surrogate1	ND	101 0	99.7	100.00	101	100	1.3	n
TPH (diesel)	ND	7500 0	7500 0	7500.00	100	100	0.0	ļ

% Re covery = $\frac{\text{(}MS-Sample\text{)}}{AmountSpiked}$ 100

 $RPD = \frac{(MS - MSD)}{(MS + MSD)} 2100$

RPD means Relative Percent Deviation

McCampbell Analytical Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0205105

Client:

Cambria Env. Technology 1144 65th Street, Suite C Oakland, CA 94608

TEL:

(510) 420-0700

FAX: ProjectNo: (510) 420-9170

#458-1774-002;

PO:

08-May-02

								Requested Tests				
Sample ID	ClientSampID	Matrix	Collection Date	Bottle	SW8015C	. 8021B/801	5				1	
0205105-001		Water	5/3/02 6:30:00 AM			. <u></u> A	· · · · ·		-	-		
0205105-002	MW-2	Water	5/3/02 5:45:00 AM		В	Α		1	1		1	
0205105-003	MW-3	Water	5/3/02 5:00:00 AM	1	В	. A						
0205105-004	MW-4	Water	5/3/02 4·45:00 AM		В	Α					1	
0205105-005	MW-5	Water	5/3/02 4:00:00 AM		В	А			!			

Comments:

Date/Time	Date/Time
Relinquished by:	Received by:
Relinquished by:	Received by:
Relinquished by:	Received by:

Telephone: (925) 798 Report To: Jan You. Company: Cambria Environme 6262 Hollis Street Emeryville, CA 9466 Tele: (510) 420-0700 Project #: 458-1774 Project Location: 1275 Fm	MPBELL ANAL 110 2 ^M AVENUE SOR PACHECO, CA 96 8-1620 13 49 457 15 49 457 16 Calla	UIH, #107 4553 Fax: (925) 798-1622 ill To: Cambria Fry Tech Lambria Try Fech L. St. d. Ce ix: (510) 450-8295 120-9170 oject Name: Falsadaa Cambria	CHAIN OF CUSTODY RECORD. TURN AROUND TIME CORD. RUSH 24 HOUR 48 HOUR 5 DAY Analysis Request Other Comments One Comments
Sampler Signature: SAMPLE ID LOCATION	SAMPLING	MATRIX METHOD PRESERVED	EX & TPH as Gas (602)3020 TH as Diesel (8015)4 Mo. Tal Petrolcum Oil & Grease Tal Petrolcum Hydrocarhon A 601 / 8010 A 608 / 8080 PCB's ONL, Y A 608 /
MW-2 MW-3 MW-4	53-02 5:45 . 5-3-02 5:00 . 53-02 4:45	5 Um X X X X X X X X X X X X X X X X X X	
	5-3-02 8:30 Date: Time: R	Received By: Secure focation Received By: Secure focation Received By:	Remarks: Report results in EDF format VOLSTANSIOTICE PRESENTATION

	McCampbell	Analytical	Inc.
--	------------	------------	------

110 2nd Avenue South #D7, Pacheco CA 94553.5560
Telephone 925-798-1620 Fax 925-798-1622
http://www.mccampbell.com/E-mail/man/@mccampbell.com/

Cambria	Cambria Env. Technology			Client Project ID: 458-1789, Embarcadero Cove Client Contact. Rob Marinai Client P.O.:				Date Sampled: 05/15/02 Date Received: 05/16/02 Date Extracted: 05/16/02				
J144 65th Street. State C Oakland, CA 94608												
			Client Con									
			Client P.O.					Date Analyzed: 05/17/02				
	Gasoli	ine Range	(C6-C12) Vo	latile Hydroca	irbons as G	asoline v	vith BTEX and	MTBE*				
Extraction me	thod SW5030B		_	Analytical n	nethods SW802	1B/8015Cm		į	Work Orde	r 0205244		
Lab ID	Chent ID	Matrix	TPH(g)	МТВЕ	Benzene	Toluen	e Ethylbenzene	Xylenes	DF	% SS		
001A	S1-A,B,C,D	S	450,a	ND<5.0	. 0 63	26	51	15	100	117		

*water and vapor samples are reported in ug/L, soil and sludge samples in mg/kg, wipe samples in ug/wipe, and TCLP extracts in ug/L

0.05

DF = dilution factor

Reporting Limit for DF =1;

above the reporting limit

ND means not detected at or i

cluttered chromatogram, sample peak coelutes with surrogate peak.

S

50

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant, b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant, h) lighter than water immiscible sheen/product is present, i) liquid sample that contains greater than ~2 vol % sediment, j) no recognizable pattern

0.5

0.005

0.5

0.005

0.5

0.005

0.5

0 005

ug/L

mg/Kg

			http://www.m	ccampbell com E-mail	mam@mccamp	bell com	
Cambria Env	Technology	Client Proje	ect ID: 458-1789; Embarcadero	Date Sampled:	05/15/02	<u></u>	
1144 65th Stre	zet, Suite C		Cove	Date Received	05/16/02		
Oakland, CA 9	Chent Contact: Rob Marinai Date Extracted 05/16/02				05/16/02		
Oukland, Ch		Client P O:		Date Analyzed	05/17/02		
	Die	esel Range (C1	0-23) Extractable Hydrocarbon	s as Diesel*	······································		
Extraction method S			Analytical methods SW8015C		Wor	k Order	0205244
Lab ID	Client ID	Matrix	TPH(d)			DF	% SS
001A	\$1-A,B,C,D	; s	150,d,g			10	104
	* * ***********************************	,		· · · · · · · · · · · · · · · · · · ·			
		1					
	· 				<u> </u>		
					-	·	- · ·
- ~~ ~ ~ ~	·						
		1				<u>-</u> , .	
						<u>_</u> _	. .
					· · · · · · · · · · · · · · · · · · ·		
					<u> </u>		···
	·					 ;	
					<u> </u>		
						<u>:</u>	
	Limit for DF =1;	W	NA		<u> </u>	N.	
	not detected at or reporting limit	S)			mg/	Kg

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation. a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant), d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel, f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range, l) bunker oil, m) fuel oil; n) stoddard solvent.

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP / STLC / SPLP extracts in ug/L

[#] cluttered chromatogiam resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

McCampbell Analytical Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone 925-798-1620 Fax 925-798-1622
http://www.mccampbell.com/E-mail_main@mccampbell.com/

Cambria Env. Technology		Date Sampled 05/15/02
1144 65th Street, State C	Cove	Date Received 05/16/02
Oakland, CA 94608	Client Contact: Rob Marinai	Date Extracted. 05/16/02
Canana, CA 74000	Client P.O:	Date Analyzed. 05/19/02-05/24/02

Volatiles Organics by GC/MS (Basic Target List)*

 Extraction Method
 SW5030B
 Analytical Method
 SW8260B
 Work Order 0205244

 Lab ID
 0205244-001A

Lao ID	0203244-001A											
Client 1D	S1-A,B,C,D											
Matrix	Soil											
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit					
Acetone	ND<5000	100	50	Benzene	ND<500	100	5					
Bromobenzene	ND<500	100	5	Bromochloromethane	ND<500	100	5					
Bromodichloromethane	ND<500	100	5	Bromoform	ND<500	100	5					
Bromomethane	ND<500	100	5	2-Butanone (MEK)	ND<1000	100	10					
n-Butyl benzene	3200	100	5	sec-Butyl benzene	640	100	5					
tert-Butyl benzene	1100	100	5	Carbon Disulfide	ND<500	100	5					
Carbon Tetrachloride	ND<500	100	5	Chlorobenzene	ND<500	100	5					
Chloroethane	ND<500	100	5	2-Chloroethyl Vinyl Ether	ND<1000	100	10					
Chloroform	ND<500	100	5	Chloromethane	ND<500	100	5					
2-Chlorotoluene	ND<500	100	5	4-Chlorotoluene	ND<500	100	5					
Dibromochloromethane	ND<500	100	5	1,2-Dibromo-3-chloropropane	ND<500	100	5					
1,2-Dibromoethane (EDB)	ND<500	100	5	Dibromomethane	ND<500	100	5					
1,2-Dichlorobenzene	ND<500	100	5	1,3-Dichlorobenzene	ND<500	100	5					
1,4-Dichlorobenzene	ND<500	100	5	Dichlorodifluoromethane	ND<500	100	5					
1,1-Dichloroethane	ND<500	100	5	1,2-Dichloroethane (1,2-DCA)	ND<500	100	5					
1,1-Dichloroethene	ND<500	100	5	cis-1,2-Dichloroethene	ND<500	100	5					
trans-1,2-Dichloroethene	ND<500	100	. 5	1,2-Dichloropropane	ND<500	100	5					
1,3-Dichloropropane	ND<500	100	5	2,2-Dichloropropane	ND<500	100	5					
1,1-Dichloropropene	ND<500	100	5	cis-1,3-Dichloropropene	ND<500	100	5					
trans-1,3-Dichloropropene	ND<500	100	5	Ethyl benzene	5000	100	5					
Hexachlorobutadiene	ND<500	100	5	2-Hexanone	680	100	5					
lodomethane (Methyl iodide)	ND<1000	100	10	4-Isopropyl toluene	540	100	5					
Isopropyibenzene	840	100	5	4-Methyl-2-pentanone (MIBK)	2100	100	5					
Methylene chloride	ND<2500	100	5	Methyl-t-butyl ether (MTBE)	ND<500	100	5					
Naphthalene	6100	100	5	n-Propyl benzene	4400	100	5					
Styrene	ND<500	100	5	1,1,1,2-Tetrachloroethane	ND<500	100	5					
1,1,2,2-Tetrachloroethane	ND<500	100	5	Tetrachloroethene	ND<500	100	5					
Toluene	2000	100	5	1,2,3-Trichlorobenzene	ND<500	100	5					
1,2,4-Trichlorobenzene	ND<500	100	5	1,1,1-Trichloroethane	ND<500	100	5					
1,1,2-Trichloroethane	ND<500	100	5	Trichloroethene	ND<500	100	5					
Trichlorofluoromethane	ND<500	100	5	1,2,3-Trichloropropane	ND<500	100	5					
1,2,4-Trimethylbenzene	11,000	100	5	1,3,5-Trimethylbenzene	3400	100	5					
Vinyl Acetate	ND<5000	100	50	Vinyl Chloride	ND<500	100	5					
Xylenes	12,000	100	5									
			gate Re	coveries (%)								
%SS1:	97.7			%SS2: 94.2								

%SS3
Comments

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

94 0

(h) lighter than water immiscible sheen/product is present; (i) liquid sample that contains greater than ~2 vol. % sediment, (j) sample diluted due to high organic content.

^{*}water and vapor samples are reported in ug/L, soil and sludge samples in ug/kg, wipes in ug/wipe and all TCLP / SPLP extracts in ug/L

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax 925-798-1622 http://www.mccampbell.com/E-mail/main@mccampbell.com/

			http://www.n	iccampbell com E-mail maii	n@mccampbell co	m	
Cambria Env. Technology	Client Project ID: 458-1789; Embarcadero Cove			Date Sampled: 05/15/02			
1144 65th Street, Suite C		Cove		Date Received: 05/16/02			
Oakland, CA 94608	Client Contact: I	Rob Marinai		Date Extracted: 05/16/02			
	Chent P.O.:			Date Analyzed: 05/16/02-05/17/02			
		CAM 17 M	etals				
Lab ID	0205244-001A				Reporting Lin	it for DF =1;	
Client ID	S1-A,B,C,D			ND means not detected above the reporting limit			
Matrix	S	-	· -	ł	S S	W	
Extraction Type	TTLC				TTLC(mg/Kg)	mg/L	
	ICP I	Metals, Conc	entration*		<u></u>		
Analytical Method: 6010C	Extra	ction Method: SW	73050B				
Dilution Factor	1				1	1	
Альтопу	ND				2.5	NA	
Barium	120				2.5	NA	
Beryllium	ND				0.5	NA	
Cadmum	ND				0.5	NA	
Chromum	29		 		0.5	NA	
Cobalt	8 4		<u> </u>		2	NA	
Copper	24				2	NA]	
Lead	48				3	NA	
Molybdenum	ND	_			25	NA	
Nickel	34				2	NA.	
Silvei	ND				1	NA	
Vanaduum	28				2	NA NA	
Zinc	110			— 	1 1	NA	
% SS	961	14.1.0			<u>. </u>		
Analytical Method, SW7010		Metals, Conc ction Method: SW				1	
Dilution Factor	ì		Ī		1	1	
Arsenic	4 2				2.5	NA	
Selenium	ND		 		2.5	NA NA	
Thallium	ND				2.5	NA	
Analytical Method. SW7471B		oor Metals, Co	oncentration*				
Dilution Factor	1 LXuac	onom freedom, 5W	1		1 1		
Mercury	0.17			<u> </u>	0.06	NA NA	
Comments					1 0.00 1		
					↓		

* water samples are reported in mg/L, soil/sludge/solids/ samples in mg/kg, wipes in ug/wipe and all TCLP / STLC / DISTLC / SPLP extracts in mg/L

ND means not detected above the reporting limit; NA means not applicable to this sample or instrument

Analytical Methods. EPA 6010C/200.7 for all elements except: 200.9 (water-Sb, As, Pb, Se, Tl); 245.1 (Hg); 7010 (sludge/soil/solids/oil/ wipes - As, Se, Tl); 7471B (Hg)

DISTLC extractions are performed using STLC methodology except that deionized water is substituted for citric acid buffer as the extraction fluid. DISTLC results are not applicable to STLC regulatory limits.

1) liquid sample that contains greater than ~2 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone 925-798-1620 Fax 925-798-1622
http://www.mccampbell.com/E-mail/main@mccampbell.com/

QC SUMMARY REPORT FOR SW8021B/8015Cm

BatchID: 1895

Matrix S

WorkOrder 0205244

EPA Method SW8	3021B/8015Cm E	xtraction	SW5030	3	Ext Date:	5/16/02	Spiked Sample ID: N/A			
Compound	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
Compound	mg/Kg	mg/Kg	% Rec	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(gas)	N/A	0.60	N/A	N/A	N/A	98.6	99 6	10	80	120
МТВЕ	N/A	0 10	N/A	N/A	N/A	83 8	87 8	47	80	120
Benzene	N/A	0.10	N/A	N/A	N/A	99 3	104	4.5	80	120
Toluene	N/A	0.10	N/A	N/A	N/A	104	110	5 6	80	120
Ethylbenzene	N/A	0.10	N/A	N/A	N/A	103	109	5 2	80	120
Xylenes	N/A	0.30	N/A	N/A	N/A	107	110	31	80	120
%SS	N/A	0 10	N/A	N/A	N/A	101	104	3.8	80	120

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate, RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike, or analyte concentration in sample exceeds spike amount.

% Recovery = 100 * (MS-Sample) / (Amount Spiked), RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

* MS and / or MSD spike recoveries may not be near 100% or their RPDs near 0% if: a) the sample is inhomogeneous AND contains significant concentrations of analyze relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax 925-798-1622 http://www.mccampbell.com/E-mail_main@mccampbell.com/

QC REPORT

EPA 8015m + 8020

Date: 05/17/02	Extraction: EPA 5030				Matrix:		
•	Concentration: mg/kg				%Rec		
Compound	Sample	MS	MSD	Amount Spiked	MS	MSD	RPD
SampleID: 51602 Instrument GC-2 B							
Surrogate1	ND	106.000	104.000	100.00	106	104	1.9
TPH (diesel)	ND	149.000	150.000	150 00	99	100	0.7

 $\% \text{ Re covery} = \frac{\left(MS - Sample\right)}{AmountSpiked} 100$

 $RPD = \frac{(MS - MSD)}{(MS + MSD)} 2.100$

RPD means Relative Percent Deviation

QC SUMMARY REPORT FOR SW8260B

BatchID: 1905

Matrix: S

WorkOrder: 0205244

EPA Method. SW8260B	E	Extraction ^e		3	Ext Date: 5/16/02		S	Spiked Sample ID: 0205243-001A			
Compound	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
Compound	µg/Kg	µg/Kg	% Rec. , % Rec		c. % RPD , % Rec.		% Rec % RPD		Low	High	
Benzene	ND	50	114	111	1.98	109	112	21	70	130	
Chlorobenzene	ND	50	102	103	0 768	102	103	0.50	70	130 .	
1,1-Dichloroethene	ND	50	124	125	111	118	114	2 9	70	130	
Methyl-t-butyl ether (MTBE)	DN	50	100	96 9	3.41	101	99 9	0 92	70	130	
Toluene	ND	50	104	105	0 223	102	102	0 54	70	130	
Trichloroethene	ND	50	94 2	93 1	114	87 2	86.7	0 48	70	130	
%SS1	101	50	101	99.4	1 63	102	98 6	2 9	70	130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate, LCS = Laboratory Control Sample, LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation

N/A = not enough sample to perform matrix spike, or analyte concentration in sample exceeds spike amount.

% Recovery = 100 * (MS-Sample) / (Arnount Spiked); RPD = 100 * (MS – MSD) / (MS + MSD) * 2.

* MS and / or MSO spike recoveries may not be near 100% or the RPDs near 0% if. a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels

110 2nd Avenue South, #D7, Pacheco. CA 94553-5560
Telephone: 925-798-1620 Fax 925-798-1622
http://www.mccampbell.com E-mail main@mccampbell.com

QC REPORT

CAM 17

Date: 05/17/02	Extraction	· · · · · · · · · · · · · · · · · · ·	Matrix: Soil				
		Concen	tration:	mg/kg	ng/kg %Recove		! !
Compound	Sample	MS	MSD	Amount Spiked	MS	MSD	RPD
SampleID: 51702					Instrumen	<u>it</u> P-1	AA
Beryllium	ND	5.3	5.4	5 00	105	109	3.6
Selenium	ND	9.7	8.3	10.00	97	. 83	16.1
Molybdenum	ND :	5.4	5.2	5.00	107	104	2.7
Silver	ND	0.43	0.43	0.50	85	85	00
Thallium	ND	9.3	8.5	10.00	93	85	8.5
Barium	ND	4.5	46	5.00	90	92	16
Nickel	ND	5.0	50	5.00	101	101	0.0
Arsenic	ND	9.2	9.3	10.00	92	93	1.0
Vanadium	ND	4.9	5.0	5.00	98	100	21
Surrogate1	ND	98.6	99.3	100.00	99	99	0.7
Zinc	ND	4.9	5.1	5.00	98	102	42
Copper	NÐ	4.8	4.8	5.00	97	96	1.1
Antimony	ND	4.8	5.0	5.00	96	100	3.9
Lead	ND	5.0	52	5.00	100	105	4.9
Cadmium	ND	5.4	5.3	5.00	108	106	1.2
Cobalt	ND	5.0	5.4	5.00	100	108	8.3
Mercury	ND	0.23	0.20	0.25	93	81	13.2
Chromium	ND	5.1	5.2	5.00	101	103	2.0

% Re covery = $\frac{(MS-Sample)}{AmountSpiked} \cdot 100$

 $RPD = \frac{(MS - MSD)}{(MS + MSD)} \cdot 2.100$

McCAMPBELL ANALYTICAL INC. CHAIN OF CUSTODY RECORD 110 2sd AVENUE SOUTH, #D7 TURN AROUND TIME PACHECO, CA 94553 Telephone: (925) 798-1620 RUSH 24 HOUR 48 HOUR 5 DAY Fax: (925) 798-1622 Report To: Rob Marinai Bill To: Analysis Request Other Comments Company: Cambria Environmental Technology Total Petroleum Oil & Grease (5520 E&F/B&F) 1144 65 Street, Suite C Oakland, CA 94608 Tele: (510) 420-0700 Fax: (510) 420-9170 Total Petroleum Hydrocarbons (418.1) Project #: 45%-1789 Project Name: Emberce dero Cova BTEX ONLY (EPA 602 / 8020) EPA 608 / 8080 Project Location: 1275 Embergodero Care, Ookland EPA 608 / 8080 PCB's ONLY LUFT 5 Metals Lead (7240/7421/239 2/6010) BTEX & TPH as Gas (602/8020 Sampler Signature EPA 624 / 8240 / 8260 METHOD TPH as Diesel (8015) SAMPLING MATRIX PRESERVED Type Containers CAM-17 Metals # Containers EPA 601 / 8010 SAMPLE ID LOCATION Air Sludge Other Date Time Water Ice HCI HNO₁ Other 5/15/02 2:00p SJ-A.B.C.D 4-pt Composite

	, , , , , , , , , , , , , , , , , , ,	i	
Relinquished By:	Date: 5/16/2	Time: 1046	Received By: 285
Relinguished By 285	Daje: 5/40/02	Time: 1315	Received By:
Relinquished By:	Date:	Time:	Received By:

PT '90 COLENTION AH HEAD SPACE ASSENT CO

Remarks:

VOAS LOSS PETTALS COTICA PRESERVATION APPROPRIATE CONTAINERS

7B.W

McCampbell Analytical Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0205244

Client:

Cambria Env. Technology 1144 65th Street, Suite C Oakland, CA 94608 TEL:

(510) 420-0700

FAX: ProjectNo: (510) 420-9170 #458-1789; Emb

PO:

16-May-02

					Requested Tests		,
Sample ID	ClientSampID	Matrix	Collection Date	Bottle 6010C	SW7010 SW7471B SW8015C 8021B/8	3015 SW8260B	i
0205244-001	S1-A,B,C,D	Soil	5/15/02 2:00:00 PM		A , A , A	. A	,

Comments:

Date/Time	Date/Time
Relinquished by:	Received by:
Relinquished by:	Received by:
Relinquished by:	Received by:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

	McCampbell	Analytical	Inc.
--	------------	------------	------

110 2nd Avenue South, #D7, Pacheco CA 94553-5560
Telephone 925-798-1620 Fax 925-798-1622
http://www.mccampbell.com/E-mail/main@mccampbell.com/

Cambria Env. Technology	Client Project ID: 458-1774-002;	Date Sampled: 06/10/02
1144 65th Street, Suite C	Embarcadero Cove	Date Received 06/10/02
Oaldand CA 04609	Client Contact: Ian Young	Date Extracted. 06/11/02-06/13/02
Oakland, CA 94608	Client P.O.:	Date Analyzed: 06/11/02-06/13/02

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction in	ethod SW5030B	ne stang	e (C0-C12) + 0		nethods SW802				Work Orde	r. 0206131
Lab ID	Client ID	Matrix	TPH(g)	мтве	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-2	w	ND	ND	ND	ДИ	ND	ND	1	110
002٨	MW-3	w	220,ь	ND	ND	0 82	ND	ND	1	109
003A	MW-4	w	28,000,a	ND<500	1700	230	930	2100	100	111
004A	MW-5	w	ND	ND	ND	ND	ND	ND	1	112
		 						·· · · ··		
					<u></u>			·		
	,								\ -	
					-					
	- ,									
	<u>-</u>	-								
										<u></u>
									-	
ND means	Limit for DF =1; not detected at or	W	50	5.0	0.5	0.5	0.5	0.5		/L
	reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg	/Kg

*water and vapor samples are reported in ug/L, soil and sludge samples in mg/kg, wipe samples in ug/wipe, and TCLP extracts in ug/L.

DF = dilution factor.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment, j) no recognizable pattern; k) TPH pattern that does not appear to be derived from gasoline (aviation gas).

ly:

McCampbell Analytical Inc.

110 2nd Avenuc South, #D7, Pacheco, CA 94553-5560
Telephone 925-798-1620 Fax . 925-798-1622
http://www.mccampbell.com/E-mail.main@mccampbell.com/

Cambria Env. Technology 1144 65th Street, Suite C	Client Project ID: 458-1774-002; Embarcadero Cove	Date Sampled. 06/10/02
	Embarcadero Cove	Date Received: 06/10/02
Oakland, CA 94608	Client Contact: Ian Young	Date Extracted: 06/07/02
	Client P.O:	Date Analyzed: 06/10/02-06/11/02

Diesel (C10-23) & Oil (C18+) Range, Extractable Hydrocarbons as Diesel & Motor Oil with Silica Gel Clean-Up*

W3510C				Work Or	der 0206131
Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
MW-2	w	220,b,g	370	1	92.7
MW-3	w	390,d,b,g	470	1	95 2
MW-4	w	4500,d	ND	1	102
MW-5	w	110,b,g	330	1	93 6
·					
				-	
· · · · · · · · · · · · · · · · · · ·	_				
					
·					······································
					
ot detected at or			<u> </u>	_1	
	Client ID MW-2 MW-3 MW-4 MW-5	Client ID Matrix MW-2 W MW-3 W MW-4 W MW-5 W imit for DF =1; W or detected at or	Client ID Matrix TPH(d) MW-2 W 220,b,g MW-3 W 390,d,b,g MW-4 W 4500,d MW-5 W 110,b,g Simit for DF ≈ 1; W 50 and detected at or	Client ID Matrix TPH(d) TPH(mo) MW-2 W 220,b,g 370 MW-3 W 390,d,b,g 470 MW-4 W 4500,d ND MW-5 W 110,b,g 330 imit for DF = 1; W 50 250 in detected at or G 250	Client ID Matrix TPH(d) TPH(mo) DF MW-2 W 220,b,g 370 1 MW-3 W 390,d,b,g 470 1 MW-4 W 4500,d ND 1 MW-5 W 110,b,g 330 1 imit for DF = 1; W 50 250 μg in detected at or

^{*} water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP / STLC / SPLP extracts in ug/L

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range, l) bunker oil; m) fuel oil, n) stoddard solvent.

Cambria Env. Technology	Client Project ID 458-1774-002;	Date Sampled: 06/10/02
1144 65th Street, State C	Embarcadero Cove	Date Received: 06/10/02
Oakland, CA 94608	Client Contact: Ian Young	Date Extracted: 06/10/02
Olikiling, CA 5 7000	Client P O.:	Date Analyzed: 06/11/02-06/12/02

	Polynu	clear Aromatic I	Hydrocarbons (1	PAHs / PNAs) by	GC/MS*		
Fatraction Method SW3550C		CER.	lytical Method SW8270			Work Ord	er 0206131
	Lab ID	0206131-001C	0206131-002C	0206131-003C	0206131-004C		
	Client ID	MW-2	MW-3	MW-4	MW-5	Reporting	
	Matrix	W	W	W	W	DF	=]
	DF	. 1	1	5	1	S	w
Compound			Conce	entration		ug/kg	μg/L
Acenaphthene		ND	ND	ND<50	ND	NA	10
Acenaphthylene		ND	ND	ND<50	ND	NA	10
Anthracene		ИD	ND	ND<50	ND	NA	10
Benz(a)anthracene		ND	ND	ND<50	ND	NA	10
Benzo(b)Augranthene		ND	ND	ND<50	ND	NA	10
Benzo(k)lluoranthene		ND	ND	ND<50	ND	NA	10
Benzo(g,h,i)perylene		מא	ND	ND<50 '	ND	NA	10
Benzo(a)pyrene		ND	ND	ND<50	ND	NA	10
Chrysene		ND	ND	ND<50	ND	NA	10
Dibenzo(a,h)anthracene		ND	DND	ND<50	ND	NA	10
Fluoranthene		ND	ND	ND<50	ND	NA	10
Fluorene		ИD	ND	ND<50	ND	NA	10
Indeno (1,2,3-cd) pyrene		ND	ND	ND<50	ND	NA	10
Naphthalene		ND	ND	250	ND	NA	10
Phenanthrene		ND	МD	ND<250	ND	NA	50
Pyrene		ND	ND	ND<50	DM	NA	10
Ever 1 to the part of the part		Surre	gate Recoveries	(%)			
%\$\$1		011	109	118	111		
%\$\$2		116	114	119	116		
Comments		,		í			

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil and sludge samples in mg/kg, wipe samples in ug/wipe, oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit, N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.

QC SUMMARY REPORT FOR SW8021B/8015Cm

BatchID: 2358

Matrix. W

WorkOrder: 0206131

EPA Method, S	W8021B/801	5Cm E	xtraction	SW5030E	}	Ext. Date.	6/07/02	S	piked Sampl	e ID: N/A	
Compound		Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
Compound		μg/L	μg/L	% Rec	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(gas)		N/A	60	N/A	N/A	N/A	95 8	94 8	1.1	80	120
мтве		N/A	10	N/A	N/A	N/A	96.9	103	66	80	120
Benzene		N/A	10	N/A	N/A	N/A	106	114	69	80	120
Tolucne		N/A	10	N/A	N/A	N/A	109	117	74	80	120
Ethylbenzene		N/A	10	N/A	N/A	N/A	108	116	73	80	120
Xylenes		N/A	30	N/A	N/A	N/A	107	113	6.1	80	120
%SS		N/A	10	N/A	N/A	N/A	106	109	2.5	80	120

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions; NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation

N/A = not enough sample to perform matrix spike, or analyte concentration in sample exceeds spike amount.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD ≈ 100 * (MS – MSD) / (MS + MSD) * 2.

* MS and / or MSD spike recoveries may not be near 100% or their RPDs near 0% if a) the sample is inhomogeneous AND contains significant concentrations of analyze relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

QC SUMMARY REPORT FOR SW8015C

BatchID: 2353

Matrix: W

WorkOrder: 0206131

EPA Method: SW8015C	E	xtraction:	SW35100	2	Ext. Date:	6/07/02	S	piked Samp	ile ID: N/A	
Compound	Sample	Spiked	MS*	· MSD*	!MS-MSD*	LCS	LCSD	LCS-LCSE	Acceptance	Criteria (%)
Compound	; pg/L	µg/L	t .	ı	% RPD		% Rec.	% RPD	Low	High
TPH(d)	N/A	7500	N/A	N/A	N/A	101	104	2 9	70	130
%SS1	N/A	2500	N/A	N/A	N/A	95 8	98 4	2.7	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions. NONE

MS = Matrix Spike, MSD = Matrix Spike Duplicate, LCS = Laboratory Control Sample, LCSD = Laboratory Control Sample Duplicate, RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike, or analyte concentration in sample exceeds spike amount.

% Recovery = 100 * (MS-Sample)/(Amount Spiked); RPD = 100 * (MS - MSD)/(MS + MSD) * 2.

MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if. a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

QC REPORT

PAHs (EPA 8270)

Date: 06/11/02	Extraction	n: N/A			Matrix:	Water	
		Concen	tration:	ug/L	%Rec	очегу	!
Compound	Sample	MS	MSD	Amount Spiked	MS	MSD	RPD
SampleID 53102		-			Instrume	nt GO	C-8
Surrogate1	ND	590.0	590 0	1000.00	59	59	0.0
Pyrene	ND	500.0	500.0	1000.00	50	. 50	0.0
Acenaphtene	ND	520.0	510.0	1000.00	52	51	1.9

% Re covery =
$$\frac{(MS-Sample)}{AmountSpiked}$$
 100
RPD = $\frac{(MS-MSD)}{(MS+MSD)}$ 2-100

McCampbell Analytical Inc.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0206131

Client:

Cambria Env. Technology 1144 65th Street, Suite C Oakland, CA 94608

TEL:

(510) 420-0700

FAX:

(510) 420-9170

ProjectNo:

458-1774-002; E

PO:

_								 10-Jun-02	
Sample ID	ClientSampID	Matrix	Collection Date	Bottle	SW8015C 80218/801	\$ SW82700	Requested Tests		<u>-</u> .
0206131-001 0206131-002 0206131-003 0206131-004	MW-2 MW-3 MW-4 MW-5	Water Water Water Water	6/10/02 4:00:00 PM 6/10/02 3:20:00 PM 6/10/02 2:55:00 PM 6/10/02 1:25:00 PM	·	B A B A B A B A	C C C		 ~	

Comments: REPORT IN EDF

Date/Time Relinquished by: Date/Time Received by: Relinquished by: Received by: Relinquished by:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

· .	. •		. 3	1 -	`								-	Applica Sign	-{ 														*cuting	Glandin Mills	Chi.L.
			<u>00</u>	كبل											<u>Ť</u>																_
	. McCAM					M	C.					}		33										OI	Υ		ECC	JKI	D,		
>	, }	10 2 nd AV PACIE	ENUE SO! ECO, CA 9:	(JTH.# 4553	137									<u></u> [TUI	łN,	AR(OU	1D.	ΠM	ίE								<u></u>		
Telepho	ne: (92 <u>5) 798</u> -							798						3				,-				}	RUS	H	24	HC				JR 5 D	_
Report To: Jac	buno			III To:		1	عط	أعا	תם	السا	درا		ļ,	Ž,		-,	A	naly	sis R	equ	st	- 1)ther	- l	Comme	165
Company: Cambri	a Environmen	tal Techn										{	[70	E)		ĺ	i		1	- {					\ \ \ .	الح	1	{ {		
	ellis Stroct	114		<u> ۲۲</u>		<u> </u>						{	يد	-	7/B	1			1		1			{			setected \$ 260				
	ille, CA 9460	<u> 8- C</u>	aklan	d,	<u>Ca</u>	<u> 9</u>	7	603					Ę	.3	1.86	=						2	1	i		-	87	. 1	} }		
Tele: (510) - 42			F	ax: (5	()	<u> </u>		<u>- 5</u>	/ De	uz	0	11.20	1.5	silice	520	41.8				}		92		1		٠,١,٠	_		1	}	
Project #: 45 &				roject	Nam	e: /	7	الكلاتا	<u>code</u>	gr.D	دمه_	LP_	92	41.7	Se {5) su	1 6	(070	\ >-			/ 87	,	į	6		18. E.			ļ	
Project Location:		<u>sbaştar</u>	K43-		ck	A.K	70 C	پ کر					2020		/ca	اع		ē	1 2			625	1		09			:		1	
Sampler Signature	:	**	- Klad			Γ_				М	ETHO	מכ	602/	١٣	Oil & Grease (5520 E&F/B&F)	droc 	- 13	j	- B s (09		P A	- [19.2	ĺ	E ST	-		1	
		SAME	PLING	ļi	ĸ		MA —	TRI)	<	PRE	SER	ven) झ	80(:	õ	X.	:	η. Α ί	15	626 ·		by E		1	17	-	Ä				
SAMPLE ID	LOCATION			Containers	Containers								BTEX & TPH 25 GIS (602/8020 + 8015) ACTOE	TPH as Diesel (8015)	Total Petroleum	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010	BTEX ONLY (EPA 6027 8020)	EPA 608 / 8080 PCB's ONLY	EPA 624 / 8240 / 8260	EPA 625 / 8270	PAH's / PNA's by EPA 625 / 8270 / 8310	CAM-17 Metals	LUFT 5 Metals	Lcad (7240/7421/239 2/6010)		2	1		,	
		Date	Time		Type C	Water	Soil	Air	Other	fce		Other	TEX &	PH as	otal Pc	oral Pc	3PA 60	STEX C	PA 60	PA 62	1'A 62	AH's/	74M-1	UFTS	Cad (7	<u>S</u>					
MUZ		6-10-07	4:00	6	100 PO 10		03		110	X			×	_					-	-		 -<		-			×		<u> </u>		·- <u>-</u> -
			3:20	1 4	Ves	X			\neg	X	X] x	بدا							-	×					ابر	j	}		
MU-3					Voc	· \	 		- -	X	χ,	1	X	X	-		ī			 		7					~				
MU-U			2:55		133	7			-	۲		+	1-5	X	1-		-	-	+-		1	X					 		1		
MW-5	- 	6-10-02	1:25	-	(Am)	×	┼	 -		+++	-	-	-{	-			+	+		+-	 	-			}·					··	
				 -		-		<u>, </u>		┪	-+		╁-	-	-						-	├-					<u>-</u>	<u>-</u> -			
			<u> </u>			-	ļ.,					_	٦.		┼-	ļ		_	; -		-	<u> </u>	L				 -	-+-		. }	
	.]		<u> </u>	<u> </u>		_			-	_			-l	!						_ 	.)	<u> </u>		ļ	<u> </u>		 	_ -	.		
		1									_	_	_}		1																
		1			-	7-	1			;			-	!										ı		'		{			
			1		1-	7-	+	1-1-	_	T			1		1			7				7 ~						-			
	-}		 			-	ì				\vdash			+		ļ. —			+-	+	-	<u> </u>	-	-		_	}		1		
				-			-	┥╌┼				- -	+		+-		·	-			+			├-	i	 	1-	}	1 -		
			-			-}-		1-1				· ;			4-	-				,	.	-	-	!	-	-	-			-}	
	<u> </u>								<u></u>	_	 }		_ _		ļ									<u> </u>	ļ	<u></u> .]]	1			
						_}								<u>i</u>	\ 						_		_		<u> </u>						
							T				[1		_										_	[
Relinquished By .		Date	Time.	Be	cived	By:	λ	البيسانية م	 1				1	Rein	arks	;:	<u></u> ,							_						: 	
1 K. K		6/10/	12 12	46-	·	. }	IJ	////					1	P.	ani	+ 4	64	11	S	ın	E	OF	= 4	, 0¢,	سما	1					
Relinquished By	<u> </u>	Date.	Time.		cived	Ву	, 	*						~(r ~ .	, ,		1		• • •	_		,	, - '						- د- پاهم	
1			}															,									ጸና ር	1705	1,14	791	
Rehnquished By-		Date:	Time.	Re	ceived	By:										(FJK		/	-		/	p	i Ling.	, ,	alçı)	1 1	<u>_i</u>	<u>.</u>		<u>.</u>	
		[. Š.		ş.(12:1		/ ************************************		E-T							·-··	
																	500	(,	١٣	1	70	ሰነ "	٠,٠	~		1	,			

APPENDIX H

Soil Disposal Manifests

P	88	se byta orcyte () () () () () () () () () (
		NON-HAZARDOUS WASTE MANIFEST 1. Generator's US C A L O O					Doc. No. 0 0 2		1		7/11/3	2002	
- 100 P		PORTER ST. 530 WATER ST. OAKLAND, CA 94607 4. Generator's Phone (510) 627-1100									-		
Z PY KOKE		5. Transponer 1 Company Name	6.	US E	PA ID N	umber			nsponers Pi	none 56	V-72	: 28	3
2.5			8. 	<u></u> .	PA ID No		· ·		nsporter's F	6	51:	28:	22
A Property Land		ALLIED WASTE/FORWARD 9999 S. AUSTIN RD.	10. IC A I	US EF	A ID N		ન ૧૨૧		ility's Phone		9)466-	4482	
		11. Waste Shipping Name and Description	<u> </u>	· · · · · ·		<u> </u>	<u> </u>	1	12. Cont		19. Tota	<u> </u>	14. Unit Wt/Vol
T Section		a NON-HAZARDOUS NASTE, SOLID (SOIL)		 _		<u></u>			No.	Type	Quant	nty	VV V V OI
									0.0.1	D.T	0.0.0	.2.0	Y
		b.								į			
FATOR		с.											
and Armed	ŀ	d,						-					
		A Accipenal Descriptions for Materials Listed Above	, ···					E. Hand	dling Codes	for Was	ites Listed ,	\bova	
	١	15. Special Handling Instructions and Additional Information WEAR POSS ENVIRONMENTAL SERVICES 24 HO JOB # A2672 PO # A2672-01 TO # 0:	XUR EN	Per Pe Iergen I-06	CY S	en ha Ervic	Æ	/6 (510	}-749-	1390			
4	ŀ	16. GENERATOR'S CERTIFICATION: I confly the materials described above	ve on this	manilesLa <i>i)</i>	due son_e	jecy to led	eral regula	tions for re	sporting propi	r dispos	al of Hazard	ous Was	Θ.
		Printed/Typed Name		Signature		11.	<u> </u>	<i>j</i> -	/ _ _		Month	Day / ()	Year ;∴./.
THANSPORTER	-	17, Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name	9	Signature	<i>F</i>						Month	Day	Year
Ó		18. Transporter 2 Acknowledgement of Receipt of Materials	16	ignature	; /	1 1	- 1.				Month	Day	Yest
Ė	-	Printed/Typed Namo		ng min	<u> Ho</u> .j		Z	45			17	16	bz
FACI		19. Discrepancy Indication Spece						<u> </u>					
Ĺ	1	20, Facility Owner or Operator: Certification of receipt of waste materials o	covered b	y this mar	rilest ex	cept as n	oted in Ite	am 19.					
Y		Printed/Typed Name	s	ignaturo							Month	Day	Year

P. E.	eré parti la groc. In cessignes de la construction					
- A C C C	NON-HAZARDOUS 1. Generator's US EP. WASTE MANIFEST # A L 0 0 0 2		2. Page 1 of 1.	P	7/11/20	02
1	S. Generator's Name and Mailing Address PORT OF CAKLAND 330 WATER ST. DAKLAND, CA 94607 4. Generator's Phone (510) 627-1100					
	5. Transporter 1 Company Name 6.	US EPA ID Number	A. Transporter			,
	7. Transporter 2 Company Name B.	US EPA ID Number	B. Transponer			7. U. Y.
	9. Designated Facility Name and Site Address 10. ALLIED WASTE/FORWARD 9999 S. AUSTIN RD.	US EPA ID Number	C. Facility's Ph		9) 466-4	482
	ANTECA, CA 95336 C	10990794133				
	11. Waste Shipping Name and Description		No.	ontainers Type	13. Total Quantit	y Unit WWOI
	Mon-Hazardous Waste, Solid (Soil)					O Y
	b.		D O	PT	0003	
GENERATO				. .		
F A T	a.					
Ю П				· ·	<u> </u>	
	d.					
	A. Additional Descriptions for Materials Listed Above		E. Handling Co	des for Wa	stes Listed A	482 V Unit WVVot V O Y O O O
			G (510)-749	-1390		
	16. GENERATOR'S CERTIFICATION: 1 certify the maxerials described above of	T	tions for reporting p	ropor dispo	sal of Hazaroo	
V	Printed/Typed Name	Signaturé	<u> </u>		Month	Day Year
→氏人だめりの氏―他の	17. Transponer 1 Acknowledgement of Receipt of Materials Printed Typed Name	Signature	برميونس (ع		Month	Day Year
P OR	18. Transporter 2 Acknowledgement of Receipt of Materials					
T R	Printed/Typed Name	Signature			Month	Day Your
FACI	19. Discrepancy Indication Space			r·		Day Your
L	20. Facility Owner or Operator. Certification of receipt of waste materials cover	red by this manifest except as noted in Ite	am 19,			
ł						

11:55am

TO -	print of tipe and the second s										
	NON-HAZARDOUS WASTE MANIFEST	1. Generator's t			Manifest Occ. N 5 0, 0, 0, 0,		e 1 1		7/1:	1/2002	<u> </u>
) 5	Generator's Norma and Mailing Address ONT OF CANDAND 30 WATER ST. AKLAND, CA 94607 Generator's Phone (510) 627-11	na									····
_	Transporter 1 Company Name	-	6. 1	US EPA ID I	Number	A. Tra	nsporter's -	Phone			
7.	Transponer 2 Company Name		8.	US EPA IO N	Number	B. Trai	nsponers	Phone		<i>,,</i> ,	
A 9	Designated Facility Name and Site Address LLIED WASTE/FORWARD 1999 S. AUSTIN RD. ANTECA, CA 95336	Ĭ	10.	US EPA IO 1	Number 7. 9. 4. 1. 3.		ility's Pho		209) 466-4482		
17	, Waste Shipping Name and Description		1				12. Co		ļŢ	13. otal antity	WV UU
a.	NON-HAZARDOUS WASTE, SOLT	D (SOIL)					140,	Туре		ariuty	100
 -					<u> </u>		0. 0.	D. T	0. 0.	0. 2. (9 :
b.											
c.								+		<u> </u>	+-
	•		•								
d.						•					
<u> </u>	And Ingel Oescriptions for Materials Listed Abov						<u> </u>	<u> </u>	<u>l : :</u>		_
							dling Code	3 101 115	9192 M91		
Ēζ	Special Handling Instructions and Additional Info OSS ENVIRONMENTAL SERVICES OB A2672 PO A2672-	mation WEZ	AR PROP HOUR EM 02-CRE	ergency	Hen Handli Service O 104056	TNG - (510	·				····
Ēζ	oss environmental services	mation WEZ	iour em	ergency	SERVICE	TNG - (510	·				
F(OSS ENVIRONMENTAL SERVICES OB A2672 PO A2672-	mation WEX 24 F 01 TO \$	OUR EM O2-CRE	ERGENCY -06 W	SERVICE	ING - (510	1)-749	-1390)		sic.
J(OSS ENVIRONMENTAL SERVICES OB A2672 PO A2672-	mation WEX 24 F 01 TO \$	OUR EM O2-CRE	ergency -06 w	SERVICE	ING - (510	1)-749	-1390)	ârdous Wa	sic.
16.	OSS ENVIRONMENTAL SERVICES OB A2672 PO A2672-	mation WEZ 24 F O1 TO #	OUR EMOZ-CRE	ERGENCY -06 W	SERVICE	ING - (510	1)-749	-1390) Sal of Haz	ârdous Wa	
16.	OSS ENVIRONMENTAL SERVICES OB A2672 PO A2672— GENERATOR'S CERTIFICATION: 1 cently the m Printed/Typed Name Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name Transporter 2 Acknowledgement of Receipt of M	mation WEZ 24 F 01 TO F	O2-CRE	entiest are not su gnature	SERVICE	ING - (510	1)-749	-1390	aal of Haz	ardous Wa	Ye Ye Ye
16.	GENERATOR'S CERTIFICATION: 1 certify the management of Receipt of Manag	mation WEZ 24 F 01 TO F	O2-CRE	ERGENCY -06 W	SERVICE	ING - (510	1)-749	-1390	eal of Haz	Ardous Wa	re Ve
16. 17.	GENERATOR'S CERTIFICATION: 1 cently the m Printed/Typed Name Transporter 1 Acknowledgement of Receipt of Mi Printed/Typed Name Transporter 2 Acknowledgement of Receipt of Mi Primed/Typed Name Discrepancy Indication Space	mation WE/ 24 F 01 TO F catorials described an aterials	OUR EMOVE ON UNITED IN	enilest are not su gnature	SERVICE	ations for re	1)-749	-1390	aal of Haz	ardous Wa	re Ve
16. 17.	GENERATOR'S CERTIFICATION: 1 certify the management of Receipt of Manag	mation WE/ 24 F 01 TO F catorials described an aterials	OUR EMOVE ON UNITED IN	enilest are not su gnature	SERVICE	ations for re	1)-749	-1390	aal of Haz	ardous Wa	۲۰ خرار