# Advanced GeoEnvironmental, Inc.



18 October 2002 AGE-NC Project No. 99-0556 Alameda County

OCT 23 2002

Environmental Health

Ms Eva Chu Alameda County Health Care Services Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject:

Monitoring Well Installation and Sampling Report

FORMER CONTINENTAL VOLVO

4030 - 4122 East 14th Street,

Oakland, California

Dear Ms Chu:

At the request of Mr. Achim Ehrhardt of the former Continental Volvo, Inc., *Advanced* GeoEnvironmental, Inc. has prepared this report on the installation and sampling of two ground water monitoring wells at the former Continental Volvo, Inc. at 4030 - 4122 East 14<sup>th</sup> Street, Oakland, California.

If you have any questions or comments, please contact our office at (209) 467-1006.

Sincerely,

Advanced GeoEnvironmental, Inc.

William Little
Project Geologist

# Alameda County

OCT 2 3 2002

# Environmental Health

#### Monitoring Well Installation and Sampling Report Former CONTINENTAL VOLVO 4030 - 4122 East 14th Street, Oakland, California

18 October 2002 AGE-NC Project No. 99-0556

PREPARED FOR:

Mr. Achim Ehrhardt CONTINENTAL VOLVO, INC.

PREPARED BY:



### Advanced GeoEnvironmental, Inc.

3315 East Miraloma Avenue, Suite 117, Anaheim, California 92806 ◆ Phone (714) 996-5151 ◆ Fax (714) 996-5182 837 Shaw Road, Stockton, California 95215 ◆ Phone (209) 467-1006 ◆ Fax (209) 467-1118 2318 Fourth Street, Santa Rosa, California 95404 ◆ Phone (707) 570-1418 ◆ Fax (707) 570-1461

#### Monitoring Well Installation and Sampling Report Former CONTINENTAL VOLVO 4030 - 4122 East 14th Street, Oakland, California

18 October 2002 AGE-NC Project No. 99-0556



Advanced GeoEnvironmental, Inc. 837 Shaw Road, Stockton, California

PREPARED BY:

William Little

Project Geologist

**REVIEWED BY:** 

Calvin F. Lee

Senior Project Geologist

California Registered Geologist No. 7327

CALVIN F. LEE No. 7327

# FORMER CONTINENTAL VOLVO TABLE OF CONTENTS

| 1.0    | Page   INTRODUCTION                                                          |
|--------|------------------------------------------------------------------------------|
| 1.0.   | INTRODUCTION                                                                 |
| 2.0.   | PROCEDURES                                                                   |
|        | 2.1. GROUND WATER MONITORING WELL INSTALLATION                               |
|        | 2.2. SOIL SAMPLE COLLECTION AND ANALYSIS                                     |
|        | 2.3. SOIL LOGGING                                                            |
|        | 2.4. MONITORING WELL INSTALLATION AND DEVELOPMENT                            |
|        | 2.5. GROUND WATER MONITORING ACTIVITIES                                      |
|        | 2.5.1 Well Monitoring and Evacuation                                         |
|        | 2.5.2. Collection and Analysis of Ground Water Samples                       |
| 3.0.   | FINDINGS4                                                                    |
| 5.0.   | 3.1. STRATIGRAPHY AND DEPTH TO GROUND WATER                                  |
|        | 3.2. HYDROCARBON-IMPACTED SOIL                                               |
|        | 3.3. HYDROCARBON-IMPACTED GROUND WATER                                       |
|        | 3.4. GROUND WATER DEPTH                                                      |
|        |                                                                              |
| 4.0.   | SUMMARY AND CONCLUSIONS                                                      |
| 5.0.   | RECOMMENDATION                                                               |
| 6.0.   | LIMITATIONS                                                                  |
| FIGU   | RES                                                                          |
|        |                                                                              |
| Figure | 1 - Location Map                                                             |
| Figure | 2 - Site Plan                                                                |
| TABL   | JES .                                                                        |
| Table  | 1 -Analytical Results of Soil Samples - EPA Method 8015M/8020/8260           |
|        | 2 - Analytical Results of Ground Water Samples - EPA Method 8015M/8020/8260M |
| APPE   | NDICES                                                                       |
|        | dix A - Site Background Information                                          |
|        | dix B -Soil Boring Logs                                                      |
|        | dix C -Monitoring Well Field Logs                                            |
|        | dix D - Laboratory Report of Soil Samples                                    |
| Appen  | dix E - Laboratory Report of Water Samples                                   |

#### Monitoring Well Installation and Sampling Report FORMER CONTINENTAL VOLVO 4030 - 4122 East 14th Street, Oakland, California

#### 1.0. INTRODUCTION

At the request of Mr. Achim Ehrhardt of the former Continental Volvo, Inc., *Advanced* GeoEnvironmental, Inc. (AGE) has prepared this report for 4030 - 4122 East 14<sup>th</sup> Street, Oakland, California.(site). The location of the site is illustrated in Figure 1; the site plan is illustrated in Figure 2.

The purpose of the work was to assess the lateral and vertical extent of petroleum hydrocarbon impacted soil and groundwater at the site. The proposed scope of work as detailed in the AGE-prepared Subsurface Investigation Work Plan, dated 05 October 2000, and Subsurface Investigation Work Plan - Well Location, dated 27 February 2002, which were approved by the Alameda County Health Care Services Environmental Health Services - Environmental Protection (ACHCS) by letter dated 08 March 2002, included establishment of soil borings, collection and analysis of soil samples, installation of shallow ground water monitoring wells, collection of three ground water samples from the wells and preparation of this report of findings.

This report was prepared in accordance with guidelines issued by the California Regional Water Quality Control Boards (CRWQCB) for subsurface investigations of the former underground storage tank (UST) systems. Site background information is summarized in Appendix A.

#### 2.0. PROCEDURES

The field work was performed in accordance with procedures outlined in the Subsurface Investigation Work Plan dated 05 October 2000 and Subsurface Investigation Work Plan - Well Location dated 27 February 2002; however, based on the concurrence of Ms. Eva Chu of the ACHCS on 04 June 2002, AGE postponed the installation of the southwestern-most proposed monitoring well (MW-2) pending soil and ground water analytical results from the newly-installed monitoring wells MW-1 and MW-3 and two proposed soil borings GB-1 and GB-2 (see Figure 2).

#### 2.1. DRILLING

On 04 June 2002, two soil borings were advanced to a depth of 20 feet below surface grade (bsg) utilizing a truck-mounted CME 75-HT drill rig equipped with 8-inch continuous flight hollow-stem augers; the drill rig and two-man crew were supplied by West Haz Mat Drilling of Sacramento, California. Soil boring MW-1 was advanced towards the southwest and down-gradient of the former waste oil UST excavation; boring MW-3 was established near the western corner of the used car lot, down-gradient of the former heating oil UST area. The soil boring locations are shown on Figure 2.

18 October 2002 AGE-NC Project No. 99-0556 Page 2 of 6

#### 2.2. SOIL SAMPLE COLLECTION AND ANALYSIS

Continuously soil samples were collected ahead of the drill bit using a split tube, 3-inch diameter core sampler. Samples were collected with pre-cleaned 2 x 6-inch brass sleeves. All sampling equipment was washed in an Alconox solution and rinsed twice with water prior to each sampling run.

For each sample, both ends of the soil sleeve selected for laboratory analysis were covered with Teflon sheets, capped and sealed with tape. The selected samples were stored in a chilled container and transported under chain-of-custody to McCampbell Analytical, Inc. (MAI), a California Department of Health Services (DHS)-certified analytical laboratory located in Pacheco, California. Selected samples were analyzed for:

- Total petroleum hydrocarbons quantified as gasoline, diesel and motor oil (TPH-g and TPH-d and TPH-mo, respectively) by EPA Method 8015 Modified,
- Benzene, toluene, ethylbenzene and total xylenes (BTEX) and methyl-tert-butyl ether (MTBE) by EPA Method 8020 and
- The oxygenated compounds di-isopropyl ether (DIPE), ethyl tertiary-butyl ether (ETBE), MTBE, tertiary-amyl methyl ether (TAME), tertiary butanol (TBA), methanol, ethanol, ethylene dibromide (EDB) and 1,2-dichloroethane (1,2-DCA) and all volatile organic compounds analyzed within the EPA Method 8260.

The results of the soil sample laboratory analysis are presented in Section 3.2.

#### 2.3. SOIL LOGGING

After sample preservation, soil was extruded from the remaining portion of the core barrel and screened utilizing an organic vapor analyzer (OVA) equipped with a photo-ionization detector (PID: Thermo Environmental 580A, 10.0 eV, calibrated to isobutylene). In addition, the soil was described in accordance with the Unified Soil Classification System. Soil boring logs exhibiting soil profiles and PID readings are depicted in Appendix B.

Auger returns were placed in 55-gallon drums and stored on-site pending laboratory analysis and disposal at a licenced facility.

#### 2.4. MONITORING WELL INSTALLATION AND DEVELOPMENT

18 October 2002 AGE-NC Project No. 99-0556 Page 3 of 6

Borings MW-1 and MW-3 were completed as ground water monitoring wells using two 2-inch diameter, schedule 40 PVC casings, with 0.02-inch slotted screen installed from depths of 10 to 20 feet bsg and with blank casing extending to the surface. A filter pack was installed using #3 Lonestar sand from 9 to 20 feet bsg. Bentonite chips were used to make a two-foot transition seal above the sand pack. The remaining annular space was backfilled to within six inches of surface grade with portland cement. A traffic-rated well box (8-inch diameter) was installed over each well in accordance with well regulations. Monitoring well design specifications are depicted in Appendix B.

Following well installation, the wells were developed in order to increase water flow into the well and to minimize the amount of fine-grained sediment drawn into the well during pumping or bailing. Ground water was purged from each monitoring well with a disposable bailer until ground water was visually sediment free. Purged ground water was containerized in properly labeled DOT-approved model 17H 55-gallon drums and was stored on-site.

#### 2.5. GROUND WATER MONITORING ACTIVITIES

Ground water monitoring activities were performed on 19 July 2002; ground water monitoring was performed on the newly-installed monitoring wells MW-1 and MW-3 and the existing well (well UST) located in the former waste oil UST location.

#### 2.5.1 Well Monitoring and Evacuation

A Solinst water level meter was used to measure the depth to ground water in the three wells relative to the tops of the well casings. After recording water level measurements, disposable plastic bailers were used to purge each well; approximately 5 to 6 gallons of water (a minimum of 3 casing water-volumes per well) were removed. Ground water temperature, pH and conductivity were measured at regular intervals during purging using an Oakton water analyzer. Purged ground water was containerized in properly labeled DOT-approved model 17H 55-gallon drums and was stored on-site. Field sheets and data are included in Appendix C.

#### 2.5.2. Collection and Analysis of Ground Water Samples

A ground water sample was collected from each purged well using a new disposable plastic bailer following 80 percent recovery of ground water within the well. Each water sample was transferred into three 40-ml VOA vials containing 0.5 ml 18% hydrochloric acid as a sample preservative and into one 1-liter amber bottle without sample preservative. After collection, the samples were properly labeled, placed in a chilled container and transported under chain-of-custody to MAI. The samples were analyzed for:

18 October 2002 AGE-NC Project No. 99-0556 Page 4 of 6

- TPH-g and TPH-d in accordance with EPA Method 8015 Modified;
- BTEX and MTBE in accordance with EPA Method 8020; and
- MTBE, DIPE, ETBE, TAME, TBA, EDB, 1,2-DCA and all other volatile organic compounds in accordance with EPA Method 8260 Modified.

The results of the ground water sample laboratory analysis are presented in Section 3.3.

#### 3.0. FINDINGS

The stratigraphy, ground water depth and gradient were determined from field data collected on 19 July 2002; the contaminant impact to soil and ground water was quantified by the laboratory analytical data.

#### 3.1. STRATIGRAPHY

Tan and brown, silty clay was encountered in the borings from surface grade to depths of approximately 5 feet bsg. Tan or gray angular, silty gravel, apparently color-dependent on hydrocarbon impact, was encountered at depths of between 8 and 12 feet bsg and at approximately 15 feet bsg. Gray or brown clay was encountered at depths of between 12 and 15 feet bsg and from approximately 16 feet bsg to the total depth of the borings. Soil boring logs are included in Appendix A.

Organic vapor was detected in the soil sample collected at 10 feet bsg in borings MW-1 and MW-3 at a maximum concentration of 890 parts per million (ppm). The PID data is included on the boring logs (Appendix B).

#### 3.2. ANALYTICAL RESULTS OF SOIL SAMPLES

Four soil sample were analyzed from soil boring MW1 and two soil samples were analyzed from boring MW3.

- TPH-g was detected in soil sample MW3-11' at a concentration of 2.6 milligram per kilogram (mg/kg).
- TPH-d and TPH-mo were detected in soil samples MW1-5' and MW3-11'; the maximum concentrations were detected in sample MW3-11' at 120 mg/kg and 26 mg/kg, respectively.
- BTEX, VOC compounds and fuel additives were not detected in the soil samples analyzed.

18 October 2002 AGE-NC Project No. 99-0556 Page 5 of 6

Laboratory results of soil samples analyzed for petroleum hydrocarbons are summarized in Table 1. The laboratory reports (MAI Laboratory ID 0206101-01 to 07), quality assurance and quality control (QA/QC) reports and chains-of-custody are included in Appendix D.

#### 3.3. ANALYTICAL RESULTS OF GROUND WATER SAMPLES

Ground water samples were collected from newly-installed monitoring wells MW-1 and MW-3 and the existing well UST.

- TPH-g and TPH-d were detected in ground water sample UST at concentrations of 52 micrograms per liter (μg/l) and 3,100μg/l, respectively. TPH-g and TPH-d were also detected in sample MW1 at concentrations of 78μg/l and 200 μg/l, respectively.
- Benzene was detected in the samples collected from wells UST and MW-1 at concentrations of 3.4 µg/l and 5.4 µg/l, respectively.
- 1,2-DCA was detected in the sample from well MW-1 at a concentration of 7.8 μg/l. Cis1,2-dichloroethane and trichloroethane (TCE) were detected in the sample from wells MW-1 and MW-3 at maximum concentrations of 210 μg/l and 13 μg/l, respectively, in the sample from well MW-1.
- Chlorinated benzene compounds were also detected in the water sample collected from well UST at concentrations as high as 2.3 µg/l 1,2-dichlorobenzene.
- 2-Butanone was detected in sample MW1 at a concentration of 11 μg/l.

The remaining fuel additives were not detected. Analytical results from ground water samples are summarized in Table 2. The laboratory report (MAI Lab ID Numbers 0207251-01 to 03), QA/QC and chain-of-custody are included in Appendix E.

#### 3.4. GROUND WATER DEPTH

Static ground water was encountered at a depth of 10 feet bsg during monitoring well installation on 04 June 2002.

At the time of the 19 July 2002 sampling event, the depth to ground water at the site ranged between 6.62 feet below the monitoring wells casing top at the former waste oil UST area and 8.85 feet below the monitoring wells casing top at well MW-3.

18 October 2002 AGE-NC Project No. 99-0556 Page 6 of 6

#### 4.0. SUMMARY AND CONCLUSIONS

Based on the data collected from the site, AGE concludes:

- Petroleum hydrocarbon-impacted soil appears to be limited to the former UST areas, to a depth of between 10 and 15 feet bsg. TCE has been detected at a depth of 15 feet bsg in previous soil borings adjacent to, but up-gradient of, former waste oil UST (in the AGE-prepared *Preliminary Subsurface Investigation* report, March 1999).
- The highest concentrations of dissolved petroleum hydrocarbons and solvents were detected within the former waste oil UST area. Since solvents were detected in ground water but not in the soil at the former UST excavation, there is the possibility of an other-than-UST-release origin for the solvents.
- Benzene, TCE and cis-1,2-DCE were detected at levels that exceeds the DHS' maximum contaminant level for these solvents in drinking water.

#### 5.0. RECOMMENDATION

Based on the findings of the environmental activities recounted in this report, AGE recommends initiation of a quarterly ground water monitoring program at the site; the next quarterly monitoring event should be scheduled for October 2002.

On the recommendation of Ms. Eva Chu of the ACHCS, AGE will advance two soil borings (GB-1 and GB-2) in the auto service area, scheduled for the fourth quarter 2002. Installation of monitoring well MW-2, at the southwestern portion of the site, has been postponed pending an evaluation of laboratory analytical results of soil and grab ground water samples from soil borings GB-1 and GB-2 and monitoring-well ground water samples.

#### 6.0. LIMITATIONS

Our professional services were performed using that degree of care and skill ordinarily exercised by environmental consultants practicing in this or similar localities. The findings were based upon analytical results provided by an independent laboratory. Evaluation of the geologic/hydrogeologic conditions at the site for the purpose of this investigation was made from a limited number of available data points (soil and ground water samples) and subsurface conditions may vary away from these data points. No other warranty, expressed or implied, is made as to the professional interpretations, opinions and recommendations contained in this report.

**FIGURES** 





**TABLES** 

### TABLE 1

#### ANALYTICAL RESULTS OF SOIL SAMPLES - EPA 8015m/8020

#### Continental Volvo

4030 - 4122 East 14th Street, Oakland, California mg/kg

| Sample<br>I. D depth | TPH as gasoline | TPH as | TPH as | Benzene | Tøluene | Ethyl<br>benzene | Xylenes | TCE<br>(µg/kg) |
|----------------------|-----------------|--------|--------|---------|---------|------------------|---------|----------------|
| MW1-5                | <1.0            | 2.7    | 19     | <0.5    | <0.5    | <0.5             | <0.5    | <5.0           |
| MW1-10               | <1.0            | <1.0   | <5.0   | <0.5    | < 0.5   | <0.5             | <0.5    | <5.0           |
| MW1-15               | <1.0            | <1.0   | <5.0   | <0.5    | <0.5    | <0.5             | <0.5    | <5.0           |
| MW1-20               | <1.0            | <1.0   | <5.0   | <0.5    | <0.5    | <0.5             | <0.5    | <5.0           |
| MW3-11               | 2.6             | 120    | 26     | <0.5    | <0.5    | <0.5             | <0.5    | <5.0           |
| MW3-15               | <1.0            | <1.0   | <5.0   | <0.5    | <0.5    | <0.5             | <0.5    | <5.0           |

<u>Notes:</u> mg/kg: milligrams per kilogram TCE: Trichloroethene

#### TABLE 2

#### ANALYTICAL RESULTS OF GROUND WATER SAMPLES - EPA 8015m/8020/8260

Continental Volvo

4030 - 4122 East 14th Street, Oakland, California

μg/l

| Sample<br>Well ID | TPH as gasoline | TPH as diesel | Benzene | Toluene | Ethyl<br>benzene | Xylenes | TCE  | Cis<br>1,2-DCE | 1,2-DCA |
|-------------------|-----------------|---------------|---------|---------|------------------|---------|------|----------------|---------|
| UST/06-04-02      | 52              | 3,100         | 3.4     | <0.5    | <0.5             | <0.5    | <0.5 | <0.5           | <0.5    |
| MW1/06-04-02      | 78              | 200           | 5.4     | <0.5    | <0.5             | <0.5    | 210  | 110            | 7.8     |
| MW3/06-04-02      | <1.0            | <1.0          | <0.5    | <0.5    | <0.5             | <0.5    | 13   | 0.75           | <0.5    |

Notes μg/l: micrograms per liter TCE. Trichloroethene

Cis 1,2-DCE: Cis 1,2-dichlorethene 1,2-DCA: 1,2-dichlorethane

**APPENDIX A** 

#### Site Background Information FORMER CONTINENTAL VOLVO 4030 - 4122 East 14th Street, Oakland, California

The site is located in central Oakland in a commercial area (Figure 1) and is east of State Route 880. Two buildings and a vacant lot utilize as a car lot occupy the site as shown in Figure 2. AGE has been informed that the property was operated as a car or truck maintenance shop since the 1950s. The vacant lot was used as a residence prior to being used as a car lot.

#### UNDERGROUND STORAGE TANK REMOVAL

Based on the information currently at AGE's disposal, one underground storage tank (UST) was removed from the site in 1985. A 550-gallon waste oil UST was located in the eastern sidewalk of the site. A new double-walled UST for waste-oil was installed in the same location. On 04 May 2000, the two USTs were removed from site under permit. Tank #1 were utilized for heating oil, while tank #2 was upgraded/permitted and used to store waste oil (Figure 2).

Following removal of the tank, a backhoe was used to collect a soil sample from 2 feet below the ends of the former USTs (Figure 2). A soil sample was collected from the heating oil UST soil stockpile to be analyzed. A grab water sample was collected from the waste oil UST area well.

TPH and BTE&X were present in each two of the samples analyzed in concentrations exceeding the method detection limits. TPH-g was detected in the soil samples has high as 360 milligrams per kilogram (mg/kg), TPH-d 1,100 mg/kg and TPH-mo 2,000 mg/kg. BTE&X compounds were detected as high as 0.7 mg/kg benzene. Total lead and other metal were detected at or above background levels. PCBs were also detected in the waste oil UST sample. TPH and BTEX were not detected in the stockpile soil sample.

The grab water sample was impacted. TPH-g was detected in the soil samples has high as 180 micrograms per liter ( $\mu$ g/l), TPH-d 68,000  $\mu$ g/l and TPH-mo 200,000  $\mu$ g/l. BTE&X compounds were detected as high as 23  $\mu$ g/l benzene. LUFT metals were detected in the grab water sample from the waste oil UST area.

Based on these concentrations a site assessment of the release was requested by the City of Oakland. Tasks and procedures for this investigation were completed in accordance with the approved *Subsurface Investigation Work Plan*, dated 05 October 2000 and prepared by AGE.

#### PREVIOUS INVESTIGATIONS

AGE conducted two previous environmental assessments at the site. A brief summary of the findings from the previous investigations is presented below:

On 26 January 1998, a total of twelve soil probe borings (P1 through P12) were advanced at the site, under the supervision of an AGE geologist. Six soil probe borings were advanced in the vicinity of the lifts within the buildings on the site; two soil probe borings were advanced in the vicinity the active UST (also the location of the removed UST 1986), in the City of Oakland right-of-way; three soil probe borings were advanced on the car lot and one soil probe boring was advanced in the vicinity the active ASTs location.

On 08 January 2001, two soil probe borings (P13 and P14) were advanced near the former UST areas, in order to delineate and verify hydrocarbons beneath the USTs. Locations of the soil probe borings are illustrated on Figure 2.

Petroleum hydrocarbon-impacted soil at the site was encountered in the vicinity of the former UST/current UST within East 15<sup>th</sup> Street. The impacted soil was encountered in a somewhat narrow zone from depths of approximately 5 to 10 feet bsg.

Hydrocarbon-impacted soil was encountered east of the UST at a depth of 10 feet bsg. The chlorinated cleaning solvent TCE, commonly use for de-greasing, was detected at low concentrations in soils samples at a depth of 15 feet bsg in the area of the waste oil tank. The vertical or lateral extent of the TCE contamination is not defined.

Diesel fuel or motor oil-impacted ground water on the car lot appears to have originated from a diesel or heating-oil fuel matrix. The laboratory was consulted to decipher the make-up the petroleum-hydrocarbons detected in the water sample. A mix of low concentration diesel and high concentration oil was well pronounced in the laboratory data. This mix of hydrocarbons, with the absence of gasoline and BTEX compounds, suggests a heating oil make-up of a petroleum release, or possibly two releases: one motor oil only and/or diesel fuel only release requiring two sources.

Grab ground water samples was collected from selected probe borings. A grab ground water sample was collected from the sampling well in the former waste oil UST excavation. TPH-g, TPH-d and TPH-mo were detected in one soil sample, P14-10, collected from of the waste oil UST at concentrations of 260 mg/kg (milligrams per kilograms), 1,000 mg/kg and 2,200 mg/kg, respectively. TPH-d and TPH-mo were also detected in soil sample P14-15 at concentrations of 2.7 mg/kg and 8.9 mg/kg, respectively.

BTEX compounds were detected in one soil sample, P14-10 at concentrations of 0.51 mg/kg, 0.23 mg/kg, 0.49 mg/kg and 1.3 mg/kg, respectively.

Trichloroethene (TCE) was detected in two soil samples from boring P14 at 20 feet and 30 feet bsg at concentrations of 7.2 (micrograms per kilograms)  $\mu$ g/kg and 17  $\mu$ g/kg, respectively. TCE was not detected in soil samples P14-35.

TPH-g, TPH-d and TPH-mo were detected in the grab ground water sample from the waste oil UST excavation (monitoring well) at concentrations of 61  $\mu$ g/l (micrograms per liter), 8,700  $\mu$ g/l and 54,000  $\mu$ g/l, respectively. Benzene was also detected in the same samples at a concentration of 3.0  $\mu$ g/l. MTBE was detected in the grab water sample at a concentration of 1.4  $\mu$ g/l.

Trichloroethene (TCE) was detected in the grab water sample from probe boring P13, the heating oil UST, at a concentration of  $65\mu g/l$ . Cis-1,2-DCA was detected the grab water sample from probe boring P13, the heating oil, at a concentration of 43  $\mu g/l$ . 1,2-DCA was detected the grab water sample from the waste oil UST sampling well, at a concentration of 2.8 $\mu g/l$ .

Petroleum hydrocarbon-impacted soil at the site was encountered in the vicinity of the former UST/current UST within East 15<sup>th</sup> Street. The impacted soil was encountered in a somewhat narrow zone from depths of approximately 10 to 15 feet bsg.

The chlorinated cleaning solvent TCE, commonly use for de-greasing, was detected at low concentrations in soils samples at a depth of 30 feet bsg in the area of the waste oil tank. The vertical or lateral extent of the TCE contamination is defined.

Diesel fuel or motor oil-impacted ground water near the heating oil UST appears to have originated from a diesel or heating-oil fuel matrix. The laboratory was consulted to decipher the make-up the petroleum-hydrocarbons detected in the water sample. A mix of low concentration diesel and high concentration oil was well pronounced in the laboratory data. This mix of hydrocarbons, with the absence of gasoline and BTEX compounds, suggests a heating oil make-up of a petroleum release.

The lack of detection of MTBE in soil samples and the low presence in the water sample collected from the waste oil site suggests that the release of fuels is relatively old, possibly close to twenty years old.

The detection of TCE and 1,2-DCA and further the diesel/oil detection, from the heating oil UST area, suggests an off-site source of contaminants diesel (possible solvents). However, some heating oil (diesel) appears to have impacted ground water, based on the samples.

APPENDIX B



### Advanced GeoEnvironmental, Inc.

837 Shaw Road, Stockton, CA 95215 (209) 467-1006 FAX: (209) 467-1118

### **BORING LOG**

BOREHOLE NO.: MW-1

TOTAL DEPTH: 20 FFET

Project:

Continental Volvo

Site Location:

4030 East 14th Street

Oakland Californina

ground water encountered at ten feet bsg

Project No.:

AGE-NC-99-0556

Notes: completed as ground water monitoring well MW-1

Date(s) Drilled:

Drilling Co.:

Logged By:

Reviewed By: CLEE

04 june 2002 

■ Water level in completed well

W. LITTLE

West Haz Mat

Rig/Auger Type: CME75/8 inch hollow stem

Page 1 of 1

PID Sample **Blows** Soil USCS Class and Well Well Depth

| Борин              | ID               | (per 6") | (ppm) | Symbol | Soil Description                                                                                                                       | Completion | Description                            |
|--------------------|------------------|----------|-------|--------|----------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------|
| 0 -                |                  |          |       |        | CL: CLAY, gray, damp, low toughness, med plasticity, angular gravel, hydrocarbon (HC) odor                                             |            | Cement grout seal from                 |
| -5                 | MW1-5            |          | 0     |        | CL: CLAY, gray, damp, low t, med plast, HC odor.                                                                                       |            | .5' to 6' bsg.  Bentonite seal from 6' |
| - 1 <del>0</del> 7 | MW1-10<br>MW1-11 | -        | 890   |        | GP: POORLY GRADED GRAVEL, with 40% fines, gray, dry to damp, angular clasts, HC odor                                                   |            | to 8' bsg. #2/12 sand from 8' to       |
| -15-               | MW1-15           |          | 0     |        | CL: CLAY, gray, damp, low toughness, med plasticity, low HC odor.                                                                      |            | 20' bsg.                               |
| -                  |                  |          |       |        | SM: SILTY SAND, gray, damp, 30 % fines, 100% fine sand, no HC odor.  CL: CLAY, brown, damp, low toughness, med plasticity, no HC odor. |            | Screened interval from 10' to 20' bsg. |
| -20                | MW1-20           | -        | 0     |        |                                                                                                                                        |            | Cap at 20'                             |
| -25                |                  |          |       |        |                                                                                                                                        |            |                                        |



### Advanced GeoEnvironmental, Inc.

837 Shaw Road, Stockton, CA 95215 (209) 467-1006 FAX: (209) 467-1118

### **BORING LOG**

BOREHOLE NO.: MW-3

TOTAL DEPTH: 20 FFET

Project:

Continental Volvo

4030 East 14th Street

Oakland Californina

Project No.:

Site Location:

AGE-NC-99-0556

Drilling Co.:

West Haz Mat

Rig/Auger Type: CME75/8 inch hollow stem

Logged By:

W. LITTLE

Reviewed By:

C LEE

Date(s) Drilled:

04 june 2002

Notes: completed as ground water monitoring well mw-3

ground water encountered at ten feet bsg

Water level during drilling

■ Water level in completed well

Page 1 of 1

| D-nth. | Sample | Blows    | PID   | Soil   | USCS Class and                                                                              | Well       | Well                                  |
|--------|--------|----------|-------|--------|---------------------------------------------------------------------------------------------|------------|---------------------------------------|
| Depth  | ID     | (per 6") | (ppm) | Symbol | Soil Description                                                                            | Completion | Description                           |
| 10 -   |        | <u> </u> | 1     | Y////  |                                                                                             |            |                                       |
|        |        |          |       |        | CL: CLAY, gray, damp, low toughness, med plasticity, angular gravel, hydrocarbon (HC) odor. |            | Cement grout seal from .5' to 6' bsg. |
| -5 -   | MW3-5  |          | 0     |        | CL: CLAY, gray, damp, low t, med plast, HC odor.                                            |            | Bentonite seal from 6'                |
| -18    | MW3-10 | -        | 890   |        | GP: POORLY GRADED GRAVEL, with 40% fines, gray, dry to damp, angular clasts, HC odor.       |            | to 8' bsg.                            |
| -      |        |          |       |        | CL: CLAY, gray, damp, low toughness, med plasticity, low HC odor.                           |            | #2/12 sand from 8' to 20' bsg.        |
| -15-   | MW3-15 | -        | 0     |        | GP: POORLY GRADED GRAVEL, with 40% fines, gray, dry to damp, angular clasts, HC odor        |            | Screened interval from 10' to 20' bsg |
| -20    | )      |          |       |        | CL: CLAY, brown, damp, low toughness, med plasticity, no HC odor.                           |            |                                       |
|        | MW3-20 | -        | 0     |        |                                                                                             |            | Cap at 20'.                           |
| -25-   |        |          |       |        |                                                                                             |            |                                       |

# **APPENDIX C**

# Advanced

# GeoEnvironmental, Inc. 837 Shaw Road, Staciston, Ct. 95205 • (209) 467-1006 • Fax (209) 467-1218





## Monitoring Well Field Log

|             | 7                                     | •             |                | <del></del>   |                                        |            | •                                             |                                         |
|-------------|---------------------------------------|---------------|----------------|---------------|----------------------------------------|------------|-----------------------------------------------|-----------------------------------------|
|             |                                       | ·             |                | Well Dai      | 22                                     |            |                                               |                                         |
| Project Na  |                                       | al Vol        | ,              |               | rject No.:<br>E-NC-                    | Date:      | 101-                                          |                                         |
| Pre-Purge   | tinaut<br>DIW:8.9                     | 85 <u>VVI</u> | Time: <b>X</b> |               | ald:                                   |            | 19/02                                         | _                                       |
| 1 .         | DTW: W                                | 1             | Time: 8        | · #           | Ma                                     | $\omega 3$ |                                               |                                         |
|             | h of Well:                            | 20 We         | l Volumen      |               |                                        | 15" (2")   | . 4" 6                                        |                                         |
| į.          |                                       |               | υ<br>          |               | Gai/Ft.: 0.0                           | 1074 0.16  | 0.65 t.4                                      |                                         |
| Sampler(s)  | RIM                                   |               |                | Sam           | ple Comminers:                         | s 2/1      | Less                                          | *************************************** |
| Sample LD   |                                       | . 1.          |                | Ana           | lysis:                                 |            | /~/_)                                         | -                                       |
| <u> </u>    | m 3                                   | 3/07-19       | -02            | 7P            | H-ALL BT                               | EX O       | χ <b>γ</b> ς                                  |                                         |
|             |                                       | •             | Stabi          | dization l    | Data                                   | •          | •                                             |                                         |
| <del></del> | Volume                                |               |                | Cond          |                                        |            |                                               | 7                                       |
| . Time      | (gailons)                             | PH            | Temp.          | us/cm<br>x us | Color/<br>Turbidity                    |            | Notes                                         |                                         |
| V W         | 0                                     | 7.08          | 109            | liCri         | 10/200                                 | 101        | 1 × 5                                         | 7                                       |
| 8 20        | Ĭ                                     | 7.60          | 209            | 4110          | Clear                                  | Shear 1    | Faint od                                      | ł                                       |
| C 13        | マ                                     | 7.18          | 208            | Цап           | il                                     | Spark      | hoof Faint                                    | _ec                                     |
| 0 27        | 5.5                                   | 1.10          | 20.7           | 524           |                                        | 11         | <b>41</b>                                     | $\dashv$                                |
| 021         | الساق                                 | 101           | 7011           | 100           | Semplear                               |            |                                               | $\dashv$                                |
|             |                                       |               | *              |               |                                        |            | <del></del>                                   | -                                       |
|             | ·                                     |               |                |               |                                        | 1          | V                                             | -                                       |
|             |                                       |               |                |               |                                        |            |                                               | -                                       |
|             | ,                                     |               |                |               |                                        |            | ······································        | -                                       |
|             | · · · · · · · · · · · · · · · · · · · |               |                |               |                                        |            | , <u>, , , , , , , , , , , , , , , , , , </u> | -                                       |
| · · ·       |                                       |               |                |               |                                        |            | **************************************        | 4                                       |
|             |                                       |               |                |               |                                        |            |                                               | _                                       |
| Purge Metho | d:                                    | )150 Bar      | ber            |               | ······································ |            |                                               | 7                                       |
| Sample Meth | ~~~~ <b>~</b>                         | SPOSABLE B    |                | ≤ Well I      | integrity:                             |            |                                               | 1                                       |
| Sample Time | <del></del>                           | 3 40          | (12.0          | 7             | ved O <sub>2</sub> :                   | jours.     | 3.                                            | 1                                       |
| ICM.        | Hyd                                   |               | Oakton         |               | %                                      |            | œ/L                                           | 1                                       |
|             | /                                     |               |                | 12            | /4                                     | Di.        |                                               |                                         |

# Advanced

## GeoEnvironmental, Inc.





### Monitoring Well Field Log

|              | *                                      |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~     |                      |                       |             |                   | •                                      |             |
|--------------|----------------------------------------|-------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------|-----------------------|-------------|-------------------|----------------------------------------|-------------|
|              |                                        |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | We    | ell Data             | ,                     |             |                   |                                        |             |
| Project Na   | me: :                                  | <i>i</i> .  | 11.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                      | er No.:               |             | Date:             | . /                                    |             |
| Pre-Purge    |                                        |             | <u>Joluo</u>  | Time la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 8 ( | AGE<br>Well          |                       | ···-        |                   | 19/02                                  |             |
| 1 .          |                                        | -           |               | Time: 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •     | . wen                |                       | 5           |                   |                                        | ,           |
| Post-Purge   | DIW:                                   | 4 66        | 2             | Time: 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | / رُ  |                      |                       |             | }                 |                                        |             |
| Total Depti  | h of We                                | 11: 9       | ₩e.           | il Volume: [,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54    |                      | g Diameter:<br>ai/Ft: | .0<br>10.01 | 5" 2"<br>074 0.16 | 0.65                                   | 6"<br>L47   |
| Sampler(s):  | (L)                                    | VI.         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                      | le Container<br>UOAS  | -           | 12.00             | ************************************** |             |
| Sample LD.   | <u>.</u> :                             | <del></del> | <del></del> / | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | Analy                |                       | _2\_        | 11 Les >          | <u> </u>                               |             |
|              | <u>us</u>                              |             | 07-19-        | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | TPI                  | H-ALL                 | IBV         | ZX/O              | لا <sub>X</sub> x                      |             |
|              |                                        | •           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                      |                       |             | 7                 |                                        |             |
|              |                                        | <del></del> | ·,            | Stabi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | liza  | tion D               | ata                   |             | }                 | -                                      |             |
| . Time       | Volu<br>(gaile                         |             | ₽₩            | Тешр.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ] .   | Cond<br>µ3/cm<br>U > | Color<br>Turbid       |             | ,                 | Notes                                  |             |
| 638          | , 0                                    |             | 6.85          | 18.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C     | 515                  | elearly               | chris       | ODOR              | Fuel                                   | a Tier      |
|              |                                        | $\rho_{u}$  | (rged)        | 5 ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | llo   | mS                   |                       | -           |                   | 011                                    | 4           |
| 649          | 5                                      |             | 6.90          | 18:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 93                   | 10 /2 - 1 W           | بالمبرقة    | Sheck             | I will                                 |             |
|              | ·····                                  |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                      | To the                | 200         |                   | 1000                                   |             |
|              |                                        |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                      | <u> </u>              |             |                   | <del></del>                            |             |
|              |                                        |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ····                 | }                     |             |                   |                                        |             |
|              |                                        |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ····                 | <u> </u>              |             |                   |                                        |             |
|              |                                        |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                      |                       |             |                   |                                        |             |
|              | ······································ |             |               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | ·                    |                       |             |                   |                                        |             |
|              |                                        |             | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                      |                       |             |                   | •                                      |             |
|              | <del></del> -                          |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                      |                       |             |                   |                                        |             |
|              | ···                                    |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                      |                       |             | ,                 |                                        | <del></del> |
|              |                                        |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                      |                       |             |                   |                                        |             |
| Purge Method | d:                                     | D           | usp.B         | alex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                      |                       |             |                   |                                        |             |
| Sample Meth  | ad:                                    |             | POSABLE B     | AILER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | Well In              | egricy:               | lon         | 716               |                                        |             |
| Sample Time  |                                        |             | 657           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | Dissolve             | ed O₂:                |             | , V.S.            | C.                                     |             |
| ICM.         |                                        | Hyda        | 3             | akton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                      | %                     |             | † · n             | ng/L                                   |             |
|              |                                        |             |               | The same of the sa | 31    |                      |                       |             |                   |                                        |             |

# Advanced

# GeoEnvironmental, Inc. 837 Saaw Road, Stockson, Cl. 95205 + (209) 467-1006 • Fax (209) 467-1118





# Monitoring Well Field Log

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | . <i>1</i> 4   | ell Data               | L                                       | •                 | •         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|------------------------|-----------------------------------------|-------------------|-----------|
| Project Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | wal U        | مارى           |                        | ect No.:<br>-NC-                        | <sup>†</sup> Date | 7/19/02   |
| Pre-Purge DTW: Post-Purge DTW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.29         | Time: 73       |                        | ID: Mu                                  | 1                 |           |
| Tomi Depth of Wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | ell Volume: Is | Casin                  | g Diameter:                             | 0.5" E"           |           |
| Sampler(s): RN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1            |                |                        | le Containers:                          |                   | ivers     |
| Sample LD.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1            | 4-02           | Analy<br>V-PI          | sis:<br>H-ALL JR                        | TEX               | loxys     |
| Annual section of the | · .          | Stabili        | cation D               |                                         | 1                 |           |
| . Time Volum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , n.i.i      | Temp.          | Cond<br>µS/cm<br>X U S | Color/<br>Turbidity                     |                   | Notes     |
| 736 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.89         | 17.4           | 093                    | clear                                   | 1                 | obor show |
| 741 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.02         |                | 088<br>091             | 1 (lear                                 | 40-11             | t ador    |
| 746 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.11         |                | 094                    | 11                                      | 11                | · · ·     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                |                        |                                         |                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                |                        |                                         |                   |           |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                |                        |                                         |                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                |                        |                                         |                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                |                        |                                         |                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                |                        |                                         | ·                 | ,         |
| Purge Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DISP B       | ailer          | <del></del>            | *************************************** |                   |           |
| Sample Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DISPOSABLE B |                | Well Im                | tegrity: (                              | over)             |           |
| Sample Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 840          | 9 9 2          | Dissolve               |                                         |                   | C.        |
| ICM. E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tydac        | Oakton         |                        | %                                       |                   | mg/L      |

APPENDIX D



### McCampbell Analytical Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

| Advanced GeoEnvironmental, Inc | Client Project ID: Former Continental | Date Sampled: 06/04/02   |
|--------------------------------|---------------------------------------|--------------------------|
| 837 Shaw Road                  | Volvo-MW's                            | Date Received: 06/07/02  |
| Stockton, CA 95215             | Client Contact: Bill Little           | Date Reported: 06/14/02  |
| Sidekion, CA 75215             | Client P.O.:                          | Date Completed: 06/14/02 |

June 14, 2002

#### Dear Bill:

#### Enclosed are:

- 1). the results of 7 samples from your Former Continental Volvo-MW's project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

|   |            | ,             | -     |
|---|------------|---------------|-------|
| _ | McCampbell | Analytical    | Inc   |
|   | Mocampoon  | 1 maily tions | 1110. |
|   |            |               |       |

110 2nd Avenue with, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

| Advanced GeoEnvironmental, Inc | Client Project ID: Former Continental Volvo-MW's | Date Sampled: 06/04/02           |
|--------------------------------|--------------------------------------------------|----------------------------------|
| 837 Shaw Road                  | V OIVO-M W S                                     | Date Received: 06/07/02          |
| Stockton, CA 95215             | Client Contact: Bill Little                      | Date Extracted: 06/07/02         |
| Stockton, OA 95215             | Client P.O.:                                     | Date Analyzed: 06/07/02-06/11/02 |

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE\* Extraction method: SW5030B Analytical methods: SW8021B/8015Cm Work Order: 0206101 Lab ID Client ID Matrix TPH(g) MTBE Benzene Toluene Ethylbenzene Xylenes DF 001A MW1-5 S ND ND ND ND ND ND 1 111 002A MW1-10 S ND ND ND ND ND ND 112 003A MWI-15 S ND ND ND ND ND ND 103 004A S ND MW1-20 ND ND ND ND ND 1 114 006A MW3-11 S 2.6,g ND ND ND ND ND 114 007A MW3-15 S ND ND ND ND ND ND 1 115 Reporting Limit for DF =1; W 0.5 50 5.0 0.5 0.5 ug/L 0.5 ND means not detected at or  $\overline{\mathbf{s}}$ 1.0 0.05 0.005 0.005 0.005 0.005 mg/Kg

\*water and vapor samples are reported in ug/L, soil and sludge samples in mg/kg, wipe samples in ug/wipe, and TCLP extracts in ug/L.

DF = dilution factor.

above the reporting limit

# cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; c) TPH pattern that does not appear to be derived from gasoline (stoddard solvent); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) no recognizable pattern; k) TPH pattern that does not appear to be derived from gasoline (aviation gas).



|  | McCampbell | Analytical | Inc |
|--|------------|------------|-----|
|--|------------|------------|-----|

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com/E-mail: main@mccampbell.com/

| Advanced GeoEnvironmental, Inc           | Client Project ID: Former Continental Volvo-MW's | Date Sampled: 06/04/02           |
|------------------------------------------|--------------------------------------------------|----------------------------------|
| 837 Shaw Road                            | V OIVO-IVI VV S                                  | Date Received: 06/07/02          |
| Stockton, CA 95215                       | Client Contact: Bill Little                      | Date Extracted: 06/07/02         |
| 3.00.00.00.00.00.00.00.00.00.00.00.00.00 | Client P.O.:                                     | Date Analyzed: 06/07/02-06/13/02 |

#### Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil\*

|                                         | Diesel (C10-2                         | 3) and Oil (C18+ | ) Range Extractable Hydi    | rocarbons as Diesel and Motor O | i]*             |              |
|-----------------------------------------|---------------------------------------|------------------|-----------------------------|---------------------------------|-----------------|--------------|
| Extraction method: S                    | W3550C                                |                  | Analytical methods: SW80150 | C                               | Work O          | der: 0206101 |
| Lab ID                                  | Client ID                             | Matrix           | TPH(d)                      | TPH(mo)                         | DF              | % SS         |
| 0206101-001A                            | MW1-5                                 | S                | 2.7,g                       | 19                              | 1               | 108          |
| 0206101-002A                            | MW1-10                                | S                | ND                          | ND                              | 1               | 109          |
| 0206101-003A                            | MW1-15                                | S                | ND                          | ND                              | 1               | 92.5         |
| 0206101-004A                            | MW1-20                                | S                | ND                          | ND                              | 1               | 108          |
| 0206101-006A                            | MW3-11                                | S                | 120,a                       | 26                              | 1               | 107          |
| 0206101-007A                            | MW3-15                                | S                | ND                          | ND                              | 1               | 106          |
|                                         |                                       |                  |                             |                                 |                 |              |
|                                         |                                       |                  |                             |                                 | <del></del>     |              |
|                                         |                                       |                  |                             |                                 | <del> ,</del> , |              |
|                                         |                                       |                  | ·-···                       |                                 |                 |              |
|                                         |                                       |                  |                             |                                 | ·               |              |
|                                         | · · · · · · · · · · · · · · · · · · · |                  |                             |                                 |                 |              |
|                                         |                                       |                  |                             |                                 |                 |              |
|                                         |                                       |                  |                             |                                 |                 |              |
|                                         |                                       | +                |                             |                                 |                 |              |
|                                         |                                       |                  |                             |                                 |                 |              |
| Reporting Limit fo                      | or DF =1;                             | w                | NA NA                       | NA                              |                 | g/L          |
| ND means not dete<br>above the reportin | ected at or                           | s                | 1.0                         | 5.0                             |                 | /Kg          |

<sup>\*</sup> water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil and sludge samples in mg/kg, and all TCLP / STLC / SPLP extracts in ug/L

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent.



<sup>#</sup> cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

### McCampbell Analyticai inc.

110 2nd Avenue 1, #D7, Pacheco, CA 94553-5560
Telephone: 923-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

| Advanced GeoEnvironmental, Inc | Client Project ID: Former Continental | Date Sampled: 06/04/02   |
|--------------------------------|---------------------------------------|--------------------------|
| 837 Shaw Road                  | Volvo-MW's                            | Date Received: 06/07/02  |
| ·                              | Client Contact: Bill Little           | Date Extracted: 06/07/02 |
| Blockion, CA 75215             | Client P.O.:                          | Date Analyzed: 06/11/02  |

#### Volatiles Organics by GC/MS (Basic Target List)\*

Extraction Method: SWS030B Analytical Method: SW8260B

d: SW8260B Work Order: 0206101

| Lab ID                      |                 | · 0206101-001A |                                       |                              |                                       |     |                    |
|-----------------------------|-----------------|----------------|---------------------------------------|------------------------------|---------------------------------------|-----|--------------------|
| Client ID                   |                 |                |                                       | MW1-5                        |                                       | ,   |                    |
| Matrix                      |                 |                |                                       | Soil ,                       |                                       |     |                    |
| Compound                    | Concentration * | DF             | Reporting<br>Limit                    | Compound                     | Concentration *                       | DF  | Reporting<br>Limit |
| Acetone                     | ND              | 1.0            | 50                                    | Benzene                      | ND                                    | 1.0 | 5                  |
| Bromobenzene                | ND              | 1.0            | 5_                                    | Bromochloromethane           | ND                                    | 1.0 | 5                  |
| Bromodichloromethane        | ND              | 1.0            | 5_                                    | Bromoform                    | ND                                    | 1.0 | 5                  |
| Bromomethane                | ND              | 1.0            | 5_                                    | 2-Butanone (MEK)             | МD                                    | 1.0 | 10                 |
| n-Butyl benzene             | ND              | 1.0            | 5                                     | sec-Butyl benzene            | ND                                    | 1.0 | 5                  |
| tert-Butyl benzene          | ND              | 1.0            | 5_                                    | Carbon Disulfide             | ND                                    | 1.0 | 5                  |
| Carbon Tetrachloride        | ND              | 1.0            | 5_                                    | Chlorobenzene                | ND                                    | 1.0 | 5                  |
| Chlorocthane                | ND              | 1.0            | 5                                     | 2-Chloroethyl Vinyl Ether    | ND                                    | 1.0 | 10                 |
| Chloroform                  | ND              | 1,0            | 5                                     | Chloromethane                | ND                                    | 1.0 | 5                  |
| 2-Chlorotoluene             | ND              | 1.0            | 5                                     | 4-Chlorotoluene              | ND                                    | 1.0 | 5                  |
| Dibromochloromethane        | ND              | 1.0            | 5                                     | 1,2-Dibromo-3-chloropropane  | ND                                    | 1.0 | 5                  |
| 1,2-Dibromoethane (EDB)     | ND              | 1.0            | 5                                     | Dibromomethane               | ND                                    | 1.0 | 5                  |
| 1,2-Dichlorobenzene         | ND              | 1.0            | 5                                     | 1,3-Dichlorobenzene          | ND                                    | 1.0 | 5                  |
| 1,4-Dichlorobenzene         | DИ              | 1.0            | 5                                     | Dichlorodifluoromethane      | ND                                    | 1.0 | 5                  |
| 1,1-Dichloroethane          | ND              | 1.0            | 5                                     | 1,2-Dichloroethane (1,2-DCA) | ND                                    | 1.0 | 5                  |
| 1,1-Dichloroethene          | ND              | 1.0            | 5                                     | cis-1,2-Dichloroethene       | ND                                    | 1.0 | 5                  |
| trans-1,2-Dichloroethene    | ND              | 1.0            | 5                                     | 1,2-Dichloropropane          | ND                                    | 1.0 | 5                  |
| 1,3-Dichloropropane         | ND              | 1.0            | 5                                     | 2,2-Dichloropropane          | ND                                    | 1.0 | 5                  |
| 1,1-Dichloropropene         | ND              | 1.0            | 5                                     | cis-1,3-Dichloropropene      | ND                                    | 1.0 | 5                  |
| trans-1,3-Dichloropropene   | ND              | 1.0            | 5                                     | Ethyl benzene                | ND                                    | 1.0 | 5                  |
| Hexachlorobutadiene         | ND              | 1,0            | 5                                     | 2-Hexanone                   | ND                                    | 1.0 | 5                  |
| Iodomethane (Methyl iodide) | ND              | 1.0            | 10                                    | 4-Isopropyl toluene          | ND                                    | 1.0 | 5                  |
| Isopropylbenzene            | ND              | 1.0            | 5                                     | 4-Methyl-2-pentanone (MIBK)  | ND                                    | 1.0 | 5                  |
| Methylene chloride          | ND              | 1.0            | 5                                     | Naphthalene                  | ND                                    | 1.0 | 5                  |
| n-Propyl benzene            | ND              | 1.0            | 5                                     | Styrene                      | ND                                    | 1.0 | 5                  |
| 1,1,1,2-Tetrachloroethane   | ND              | 1,0            | 5                                     | 1,1,2,2-Tetrachloroethane    | ND                                    | 1.0 | 5                  |
| Tetrachloroethene           | ND              | 1.0            | 5                                     | Toluene                      | ND                                    | 1.0 | 5                  |
| 1,2,3-Trichlorobenzene      | ND              | 1.0            | 5                                     | 1,2,4-Trichlorobenzene       | ND                                    | 1.0 | 5                  |
| 1,1,1-Trichloroethane       | ND              | 1.0            | 5                                     | 1,1,2-Trichloroethane        | ND                                    | 1.0 | 5                  |
| Trichloroethene             | ND              | 1.0            | 5                                     | Trichlorofluoromethane       | ND                                    | 1.0 | 5                  |
| 1,2,3-Trichloropropane      | ND              | 1.0            | 5                                     | 1,2,4-Trimethylbenzene       | ND                                    | 1.0 | 5                  |
| 1,3,5-Trimethylbenzene      | ND              | 1,0            | 5                                     | Vinyl Acetate                | ND                                    | 1.0 | 50                 |
| Vinyl Chloride              | ND              | 1.0            | 5                                     | Xylenes                      | ND                                    | 1.0 | 5                  |
|                             |                 | Surr           | ogate Re                              | ecoveries (%)                | · · · · · · · · · · · · · · · · · · · |     |                    |
| %SS1:                       | 90.4            |                | · · · · · · · · · · · · · · · · · · · | %SS2:                        | 107                                   |     | A COLOR            |
|                             |                 |                |                                       |                              | ·                                     |     |                    |

%SS3: Comments:

\*water and vapor samples are reported in ug/L, soil and sludge samples in ug/kg, wipes in ug/wipe and all TCLP / SPLP extracts in ug/L

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

94.5

(h) lighter than water immiscible sheen/product is present; (i) liquid sample that contains greater than ~2 vol. % sediment; (j) sample diluted due to high organic content.

## McCampbell Analytical inc.

110 2nd Avenue 1, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

| Advanced GeoEnvironmental, Inc      | Client Project ID: Former Continental Volvo-MW's | Date Sampled: 06/04/02   |
|-------------------------------------|--------------------------------------------------|--------------------------|
| 837 Shaw Road                       | V QIVO-IVI VV S                                  | Date Received: 06/07/02  |
| 337 Shaw Road<br>Stockton, CA 95215 | Client Contact: Bill Little                      | Date Extracted: 06/07/02 |
| beomon, or 75217                    | Client P.O.:                                     | Date Analyzed: 06/11/02  |

#### Volatiles Organics by GC/MS (Basic Target List)\*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0206101

| Lab ID                      |                 | 0206101-002A |                    |                              |                 |     |                    |
|-----------------------------|-----------------|--------------|--------------------|------------------------------|-----------------|-----|--------------------|
| Client ID                   |                 |              |                    | MW1-10                       |                 |     |                    |
| Matrix                      |                 |              |                    | Soil                         |                 |     |                    |
| Compound                    | Concentration * | DF           | Reporting<br>Lunit | Compound                     | Concentration * | DF  | Reporting<br>Limit |
| Acctone                     | ND              | 1.0          | 50                 | Benzene                      | ND              | 1.0 | 5                  |
| Bromobenzene                | ND              | 1.0          | 5                  | Bromochloromethane           | ND              | 1.0 | 5                  |
| Bromodichloromethane        | ND              | 1.0          | 5                  | Bromoform                    | ND              | 1.0 | 5                  |
| Bromomethane                | ND              | 1.0          | 5                  | 2-Butanone (MEK)             | ND              | 1.0 | 10                 |
| n-Butyl benzene             | ND              | 1.0          | 5                  | sec-Butyl benzene            | ND              | 1.0 | 5                  |
| tert-Butyl benzene          | ND              | 1.0          | 5                  | Carbon Disulfide             | ND              | 1.0 | 5                  |
| Carbon Tetrachloride        | ND              | 1.0          | 5                  | Chlorobenzene                | ND              | 1.0 | 5                  |
| Chlorocthane                | ďИ              | 1.0          | 5                  | 2-Chloroethyl Vinyl Ether    | ND              | 1.0 | 10                 |
| Chloroform                  | ND              | 1.0          | 5                  | Chloromethane                | ND              | 1.0 | 5                  |
| 2-Chlorotolucne             | ND              | 1.0          | 5                  | 4-Chlorotoluene              | ND              | 1.0 | 5                  |
| Dibromochloromethane        | ND              | 1.0          | 5                  | 1,2-Dibromo-3-chloropropane  | ND              | 1.0 | 5                  |
| 1,2-Dibromoethane (EDB)     | ND              | 1.0          | 5                  | Dibromomethane               | ND              | 1.0 | 5                  |
| 1,2-Dichlorobenzene         | ND              | 1.0          | 5                  | 1,3-Dichlorobenzene          | ND              | 1.0 | 5                  |
| 1,4-Dichlorobenzene         | ND              | 1.0          | 5                  | Dichlorodifluoromethane      | ND              | 1.0 | 5                  |
| 1,1-Dichloroethane          | ND              | 1.0          | 5                  | 1,2-Dichloroethane (1,2-DCA) | ND              | 1.0 | 5                  |
| 1,1-Dichloroethene          | ND              | 1.0          | 5                  | cis-1,2-Dichloroethene       | ND              | 1.0 | 5                  |
| trans-1,2-Dichloroethene    | ND              | 1.0          | 5                  | 1,2-Dichloropropane          | ND              | 1.0 | 5                  |
| 1,3-Dichloropropane         | ND              | 1.0          | 5                  | 2,2-Dichloropropane          | ND              | 1.0 | 5                  |
| 1,1-Dichloropropene         | ND              | 1.0          | 5                  | cis-1,3-Dichloropropene      | ND              | 1.0 | 5                  |
| trans-1,3-Dichloropropene   | ND              | 1.0          | 5                  | Ethyl benzene                | ND              | 1.0 | 5                  |
| Hexachlorobutadiene         | ND              | 1.0          | 5                  | 2-Hexanone                   | ND              | 1.0 | 5                  |
| Iodomethane (Methyl iodide) | ND              | 1.0          | 10                 | 4-Isopropyl toluene          | ND              | 1.0 | 5                  |
| Isopropylbenzenc            | ND              | 1.0          | 5                  | 4-Methyl-2-pentanone (MIBK)  | ND              | 1.0 | 5                  |
| Methylene chloride          | ND              | 1.0          | 5                  | Naphthalene                  | ND              | 1.0 | 5                  |
| n-Propyl benzene            | ND              | 1.0          | 5                  | Styrene                      | ND              | 1.0 | 5                  |
| 1,1,1,2-Tetrachloroethane   | . ND            | 1.0          | 5                  | 1,1,2,2-Tetrachloroethane    | ND              | 1.0 | 5                  |
| Tetrachloroethene           | DN              | 1.0          | 5                  | Toluene                      | ND              | 1.0 | 5                  |
| 1,2,3-Trichlorobenzene      | ND              | 1.0          | 5                  | 1,2,4-Trichlorobenzene       | ND              | 1.0 | 5                  |
| l,l,l-Trichloroethane       | ND              | 1.0          | 5                  | 1,1,2-Trichloroethane        | ND              | 1.0 | 5                  |
| Trichloroethene             | ND              | 1.0          | 5                  | Trichlorofluoromethane       | ND              | 1.0 | 5                  |
| 1,2,3-Trichloropropane      | ND              | 1.0          | 5                  | 1,2,4-Trimethylbenzene       | ND              | 1.0 | 5                  |
| 1,3,5-Trimethylbenzene      | ND              | 1.0          | 5                  | Vinyl Acetate                | ND              | 1.0 | 50                 |
| Vinyl Chloride              | ND              | 1.0          | 5                  | Xylenes                      | ND              | 1.0 | 5                  |
|                             |                 | Surr         | ogate Re           | coveries (%)                 |                 |     |                    |
| %SS1:                       | 92.5            | 5            |                    | %SS2:                        | 106             |     |                    |
| %SS3:                       | 94.5            | j            |                    |                              | ·               |     |                    |

Comments:

\*water and vapor samples are reported in ug/L, soil and sludge samples in ug/kg, wipes in ug/wipe and all TCLP / SPLP extracts in ug/L

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

(h) lighter than water immiscible sheen/product is present; (i) liquid sample that contains greater than ~2 vol. % sediment; (j) sample diluted due to high organic content.



| a | McCampbell | Analytica | TUC. |
|---|------------|-----------|------|
|   |            |           |      |

110 2nd Avenu h, #D7, Pacheco, CA 94553-5560
Telephone: 923-798-1620 Fax: 925-798-1622
http://www.mccampbell.com// E-mail: main@mccampbell.com//

Work Order: 0206101

| Advanced GeoEnvironmental, Inc | Client Project ID: Former Continental Volvo-MW's | Date Sampled: 06/04/02   |
|--------------------------------|--------------------------------------------------|--------------------------|
| 837 Shaw Road                  | V 01V0-1VI W S                                   | Date Received: 06/07/02  |
| Stockton, CA 95215             | Client Contact: Bill Little                      | Date Extracted: 06/07/02 |
| 2.202.00                       | Client P.O.:                                     | Date Analyzed: 06/11/02  |

#### Volatiles Organics by GC/MS (Basic Target List)\*

Extraction Method: SW5030B Analytical Method: SW8260B

 Lab ID
 0206101-006A

 Client ID
 MW3-11

| Chent to                    | 10 101 101 101 101 101 101 101 101 101 |      |                    |                              |                 |                  |                    |
|-----------------------------|----------------------------------------|------|--------------------|------------------------------|-----------------|------------------|--------------------|
| Matrix                      |                                        |      |                    | Soil                         |                 |                  |                    |
| Compound                    | Concentration *                        | DF   | Reporting<br>Limit | Compound                     | Concentration * | DF               | Reporting<br>Limit |
| Acetone                     | ND                                     | 1.0  | 50                 | Benzene                      | ND              | 1.0              | 5                  |
| Bromobenzene                | ND                                     | 1.0  | 5                  | Bromochloromethane           | ND              | 1.0              | 5                  |
| Bromodichloromethane        | ND                                     | 1.0  | 5                  | Bromoform                    | ND              | 1.0              | 5                  |
| Bromomethane                | ND                                     | 1.0  | 5                  | 2-Butanone (MEK)             | ND              | 1.0              | 10                 |
| n-Butyl benzene             | ND                                     | 1.0  | 5                  | sec-Butyl benzene            | ND              | 1.0              | 5                  |
| tert-Butyl benzene          | ND                                     | 1.0  | 5                  | Carbon Disulfide             | ND              | 1.0              | 5                  |
| Carbon Tetrachloride        | ND                                     | 1.0  | 5                  | Chlorobenzene                | ND              | 1.0              | 5                  |
| Chloroethane                | ND                                     | 1.0  | 5                  | 2-Chloroethyl Vinyl Ether    | ND              | 1.0              | 10                 |
| Chloroform                  | ND                                     | 1.0  | 5                  | Chloromethane                | ND              | 1.0              | 5                  |
| 2-Chlorotoluene             | ND                                     | 1.0  | 5                  | 4-Chlorotoluene              | ND              | 1.0              | 5                  |
| Dibromochloromethane        | ND                                     | 1.0  | 5                  | 1,2-Dibromo-3-chloropropane  | ND              | 1.0              | 5                  |
| 1,2-Dibromoethane (EDB)     | ND                                     | 1.0  | 5                  | Dibromomethane               | ND              | 1.0              | 5                  |
| 1,2-Dichlorobenzene         | ND                                     | 1.0  | 5                  | 1,3-Dichlorobenzene          | ND              | 1.0              | 5                  |
| 1,4-Dichlorobenzene         | ND                                     | 1.0  | 5                  | Dichlorodifluoromethane      | ND              | 1.0              | 5                  |
| 1,1-Dichloroethane          | ND                                     | 1.0  | 5                  | 1,2-Dichloroethane (1,2-DCA) | ND              | 1.0              | 5                  |
| 1,1-Dichloroethene          | ND                                     | 1.0  | 5                  | cis-1,2-Dichloroethene       | ND              | 1.0              | 5                  |
| trans-1,2-Dichloroethene    | ND                                     | 1.0  | 5                  | 1,2-Dichloropropane          | ND              | 1.0              | 5                  |
| 1,3-Dichloropropane         | ND                                     | 1.0  | 5                  | 2,2-Dichloropropane          | ND              | 1.0              | 5                  |
| 1,1-Dichloropropene         | ND                                     | 1.0  | 5                  | cis-1,3-Dichloropropene      | ND              | 1.0              | 5                  |
| trans-1,3-Dichloropropene   | ND                                     | 1.0  | 5                  | Ethyl benzene                | ND              | 1.0              | 5                  |
| Hexachlorobutadiene         | ND                                     | 1.0  | 5                  | 2-Hexanone                   | ND              | 1.0              | 5                  |
| Iodomethane (Methyl iodide) | ND                                     | 1.0  | 10                 | 4-Isopropyl toluene          | ND              | 1.0              | 5                  |
| Isopropylbenzene            | ND                                     | 1.0  | 5                  | 4-Methyl-2-pentanone (MIBK)  | ND              | 1.0              | 5                  |
| Methylene chloride          | ND                                     | 1.0  | 5                  | Naphthalene                  | ND              | 1.0              | 5                  |
| n-Propyl benzene            | ND                                     | 1.0  | 5                  | Styrene                      | ND              | 1.0              | 5                  |
| 1,1,1,2-Tetrachloroethane   | ND                                     | 1.0  | 5                  | 1,1,2,2-Tetrachloroethane    | ND              | 1.0              | 5                  |
| Tetrachloroethene           | ND                                     | 1.0  | 5                  | Toluene                      | ND              | 1.0              | 5                  |
| 1,2,3-Trichlorobenzene      | ND                                     | 1.0  | 5                  | 1,2,4-Trichlorobenzene       | ND              | 1.0              | 5                  |
| 1,1,1-Trichloroethane       | ND                                     | 1.0  | 5                  | 1,1,2-Trichloroethane        | ND              | 1.0              | 5                  |
| Trichloroethene             | ND                                     | 1.0  | 5                  | Trichlorofluoromethane       | ND              | 1.0              | 5                  |
| 1,2,3-Trichloropropane      | ND                                     | 1.0  | _5                 | 1,2,4-Trimethylbenzene       | ND              | 1.0              | 5                  |
| 1,3,5-Trimethylbenzene      | ND                                     | 1.0  | 5                  | Vinyl Acetate                | ND              | 1.0              | 50                 |
| Vinyl Chloride              | ND                                     | 1.0  | 5                  | Xylenes                      | ND              | 1.0              | 5                  |
|                             |                                        | Surr | ogate Re           | coveries (%)                 |                 |                  |                    |
| %SS1:                       | 91,1                                   | 0    |                    | %SS2:                        | 107             | —— <del>——</del> |                    |
| %SS3:                       | 90.4                                   | 4    |                    |                              |                 |                  |                    |
|                             | <del></del>                            |      |                    |                              |                 |                  |                    |

Comments:

\*water and vapor samples are reported in ug/L, soil and sludge samples in ug/kg, wipes in ug/wipe and all TCLP / SPLP extracts in ug/L

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

(h) lighter than water immiscible sheen/product is present; (i) liquid sample that contains greater than ~2 vol. % sediment; (j) sample diluted due to high organic content.



## McCampbell Analyticai anc.

110 2nd Avenue 1, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

| Advanced GeoEnvironmental, Inc | Client Project ID: Former Continental | Date Sampled: 06/04/02   |
|--------------------------------|---------------------------------------|--------------------------|
| 837 Shaw Road                  | Volvo-MW's                            | Date Received: 06/07/02  |
| Stockton, CA 95215             | Client Contact: Bill Little           | Date Extracted: 06/07/02 |
| Stockton, Cri 75215            | Client P.O.:                          | Date Analyzed: 06/11/02  |

#### Volatiles Organics by GC/MS (Basic Target List)\*

Analytical Method: SW8260B Work Order: 0206101 Extraction Method: SW5030B

| Lab ID    | r | 0206101-007A |
|-----------|---|--------------|
| Client ID |   | MW3-15       |
| Matrix    |   | Soil         |

| Matrix                      | :               | Soil |                    |                              |                 |     |                    |
|-----------------------------|-----------------|------|--------------------|------------------------------|-----------------|-----|--------------------|
| Compound                    | Concentration * | DF   | Reporting<br>Limit | Compound                     | Concentration * | DF  | Reporting<br>Limit |
| Acetone                     | ND              | 1.0  | 50                 | Benzene                      | ND              | 1.0 | 5                  |
| Bromobenzene                | ND              | 1.0  | 5                  | Bromochloromethane           | ND              | 1.0 | 5                  |
| Bromodichloromethane        | ND              | 1.0  | 5                  | Bromoform                    | ND              | 1.0 | 5                  |
| Bromomethane                | ND              | 1.0  | 5                  | 2-Butanone (MEK)             | ND              | 1.0 | 10                 |
| n-Butyl benzene             | ND              | 1.0  | 5                  | sec-Butyl benzene            | ND              | 1.0 | 5                  |
| tert-Butyl benzene          | ND              | 1.0  | 5                  | Carbon Disulfide             | ND              | 1.0 | 5                  |
| Carbon Tetrachloride        | ND              | 1.0  | 5                  | Chlorobenzene                | ND              | 1.0 | 5                  |
| Chloroethane                | ND              | 1.0  | 5                  | 2-Chloroethyl Vinyl Ether    | ND              | 1.0 | 10                 |
| Chloroform                  | ND              | 1.0  | 5                  | Chloromethane                | DN              | 1.0 | 5                  |
| 2-Chlorotoluene             | ND              | 1.0  | 5                  | 4-Chlorotoluene              | ND              | 1.0 | 5                  |
| Dibromochloromethane        | ND              | 1.0  | 5                  | 1,2-Dibromo-3-chloropropane  | ND              | 1.0 | 5                  |
| 1,2-Dibromoethane (EDB)     | ND              | 1.0  | 5                  | Dibromomethane               | ND              | 1.0 | 5                  |
| 1,2-Dichlorobenzene         | ND              | 1.0  | 5                  | 1,3-Dichlorobenzene          | ND              | 1.0 | 5                  |
| 1,4-Dichlorobenzene         | ND              | 1.0  | 5                  | Dichlorodifluoromethane      | ND              | 1.0 | 5                  |
| 1,1-Dichloroethane          | ND              | 1.0  | 5                  | 1,2-Dichloroethane (1,2-DCA) | ND              | 1.0 | 5                  |
| 1,1-Dichloroethene          | ND              | 1.0  | 5                  | cis-1,2-Dichloroethene       | ND              | 1.0 | 5                  |
| trans-1,2-Dichloroethene    | ND              | 1.0  | 5                  | 1,2-Dichloropropane          | ND              | 1.0 | 5                  |
| 1,3-Dichloropropane         | ND              | 1.0  | 5                  | 2,2-Dichloropropane          | ND              | 1.0 | 5                  |
| 1,1-Dichloropropene         | ND              | 1.0  | 5                  | cis-1,3-Dichloropropene      | ND              | 1.0 | 5                  |
| trans-1,3-Dichloropropene   | ND              | 1.0  | 5                  | Ethyl benzene                | ND              | 1.0 | 5                  |
| Hexachlorobutadiene         | ND              | 1.0  | 5                  | 2-Hexanone                   | ND              | 1.0 | 5                  |
| Iodomethane (Methyl iodide) | ND              | 1.0  | 10                 | 4-Isopropyl toluene          | ND              | 1.0 | 5                  |
| Isopropylbenzene            | ND              | 1.0  | 5                  | 4-Methyl-2-pentanone (MIBK)  | ND              | 1.0 | 5                  |
| Methylene chloride          | ND              | 1.0  | 5                  | Naphthalene                  | ND              | 1.0 | 5                  |
| n-Propyl benzene            | ND              | 1.0  | 5                  | Styrene                      | ND              | 1.0 | 5                  |
| 1,1,1,2-Tetrachloroethane   | ND              | 1.0  | 5                  | 1,1,2,2-Tetrachloroethane    | ND              | 1.0 | 5                  |
| Tetrachloroethene           | ND              | 1.0  | 5                  | Toluene                      | ND              | 1.0 | 5                  |
| 1,2,3-Trichlorobenzene      | ND              | 1.0  | 5                  | 1,2,4-Trichlorobenzene       | ND              | 1.0 | 5                  |
| 1,1,1-Trichloroethane       | ND              | 1.0  | 5                  | 1,1,2-Trichloroethane        | ND              | 1.0 | 5                  |
| Trichloroethene             | ND              | 1.0  | 5                  | Trichlorofluoromethane       | ОИ              | 1.0 | 5                  |
| 1,2,3-Trichloropropane      | ND              | 1.0  | 5_                 | 1,2,4-Trimethylbenzene       | ND              | 1.0 | 5                  |
| 1,3,5-Trimethylbenzene      | ND              | 1.0  | 5                  | Vinyl Acetate                | ND              | 1.0 | 50                 |
| Vinyl Chloride              | ND              | 1.0  | 5                  | Xylenes                      | ND              | 1.0 | 5                  |
|                             |                 |      | ogate R            | ecoveries (%)                |                 |     |                    |
| %SS1:                       | 93.9            | 9    |                    | %SS2:                        | 108             | 3   |                    |
| 0/553                       | 00 9            | 0    |                    |                              |                 |     |                    |

99.8 %SS3:

\*water and vapor samples are reported in ug/L, soil and sludge samples in ug/kg, wipes in ug/wipe and all TCLP / SPLP extracts in ug/L

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

(h) lighter than water immiscible sheen/product is present; (i) liquid sample that contains greater than  $\sim$ 2 vol. % sediment; (j) sample diluted due to high organic content.

110 2nd Avenue Ah, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail main@mccampbell.com

|                                |           |                             |                                            | actps/ www.micoas | inpochicom E-man manne   | <u>впесапросп.сош</u> |  |  |
|--------------------------------|-----------|-----------------------------|--------------------------------------------|-------------------|--------------------------|-----------------------|--|--|
| Advanced GeoEnvironmental, Inc |           | 1                           |                                            |                   | Date Sampled: 06/04/02   |                       |  |  |
| 837 Shaw Road                  |           | Volvo-MW's                  |                                            |                   | Date Received: 06/07/02  |                       |  |  |
| Stockton CA 05215              |           | Client Contact: Bill Little |                                            |                   | Date Extracted: 06/07/02 |                       |  |  |
| Stockton, CA 95215             |           | Client P.O.:                |                                            |                   | Date Analyzed: 06/11/02  |                       |  |  |
|                                |           | Seven Oxygena               | ted Volatile Org                           | anics by GC/N     | AS*                      |                       |  |  |
| Extraction Method: SW5030B     |           | Ала                         | lytical Method: SW8260B Work-Order: 020610 |                   |                          |                       |  |  |
|                                | Lab ID    | 0206101-001A                | 0206101-002A                               | 0206101-006A      | 0206101-007A             |                       |  |  |
|                                | Client ID | MW1-5                       | MW1-10                                     | MW3-11            | MW3-15                   | Reporting Limit for   |  |  |
|                                |           |                             |                                            |                   |                          | 1 [[변투]               |  |  |

| Client ID                      | MW1-5         | MW1-10          | MW3-11 | MW3-15 | Reporting Limit for DF =1 |      |
|--------------------------------|---------------|-----------------|--------|--------|---------------------------|------|
| Matrix                         |               |                 |        |        |                           |      |
| DF                             | 1             | 1               | 1      | 1      | S                         | W    |
| Compound                       | Concentration |                 |        |        |                           | ug/L |
| Diisopropyl ether (DIPE)       | ND            | ND              | ND     | ИD     | 5                         | NA   |
| Ethyl tert-butyl ether (ETBE)  | ND            | ND              | ND     | ND     | 5                         | NA   |
| Methyl-t-butyl ether (MTBE)    | ND            | ND              | ND     | ND     | 5                         | NA   |
| tert-Arnyl methyl ether (TAME) | ND            | ND              | ND     | ND     | 5                         | NA   |
| t-Butyl alcohol (TBA)          | ND            | ND              | ND     | ДИ     | 50                        | NA   |
| Methanol                       | ND            | ND              | ND     | ND     | 2500                      | NA   |
| Ethanol                        | ND            | ND              | ND     | ND     | 250                       | NA   |
|                                | Surro         | gate Recoveries | s (%)  |        |                           |      |
| %SS                            | 96.8          | 98.4            | 88.9   | 98.2   |                           |      |

| %SS      | 96.8     | 98.4 | 88.9 | 98.2 |  |
|----------|----------|------|------|------|--|
| Comments | <u> </u> |      |      |      |  |

<sup>\*</sup> water samples are reported in ug/L, soil and sludge samples in ug/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in ug/L



ND means not detected above the reporting limit; N/A means surrogate not applicable to this analysis

<sup>(</sup>h) lighter than water immiscible sheen/product is present; (i) liquid sample that contains greater than ~2 vol. % sediment; (j) sample diluted due to high organic content

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

| Advanced GeoEnvironmental, Inc | Client Project ID: Former Continental | Date Sampled: 06/04/02   |  |  |
|--------------------------------|---------------------------------------|--------------------------|--|--|
| 837 Shaw Road                  | Volvo-MW's                            | Date Received: 06/07/02  |  |  |
| Stockton, CA 95215             | Client Contact: Bill Little           | Date Extracted: 06/07/02 |  |  |
| Stockton, CA 75215             | Client P.O.:                          | Date Analyzed: 06/11/02  |  |  |
|                                | Oxygenated Volatile Organics by GC/   | MS*                      |  |  |
| Extraction Method: SW5030B     | Analytical Method: SW8260B            | Work Order: 0206101      |  |  |
| Lab ID                         | 0206101-003A 0206101-004A             |                          |  |  |

| Lab ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0206101-003A | 0206101-004A     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |       |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------|-----------|
| Client ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MW1-15       | MW1-20           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |       | Limit for |
| Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S            | S                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       | DF    | =1        |
| DF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1            | 1                | Angel Administration of the Control | Manager Committee of Manager Committee of September 2 | S     | W         |
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | Conce            | entration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       | μg/Kg | ug/L      |
| Diisopropyl ether (DIPE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND           | ND               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       | 5     | NA        |
| Ethyl tert-butyl ether (ETBE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND           | ND               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       | 5     | NA        |
| Methyl-t-butyl ether (MTBE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND           | ND               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       | 5     | NA        |
| tert-Amyl methyl ether (TAME)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND           | ND               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       | 5     | NA        |
| t-Butyl alcohol (TBA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND           | МД               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       | 25    | NA        |
| Methanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND           | ND .             | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       | 2500  | NA        |
| Ethanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND           | ND               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       | 250   | NA        |
| 1,2-Dibromoethane (EDB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND           | ND               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       | 5     | NA        |
| 1,2-Dichloroethane (1,2-DCA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND           | ND               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       | 5     | NA        |
| to No. 1 is sometimes of surgenorms a rest in property of the contract of the | Surre        | ogate Recoveries | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |       |           |
| %SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 96.8         | 89.4             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |       |           |
| Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |       |           |

<sup>\*</sup> water samples are reported in ug/L, soil and sludge samples in ug/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in ug/L

ND means not detected above the reporting limit; N/A means surrogate not applicable to this analysis

(h) lighter than water immiscible sheen/product is present; (i) liquid sample that contains greater than ~2 vol. % sediment; (j) sample diluted due to high organic content



110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com/E-mail: main@mccampbell.com/

## QC SUMMARY REPORT FOR SW8021B/8015Cm

BatchID: 2331

Matrix: S

WorkOrder: 0206101

| EPA Method: SW802 | EPA Method: SW8021B/8015Cm Extraction: SW5030B Ext. Date: 6/07/02 Spiked Sample ID: N/A |        |        |        |         |        |        |          |            |              |
|-------------------|-----------------------------------------------------------------------------------------|--------|--------|--------|---------|--------|--------|----------|------------|--------------|
| Company           | Sample                                                                                  | Spiked | MS*    | MSD*   | MS-MSD* | LCS    | LCSD   | LCS-LCSD | Acceptance | Criteria (%) |
| Compound          | mg/Kg                                                                                   | mg/Kg  | % Rec. | % Rec. | % RPD   | % Rec. | % Rec. | % RPD    | Low        | High         |
| TPH(gas)          | N/A                                                                                     | 0.60   | N/A    | N/A    | N/A     | 110    | 105    | 5.2      | 80         | 120          |
| МТВЕ              | N/A                                                                                     | 0.10   | N/A    | N/A    | N/A     | 94.6   | 116    | 20       | 80         | 120          |
| Benzene           | N/A                                                                                     | 0.10   | N/A    | N/A    | N/A     | 111    | 116    | 4.8      | 80         | 120          |
| Toluene           | N/A                                                                                     | 0.10   | N/A    | N/A    | N/A     | 112    | 114    | 1.7      | 80         | 120          |
| Ethylbenzene      | N/A                                                                                     | 0.10   | N/A    | N/A    | N/A     | 115    | 114    | 0.66     | 80         | 120          |
| Xylenes           | N/A                                                                                     | 0.30   | N/A    | N/A    | N/A     | 113    | 113    | 0        | 80         | 120          |
| %SS               | N/A                                                                                     | 0.10   | N/A    | N/A    | N/A     | 103    | 112    | 8.4      | 80         | 120          |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike, or analyte concentration in sample exceeds spike amount.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / (MS + MSD) \* 2.

\* MS and / or MSD spike recoveries may not be near 100% or their RPDs near 0% if, a) the sample is inhomogeneous AND contains significant concentrations of analyze relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

110 2nd Avenue south, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

## QC SUMMARY REPORT FOR SW8015C

BatchID: 2356

Matrix: S

WorkOrder: 0206101

| EPA Method: SW8015C | E      | xtraction: | SW35500 |        | Ext. Date: | 6/07/02 | S      | piked Sampl | e ID: 02061 | 39-001A      |
|---------------------|--------|------------|---------|--------|------------|---------|--------|-------------|-------------|--------------|
| Compound            | Sample | Spiked     | MS*     | MSD*   | MS-MSD*    | LCS     | LCSD   | LCS-LCSD    | Acceptance  | Criteria (%) |
| Compound            | mg/Kg  | mg/Kg      | % Rec.  | % Rec. | % RPD      | % Rec.  | % Rec. | % RPD       | Low         | High         |
| TPH(d)              | 1.062  | 150        | 114     | 114    | 0.178      | 96.9    | 99.8   | 3.0         | 70          | 130          |
| %SS:                | 116    | 50         | 116     | 116    | 0.239      | 96.4    | 98.9   | 2.6         | 70          | 130          |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation

N/A = not enough sample to perform matrix spike, or analyte concentration in sample exceeds spike amount.

% Recovery = 100 \* (MS-Sample)/(Amount Spiked); RPD = 100 \* (MS - MSD)/(MS + MSD) \* 2.

\* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if; a) the sample is inhornogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) If that specific sample matrix interferes with spike recovery.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail main@mccampbell.com

## QC SUMMARY REPORT FOR SW8260B

BatchID: 2297

Matrix: S

WorkOrder: 0206101

| EPA Method: SW8260B         | E      | xtraction: | SW5030E | 3      | Ext. Date: | 6/05/02 | s      | pìked Samp | le ID: 02060 | 059-018A     |
|-----------------------------|--------|------------|---------|--------|------------|---------|--------|------------|--------------|--------------|
| 0                           | Sample | Spiked     | MS*     | MSD*   | MS-MSD*    | LCS     | LCSD   | LCS-LCSD   | Acceptance   | Criteria (%) |
| Compound                    | μg/Kg  | μg/Kg      | % Rec.  | % Rec. | % RPD      | % Rec.  | % Rec. | % RPD      | Low          | High         |
| Benzene                     | ND     | 50         | 102     | 99.7   | 2.71       | 97      | 97.2   | 0.25       | 70           | 130          |
| Chlorobenzene               | ND     | 50         | 100     | 98.2   | 1.90       | 100     | 97.9   | 2.2        | 70           | 130          |
| 1,1-Dichloroethene          | ND     | 50         | 93      | 90     | 3.28       | 97 9    | 98.4   | 0.53       | 70           | 130          |
| Methyl-t-butyl ether (MTBE) | ND     | 50         | 92.9    | 87.7   | 5.71       | 91.9    | 94.2   | 2.5        | 70           | 130          |
| Toluene                     | ND     | 50         | 100     | 98.2   | 1.88       | 101     | 99.4   | 1.8        | 70           | 130          |
| Trichloroethene             | ND     | 50         | 72.7    | 70.5   | 3.11       | 73.6    | 74.1   | 0.70       | 70           | 130          |
| %SS2                        | 102    | 50         | 102     | 101    | 0.536      | 104     | 103    | 0.70       | 70           | 130          |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

1/2011

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation

N/A = not enough sample to perform matrix spike, or analyte concentration in sample exceeds spike amount.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked), RPD = 100 \* (MS - MSD) / (MS + MSD) \* 2.

MS and for MSD spike recoveries may not be near 100% or the RPDs near 0% if a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery

aboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone 925-798-1620 Fax: 925-798-1622
http://www.mecampbell.com// E-mail: main@mecampbell.com//

## QC SUMMARY REPORT FOR SW8260B

BatchID: 2341

Matrix: S

WorkOrder: 0206101

| EPA Method: SW8260B           | Е      | xtraction: | SW5030E | 3      | Ext. Date: | 6/07/02 | s      | piked Samp | e ID: N/A  |              |
|-------------------------------|--------|------------|---------|--------|------------|---------|--------|------------|------------|--------------|
|                               | Sample | Spiked     | MS*     | MSD*   | MS-MSD*    | LCS     | LCSD   | LCS-LCSD   | Acceptance | Criteria (%) |
| Compound                      | µg/Kg  | μg/Kg      | % Rec.  | % Rec. | % RPD      | % Rec.  | % Rec. | % RPD      | Low        | High         |
| Diisopropyl ether (DIPE)      | N/A    | 50         | N/A     | N/A    | N/A        | 113     | 116    | 3.4        | 70         | 130          |
| Ethyl tert-butyl other (ETBE) | N/A    | 50         | N/A     | N/A    | N/A        | 104     | 109    | 4.5        | 70         | 130          |
| Methyl-t-butyl ether (MTBE)   | N/A    | 50         | N/A     | N/A    | N/A        | 98      | 102    | 3.7        | 70         | 130          |
| tert-Amyl methyl ether (TAME) | N/A    | 50         | N/A     | N/A    | N/A        | 96.7    | 101    | 4.5        | 70         | 130          |
| %SS                           | N/A    | 50         | N/A     | N/A    | N/A        | 103     | 104    | 1.2        | 70         | 130          |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike, or analyte concentration in sample exceeds spike amount.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / (MS + MSD) \* 2.

\* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

Advanced

GeoEnvironmental, Inc.

837 Shaw Road - Stockton, California - 95215 - (209) 467-1006 - Fax (209) 467-1113

CHAIN OF CUSTODY RECORD Date 6-6-2 Page 1 of 1

| Client A Chick                             | L Ehrhardt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                   |               | Project<br>Bi           | t Manag     | ger<br>1772             | · · · · · · · · · · · · · · · · · · · | <u> </u> |            |      |             | Tests    | Required        |                                        |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|---------------|-------------------------|-------------|-------------------------|---------------------------------------|----------|------------|------|-------------|----------|-----------------|----------------------------------------|
|                                            | Former Continent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e wha     | <u> </u>          | <del></del>   | Phone                   | Number 2017 | er<br>e                 |                                       |          |            | ハンメ  | <b>9</b> // | //2      |                 | 7                                      |
| Project Name                               | Former Contine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | oval "    | Vol10-1           |               | · -                     |             | gnature)                |                                       |          |            |      |             |          | <b>3</b> ///    | nvoice:<br>AGE <b>IZ</b><br>Ilient [   |
| Sample<br>Number                           | Location<br>Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date      | Time              | <u> </u>      | mple Ty<br>ter<br>Grab. | pe<br>Air   | Solid                   | No. of<br>Conts.                      | 13       |            |      |             |          | Notes           |                                        |
| MW1-5                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6-4-6     | 1220              |               |                         |             | <b>√</b>                | 1                                     | χ        | X          | X    | X           |          |                 | · ···································· |
| MW1-10                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 1270              |               |                         |             | . \                     | 1                                     | λ        | X          | Х    | χ           |          |                 |                                        |
| MW/15                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 1250              | -             |                         | 1           |                         |                                       | λ        | X          | X    |             |          |                 | ······································ |
| MW1-20                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 1/0               |               |                         |             |                         |                                       | X        | X          | X    |             |          |                 | <del></del>                            |
| MW3-20                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 1013              |               |                         |             |                         |                                       |          |            | Ĺ    |             |          |                 |                                        |
| MW3-11                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 955               |               |                         |             |                         |                                       | Х        | X          | X    | χ           |          |                 |                                        |
| MW3-15                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4         | 1013              |               |                         |             | 4                       | 专                                     | X        | X          | 4    | X           |          |                 | <del></del>                            |
| Relinquished by: (S<br>Relinquished by: (S | ignature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | by: (Signature)   |               |                         |             |                         | No                                    | (MZ)     | l :        | TA   | 7           | -        | Oate/Ti         | <u> </u>                               |
| Relinquished by: (S                        | ignature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Received  | by Mobile Labor   | ratory for fi | eld analys              | is: (Signal | ture)                   |                                       |          |            |      |             |          | Date/Ti         | ime                                    |
| Dispatched by: (Sig                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Date/Time         |               | 1                       |             | ratory by:              | - J                                   |          | <u>a</u> 1 | 1    |             | <u> </u> | ObjO7/          | me<br>02                               |
| Method of Shipmer                          | " WELDIGHT !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | PRESER            |               | 5 F63                   | in Single   | - 25年<br>- 25年<br>- 25年 | Laborat                               | ory Nami | (au)       | be-l |             |          |                 |                                        |
| Special Instructions                       | e de la color de l | E ABSENT_ | APPACA<br>OOM: AZ |               |                         |             |                         | I hereb                               | y autho  | lace       | let. | manc<br>A)  | of the   | above indicated | d work.                                |

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

# **CHAIN-OF-CUSTODY RECORD**

Page 1 of 1

WorkOrder: 0206101

Client:

Advanced GeoEnvironmental, Inc.

TEL: FAX: (209) 467-1006

837 Shaw Road

(209) 467-1118

Stockton, CA 95215

ProjectNo:

Former Continent

PO:

07-Jun-02

| •              |              |        |                    |        |         |            | Re      | equested Tes | sts | <br> |
|----------------|--------------|--------|--------------------|--------|---------|------------|---------|--------------|-----|------|
| ample ID       | ClientSampID | Matrix | Collection Date    | Bottle | SW8015C | 8021B/8015 | SW8260B |              |     |      |
| là Tablia de T |              |        |                    |        |         |            |         |              |     | <br> |
| 0206101-001    | MW1-5        | Soil   | 6/4/02             | 1      | A       | Α          | Α       |              |     |      |
| 0206101-002    | MW1-10       | Soil   | 6/4/02 12:40:00 PM | ]      | Α       | Α          | А       |              |     |      |
| 0206101-003    | MW1-15       | Soil   | 6/4/02 12:50:00 PM |        | Α       | A          | Α       |              |     |      |
| 0206101-004    | MW1-20       | Soil   | 6/4/02 1:10:00 AM  |        | Α       | A          | Α       | ·            |     |      |
| 0206101-005    | MW3-20       | Soil   | 6/4/02 10:13:00 AM | [      | Α       | Α          | Α       |              |     |      |
| 0206101-006    | MW3-11       | Soil   | 6/4/02 9:55:00 AM  | Ť      | Α.      | Α          | A       |              |     |      |
| 0206101-007    | MW3-15       | Soil   | 6/4/02 10:13:00 AM |        | Α       | A          | Α       |              |     |      |

#### Comments:

| Date/Time        | Date/Time    |
|------------------|--------------|
| Relinquished by: | Received by: |
| Relinquished by: | Received by: |
| Relinquished by: | Received by: |

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

**APPENDIX E** 

|   | McCampbell Analytical      | Inc. |
|---|----------------------------|------|
| 1 | into our poor a mary trous |      |

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com//E-mail: main@mccampbell.com//

| Advanced GeoEnvironmental, Inc | Client Project ID: Continent Volvo | Date Sampled:   | 07/19/02 |
|--------------------------------|------------------------------------|-----------------|----------|
| 837 Shaw Road                  |                                    | Date Received:  | 07/19/02 |
| Stockton, CA 95215             | Client Contact: Bill Little        | Date Reported:  | 07/26/02 |
| Stockion, Cr. 75215            | Client P.O.:                       | Date Completed: | 07/26/02 |

July 26, 2002

Dear Bill:

#### Enclosed are:

- 1). the results of 3 samples from your Continent Volvo project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4), a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

|  | McCampbell | Analytical | Inc. |
|--|------------|------------|------|
|--|------------|------------|------|

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

| Advanced GeoEnvironmental, Inc | Client Project ID: Continent Volvo | Date Sampled:   | 07/19/02          |
|--------------------------------|------------------------------------|-----------------|-------------------|
| 837 Shaw Road                  |                                    | Date Received:  | 07/19/02          |
| Stockton, CA 95215             | Client Contact: Bill Little        | Date Extracted: | 07/22/02-07/25/02 |
|                                | Client P.O.:                       | Date Analyzed:  | 07/22/02-07/25/02 |

#### Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE\*

Ameliation 1 and a decirity of the Com-

| Extraction | method: SW5030B                             |        |                                       | Analytical i | nethods: SW802 | 1B/8015Cm   |              | 7           | Work Orde | r: 0207251 |
|------------|---------------------------------------------|--------|---------------------------------------|--------------|----------------|-------------|--------------|-------------|-----------|------------|
| Lab ID     | Client ID                                   | Matrix | ТРН(д)                                | MTBE         | Benzene        | Toluene     | Ethylbenzene | Xylenes     | DF        | % SS       |
| A100       | UST/07-19-02                                | w      | 52,h                                  | ND           | 3.4            | ND          | ND           | ND          | 1         | 109        |
| 002A       | MW1/07-19-02                                | w      | 78,f                                  | аи           | 5.4            | ND          | ND           | ND          | 1         | #          |
| 003A       | MW3/07-19-02                                | w      | ND                                    | ND           | ND             | ND          | ND           | МD          | 1         | #          |
|            |                                             | -      |                                       |              |                |             |              | <u></u> -   | -         | <br>       |
|            |                                             |        |                                       |              |                |             |              |             |           | <u> </u>   |
|            |                                             |        |                                       |              |                |             |              | <del></del> |           |            |
|            |                                             |        |                                       |              |                |             |              | <del></del> |           |            |
|            |                                             |        | · · · · · · · · · · · · · · · · · · · |              |                |             |              | <del></del> |           |            |
|            |                                             |        |                                       |              |                |             |              |             |           |            |
|            |                                             |        |                                       |              | ,              |             |              |             |           |            |
|            | ·                                           |        |                                       |              |                |             |              |             | ļ<br>     |            |
|            |                                             |        |                                       |              |                | <del></del> |              |             |           |            |
|            |                                             |        |                                       | <br>         |                |             |              |             |           | <u> </u>   |
|            |                                             |        |                                       |              |                |             |              |             |           |            |
|            | g Limit for DF =1;                          | w      | 50                                    | 5.0          | 0.5            | 0.5         | 0.5          | 0.5         | uį        | g/L        |
|            | ns not detected at or<br>ne reporting limit | S      | 1.0                                   | 0.05         | 0.005          | 0.005       | 0.005        | 0.005       | mg        | /Kg        |

<sup>\*</sup>water and vapor samples are reported in ug/L, soil and sludge samples in mg/kg, wipe samples in ug/wipe, and TCLP extracts in ug/L.

<sup>#</sup> cluttered chromatogram; sample peak coelutes with surrogate peak.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?), c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas), m) no recognizable pattern.

|   | Mc( | Campb | ell A | naly |
|---|-----|-------|-------|------|
| - |     |       |       |      |

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560

| Mict               | Jampbell Analytic    | al inc.                               |                    | Telepho<br>http://www.me | one: 925-798-1620 Fa<br>ccampbell.com E-mail: | x : 925-798-162<br>mam@mccamp | 22<br>bell.com |         |
|--------------------|----------------------|---------------------------------------|--------------------|--------------------------|-----------------------------------------------|-------------------------------|----------------|---------|
| Advanced G         | eoEnvironmental, Inc | Client Pro                            | oject ID: Contin   | ent Volvo                | Date Sampled:                                 | 07/19/02                      | <del></del>    |         |
| 837 Shaw Ro        | oad                  |                                       |                    |                          | Date Received:                                | 07/19/02                      |                |         |
| Stockton, CA       | 95215                | Client Co                             | ntact: Bill Little |                          | Date Extracted:                               | 07/19/02                      |                |         |
|                    |                      | Client P.0                            | D.:                |                          | Date Analyzed:                                | 07/19/02-                     | -07/22/        | 02      |
|                    |                      | l Range (C                            | •                  | table Hydrocarbo         | ns as Diesel*                                 |                               |                |         |
| Extraction method: | SW3510C              |                                       | Analytical me      | thods: SW8015C           |                                               | Wo                            | rk Order:      | 0207251 |
| Lab ID             | Client ID            | Matrix                                |                    | TPH(d)                   |                                               |                               | DF             | % SS    |
| 0207251-001B       | UST/07-19-02         | w                                     |                    | 3100,g                   |                                               |                               | 1              | 92.4    |
| 0207251-002B       | MW1/07-19-02         | w                                     |                    | 200,b                    |                                               |                               | 1              | #       |
| 0207251-003B       | MW3/07-19-02         | w                                     |                    | ND                       |                                               |                               | 1              | 93.0    |
|                    |                      |                                       |                    |                          |                                               | · ·- ·                        |                |         |
|                    |                      |                                       |                    |                          |                                               |                               |                | ļ<br>   |
|                    |                      |                                       |                    |                          | <u>-</u>                                      |                               | ,              | <u></u> |
|                    |                      | · · · · · · · · · · · · · · · · · · · |                    |                          |                                               |                               | l<br>          | :       |
|                    |                      |                                       |                    |                          |                                               |                               |                |         |
|                    |                      |                                       |                    | ·                        |                                               |                               |                |         |
|                    |                      |                                       |                    |                          |                                               |                               |                |         |
|                    |                      |                                       |                    |                          |                                               | 2                             |                |         |
|                    | 1                    |                                       |                    |                          |                                               |                               |                | i ——    |

S NA ΝA above the reporting limit \* water and vapor samples are reported in ug/L, wipe samples in ug/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all TCLP / STLC / SPLP extracts in ug/L

W

# cluttered chromatogram resulting in cocluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent.



50

μg/L

Reporting Limit for DF =1;

ND means not detected at or

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: mann@mccampbell.com

| Advanced GeoEnvironmental, Inc | Client Project ID: Continent Volvo | Date Sampled: 07/19/02            |
|--------------------------------|------------------------------------|-----------------------------------|
| 837 Shaw Road                  |                                    | Date Received: 07/19/02           |
| Stockton, CA 95215             | Client Contact: Bill Little        | Date Extracted: 07/21/02-07/24/02 |
|                                | Client P.O.:                       | Date Analyzed: 07/21/02-07/24/02  |

#### Volatiles Organics + Oxygenates by P&T and GC/MS (Basic Target List)\*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0207251

| Lab ID                      | d 0207251-001C  |              |                    |                               |                 |     |                    |
|-----------------------------|-----------------|--------------|--------------------|-------------------------------|-----------------|-----|--------------------|
| Client ID                   |                 | UST/07-19-02 |                    |                               |                 |     |                    |
| Matrix                      |                 | Water        |                    |                               |                 |     |                    |
| Compound                    | Concentration * | DF           | Reporting<br>Limit | Compound                      | Concentration * | DF  | Reporting<br>Limit |
| Acetone                     | ND<77           | 1.0          | 5.0                | tert-Amyl methyl ether (TAME) | ND              | 1.0 | 0.5                |
| Benzene                     | 3.9             | 1.0          | 0.5                | Bromobenzene                  | ND              | 1.0 | 0.5                |
| Bromochloromethane          | ND              | 1.0          | 0.5                | Bromodichloromethane          | ND              | 1.0 | 0.5                |
| Bromoform                   | ND              | 1.0          | 0.5                | Bromomethane                  | ND              | 1.0 | 0.5                |
| 2-Butanone (MEK)            | ND              | 1.0          | 1.0                | t-Butyl alcohol (TBA)         | ND              | 1.0 | 5.0                |
| n-Butyl benzene             | ND              | 1.0          | 0.5                | sec-Butyl benzene             | ND              | 1.0 | 0.5                |
| tert-Butyl benzene          | ND              | 1.0          | 0.5                | Carbon Disulfide              | ND              | 1.0 | 0.5                |
| Carbon Tetrachloride        | ND              | 1.0          | 0.5                | Chlorobenzene                 | 1.0             | 1.0 | 0.5                |
| Chloroethane                | ND              | 1.0          | 0.5                | 2-Chloroethyl Vinyl Ether     | ND              | 1.0 | 1.0                |
| Chloroform                  | ND              | 1.0          | 0.5                | Chloromethane                 | ND              | 1.0 | 0.5                |
| 2-Chiorotolucne             | ND              | 1.0          | 0.5                | 4-Chlorotoluene               | ND              | 1.0 | 0.5                |
| Dibromochloromethane        | ND              | 1.0          | 0.5                | 1,2-Dibromo-3-chloropropane   | ND              | 1.0 | 1.0                |
| 1,2-Dibromoethane (EDB)     | ND              | 1.0          | 0.5                | Dibromomethane                | ND              | 1.0 | 0.5                |
| 1,2-Dichlorobenzene         | 2.3             | 1.0          | 0.5                | 1,3-Dichlorobenzene           | ND              | 1.0 | 0.5                |
| 1,4-Dichlorobenzene         | 0.54            | 1.0          | 0.5                | Dichlorodifluoromethane       | ND              | 1.0 | 0.5                |
| 1,1-Dichloroethane          | ND              | 1.0          | 0.5                | 1,2-Dichloroethane (1,2-DCA)  | ND              | 1.0 | 0.5                |
| 1,1-Dichloroethene          | ND              | 1.0          | 0.5                | cis-1,2-Dichloroethene        | ND              | 1.0 | 0.5                |
| trans-1,2-Dichloroethene    | ND              | 1.0          | 0.5                | 1,2-Dichloropropane           | ND              | 1.0 | 0.5                |
| 1,3-Dichloropropane         | ND              | 1.0          | 0.5                | 2,2-Dichloropropane           | ND              | 1.0 | 0.5                |
| 1,1-Dichloropropene         | ND              | 1.0          | 0.5                | cis-1,3-Dichloropropene       | ND              | 1.0 | 0.5                |
| trans-1,3-Dichloropropene   | ND              | 1.0          | 0.5                | Diisopropyl ether (DIPE)      | ND              | 1.0 | 0.5                |
| Ethylbenzene                | ND              | 1.0          | 0.5                | Ethyl tert-butyl ether (ETBE) | ND              | 1.0 | 0.5                |
| Hexachlorobutadiene         | ND              | 1.0          | 50                 | 2-Hexanone                    | ND              | 1.0 | 0.5                |
| Iodomethane (Methyl iodide) | 0.56            | 1.0          | 0.5                | Isopropylbenzene              | ND              | 1.0 | 0.5                |
| 4-Isopropyl toluene         | ND              | 1.0          | 0.5                | Methyl-t-butyl ether (MTBE)   | ND              | 1.0 | 0.5                |
| Methylene chloride          | ND              | 1.0          | 0.5                | 4-Methyl-2-pentanone (MIBK)   | ND              | 1.0 | 0.5                |
| Naphthalene                 | ND              | 1.0          | 5.0                | n-Propyl benzene              | ND              | 1.0 | 0.5                |
| Styrene                     | ND              | 1.0          | 0.5                | 1,1,1,2-Tetrachloroethane     | ND              | 1.0 | 0.5                |
| 1,1,2,2-Tetrachloroethane   | ND              | 1.0          | 0.5                | Tetrachloroethene             | ND              | 1.0 | 0.5                |
| Toluene                     | П               | 1.0          | 0.5                | 1,2,3-Trichlorobenzene        | ND              | 1.0 | 0.5                |
| 1,2,4-Trichlorobenzene      | ND              | 1.0          | 0.5                | 1,1,1-Trichloroethane         | ND              | 1.0 | 0.5                |
| 1,1,2-Trichloroethane       | ND              | 1.0          | 0.5                | Trichloroethene               | ND              | 1.0 | 0.5                |
| Trichlorofluoromethane      | ND              | 1.0          | 0.5                | 1,2,3-Trichloropropane        | ND              | 1.0 | 0.5                |
| 1,2,4-Trimethylbenzene      | ND              | 1.0          | 0.5                | 1,3,5-Trimethylbenzene        | ND              | 1.0 | 0.5                |
| Vinyl Acetate               | ND              | 1.0          | 5.0                | Vinyl Chloride                | ND              | 1.0 | 0.5                |
| Xylenes                     | ND              | 1.0          | 0.5                |                               |                 |     | <del></del>        |
|                             |                 | Suri         | ogate Re           | coveries (%)                  |                 |     |                    |
| %SS1:                       | 93.2            | 2            |                    | %SS2:                         | 101             |     |                    |
| %SS3:                       | 106             |              |                    |                               |                 | ·   |                    |

Comments

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.



<sup>\*</sup> water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in ug/kg, wipe samples in ug/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

|  | McCampbell . |
|--|--------------|
|--|--------------|

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone . 925-798-1620 Fax . 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

| Advanced GeoEnvironmental, Inc | Client Project ID: Continent Volvo | Date Sampled: 07/19/02            |
|--------------------------------|------------------------------------|-----------------------------------|
| 837 Shaw Road                  |                                    | Date Received: 07/19/02           |
| Stockton, CA 95215             | Client Contact: Bill Little        | Date Extracted: 07/21/02-07/24/02 |
|                                | Client P.O.:                       | Date Analyzed: 07/21/02-07/24/02  |

| Volatile                    | es Organics + Or                               | voens       | ites by     | P&T and GC/MS (Basic Tar      | ret Liet)*      |             | =         |  |
|-----------------------------|------------------------------------------------|-------------|-------------|-------------------------------|-----------------|-------------|-----------|--|
| Extraction Method: SW5030B  | Analytical Method: SW8260B Work Order: 0207251 |             |             |                               |                 |             |           |  |
| Lab ID                      |                                                | · # · · · · | <del></del> | 0207251-002C                  | 1               |             |           |  |
| Client ID                   |                                                |             |             | MW1/07-19-02                  |                 | <del></del> |           |  |
| Matrix                      | <del> </del>                                   |             |             | Water                         | · <del></del>   |             |           |  |
|                             |                                                | ~~~         | Reporting   | <del>,</del>                  |                 |             | Reporting |  |
| Compound                    | Concentration *                                | DF          | Limit       | Compound                      | Concentration * | DF          | Limit     |  |
| Acetone                     | ND<77                                          | 10          | 5.0         | tert-Amyl methyl ether (TAME) | ND<5.0          | 10          | 0.5       |  |
| Benzene                     | 5.4                                            | 10          | 0.5         | Bromobenzene                  | ND<5.0          | 10          | 0.5       |  |
| Bromochloromethane          | ND<5.0                                         | 10          | 0.5         | Bromodichloromethane          | ND<5.0          | 10          | 0.5       |  |
| Bromoform                   | ND<5.0                                         | 10          | 0.5         | Bromomethane                  | ND<5.0          | 10          | 0.5       |  |
| 2-Butanone (MEK)            | 11                                             | 10          | 1.0         | t-Butyl alcohol (TBA)         | ND<50           | 10          | 5.0       |  |
| n-Butyl benzene             | ND<5.0                                         | 10          | 0.5         | sec-Butyl benzene             | ND<5.0          | _10_        | 0.5       |  |
| tert-Butyl benzene          | ND<5.0                                         | 10          | 0.5         | Carbon Disulfide              | ND<5.0          | 10_         | 0.5       |  |
| Carbon Tetrachloride        | ND<5.0                                         | 10          | 0.5         | Chlorobenzene                 | ND<5.0          | 10_         | 0.5       |  |
| Chloroethane                | ND<5.0                                         | 10          | 0.5         | 2-Chloroethyl Vinyl Ether     | ND<10           | 10          | 1.0       |  |
| Chloroform                  | ND<5.0                                         | 10          | 0.5         | Chloromethane                 | ND<5.0          | 10          | 0.5       |  |
| 2-Chlorotoluene             | ND<5.0                                         | 10          | 0.5         | 4-Chlorotoluene               | ND<5.0          | 10          | 0.5       |  |
| Dibromochloromethane        | ND<5.0                                         | 10          | 0.5         | 1,2-Dibromo-3-chloropropane   | ND<10           | 10          | 10        |  |
| 1,2-Dibromoethane (EDB)     | ND<5.0                                         | 10          | 0.5         | Dibromomethane                | ND<5.0          | 10          | 0.5       |  |
| 1,2-Dichlorobenzene         | ND<5.0                                         | 10          | 0.5         | 1,3-Dichlorobenzene           | ND<5.0          | 10          | 0.5       |  |
| 1,4-Dichlorobenzene         | ND<5.0                                         | 10          | 0.5         | Dichlorodifluoromethane       | ND<5.0          | 10          | 0.5       |  |
| 1,1-Dichloroethane          | ND<5.0                                         | 10          | 0.5         | 1,2-Dichloroethane (1,2-DCA)  | 7.8             | 10          | 0.5       |  |
| 1,1-Dichloroethene          | ND<5.0                                         | 10          | 0.5         | cis-1,2-Dichloroethene        | 110             | 10          | 0.5       |  |
| trans-1,2-Dichloroethene    | ND<5.0                                         | 10          | 0.5         | 1,2-Dichloropropane           | ND<5.0          | 10          | 0.5       |  |
| 1,3-Dichloropropane         | ND<5.0                                         | 10          | 0.5         | 2,2-Dichloropropane           | ND<5.0          | 10          | 0.5       |  |
| 1,1-Dichloropropene         | ND<5.0                                         | 10          | 0.5         | cis-1,3-Dichloropropene       | ND<5.0          | 10          | 0.5       |  |
| trans-1,3-Dichloropropene   | ND<5.0                                         | 10          | 0.5         | Disopropyl ether (DIPE)       | ND<5.0          | 10          | 0.5       |  |
| Ethylbenzene                | ND<5.0                                         | 10          | 0.5         | Ethyl tert-butyl ether (ETBE) | ND<5.0          | 10          | 0.5       |  |
| Hexachlorobutadiene         | ND<50                                          | 10          | 5.0         | 2-Hexanone                    | ND<5.0          | 10          | 0.5       |  |
| Iodomethane (Methyl iodide) | ND<5.0                                         | 10          | 0.5         | Isopropylbenzene              | ND<5.0          | 10          | 0.5       |  |
| 4-Isopropyl toluene         | ND<5.0                                         | 10          | 0.5         | Methyl-t-butyl ether (MTBE)   | ND<5.0          | 10          | 0.5       |  |
| Methylene chloride          | ND<5.0                                         | 10          | 0.5         | 4-Methyl-2-pentanone (MIBK)   | ND<5.0          | 10          | 0.5       |  |
| Naphthalene                 | ND<50                                          | 10          | 5.0         | n-Propyl benzene              | ND<5.0          | 10          | 0.5       |  |
| Styrene                     | ND<5.0                                         | 10          | 0.5         | 1,1,1,2-Tetrachloroethane     | ND<5.0          | 10          | 0.5       |  |
| 1,1,2,2-Tetrachloroethane   | ND<5.0                                         | 10          | 0.5         | Tetrachloroethene             | ND<5.0          | 10          | 0.5       |  |
| Toluene                     | ND<5 0                                         | 10          | 0.5         | 1,2,3-Trichlorobenzene        | ND<5.0          | 10          | 0.5       |  |
| 1,2,4-Trichlorobenzene      | ND<5.0                                         | 10          | 0.5         | 1,1,1-Trichloroethane         | ND<5.0          | 10          | 0.5       |  |
| 1,1,2-Trichloroethane       | ND<5.0                                         | 10          | 0.5         | Trichloroethene               | 210             | 10          | 0.5       |  |
| Trichlorofluoromethane      | ND<5.0                                         | 10          | 0.5         | 1,2,3-Trichloropropane        | ND<5.0          | 10          | 0.5       |  |
| 1,2,4-Trimethylbenzene      | ND<5.0                                         | 10          | 0.5         | 1,3,5-Trimethylbenzene        | ND<5.0          | 10          | 0.5       |  |
| Vinyl Acetate               | ND<50                                          | 10          | 5.0         | Vinyl Chloride                | ND<5.0          | 10          | 0.5       |  |
| Xylenes                     | ND<5.0                                         | 10          | 0.5         |                               |                 |             |           |  |
|                             |                                                | Sur         | ogate Re    | ecoveries (%)                 | <u> </u>        |             |           |  |
| %SS1:                       | 103                                            |             | <u> </u>    | %SS2:                         | 103             |             |           |  |
| %SS3:                       | 110                                            |             |             | <u> </u>                      | <u> </u>        |             |           |  |
| , v., c., .                 | 110                                            |             |             | <u> </u>                      |                 |             |           |  |

#### Comments

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.



<sup>\*</sup> water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in ug/kg, wipe samples in ug/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

| 4   |
|-----|
| 200 |
| -   |

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

| Advanced GeoEnvironmental, Inc | Client Project ID: Continent Volvo | Date Sampled: 07/19/02            |
|--------------------------------|------------------------------------|-----------------------------------|
| 837 Shaw Road                  |                                    | Date Received: 07/19/02           |
| Stockton, CA 95215             | Client Contact: Bill Little        | Date Extracted: 07/21/02-07/24/02 |
|                                | Client P.O.:                       | Date Analyzed: 07/21/02-07/24/02  |

|                             | Client P.O.     | Client P.O.: |                    |                              |          | Date Analyzed: 07/21/02-07/24/02 |          |                    |  |
|-----------------------------|-----------------|--------------|--------------------|------------------------------|----------|----------------------------------|----------|--------------------|--|
| Volatil                     | es Organics + O | xygena       | tes by             | P&T and GC/MS (Bas           | ic Targe | et List)*                        | ******   |                    |  |
| Extraction Method: SW5030B  |                 | Ana          | lytical Me         | thod: SW8260B                |          | Work                             | Order: 0 | 207251             |  |
| Lab ID                      |                 |              |                    | ¹ 0207251-003C               |          |                                  |          |                    |  |
| Client ID                   | 1               |              |                    | MW3/07-19-02                 |          |                                  |          |                    |  |
| Matrix                      |                 |              |                    | Water                        |          |                                  |          |                    |  |
| Compound                    | Concentration * | DF           | Reporting<br>Limit | Compound                     |          | Concentration *                  | DF       | Reporting<br>Limit |  |
| Acetone                     | ND<77           | 1.0          | 5.0                | tert-Amyl methyl ether (TA   | ME)      | ND                               | 1.0      | 0.5                |  |
| Benzene                     | ND              | 1.0          | 0.5                | Bromobenzene                 |          | ND                               | 1.0      | 0.5                |  |
| Bromochloromethane          | ND              | 1.0          | 0.5                | Bromodichloromethane         |          | ND                               | 1.0      | 0.5                |  |
| Bromoform                   | ND              | 1.0          | 0.5                | Bromomethane                 |          | ND                               | 1.0      | 0.5                |  |
| 2-Butanone (MEK)            | ND              | 1.0          | 1.0                | t-Butyl alcohol (TBA)        |          | ND                               | 1.0      | 5.0                |  |
| n-Butyl benzene             | ND              | 1.0          | 0.5                | sec-Butyl benzene            |          | ND                               | 1.0      | 0.5                |  |
| tert-Butyl benzene          | ND              | 1.0          | 0.5                | Carbon Disulfide             |          | ND                               | 1.0      | 0.5                |  |
| Carbon Tetrachloride        | ND              | 1.0          | 0.5                | Chlorobenzene                |          | ND                               | 1.0      | 0.5                |  |
| Chloroethane                | ND              | 1.0          | 0.5                | 2-Chloroethyl Vinyl Ether    |          | ND                               | 1.0      | 1.0                |  |
| Chloroform                  | 0.54            | 1.0          | 0.5                | Chloromethane                |          | ND                               | 1.0      | 0.5                |  |
| 2-Chlorotoluene             | ND              | 1.0          | 0.5                | 4-Chlorotoluene              |          | ND                               | 1.0      | 0.5                |  |
| Dibromochloromethane        | ND              | 1.0          | 0.5                | 1,2-Dibromo-3-chloropropa    | ne       | ND                               | 1.0      | 1.0                |  |
| 1,2-Dibromoethane (EDB)     | ND              | 1.0          | 0.5                | Dibromomethane               |          | ND                               | 1.0      | 0.5                |  |
| 1,2-Dichlorobenzene         | ND              | 1.0          | 0.5                | 1,3-Dichlorobenzene          |          | ND                               | 1.0      | 0.5                |  |
| 1,4-Dichlorobenzene         | ND              | 1.0          | 0.5                | Dichlorodifluoromethane      |          | ND                               | 1.0      | 0.5                |  |
| 1,1-Dichloroethane          | ND              | 1.0          | 0.5                | 1,2-Dichloroethane (1,2-DC   | CA)      | ND                               | 1.0      | 0.5                |  |
| 1,1-Dichloroethene          | ND              | 1.0          | 0.5                | cis-1,2-Dichloroethene       |          | 0.75                             | 1.0      | 0.5                |  |
| trans-1,2-Dichloroethene    | ND              | 1.0          | 0.5                | 1,2-Dichloropropane          |          | ND                               | 1.0      | 0.5                |  |
| 1,3-Dichloropropane         | ND              | 1.0          | 0.5                | 2,2-Dichloropropane          |          | ND                               | 1.0      | 0.5                |  |
| 1,1-Dichloropropene         | ND              | 1.0          | 0.5                | cis-1,3-Dichloropropene      |          | ND                               | 1.0      | 0.5                |  |
| trans-1,3-Dichloropropene   | ND              | 1.0          | 0.5                | Diisopropyl ether (DIPE)     |          | ND                               | 1.0      | 0.5                |  |
| Ethylbenzene                | ND              | 1.0          | 0.5                | Ethyl tert-butyl ether (ETBE | 3)       | ND                               | 1.0      | 0.5                |  |
| Hexachlorobutadiene         | ND              | 1.0          | 5.0                | 2-Hexanone                   |          | ND                               | 1.0      | 0.5                |  |
| Iodomethane (Methyl iodide) | ND              | 1.0          | 0.5                | Isopropylbenzene             |          | ND                               | 1.0      | 0.5                |  |
| 4-Isopropyl toluene         | ND              | 1.0          | 0.5                | Methyl-t-butyl ether (MTBF   | E)       | ND                               | 1.0      | 0.5                |  |
| Methylene chloride          | ND              | 1.0          | 0.5                | 4-Methyl-2-pentanone (MIE    | 3K)      | ND                               | 1.0      | 0.5                |  |
| Naphthalenc                 | ND              | 1.0          | 5.0                | n-Propyl benzene             |          | ND                               | 1.0      | 0.5                |  |
| Styrene                     | ND              | 1.0          | 0.5                | 1,1,1,2-Tetrachloroethane    |          | ND                               | 1.0      | 0.5                |  |
| 1,1,2,2-Tetrachloroethane   | ND              | 1.0          | 0.5                | Tetrachloroethene            |          | ND                               | 1.0      | 0.5                |  |
| Toluene                     | ND              | 1.0          | 0.5                | 1,2,3-Trichlorobenzene       |          | ND                               | 1.0      | 0.5                |  |
| 1,2,4-Trichlorobenzene      | ND              | 1.0          | 0.5                | 1,1,1-Trichloroethane        |          | ND                               | 1.0      | 0.5                |  |
| 1,1,2-Trichloroethane       | ND              | 1.0          | 0.5                | Trichloroethene              |          | 13                               | 1.0      | 0.5                |  |
|                             |                 |              | +                  | <del> </del>                 |          |                                  |          | 4                  |  |

ND 1.0 0.5 **Xylenes** Surrogate Recoveries (%) %SS1: 97.7 %SS2: 99.6 %SS3: 98.4

0.5

0.5

5.0

Vinyl Chloride

1,2,3-Trichloropropane

1,3,5-Trimethylbenzene

#### Comments:

Vinyl Acetate

Trichlorofluoromethane

1,2,4-Trimethylbenzene

1.0

1.0

1.0

ND

ND

ND

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content.



ND

ND

ND

1.0

1.0

1.0

0.5

0.5

0.5

<sup>\*</sup> water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in ug/kg, wipe samples in ug/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#### QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0207251

| EPA Method:  | SW8021B/80 | 15Cm E        | xtraction: | SW5030 | 3      | BatchiD: | 3028   | Spiked Sample ID: 0207250-001A |          |            |              |  |  |  |  |  |  |
|--------------|------------|---------------|------------|--------|--------|----------|--------|--------------------------------|----------|------------|--------------|--|--|--|--|--|--|
| Compound .   |            | Sample Spiked |            | MS*    | MSD*   | MS-MSD*  | LCS    | LCSD                           | LCS-LCSD | Acceptance | Criteria (%) |  |  |  |  |  |  |
| Compating    |            | μg/L          | µg/L       | % Rec. | % Rec. | % RPD    | % Rec. | % Rec.                         | % RPD    | Low        | High         |  |  |  |  |  |  |
| TPH(gas)     |            | ND            | 60         | 94     | 95.4   | 1,45     | 106    | 106                            | 0.339    | 80         | 120          |  |  |  |  |  |  |
| мтве         |            | ND            | 10         | 103    | 113    | 9.03     | 97.7   | 94.3                           | 3.56     | 80         | 120          |  |  |  |  |  |  |
| Benzene      |            | ND            | 10         | 105    | 102    | 2.47     | 114    | 106                            | 7.04     | 80         | 120          |  |  |  |  |  |  |
| Toluene      |            | ND            | 10         | 110    | 107    | 2.40     | 113    | 109                            | 3.91     | 80         | 120          |  |  |  |  |  |  |
| Ethylbenzene |            | ND            | 10         | 107    | 103    | 3.52     | 118    | 111                            | 6.18     | 80         | 120          |  |  |  |  |  |  |
| Xylenes      |            | ND            | 30         | 103    | 103    | 0        | 113    | 113                            | 0        | 80         | 120          |  |  |  |  |  |  |
| %SS:         |            | 104           | 100        | 107    | 105    | 1.08     | 103    | 101                            | 1.59     | 80         | 120          |  |  |  |  |  |  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS -- MSD) / (MS + MSD) \* 2.

<sup>\*</sup> MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

WorkOrder: 0207251

#### QC SUMMARY REPORT FOR SW8015C

Matrix: W

| EPA Method: SW8015C | ε         | xtraction: | SW35100 | С      | BatchID: | 3032   | Spiked Sample ID: N/A |          |            |              |  |  |  |  |  |
|---------------------|-----------|------------|---------|--------|----------|--------|-----------------------|----------|------------|--------------|--|--|--|--|--|
| Company             | Sample    | Spiked     | MS*     | MSD*   | MS-MSD*  | LCS    | LCSD                  | LCS-LCSD | Acceptance | Criteria (%) |  |  |  |  |  |
| Compound            | µg/L µg/L |            | % Rec.  | % Rec. | % RPD    | % Rec. | % Rec.                | % RPD    | Low        | High         |  |  |  |  |  |
| TPH(d)              | N/A       | 7500       | N/A     | N/A    | N/A      | 104    | 100                   | 3.29     | 70         | 130          |  |  |  |  |  |
| %SS:                | N/A       | 100        | N/A     | N/A    | N/A      | 107    | 104                   | 2.84     | 70         | 130          |  |  |  |  |  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

|       |   | _        |                 |  |
|-------|---|----------|-----------------|--|
|       |   | 4 - 5    | and a many on a |  |
|       | 4 | ire from | s etc           |  |
|       |   |          | 1               |  |
|       |   | •        | yr r            |  |
| 20.00 | ١ | 2.3      | •               |  |
|       |   | ***      |                 |  |
|       | , |          |                 |  |

MS = Matnx Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / (MS + MSD) \* 2.

\* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

# **CHAIN-OF-CUSTODY RECORD**

Page 1 of 1

WorkOrder: 0207251

Client:

Advanced GeoEnvironmental, Inc.

837 Shaw Road Stockton, CA 95215 TEL: FAX: (209) 467-1006

ProjectNo:

(209) 467-1118 Continent Volvo

PO:

19-Jul-02

|             |              |        |                    |        | Requested Tests |            |         |          |   |  |              |  |  |  |  |  |  |
|-------------|--------------|--------|--------------------|--------|-----------------|------------|---------|----------|---|--|--------------|--|--|--|--|--|--|
| Sample ID   | ClientSamplD | Matrix | Collection Date    | Bottle | SW8015C         | 8021B/8015 | SW8260B |          |   |  | W - JA 4-4-1 |  |  |  |  |  |  |
|             |              |        |                    |        |                 |            |         |          |   |  |              |  |  |  |  |  |  |
| 0207251-001 | UST/07-19-02 | Water  | 7/19/02 6:57:00 AM | ì      | В               | Α          | С       |          | - |  |              |  |  |  |  |  |  |
| 0207251-002 | MW1/07-19-02 | Water  | 7/19/02 8:10:00 AM |        | В               | A          | С       | <u> </u> |   |  |              |  |  |  |  |  |  |
| 0207251-003 | MW3/07-19-02 | Water  | 7/19/02 8:40:00 AM |        | В               | A          | С       |          |   |  |              |  |  |  |  |  |  |

#### Comments:

| Date/Time        | Date/Time    |
|------------------|--------------|
| Relinquished by: | Received by: |
| Relinquished by: | Received by: |
| Relinquished by: | Received by: |

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

| N. C. I. Constant                                               |                                        |            |               |            |                 |             |      |               | T      |                                           |                           |             |             | CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | TAI                                         |                                      | 77             |                                              | YO 6               | -                         |                    |                            |                                        |                  |               |                             | <del></del> |                      |            |        |              |             |   |
|-----------------------------------------------------------------|----------------------------------------|------------|---------------|------------|-----------------|-------------|------|---------------|--------|-------------------------------------------|---------------------------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------|--------------------------------------|----------------|----------------------------------------------|--------------------|---------------------------|--------------------|----------------------------|----------------------------------------|------------------|---------------|-----------------------------|-------------|----------------------|------------|--------|--------------|-------------|---|
| McCAMPBELL ANALYTICAL INC. 110 2 <sup>m</sup> AVENUE SOUTH, #D7 |                                        |            |               |            |                 |             |      |               |        | CHAIN OF CUSTODY RECORD TURN AROUND TIME: |                           |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                             |                                      |                |                                              |                    |                           |                    |                            |                                        |                  |               |                             |             |                      |            |        |              |             |   |
| PACHECO, CA 94553-5560                                          |                                        |            |               |            |                 |             |      |               |        |                                           | RUSH 24 HOUR 48 HOUR FRAN |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                             |                                      |                |                                              |                    |                           |                    |                            |                                        |                  |               |                             |             |                      |            |        |              |             |   |
| Telephone: (925) 798-1620 Fav: (925) 798-1620                   |                                        |            |               |            |                 |             |      |               |        |                                           | E                         | DF          | Re          | qui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | red                                   | l? [                                        |                                      | Ye:            | s (                                          |                    | No                        | )                  | ,,,,,,                     |                                        | 4 <del>4</del> [ | 100           | IK.                         | 46 H        | OUK                  | 5 DA       | Ϋ́     |              |             |   |
| Report To: Bill To: Company: Additional OcoFunitainental        |                                        |            |               |            |                 |             |      |               |        |                                           |                           |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                             | _                                    |                | equ                                          |                    |                           |                    |                            |                                        |                  | т-            | Oth                         | lar.        | 7                    | mmen       |        |              |             |   |
| Phone # 209 467 1006                                            |                                        |            |               |            |                 |             |      |               |        |                                           |                           | E           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                             |                                      |                |                                              |                    |                           |                    |                            |                                        | 1                |               |                             | 1           | numen                | IS .       |        |              |             |   |
|                                                                 |                                        |            |               |            |                 |             |      |               |        | ۵                                         | 1                         | Be          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                             |                                      | ~              |                                              |                    |                           |                    |                            |                                        |                  | 1 1           |                             | - [         |                      |            |        |              |             |   |
| Tele:                                                           |                                        | ··· ·· · · | Fax:          | <u> </u>   |                 |             |      |               |        |                                           |                           |             |             | 8015y MTBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | 33                                          |                                      |                |                                              |                    |                           | $\rightarrow$      |                            | 310                                    |                  | ļ             |                             |             |                      |            |        | 1            |             |   |
| Project #:                                                      |                                        |            | Project       | Name       | 1               | .73.3       |      | . z. 😾        | - 1    | 1,11                                      | 1.30                      |             |             | 15/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | 023                                         | 18.                                  |                | 1                                            |                    |                           | CXX                |                            | 8/0                                    |                  |               |                             |             |                      |            |        | ]            |             |   |
| Project Location:                                               | OAKLA                                  | UD_        |               |            |                 |             | 7.4  | W             |        | Q                                         | U                         |             |             | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | }                                     | (2)                                         | z) su                                |                | (02                                          | - {                | ا بح                      | 3                  | l                          | 827                                    |                  |               |                             |             |                      |            |        | -            |             |   |
| Sampler Signature                                               | Kul A                                  | fail       |               |            |                 | <del></del> |      |               |        |                                           |                           |             |             | 8020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | {                                     | Seg.                                        | န္                                   |                | 7 80                                         |                    | ğ                         | X                  |                            | 625 /                                  | İ                |               | 010                         |             |                      |            |        | 1            |             |   |
|                                                                 | Ì                                      | SAM        | IPLING        |            | 8               | T           | MA   | TR            | ΙΧ     | T.                                        | ME.                       | THO         | D           | BTEX & (PH as Ga) (602/8020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15)                                   | Total Petroleum Oil & Grease (5520 E&F/B&F) | Total Petroleum Hydrocarbons (418.1) |                | BTEX ONLY (EPA 602 / 8020)<br>EPA 608 / 8080 |                    | EPA 608 / 8080 PCB's ONLY | 8260) <del>1</del> | EPA (                      | PAH's / PNA's by EPA 625 / 8270 / 8310 |                  |               | Lead (7240/7421/239.2/6010) |             | 1                    |            |        |              |             |   |
| SAMPLE ID                                                       |                                        |            | T:            | ers        | Type Containers |             |      |               |        | 1                                         | KES.                      | ER V        | CD          | ig<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TPH as Diesel (8015)                  | Oun                                         | HH                                   | 2              | E                                            | ଛ ।                | 8                         | _                  | ۱۾                         | s by                                   | sis              | , ca          | 21/2                        |             |                      |            |        |              |             |   |
| (Field Point Name)                                              | LOCATION                               | Date       | Time          | Containers | Į               |             |      |               |        |                                           |                           |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ses                                   | role                                        | role                                 | EPA 601 / 8010 | 2                                            | EPA 608 / 8080     | 8                         | <b>3</b>           | EPA 625 / 8270             | X                                      | CAM-17 Metals    | LUFT 5 Metals | 10                          |             |                      |            |        | 1            |             |   |
|                                                                 |                                        | Date       | 1 mile        | S          | g g             | Water       |      |               | Sludge |                                           | ,                         | HNO         | į           | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 88                                  | Pe Pe                                       | Pe Pe                                | 109            | 2                                            | 8                  | 809                       | 2                  | 625                        | ,s/ I                                  | 4-17             | rsh           | 8                           |             |                      |            |        |              |             |   |
|                                                                 | ······································ | ļ          |               | #          | F               | ≩           | Soil | Air           | ळ्ळ    | 3 3                                       | E                         | 至           | Other       | BIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E                                     | Ğ                                           | Tot                                  | EP             | BTE                                          | EPA                | EPA                       |                    | EPA                        | PAH                                    | ₹ S              | 5             | es                          | RCI         |                      |            |        |              |             |   |
|                                                                 |                                        |            |               |            |                 |             |      | 1             | $\top$ | T                                         |                           |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                             |                                      |                |                                              | 1                  | -                         | +                  | +                          | -                                      |                  | -             |                             | _           | <del> </del>         |            |        | -            |             | · |
|                                                                 | <del></del>                            | <u></u>    | ļ             |            |                 |             |      |               |        | T                                         |                           |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                             |                                      | 7              | $\dashv$                                     | +                  | _                         | -                  | $\dashv$                   | $\dashv$                               |                  |               | -                           | -           | $\vdash$             | -          |        | <del> </del> |             |   |
| UST/07-19-02                                                    | <u>ust</u>                             | 7/19/02    | 657           | 5          | Litex           | 1X          |      |               |        | Ķ                                         | X                         |             |             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                     |                                             |                                      |                |                                              | -                  |                           | X                  | +                          | -                                      |                  | -             |                             | -           | -                    |            |        | ╁            | <del></del> |   |
| MW1/07-19-02                                                    | MWI                                    | 11         | 810           |            |                 | $\Pi$       |      |               |        | T                                         |                           |             |             | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T                                     |                                             | 一                                    | 7              | _                                            | 7                  |                           | 7                  | $\dashv$                   | +                                      |                  |               |                             |             | -                    | -          |        | —            |             |   |
| MW3/07-14-02                                                    | MW3                                    | 11         | 846           |            |                 | 1           |      |               |        |                                           | 1                         |             |             | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                     | $\dashv$                                    |                                      | 7              |                                              | -                  | - 1                       | X                  | $\dashv$                   | +                                      |                  |               |                             | $\dashv$    |                      |            |        |              |             |   |
|                                                                 |                                        |            |               |            |                 |             |      |               | 1      | 1                                         | 1                         |             |             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                     | -                                           |                                      | _              |                                              |                    |                           | 4                  | +                          | +                                      | -+               |               |                             |             |                      |            |        | <del> </del> | <del></del> |   |
|                                                                 |                                        |            |               |            |                 |             |      | 7             |        | 十                                         | 1                         |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | $\dashv$                                    |                                      | -              |                                              | -                  | -                         |                    | ┽                          | -                                      | $\dashv$         | -             | $\dashv$                    | {           | -+                   |            |        | <b> </b>     | ·           |   |
|                                                                 |                                        |            |               |            |                 |             | 7    | _             | _      | ╁                                         |                           |             | $\dashv$    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\dashv$                              | -+                                          | -                                    | +              |                                              | -                  |                           | $\dashv$           | -                          | -                                      |                  | -             |                             |             |                      | $\perp$    | 4.     | 1            | <del></del> |   |
|                                                                 |                                        |            | 1             | 1          |                 |             |      |               | +      | ╁                                         | +                         |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                             |                                      | +              |                                              | +                  |                           |                    | 4                          | $\dashv$                               | _                | _             |                             | _           |                      |            |        |              |             |   |
|                                                                 |                                        |            | 1             | 1          | <b></b> -       |             | +    | +             |        | 十                                         |                           |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                             |                                      | -              |                                              | _                  | <del>}</del> -            |                    | - -                        | _                                      | _                | _             |                             |             | $\perp$              |            | 1      | <u> </u>     |             |   |
|                                                                 |                                        |            | <b> </b>      | 1          | <b></b>         |             |      | -             | +      | ╁                                         | -                         |             | }           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | -                                           |                                      |                |                                              | +                  | -}-                       | _                  | _                          | _                                      | _                |               | $\perp$                     |             |                      | 1          |        |              |             |   |
|                                                                 |                                        |            | <del> </del>  |            |                 |             | -    | -             | -      | ┢                                         |                           |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                             |                                      |                |                                              | _                  |                           |                    | 1                          | _                                      | $\perp$          |               |                             |             |                      |            |        |              |             |   |
|                                                                 | <del></del>                            |            | <del> </del>  |            | -               | -           | -+   | +             | +      | ₽                                         |                           |             | -}          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                             |                                      |                |                                              | _                  |                           |                    |                            |                                        |                  |               |                             |             |                      |            |        |              |             |   |
| 0 0                                                             |                                        |            | <del> </del>  |            |                 | -+          | -    | +             | +-     | ļ.,                                       |                           |             |             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | _                                           |                                      |                |                                              | _ _                | $\downarrow$              |                    |                            |                                        |                  |               |                             |             |                      |            | T      |              |             |   |
| Religiquished By:                                               | <del></del>                            | Date:      | Time:         | Recei      | ved D.          | لل          |      |               | ┵      | _                                         |                           |             | _           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                             | $\bot$                               |                |                                              | $oldsymbol{\perp}$ |                           |                    |                            |                                        |                  |               | T                           | T           |                      | T          | T      |              | ·           |   |
| Kich has                                                        | 1                                      | 7/19/02    | Time:<br>9:35 | Recei      | m               | a           | 1    |               | مرس    | <u>_</u>                                  | ر ۴                       |             |             | Rer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nark                                  | cs:                                         | d                                    |                |                                              |                    |                           |                    |                            |                                        | 15               | :i/n          | A o                         | san.        | in the said of       | HIMI<br>H  | are en | )            |             | - |
| Relinquished By:                                                | <b>V</b>                               | Date:      | Time:         | Recei      | ved By          | <del></del> |      |               |        | -                                         | <del>-</del>              | <del></del> | $\dashv$    | A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>P</i> O                            | 1                                           |                                      |                |                                              |                    | - 6                       | THE TAP            | ر جمون<br>د جمون<br>د جمون |                                        | 7 1              |               |                             |             | ring.                |            |        | *            |             |   |
| · · · · · · · · · · · · · · · · · · ·                           |                                        |            | ĺ             | 1          | •               |             |      |               |        |                                           |                           |             |             | <b>≀</b><br>";                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · · | مر مر مر مر                                 | - 44, p                              |                | ·                                            |                    | - M                       | · A                | er.                        | קיינים,                                |                  |               | of the                      | 1           | برمرسيس<br>منورسهسه، | <u>ئىڭ</u> |        | -            |             |   |
| Relinquished By:                                                |                                        | Date:      | Time:         | Recei      | ved By          | /:          |      | <del></del> - |        | ~                                         |                           |             | $\dashv$    | The state of the s |                                       |                                             |                                      |                |                                              |                    |                           |                    |                            |                                        |                  |               |                             |             |                      |            |        |              |             |   |
|                                                                 |                                        |            |               |            |                 |             | , ,, | <b>W</b>      | ; 115  | المو أ " يمثآ                             | ا استي                    |             | _\ <u>_</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ئۇ قىرپا                              | (Sep for                                    | 113,                                 |                | garana<br>San Gara                           | •                  |                           |                    |                            |                                        |                  |               | - 1                         |             |                      |            |        |              |             |   |