

Chevron Products Company 6001 Bollinger Canyon Rd, Bldg. V P. O. Box 6004 San Ramon, CA 94583-0904

Site Assessment & Remediation Phone (925) 842-9500 Fax (925) 842-8370

January 25, 2001

Environmental Health Services Alameda County Health Care Services 1131 Harbor Bay Parkway Alameda, California 94502-6577

Re:

890 West McArthur Blvd., Oakland, CA - 3643

Dear Sir:

Please find attached the Environmental Investigation prepared by Delta Environmental Consultants for This report was prepared for Chevron Products dated November 1, 2000, for the referenced site. Company in preparation for the possible sale of the property. The evaluation included the performance of 10 soil borings. Soil samples were submitted for analysis from the 10 borings and water samples were collected and submitted from 9 of the borings.

It is our understanding that the reported sample results do not represent a new release at the site, but rather confirm results previously reported during sampling activities performed in 1997 during dispenser replacements. Pending any agency directives, Chevron does not propose to perform additional remedial activities at the site.

If you have any questions regarding this site, please feel free to contact me at (925) 842-8898.

Sincerely,

Thomas K. Bauhs Project Manager

Attachment

cc: Jim Brownell, Delta Environmental Consultants (w/o attachment) 3164 Gold Camp Drive, Suite 200, Rancho Cordova, CA 95670 File (92029r01.doc)

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION	I
	2.1 General	1
	2.2 Previous Environmental Work	2
	2.3 Geology and Hydrogeology	2
3.0	FIELD WORK	ာ ၁
	3.1 Drilling Activities	3
	3.2 Laboratory Analysis	4
4.0	RESULTS	4
4.1	Subsurface Condition	
	4.2 Soil Analytical Results	. T
	4.3 Groundwater Analytical Results	5
5.0	CONCLUSIONS	6
6.0	REFERENCES	

TABLES

Table 1: Soil Analytical Results

Table 2: Groundwater Analytical Results Table 3: Groundwater Analytical Results

FIGURES

Figure 1. Vicinity Map
Figure 2. Site Plan
Figure 3. TPHg/Benzene/MtBE Concentrations in Soil at Depths 3 to 6 Feet
Figure 4. TPHg/Benzene/MtBE Concentrations in Soil at Depth of 11 Feet
Figure 5. TPHg Concentrations in Groundwater
Figure 6. Benzene Concentrations in Groundwater
Figure 7. MtBE Concentrations in Groundwater

APPENDICES

Appendix A: GR Field Methods and Procedures
Appendix B: Drilling Permit and Boring Logs

Appendix C: Laboratory Analytical Reports and Chain-of-Custody Records

ENVIRONMENTAL INVESTIGATION REPORT

for

Chevron Service Station #9-2029 890 West MacArthur Boulevard Oakland, California

Report No. 346503.01-2

1.0 INTRODUCTION

This report summarizes the results of an environmental investigation performed at Chevron Service Station #9-2029, located at 890 West MacArthur Boulevard in Oakland, California. The work was performed at the request of Chevron Products Company (Chevron) to evaluate soil and groundwater condition beneath the subject site and establish baseline conditions prior to selling site. The scope of work included: preparing a site safety plan; obtaining the required drilling permit; drilling ten on-site soil borings and collecting soil and grab groundwater samples from these borings; submitting selected soil and groundwater samples for laboratory analysis; arranging for Chevron's contractor to dispose of the waste materials; and preparing a report documenting the work. This work was proposed in Delta Environmental Consultants Inc./Gettler-Ryan Inc. (GR) Report No. DG92029C4CO1-1, Work Plan for Environmental Investigation, dated October 4, 2000. Due to conditions encountered in the initial borings, the drilling method was changed from the GeoProbe method proposed in the Work Plan to the hollow stem auger method to facilitate efficient grab groundwater sample collection.

2.0 SITE DESCRIPTION

2.1 General

The subject site is an active Chevron service station located on the northeastern corner of West MacArthur Boulevard and Market Street in Oakland, California (Figure 1). The current site configuration consists of a station building and five dispenser islands located in the central portion of the site. Three 10,000 gallons gasoline underground storage tanks (USTs) are located in the eastern portion of the site.

Based on GR review of the Chevron file for the site, the Chevron service station has been operating at the subject site since at least 1957. The former site aboveground facilities consisted of a station building located north of the current building location, and three dispenser islands (one located west and two located south of the station building). Two hydraulic hoists were present within the former station building. Two 5,000-gallon and one 3,000-gallon steel gasoline USTs were located in the common pit in the eastern portion of the site, in the location of the current UST pit. A waste oil tank was located north of the station building. The 3,000-gallon UST was replaced with a 10,000-gallon fiberglass UST (installed in the same location) sometime before 1978. Product lines were replaced in 1970. No soil investigation was conducted at that time.

A tank and line integrity test conducted at the subject site in 1981 indicated corrosion perforation on the product lines. The tanks were also corroded but with no perforations. In March-April 1982, the existing product lines and two 5,000-gallon steel gasoline USTs and one 10,000-gallon fiberglass UST were replaced with the current 10,000-gallons fiberglass USTs. The new USTs were installed in the former UST pit extended to the east to accommodate the larger new tanks. The tank and line tests indicate that the current tanks and lines have tested tight since. It appears that, the waste oil tank was removed sometime between 1984 and 1997, however, no specific information regarding tank removal was available. In April 1997, product dispensers were replaced, and the USTs were upgraded by installing containment collars, sumps, and a leak monitoring system. Pertinent former and current site features are shown on Figure 2.

2.2 Previous Environmental Investigations

In April 1981, Smith & Denison conducted a tank integrity test at the subject site, which included drilling two cores to 12 feet below ground surface (bgs) and collecting two soil samples from each core. The test results indicated that the tanks were corroded but with no holes. However, gasoline hydrocarbons (concentrations unknown) were observed in three of the four soil samples collected. Groundwater was encountered at the location of one core at 12 feet bgs.

In March 1991, a strong hydrocarbon odor was noted in the service station building, and ambient air monitoring and sampling was conducted at the site by Environmental Health Consultants. The results indicated that hydrocarbons were present in air entering the station building from the crawl space beneath the building. The photoionization detector readings averaged between 100 and 150 parts per million (ppm) and peaked at 505 ppm. The analytical results of air samples indicated the presence of approximately 100 ppm of gasoline hydrocarbons, and less than 1 ppm of benzene.

In February, 1997, Gettler-Ryan Inc. conducted a soil investigation during the product dispenser replacement and UST upgrade. The existing dispensers were removed and the soil in the immediate vicinity of each dispenser island was excavated. Soil samples were collected at the base of each excavation at approximately 3 feet bgs. An additional sample was collected at 3 feet bgs from the northern wall of the gasoline UST pit. Soil beneath all dispenser islands except northeastern island exhibited hydrocarbon odor. Soil in the vicinity of the southeastern dispenser island exhibited greenish gray discoloration. Total petroleum hydrocarbons as gasoline (TPHg, up to 38 ppm) were detected in four samples and benzene (up to 0.63 ppm) was detected in three of the six samples. Methyl tertiary butyl ether (MtBE, up to 0.62 ppm) was detected in all samples collected beneath dispenser islands, and was not detected in the sample collected from the UST sidewall. Sample locations and concentrations are shown on Figures 2 and 3, respectively.

2.3 Geology and Hydrogeology

The subject site is located on the East Bay Plane, approximately 1½ mile east of San Francisco Bay and approximately 1½ mile north of Lake Merritt. The site is a relatively flat lot at an elevation of approximately 50 feet above mean sea level. The nearest surface water is Glen Echo Creek (approximately 1 mile southeast of the site), which drains into Lake Merritt. As mapped by Helley and others (1979, Flatland Deposits of the San Francisco Bay Region, California: U.S. Geological Survey Professional Paper 943), soil in the vicinity consists

of Late Pleistocene alluvium consisting of weakly consolidated, slightly weathered, poorly sorted, irregularly interbedded clay, silt, sand, and gravel. The surface soil (to 3 feet bgs) encountered during previous environmental investigation (product line replacement) consisted of clay. Groundwater was encountered beneath the site at a depth of approximately 12 feet bgs. Based on site topography, the shallow groundwater beneath the site is assumed to flow to the southwest.

3.0 FIELD WORK

Field work was conducted in accordance with GR's Field Methods and Procedures (Appendix A) and the Site Safety Plan dated October 4, 2000. A drilling permit (#WOO-632) was obtained from the Alameda County Public Works Department (ACPWD), and Underground Service Alert was notified prior to drilling at the site. A copy of the permit is included in Appendix B.

3.1 Drilling Activities

On October 5 through 9, 2000, a GR geologist observed drilling of 10 on-site soil borings (B-1 through B-10) at the locations shown on Figure 2. Boring B-4 was moved six feet to the east, due to an obstruction encountered at the depth of approximately 5 feet bgs in the location proposed in the Work Plan (within the former waste oil UST pit). Boring B-9 was moved 8 feet to the west due to concrete encountered at the depth of approximately 3 feet bgs in the location proposed in the Work Plan. Boring B-10 was moved 6 feet to the north due to the presence of an underground electrical line in the location proposed in the Work Plan.

Borings B-1, B-2, B-5, B-6, B-9, and B-10 were drilled by Bay Area Exploration, Inc. (C57 #522125), and borings B-3, B-4, B-7, and B-9 were drilled by Woodward Drilling (C57 #710079). Borings B-5 and B-6 were drilled using a GeoProbe rig. Due to difficulties collecting grab groundwater samples from these borings (collapsing borings, slow groundwater recovery), the drilling method has been changed and the remaining borings were drilled using 6-inch diameter (B-1, B-2, B-9 and B-10) or 8-inch diameter (B-3, B-4, B-7, and B-9) hollow-stem augers driven by a truck-mounted drill rig. GeoProbe boring B-6 was redrilled using 6-inch hollow-stem augers to facilitate grab groundwater sample collection. Borings B-1 through B-10 were drilled to depths ranging between 16.5 to 19 feet bgs. Soil samples were collected approximately every 5 feet. The GR geologist prepared logs of each boring and screened the soil samples in the field for the presence of volatile organic compounds. Screening data are presented on the boring logs (Appendix B).

A grab groundwater sample was collected from each boring except B-9 (boring B-9 did not contain sufficient water for sample collection after waiting two hours). Upon completion of groundwater sample collection, the borings were backfilled with neat cement from the total depth to approximately 6 inches bgs, and finished with concrete at the surface.

Drill cuttings were placed on and covered with plastic sheeting and stored on-site pending disposal. After completion of drilling, four samples for disposal characterization were collected from the drill cuttings and submitted to the laboratory for compositing and analysis as sample SP-A,B,C,D. On October 26, 2000, the soil stockpile was removed from the site by Integrated Wastestream Management (IWM).

3.2 Laboratory Analysis

Soil and grab groundwater samples were analyzed by Sequoia Analytical in Walnut Creek, California (ELAP #1271). Grab groundwater samples and unsaturated soil samples collected from the borings at 6 and 11 feet bgs were analyzed for TPHg, BTEX, and MtBE by DHS LUFT Method. Soil samples were also analyzed for total lead by EPA Method 6010A, and the groundwater samples were analyzed for MtBE, ethyl tertiary butyl ether (EtBE), tertiary butyl alcohol (TBA), di-isopropyl ether (DIPE), tertiary amyl methyl ether (TAME), ethanol, methanol (five of nine samples), 1,2-Dichloroethane (1,2-DCA), and ethylene dibromide (EDB) by EPA Method 8260. The laboratory erroneously analyzed only four of the nine grab groundwater samples submitted for methanol analysis. The soil and groundwater samples collected from boring B-2 were also analyzed for total petroleum hydrocarbons as hydraulic oil (TPHho) by DHS LUFT Method, and samples collected from boring B-4 were analyzed for total oil and grease (TOG) by Standard Method 5520 E&F (Gravimetric), total petroleum hydrocarbons as diesel (TPHd) by DHS LUFT Method, volatile organic compounds (VOs) by EPA Method 8010B, semivolatile compounds (SVOs) by EPA Method 8270B, and metals cadmium, chromium, lead, zinc, and nickel, by EPA Method 6010A. Copies of the laboratory analytical reports and chain-of-custody records are included in Appendix E.

4.0 RESULTS

4.1 Subsurface Conditions

Native soil encountered in borings B-1 through B-10 consisted predominantly of clays and clayey gravels to the total depth explored of 19 feet bgs. Fill material consisting of gravel with sand was encountered in the first attempted location for boring B-4 (within the former waste oil UST pit). An obstruction, which could not be positively identified due to the depth of the hole, but appeared to be a large object made of metal or plastic, was encountered within gravel fill at a depth of approximately 5 feet bgs. A clay layer was encountered immediately below ground surface in all borings. This clay layer extended to depths ranging from 5 to 10.5 feet bgs, and was underlain by a 4 to 9-foot thick layer of clayey gravel. Another clay layer was encountered beneath clayey gravel and extended to the total depths of the borings. Groundwater was encountered at depths ranging from 11.8 to 14 feet bgs. Detailed descriptions of the subsurface materials encountered during drilling are presented on the boring logs in Appendix B.

4.2 Soil Analytical Results

The soil samples collected from borings B-9 at 6 and 11 feet bgs, B-1 at 6 feet bgs, and B-3 at 11 feet bgs contained TPHg (up to 930 ppm), benzene (up to 6.7 ppm), and MtBE (up to 13 ppm). TPHg, benzene, or MtBE were not detected in any other soil samples collected from borings B-1 through B-10. The soil samples collected from boring B-2 located in the inferred downgradient direction of the former hydraulic hoists did not contain TPHho. The soil samples collected from boring B-4 located near the former waste oil tank did not contain O&G, TPHd, VOs, or SVOs. Cadmium (up to 0.69 ppm), chromium (up to 42 ppm), nickel (up to 100 ppm), and zinc (up to 63 ppm) were detected in samples collected from boring B-4. Lead was detected in soil samples collected from borings B-1 through B-10 at concentrations ranging from 3.5 ppm to 10 ppm.

The composite stockpile sample contained TPHg (80 ppm), benzene (0.25 ppm), and lead (6.5 ppm). MtBE was not detected in this sample. Soil chemical analytical data are summarized in Table 1. TPHg, benzene, and MtBE concentrations in soil at depths between 3 to 6 feet, and 11 feet are presented Figures 3 and 4, respectively.

4.3 Groundwater Analytical Results

Grab groundwater samples collected from borings B-1, B-3, B-7 and B-10 contained TPHg (up to 33,000 ppb). Samples collected from borings B-1, B-3 and B-10 also contained benzene (up to 1,200 ppb). TPHg or benzene were not detected in the grab groundwater samples collected from other borings. MtBE (up to 820 ppb) was detected in all grab groundwater samples. TAME (up to 8.9 ppb) was detected in the grab groundwater samples collected from borings B-2, B-7, and B-10. EtBE, DIPE, ethanol, methanol, TBA, 1,2-DCA, or EDB were not detected in any grab groundwater samples.

The grab groundwater sample collected from boring B-2 did not contain TPHho. The grab groundwater sample collected from boring B-4 did not contain O&G, VOs, or SVOs, however TPHd (170 ppb) was present in this sample. Metals chromium (110 ppb), lead (27 ppb), nickel (140 ppb) and zinc (250 ppb) were present in the grab groundwater sample from boring B-4, but cadmium was not detected. Groundwater analytical data are summarized in Tables 2 and 3. TPHg, benzene, and MtBE concentrations in groundwater are presented on Figures 5 through 7, respectively.

5.0 CONCLUSIONS

Based on analytical results from soil samples collected and analyzed during this and previous investigations, it appears that subsurface soil beneath the subject site has been impacted by gasoline, but has not been impacted by waste oil or hydraulic oil hydrocarbons. The gasoline impacted soil appears to be limited to the central and southern portion of the site. The highest hydrocarbon concentrations in soil (up to 930 ppm TPHg, 6.7 ppm benzene, and 13 ppm MtBE) are present in the vicinity of the former southern service island (borings B-9 and B-3). The lateral extent of hydrocarbon impacted soil has been delineated to nondetectable concentrations of TPHg, benzene, and MtBE except to the south and southwest. The vertical extent of hydrocarbon impacted soil has been delineated to nondetectable concentrations of TPHg, benzene, and MtBE at the depth of 11 feet bgs except in the vicinity of the former southern dispenser island, where hydrocarbon impacted soil appear to extend to groundwater.

Shallow groundwater beneath the subject site has been impacted by gasoline hydrocarbons (up to 33,000 ppb TPHg, 1,200 ppb benzene, and 820 ppb MtBE), but has not been impacted by hydraulic oil or waste oil hydrocarbons. Shallow groundwater in the vicinity of the former waste oil UST has been also impacted by diesel hydrocarbons. The extent of gasoline hydrocarbon impacted groundwater beneath the subject site has not been delineated to the south, southwest and west.

The waste oil UST may still be present at the site, based on an obstruction encountered within gravel fill material in the location of the tank pit, and no specific information confirming tank removal.

6.0 REFERENCES

E. J. Helley and others, 1979, Flatland Deposits of the San Francisco Bay Region, California: U.S. Geological Survey Professional Paper 943.

Delta Environmental Consultants Inc./Gettler-Ryan Inc., October 4, 2000, Work Plan for Environmental Investigation at Chevron Service Station #9-2029, 890 West MacArthur Boulevard, Oakland, California, Report No. DG92029C.4CO1-1.

Gettler-Ryan Inc., April 10, 1997, Soil Sampling During Product Dispenser Replacement at Chevron Service Station Station #9-2029, 890 West MacArthur Boulevard, Oakland, California, Job No. 1205.02.

Gettler-Ryan Inc., October 4, 2000, Site Safety Plan for Chevron Service Station Station #9-2029, 890 West MacArthur Boulevard, Oakland, California, Job No. 346503.01.

Table 1. Soil Analytical Results - Chevron Service Station #9-2029, 890 West MacArthur Boulevard, Oakland, California.

Sample ID	Depth (feet)	Date	TPHg <	Benzene	Toluene l	Ethylhenzene	Xylenes	MtBE ppm	TPHho	O&G	TPHd	VOs	SVO ₈	Lead	Cadmium	Chromium	Nickel	Zinc
B1-6 B1-11	6 11	10/06/00 10/06/00	68 ¹ <1.0	0.25 <0.0050	0.30 0.0073	1.2 <0.0050	0.64 0.0089	0.33 <0.050	=			_		4.5 4.5		_	=	_
B2-6 B2-11	6 11	10/06/00 10/06/00	<1.0 <1.0	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	0.012 <0.0050	<0.050 <0.050	<10 <10	_	_	_	_	6.9 3.9	_	_	_	
B3-6 B3-11	6 11	10/09/00 10/09/00	< 1.0 930 ¹	<0.0050 6.7	<0.0050 1.2	<0.0050 22	<0.0050 100	<0.050 13	-					4.4 4.7	_		_	_
B4-6 B4-11	6 11	10/09/00 10/09/00	<1.0 <1.0	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.050 <0.050	_	< 50 < 50	<1.0 <1.0	ND ND	ND ND	10 3.5	0.69 0.57	42 24	100 29	63 50
B5-6 B5-11	6. 11	10/05/00 10/05/00	<1.0 <1.0	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.050 <0.050	_			-	_	6.1 3.7		Ξ	_	
B6-6 B6-11	6 11	10/05/00 10/05/00	<1.0 <1.0	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.050 <0.050		-	_	_	_	6.5 5.1	_			_
B7-6 B7-11	6 11	10/09/00 10/09/00	<1.0 <1.0	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.050 <0.050	(I —	_	_	_		9.2 5.4	_		_	_
B8-6 B8-11	6 11	10/06/00 10/06/00	<1.0 <1.0	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.050 <0.050		_			_	6.8 5.1			· _	_
B9-6 B9-11	6 11	10/09/00 10/09/00	95¹ 200¹	0.15 1.3	0.20 0.59	1.9 6.1	2.2 9.7	<0.50 3.4	_	-	=	_	_	5.0 6.9		_	_	_
B10-6 B10-11	6 11	10/06/00 10/06/00	<1.0 <1.0	<0.0050 <0.0050	0.0058 <0.0050	0.0052 0.0051	0.016 0.015	<0.050 <0.050		-	_	_	_	7.7 4.6	_	_		3
SP-A,B,C,D	-	10/09/00	80	0.25	0.24	1.0	0.70	< 0.50		(***	-	1	6.5	8556	1000	3377	175

EXPLANATION:

TPHg - Total Petroleum Hydrocarbons as gasoline

TPHd - Total Petroleum Hydrocarbons as diesel

MtBE = Methyl t-Butyl Ether

O&G = Oil and Grease

VOs - Volatile Organics

SVOs - Semivolatile Organics

TPHho - Total Petroleum Hydrocarbons as hydraulic oil

ppm - Parts per million

- = Not analyzed/not applicable

ND - Not detected

1 - Laboratory report indicates gasoline C6-C12.

ANALYTICAL METHODS:

TPHg, benzene, toluene, ethylbenzene, xylenes, MtBE, TPHd, TPHho = DHS LUFT Method

O&G = Standard Method 5520 E&F (Gravimetric)

VOs = EPA Method 8010B

SVOs = EPA Method 82708

Metals - EPA Method 6010A

ANALYTICAL LABORATORY:

Sequoia Analytical (ELAP #1271)

Table 2. Groundwater Analytical Results - Chevron Service Station #9-2029, 890 West MacArthur Boulevard, Oakland, California.

Sample ID	Date	DTW (feet)	TPHg <	Benzene	Toluene	Ethylbenzene	Xylenes	MtBEppb	O&G	ТРНа	VOs	SVOs	TPHho >
B1-₩	10/06/00	13.1	3,600¹	110	3.5	770	150	700/8204		-	-		80
B2-W	10/06/00	13.0	<50	< 0.50	< 0.50	< 0.50	< 0.50	460/3204	3000	Hees:	6 111 0	1,000	<250
B3-W	10/09/00	13.1	33,0001	1,200	580	2,000	7,500	670/3404	_	***		-	177
B4-W ²	10/09/00	13.5	< 50	< 0.50	< 0.50	< 0.50	< 0.50	66/714	< 5,000	170	ND^2	ND	-
B5-W	10/06/00	12.3	<50	< 0.50	< 0.50	< 0.50	< 0.50	460/590 ⁴	-	****	S +++ S	(-1)	7
B6-W	10/06/00	11.8	<50	< 0.50	< 0.50	< 0.50	< 0.50	32/34	-		_	_	+
B7-W	10/09/00	13.7	500 ¹	< 0.50	< 0.50	16	63	230/3604		-	· ·	6 111 .8	-
B8-W	10/06/00	12.8	<50	< 0.50	< 0.50	< 0.50	< 0.50	440/650°	-			-	175
B10-W	10/09/00	13.8	3,700¹	8.3	4.2	180	1.7	46/474	2777	***	\leftarrow	-	940

EXPLANATION:

DTW - Depth to water

TPHg - Total Petroleum Hydrocarbons as gasoline

TPHd - Total Petroleum Hydrocarbons as diesel

MtBE - Methyl t-Butyl Ether

O&G - Oil and Grease

VOs - Volatile Organic Compounds

SVOs - Semivolatile Organic Compounds

Ppb - Parts per billion

- Not analyzed/Not applicable

ND - Not detected

= Laboratory indicates gasoline C6-C12

Not detected except tetrachloroethene (4.3 ppb)

3 = Sample contained metals chromium (0.11 ppm), lead (0.027 ppm), nickel (0.14 ppm) and zin (0.25 ppm). Cadmium was not detected.

" - MIBE by EPA 8260

ANALYTICAL METHODS:

TPHg, benzene, toluene, ethylbenzene, xylenes, MtBE, TPHd, TPHho - DHS LUFT Method

O&G - Standard Method 5520 E&F (Gravimetric)

VOs = EPA Method 80108

SVOs - EPA Method 8270B

Metals = EPA Method 200.7

Table 3. Groundwater Analytical Results - Oxygenate Compounds, Chevron Service Station #9-2029, 890 West MacArthur Boulevard, Oakland, California.

Sample ID	Date	Methanol	Ethanol	TBA	MtBE	EtBEppb	DIPE	тамв	1,2-DCA	>
B1-W	10/06/00	<1,000	<2,500	<250	820	<10	<10	<10	<10	<10
B2-W	10/06/00	<1,000	<500	< 50	320	<2.0	<2.0	8.9	<2.0	<2.0
B3-W	10/09/00		<2,500	<250	340	<10	<10	<10	<10	<10
B4-W	10/09/00	•	< 500	< 50	71	<2.0	<2.0	<2.0	<2.0	<2.0
B5-W	. 10/06/00	<1,000	<2,500	<250	590	<10	<10	<10	<10	<10
B6-W	10/06/00	<1,000	< 500	< 50	34	<2.0	<2.0	<2.0	<2.0	<2.0
B7-W	10/09/00	*	< 500	< 50	3 6 0	<2.0	<2.0	4.4	<2.0	<2.0
B8-W	10/05/00	<1,000	<2,500	<250	650	<10	<10	<10	<10	<10
B10-W	10/09/00	4	< 500	<50	47	<2.0	<2.0	2.4	<2.0	<2.0

EXPLANATION:

TBA - Tertiary butyl alcohol

MtBE - Methyl tertiary butyl ether

EtBE - Ethyl tertiary butyl ether

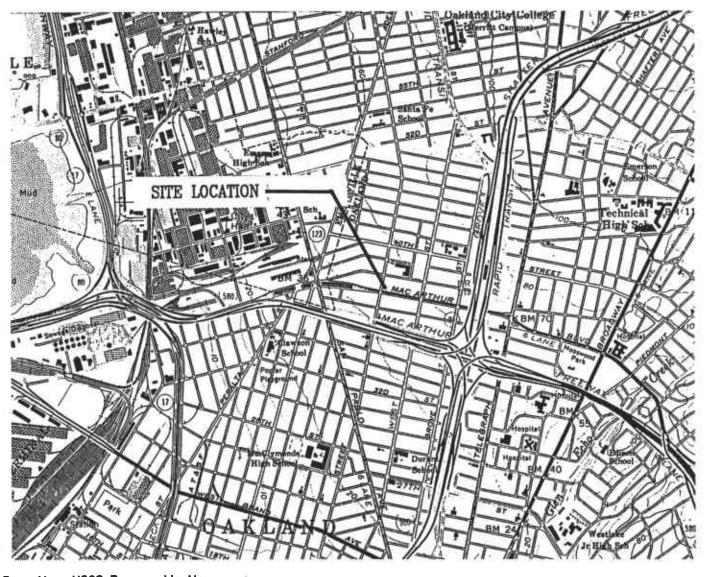
DIPE - Di-Isopropyl ether

TAME - Tertiary amyl methyl ether

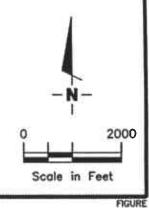
1,2-DCA = 1,2-Dichloroethane

EDB - Ethylene dibromide

Ppb - Parts per billion


· - Laboratory omitted analysis

ANALYTICAL METHODS:


Ethanol, TBA, MtBE, EtBE, DIPE. TAME, 1,2-DCA, EDB = EPA Method 82608 Methanol = EPA method 8015 (modified)

ANALYTICAL LABORATORY: Sequoia Analytical (ELAP #1271)

346503.02-2

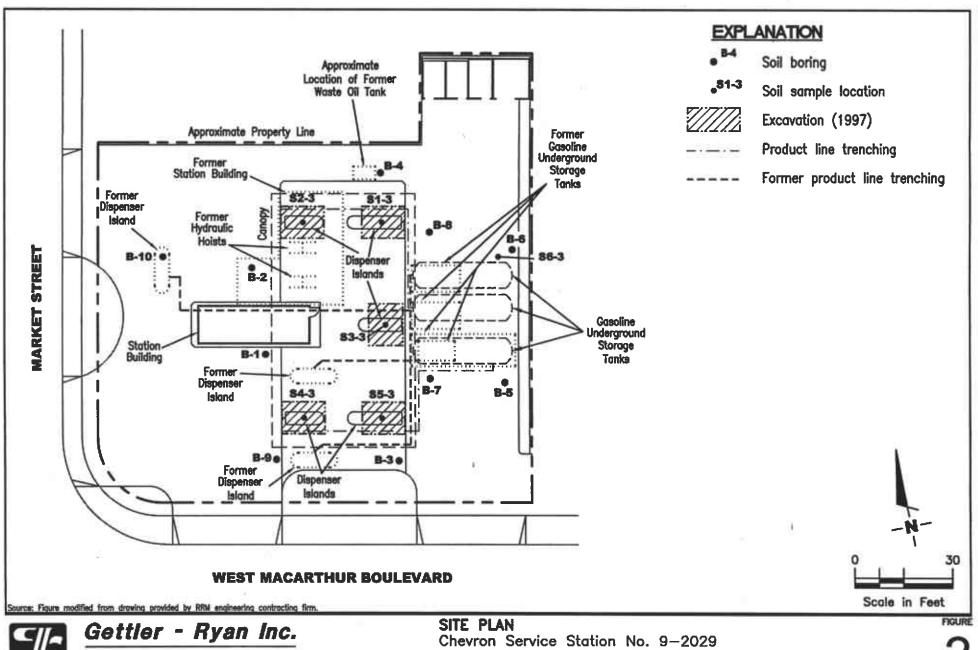
Base Map: USGS Topographic Map

Gettler - Ryan Inc.

6747 Sierra Ct., Suite J Dublin, CA 94568

(510) 551-7555

VICINITY MAP


Chevron Service Station No. 9-2029 880 West MacArthur Boulevard Oakland, California

DATE

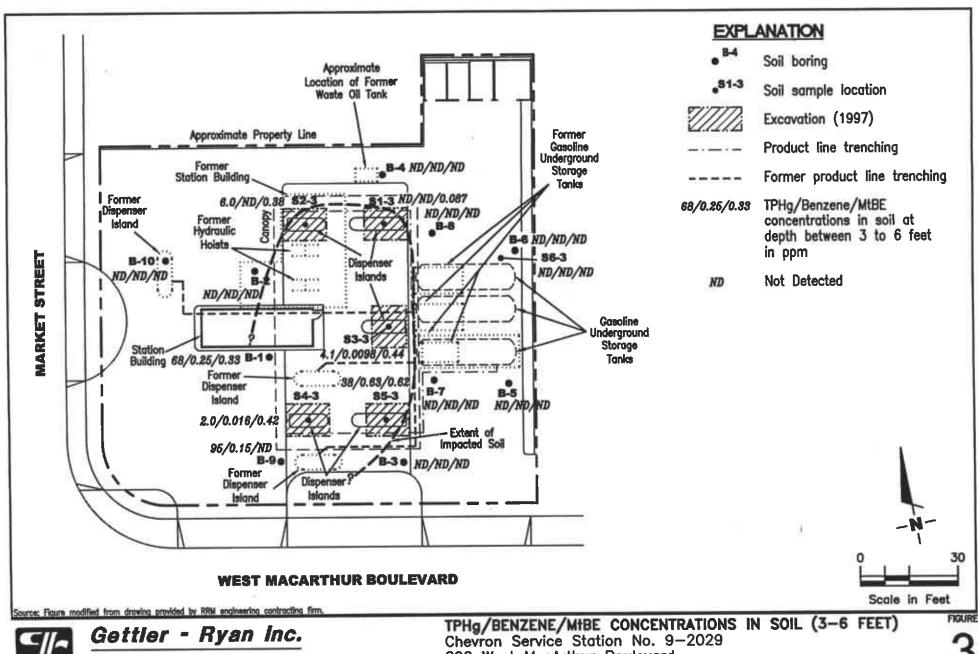
REVISED DATE

JOB NUMBER

REVIEWED BY

8747 Sierra Ct., Suite J Dublin, CA 94568

(925) 551-7555


890 West MacArthur Boulevard Oakland, California

DATE 10/00

REVISED DATE

PROJECT NUMBER 346503

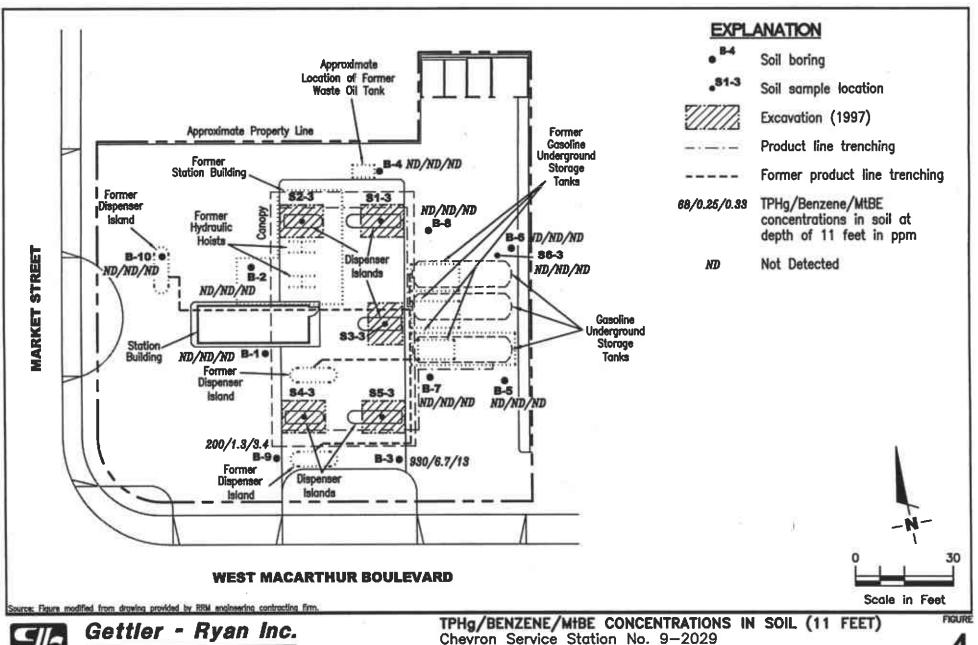
REVIEWED BY

6747 Sierra Ct., Suite J Dublin, CA 94568

(925) 551-7555

890 West MacArthur Boulevard

Oakland, California


October, 2000

REVISED DATE

PROJECT NUMBER 346503

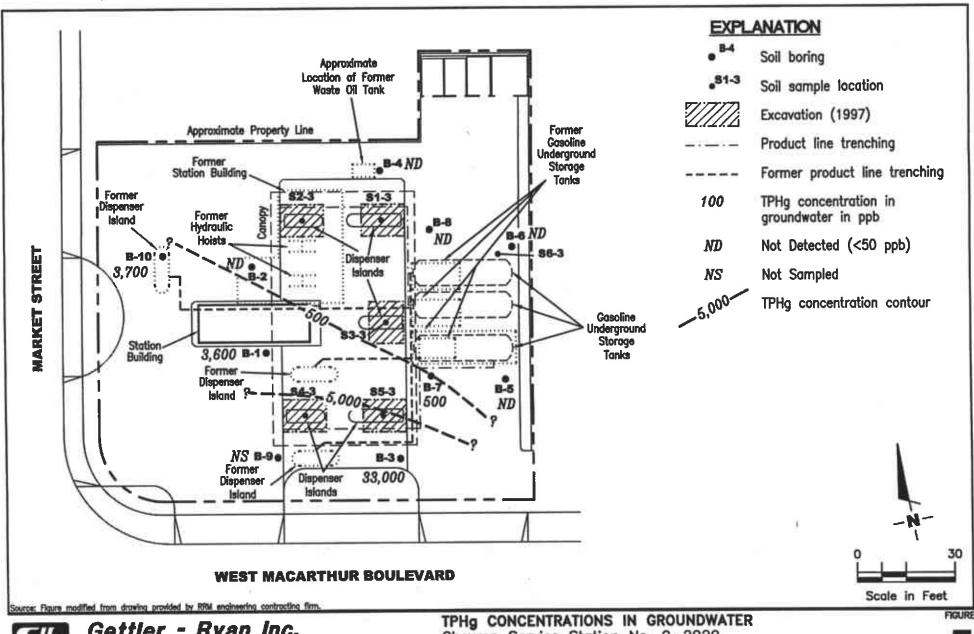
FILE HAME: P:\Enviro\Chevron\9-2029\ADO-9-2029.DWG | Layout Tab: Con4 3-6ff

REVIEWED BY

6747 Sierra Ct., Suite J Dublin, CA 94568

(925) 551-7555

890 West MacArthur Boulevard


Oakland, California

October, 2000

REVIEWED BY PROJECT NUMBER 346503

REVISED DATE

FILE NAME: P:\Enviro\Chevron\9-2029\A00-9-2029.DWG | Layout Tab: Con4 11ft

Gettler - Ryan Inc.

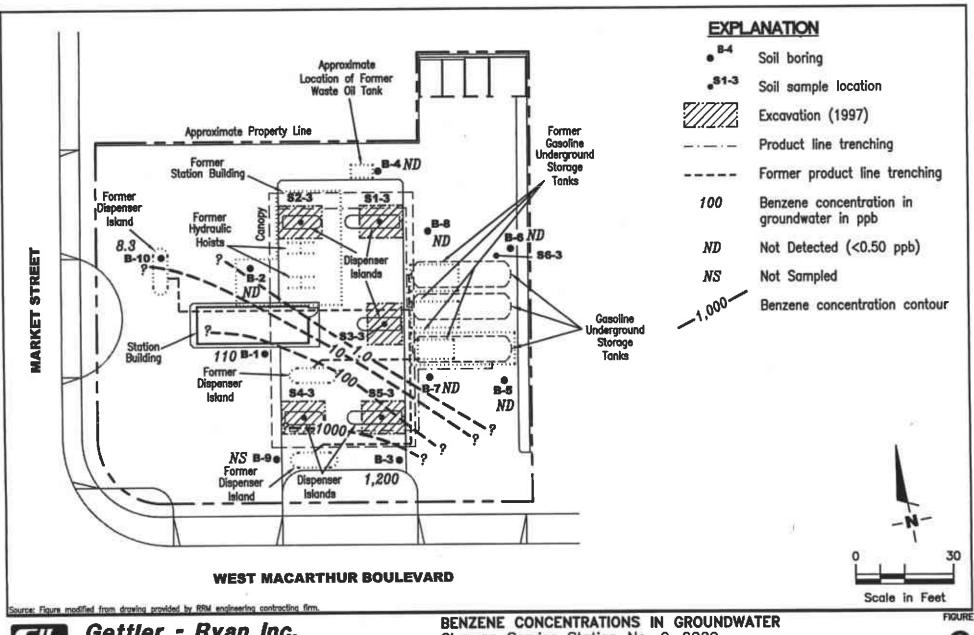
REVIEWED BY

6747 Sierra Ct., Suite J Dublin, CA 94568

(925) 551-7555

Chevron Service Station No. 9-2029

890 West MacArthur Boulevard


Oakland, California

October, 2000

REVISED DATE

PROJECT NUMBER 346503

FILE NAME: P:\Emiro\Chevron\9-2029\A00-9-2029.DWG | Layout Tab: Tphg4

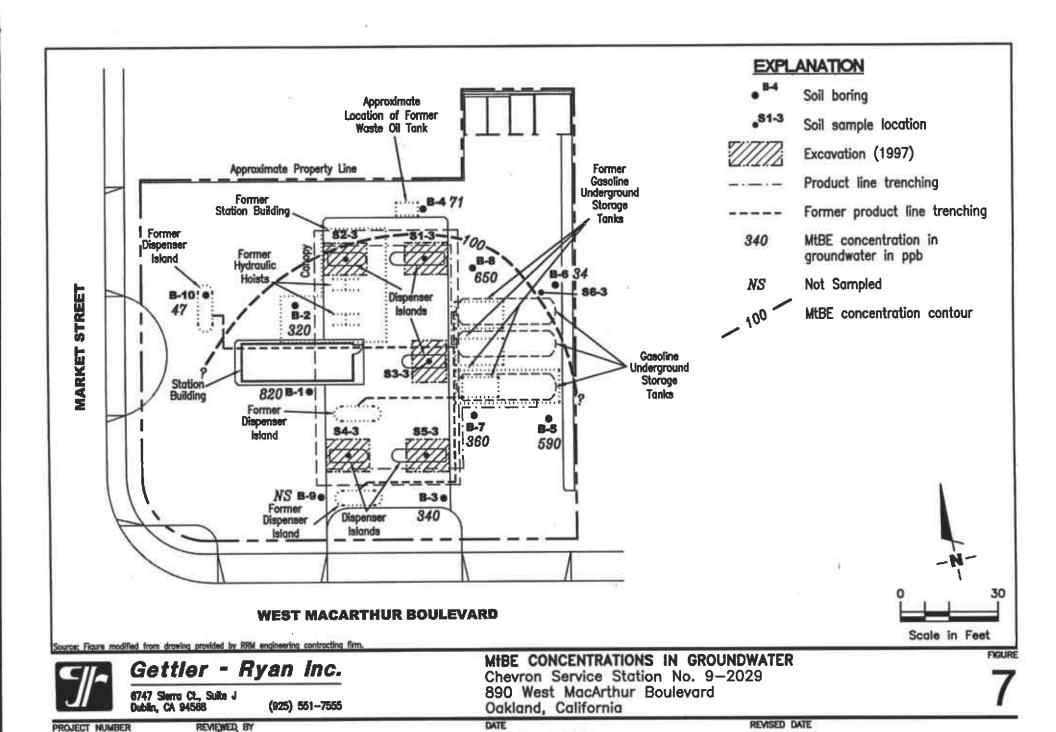
Gettler - Ryan Inc.

REVIEWED BY

6747 Sierra Ct., Suite J Dublin, CA 94568

(925) 551-7555

Chevron Service Station No. 9-2029 890 West MacArthur Boulevard


Oakland, California

October, 2000

PROJECT NUMBER 346503

FILE NAME: P:\Emviro\Chevron\9-2029\A00-9-2029.DWG | Layout Tab: Benz4

REVISED DATE

October, 2000

FILE NAME: P:\Enviro\Chevron\9-2029\A00=9-2029.DWG | Layout Tab: Mtbe4

346503

GETTLER - RYAN FIELD METHODS AND PROCEDURES

Site Safety Plan

Field work performed by Gettler-Ryan, Inc. (GR) is conducted in accordance with GR's Health and Safety Plan and the Site Safety Plan. GR personnel and subcontractors who perform work at the site are briefed on the plan=s contents prior to initiating site work. The GR geologist or engineer at the site when the work is performed acts as the Site Safety Officer. GR utilizes a photoionization detector (PID) to monitor ambient conditions as part of the Health and Safety Plan.

Collection of Soil Samples

Exploratory soil borings are drilled by a California-licensed well driller. A GR geologist is present to observe the drilling, collect soil samples for description, physical testing, and chemical analysis, and prepare a log of the exploratory soil boring. Soil samples obtained with a Geoprobe rig are collected from the soil boring with a split-barrel sampling device fitted with 1-inch-diameter, clean brass or plastic liners. The Geoprobe drives the sampling device approximately 24 inches, and the filled sampler is then retrieved from the boring. The encountered soil is described using the Unified Soil Classification System (ASTM 2488-84) and the Munsell Soil Color Chart.

After removal from the sampling device, soil samples for chemical analysis are covered on both ends with teflon sheeting or aluminum foil, capped, labeled, and placed in a cooler with blue ice for preservation. A chain-of-custody form is initiated in the field and accompanies the selected soil samples to the analytical laboratory. Samples are selected for chemical analysis based on:

- depth relative to underground storage tanks and existing ground surface
- depth relative to known or suspected groundwater
- presence or absence of contaminant migration pathways
- d. presence or absence of discoloration or staining
- e. presence or absence of obvious gasoline hydrocarbon odors
- presence or absence of organic vapors detected by headspace analysis

Field Screening of Soil Samples

A PID is used to perform head-space analysis in the field for the presence of organic vapors from the soil sample. This test procedure involves removing some soil from one of the sample tubes not retained for chemical analysis and immediately covering the end of the tube with a plastic cap. The PID probe is inserted into the headspace inside the tube through a hole in the plastic cap. Head-space screening results are recorded on the boring log. Head-space screening procedures are performed and results recorded as reconnaissance data. GR does not consider field screening techniques to be verification of the presence or absence of hydrocarbons.

Groundwater Monitoring and Sampling

Decontamination Procedures

All depth-to-water measuring and sampling equipment are decontaminated prior to sample collection using Alconox or equivalent detergent followed by steam cleaning with deionized water. During field sampling, equipment placed in a well are decontaminated before purging or sampling the next well by cleaning with Alconox or equivalent detergent followed by steam cleaning with deionized water.

G-R Field Methods and Procedures

Water-Level Measurements

Prior to sampling each boring, the static water level is measured using an electric sounder and/or calibrated portable oil-water interface probe. Both static water-level and separate-phase product thickness are measured to the nearest 0.01 foot. The presence of separate-phase product is confirmed using a clean, acrylic or polyvinylchloride (PVC) bailer, measured to the nearest 0.01 foot with a decimal scale tape. The monofilament line used to lower the bailer is replaced between borings with new line to preclude the possibility of cross-contamination. Field observations (e.g. product color, turbidity, water color, odors, etc.) are noted.

Sample Collection and Labeling

A temporary PVC screen may be installed in the boring to facilitate a grab groundwater sample collection. Samples of groundwater are collected from the surface of the water in each boring using the teflon bailer or a pump. The water samples are then gently poured into laboratory-cleaned containers and sealed with teflon-lined caps, and inspected for air bubbles to check for headspace. The samples are then labeled by an adhesive label, noted in permanent ink, and promptly placed in an ice storage. A Chain-of-Custody Record is initiated and updated throughout handling of the samples, and accompanies the samples to the laboratory certified by the State of California for analyses requested.

T0 15107821939

PAGE.002/003

ALAMEDA COUNTY PUBLIC WORKS AGENCY

WATER RESOURCES SECTION
J59 ELMHURST ST. HAYWARD CA. 94544-1355
PHONE (\$10) 676-5554 MARLON MAGAJJ. ANRSJERANK CODD (610) 676-5783
FAX (610)782-1939

DRILLING PERMI	TAPPLICATION
FOR APPLICANT TO COMPLETE	FOR OFFICE USE
하는 하는 아이는 아이는 아이는 아이는 아이는 아이는 아이는 아이는 아이는 아이	PERMIT NUMBER WOO -632
OCATION OF PROJECT (16-EUTON 55# 9-2029	PERMIT NUMBER VVOO
SOO West Mac Arthur Bard	WELL HUMBER
Oakland, California	APN
	PERMIT CONDITIONS
	Circled Permit Requirements Apply
190	0
LIENT LANGE DA LA CA	(A) GENERAL (L)A persite application should be submitted so as to
some Cheurous Products Co	entire of the ACTWA office five views prior to
ddrug P.O. Box 6004 Phone (925) 842-8818	proposed starting date.
to San Parnon zin 94523	2/Submit to ACPWA within 60 days after completion of
PRI ICINT	permitted work the original Department of Water
IPPLICANT GOTHER-Rugar Inc.	Passources- Well Completion Report.
Borogra Sicionista Fulgas 1551- 1888	1. Fermit is void if project not begun within 90 days of
Will 6747 Sierra Ch. Ste G Philo 1925 1557-1555	emproval date
To Dublia 20 9468	R. WATER SUPPLY WELTS
Tribun.	[. Minjapum terface seal thickness is two lockes of
YPE OF PROJECT	sement arout placed by trumic.
Well Construction Georgehalical Investigation	2 Minimum seal douth is 50 feet for municipal and
Cathedic Protection D General D	Industrial wells or 20 feet for domestic and irrigation
Water Supply D Contemplation	wells upless a leaser depth is specially amproved.
Monitoring O Well Destruction D	C. GROUNDWATER MONITORING WELLS
MONITORING C.	including piezometers
BARASER W. SER STREET V WEST S VICE	1. Minimum surface seal thickness is two factor of
NEW Damestie I) Replacement Domestic II	coment grout placed by tremle.
- 2 TAN IN 1970 TO THE SECOND	I Minimum seal depth for monitoring wells is the
Lighteday	meniment depth practicable or 20 feet.
Industrial Li Other U	(B) GEOTECHNICAL
- IN THIS LEPTING.	Reakful book hale by tremis with coment grout or coment
DRILLING METHOD: Mud Rolary 11 Air Hotary Auger	greatend mixture Upper two-three feet replaced in kind
	of with compagned outlings.
Cable II Other I	E. CATHODIC
ORILLER'S NAME BOY Area Exploration	Fill hole anede zone with concrete placed by termic.
DRILLER'S NAME THE TANK	# WELL DESTRUCTION
DRILLER'S LICENSTINO. C57 # 522125	Sand a map of work site. A soperate permit is required
DRILLER'S CICEMST NO. 123 1 1 1 1 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2	for wells desper than 45 feet.
	G. SPECIAL CONDITIONS
WELL PROJECTS	There is a second of the secon
Drill Hole Diameter is. Muslimum	HOTE: One application must be submitted for each well or well
Cooling Diameterin. Depth n.	destruction. Multiple borings an one application are acceptable
Surface Scal Douthfl. Owner's Well Number	for Esciechnical and contamination investigations.
GEOTECHNICAL PROJECTS 4 DIVINA HOLLS	
Number of Berings 200 11-1-1-11 GREPODE	W
Number of Herings 2 10 11-1-min GREPODE	. 1
	11-2-0
ESTIMATED STARTING DATE	(1/1/4/11)
ESTIMATED CONTEXTION DATE 10/06/00	APPROVED DATE 10-3-0
t hereby agree to comply with all requirement of this permit and Alamada County	Assistance ind. 14-08.
APPLICANT'S SIGNATURE THE DATE	Ininsipo \
White and and the second	
PLEASEPRINT HAME Rarbara Sterminski	Rev.5-)3-00
• • • • • • • • • • • • • • • • • • •	
	Chimanal /Al XV/ I L. I amid 1

	G	ett	ler-R	yan	, Inc.		Log of Boring B	3 −1				
אט וב	:СТ-	Chev	con Serv	ice SI	ation # 9−	-2029	LOCATION: 890 West MacArthur Bouleva	ard, Oakland, CA				
			: 3465		ation 20		SURFACE ELEVATION:MSL					
	_		10/06/				WL (ft. bgs): 13.1 DATE: 10/06/00 TIME: 18:50					
			10/06				WL (ft. bgs): DATE: TIM					
					w Stem A	uger	TOTAL DEPTH: 16.5 feet					
					a Explora		GEOLOGIST: Barbara Sieminski					
(feet)	PID (ppm)	BLOWS/FT. #	SAMPLE NUMBER		GRAPHIC LOG SOIL CLASS		GEOLOGIC DESCRIPTION	REMARKS				
-	-					PAVEMENT: Con	crete over gravel.					
5-	75 82	N/A 16	B1-4 B1-6		CL	CLAY (CL) - ve medium plasticit	ery dark grayish brown (10YR 3/2), moist, y; 95% clay, 5% fine sand. to greenish gray (5GY 5/1) at 4 feet.	Upon collection of grab groundwater sample, boring was backfilled with neacement from total depth to ground surface.				
10-	240	14	B1-11		GC	CLAYEY GRAVE saturated, med fine to coarse	L (GC) – greenish gray (5GY 5/1), moist to ium dense; 70% subrounded to well rounded gravel, 20% clay, 10% fine to coarse sand.					
15-	2	27	B1-16		CL.		ellowish brown (10YR 5/8), moist to damp, ty, hard; 90% clay, 10% fine sand.					
	-	1		Γſ		Bottom of bori	ng at 16.5 feet bgs.	1				
	1					(x = Converte	ed to equivalent standard penetration					
25-						biows/foot N/A = Not app	plicable)	9				
35-	-											

	(ett	ler-R	Ìγε	n, i	inc.	•		Log of Boring B	-2				
PROJ	ECT:	Chev	ron Serv	ice	Statio	n #9-	-2029		LOCATION: 890 West MacArthur Bouleval	rd, Oakland, CA				
			: 3465	_					SURFACE ELEVATION:MSL					
		RTED:							WL (ft. bgs): 13.0 DATE: 10/08/00 TIME	: 16:10				
		SHED		/00					WL (ft. bgs): DATE: TIME:					
_			D: 6 in		llow S	tem A	uaer		TOTAL DEPTH: 16.5 feet					
			NY: Ba						GEOLOGIST: Barbara Sieminski					
DEPTH (feet)	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS			GEOLOGIC DESCRIPTION	REMARKS				
				١,,					rete over gravel.					
]	10	N/A	B2-4	2		CL		CLAY (CL) - ver medium plasticity	y dark grayish brown (10YR 3/2), moist. ; 95% clay, 5% fine sand. ; greenish gray (56Y 5/1) at 3 feet.	Upon collection of grab groundwater sample, boring was backfilled with neat cement from total depth to ground				
5-	17	15	B2-6	73 (0)		GC		medium dense: 60	(GC) – greenish gray (5GY 5/1), damp, 0% subrounded to well rounded fine to 0% clay, 10% fine to coarse sand.	surface.				
10-	8	12	B2-11				\$		o yellowish brown (10YR 5/4) at 10 feet. o saturated at 11 feet.					
15-	o	30	B2-16			CL		plasticity, hard;	lowish brown (10YR 5/8), damp, medium 90% clay, 10% fine sand.	-				
					1			(x = Converted blows/foot	to equivalent standard penetration					
25-				-				N/A = Not applic	aune)					

Page 1 of 1

	6	ett	ier-R	Ŋε	ın, İ	inc.		Log of Boring B-	-3				
PROJI	ECT:	Chev	ron Serv	ice	Statio	n #9-	2029	LOCATION: 890 West MacArthur Bouleval	rd, Oakland, CA				
GR PF	ROJEC	T NO.	: 3465	03.0	71			SURFACE ELEVATION:MSL					
		RTED:						WL (ft. bgs): 14.0 DATE: 10/09/00 TIME	14:40				
DATE	FINI	SHED	: 10/09	/00				WL (ft. bgs): DATE: TIME					
			DD: 8 in		llow S	tem Au	iger	TOTAL DEPTH: 16.5 feet					
		COMPA			ard D			GEOLOGIST: Barbara Sieminski					
DEPTH (feet)	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION	REMARKS				
				Ι.			PAVEMENT: Cond	crete over gravel.					
5-						CL	CLAY (CL) - ver medium plasticity Color changes to	ry dark grayish brown (10YR 3/2), moist, r; 95% clay, 5% fine sand. o greenish gray (5GY 5/1) at 4 feet.	Upon collection of grab groundwater sample boring was backfilled with neat cement from total depth to ground surface.				
-	14	>100	B3-8			6C	clay, 10% fine to		9 3 8				
10-	400	9	83-11			CL	CLAY WITH SAN medium stiff, low sand.	D (CL) – yellowish brown (10YR 5/6), moist, plasticity; 80% clay, 20% fine to coarse	3 3 8				
15-	0	>100	93-16			GC	X esturated very	L (6C) — yellowish brown (10YR 5/6), dense; 60% subrounded to well rounded fine el, 20% fine to coarse sand, 20% clay.					
				г	-		Bottom of boring	g at 16.5 feet bgs.	1				
20-				-			(* = Converted blows/foot.)	to equivalent standard penetration	P				
25-				-				8					
30-				-									
35-				1-									

	(3ett	ler-R	lya	ın,	inc.		Log of Boring B-	-4				
PROJE	ECT:	Chev	ron Serv	ice	Statio	n #9-	·2029	LOCATION: 890 West MacArthur Bouleval	rd, Oakland, CA				
			: 3465	_				SURFACE ELEVATION:MSL					
			10/09/	_				WL (ft. bgs): 13.5 DATE: 10/09/00 TIME: 12:20					
			10/09					WL (ft. bgs): DATE: TIME:					
			D: 8 in	_		tem A	uaer	TOTAL DEPTH: 18.5 feet					
		COMPA		_	rd Dr			GEOLOGIST: Barbara Sieminski					
DEPTH (feet)	PIO (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION	REMARKS				
				Т			PAVEMENT: Cond	crete over gravel.					
5 2 2						CL	CLAY (CL) - ver	ry dark graylsh brown (10YR 3/2), moist, y; 95% clay, 5% fine sand.	Upon collection of grab groundwater sample, boring was backfilled with neat cement from total depth to ground				
5-	0	>100	84-6			GC	CLAYEY GRAVEL very dense; 50% to coarse sand.	(GC) – greenish gray (5GY 5/1), damp, subrounded fine gravel, 40% clay, 10% fine	surface.				
10-	0	41	B4-11					o yellowish brown (10YR 5/8); becomes moist avel increases to 60%, fine to coarse sand %, clay decreases to 20%.					
15-	0	>100	B4-16			CL	plasticity, hard;	llowish brown (10YR 5/8), moist, medium 90% clay, 10% fine to medium sand. g at 16.5 feet bgs.					
20-								I to equivalent standard penetration	77				
25-				-				¢.	8				
30-									8				
35-		9							3				

	(ett	ler-R	yan,	Inc.		Log of Boring B	-5				
PROJE	FCT:	Chev	ron Serv	ice Stati	on #9-:	2029	LOCATION: 890 West MacArthur Bouleva	rd, Oakland, CA				
			: 3465				SURFACE ELEVATION:MSL					
			10/05/				WL (ft. bgs): 12.3 DATE: 10/06/00 TIME	: 7:30				
			10/06				WL (ft. bgs): DATE: TIME:					
				GeoProt	e		TOTAL DEPTH: 17.0 feet					
				y Area E		ion	GEOLOGIST: Barbara Sieminski					
DEPTH (feet)	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT. GRAPHIC LOG	SOIL CLASS		GEOŁOGIC DESCRIPTION	REMARKS				
						PAVEMENT: Con	crete over gravel.	4 3				
-					CL	CLAY (CL) - ver medium plasticity	ry dark grayish brown (10YR 3/2), damp, 7; 90% clay, 10% fine to coarse sand.	Upon collection of grab groundwater sample, boring was backfilled with neat cement from total depth to ground				
5-	0	N/A	B5-6		GC	CLAYEY GRAVEL subrounded to w 10% fine to coar Becomes moist a		surface.				
10-	o	N/A	B5-11		CL	CLAY (CL) - ye plasticity; 70% (Nowish brown (10YR 5/4), moist, medium					
15-	0	N/A	B5-16		CL	5/6), moist, low sand, 10% subro Becomes damp	ITH GRAVEL (CL) - yellowish brown (10YR plasticity; 60% clay, 30% fine to coarse unded fine gravel. at 16 feet. g at 17.0 feet bgs.					
20-						(N/A = Not app	olicable)					
30-												

	9	ett	ier-R	yan, i	Inc.		Log of Boring B-6					
PROJE	ECT:	Chev	ron Servi	ice Statio	on #9-	-2029	LOCATION: 890 West MacArthur Bouleva	rd, Oakland, CA				
GR PF	ROJEC	T NO.	: 3465	03.01			SURFACE ELEVATION:MSL					
DATE	STA	RTED:	10/05/	00			WL (ft. bgs): 11.8 DATE: 10/06/00 TIME	: 16:35				
DATE	FINI	SHED	10/06/	/00			NL (ft. bgs): DATE: TIME	:				
the second second					e/6 in	. Hollow Stem Auger	TOTAL DEPTH: 19.0 feet					
				y Area E			GEOLOGIST: Barbara Sieminski					
(feet)	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT. GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION	REMARKS				
				.06446		PAVEMENT: Cond	crete over gravel.					
5-	0	N/A	B6-8		GC	Color changes to	y dark grayish brown (10YR 3/2), damp, 7, 90% clay, 10% fine to coarse sand. o olive (5Y 5/3) at 4 feet. (GC) - olive (5Y 5/3) mottled light olive s), damp; 80% subrounded fine to coarse y, 20% fine to coarse sand.	Geoprobe boring collapsed before grab groundwater sample was collected, therefore, was redrilled with 8 in. hollow stem augers to facilitate grab groundwater sample collection. Upon collection of grab groundwater				
10-	o	N/A	B8-11		CL	Becomes satura	flowish brown (10YR 5/6), moist, medium	sample, boring was backfilled with neat cement from total depth to ground surface.				
15-	0	N/A	B6-16			plasticity; 90% o	clay, 10% silt.					
- 2					1	n						
	0	N/A	B6-18.5		1	Bottom of borin	g at 19.0 feet bgs.	-				
20-						(N/A = Not app	blicable)					
25-												
30-				-								

	(ett	ier-R	lya	n, 1	nc.			Log of Boring B-	-7				
PROJ	ECT:	Chev	ron Serv	ice S	tatio	n #9-	2029		LOCATION: 890 West MacArthur Boulevan	d, Oakland, CA				
			: 3465	03.01					SURFACE ELEVATION:MSL					
_		RTED:							WL (ft. bgs): 13.0 DATE: 10/09/00 TIME:	12:00				
_			: 10/09						WL (ft. bgs): DATE: TIME:					
			D: 8 in		ow Si	tem Au	uaer		TOTAL DEPTH: 16.5 feet					
_		COMPA		odwa			.		GEOLOGIST: Barbara Sieminski					
DUTE	LING			TT	100	nmig								
DEPTH (feet)	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS			GEOLOGIC DESCRIPTION	REMARKS				
							PAVE	MENT: Conc	rete over gravel.					
	0	N/A	B7-4			CL	CLAY	(CL) - ver um plasticity	y dark grayish brown (10YR 3/2), moist, ; 95% clay, 5% fine sand. greenish gray (5GY 5/1) at 4 feet.	Upon collection of grab groundwater sample boring was backfilled with neat cement from total depth to ground				
5-	10	30	B7-6			GC	CLAY dens fine t	'EY GRAVEL e; 50% subro to coarse sa	(GC) – greenish gray (5GY 5/1), damp, bunded fine to coarse gravel, 40% clay, 10% and.	surface.				
10-	o	9	B7-11			CL	to sa	aturated, me) (CL) – yellowish brown (10YR 5/6), moist dium stiff, low plasticity; 80% clay, 20% fine trace fine gravel.					
15- 15-	0	29	B7-16			CL	hard	; 90% clay, 1	lowish brown (10YR 5/6), moist to damp, 10% fine to medium sand.					
20-							(x =		at 16.5 feet bgs. to equivalent standard penetration cable)					
25-														
30-				-					74	-				
35-										ē				

Gettler-Ryan, Inc.								Log of Boring B-8				
PROJ	FCT:	Chev	ron Serv	ice	Statio	n #9-	2029	LOCATION: 890 West MacArthur Boulevard, Oakland, CA SURFACE ELEVATION:MSL				
			: 3465									
			10/06/					WL (ft. bgs): 12.8 DATE: 10/06/00 TIME	: 16:30			
								NL (ft. bgs); DATE: TIME	•			
	DATE FINISHED: 10/06/00 DRILLING METHOD: 6 in. Hollow Stem Auger							TOTAL DEPTH: 16.5 feet				
	DRILLING COMPANY: Bay Area Exploration							GEOLOGIST: Barbara Sieminski				
DEPTH (feet)	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION	REMARKS			
					Territoria de la constantia del constantia de la constantia de la constantia della constantia della constant		PAVEMENT: Con-	crete over gravel.				
5-	6	16	88-6			CL	CLAY (CL) - da 95% clay, 5% fin	rk gray (10YR 4/1), moist, medium plasticity;	Upon collection of grab groundwater sample, boring was backfilled with neat cement from total depth to ground surface.			
10-	0	13	B8-11			6C	(2.5Y 5/0) at 10	o light clive brown (2.5Y 5/6) mottled gray) feet. L (GC) - light clive brown (2.5Y 5/0), moist edium dense; 70% subrounded fine to coarse y, 10% fine to coarse sand.				
15-	0	24	B8-16			CL	Bottom of borin	g at 16.5 feet bgs.				
20-				-			(* = Converted blows/foot.)	I to equivalent standard penetration				
25-												
35-												

Gettler-Ryan, Inc.								Log of Boring B-9				
PROJ	ECT:	Chev	ron Serv	rice S	Statio	n #9-2	2029	LOCATION: 890 West MacArthur Bouleva.	rd, Oakland, CA			
			: 3465					SURFACE ELEVATION:MSL				
		RTED:						WL (ft. bgs): DATE: TIME	:			
				0.7117.17				WL (ft. bgs): DATE: TIME	:			
DRILLING METHOD: 8 in. Hollow Stem Auger DRILLING COMPANY: Woodward Drilling							aer	TOTAL DEPTH: 17.0 feet				
							301	GEOLOGIST: Barbara Sieminski				
DEPTH (feet)	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION	REMARKS			
85	<u>a</u>	8	Ø	S	5	Ü	PAVEMENT: Cond	crete over gravel.				
]						CL	CLAY (CL) - ver medium plasticity	ry dark grayish brown (10YR 3/2), moist, r; 95% clay, 5% fine sand. o greenish gray (56Y 5/1) at 4 feet.	Boring was backfilled with neat cement from total depth to ground surface.			
5-	160	27	B9-6	Į		GC	CLAYEY GRAVEL dense; 50% subr fine to coarse s	. (GC) – greenish gray (5GY 5/1), damp, ounded fine to coarse gravel, 40% clay, 10% and.				
10-	280	10	89-11			CL	CLAY WITH SAN to saturated, me to coarse sand.	D (CL) — yellowish brown (10YR 5/8), moist edium stiff, low plasticity; 80% clay, 20% fine				
15-	o	>100	B9-16	J		CL	(10YR 5/6), mois coarse sand, 5% No sufficient wa hours.	D AND GRAVEL (CL) — yellowish brown st to damp, hard; 75% clay, 20% fine to subrounded fine gravel. ster for sample collection after waiting 2				
20-				-				g at 17.0 feet bgs. I to equivalent standard penetration	-			
25- -				-					-			
30-				-				27	-			
35-				_								

Gettler-Ryan, Inc.							3	Log of Boring B-10				
PROJ	ECT:	Che	ron Serv	rice	Static	on #9-	2029	LOCATION: 890 West MacArthur Boulevard, Oakland, CA				
_	_		: 3465					SURFACE ELEVATION:MSL				
DATE	STA	RTED:	10/06/	100				WL (ft. bgs): /3.8 DATE: /0/09/00 TIME	: 7:30			
	DATE FINISHED: 10/09/00							WL (ft. bgs): DATE: TIME				
	DRILLING METHOD: 6 in. Hollow Stem Auger DRILLING COMPANY: Bay Area Exploration						uaer	TOTAL DEPTH: 16.5 feet				
								GEOLOGIST: Barbara Sieminski				
DEPTH (feet)	PID (ppm)	BLOWS/FT. *	SAMPLE NUMBER	SAMPLE INT.	6	SOIL CLASS		GEOLOGIC DESCRIPTION	REMARKS			
					0.5		PAVEMENT: Cond	crete over gravel.				
5-	6	N/A 10	B10-4			CL	CLAY (CL) - ver medium plasticity Color changes to	y dark grayish brown (10YR 3/2), moist, 7, 95% clay, 5% fine sand. o greenish gray (5GY 5/1) at 3.5 feet. own mottling (10YR 5/8) at 6 feet.	Upon collection of grab groundwater sample, boring was backfilled with neat cement from total depth to ground surface.			
10-	27	18 18	B10-10			GC	I mottled gray (2)	. (GC) - light olive brown (2.5GY 5/8) 5Y 5/0), moist to saturated, medium dense; fine to coarse gravel, 20% clay, 10% fine to	- 3			
15-	4	24	B10-16			CL.	medium plasticity Bottom of boring	llowish brown (10YR 5/8), moist to damp, ,, very stiff; 90% clay, 10% fine sand. g at 18.5 feet bgs.				
20-				8			t* = Converted blows/foot N/A = Not applie	to equivalent standard penetration cable)	-			
25— -				-					-			
30-				-					-			
35-				-	1							

Page 1 of 1

1 November, 2000

Barbara Sieminski Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin, CA 94568

RE: Chevron Sequoia Report: W010197 RECREATE

Enclosed are the results of analyses for samples received by the laboratory on 09-Oct-00 16:45. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Charlie Westwater Project Manager

CA ELAP Certificate #1271

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received	7
B6-6	W010197-01	Soil	05-Oct-00 10:30	09-Oct-00 16:45	_
B6-11	W010197-02	Soil	05-Oct-00 10:50	09-Oct-00 16:45	
B5-6	W010197-03	Soil	05-Oct-00 13:20	09-Oct-00 16:45	
B5-11	W010197-04	Soil	05-Oct-00 13:30	09-Oct-00 16:45	
B4-6	W 010197-05	Soil	09-Oct-00 09:15	09-Oct-00 16:45	
B4-11	W010197-06	Soil	09-Oct-00 09:20	09-Oct-00 16:45	
B 7-6	W010197-07	Soil	09-Oct-00 10:05	09-Oct-00 16:45	
B7-11	W010197-08	Soil	09-Oct-00 10:10	09-Oct-00 16:45	
B3- 6	W010197-09	Soil	09-Oct-00 10:40	09-Oct-00 16:45	
B3-11	W010197-10	Soil	09-Oct-00 10:45	09-Oct-00 16:45	
B9-6	W010197-11	Soil	09-Oct-00 11:30	09-Oct-00 16:45	
B9-11	W010197-12	Soil	09-Oct-00 11:35	09-Oct-00 16:45	٠.
B10-W	W010197-13	Water	09-Oct-00 08:30	09-Oct-00 16:45	
B7-W	W010197-14	Water	09-Oct-00 11:15	09-Oct-00 16:45	
B4-W	W010197-15	Water	09-Oct-00 12:30	09-Oct-00 16:45	
вз-w	W010197-16	Water	09-Oct-00 14:30	09-Oct-00 16:45	

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Charlie Westwater, Project Manager

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

		-							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
B6-6 (W010197-01) Soil	Sampled: 05-Oct-00 10:30	Received: 09	-Oct-00	16:45					
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0J10002	10-Oct-00	11-Oct-00	EPA 8015/8020	
Benzene	ND	0.0050	#	#	н	. 11	"	tt	
Toluene	ND	0.0050	*		"	11	T	•	
Ethylbenzene	ND	0.0050	#	#	н	Ħ	*	II:	
Xylenes (total)	ND	0.0050	*	**	#	#	**	#	
Methyl tert-butyl ether	ND	0.050	#	Ħ	Ħ	•	н	н	
Surrogate: a,a,a-Trifluoro	toluene	101 %	40-	-140	N	"	"	#	
B6-11 (W010197-02) Soil	Sampled: 05-Oct-00 10:50	Received: 0	9-Oct-00	16:45		•			
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0J10002	10-Oct-00	11-Oct-00	EPA 8015/8020	•
Benzene	ND	0.0050	п	п	π	11	#	11	
Toluene	ND	0.0050	н	н	n	*	*	n	•
Ethylbenzene	ND	0.0050		*	н	**	-	#	
Xylenes (total)	ND	0.0050	*	*1	н	*	n	н	
Methyl tert-butyl ether	ND	0.050	n	**	#	Ħ		Ħ	
Surrogate: a,a,a-Trifluoro	toluene	98.0 %	40-	140	н	rr .	#	и	
B5-6 (W010197-03) Soil	Sampled: 05-Oct-00 13:20	Received: 09	-Oct-00	16:45					
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0310002	10-Oct-00	11-Oct-00	EPA 8015/8020	
Benzene	ND	0.0050	**		н	Ħ	#	•	
Toluene	ND	0.0050	n	n	u	n	Ħ	H	
Ethylbenzene	ND	0.0050	**	11	•	#1	Ħ	н	
Xylenes (total)	ND	0.0050	-	*	•		•	н	
Methyl tert-butyl ether	ND	0.050	•	n	*	Ħ		н	
Surrogate: a,a,a-Trifluoro	toluene	99.3 %	40-	-140	"	H	#	n	

Gettler Ryan, Inc. - Dublin

Project: Chevron

6747 Sierra Court Suite J Dublin CA, 94568 Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B5-11 (W010197-04) Soil	Sampled: 05-Oct-00 13:30	Received: 0	9-Oct-00	16:45					
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0J10002	10-Oct-00	11-Oct-00	EPA 8015/8020	
Benzene	ND	0.0050	"	*	*	н	**	н	
Toluene	ND	0.0050	tt		-	. "	*	"	
Ethylbenzene	ND	0.0050	H	"	*	ıı	Ħ	"	
Xylenes (total)	ND	0.0050			-	**	-	н	
Methyl tert-butyl ether	ND	0.050		*	**	H	#	"	·
Surrogate: a,a,a-Trifluorot	oluene	90,3 %	40-	140	#	"	"	н	
B4-6 (W010197-05) Soil	Sampled: 09-Oct-00 09:15	Received: 09	-Oct-00	16:45					
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0J10002	10-Oct-00	11-Oct-00	EPA 8015/8020	
Benzene	ND	0.0050	**	**	"	**	**	Ħ	
Toluene	ND	0.0050	**	п	Ħ	•	**	Ħ	
Ethylbenzene	ND	0.0050	**	#	#		11	n	
Xylenes (total)	ND	0.0050	н	Ħ	Ħ	er	. #	"	
Methyl tert-butyl ether	ND	0.050	н	Ħ	Ħ	. **		# 	
Surrogate: a,a,a-Trifluorot	oluene	99.0 %	. 40-	140	17		н	Ħ	-
B4-11 (W010197-06) Soil	Sampled: 09-Oct-00 09:20	Received: 0	9-Oct-00	16:45				,	
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0J10002	10-Oct-00	11-Oct-00	EPA 8015/8020	
Benzene	ND ND	0.0050		n	" .		11	и	
Toluene	ND	0.0050	Ħ	н	н		#	II .	
Ethylbenzene	ND	0.0050	**	"	"	**	п	P	
Xylenes (total)	ND	0.0050	π	#		•	Ħ		
Methyl tert-butyl ether	ND	0.050	**	*	*	H	Ħ		
Surrogate: a,a,a-Trifluorot	oluene	99.3 %	40-	140	"	"	н		

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B7-6 (W010197-07) Soil	Sampled: 09-Oct-00 10:05	Received: 09	-Oct-00	16:45				+**	
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0J10002	10-Oct-00	11-Oct-00	EPA 8015/8020	
Benzene	ND	0.0050	**	IT	77	Ħ	и	et	
Toluene	ND	0.0050	"		*	**	"	#1	
Ethylbenzene	ND	0.0050	**	11		#	#	11	
Xylenes (total)	ND	0.0050	#	H	•	*	•	Ħ	
Methyl tert-butyl ether	ND	0.050		#		*	π	•	
Surrogate: a,a,a-Trifluoro	toluene	99.7%	40-	140	n	#	#	н	
B7-11 (W010197-08) Soil	Sampled: 09-Oct-00 10:10	Received: 0	9-Oct-00	16:45					
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0J10002	10-Oct-00	11-Oct-00	EPA 8015/8020	
Benzene	ND	0.0050	"	**	N	#	н	П	
Toluene	ND	0.0050	**		#	Ħ	н	н	
Ethylbenzene	ND	0.0050	"		•	н	н	u ,	
Xylenes (total)	ND	0.0050	*	H		11	#		
Methyl tert-butyl ether	ND	0.050	Ħ	m	•	#	•	**	
Surrogate: a,a,a-Trifluoro	toluene	96.7%	40-	140	n		"	"	
B3-6 (W01 0197-09) Soil	Sampled: 09-Oct-00 10:40	Received: 09	-Oct-00 1	16:45					٠
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	OJ10002	10-Oct-00	11-Oct-00	EPA 8015/8020	
Benzene	ND	0.0050	"	#			•	n	
Toluene	ND	0.0050	11	#	H		H	n	
Ethylbenzene	ND	0.0050	n	Ħ	**	Ħ	Ħ		
Xylenes (total)	ND	0.0050	Ħ	41	**	n	#	Ħ	
Methyl tert-butyl ether	ND	0.050	#	н	#	#	#	n *	
Surrogate: a,a,a-Trifluoro	toluene	109 %	40-	140	*	"	,,	н	****

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

		uota ixita	yucar	· · · · · · · · · · · · · · · · · · ·	CICCH	<u> </u>			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B3-11 (W010197-10) Soil	Sampled: 09-Oct-00 10:45	Received: ()9-Oct-00	16:45					P-01
Purgeable Hydrocarbons	930	100	mg/kg	2000	0J10002	10-Oct-00	12-Oct-00	EPA 8015/8020	
Benzene	6.7	0.50	ų	n	n	11	п		
Toluene	1.2	0.50	"	"	#	#1	H	н	
Ethylbenzene	22	0.50	н	Ħ		**	н	**	
Xylenes (total)	100	0.50	Ħ	н	*	17	#	ŧı	
Methyl tert-butyl ether	13	5.0	w	н	H	н	u	#1	CC-3
Surrogate: a,a,a-Trifluoroto	oluene	%	40-	140	"	tr	*	н	S-01
B9-6 (W010197-11) Soil	Sampled: 09-Oct-00 11:30	Received: 09	-Oct-00 1	16:45					P-01
Purgeable Hydrocarbons	95	10	mg/kg	200	0J10002	10-Oct-00	11-Oct-00	EPA 8015/8020	
Benzene	0.15	0.050	n	11	41	н	#	Ħ	
Toluene	0.20	0.050	ff	н	•	H	11	н	
Ethylbenzene	1.9	0.050	Ħ	н		TF	"	Ħ	
Xylenes (total)	2.2	0.050	n	н	۳.	н	*	•	CC-3
Methyl tert-butyl ether	ND	0.50	н	#	H	Ħ		H	
Surrogate: a,a,a-Trifluoroto	luene	119 %	40-	140	"	,,	"	W	
B9-11 (W010197-12) Soil	Sampled: 09-Oct-00 11:35	Received: 0	9-Oct-00	16:45					P-01
Purgeable Hydrocarbons	200	20	mg/kg	400	0J11002	11-Oct-00	11-Oct-00	EPA 8015/8020	
Benzene	1.3	0.10		•	**	"	u	#	CC-3
Toluene	0.59	0.10	"	#	н		**	*	CC-3
Ethylbenzene	6.1	0.10	π	11		Ħ	#	n	
Xylenes (total)	9.7	0.10	#	n	•	ч	-		CC-3
Methyl tert-butyl ether	3.4	1.0	п	•	**	**	H	# ^	CC-3
Surrogate: a,a,a-Trifluoroto	luene	170 %	40-	140	*	#	n	"	S-04

Project: Chevron

6747 Sierra Court Suite J Dublin CA, 94568

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B10-W (W010197-13) Water	Sampled: 09-Oct-00 08:30	Receive	d: 09 -O c	t-00 16:45	-				A-01a,P-01
Purgeable Hydrocarbons	3700	200	ug/I	4	0Л11003	11-Oct-00	11-Oct-00	EPA 8015M/8020	
Benzene	8.3	2.0	"	**		и	"	n	
Toluene	4.2	2.0	•	"	я .	н	Ħ	Ħ	
Ethylbenzene	180	2.0	**	n		#	н	u	
Xylenes (total)	63	2.0		n	H	#	*	n	
Methyl tert-butyl ether	46	10		11	n	u	**	**	CC-3
Surrogate: a,a,a-Trifluorotolue	ne	93.3 %	70	130	rr	и	· "	"	
B7-W (W010197-14) Water	Sampled: 09-Oct-00 11:15	Received	: 09 - Oct-	00 16:45					P-01
Purgeable Hydrocarbons	500	50	ug/l	1	0J11003	11-Oct-00	11-Oct-00	EPA 8015M/8020	
Benzene	ND	0.50	н	H.	**	11	π	**	
Toluene	ND	0.50	**	"		11	#	PP .	
Ethylbenzene	16	0.50	•	Ħ	*	77	-	п	
Xylenes (total)	1.7	0.50	**	п	н		*	н	
Methyl tert-butyl ether	230	2.5	**	н	#	#	Ħ	#	CC-3
Surrogate: a,a,a-Trifluorotolue	ne	74.0 %	70-	130	"	п	<i>π</i>	и	
B4-W (W010197-15) Water	Sampled: 09-Oct-00 12:30	Received	: 09-Oct-	00 16:45					
Purgeable Hydrocarbons	ND	50	ug/l	1	0J12002	12-Oct-00	12-Oct-00	EPA 8015M/8020	
Benzene	ND	0.50	Ħ	"	•	**	#	*	
Toluene	ND	0.50	W			Ħ	**	m ,	
Ethylbenzene	ND	0.50	Ħ	"		#	**	н	
Xylenes (total)	ND	0.50	**	н :	**			**	
Methyl tert-butyl ether	66	2.5	11	H	π	**	. "	И	
Surrogate: a,a,a-Trifluorotolue	ne	104 %	70-	130	"	**	"	"	

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B3-W (W010197-16) Water	Sampled: 09-Oct-00 14:30	Received	: 09-Oct	-00 16:45					P-01
Purgeable Hydrocarbons	33000	10000	ug/l	200	0J12003	12-Oct-00	12-Oct-00	EPA 8015M/8020	
Benzene	1200	100	**	n	**		77	n	
Toluene	580	100		Ħ	H	#	**	**	
Ethylbenzene	2000	100	Ħ	н	#	**	₩	P8	
Xylenes (total)	7500	100	Ħ	н	Ħ	Ħ	н	n	
Methyl tert-butyl ether	670	500	"	**	"	"	tt	n	
Surrogate: a,a,a-Trifluorotolu	ene	99.7%	70-	-130	#	"	P	n	

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Diesel Hydrocarbons (C9-C24) by DHS LUFT

Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B4-6 (W010197-05) Soil	Sampled: 09-Oct-00 09:15 I	Received: 09	-Oct-00	16:45					
Diesel Range Hydrocarbons	ND ND	1.0	mg/kg	1	0J13011	13-Oct-00	17-Oct-00	DHS LUFT	
Surrogate: n-Pentacosane		135 %	50-	150	. #	#	"	"	
B4-11 (W010197-06) Soil	Sampled: 09-Oct-00 09:20	Received: 0	9-Oct-00	16:45					
Diesel Range Hydrocarbons	ND	1.0	mg/kg	1	0Л13011	13-Oct-00	14-Oct-00	DHS LUFT	
Surrogate: n-Pentacosane		37.0 %	50-	150	"	"	"	#	D-08
B4-W (W010197-15) Wate	r Sampled: 09-Oct-00 12:3	0 Received	: 09-Oct	-00 16:45					
Diesel Range Hydrocarbo	ns 170	50	ug/l	1	OJ13012	13-Oct-00	15-Oct-00	EPA 8015M	D-12
Surrogate: n-Pentacosane		192 %	50-	150	"	"	"	"	S-04

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Total Metals by EPA 200 Series Methods Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B4-6 (W010197-05) Soil	Sampled: 09-Oct-00 09:15 R	eceived: 09	-Oct-00	16:45				-	
Cadmium	0.69	0.50	mg/kg	1	0J16034	16-Oct-00	17-Oct-00	EPA 6010A	
Chromium	42	0.50	*	*	н	**	**	#	
Lead	10	1.0	•	•	11	*	"		
Nickel	100	1.0	Ħ		#	п	Ħ	*	
Zinc	63	2.0	•	•	#	*	**	-	
B4-1 1 (W010197-06) Soil	Sampled: 09-Oct-00 09:20	Received: 0	9-Oct-00	16:45					
Cadmium	0.57	0.50	mg/kg	1	0J16034	16-Oct-00	17-Oct-00	EPA 6010A	
Chromium	24	0.50			**	n	Ħ	H	
Lead	3.5	1.0		M	н	H	ч	m	
Nickel	29	1.0		п.	*	Ħ	11		
Zinc	50	2.0	*	Ħ	"	1)	41	н	
B4-W (W010197-15) Wat	ter Sampled: 09-Oct-00 12:30	Received	: 09-Oct	-00 16:45					
Cadmium	ND	0.010	mg/l	1	0J13018	13-Oct-00	17-Oct-00	EPA 200.7	
Chromium	0.11	0.010			•		17-Oct-00	*	
Lead	0.027	0.020	•	*	#	H	17-Oct-00	**	
Nickel	0.14	0.010		n	-	"	17-Oct-00	**	•
Zinc	0.25	0.020	•	п		**	17-Oct-00	*	

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Total Metals by EPA 6000/7000 Series Methods Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B6-6 (W010197-01) Soil	Sampled: 05-Oct-00 10:30	Received: 09	-Oct-00	16:45					
Lead	6.5	1.0	mg/kg	i	0J12013	12-Oct-00	12-Oct-00	EPA 6010A	
B6-11 (W010197-02) Soil	Sampled: 05-Oct-00 10:50	Received: 0	9-Oct-00	16:45					
Lead	5.1	1.0	mg/kg	1	0J12013	12-Oct-00	12-Oct-00	EPA 6010A	
B5-6 (W010197-03) Soil	Sampled: 05-Oct-00 13:20	Received: 09	-Oct-00	16:45					
Lead	6.1	1.0	mg/kg	ì	0Л12013	12-Oct-00	12-Oct-00	EPA 6010A	
B5-11 (W010197-04) Soil	Sampled: 05-Oct-00 13:30	Received: 0	9-Oct-00	16:45					
Lead	3.7	1.0	mg/kg	1	0J12013	12-Oct-00	12-Oct-00	EPA 6010A	
B7-6 (W010197-07) Soil	Sampled: 09-Oct-00 10:05	Received: 09	-Oct-00	16:45					
Lead	9.2	1.0	mg/kg	1	0J16034	16-Oct-00	17-Oct-00	EPA 6010A	
B7-11 (W010197-08) Soil	Sampled: 09-Oct-00 10:10	Received: 0	9-Oct-00	16:45					
Lead	5.4	1.0	mg/kg	1	0J16034	16-Oct-00	17-Oct-00	EPA 6010A	
B3-6 (W010197-09) Soil	Sampled: 09-Oct-00 10:40	Received: 09	-Oct-00	16:45					
Lead	4.4	1.0	mg/kg	1	OJ12013	12-Oct-00	12-Oct-00	EPA 6010A	
B3-11 (W010197-10) Soil	Sampled: 09-Oct-00 10:45	Received: 0	9-Oct-00	16:45					
Lead	4.7	1.0	mg/kg	1	0J12013	12-Oct-00	12-Oct-00	EPA 6010A	
B9-6 (W010197-11) Soil	Sampled: 09-Oct-00 11:30	Received: 09	-Oct-00	16:45					
Lead	5.0	1.0	mg/kg	1	OJ12013	12-Oct-00	12-Oct-00	EPA 6010A	

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029

Project Manager: Barbara Sieminski

Reported: 30-Oct-00 07:34

Total Metals by EPA 6000/7000 Series Methods

Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B9-11 (W010197-12) Soil	Sampled: 09-Oct-00 11:35	Received: 0	9-Oct-00	16:45					
Lead	6.9	1.0	mg/kg	1	0J12013	12-Oct-00	12-Oct-00	EPA 6010A	

Project: Chevron

6747 Sierra Court Suite J Dublin CA, 94568 Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Walnut Creek

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B10-W (W010197-13) Water	Sampled: 09-Oct-00 08:30	Receive	d: 09-O	t-00 16:45					
Ethanol	ND	500	ug/l	1	0J11034	12-Oct-00	12-Oct-00	EPA 8260B	
tert-Butyl alcohol	ND	50	**		**	IT	11	**	
Methyl tert-butyl ether	47	2.0	-	•	**	11	u	H	
Di-isopropyl ether	ND	2.0	π-	**	**	#	11	н	
Ethyl tert-butyl ether	ND ·	2.0	*			11	#	п	
tert-Amyl methyl ether	2.4	2.0		**	*	**	n	и	
1,2-Dichloroethane	ND	2.0				11		n	
Ethylene dibromide	ND	2.0	**	**		**	**	P	•
Surrogate: Dibromofluorometh	ane	102 %	50-	150	Ħ	и	*	#	
Surrogate: 1,2-Dichloroethane-		94.0 %		150	"	n	"	"	
B7-W (W010197-14) Water	Sampled: 09-Oct-00 11:15	Received	: 09-Oct	-00 16:45					
Ethanol	ND	500	ug/l	1	0J11034	12-Oct-00	12-Oct-00	EPA 8260B	
tert-Butyl alcohol	ND	50	Ħ		H	-	п	Ħ	
Methyl tert-butyl ether	360	10		5	•	*	14-Oct-00	н	A-03
Di-isopropyl ether	ND	2.0		1		•	12-Oct-00		
Ethyl tert-butyl ether	ND	2.0	•		n	n	н	Ħ	
tert-Amyl methyl ether	4.4	2.0	-	. •	n		п	**	
1,2-Dichloroethane	ND	2.0	**			*	*	**	
Ethylene dibromide	ND	2.0	•	•	н	**		11	
Surrogate: Dibromofluorometh	ane	102 %	50-	-150	"	. "	"	"	<u>-</u>
Surrogate: 1,2-Dichloroethane-	d4	94.0 %	50-	150	#	"	*	"	
B4-W (W010197-15) Water	Sampled: 09-Oct-00 12:30	Received	l: 09- Oct	-00 16:45				*	
Ethanol	ND	500	ug/l	1	0J11034	12-Oct-00	12-Oct-00	EPA 8260B	
tert-Butyl alcohol	ND	50	11	11	H*	W	*	91	
Methyl tert-butyl ether	71	2.0	"	u	n	•	н	Ħ	
Di-isopropyl ether	ND	2.0	#	111	n	**	"	11	
Ethyl tert-butyl ether	ND	2.0	44		н	77	u	н	
tert-Amyl methyl ether	ND	2.0	. н	ij	17	#	n	#1	
1,2-Dichloroethane	ND	2.0	11	n	"	**		. 44	
Ethylene dibromide	ND	2.0	11	н	tr .	**	*	**	
Surrogate: Dibromofluorometh	ane	102 %	50-	-150	"	"		"	
Surrogate: 1,2-Dichloroethane-	-d4	94.0 %	50	-150	"	"	"	"	

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Volatile Organic Compounds by EPA Method 8260B

Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B3-W (W010197-16) Water	Sampled: 09-Oct-00 14:30	Received	: 09-Oct	-00 16:45					
Ethanol	ND	2500	ug/l	5	0J11034	12-Oct-00	12-Oct-00	EPA 8260B	
tert-Butyl alcohol	ND	250	,	н	*	**	11	**	
Methyl tert-butyl ether	340	10	11	41		н	**	**	
Di-isopropyl ether	ND	110	"	55	ш		**	e	
Ethyl tert-butyl ether	ND	10		5	**	77	11	#	
tert-Amyl methyl ether	ND	10	-	**	-	#	11	•	
1,2-Dichloroethane	ND	10	*	"	n	Ħ	Ħ	Ĥ	
Ethylene dibromide	ND	10	-	**	**	H	H	n	
Surrogate: Dibromofluoromet	hane	102 %	50-	150	"	tr	и	"	
Surrogate: 1,2-Dichloroethan		92.0 %	50-	150	H	"	n	н	

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Volatile Organic Compounds by EPA Method 8010B Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B4-6 (W010197-05) Soil Sa	mpled: 09-Oct-00 09:15	Received: 09	-Oct-00 1	16:45					
Chloromethane	ND	0.050	mg/kg	100	0J12015	12-Oct-00	12-Oct-00	EPA 8010B	
Vinyl chloride	ND	0.050	ħ	11	**	•	"	" ,	
Bromomethane	ND	0.050	н	"	н		"	**	
Chloroethane	ND	0.050	u	H		н	"	и .	
Trichlorofluoromethane	ND	0.025	Ħ	H	H	**	**	•	
1,1-Dichloroethene	ND	0.025	п	Ħ	H	н	•	*	
Methylene chloride	ND	0.25	п	11	tr	н	#	**	
trans-1,2-Dichloroethene	ND	0.025	N	n	"	н	"		
1,1-Dichloroethane	ND	0.025	n	Ħ	Ħ	11	Ħ	"	
cis-1,2-Dichloroethene	ND	0.025	Н	и	Ħ	n	Ħ	"	
Chloroform	ND	0.025	11	11	Ħ	**	"	#	
1,1,1-Trichloroethane	ND	0.025	Ħ	н	п	**	*	#1	
Carbon tetrachloride	ND	0.025	n	Ħ	Ħ	Ħ	"	44	
1,2-Dichloroethane	ND	0.025	*	11	Ħ	**	Ħ	Ħ,	*
Trichloroethene	ND	0.025	*	н	Ħ	**	Ħ	Ħ	
1,2-Dichloropropane	ND	0.025	,#	Ħ		₩	Ħ		
Bromodichloromethane	ND	0.025	*	**		**	#	**	
cis-1,3-Dichloropropene	ND	0.025	**	**	Ħ		Ħ	•	
trans-1,3-Dichloropropene	ND	0.025	n	Ħ	н	#	11	**	
1,1,2-Trichloroethane	ND	0.025	"	#	Ħ	*	n	•	
Tetrachloroethene	ND	0.025		**	*	#	Ħ	-	
Dibromochloromethane	ND	0.025	n	H	Ħ	#	Ħ	#	
1,2-Dibromoethane	ND	0.025	*	n	**	**	Ħ		
Chlorobenzene	ND	0.025	-	,	n	**	#	₩.	
Bromoform	ND	0.025	**	н	н	**	n	n	
1,1,2,2-Tetrachloroethane	ND	0.025	**		**		Ħ	-	
1,3-Dichlorobenzene	ND	0.025	•	*	Ħ	**	**	**	
1,4-Dichlorobenzene	ND	0.025	**	н	n	Ħ	11	π	
1,2-Dichlorobenzene	ND	0.025	₩	17	n	**	11	#	
Surrogate: Dibromodifluoron	sethane	172 %	50-	150	rr	"	п	"	S-03
Surrogate: 1-Chloro-2-fluoro	benzene	112 %	50-	150	"	,,	#	"	
Surrogate: 4-Bromofluoroben	zene	99.0 %	50-	150	77	#	"	"	

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029 · Project Manager: Barbara Sieminski

Reported: 30-Oct-00 07:34

Volatile Organic Compounds by EPA Method 8010B Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B4-11 (W010197-06) Soil	Sampled: 09-Oct-00 09:20	Received: 0	9-Oct-00	16:45			<u> </u>		
Chloromethane	ND	0.050	mg/kg	100	0J12015	12-Oct-00	12-Oct-00	EPA 8010B	
Vinyl chloride	ND	0.050	H	**	**	**	"	"	
Bromomethane	ND	0.050	Ħ	Ħ	4	*	H	н	
Chloroethane	ND	0.050	n	11	77	*	Ħ	#	
Trichlorofluoromethane	ND	0.025	,	#	**	· w	*	11	
1,1-Dichloroethene	ND	0.025	*	n	"	**	tr	11	
Methylene chloride	ND	0.25		"	11	Ħ	Ħ	11	
trans-1,2-Dichloroethene	ND	0.025	**	n	*	**	"	Ħ	
1,1-Dichloroethane	ND	0.025	н	n	**	**	H	14	
cis-1,2-Dichloroethene	ND	0.025	*	н	Ħ	**	H	н	
Chloroform	ND	0.025	**		"	**	"	Ħ	
1,1,1-Trichloroethane	ND	0.025	•	п	**	*	n	11	
Carbon tetrachloride	ND	0.025	•	Ħ	н .	**	н	#	
1,2-Dichloroethane	ND	0.025	•		"	*	H	н	
Trichloroethene	ND	0.025	*	**	#1	•	n	#	
1,2-Dichloropropane	ND	0.025	*		*	#	H	n	
Bromodichloromethane	ND	0.025	#		*	*	n	n	
cis-1,3-Dichloropropene	ND	0.025	Ħ	**	#	*		Ħ	
trans-1,3-Dichloropropene	ND	0.025	Ħ	#	n	**	u	H	
1,1,2-Trichloroethane	ND	0.025	Ħ	**	**	*	н		
Tetrachloroethene	ND	0.025	n	#1	"	Ħ		14	
Dibromochloromethane	ND	0.025	H	н	н		*	н	
1,2-Dibromoethane	ND	0.025	•	#		Ħ		H	
Chlorobenzene	ND	0.025		**			•	u ·	
Bromoform	ND	0.025		#			*	ŧŧ	
1,1,2,2-Tetrachloroethane	ND	0.025	*		**	н	77	Ħ	
1,3-Dichlorobenzene	ND	0.025	-		**	m	**	**	
1,4-Dichlorobenzene	ND	0.025	**		77	Ħ		•	
1,2-Dichlorobenzene	ND	0.025	n	•	*	n	#		
Surrogate: Dibromodifluoro	omethane	95.0 %	50	-150	11	**	n	н	
Surrogate: 1-Chloro-2-fluor	robenzene	76.0 %	50	-150	"	"	H	*	
Surrogate: 4-Bromofluorob	enzene	76.0 %	50	-150	"	"	"	"	

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Volatile Organic Compounds by EPA Method 8010B Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B4-W (W010197-15) Water S	ampled: 09-Oct-00 12:30	Received	: 09-O ct	-00 16:45			·		
Chloromethane	ND	2.0	ug/l	1	0J12014	11-Oct-00	12-Oct-00	EPA 8010B	
Vinyl chloride	ND	1.0	**	**	н	н	11	*	
Bromomethane	ND	1.0	н	**	Ħ	Iţ	Ħ	•	
Chloroethane	ND	1.0	11	**	II .	If	Н	*	
Trichlorofluoromethane	ND	0.50	ч	**	Ħ	11	11	•	
Freon 113	ND	1.0	H	"	"	11	#	•	
1,1-Dichloroethene	ND	1.0	Ħ	**	n	H	н	•	
Methylene chloride	ND	10	н	**	n	n	Ħ	11	
trans-1,2-Dichloroethene	ND	1.0	H	. "	*	H	H	*	
1,1-Dichloroethane	ND	1.0	n	, н	n	п	Н	#	
cis-1,2-Dichloroethene	ND	1.0	"	11	H	rt	Ħ	**	
Chloroform	ND	1.0	•	#	H	п	н	**	
1,1,1-Trichloroethane	ND	1.0		n	н	Ħ	Ħ	•	
Carbon tetrachloride	ND	1.0	**	*	H	H	Ħ	# .	
1,2-Dichloroethane	ND	2.0		H	*	n	#	#	
Trichloroethene	ND	1.0	•	H		n	#	•	
1,2-Dichloropropane	ND	1.0	**		•	**	n	н ,	•
Bromodichloromethane	ND	1.0	н	**	**	H	n	**	
cis-1,3-Dichloropropene	ND	1.0	#	•	π	11	"	**	
trans-1,3-Dichloropropene	ND	0.50	**	•	п	H	11	Ħ	
1,1,2-Trichloroethane	ND	0.50	n	**	Ħ	Ħ		11	
Tetrachloroethene	4.3	1.0	p	Ħ		**	11	11	
Dibromochloromethane	ND	0.50	**	Ħ	Ħ	*	**	Ħ,	
1,2-Dibromoethane	ND	1.0	Ħ	Ħ	m	**	•	#1	
Chlorobenzene	ND	1.0	Ħ	#	m	#	•	Ħ	
Bromoform	ND	0.50	-	H	Ħ	#	#	11	
1,2,3-Trichloropropane	ND	0.50	•	Ħ	"	#	47	11	
1,1,2,2-Tetrachloroethane	ND	0.50	*			*	n	11	
1,3-Dichlorobenzene	ND	0.50	#1	. "		#	н	i.	
1,4-Dichlorobenzene	ND	1.0	11	"	Ħ	**	**		
1,2-Dichlorobenzene	ND	2.0	i ii	*	*	**	#	H	
Surrogate: Dibromodifluorometi		94.0 %)-150	"	,,	"	"	
Surrogate: I-Chloro-2-fluorober		70.0 %		-150	"	"	11	*	
Surrogate: 4-Bromofluorobenzei	ne	74.0 %	50	-150	#	*	n	"	

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Semivolatile Organic Compounds by EPA Method 8270B Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
<u> </u>	Sampled: 09-Oct-00 09:15		-Oct-00 1	16:45	_			· 	
Acenaphthene	ND	0.10	mg/kg	1	0Л13014	13-Oct-00	18-Oct-00	EPA 8270B	
Acenaphthylene	ND ND	0.10	ii meare	**	#	"	"	н	
Anthracene	ND ND	0.10	**	**	н	•	•	"	
Aniline	ND	0.10		n	н	u	н	H	
Benzoic acid	ND ND	0.50	•	**		**			
Benzo (a) anthracene	ND	0.10	11	Ħ		•	*	•	•
Benzo (b) fluoranthene	ND	0.10	**		•	Ħ	#	**	
Benzo (k) fluoranthene	ND	0.10	**		*			•	
Benzo (ghi) perylene	ND	0.10	n	**	π		n	m	
Benzo[a]pyrene	ND	0.10	"	•	н	Ħ	**	11	
Benzyl alcohol	ND ND	0.10	n	77	н		9	н	
Bis(2-chloroethoxy)methan		0.10	п	**	**	11	"	**	
Bis(2-chloroethyl)ether	ND	0.10		Ħ	н	Ħ	Ħ	**	
Bis(2-chloroisopropyl)ethe		0.10	•	*	Ħ	Ħ	#	н	
Bis(2-ethylhexyl)phthalate	ND	0.50	-	Ħ		т .	•	11	
4-Bromophenyl phenyl eth		0.10	#	**	H	n	H	Ħ	
Butyl benzyl phthalate	ND	0.10		n	H	m		#	
4-Chloroaniline	ND	0.50	#		M			**	
2-Chloronaphthalene	ND	0.10	H	r.	**	"	#	n	
4-Chloro-3-methylphenol	ND	0.10		*	**	н		Ħ	
2-Chlorophenol	ND	0.10	*	-	**	. #	*	"	
4-Chlorophenyl phenyl eth		0.10	#	н	н	n	•	#	
Chrysene	ND	0.10	**	**	н	н	•	P,	
Dibenz (a,h) anthracene	ND	0.10	*	#	#	77	н	**	
Dibenzofuran	ND	0.10	#		Ħ	n	"	. •	
Di-n-butyl phthalate	ND	0.50	**	n		н	Ħ	Ħ	
1,2-Dichlorobenzene	ND	0.10	*		**	Ħ	п	Ħ	
1,3-Dichlorobenzene	ND	0.10	10			n	#	н	
1,4-Dichlorobenzene	ND	0.10	*	я	77	H	n	н -	
3,3'-Dichlorobenzidine	ND	0.50	**	"				H	
2,4-Dichlorophenol	ND	0.10	н	11	**	**	"	н	
Diethyl phthalate	ND ND	0.10	н	**	Ħ	11		Ħ	
2,4-Dimethylphenol	ND	0.10	н	,,	Ħ	#	**	IF	
Dimethyl phthalate	ND	0.10	H	н	"	11	Ħ	**	
4,6-Dinitro-2-methylpheno		0.50	н			11	11	**	
2,4-Dinitrophenol	ND	0.50		#		11	#1	**	
2,4-Dinitrotoluene	ND	0.10		•	**	н	Ħ	**	
2,6-Dinitrotoluene	ND	0.10	ш	Ħ	н	n	н	н '	

Sequoia Analytical - Walnut Creek

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Semivolatile Organic Compounds by EPA Method 8270B Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B4-6 (W010197-05) Soil	Sampled: 09-Oct-00 09:15	Received: 09	-Oct-00 1	16:45					
Di-n-octyl phthalate	ND	0.10	mg/kg	1	0Ј13014	13-Oct-00	18-Oct-00	EPA 8270B	
Fluoranthene	ND	0.10	"	**	н .	**	"	#	
Fluorene	ND	0.10	*	11	rr .	**	*	₩	
Hexachlorobenzene	ND	0.10	Ħ	77	н	. #	н	#	
Hexachlorobutadiene	ND	0.10	a	#	н	π-	**	•	
Hexachlorocyclopentadiene		0.10	₩	**	#	**	•	*	
Hexachloroethane	ND	0.10	*	н	н	ч	*	**	
Indeno (1,2,3-cd) pyrene	ND	0.10	•	**	11				
Isophorone	ND	0.10	*	**	**	11	n	•	•
2-Methylnaphthalene	ND	0.10	*	"		"		н	
2-Methylphenol	ND	0.10	*	**	11	II	II .	II.	
4-Methylphenol	ND	0.10	*		11	*	"	•	
Naphthalene	ND	0.10	**	**	**	"	н		
2-Nitroaniline	ND	0.50	*	¥	"	Ħ	"	II.	
3-Nitroaniline	ND	0.50		n	N .	н .	•	*	
4-Nitroaniline	ND	0.50	Ħ	**	н	Ħ	"	n	
Nitrobenzene	ND	0.10	-	H	н	Ħ	"	*	
2-Nitrophenol	ND	0.10	#	Ħ	**	"	*	"	
N-Nitrosodimethylamine	ND	0.10	Ħ	41	11	н	"	н	
4-Nitrophenol	ND	0.50	n	Ħ	н	Ħ.		н	
N-Nitrosodiphenylamine	ND	0.10	Ħ	**	П	, и	*	π	
N-Nitrosodi-n-propylamine	ND	0.10	Ħ	Ħ	Ħ	Ħ	"	Ħ	
Pentachlorophenol	ND	0.50	Ħ	11	π	Ħ	n	H _.	
Phenanthrene	ND	0.10	R	Ħ	# .	**		*	
Phenol	ND	0.10	Ħ	Ħ	н	n	u	Ħ	
Pyrene	ND	0.10	*	n	. "	n	"	#	
1,2,4-Trichlorobenzene	ND	0.10		H	*	n	Ħ	H .	
2,4,5-Trichlorophenol	ND	0.50		IT	H	r	"	n	
2,4,6-Trichlorophenol	ND	0.10	n	Ħ	"	R	Ħ	Ħ	
Surrogate: 2-Fluorophenol		70.2 %	25-	121	rr r	"	"	. "	
Surrogate: Phenol-d6		66.6 %		-113	"	"	"	rr	
Surrogate: Nitrobenzene-d5	5	76.6 %	23-	120	"	"	"	"	
Surrogate: 2-Fluorobipheny		80.8 %	30-	-115	"	"	"	"	
Surrogate: 2,4,6-Tribromop		80.4 %		-122	"	rr	"	"	
Surrogate: p-Terphenyl-d14		96.4 %	18-	137	"	"	*	#	

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Semivolatile Organic Compounds by EPA Method 8270B Sequoia Analytical - Walnut Creek

	<u> </u>		<u> </u>						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
B4- 11 (W010197-06) Soil	Sampled: 09-Oct-00 09:20	Received: 0	9-Oct-00	16:45					
Acenaphthene	ND	0.10	mg/kg	1	0J13014	13-Oct-00	18-Oct-00	EPA 8270B	
Acenaphthylene	ND	0.10	#	Ħ	#	"	11	11	
Anthracene	ND	0.10	-	TT	"	*	**	н	
Aniline	ND	0.10	**	Ħ	и.	Ħ	11	"	
Benzoic acid	ND	0.50	•	Ħ	41	#	π	**	
Benzo (a) anthracene	ND	0.10	*	#	41	**	"	"	
Benzo (b) fluoranthene	ND	0.10	₩	Ħ	**	H	н	11	
Benzo (k) fluoranthene	ND	0.10	*	11	**	π	**	11	
Benzo (ghi) perylene	ND	0.10		**		4	*	**	
Benzo[a]pyrene	ND	0.10	Ħ	н		π	**	•	
Benzyl alcohol	ND	0.10	п	н	H	u	₩	Ħ	
Bis(2-chloroethoxy)methane	. ND	0.10	**	•	*		**		
Bis(2-chloroethyl)ether	ND	0.10	н.	**	m	tr .	•	H	
Bis(2-chloroisopropyl)ether	ND	0.10	н	H	н		Ħ	н	
Bis(2-ethylhexyl)phthalate	ND	0.50		**					
4-Bromophenyl phenyl ether		0.10		n .	n	H	H	n	
Butyl benzyl phthalate	ND	0.10	H	**	н	n	-	н	
4-Chloroaniline	ND	0.50		**	**	"	#		
2-Chloronaphthalene	ND	0.10		н	н	II.	n	n	
4-Chloro-3-methylphenol	ND	0.10	н	#	n	17	н	Ħ	
2-Chlorophenol	ND	0.10		н	n	tt.		n	
4-Chlorophenyl phenyl ether		0.10		**	11	"	н	**	
Chrysene	ND	0.10	*	#1	h	H	н	ų	
Dibenz (a,h) anthracene	ND	0.10		п	**	n	н	97	
Dibenzofuran	ND	0.10	-	n	**	n	н	π	
Di-n-butyl phthalate	ND	0.50	#	н		Ħ	"	н	
1,2-Dichlorobenzene	ND	0.10	-	u	n	Ħ	Ħ	п	
1,3-Dichlorobenzene	ND	0.10	**	н	n	W ·	H	11	
1,4-Dichlorobenzene	ND	0.10	u	**	n	Ħ	Ħ	Ħ	
3,3'-Dichlorobenzidine	ND	0.50		**	H	Ħ	"	Ħ	
2,4-Dichlorophenol	ND	0.10	#	"	H	n	n	- 11	
Diethyl phthalate	ND	0.10	,,	u	n	"	H	**	
2,4-Dimethylphenol	ND	0.10	11	"	11	n	11	. 11	
Dimethyl phthalate	ND ND	0.10		**		n	n	11	•
4,6-Dinitro-2-methylphenol	ND ND	0.10	п	Ħ	11	rr	rr .	Ħ	
2,4-Dinitrophenol	ND ND	0.50		 H	" n	n	n	. "	
2,4-Dinitrotoluene	ND ND	0.30		 H	**		n	"	
2,6-Dinitrotoluene				 H	" H	n	Ħ	#	
2,0-1/minominene	ND	0.10		••	••			***	

Sequoia Analytical - Walnut Creek

Project: Chevron

6747 Sierra Court Suite J Dublin CA, 94568 Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Semivolatile Organic Compounds by EPA Method 8270B Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B4-11 (W010197-06) Soil	Sampled: 09-Oct-00 09:20	Received: 0	9-Oct-00	16:45					
Di-n-octyl phthalate	ND	0.10	mg/kg	1	0Л13014	13-Oct-00	18-Oct-00	EPA 8270B	
Fluoranthene	ND	0.10	π	11	**		H	n	
Fluorene	ND	0.10	*	**	•	"	*	H	
Hexachlorobenzene	ND	0.10	п	11	11	n	н	11	
Hexachlorobutadiene	ND	0.10	•	H	н	11	Ħ	11	
Hexachlorocyclopentadiene	ND	0.10	**	#	"	**	"	**	
Hexachloroethane	ND	0.10	Ħ	41	н	11	ħ	11	
Indeno (1,2,3-cd) pyrene	ND	0.10	**	n	**	н	Ħ	н	
Isophorone	ND	0.10	•	**	**	"	Ħ	w	
2-Methylnaphthalene	ND	0.10		u	77	#	*	#	
2-Methylphenol	ND	0.10	*	н	*	u	n	H	
4-Methylphenol	ND	0.10	*	**	7	**	*	Ħ	
Naphthalene	ND	0.10	**	*	**	#		n	
2-Nitroaniline	ND	0.50		w	**	н	*	н	
3-Nitroaniline	ND	0.50	•	**	*	**		•	
4-Nitroaniline	ND	0.50		**		•		*	
Nitrobenzene	ND	0.10		# ,	. #	•		π	
2-Nitrophenol	ND	0.10		**	-	-		Ħ	
N-Nitrosodimethylamine	ND	0.10		**	**	#	-	н	
4-Nitrophenol	ND	0.50	*	Ħ		*		Ħ	
N-Nitrosodiphenylamine	ND	0.10	#	**	77	**	n	Ħ	
N-Nitrosodi-n-propylamine	ND	0.10	-	**	**	#		n	
Pentachlorophenol	ND	0.50	#	Ħ	**	Ħ	#	H	
Phenanthrene	ND	0.10	. #	#	**	**		H	
Phenol Phenol	ND	0.10	#	н	**	**	•	Ħ	
Ругепе	ND	0.10	"	11	**	Ħ	M	rt	
1,2,4-Trichlorobenzene	ND	0.10	11	11	"	11	₩	H	
2,4,5-Trichlorophenol	ND	0.50	"	**	47	n	**	n	
2,4,6-Trichlorophenol	ND	0.10	11	#	•	#	₩.	Ħ	
Surrogate: 2-Fluorophenol		73.8 %	25-1	21	"	"	"	. п	
Surrogate: Phenol-d6		71.2%	24-1		#	,,	"	n	
Surrogate: Nitrobenzene-d5		81.4%	23-1		"	"	"	H	
Surrogate: 2-Fluorobipheny		85.0 %	30-1		"	,,	#	"	
Surrogate: 2,4,6-Tribromop		81.6%	19-1		"	"	*	н	
Surrogate: p-Terphenyl-d14		89.5 %	18-1		"	#	"	#	

Sequoia Analytical - Walnut Creek

Dublin CA, 94568

Project: Chevron

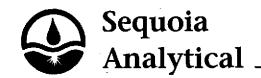
Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Semivolatile Organic Compounds by EPA Method 8270B Sequoia Analytical - Walnut Creek

		Reporting	¥ f *4 .	D!I4!-	D-4-L	D	Analamad	Method	Notes
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	MEGIOG	Ivotes
B4-W (W010197-15) Water	Sampled: 09-Oct-00 12:30	Received	: 09-Oct	-00 16:45					
Acenaphthene	ND	5.0	ug/l	1	0J12017	12-Oct-00	18-Oct-00	EPA 8270B	
Acenaphthylene	ND	5.0	**	#	-	tt	н	**	
Aniline	ND	5.0	**	н	n	#	Ħ	π	
Anthracene	ND	5.0	*	11	**	"	н	Ħ	
Benzoic acid	ND	10	**	**	**	"	Ħ	17	
Benzo (a) anthracene	ND ·	5.0	#	n	11	#	н	•	
Benzo (b) fluoranthene	ND	5.0	**	Ħ	#1	**	Ħ	**	
Benzo (k) fluoranthene	ND	5.0	**	n		**	ht	**	
Benzo (ghi) perylene	ND	5.0	,,	н	Ħ	Ħ	Ħ	77	
Benzo[a]pyrene	ND	5.0	#	"	н	н	n	**	
Benzyl alcohol	ND	5.0	. "	H	41	"	Ħ	**	
Bis(2-chloroethoxy)methane	ND	5.0	Ħ	н	**	н	"	**	
Bis(2-chloroethyl)ether	ND	5.0	Ħ	it	# .	e	ĸ	п	
Bis(2-chloroisopropyl)ether	ND	5.0	*	H	**	•	Ħ	11	•
Bis(2-ethylhexyl)phthalate	ND	10	Ħ		**	٠.	W.	**	
4-Bromophenyl phenyl ether	, ND	5.0	Ħ		н	*	н	н	
Butyl benzyl phthalate	ND	5.0	•	*	н	•		н	
4-Chloroaniline	ND	10	H	-	#	Ħ	n	**	
2-Chloronaphthalene	ND	5.0	**	**	Ħ	Ħ	U	Ħ	
4-Chloro-3-methylphenol	ND	5.0		**	"	#	"	#	
2-Chlorophenol	ND	5.0	-	Ħ	н	*	*	*1	
4-Chlorophenyl phenyl ether	ND	5.0	#	Ħ	Ħ	#	**	11	
Chrysene	ND	5.0	**	**	*	•	*	π.	
Dibenz (a,h) anthracene	ND	5.0	"	ħ	*	. "	-	**	
Dibenzofuran	ND	5.0	Ħ	H	₹	•	#	n	
Di-n-butyl phthalate	ND	10	#	н	77	•	•	n	
1,2-Dichlorobenzene	ND	5.0	п		#		11	••	
1,3-Dichlorobenzene	ND	5.0	н	•	n		Ħ	и	
1,4-Dichlorobenzene	ND	5.0	*	π	**	**	**	n	
3,3'-Dichlorobenzidine	ND	10		*	**	*	91	. "	
2,4-Dichlorophenol	ND	5.0		+	41	-	"	•	
Diethyl phthalate	ND	5.0	u	#	н		Ħ		
2,4-Dimethylphenol	ND	5.0	-	**	#	*	н	71	
Dimethyl phthalate	ND	5.0		u	· H	Ħ	H	н	
4,6-Dinitro-2-methylphenol	ND	10	Ħ	"		7	11	Ħ	
2,4-Dinitrophenol	ND	10	"	11		#		"	
2,4-Dinitrotoluene	ND	5.0	11	н	u	п	н	11	
2,6-Dinitrotoluene	ND	5.0	11	"	*	Ħ	п	11	

Sequoia Analytical - Walnut Creek

Dublin CA, 94568


Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Semivolatile Organic Compounds by EPA Method 8270B Sequoia Analytical - Walnut Creek

Analyte	I Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B4-W (W010197-15) Water	Sampled: 09-Oct-00 12:30	Received	: 09-Oct	-00 16:45					
Di-n-octyl phthalate	ND	5.0	ug/l	1	0J12017	12-Oct-00	18-Oct-00	EPA 8270B	
Fluoranthene	ND	5.0	H	"	**	u	Ħ	Ħ	
Fluorene	ND	5.0	n	н	п	#	"	н	
Hexachlorobenzene	ND	5.0	**		**	H	"	н	
Hexachlorobutadiene	ND	5.0		"	**	u	н	Ħ	
Hexachlorocyclopentadiene	ND	10	**	"	**	"	н	**	
Hexachloroethane	ND	5.0	m	11	"	U	н	m	
Indeno (1,2,3-cd) pyrene	ND	5.0	**	Ħ	Ħ	•	н	н ,	
Isophorone	ND	5.0		11	"	"	"	ft.	
2-Methylnaphthalene	ND	5.0	#	н		"	н	н	
2-Methylphenol	ND	5.0	•	m	"	H	Ħ	Ħ	
4-Methylphenol	ND	5.0	**	H	"	Ħ	*	H	
Naphthalene	ND	5.0	11	н	**	n	н	n ,	
2-Nitroaniline	ND	10	#	н	n		н	H	
3-Nitroaniline	ND	10	n	н	**	n .	•	**	
4-Nitroaniline	ND	10	н	m	H .	Ħ	Ħ	Ħ	
Nitrobenzene	ND	5.0	#	W	π	•	=	H	
2-Nitrophenol	ND	5.0	**	**	H	#	#		
4-Nitrophenol	ND	10		**		Ħ	"	**	•
N-Nitrosodimethylamine	ND	5.0	11			Ħ	н .	н	
N-Nitrosodiphenylamine	ND	5.0		#		. н		11	
N-Nitrosodi-n-propylamine	ND	5.0	11	n	ir ·	Ħ		•	
Pentachlorophenol	ND	10		M	H	Ħ	**	₩,	
Phenanthrene	ND	5.0	•		•	*	₩	**	
Phenol	ND	5.0	**	Ħ	H	n	*	**	
Pyrene	ND	5.0	#1	H	11	u	•	#	
1,2,4-Trichlorobenzene	ND	5.0	"	**	#		**	n	
2,4,5-Trichlorophenol	ND	10	"	•		π	#	44	
2,4,6-Trichlorophenol	ND	5.0	Ħ	n	11	*	Ħ	н	
Surrogate: 2-Fluorophenol	,	46.5 %	21-	110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	#	"	. "	
Surrogate: Phenol-d6	•	31.1 %	10-	-110	et	ü	H	n	
Surrogate: Nitrobenzene-d5		75.9 %	35	-114	H	"	*	rr	
Surrogate: 2-Fluorobiphenyl		78.7%		-116	rr	*	` #	*	
Surrogate: 2,4,6-Tribromophen	iol	79.3 %		·123	~	#	u	"	
Surrogate: p-Terphenyl-d14		86.4 %		-141	*	*	"	n	

Sequoia Analytical - Walnut Creek

Dublin CA, 94568

TRPH

Project: Chevron

Project Number: Chevron # 9-2029

Reported: 30-Oct-00 07:34

SM 5520B/F

18-Oct-00

Project Manager: Barbara Sieminski

ND

Conventional Chemistry Parameters by APHA/EPA Methods Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B4-6 (W010197-05) Soil	Sampled: 09-Oct-00 09:15	Received: 09	-Oct-00	16:45					
TRPH	ND	50	mg/kg	1	0J18014	18-Oct-00	19-Oct-00	SM 5520E/F	
B4-11 (W010197-06) Soil	Sampled: 09-Oct-00 09:20	Received: 0	9-Oct-00	16:45					
TRPH	ND	50	mg/kg	1	OJ18014	18-Oct-00	19-Oct-00	SM 5520E/F	
B4-W (W010197-15) Wa	ter Sampled: 09-Oct-00 12:	30 Received	l: 09-O ct	-00 16:45					

mg/l

0J17006

17-Oct-00

5.0

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J10002 - EPA 5030B [MeOH]										
Blank (0J10002-BLK1)				Prepared	& Analyz	ed: 10-Oc	t-00			
Purgeable Hydrocarbons	ND	1.0	mg/kg							
Benzene	ND	0.0050	*							
Toluene	ND	0.0050	*	÷						
Ethylbenzene	ND	0.0050	•							
Xylenes (total)	ND	0.0050	77							
Methyl tert-butyl ether	ND	0.050	н							
Surrogate: a, a, a-Trifluorotoluene	0.654		"	0.600		109	40-140			
LCS (0J10002-BS1)				Prepared:	10-Oct-00) Analyze	d: 11-Oct-	-00		
Benzene	0.612	0.0050	mg/kg	0.800		76.5	50-150			
Toluene	0.650	0.0050	•	0.800		81.2	50-150			
Ethylbenzene	0.696	0.0050	#	0.800		87.0	50-150			
Xylenes (total)	2.04	0.0050	Ħ	2.40		85.0	50-150			
Surrogate: a,a,a-Trifluorotoluene	0.688			0.600		115	40-140	· · · ·		
Matrix Spike (0J10002-MS1)	S	ource: W0097	/35-14	Prepared:	10-Oct-00) Analyze	d: 11-Oct-	-00		
Benzene	0.656	0.0050	mg/kg	0,800	ND	82.0	50-150			
Toluene	0.714	0.0050	*	0.800	ND	89.2	50-150			•
Ethylbenzene	0.774	0.0050	н	0.800	ND	96.7	50-150			
Xylenes (total)	2.33	0.0050	*	2.40	ND	97.1	50-150			
Surrogate: a, a, a-Trifluorotoluene	0.672		н	0.600		112	40-140			
Matrix Spike Dup (0J10002-MSD1)	S	ource: W00 97	735-14	Prepared	: 10-Oct-0	0 Analyze	d: 11-Oct-	-00		
Benzene	0.638	0.0050	mg/kg	0.800	ND	79.8	50-150	2.78	20	
Toluene	0,698	0.0050	#	0.800	ND	87.3	50-150	2.27	20	
Ethylbenzene	0.760	0.0050	**	0.800	ND	95.0	50-150	1.83	20	
Xylenes (total)	2.25	0.0050	н	2.40	ND	93.7	50-150	3.49	20	
Surrogate: a,a,a-Trifluorotoluene	0.664	· · · · · · · · · · · · · · · · · · ·		0.600		111	40-140	,		

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-2029

Project Manager: Barbara Sieminski

Reported: 30-Oct-00 07:34

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J11002 - EPA 5030B [MeOH]										<u>.</u>
Blank (0J11002-BLK1)				Prepared	& Analyz	ed: 11-Oct	t-00			
Purgeable Hydrocarbons	ND	1.0	mg/kg							
Benzene	ND	0.0050	n							
Toluene	ND	0.0050	**							,
Ethylbenzene	ND	0.0050	"							
Xylenes (total)	ND	0.0050	m							
Methyl text-butyl ether	ND	0.050								
Surrogate: a,a,a-Trifluorotoluene	0.634		B	0.600		106	40-140			
LCS (0J11002-BS1)				Prepared	& Analyz	ed: 11-0c	t-00			
Benzene	0.614	0.0050	mg/kg	0.800		76.8	50-150			
Toluene	0.663	0.0050	Ħ	0.800		82.9	50-150			
Ethylbenzene	0.716	0.0050	н .	0.800		89.5	50-150			
Xylenes (total)	2.11	0.0050		2.40		87.9	50-150			
Surrogate: a, a, a-Trifluorotoluene	0.661			0.600		110	40-140			
Matrix Spike (0J11002-MS1)	S	ource: W0101	20-02RE	1Prepared	& Analyz	ed: 11-Oc	t-00			
Вергено	0.615	0.0050	mg/kg	0.800	ND	76.9	50-150			
Toluene	0.665	0.0050	*	0.800	ND	83.1	50-150			
Ethylbenzene	0.712	0.0050		0.800	ND	89.0	50-150			4
Xylenes (total)	2.14	0.0050	•	2.40	ND	89.2	50-150			
Surrogate: a, a, a-Trifluorotoluene	0.640			0.600		107	40-140			·
Matrix Spike Dup (0J11002-MSD1)	S	ource: W0101	20-02RE	1 Prepared	& Analyz	zed: 11-00	:t-00			
Benzene	0.583	0.0050	mg/kg	0.800	ND	72.9	50-150	5.34	20	
Toluene	0.636	0.0050	*	0.800	ND	79.5	50-150	4.46	20	
Ethylbenzene	0.683	0.0050	#	0.800	ND	85.4	50-150	4.16	20	
Xylenes (total)	2.05	0.0050	Ħ	2.40	ND	85.4	50-150	4.30	20	
Surrogate: a, a, a-Trifluorotoluene	0.634		H	0.600		106	40-140			

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J11003 - EPA 5030B [P/T]					-					
Blank (0J11003-BLK1)				Prepared	& Analyz	ed: 11 - Oc	t-00			
Purgeable Hydrocarbons	ND	50	ug/l				_ •			
Benzene	ND	0.50	Ħ							
Toluene	ND	0.50	a							
Ethylbenzene	ND	0.50	н							
Xylenes (total)	ND	0.50	#							
Methyl tert-butyl ether	ND	2.5	H							
Surrogate: a, a, a-Trifluorotoluene	30.5		**	30.0		102	70-130			
LCS (0J11003-BS1)				Prepared	& Analyz	ed: 11 -O c	t-00			
Benzene	21.3	0.50	ug/l	20.0		106	70-130			
Toluene	21.9	0.50	-	20.0		109	70-130			
Ethylbenzene	22.3	0.50	•	20.0		111	70-130			
Xylenes (total)	63.8	0.50	₩.	60.0		106	70-130			
Surrogate: a,a,a-Trifluorotoluene	29.9		· н	30.0		99.7	70-130			
Matrix Spike (0J11003-MS1)	S	ource: W0100	90-12	Prepared	& Analyz	ed: 11-Oc	t-00			
Benzene	22.0	0.50	ug/l	20.0	ND	110	70-130			
Toluene	22.5	0.50	**	20.0	ND	113	70-130			
Ethylbenzene	22.7	0.50		20.0	ND	114	70-130			
Xylenes (total)	65.0	0.50	**	60.0	ND	108	70-130			
Surrogate: a, a, a-Trifluorotoluene	30.1		и	30.0		100	70-130			
Matrix Spike Dup (0J11003-MSD1)	S	ource: W0100)90-12	Prepared	& Analyz	ed: 11-Oc	t- 0 0			
Benzene	21.8	0.50	ug/l	20.0	ND	109	70-130	0.913	20	
Toluene	22.4	0.50	н	20.0	ND	112	70-130	0.445	20	
Ethylbenzene	22.5	0.50		20.0	ND	113	70-130	0.885	20	
Xylenes (total)	65.1	0.50	•	60.0	ND	108	70-130	0.154	20	
Surrogate: a, a, a-Trifluorotoluene	29.0		*	30.0		96.7	70-130	······································	-	

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
			Omus	2.0101	TODAL	701000				
Batch 0J12002 - EPA 5030B [P/T]						<u> </u>				
Blank (0J12002-BLK1)				Prepared	& Analyz	ed: 12-Oc	t-00			
Purgeable Hydrocarbons	ND	50	ug/l						:	,
Benzene	ND	0.50	11							
Toluene	ND	0.50	п							
Ethylbenzene ·	ND	0.50	Ħ							
Xylenes (total)	ND	0.50	**							
Methyl tert-butyl ether	ND	2.5	**							
Surrogate: a,a,a-Trifluorotoluene	30.1		"	30.0	· · · · · · · · · · · · · · · · · · ·	100	70-130		·	
LCS (0J12002-BS1)		•		Prepared	& Analyzo	ed: 12-Oct	t-00			
Benzene	17.8	0.50	ug/l	20.0		89.0	70-130			
Toluene ·	18.3	0.50	•	20.0		91.5	70-130			
Ethylbenzene	19.2	0.50	•	20.0		96.0	70-130			
Xylenes (total)	57.5	0.50	*	60.0		95.8	70-130			
Surrogate: a,a,a-Trifluorotoluene	28.3		• #	30.0		94.3	70-130			
Matrix Spike (0J12002-MS1)	So	ource: W0100	49-02	Prepared	& Analyzo	ed: 12-Oct	-00			
Benzene	19.4	0.50	ug/l	20.0	ND	97.0	70-130		•	
Toluene	20.1	0.50		20.0	ND	101	70-130			
Ethylbenzene	19.9	0.50	-	20.0	ND	99,5	70-130			
Xylenes (total)	60.1	0.50	*	60.0	ND	100	70-130			
Surrogate: a, a, a-Trifluorotoluene	29.6	el .	#	30.0		98.7	70-130	<u>-</u>		
Matrix Spike Dup (0J12002-MSD1)	Se	ource: W0100	49-02	Prepared	& Analyzo	ed: 12-Oct	-00			
Benzene	19.1	0,50	ug/l	20.0	ND	95.5	70-130	. 1.56	20	
Toluene .	19.5	0.50	#	20.0	ND	97.5	70-130	3.03	20	
Ethylbenzene	20.4	0.50	*	20.0	ND	102	70-130	2.48	20	
Xylenes (total)	61.3	0.50	Ħ	60.0	ND	102	70-130	1.98	20	
Surrogate: a,a,a-Trifluorotoluene	29.2		"	30.0		97.3	70-130			

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J12003 - EPA 5030B [P/T]		·								
Blank (0J12003-BLK1)				Prepared	& Analyz	ed: 12-Oc	t-00			
Purgeable Hydrocarbons	ND	50	ug/l					-		
Benzene	ND	0.50	11							
Toluene	ND	0,50	**							
Ethylbenzene	ND	0.50	**							
Xylenes (total)	ND	0.50	11							
Methyl tert-butyl ether	ND	2.5	**							
Surrogate: a, a, a-Trifluorotoluene	31.2		"	30.0		104	70-130			
LCS (0J12003-BS1)				Prepared	& Analyz	ed: 12-Oct	t-00			
Benzene	18.2	0.50	ug/l	20.0		91.0	70-130			
Toluene	18.7	0.50	"	20.0		93.5	70-130		•	-
Ethylbenzene	19.0	0.50	н .	20.0		95.0	70-130			
Xylenes (total)	54.9	0.50	н	60.0		91.5	70-130			
Surrogate: a, a, a-Trifluorotoluene	27.9		"	30.0		93.0	70-130			
Matrix Spike (0J12003-MS1)	So	urce: W0100	90-10	Prepared	& Analyz	ed: 12-Oct	-0 0			
Benzene	21.1	0,50	ug/l	20.0	ND	106	70-130			
Toluene	21.8	0,50	Ħ	20.0	0.50	106	70-130			
Ethylbenzene *	21.2	0.50	н	20.0	ND	106	70-130			
Kylenes (total)	61.2	0.50	Ħ	60.0	ND	102	70-130			
Surrogate: a, a, a-Trifluorotoluene	28.5		п	30.0		95.0	70-130			
Matrix Spike Dup (0J12003-MSD1)	So	ource: W0100	90-10	Prepared	& Analyz	ed: 12-Oct	-00			
Benzene	20.1	0.50	ug/l	20.0	ND	101	70-130	4.85	20	
Toluene	21.0	0.50	H	20.0	0.50	103	70-130	3.74	20	
Ethylbenzene	21.2	0.50	**	20.0	ND	106	70-130	0	20	
Xylenes (total)	60.8	0.50	"	60.0	ND	101	70-130	0.656	20	
Surrogate: a, a, a-Trifluorotoluene	29.1		. "	30.0		97.0	70-130			

Project: Chevron

Project Number: Chevron # 9-2029

Project Manager: Barbara Sieminski

Reported: 30-Oct-00 07:34

Diesel Hydrocarbons (C9-C24) by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J13011 - EPA 3510B		-						<u></u>		
Blank (0J13011-BLK1)				Prepared	: 13-Oct-0	0 Analyze	d: 17-Oct-	00		
Diesel Range Hydrocarbons	ND	1.0	mg/kg							
Surrogate: n-Pentacosane	1.37		"	1.11		123	50-150	<u></u>		
LCS (0J13011-BS1)				Prepared	: 13-Oct-0	0 Analyze	d: 16-Oct-	00		·
Diesel Range Hydrocarbons	14.0	1.0	mg/kg	15.0		93.3	60-140			
Surrogate: n-Pentacosane	1.98		"	1.11		178	50-150			Q-01
LCS Dup (0J13011-BSD1)				Prepared	: 13-Oct-0	0 Analyze	ed: 16-Oct-	-00		
Diesel Range Hydrocarbons	13.0	1.0	mg/kg	15.0		86.7	60-140	7.41	40	
Surrogate: n-Pentacosane	1.92		т п	1.11		173	50-150		-	Q-01
Batch 0J13012 - EPA 3510B										
Blank (0J13012-BLK1)				Prepared	: 13-Oct-0	0 Analyze	ed: 27-Oct-	-00		
Diesel Range Hydrocarbons	ND	50	ug/i							
Surrogate: n-Pentacosane	22.3		#	33.3	· · · · · · ·	67.0	50-150	-		
LCS (0J13012-BS1)				Prepared	: 13-Oct-0	0 Analyzo	ed: 18-Oct	-00		
Diesel Range Hydrocarbons	404	50	ug/l	500		80.8	60-140			
Surrogate: n-Pentacosane	37.3		"	33.3		112	50-150			
LCS Dup (0J13012-BSD1)				Prepared	l: 13-Oct-0	0 Analyz	ed: 27-Oct	-00		
Diesel Range Hydrocarbons	331	50	ug/l	500		66.2	60-140	19.9	50	
Surrogate: n-Pentacosane	46.0	· · · · · · · · · · · · · · · · · · ·	н	33.3		138	50-150			

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski **Reported:** 30-Oct-00 07:34

Total Metals by EPA 200 Series Methods - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J12013 - EPA 3050B										
Blank (0J12013-BLK1)				Prepared	& Analyz	ed: 12-Oc	t-00			
Cadmium	ND	0.50	mg/kg							
Chromium	ND	0.50	Ħ							
Lead	ND	1.0	**							
Nickel	ND	1.0	H							
Zine	ND	1.0	77							
LCS (0J12013-BS1)				Prepared	& Analyz	ed: 12-Oc				
Cadmium	49.5	0.50	mg/kg	50.0		99.0	80-120			
Chromium	51.0	0.50	11	50.0		102	80-120			
Lead	51.4	1.0	Ħ	50.0		103	80-120			
Nickel	47.5	1.0	Ħ	50.0		95.0	80-120			
Zine	53.9	1.0		50.0		108	80-120			
LCS Dup (0J12013-BSD1)	-			Prepared	& Analyz					
Cadmium	53.6	0.50	mg/kg	50.0		107	80-120	7.95	20	
Chromium	52. 6	0.50	**	50.0		105	80-120	3.09	20	
Lead	51.8	, 1.0	**	50.0		104	80-120	0.775	20	
Nickel	49.7	1.0	H	50.0	•	99.4	80-120	4.53	20	
Zinc	52.3	1.0	п .	50.0		105	80-120	3.01	20	
Matrix Spike (0J12013-MS1)	Sc	urce: W0101	97-01	Prepared	& Analyz		t-00			
Cadmium	50,8	0.50	mg/kg	50.0	ND	101	80-120			
Chromium	93.8	0.50	₩.	50.0	45	97.6	80-120			
Lead	53.8	1.0	**	50.0	6.5	94.6	80-120			
Nickel	126	1.0	n	50.0	72	108	80-120			
Zinc	104	1.0	· H	50.0	54	100	80-120			
Matrix Spike Dup (0J12013-MSD1)	S	ource: W0101	97-01	Prepared	& Analyz		t-00			
Cadmium	48.9	0.50	mg/kg	50.0	ND	97.2	80-120	3.81	20	
Chromium	92.4	0.50	**	50.0	45	94.8	80-120	1.50	20	
Lead	53.4	1.0	"	50.0	6.5	93.8	80-12 0	0.746	20	
Nickel	121	1.0	Ħ	50.0	72	98.0	80-120	4.05	20	
Zinc	104	1.0	н	50.0	54	100	80-120	0	20	

Project: Chevron

Project Number: Chevron # 9-2029

Project Manager: Barbara Sieminski

Reported: 30-Oct-00 07:34

Total Metals by EPA 200 Series Methods - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J13018 - 200.7										
Blank (0J13018-BLK1)				Prepared:	13-Oct-00) Analyze	d: 16-Oct-	00		
Cadmium	ND	0.010	mg/l							
Chromium	ND	0.010	**							
Lead	ND	0.020	Ħ							
Nickel	ND	0.010	. #							
Zinc	ND	0.020	н							
LCS (0J13018-BS1)		•		Prepared	: 13-Oct-0) Analyz e	d: 16-Oct-	00		
Cadmium	1.00	0.010	mg/l	1.00		100	80-120			
Chromium	0.978	0.010	11	1.00		97.8	80-120			
Lead	0.987	0.020	*	. 1.00		98.7	80-120			
Nickel	1.04	0.010	'n	1.00		104	80-120			
Zine	0.940	0.020	**	1.00		94.0	80-120			
LCS Dup (0J13018-BSD1)				Prepared	: 13-Oct-0	0 Analyze	d: 16-Oct-	00		
Cadmium	0.994	0.010	mg/l	1.00		99.4	80-120	0.602	20	
Chromium	0.970	0.010	H	1.00		97.0	80-120	0.821	20	
Lead	0.996	0.020		1.00		99.6	80-120	0.908	20	
Nickel	1.03	0.010	•	1.00		103	80-120	0.966	20	
Zinc	0.917	0.020	#	1.00		91.7	80-120	2.48	20	
Batch 0J16034 - EPA 3050B										
Blank (0J16034-BLK1)	- 			Prepared	: 16-Oct-0	0 Analyze	d: 17-Oct	00		
Cadmium	ND	0.50	mg/kg							
Chromium	ND	0.50	**							
Lead	ND	1.0	#							
Nickel	ND	1.0	**							
Zinc	ND	2.0	н							

Project: Chevron

Project Number: Chevron # 9-2029

Project Manager: Barbara Sieminski

Reported: 30-Oct-00 07:34

Total Metals by EPA 200 Series Methods - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J16034 - EPA 3050B		•		_			<u>.</u>			
LCS (0J16034-BS1)				Prepared	16-Oct-0	O Analyze	d: 17-Oct-	00		
Cadmium	49.8	0.50	mg/kg	50.0		99.6	80-120			
Chromium	52.9	0.50	**	50.0		106	80-120			
Lead	51.9	1.0	Ħ	50.0		104	80-120			
Nickel	51.4	1.0	H	50.0		103	80-120			
Zinc	46.9	2.0	"	50.0		93.8	80-120			
LCS Dup (0J16034-BSD1)				Prepared	: 16-Oct-0	0 Analyze	d: 17-Oct-	00		
Cadmium	50.2	0.50	mg/kg	50.0	····	100	80-120	0.800	20	
Chromium	52.0	0.50	**	50.0		104	80-120	1.72	20	
Lead	50.7	1.0	n	50.0		101	80-120	2.34	20	
Nickel	53.5	1.0	Ħ	50.0		107	80-120	4.00	20	
Zinc	48.3	2.0	#	50.0		96,6	80-120	2.94	20	
Matrix Spike (0J16034-MS1)	Se	ource: W0101	97-05	Prepared	: 16-Oct-0	0 Analyze	d: 17-Oct-	-00		
Cadmium	43.4	0.50	mg/kg	50.0	0.69	85.4	80-120	-		
Chromium	83.5	0.50	*	50.0	42	83.0	80-120			
Lead	50.4	1.0	n	50.0	10	80.8	80-120			
Nickel	131	1.0	H	50.0	100	62.0	80-120			Q-0
Zinc	101	2.0	π	50.0	63	76.0	80-120			Q-0
Matrix Spike Dup (0J16034-MSD1)	S	ource: W0101	197-05	Prepared	: 16-Oct-0	0 Analyze	:d: 17-Oct	-00		
Cadmium	44.9	0.50	mg/kg	50.0	0.69	88.4	80-120	3.40	20	
Chromium	81.9	0.50	Ħ	50.0	42	79.8	80-120	1.93	20	Q-0
Lead	51.1	1.0	**	50.0	10	82.2	80-120	1.38	20	
Nickel	136	1.0	*	50.0	100	72.0	80-120	3.75	20	Q-0
Zinc	95.3	2.0	Ħ	50.0	63	64.6	80-120	5.81	20	Q-0

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported:

30-Oct-00 07:34

Total Metals by EPA 6000/7000 Series Methods - Quality Control Sequoia Analytical - Walnut Creek

	T 1.	Reporting	TT_24	Spike	Source	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	70REC	Limis	KID -	Limit	TAOTES
Batch 0J12013 - EPA 3050B										
Blank (0J12013-BLK1)				Prepared	& Analyz	ed: 12-Oc	t-00	· <u>-</u>		
Lead	ND	1.0	mg/kg							
LCS (0J12013-BS1)				Prepared	& Analyz	ed: 12-Oc	t-00			
Lead .	49.5	1.0	mg/kg	50.0		99.0	80-120			
LCS Dup (0J12013-BSD1)				Prepared	& Analyz	zed: 12-Oc	t-00			
Lead	51.8	1.0	mg/kg	50.0		104	80-120	4.54	20	
Matrix Spike (0J12013-MS1)	·So	urce: W0101	97-01	Prepared	& Analyz	zed: 12-Oc	t-00			
Lead	53.8	1.0	mg/kg	50.0	6.5	94.6	80-120			
Matrix Spike Dup (0J12013-MSD1)	So	urce: W0101	97-01	Prepared	& Analyz	zed: 12-Oc	t-00			
Lead	53.4	1.0	mg/kg	50.0	6.5	93.8	80-120	0.746	20	
Batch 0J16034 - EPA 3050B										
Blank (0J16034-BLK1)				Prepared	: 16-Oct-0	00 Analyze	d: 17-Oct	-00		
Lead	ND	1.0	_mg/kg_							
LCS (0J16034-BS1)			•	Prepared	: 16-Oct-0	00 Analyze	d: 17-Oct	-00		
Lead	51.9	1.0	mg/kg	50.0		104	80-120			
LCS Dup (0J16034-BSD1)				Prepared	: 16-Oct-(0 Analyze	:d: 17-Oct	-00		
Lead	50.7	1.0	mg/kg	50.0		101	80-120	2.34	20	
Matrix Spike (0J16034-MS1)	So	urce: W0101	197-05	Prepared	: 16-Oct-(00 Analyze	d: 17-Oct	-00	. <u>.</u>	_
Lead	50.4	1.0	mg/kg	50.0	10	80.8	80-120			

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Gettler Ryan, Inc. - Dublin

Project: Chevron

6747 Sierra Court Suite J Dublin CA, 94568

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported:

30-Oct-00 07:34

Total Metals by EPA 6000/7000 Series Methods - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J16034 - EPA 3050B						_				
Matrix Spike Dup (0J16034-MSD1)	Sou	rce: W0101	97-05	Prepared:	16-Oct-00) Analyze	:d: 17-Oct-	00		
Lead	51.1	1.0	mg/kg	50.0	10	82.2	80-120	1.38	20	

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J11034 - EPA 5030B [P/T]								_		
Blank (0J11034-BLK1)				Prepared	& Analyz	ed: 11-Oc	t-00			
Ethanol	ND	500	ug/i							
tert-Butyl alcohol	ND	50	10							
Methyl tert-butyl ether	ND	2.0	-							
Di-isopropyl ether	ND	2.0	**							•
Ethyl tert-butyl ether	ND	2.0	#					•		
tert-Amyl methyl ether	ND	2.0	**							
1,2-Dichloroethane	ND	2.0								
Ethylene dibromide	ND	2.0	н							
Surrogate: Dibromofluoromethane	50.0		*	50.0		100	50-150			
Surrogate: 1,2-Dichloroethane-d4	47.0		n	50.0		94.0	50-150			•
Blank (0J11034-BLK2)				Prepared	& Analyz	ed: 12-Oc	t-00			
Ethanol	ND	500	ug/l							
tert-Butyl alcohol	ND	50	×		•					
Methyl tert-butyl ether	ND	2.0	н							
Di-isopropyl ether	ND	2.0								
Ethyl tert-butyl ether	ND	2.0	**							
tert-Amyl methyl ether	ND	2.0								
1,2-Dichloroethane	ND	2.0	**							
Ethylene dibromide	ND	2.0	**					-		
Surrogate: Dibromofluoromethane	50.0		#	50.0		100	50-150		·	
Surrogate: 1,2-Dichloroethane-d4	47.0		•	50.0		94.0	50-150			
LCS (0J11034-BS1)				Prepared	& Analyz	ed: 11-0c	t-00			
Methyl tert-butyl ether	47.3	2.0	ug/l	50.0		94.6	70-130			
Surrogate: Dibromofluoromethane	50,0		"	50.0		100	50-150			
Surrogate: 1,2-Dichloroethane-d4	46.0		"	50.0		92.0	50-150			

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J11034 - EPA 5030B [P/T]				<u></u>						
LCS (0J11034-BS2)				Prepared	& Analyz	ed: 12-Oc	t-00			
Methyl tert-butyl ether	52.4	2.0	ug/l	50.0		105	70-130			
Surrogate: Dibromofluoromethane	50.0			50.0		100	50-150			
Surrogate: 1,2-Dichloroethane-d4	45,0		*	50.0		90.0	50-150			
Matrix Spike (0J11034-MS1)	So	urce: W0096	92-01	Prepared	: 11-Oct-0	0 Analyze	d: 12-Oct-	00		
Methyl tert-butyl ether	52.8	2.0	ug/l	50.0	ND	106	60-150			
Surrogate: Dibromofluoromethane	51.0			50.0		102	50-150			
Surrogate: 1,2-Dichloroethane-d4	46.0		"	50.0		92.0	50-150			
Matrix Spike Dup (0J11034-MSD1)	So	urce: W0096	92-01	Prepared	: 11-Oct-0	0 Analyze	:d: 12-Oct-	00		
Methyl tert-butyl ether	58.4	2.0	ug/l	50.0	ND	117	60-150	10.1	25	
Surrogate: Dibromofluoromethane	53.0		<i>"</i>	50.0		106	50-150	_		
Surrogate: 1,2-Dichloroethane-d4	48.0		#	50.0		96.0	50-150			

Project: Chevron

Project Number: Chevron # 9-2029

Project Manager: Barbara Sieminski

Reported: 30-Oct-00 07:34

Volatile Organic Compounds by EPA Method 8010B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J12014 - EPA 5030B [P/T]							<u>. </u>			
Blank (0J12014-BLK1)				Prepared:	11-Oct-00) Analyze	d: 12-Oct-	00		
Chloromethane	ND	2.0	ug/l							
Vinyl chloride	ND	1.0	#							
Bromomethane	ND	1.0	н							
Chloroethane	ND	1.0	н							
Trichlorofluoromethane	ND	0.50	Ħ							
Freon 113	ND	1.0	n							
1,1-Dichloroethene	ND	1.0	**							
Methylene chloride	ND	- 10	н							
trans-1,2-Dichloroethene	ND	1.0	н					-		
1,1-Dichloroethane	ND	1.0	"							
cis-1,2-Dichloroethene	ND	1.0	*							
Chloroform	ND	1.0								
1,1,1-Trichloroethane	ND	1.0	*							
Carbon tetrachloride	ND	1.0	*		•			-		
1,2-Dichloroethane	ND_	2.0	н							
Trichloroethene	ND	1.0	н							
1,2-Dichloropropane	ND	1.0	**							
Bromodichloromethane	ND	1.0	н							
cis-1,3-Dichloropropene	ND	1.0	Ħ							
trans-1,3-Dichloropropene	ND	0.50							*	
1,1,2-Trichloroethane	ND	0.50	•							
Tetrachloroethene	ND	1.0								
Dibromochloromethane	ND	0.50	*							
1,2-Dibromoethane	ND	1.0	Ħ							
Chlorobenzene	ND	1.0	*							
Bromoform	ND	0.50	#							
1,2,3-Trichloropropane	ND	0.50	Ħ					-		
1,1,2,2-Tetrachloroethane	ND	0.50	н							
1,3-Dichlorobenzene	ND	0.50	**							
1,4-Dichlorobenzene	ND	1.0	•							
1,2-Dichlorobenzene	ND	2.0	11							
Surrogate: Dibromodifluoromethane	10.7		n	10.0		107	50-150			
Surrogate: I-Chloro-2-fluorobenzene	8.50		*	10.0		85.0	50-150			
Surrogate: 4-Bromofluorobenzene	8.30		*	10.0		83.0	50-150			

Sequoia Analytical - Walnut Creek

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029

Project Manager: Barbara Sieminski

Reported: 30-Oct-00 07:34

Volatile Organic Compounds by EPA Method 8010B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J12014 - EPA 5030B [P/T]										
LCS (0J12014-BS1)			•	Prepared:	11-Oct-0	0 Analyze	d: 12-Oct-	00		
1,1-Dichloroethene	24.7	1.0	ug/l	20.0		124	65-135			
Trichloroethene	21.6	1.0		20.0		108	70-130			
Chlorobenzene	22.4	1.0	**	20.0		112	70-130			
Surrogate: Dibromodifluoromethane	11.3		- "	10.0		113	50-150			·
Surrogate: 1-Chloro-2-fluorobenzene	9.90		"	10.0		99.0	50-150			
Surrogate: 4-Bromofluorobenzene	9.60		"	10.0		96.0	50-150			
Matrix Spike (0J12014-MS1)	Sou	rce: W0101	97-15	Prepared	: 11-Oct-0	0 Analyze	d: 12-Oct-	00		
1,1-Dichloroethene	22.1	1.0	ug/l	20.0	ND	111	60-140			
Trichloroethene	20.4	1.0	**	20.0	ND	102	60-140			
Chlorobenzene	21.5	1.0	**	20.0	ND	108	60-140			
Surrogate: Dibromodifluoromethane	9.20		- #	10.0	<u>-</u>	92.0	50-150			
Surrogate: 1-Chloro-2-fluorobenzene	8.30		*	10.0		83.0	50-150			
Surrogate: 4-Bromofluorobenzene	7.90		*	10.0		79.0	50-1 5 0			
Matrix Spike Dup (0J12014-MSD1)	Sou	rce: W0101	97-15	Prepared	: 11-Oct-0	0 Analyze	d: 12-Oct	-00		
1.1-Dichloroethene	25.8	1.0	ug/l	20.0	ND	129	60-140	15.4	25	_
Trichloroethene	22.3	1.0	#	20.0	ND	111	60-140	8.90	25	
Chlorobenzene	24.1	1.0	**	20.0	ND	121	60-140	11.4	25	
Surrogate: Dibromodifluoromethane	9.70			10.0		97.0	50-150			
Surrogate: 1-Chloro-2-fluorobenzene	9.10		*	10.0		91.0	50-150			
Surrogate: 4-Bromofluorobenzene	8.30		rr	10.0		83.0	50-150			
Batch 0J12015 - EPA 5030B [MeOH]			٠							
Blank (0J12015-BLK1)				Prepared	l: 11-Oct-(0 Analyz	ed: 12-Oct	-00		
Chloromethane	ND	0.050	mg/kg							
Vinyl chloride	ND	0.050	*							
Bromomethane	ND	0.050	*					•		
Chloroethane	ND	0.050	"							
Trichlorofluoromethane	ND	0.025	н							
1,1-Dichloroethene	ND	0.025	"							
Methylene chloride	ND	0.25	**							
trans-1,2-Dichloroethene	ND	0.025	77							
1,1-Dichloroethane	ND	0.025	11							

Sequoia Analytical - Walnut Creek

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Volatile Organic Compounds by EPA Method 8010B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J12015 - EPA 5030B [MeOH]										
Blank (0J12015-BLK1)				Prepared:	11-Oct-00) Analyze	d: 12-Oct-	00		
Chloroform	ND	0.025	mg/kg							
1,1,1-Trichloroethane	ND	0.025	"							
Carbon tetrachloride	ND	0.025	77							
1,2-Dichloroethane	ND	0.025	н							
Prichloroethene	ND	0.025	*							
1,2-Dichloropropane	ND	0.025								
Bromodichloromethane	ND	0.025	•				•			
cis-1,3-Dichloropropene	ND	0.025	#							
rans-1,3-Dichloropropene	ND	0.025	Ħ							
1.1.2-Trichloroethane	ND	0.025								
Tetrachloroethene	ND	0.025	-	-						
Dibromochloromethane	ND	0.025	н							
,2-Dibromoethane	ND	0.025	*							
Chlorobenzene	ND	0.025								
Bromoform	ND_	0.025	*							
1,1,2,2-Tetrachloroethane	ND	0.025	н							
1.3-Dichlorobenzene	ND	0.025	H							
1.4-Dichlorobenzene	ND	0.025	н							
1,2-Dichlorobenzene	ND	0.025	-							
Surrogate: Dibromodifluoromethane	0.535			0.500		107	50-150			
Surrogate: Dioromodijtuoromethiine Surrogate: 1-Chloro-2-fluorobenzene	0.425		*	0.500		85.0	50-150			
Surrogate: 4-Bromofluorobenzene	0.415		"	0.500		83.0	50-150			
LCS (0J12015-BS1)				Prepared	l: 11-Oct-0	0 Analyz	ed: 12-Oct	-00		
1,1-Dichloroethene	1.24	0.025	mg/kg	1.00		124	65-135			
1,1-12cmorocutene Trichlorocthene	1.08	0.025	n	1.00		108	70-130			
Chlorobenzene	1.12	0.025	77	1.00		112	70-130			
Surrogate: Dibromodifluoromethane	0.565		H	0.500	 	113	50-150			,
Surrogate: Disromoaytuorometrane Surrogate: 1-Chloro-2-fluorobenzene	0.495		"	0.500		99.0	50-150			
Surrogate: 4-Bromofluorobenzene	0.480		,,	0.500		96.0	50-150			

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Volatile Organic Compounds by EPA Method 8010B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J12015 - EPA 5030B [MeOH]										
Matrix Spike (0J12015-MS1)	So	urce: W0101	9 7-0 6	Prepared:	11-Oct-00) Analyze		00		
1,1-Dichloroethene	1.12	0.025	mg/kg	1.00	ND	112	60-140			
Trichloroethene	0.950	0.025	**	1.00	ND	95.0	60-140			
Chlorobenzene	1.01	0.025	•	1.00	ND	101	60-140			
Surrogate: Dibromodifluoromethane	0.505			0.500		101	50-150			
Surrogate: 1-Chloro-2-fluorobenzene	0.460		*	0.500		92.0	50-150			
Surrogate: 4-Bromofluorobenzene	0.430		н	0.500		86.0	50-150			
Matrix Spike Dup (0J12015-MSD1)	So	ource: W0101	97-06	Prepared:	: 11-Oct-00	0 Analyze	d: 12-Oct-	00		
1,1-Dichloroethene	1.29	0.025	mg/kg	1.00	ND	129	60-140	14.1	25	
Trichloroethene	1.08	0.025	*	1.00	ND	108	60-140	12.8	25	
Chlorobenzene	1.11	0,025		1.00	ND	111	60-140	9.43	25	
Surrogate: Dibromodifluoromethane	0.490		"	0.500		98.0	50-150			
Surrogate: 1-Chloro-2-fluorobenzene	0.435		π	0.500		87.0	50-150			
Surrogate: 4-Bromofluorobenzene	0.395		#	0.500		79.0	50-150			

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029

Project Manager: Barbara Sieminski

Reported: 30-Oct-00 07:34

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J12017 - EPA 3510B										
Blank (0J12017-BLK1)				Prepared:	12-Oct-0) Analyze	d: 17-Oct-	00		
Acenaphthene	ND	5.0	ug/l			·				
Aconaphthylene	ND	5.0	n							
Aniline	ND	5.0	#							
Anthracene	ND	5.0	н							
Benzoic acid	ND	10	#							
Benzo (a) anthracene	ND	5.0	#							
Benzo (b) fluoranthene	ND	5.0	n							
Benzo (k) fluoranthene	ND	5.0	**							
Benzo (ghi) perylene	ND	5.0	Ħ							
Benzo[a]pyrene	ND	5.0	#							
Benzyl alcohol	ND	5.0	н						,	
Bis(2-chloroethoxy)methane	ND	5.0	Ħ							
Bis(2-chloroethyl)ether	ND	5.0	n							
Bis(2-chloroisopropyl)ether	ND	5.0	Ħ							
Bis(2-ethylhexyl)phthalate	70,9	10							·	A-!
4-Bromophenyl phenyl ether	ND	5.0	*							
Butyl benzyl phthalate	ND	5.0	Ħ							
4-Chloroaniline	ND	10	Ħ							
2-Chioronaphthalene	ND	5.0	n							
4-Chloro-3-methylphenol	ND	5.0	•						*	
2-Chlorophenol	ND	5.0	n							
4-Chlorophenyl phenyl ether	ND	5.0	**							
Chrysenc	ND	5.0	Ħ							
Dibenz (a,h) anthracene	ND	5.0								
Dibenzofuran	ND	5.0	•							
Di-n-butyl phthalate	ND	10	#							
1,2-Dichlorobenzene	ND	5.0	*					•		
1,3-Dichlorobenzene	ND	5.0	Ħ							
1,4-Dichlorobenzene	ND	5.0	n							
3,3'-Dichlorobenzidine	ND	10								
2,4-Dichlorophenol	ND	5.0	n		•					
Diethyl phthalate	ND	5.0	н							
2,4-Dimethylphenol	ND	5.0	**							
Dimethyl phthalate	ND	5.0								

Sequoia Analytical - Walnut Creek

Project: Chevron

6747 Sierra Court Suite J Dublin CA, 94568 Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J12017 - EPA 3510B										
Blank (0J12017-BLK1)		•		Prepared:	12-Oct-0) Analyze	d: 17-Oct-	00		
4,6-Dinitro-2-methylphenol	ND	10	ug/l							
2,4-Dinitrophenol	ND	10	"							
2,4-Dinitrotoluene	ND	5.0	u							
,6-Dinitrotoluene	ND	5.0	"							
Di-n-octyl phthalate	ND	5.0	Ħ							
luoranthene	ND	5.0	Ħ							
luorene	ND	5.0	n							
lexachlorobenzene	ND	5.0	Ħ		•					
lexachlorobutadiene	ND	5.0	н							
Iexachlorocyclopentadiene	ND	10								
Iexachloroethane	ND	5.0	•							
ndeno (1,2,3-od) pyrene	ND	5.0	**							
sophorone	ND	5.0	**							
-Methylnaphthalene	ND	5.0	•			•				
-Methylphenol	ND	5.0	н							
-Methylphenol	ND	5.0	н							
Vaphthalene	ND	5.0	**							
-Nitroaniline	ND	10								
-Nitroaniline	ND	10								
l-Nitroaniline	ND	10								
Vitrobenzene	ND	5.0	**							
2-Nitrophenol	ND	5.0	н							
I-Nitrophenol	ND	10	11							
V-Nitrosodimethylamine	ND	5.0	π							
N-Nitrosodiphenylamine	ND	5.0	n							
V-Nitrosodi-n-propylamine	ND	5.0	н							
Pentachlorophenol	ND	10	**							
Phenanthrene	ND	5.0	**							
Phenol	ND	5.0	н							
Pyrene	ND	5.0	н							
,2,4-Trichlorobenzene	ND	5,0	. н							
2,4,5-Trichlorophenol	ND	10	н				4			
2,4,6-Trichlorophenol	ND	5.0	н							
Surrogate: 2-Fluorophenol	68.5			150		45.7	21-110			

Sequoia Analytical - Walnut Creek

Project: Chevron

6747 Sierra Court Suite J Project Number: Chevron # 9-2029
Dublin CA, 94568 Project Manager: Barbara Sieminski

Reported: 30-Oct-00 07:34

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J12017 - EPA 3510B										
Blank (0J12017-BLK1)				Prepared:	12-Oct-00) Analyze	d: 17-Oct-	00		
Surrogate: Phenol-d6	46.1		ug/l	150		30.7	10-110			
Surrogate: Nitrobenzene-d5	77.8		. "	100		77.8	35-114			
Surrogate: 2-Fluorobiphenyl	76.3		H	100		76.3	43-116			
Surrogate: 2,4,6-Tribromophenol	118		n	150		78.7	10-123			
Surrogate: p-Terphenyl-dl4	101		п	100		101	33-141			
LCS (0J12017-BS1)		. 55		Prepared:	12-Oct-00) Analyze	d: 17-Oct-	00		
Acenaphthene	78.5	5.0	u <i>g</i> /l	100		78.5	46-118			
l-Chloro-3-methylphenol	117	- 5.0	Ħ	150		78.0	23-97			
2-Chlorophenol	99. 7	5.0	n	150		66.5	27-123			
,4-Dichlorobenzene	62.3	5.0	n	100		62.3	36-97			
2,4-Dinitrotokuene	83.1	5.0		100		83.1	24-96			
l-Nitrophenol	37.9	10		150		25.3	10-80			
V-Nitrosodi-n-propylamine	82.0	5.0	*	100		82.0	41-116			
entachlorophenol	114	10	π	150		76.0	9-103			
Phenol.	46.5			150		31.0	12-110			
Yrene	70.4	5.0	**	100		70.4	26-127			
,2,4-Trichlorobenzene	69.0	5.0	Ħ	100		69.0	39-98			
Surrogate: 2-Fluorophenol	75.4			150		50.3	21-110			
Surrogate: Phenol-d6	49.5		*	150		33.0	1 0-1 10			
Surrogate: Nitrobenzene-d5	80.2		*	100		80.2	<i>35-114</i>		,	
Surrogate: 2-Fluorobiphenyl	77.3		M	100		77.3	43-116			
Surrogate: 2,4,6-Tribromophenol	121		Ħ	150		80.7	10-123			
Surrogate: p-Terphenyl-dl4	75.7		"	100		75.7	33-141			
LCS Dup (0J12017-BSD1)					12-Oct-0		d: 17-Oct-			
Acenaphthene	, 82.5	5.0	ug/l	100		82.5	46-118	4.97	30	
4-Chloro-3-methylphenol	118	5.0	*	150		78.7	23-97	0.851	30	
2-Chlorophenol	101	5.0	#	150		67.3	27-123	1.30	30	
1,4-Dichlorobenzene	64.4	5.0	n	100		64.4	36-97	3.31	30	
2,4-Dinitrotoluene	83.8	5.0	Ħ	100		83.8	24-96	0.839	30	
1-Nitrophenol	41.0	10	Ħ	150		27.3	10-80	7.86	30	
N-Nitrosodi-n-propylamine	83.6	5.0	#	100		83.6	41-116	1.93	30	
Pentachlorophenol	120	10	*	150		80.0	9-103	5.13	30	
Phenol	47.2	5.0		150		31.5	12-110	1.49	30	
Pyrene	<i>77.</i> 1	5.0		100		77.1	26-127	9.08	30	

Sequoia Analytical - Walnut Creek

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J12017 - EPA 3510B					-					
LCS Dup (0J12017-BSD1)				Prepared:	12-Oct-00) Analyze	d: 17-Oct-	00		
1,2,4-Trichlorobenzene	72.8	5.0	ug/i	100		72.8	39-98	5.36	30	
Surrogate: 2-Fluorophenol	75.7		"	150		50.5	21-110			
Surrogate: Phenol-d6	49.1		#	150		32.7	10-110			
Surrogate: Nitrobenzene-d5	83.0		*	100		83.0	35-114			
Surrogate: 2-Fluorobiphenyl	83.8		н	100		83.8	43-116			
Surrogate: 2,4,6-Tribromophenol	125		"	150		83.3	10-123			
Surrogate: p-Terphenyl-d14	<i>82.5</i>		H	100		<i>82.5</i>	33-141	-		
Batch 0J13014 - EPA 3550A		-								
Blank (0J13014-BLK1)				Prepared:	: 13-Oct-0) Analyze	d: 24-Oct-	00		
Acenaphthene	ND	0.10	mg/kg							
Acenaphthylene	ND	0.10	н							
Anthracene	ND	0.10								
Aniline	ND	0.10	**							
Benzoic acid	ND	0.50	. *							
Benzo (a) anthracene	ND	0.10	T							
Benzo (b) fluoranthene	ND	0.10	n							
Benzo (k) fluoranthene	ND	0.10	**							
Benzo (ghi) perylene	ND	0.10	#							
Senzo[a]pyrene	ND	0.10	#							
Benzył alcohol	ND	0.10							•	
Bis(2-chloroethoxy)methane	ND	0.10	*							•
Bis(2-chloroethyl)ether	ND	0.10								
Bis(2-chloroisopropyl)ether	ND	0.10								
Bis(2-ethylhexyl)phthalate	ND	0.50	*							
4-Bromophenyl phenyl ether	ND	0.10	-							
Butyl benzyl phthalate	ND	0.10	•							
Butyl benzyl pumajate 4-Chloroanifine	ND ND	0.10	**					,		
			п							
2-Chloronaphthalene	ND	0.10	н							
4-Chioro-3-methylphenol	ND	0.10								
2-Chiorophenol	ND	0.10	п					-		
4-Chlorophenyl phenyl ether	ND	0.10	H							
Chrysene	ND	0.10	"							
Dibenz (a,h) anthracene	ND	0,10	*							

Sequoia Analytical - Walnut Creek

Project: Chevron

Project Number: Chevron # 9-2029

Reported: 30-Oct-00 07:34

Dublin CA, 94568

Project Manager: Barbara Sieminski

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J13014 - EPA 3550A							_			
Blank (0J13014-BLK1)				Prepared:	13-Oct-00) Analyze	d: 24-Oct-	00		
Dibenzofuran	ND	0.10	mg/kg	<u>_</u> _						
Di-n-butyl phthalate	ND	0.50	н							
1,2-Dichlorobenzene	· ND	0.10	*							
1,3-Dichlorobenzene	ND	0.10	н							
1,4-Dichlorobenzene	ND	0.10	,							
3,3'-Dichlorobenzidine	ND	0.50	H							
2,4-Dichlorophenol	ND	0.10	H							
Diethyl phthalate	ND	0.10								
2,4-Dimethylphenol	ND	0.10								
Dimethyl phthalate	ND	0.10	-							
4,6-Dinitro-2-methylphenol	ND	0.50	•							
2,4-Dinitrophenol	ND	0.50	₩.							
2,4-Dinitrotoluene	ND	0.10	**							
2,6-Dinitrotoluene	ND	0.10	•			•				
Di-n-octyl phthalate	ND	0.10	n.							
Fluoranthene	ND	0.10	Ħ							
Fluorene	ND	0.10	#							
Hexachlorobenzene	ND	0.10	n							
Hexachlorobutadiene	ND	0.10								
Hexachlorocyclopentadiene	ND	0.10								
Hexachloroethane	ND	0.10								
Îndeno (1,2,3-cd) pyrene	ND	0.10								
Isophorone	ND	0.10	*							
2-Methylnaphthalene	ND	0.10	Ħ							
2-Methylphenol	ND	0.10	n							
4-Methylphenol	ND	0.10	#							
Naphthalene	ND	0.10	н							
2-Nitroaniline	ND	0.50	Ħ							
3-Nitroaniline	ND	0.50	Ħ							
4-Nitroaniline	ND	0.50	-							
Nitrobenzene	ND	0.10	¥							
2-Nitrophenol	ND	0.10	**							
N-Nitrosodimethylamine	ND	0.10	•							
4-Nitrophenol	ND	0.50	Ħ							

Sequoia Analytical - Walnut Creek

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

	nt	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Limit	Oillis	Level	Result	70KEC	Гипп	10.15	2,7,1111-	110020
Batch 0J13014 - EPA 3550A						. <u> </u>				
Blank (0J13014-BLK1)				Prepared:	13 -Oct- 00) Analyze	d: 24-Oct-(00	e	
N-Nitrosodiphenylamine	ND	0.10	mg/kg	·						
N-Nitrosodi-n-propylamine	ND	0.10	и							
Pentachlorophenol	ND	0.50	**							
Phenanthrene	ND	0.10	**							
Phenol	ND	0.10	**							
Pyrene	ND	0.10	11							
1,2,4-Trichlorobenzene	ND	0.10	Ħ							
2,4,5-Trichlorophenol	ND	0.50	н							
2,4,6-Trichlorophenol	ND	0.10	н							
Surrogate: 2-Fluorophenol	3.72			5.00		74.4	25-121			
Surrogate: Phenol-d6	3.78		"	5.00		75.6	24-113			
Surrogate: Nitrobenzene-d5	2.80		#	3.33		84.1	23-120			
Surrogate: 2-Fluorobiphenyl	2 .97		"	3.33		89.2	30-115			
Surrogate: 2,4,6-Tribromophenol	4.62		n	5.00		92.4	19-122			
Surrogate: p-Terphenyl-dl4	3.13	····		3.33		94.0	18-137			
LCS (0J13014-BS1)				Prepared	: 13-Oct-0	0 Analyze	d: 24-Oct-	00		
Acenaphthene	2.86	0.10	mg/kg	3.33		85.9	31-137			
4-Chloro-3-methylphenol	4.17	0.10		5.00		83.4	26-103			
2-Chiorophenol	3,55	0.10		5.00		71.0	25-102			
1,4-Dichlorobenzene	2.62	0.10	**	3.33		78.7	28-104			
2,4-Dinitrotoluene	2.83	0.10	#	3.33		85.0	28-89			
4-Nitrophenol	4.02	0.50	#	5.00		80.4	11-114			
N-Nitrosodi-n-propylamine	3.09	0.10	11	3.33		92.8	41-126		•	
Pentachlorophenol	4.65	0.50	Ħ	5.00		93.0	17-109			
Phenol	3.18	0.10	"	5.00		63.6	26-90			
Pyrene	2.73	0.10	11	3.33		82.0	35-142			
1,2,4-Trichlorobenzene	2.78	0.10		3.33		83.5	38-107	•		
Surrogate: 2-Fluorophenol	4.06			5.00		81.2	25-121			
Surrogate: Phenol-d6	3.80		#	5.00		76.0	24-113			
Surrogate: Nitrobenzene-d5	3.04		"	3.33		91.3	23-120			
Surrogate: 2-Fluorobiphenyl	3.10		Į r	3.33		93.1	30-115			
Surrogate: 2,4,6-Tribromophenol	5.24		Ħ	5.00		105	19-122			
Surrogate: p-Terphenyl-d14	2.97		*	3.33		89.2	18-137			

Sequoia Analytical - Walnut Creek

6747 Sierra Court Suite J

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

A mallada	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Kesill	LIIIII	OHES	revel	Kesuit	/MEC	THIRD	NI D	1711111	,1046
Batch 0J13014 - EPA 3550A										
LCS Dup (0J13014-BSD1)				Prepared:	13-Oct-00) Analyze	d: 24-Oct-	00		•
Acenaphthene	2.91	0.10	mg/kg	3.33		87.4	31-137	1.73	40	
4-Chloro-3-methylphenol	4.33	0.10	IT	5.00		86.6	26-103	3.76	40	
2-Chlorophenol	3.59	0.10		5.00		71.8	25-102	1.12	40	
1,4-Dichlorobenzene	2.66	0.10	**	3.33		7 9.9	28-104	1.52	40	
2,4-Dinitrotoluene	2.91	0.10	Ħ	3.33		87. 4	28-89	2.79	40	
4-Nitrophenol	4.15	0.50	11	5.00		83.0	11-114	3.18	40	
N-Nitrosodi-n-propylamine	3.05	0.10	11	3.33		91.6	41-126	1.30	40	
Pentachlorophenol	4.90	0.50	#	5.00		98.0	17-109	5.24	40	
Phenol	3.23	0.10	"	5.00		64.6	26-90	1.56	40	
Pyrene	2.87	0.10	Ħ	3.33		86,2	35-142	5.00	40	
1,2,4-Trichlorobenzene	2.87	0.10	**	3.33		86.2	38-107	3.19	40	
Surrogate: 2-Fluorophenol	3.98		m	5.00	•••	79.6	25-121			
Surrogate: Phenol-d6	<i>3.70</i>		#	5.00		74.0	24-113			
Surrogate: Nitrobenzene-d5	3.03	•	W	3.33		91.0	23-120			
Surrogate: 2-Fluorobiphenyl	3.04			3.33		91.3	30-115			
Surrogate: 2,4,6-Tribromophenol	5.00		~	5.00		100	19-122			
Surrogate: p-Terphenyl-dl 4	2.99		"	3.33		89.8	18-137			

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J17006 - EPA 3510B										
Blank (0J17006-BLK1)		_		Prepared:	17-Oct-0	0 Analyze	d: 18-Oct-	00		
TRPH	ND	5.0	mg/l		· · · · · ·					
LCS (0J17006-BS1)				Prepared	17-Oct-0	0 Analyze	d: 18-Oct-	00		
TRPH	85.4	5.0	mg/l	100	<u>-</u>	85.4	70-130			
LCS Dup (0J17006-BSD1)				Prepared	: 17-Oct-0	0 Analyze	d: 18-Oct-	00	_	
TRPH	89.8	5.0	mg/l	100	-	89.8	70-130	5.02	30	
Batch 0J18014 - EPA 3550A										
Blank (0J18014-BLK1)				Prepared	: 18-Oct-0	0 Analyze	d: 19-Oct-	-00		
TRPH	ND	50	mg/kg		-					
LCS (0J18014-BS1)				Prepared	: 18-Oct-0	0 Analyze	:d: 19-Oct-	-00		
TRPH	4770	50	mg/kg	5000		95.4	70-130		•	
LCS Dup (0J18014-BSD1)				Prepared	: 18-Oct-0	0 Analyzo	:d: 19-Oct-	-00		
TRPH	4740	50	mg/kg	5000		94.8	70-130	0.631	30	
Matrix Spike (0J18014-MS1)	S	ource: W0103	305-04	Prepared			ed: 19-Oct-	-00		
ТКРН	5680	50	mg/kg	5000	ND	114	60-140		,	
Matrix Spike Dup (0J18014-MSD1)	S	ource: W0103	305-04	Prepared	: 18-Oct-0	0 Analyze	d: 19-Oct-	-00		
ТПРН	5740	50	mg/kg	5000	ND	115	60-140	1.05	30	

Dublin CA, 94568

NR

dry RPD Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:34

Notes and Definitions

	····
A-01	Contaminated during extraction.
A-01a	Due to coelution of the Internal Standard, the reported BTEX values were calculated using a One Point Calibration of the Continuing Calibration Standard.
A-03	This sample was originally analyzed within holding time. Re-analysis for confirmation or dilution was performed past the recommended holding time.
CC-3	Continuing Calibration indicates that the quantitative result for this analyte includes a greater than 15% degree of uncertainty. The value as reported is within method acceptance.
D- 08	Low surrogate recovery was confirmed by re-analysis. There was not enough sample available for re-extraction; the results as reported should be considered estimated values.
D-12	Chromatogram Pattern: Unidentified Hydrocarbons > C16
P-01	Chromatogram Pattern: Gasoline C6-C12
Q-0 1	The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch.
S-01	The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interferences.
S-03	The surrogate recovery for this sample is outside of established control limits. Review of associated QC indicates the recovery for this surrogate does not represent an out-of-control condition.
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit

Not Reported

Relative Percent Difference

Sample results reported on a dry weight basis

Fax copy of Lab Report and COC to Chevron Contact: M No <u>Chain-of-Custody-Record</u> Chevron Contact (Name) Tom Bauhs Chevron Facility Number 9-2029 FOOTHLY Address 890 W. MacArthur Blod, Oakland (Phone) (925) 842 - 8898 Chevron U.S.A. Inc. Consultant Project Number 346503.01 Laboratory Name Sequesia WC10197 P.O. BOX 5004 Consultant Harns Getter-Ryan Inc Laboratory Release Number___ San Ramon, CA 94583 Samples Collected by (Name) Barbara Sieminski Morros 6747 Sierra Ct, Ste G. Dublin, CA 94568 FAX (415)842-9591 Project Contact (Hame) Barbara Sieminski Collection Date 10/05700 Signoture Pricuirli (Phone) (925) 551-7555 (Fax Humber) (925) 551-7888 3020 + 1PH CAS ///+/8 E Analyses To Be Performed TPH Olesel
(3013)
Oil and Graces
(3520)
Purperble Holocarbors
(8010)
Purpecble Aromatics
(8020)
Purpecble Organics
(8240)
Extractable Organics
(8220) ... 000 Remarke 10:30 B6-6 OIA Yes X B6-11 02A 10:50 hobs 11:02 holal 11:20 186-18,5 X 85-6 03A 13:20 X 13:30 85-11 09A B5-16.5 hold 13:40 Date/Time /645 Received By (Signature) Date/Time Turn Around Time (Circle Cholce) Religioushed By (Signature) Organization Organization between Aicuil G-R 10/09/00 24 Hrs. Dote/Ilme Date/Time Minquished By (Signature) Organization Received By (Signature) Organization 3 days 6 Doys 10 Daye Recleved For Laboratory By (Signature) Organization .Date/Time As Contracted

⊔ ies

hevron U.S O. BOX on Ramon, (AX (415)8	S.A. Inc. 5004 CA 94583	Coner	ron Fac Fac ultant f	my rojections	Number Address of Numb . Green	9-2 890 34 Her. Sien	0C to 029 W. Mac 6503.0 Ryan a. Ct, arbara 1551-755	Arth Im	C. Du	ivol, ublin	Oale .CA	<u>land</u>	- Lo Lo So Co	boratory boratory mples (illection	Name . Release Collected Date	(Phone). Number No No		sart	L Darg	VOI	101	97 nski
Sample Number	Lab Sample Number	Number of Containers	Metric S = Soil > Ar V = Wenter C = Charcock		Type G = Grob C = Composite ' O = Clacrete	Time	Sample Preservation	load (Yes or No)	3/8EX		Oil and Grease (5520)	Purgeable Holocarbors (8010)	Purgeable Aromatics (8020)	· ·	Extractable Organics (8270)	CACP-PLZAME CACO	of lea					Remarks
34-6	05A	1	S	十	D	9:15		Yes	X	×	X	×		 	×	×			<u>`·</u>			
4-11	06 A	1	1			9:20		<u> </u>	×	<u>×</u>	×	×			×	 ^			-	-		hold
4-16		1				9:25			1				 -	 	-	-	×			 	<u> </u>	
37-6	07A	1				10:05		 	X					+	 	 	×		 	1	\vdash	
7-11	08 A	İ				10:10			1×	 -	 	├	├	 	┼	╂	1		 			hold
37-16		1				10:15		┧-┼-	 	 	╂	 	┨──	╂─┈	╁──	-	X	 	 	1	1	
3-6	09A	1			.	10:40		┨-}	Τ̈́	┨	-	 	 	-	┨──	1	X		1	1	1	
13-11	10 A	1				10:45			1×		╂	-	┼─-	╁╌		 	 					hold
37-16		1		_		10:50		1-	 	-	-	-	+-	+	-	+	×					
39-6	IIA	1	11			11:30	-		X	┼─		+	-	+	 	1-	×	1		ŀ		
B9-11	12.A	11	11		 	11:35		 , , , 	- -		+		┪		-		 	1	1	1		hold
09 -16		1	11	\Box	<u>V</u>	11:40	<u>·</u>	1			+	1	1	-								
		-	-		-	+		-					Ι,					1_	 	Tures 4	Around 1	Time (Ctrole Choloe)
	By (Signoture	nl	<u>.</u>	Ğ	onization - R		Date/Time /(10/09/00 Date/Time	_	Received					Organi: Organi			ate/Time		-	134177 - 7	:	24 Hrs. 48 Hrs. 6 Days 10 Days

Fax cor	ov of 1	Lab	Rep	ort c	and C	OC to	Chev	ron	Cor	ntact	t: 17	Ye: No)			Ch	ain	<u>-o</u>	<u>[—C</u>	ust	<u>ody-</u>	Record
Chevron U.S P.O. BOX San Ramon, G FAX (415)84	5.A. Inc. 5004 CA 94583	Coneu	ron Facility Facility ultant Pro- ultant Noi	y Number y Address plect Num me G	890 890 CHIER Sier		Arthu Ima Steg	,Du	uol, ublin	Ool.	<u>Usu</u> 9456	1 0 1 2 S	hevron C aboratory	Name . Release Collected	(Phone). 5_ e. Numb	egu	Sort	14	<u>v 0</u>	100	97 Inski	
		<u> </u>		(P	ho⊓•)(⊸l≓	7,731, 13	- Jrax	30	/\-						Perfor	ned						
Sample Number	Lob Sample Mumber	Number of Containers	Metric S = Sol A = Ar Weter C = Charcool	Type G = Grub C = Composite C = Composite	Tiere	Sample Preservation		(3020 + 104 CAS)	1PH Disset (8015)	Oil and Grease (5520)	Purpeable Holocarbona (8010)	Purgeable Aramatics (8020)	1		CACYPYZAMI (ICAP or AA)	Soxygenutes ethanol, methous 1,2-007. EDB					R.	morks
B10~W	13A-D	4VOA	W	G	8:30	HCC	Yes	×		<u> </u>			┨—			X X		``.	 	-		
87-W	14A-D			G	11:15	HU	Yes	X	ļ	ļ		<u> </u>		 	 	×		 	┼─	 	 	
84-W	15A-M			G	1230	HCL	Yen	X	<u> </u>	 	 			 	 	<u> ^</u>		 	╂	+	 	<u> </u>
84-W	1	310A		G	1230	None	Yes	<u> </u>	<u> </u>	<u> </u>	×			×	 	 	-	 	╫┈	┨──	 	
84-W		12 And	N.	G	12:35	None	Yes	<u> </u>	X	1	 	<u> </u>			╁ <u></u>	 	 -	├	╂──	 	 	
84-W		12 ILAN	W	G		H2504	Yes	<u> </u>	1	X	<u> </u>	 	-	 	1		 	╂	┼──		 	
84-W	V	Plant		G.	12:40	HNO3	Yes	<u> </u>	<u> </u>	 	<u> </u>	-	-}	 	X	×	 	┨	+		 	
B3-W	16A-D		7	G	14:30	HU	Yen	X	<u> </u>	<u> </u>	 	 			 		 	-	+	- 	 	
<u> </u>	1									<u>. </u>	 		_	 		·	∤ —	┨			 	
	 	-	1						_			ļ		<u> </u>		<u> </u>	 	ļ	╃	_	 	
		\top	1											-		-	-	-		-		
	 		1							_		1_					-	-		-		
		1		1								_	_	_	_	 		 -	—	-		
		1	1-	- 	1							┦				4_		╀		<u></u>	The lotter	- Chalaci
Relinquished B	while	win	2	ganizatio G-F	2	Date/Time / Date/Time			By (Sig				Organiz Organiz			ite/Time			Turn	3 4	Time (Cirolo 24 Hrs. 48 Hrs. 6 Doys 10 Doys	3 Jays
	er (Signature)		nganizatk)n	Date/Time				borolory			" L" (D	0191 0191	00		السنب م		Contracted	

1 November, 2000

Barbara Sieminski Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin, CA 94568

RE: Chevron Sequoia Report: W010170 RECREATE

Enclosed are the results of analyses for samples received by the laboratory on 06-Oct-00 18:35. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Charlie Westwater Project Manager

CA ELAP Certificate #1271

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:24

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B5-W	W010170-01	Water	06-Oct-00 07:30	06-Oct-00 18:35
B6-W	W010170-02	Water	06-Oct-00 12:00	06-Oct-00 18:35
B8-W	W010170-03	Water	06-Oct-00 13:35	06-Oct-00 18:35
B2-W	W010170-04	Water	06-Oct-00 15:20	06-Oct-00 18:35
B1-W	W010170-05	Water	06-Oct-00 16:50	06-Oct-00 18:35

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Charlie Westwater, Project Manager

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:24

Hydrocarbons as Hydraulic Fluid by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B2-W (W010170-04) Water	Sampled: 06-Oct-00 15:20	Received	: 06-Oct-00	0 18:35					
Hydraulic Fluid	ND	250	ug/l	1	0J13012	13-Oct-00	15-Oct-00	EPA 8015M	
Surrogate: n-Pentacosane	-	208 %	50-15	50	"	п	#	п	S-04

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:24

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B5-W (W010170-01) Water	Sampled: 06-Oct-00 07:30	Received	: 06-Oct-0	0 18:35					
Purgeable Hydrocarbons	ND	50	ug/l	1	0J19003	19-Oct-00	19-Oct-00	EPA 8015M/8020	
Benzene	ND	0.50	π	Ħ	m		**	•	
Toluene	ND	0.50	w	н	11		#	**	
Ethylbenzene	ND	0.50	#	н	R		Ħ	11	
Xylenes (total)	ND	0.50		н	Ħ		*	Ħ	
Methyl tert-butyl ether	460	2.5		**	₩		"	11	CC-3
Surrogate: a,a,a-Trifluorotolu	ene	95.0 %	70-1	30	"	"	"	"	
B6-W (W010170-02) Water	Sampled: 06-Oct-00 12:00	Received	: 0 6-Oct-0	0 18:35					
Purgeable Hydrocarbons	ND	50	ug/l	1	0J19003	19-Oct-00	19-Oct-00	EPA 8015M/8020	
Benzene	ND	0.50	н	н	. •	*	*	н	
Toluene	ND	0.50	et	-	*	-	•	Ħ	
Ethylbenzene	ND	0.50	н	H	*	•	*	H	
Xylenes (total)	ND	0.50	я	*	₩		**	н	
Methyl tert-butyl ether	. 32	2.5	#	**	н		#	#	CC-3
Surrogate: a,a,a-Trifluorotolu	ene	94.3 %	70-1	30	*	*		" "	
B8-W (W010170-03) Water	Sampled: 06-Oct-00 13:35	Received	: 06-Oct-(0 18:35					
Purgeable Hydrocarbons	ND	50	ug/l	1	0J19002	19-Oct-00	19-Oct-00	EPA 8015M/8020	
Benzene	ND	0.50	•	н	н	"	M	н	
Toluene	ND	0.50	•	н	W		н		
Ethylbenzene	ND	0.50	•	Ħ	н	н	"	Ħ	
Xylenes (total)	ND	0.50	•	Ħ	Ħ	Ħ	н	# ·	
Methyl tert-butyl ether	440	2.5	*	, n	Ħ	н	"	н	CC-3
Surrogate: a,a,a-Trifluorotolu	iene	97.7%	70-1	30		ıı	n	er .	

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:24

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B2-W (W010170-04) Water	Sampled: 06-Oct-00 15:20	Received	: 06-Oct-	00 18:35		-			
Purgeable Hydrocarbons	ND	50	ug/l	1	0J18003	18-Oct-00	18-Oct-00	EPA 8015M/8020	<u>-</u>
Benzene	ND	0.50	π	Ħ	n -	Ħ		н .	
Toluene	ND	0.50		н	n	π	"	н	
Ethylbenzene	ND	0.50	n	"	ti	•	n	Ħ	
Xylenes (total)	ND	0.50	H	, 41	**	н	н	#	
Methyl tert-butyl ether	500	2.5	"	۳.	41	**	н	11	CC-3
Surrogate: a,a,a-Trifluorotolu	ene	97.7%	70-1	130	"	rr	п	#	
B1-W (W010170-05) Water	Sampled: 06-Oct-00 16:50	Received	: 06-Oct-	00 18:35					A-01,P-01
Purgeable Hydrocarbons	3600	250	ug/l	5	0J18003	18-Oct-00	18-Oct-00	EPA 8015M/8020	
Benzene	110	2.5	н			#	н	H	
Toluene	3.5	2.5	Ħ		п	n	**	H	
Ethylbenzene	770	2.5	*	m	. #	# -	•	#	
Xylenes (total)	150	2.5	*		P	•		Ħ	
Methyl tert-butyl ether	700	13	#	н .	п	•	Ħ	Ħ	CC-3
Surrogate: a,a,a-Trifluorotolu	ene	96.3 %	70-1	130	n	"	7	"	

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:24

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B5-W (W010170-01) Water	Sampled: 06-Oct-00 07:30	Received	: 06-Oct	-00 18:35					
Ethanol	ND	2500	ug/l	5	0J13023	13-Oct-00	14-Oct-00	EPA 8260B	
tert-Butyl alcohol	ND	250	**	**	•	ч	**	n	
Methyl tert-butyl ether	590	10	**	**	W	11	n		
Di-isopropyl ether	ND	10	11	11	u	11	"	•	
Ethyl tert-butyl ether	ND	10	"	#		н	W .	п	
tert-Amyl methyl ether	ND	10	#	11		Ħ		1.	
1,2-Dichloroethane	ND	10	н	11	*	n		77	
Ethylene dibromide	ND	10	Ħ	н	**	H	II.		
Surrogate: Dibromofluoromet	hane	100 %	50-	-150	н	n	"	"	
Surrogate: 1,2-Dichloroethan		154 %	50-	-150	"	"	#		Q-0.
B6-W (W010170-02) Water	Sampled: 06-Oct-00 12:00	Received	l: 06-Oct	-00 18:35					
Ethanol	ND	500	ug/l	1	0J13023	13-Oct-00	14-Oct-00	EPA 8260B	
tert-Butyl alcohol	ND	50	н	н	#	•	₩ .	н	
Methyl tert-butyl ether	34	2.0	•	н	#	#	Ħ	н	
Di-isopropyl ether	ND	2.0	•		#	•	**	#	
Ethyl tert-butyl ether	ND	2.0	*		*	ŧ	**	#	
tert-Amyl methyl ether	ND	2.0	#		Ħ	н	u	н	
1,2-Dichloroethane	ND	2.0		•	*	Ħ	"	**	
Ethylene dibromide	ND	2.0	н	**	tt	# .	**	#	
Surrogate: Dibromofluorome	hane	100 %	50	-150	"	, #	H	"	
Surrogate: 1,2-Dichloroethan		156 %	50	-150	"	"	"	*	Q-0)
B8-W (W010170-03) Water	Sampled: 06-Oct-00 13:35	Received	l: 06-Oct	-00 18:35					
Ethanol	ND	2500	ug/l	5	0J13023	13-Oct-00	14-Oct-00	EPA 8260B	
tert-Butyl alcohol	ND	250		n	#	**	19	•	
Methyl tert-butyl ether	650	10	**	н	n	11	•	**	
Di-isopropyl ether	ND	10	**	ır	н	"	e	**	
Ethyl tert-butyl ether	ND	10	*	*	*	11	Ħ	**	
tert-Amyl methyl ether	ND	10	**		"	**	н	"	
1,2-Dichloroethane	ND	10	*		, , , , , , , , , , , , , , , , , , , 	Ħ	н	н	
Ethylene dibromide	ND	10	"	**	•		11	H	
Surrogate: Dibromofluorome	thane	92.0 %	50	-150	"	"	п	н	
Surrogate: 1,2-Dichloroethan		122 %	50	-150	. #	#	π	#	

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:24

Volatile Organic Compounds by EPA Method 8260B Sequoia Analytical - Walnut Creek

j	Į I	Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B2-W (W010170-04) Water	Sampled: 06-Oct-00 15:20	Received	: 06-Oct	-00 18:35					
Ethanol	ND	500	ug/i	1	0J13023	13-Oct-00	14-Oct-00	EPA 8260B	
tert-Butyl alcohol	ND	50	н	#1	и	n		н	
Methyl tert-butyl ether	. 320	10	н	5	н	Ħ	Ħ	•	
Di-isopropyl ether	ND	2.0	**	1	"	"		*	
Ethyl tert-butyl ether	ND	2.0	н	•	Ħ	я	. n		
tert-Amyl methyl ether	8.9	2.0	#		Ħ	н	n	m	
1,2-Dichloroethane	ND	2.0	**		н	*	"	н	
Ethylene dibromide	ND	2.0	71	n	н	Ħ	H	**	
Surrogate: Dibromofluoromet	hane	104 %	50-	150	, ,,	"	"	п	
Surrogate: 1,2-Dichloroethane	e-d4	170 %	50-	150	n	#	"	*	Q-01
B1-W (W010170-05) Water	Sampled: 06-Oct-00 16:50	Received	: 06-Oct	-00 18:35					
Ethanol	ND	2500	ug/l	5	0J13023	13-Oct-00	14-Oct-00	EPA 8260B	
tert-Butyl alcohol	ND	250		H	**	H	Ħ	н	
Methyl tert-butyl ether	820	10		Ħ	-	н		*	
Di-isopropyl ether	ND	10	*	#		н	n	W	
Ethyl tert-butyl ether	ND ND	10	*	47		#	#	•	
tert-Amyl methyl ether	ND	10	и	Ħ	**	н.	n		
1,2-Dichloroethane	ND	10	н	* #		н	rr	H	
Ethylene dibromide	ND	10	H	#	*	н	Ħ	•	
Surrogate: Dibromofluorometi	hane	94.0 %	50-	150	#	. "	"	H	
Surrogate: 1,2-Dichloroethane	e-d4	120 %	50-	150	*	"	n	"	

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:24

Industrial Solvents by EPA Method 8015 (modified) Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B5-W (W010170-01) Water	Sampled: 06-Oct-00 07:30	Received	06-Oct-	00 18:35					
Methanol	ND	1.00	mg/l	1	0J12008	13-Oct-00	13-Oct-00	EPA 8015M	
Surrogate: 1-pentanol		116%	55-	157	"	"	#	"	
Surrogate: 1-pentanol (dbwax,)	95.6%	<i>57- 1</i>	170	#	#	"	н	
B6-W (W010170-02) Water	Sampled: 06-Oct-00 12:00	Received	: 06-Oct-	00 18:35					
Methanol	ND	1.00	mg/l	1	0J12008	13-Oct-00	13-Oct-00	EPA 8015M	
Surrogate: 1-pentanol		114%	55-	157	"	"	"	"	
Surrogate: 1-pentanol (dbwax,)	99.6%	<i>57</i>	170	"	"	μ	W	
B8-W (W010170-03) Water	Sampled: 06-Oct-00 13:35	Received	: 06-Oct-	00 18:35					
Methanol	ND	1.00	mg/l	1	0J12008	13-Oct-00	13-Oct-00	EPA 8015M	
Surrogate: 1-pentanol		125 %	55-	157	"	"	"	n	
Surrogate: 1-pentanol (dbwax,) ·	100 %	57-	170	H	•	H	Ħ	
B2-W (W010170-04) Water	Sampled: 06-Oct-00 15:20	Received	: 06-Oct-	00 18:35					
Methanol	ND	1.00	mg/l	1	0J12008	13-Oct-00	13-Oct-00	EPA 8015M	
Surrogate: 1-pentanol	/	117%	55-		н	*	п	"	•
Surrogate: 1-pentanol (dbwax,)	95.8 %	57	170	n	. #	n	Ħ	
B1-W (W010170-05) Water	Sampled: 06-Oct-00 16:50	Received	: 06-Oct-	00 18:35					
Methanol	ND	1.00	mg/l	İ	0J12008	13-Oct-00	13-Oct-00	EPA 8015M	
Surrogate: 1-pentanol		117%	55	157	m	"	"	"	
Surrogate: 1-pentanol (dbwax)	128 %	57-	170	m	"	#	"	

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:24

Hydrocarbons as Hydraulic Fluid by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J13012 - EPA 3510B										
Blank (0J13012-BLK1)				Prepared:	13-Oct-0	0 Analyze	d: 27-Oct-	00		
Diesel Range Hydrocarbons	ND	50	ug/l							
Hydraulic Fluid	ND	250	н							
Surrogate: n-Pentacosane	22.3		*	33.3	·	67.0	50-150			
LCS (0J13012-BS1)				Prepared:	13-Oct-0	0 Analyze	d: 18-Oct-	00		
Diesel Range Hydrocarbons	404	50	ug/l	500		80.8	60-140			
Surrogate: n-Pentacosane	37.3			33.3		112	50-150			
LCS Dup (0J13012-BSD1)	-			Prepared:	13-Oct-0	0 Analyze	d: 27-Oct-	00		
Diesel Range Hydrocarbons	331	50	ug/l	500		66.2	60-140	19.9	50	
Surrogate: n-Pentacosane	46.0		Ħ	33.3		138	50-150	-		

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:24

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J18003 - EPA 5030B [P/T]										
Blank (0J18003-BLK1)				Prepared	& Analyz	ed: 18-Oc	t-00			
Purgeable Hydrocarbons	ND	50	ug/l		•					
Benzene	ND	0.50	**							
l'oluene	ND	0.50	Ħ							
Ethylbenzene	ND	0.50	Ħ							
Xylenes (total)	ND	0.50	H							
Methyl tert-butyl ether	ND	2.5	. #							
Surrogate: a, a, a-Trifluorotoluene	30.2		п	30.0		101	70-130			
LCS (0J18003-BS1)		••		Prepared	& Analyz	ed: 18-Oct	t-00			
Benzone	18.3	0.50	ug/l	20.0		91.5	70-130			
Foluene	18.7	0.50	•	20.0		93.5	70-130			
Ethylbenzene	19.0	0.50	н	20.0		95.0	70-130			
Kylenes (total)	54.8	0.50	н	60.0		91.3	70-130			
Surrogate: a,a,a-Trifluorotoluene	27.3		*	30.0		91.0	70-130		-	
Matrix Spike (0J18003-MS1)	Sc	ource: W0101	28-02	Prepared	& Analyz	ed: 18-Oct	t- 00			
Benzene	18.7	0.50	ug/l	20.0	ND	93.5	70-130			
Tohiene	19.0	0.50	н	20.0	ND	95.0	70-130			
Ethylbenzene	19.4	0.50	**	20.0	ND	97.0	70-130			
Kylenes (total)	56.1	0.50		60.0	ND	93.5	70-130			
Surrogate: a,a,a-Trifluorotoluene	27.3		n	30.0		91.0	70-130			
Matrix Spike Dup (0J18003-MSD1)	Sc	ource: W0101	28-02	Prepared	& Analyz	ed: 18-Oct	-00			
Benzene	19.4	0.50	ug/l	20.0	ND	97,0	70-130	3.67	20	
l'oluene	19.9	0.50	**	20.0	ND	99.5	70-130	4.63	20	
Ethylbenzene	19.8	0.50	н	20.0	ND	99.0	70-130	2.04	20	
Kylenes (total)	56.0	0.50	н	60.0	ND	93.3	70-130	0.178	20	
Surrogate: a, a, a-Trifluorotoluene	28.0		#	30.0		93.3	70-130			

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:24

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J19002 - EPA 5030B [P/T]	_	•						· · ·		
Blank (0J19002-BLK1)				Prepared	& Analyz	ed: 19 -O ct	t-00			
Purgeable Hydrocarbons	ND	50	ug/l							
Benzene	ND	0.50	и							
Гоічепе	ND	0.50	H							
Ethylbenzene	ND	0.50	*							
Kylenes (total)	ND	0.50								
Methyl tert-butyl ether	ND	2.5	**						•	
Surrogate: a,a,a-Trifluorotoluene	29.7		#	30.0		99.0	70-130	_		
LCS (0J19002-BS1)		-		Prepared	& Analyz	ed: 19-Oc	t-00			
Benzene	19.1	0.50	ug/l	20.0		95.5	70-130			
Toituene	19.7	0.50	**	20.0		98.5	70-130		•	
Sthylbenzene	20.6	0.50	н	20.0		103	70-130			
Kylenes (total)	61.3	0.50	#	60.0		102	70-130			
Surrogate: a, a, a-Trifluorotoluene	29.1		~	30.0		97.0	70-130			
Matrix Spike (0J19002-MS1)	Sc	ource: W0102	244-02	Prepared	& Analyz	ed: 19-Oc	t-00			
Benzene	19.7	0.50	ug/l	20.0	ND	98.5	70-130			-
l'oluene	20.3	0.50	#	20.0	ND	101	70-130			
Ethylbenzene	20.9	0.50	#	20.0	ND	104	70-130			
Xylenes (total)	62.5	0.50	#	60.0	ND	104	70-130			
Surrogate: a, a, a-Trifluorotoluene	29.7		п	30.0		99.0	70-130			
Matrix Spike Dup (0J19002-MSD1)	S	ource: W0102	244-02	Prepared	& Analyz	ed: 19 - 0c	t-00			
Benzene	19.0	0.50	ug/l	20.0	ND	95.0	70-130	3.62	20	
Toluene	19.8	0.50		20.0	ND	99.0	70-130	2.49	20	
Ethylbenzene	20.1	0.50	u	20.0	ND	101	70-130	3. 9 0	20	
Xylenes (total)	61.4	0.50		60.0	ND	102	70-130	1.78	20	
Surrogate: a, a, a-Trifluorotoluene	30.0		#	30.0		100	70-130			

Project: Chevron

6747 Sierra Court Suite J Dublin CA, 94568 Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:24

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD_	RPD Limit	Notes
Batch 0J19003 - EPA 5030B [P/T]							-			
Blank (0J19003-BLK1)				Prepared	& Analyz	ed: 19-0c	t-00			
Purgeable Hydrocarbons	ND	50	ug/l							
Benzene	ND	0.50	**							
Toluene	ND	0.50	11			•				
Ethylbenzene	ND	0.50	"							
Xylenes (total)	ND	0.50	11							
Methyl tert-butyl other	ND	2.5	*							
Surrogate: a,a,a-Trifluorotoluene	32.0		"	30.0	•	107	70-130			
LCS (0J19003-BS1)		-		Prepared	& Analyz	ed: 19-Oc	t-00			
Benzene	19.3	0.50	ug/l	20.0		96.5	70-130			
roluene	19.7	0.50	**	20,0		98.5	70-130			
Ethylbenzene	20.0	0.50	**	20.0		100	70-130			
Xylenes (total)	58.1	0.50	n	60.0		96.8	70-130			
Surrogate: a, a, a-Trifluorotoluene	27.8		"	30.0	 ,	92.7	70-130			_
Matrix Spike (0J19003-MS1)	S	ource: W0103	00-01	Prepared	& Analyz	ed: 19-0c	t-00			
Benzene	19.0	0,50	ug/l	20.0	ND	95.0	70-130			
Toluene	19.4	0.50	"	20.0	ND	97.0	70-130			
Ethylbenzene	19.7	0.50	-	20.0	ND	98.5	70-130			
Xylenes (total)	57.2	0.50	**	60.0	ND	95.3	70-130			
Surrogate: a,a,a-Trifluorotoluene	27.1		и	30.0		90.3	70-130			
Matrix Spike Dup (0J19003-MSD1)	s	ource: W0103	300-01	Prepared	& Analyz	zed: 19-00	:t-00			
Benzene	19.4	0.50	ug/l	20.0	ND	97.0	70-130	2.08	20	
Foluene	19.8	0.50	"	20.0	ND	99.0	70-130	2.04	20	
Ethylbenzene	20.1	0.50	*	20.0	ND	101	70-130	2.01	20	
Xylenes (total)	57.6	0.50	**	60.0	ND	96.0	70-130	0.697	20	
Surrogate: a,a,a-Trifluorotoluene	28.3		"	30.0		94.3	70-130		•	
=										

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:24

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J13023 - EPA 5030B [P/T]										
Blank (0J13023-BLK1)				Prepared:	13-Oct-0	0 Analyze	ed: 14-Oct-	00		
Ethanol	ND	500	ug/l	-						
tert-Butyl alcohol	ND	50								
Methyl tert-butyl ether	ND	2.0	*							
Di-isopropyl ether	ND	2.0								
Ethyl tert-butyl ether	ND	2.0								
tert-Amyl methyl ether	ND	2.0	•							
1,2-Dichloroethane	ND	2.0	•							
Ethylene dibromide	ND	2.0	#	-						
Surrogate: Dibromofluoromethane	50.0			50.0		100	50-150			
Surrogate: 1,2-Dichloroethane-d4	86.0		n	50.0		172	50-150			Q-0
LCS (0J13023-BS1)				Prepared	& Analyz	ed: 13-Oc	:t-00			
Methyl tert-butyl other	53.0	2.0	ug/l	`50.0		106	70-130			
Surrogate: Dibromofluoromethane	43.0		#	50.0		86.0	50-150			
Surrogate: 1,2-Dichloroethane-d4	57.0		*	50.0		114	50-150			÷
LCS (0J13023-BS2)				Prepared	& Analyz	ed: 14-Oc	:t-00			
Methyl tert-butyl ether	60.6	2.0	ug/l	50.0		121	70-130			
Surrogate: Dibromofluoromethane	45.0		"	50.0		90.0	50-150			
Surrogate: 1,2-Dichloroethane-d4	60.0		rr	50.0		120	50-150			
Matrix Spike (0J13023-MS1)	Se	ource: W0100	90-05	Prepared	& Analyz	ed: 13-Oc	:t-00		*	
Methyl tert-butyl ether	61.2	2.0	ug/l	50.0	7.2	108	60-150			
Surrogate: Dibromofluoromethane	42.0		"	50.0		84.0	50-150			
Surrogate: 1,2-Dichloroethane-d4	54.0		H	50.0		108	50-150			
Matrix Spike Dup (0J13023-MSD1)	S	ource: W0100	90-05	Prepared	& Analyz	ed: 13-Oc	:t-00			
Methyl text-butyl other	64.5	2.0	ug/l	50.0	7.2	115	60-150	5.25	25	
Surrogate: Dibromofluoromethane	45,0		"	50.0		90.0	50-150	· · · · · · · · · · · · · · · · · · ·		
Surrogate: 1,2-Dichloroethane-d4	55.0		п	50.0		110	50-150			

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029

Reported: 30-Oct-00 07:24

Project Manager: Barbara Sieminski

Industrial Solvents by EPA Method 8015 (modified) - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J12008 - EPA 3810 Headspace										
Blank (0J12008-BLK2)				Prepared	& Analyz	ed: 13-Oc	t-00			
Methanol	ND	1.00	mg/l				-			
Surrogate: 1-pentanol	5.44		#	5.00		109	55-157			
Surrogate: 1-pentanol (dbwax)	4.27		"	5.00		85.4	57-170			
LCS (0J12008-BS2)				Prepared	& Analyz	ed: 13-Oc	t-00			
Methanol	7.32	1.00	mg/l	8.00		91.5	70-130			-
Surrogate: 1-pentanol	4.07		"	5.00		81.4	55- 1 57			
Surrogate: 1-pentanol (dbwax)	2.99		**	5.00		59.8	57-170			
Matrix Spike (0J12008-MS1)	So	urce: MJJ01	67-01	Prepared	& Analyz	ed: 12-Oc	t-00		_	
Methanol	8.05	1.00	mg/l	8.00	ND	101	50-150			
Surrogate: 1-pentanol	5.24		"	5.00		105	55-157			
Surrogate: 1-pentanol (dbwax)	5.60		. "	5.00		112	<i>57-170</i>			
Matrix Spike Dup (0J12008-MSD1)	So	urce: MJJ01	67-01	Prepared	& Analyz	ed: 12-Oc	t-00			
Methanol	7.99	1.00	mg/l	8.00	ND	99.9	50-150	0.748	50	
Surrogate: 1-pentanol	5.41		"	5.00	·	108	55-157			
Surrogate: 1-pentanol (dbwax)	4.33		•	5.00		86.6	<i>57-170</i>			

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:24

Notes and Definitions

A- 01	Due to coelution of the Internal Standard, the reported BTEX values were calculated using a One Point Calibration of the Continuing Calibration Standard.
CC-3	Continuing Calibration indicates that the quantitative result for this analyte includes a greater than 15% degree of uncertainty. The value as reported is within method acceptance.
P-01	Chromatogram Pattern: Gasoline C6-C12
Q-01	The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the

The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch.

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Fax co	by of l	Lab	Rep	ort	and (COC to	Che	vron	Со	ntac	t: 🗓	N								ust	ody-Record
Chevron U.: P.O. BOX San Ramon, FAX (415)8	S.A. Inc. 5004 CA 94583	Cones	Facilitant Pi	illy Numb	890 mber 3 cHe Sie	2029 0 W. Mag 46503.0 r- Ryan rra. Cf, barbara 25)551-75	Arth 21 Im Steg	c. E.D.	Blud Lbli	, <i>O</i> ok	9456		hevron (y Name y Relect	(Phone 5 e. Ser	(929) (400)	Bar	2-8	W		inski
Sample Number	Lob Sample Number	Number of Contoiners	Metrix S = Soil A = Ar W = Weter C = Charcool	Type G = Grab C = Composite C = Discrete	Time	Sample Preservation	load (Yee or No)	(8020 + 104 CAS //4/6/	TPH Clessi (8015)	Oil and Grease (5520)	Purpeable Halocarbors (8010)	Purpable Aromatics (8020)	Puryectile Organics (8240)	le Organica	CACT-B-ZAM	enates, methanol , EDB	TPH as hydrough				Remorks
35-W	01A-D			G	7:30	Ha	Yes	Х								Х		`.			
		4001		1	12:00	}		X								x			1		
38-W	03 V				13:35			×				<u> </u>			<u> </u>	X		<u> </u>		<u> </u>	
	04A-E				15:20	Ha		X					ļ		<u> </u>	<u>×</u>		<u> </u>	 	<u> </u>	
B2-W		IA			16:00	No			<u> </u>				<u> </u>		 		X	 	 	 	
B2-W 31-W	05A-D			$\prod V$	16:50	HU	V	X					<u> </u>		<u> </u>	X	<u> </u>	 	<u> </u>	 	
<u>- · · </u>										<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u> </u>		_	 	
											<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>		 		
										1		<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	
									<u> </u>					<u> </u>	 			<u> </u>	<u> </u>		
											1	<u> </u>	_	<u> </u>					-	_	ļ
		Γ									1			1	<u> </u>	1		1	 		
	1											_		 	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1_		
						,									<u> </u>	1		<u> </u>			
Hallnquiched By	(Signature)	ui	Q. O.	ganization	2	Dute/Time 18 10/06/00	シ Re	oelved (By (Slgı	nature)			Organiza	itlon	Do	te/Time			Turn A	2	ime (Circle Cholos) 4 Hrs.
Relinquished By			Or	ganizatio		Date/Time		celyed	By (Sign	nature)			Organiza	nellon .	Da	te/Time					8 Hrs. Doys Doys
Relinguished D	y (Signeture)		0	rgenizatio	n	Date/Time		, , , , , , , , , , , , , , , , , , ,		orelony	,					10/11me 2/6/					contracted

1 November, 2000

Barbara Sierninski Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin, CA 94568

RE: Chevron Sequoia Report: W010189 RECREATE

Enclosed are the results of analyses for samples received by the laboratory on 06-Oct-00 18:40. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Charlie Westwater Project Manager

CA ELAP Certificate #1271

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:40

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B-8-6	W010189-01	Soil	06-Oct-00 11:05	06-Oct-00 18:40
B-8-11	W010189-02	Soil	06-Oct-00 11:20	06-Oct-00 18:40
B-10-6	W010189-03	Soil	06-Oct-00 12:40	06-Oct-00 18:40
B-10-11	W010189-04	Soil	06-Oct-00 12:55	06-Oct-00 18:40
B-2-6	W010189-05	Soil	06-Oct-00 13:45	06-Oct-00 18:40
B-2-11	W010189-06	Soil	06-Oct-00 14:15	06-Oct-00 18:40
B-1-6	W010189-07	Soil	06-Oct-00 15:25	06-Oct-00 18:40
B-1-11	W010189-08	Soil	06-Oct-00 16:00	06-Oct-00 18:40

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Charlie Westwater, Project Manager

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski **Reported:** 30-Oct-00 07:40

Hydrocarbons as Hydraulic Fluid by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-2-6 (W010189-05) Soil	Sampled: 06-Oct-00 13:45	Received: 0	6-Oct-00	18:40					
Hydraulic Fluid	ND	10	mg/kg	1	0J20014	20-Oct-00	23-Oct-00	DHS LUFT	
Surrogate: n-Pentacosane	<u>.</u>	123 %	50-	150	н	*	"	Ħ	
B-2-11 (W010189-06) Soil	Sampled: 06-Oct-00 14:15	Received:	06-Oct-0	0 18:40					
Hydraulic Fluid	ND	10	mg/kg	1	0J20014	20-Oct-00	23-Oct-00	DHS LUFT	
Surrogate: n-Pentacosane		133 %	50-	150	Ħ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	#	<u>"</u>	

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:40

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-8-6 (W010189-01) Soil	Sampled: 06-Oct-00 11:05	Received: 0	6-Oct-00	18:40					
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0Л10002	10-Oct-00	10-Oct-00	EPA 8015/8020	
Benzene	ND	0.0050	**	**		11	*	**	
Toluene	ND	0.0050		11	H	11	**	•	
Ethylbenzene	ND	0.0050	"	11	. "	н	#	11	
Xylenes (total)	ND	0.0050	4	u	н	Ħ	-	Ħ	
Methyl tert-butyl ether	ND	0.050	Ħ	н	Ħ	Ħ	•	Ħ	
Surrogate: a,a,a-Trifluorot	oluene	104 %	40-	140	"	п	"	"	
B-8-11 (W010189-02) Soil	Sampled: 06-Oct-00 11:20	Received:	06-Oct-0	D 18:40					
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0Л10002	10-Oct-00	11-Oct-00	EPA 8015/8020	
Benzene	ND	0.0050	Ħ	Ħ	#	Ħ	₩		
Toluene	ND	0.0050		H	•	н	•	**	
Ethylbenzene	ND	0.0050	π	H	•	н	#	#	
Xylenes (total)	ND	0.0050	#	н		н	*	**	
Methyl tert-butyl ether	ND	0.050	#	н	-	н	*	e e	
Surrogate: a,a,a-Trifluorote	oluene	102 %	40-	140	"	я	#	*	
B-10-6 (W010189-03) Soil	Sampled: 06-Oct-00 12:40	Received:	06-Oct-0	0 18:40					
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0J11002	11-Oct-00	11-Oct-00	EPA 8015/8020	
Benzene	ND	0.0050	n	**	. 11	Ħ	н	H	CC-3
Toluene	0.0058	0.0050	n	н	#	π	**	н	CC-3
Ethylb e nzene	0.0052	0.0050	н		**	"	#	н	
Xylenes (total)	0.016	0.0050		Ħ	H	**	Ħ	. н	CC-3
Methyl tert-butyl ether	ND	0.050	*		n	n	#	ĦÎ	
Surrogate: a,a,a-Trifluorot		91.3 %		140		"	"	,	

6747 Sierra Court Suite J

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:40

	Reporting							
Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
ed: 06-Oct-00 12:55	Received	: 06-Oct-	00 18:40					
ND	1.0	mg/kg	20	0J11002	11-Oct-00	11-Oct-00	EPA 8015/8020	
ND	0.0050	Ħ	11	#	н	"	**	CC-3
ND	0.0050	н	Ħ	**	Ħ	#	*	CC-3
0.0051	0.0050	Ħ	#	**	н	Ħ	н	
0.015	0.0050	. #	**		11	•	Ħ	CC-3
ND	0.050	н	"	**	#	*	***	•
	92.3 %	40-	140	"	"	"	"	
: 06-Oct-00 13:45 R	Received: 0	6-Oct-00	18:40					
ND	1.0	mg/kg	20	0J11002	11-Oct-00	11-Oct-00	EPA 8015/8020	
ND	0.0050	*	н	**	н	н	₩	CC-3
ND	0.0050		**	Ħ	*	н	H	CC-3
ND	0.0050	н	н	m	Ħ	*	н	
0.012	0.0050	n	**		н			CC-3
ND	0.050	*	Ħ	•		*	11	
	89.7%	40-	140	*		#	n	,
d: 06-Oct-00 14:15	Received:	06-Oct-0	0 18:40	٠				
ND	1.0	mg/kg	20	0J11002	11-Oct-00	11-Oct-00	EPA 8015/8020	
ND	0.0050	н	*	#		n	w	CC-3
ND	0.0050	н	77	Ħ	•	н	H	CC-3
ND	0.0050	Ħ	H	Ħ	n	#	н	
ND	0.0050	**		**	H	"	H	CC-3
ND	0.050	#	H	Ħ	н	#	*	
	82.3 %	40-	140	"	rt .	*	"	
	ed: 06-Oct-00 12:55 ND ND ND 0.0051 0.015 ND : 06-Oct-00 13:45 R ND ND ND ND ND ND ND ND ND ND ND ND ND	MD	ND 1.0 mg/kg	ND	ND	ND	ND	ND

Project: Chevron

Project Number: Chevron # 9-2029

Reported: 30-Oct-00 07:40

Dublin CA, 94568

Project Manager: Barbara Sieminski

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-1-6 (W010189-07) Soil	Sampled: 06-Oct-00 15:25	Received: 0	6-Oct-00	18:40					P-01
Purgeable Hydrocarbons	68	2.5	mg/kg	50	0J11002	11-Oct-00	11-Oct-00	EPA 8015/8020	
Benzene	0.25	0.013	"	Ħ	п	*		-	CC-3
Toluene	0.30	0.013		н	n	*	n	**	CC-3
Ethylbenzene	1.2	0.013	•	**	п	*	**	Ħ	
Xylenes (total)	0.64	0.013			**	**	•	#	CC-3
Methyl tert-butyl ether	0.33	0.12	*		•	₩	•	#	CC-3
Surrogate: a,a,a-Trifluorot	oluene	124 %	40-	140	"	"	"	"	
B-1-11 (W010189-08) Soil	Sampled: 06-Oct-00 16:00	Received:	06-Oct-0	0 18:40					
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0J11002	11-Oct-00	11-Oct-00	EPA 8015/8020	
Benzene	ND	0.0050	н _	n	11	π.	я	#	CC-3
Toluene	0.0073	0.0050	"	"	π	**	Ħ	77	CC-3
Ethylbenzene	ND	0.0050	н	#	n	Ħ	Ħ	**	
Xylenes (total)	0.0089	0.0050		Ħ	H	н	#	#	CC-3
Methyl tert-butyl ether	ND	0.050		*	*	Ħ	Ħ	it .	
Surrogate: a,a,a-Trifluorot	oluene	95.0 %	40-	-140	"	н	*	**	

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski **Reported:** 30-Oct-00 07:40

Total Metals by EPA 6000/7000 Series Methods

Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B-8-6 (W010189-01) Soil	Sampled: 06-Oct-00 11:05	Received: 0	6-Oct-00	18:40					
Lead	6.8	1.0	mg/kg	1	0J12013	12-Oct-00	12-Oct-00	EPA 6010A	
B-8-11 (W010189-02) Soil	Sampled: 06-Oct-00 11:20	Received:	06-Oct-0	0 18:40	<u></u>				
Lead	5.1	1.0	mg/kg	1	0Л12013	12-Oct-00	12-Oct-00	EPA 6010A	
B-10-6 (W010189-03) Soil	Sampled: 06-Oct-00 12:40	Received:	06-Oct-0	0 18:40					
Lead	7.7	1.0	mg/kg	1	0Л12013	12-Oct-00	12-Oct-00	EPA 6010A	
B-10-11 (W010189-04) Soi	il Sampled: 06-Oct-00 12:5	5 Received	: 06-Oct-	00 18:40					
Lead	4.6	1.0	mg/kg	1	0J12013	12-Oct-00	12-Oct-00	EPA 6010A	
B-2-6 (W010189-05) Soil	Sampled: 06-Oct-00 13:45	Received: 0	6-Oct-00	18:40					
Lead	6.9	1.0	mg/kg	1	OJ12013	12-Oct-00	12-Oct-00	EPA 6010A	
B-2-11 (W010189-06) Soil	Sampled: 06-Oct-00 14:15	Received:	96-Oct-0	0 18:40			<u></u>		·
Lead	3.9	1.0	mg/kg	1	OJ12013	12-Oct-00	12-Oct-00	EPA 6010A	
B-1-6 (W010189-07) Soil	Sampled: 06-Oct-00 15:25	Received: 0	6-Oct-00	18:40					
Lead	4.5	1.0	mg/kg	1	0Ј12013	12-Oct-00	12-Oct-00	EPA 6010A	
B-1-11 (W010189-08) Soil	Sampled: 06-Oct-00 16:00	Received:	06-Oct-0	0 18:40					
Lead	4.5	1.0	mg/kg	1	0J12013	12-Oct-00	12-Oct-00	EPA 6010A	

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:40

Hydrocarbons as Hydraulic Fluid by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 0J20014 - EPA 3550A										<u></u>	
Blank (0J20014-BLK1)	,		_	Prepared	: 20-Oct-0	0 Analyze	d: 26-Oct-	00	<u> </u>		
Diesel Range Hydrocarbons	ND	1.0	mg/kg								
Surrogate: n-Pentacosane	1.36		H	1.11		123	50-150		•		
LCS (0J20014-BS1)				Prepared	: 20-Oct-0	0 Analyze	d: 26-Oct-	-00			
Diesel Range Hydrocarbons	10.7	1.0	mg/kg	15.0		71.3	60-140	•	_		
Surrogate: n-Pentacosane	1.44	· · · · · · · · · · · · · · · · · · ·	#	1.11		130	50-150				
LCS Dup (0J20014-BSD1)		4	•	Prepared	: 20-Oct-0	0 Analyze	d: 26-Oct	-00			
Diesel Range Hydrocarbons	10.6	1.0	mg/kg	15.0	-	70.7	60-140	0.939	40		
Surrogate: n-Pentacosane	1.47		н	1.11		132	50-150				
Matrix Spike (0J20014-MS1)	S	ource: W0104	146-01	Prepared	: 20-Oct-0	0 Analyze	:d: 26-Oct	-00			
Diesel Range Hydrocarbons	10.3	1.0	mg/kg	15.0	1.6	58.0	50-150				
Surrogate: n-Pentacosane	1.59		н	1.11		143	50-150				
Matrix Spike Dup (0J20014-MSD1)	446-01	Prepared: 20-Oct-00 Analyzed: 26-Oct-00									
Diesel Range Hydrocarbons	11.9	1.0	mg/kg	15.0	1.6	68.7	50-150	14.4	50		
Surrogate: n-Pentacosane	1.57	- ,	n	1.11		141	50-150				

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:40

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J10002 - EPA 5030B [MeOH]										
Blank (0J10002-BLK1)				Prepared	& Analyz	ed: 10-Oc	t-00		<u>.</u> .	<u>.</u> .
Purgeable Hydrocarbons	ND	1.0	mg/kg							
Benzene	ND	0.0050	**							
Toluene	ND	0.0050	Ħ							
Ethylbenzene	ND	0.0050	#				•			
Xylenes (total)	ND	0.0050	H							
Methyl tert-butyl ether	ND	0.050	,,							
Surrogate: a,a,a-Trifluorotoluene	0.654		"	0.600		109	40-140			
LCS (0J10002-BS1)		•		Prepared:	10-Oct-0) Analyze	d: 11-Oct-	00		
Benzene	0.612	0.0050	mg/kg	0.800		76.5	50-150			
Toluene	0.650	0.0050	•	0.800		81.2	50-150			
Ethylbenzene	0.696	0.0050	*	0.800		87.0	50-150			
Xylenes (total)	2.04	0.0050	•	2.40		85.0	50-150			
Surrogate: a,a,a-Trifluorotoluene	0.688		н	0.600		115	40-140			
Matrix Spike (0J10002-MS1)	Se	ource: W0097	35-14	Prepared:	10-Oct-0	0 Analyze	d: 11-Oct-	00		
Benzene	0.656	0.0050	mg/kg	0.800	ND	82.0	50-150			
Toluene	0.714	0.0050	,,	0.800	ND	89.2	50-150			
Ethylbenzene	0.774	0.0050		0.800	ND	96.7	50-150			
Xylenes (total)	2.33	0.0050	*	2.40	ND	97.1	50-150			
Surrogate: a, a, a-Trifluorotoluene	0.672		#	0,600		112	40-140			
Matrix Spike Dup (0J10002-MSD1)	S	ource: W00 97	735-14	Prepared	: 10-Oct-0	0 Analyze	d: 11-Oct-	00		
Benzene	0.638	0.0050	mg/kg	0.800	ND	79.8	50-150	2.78	20	
Toluene	0.698	0.0050	н	0.800	ND	87.3	50-150	2.27	20	•
Ethylbenzene	0.760	0.0050	н .	0.800	ND	95.0	50-150	1.83	20	
Xylenes (total)	2.25	0.0050		2.40	ND	93.7	50-150	3.49	20	
Surrogate: a, a, a-Trifluorotoluene	0.664		"	0.600		111	40-140	-		-

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:40

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0J11002 - EPA 5030B [MeOH]										
Blank (0J11002-BLK1)			*	Prepared	& Analyz	ed: 11-Oc	t-00			
Purgeable Hydrocarbons	ND	1.0	mg/kg							
Benzene	ND	0.0050	**							
Toluene	ND	0.0050	**				•			
Ethylbenzene	ND	0.0050	н							
Xylenes (total)	ND	0.0050	н —				•			
Methyl tert-butyl ether	ND	0.050	"							
Surrogate: a, a, a-Trifluorotoluene	0.634		И	0.600	-	106	40-140			
LCS (0J11002-BS1)				Prepared	& Analyz	ed: 11-Oc	t-00			
Benzene	0.614	0.0050	mg/kg	0.800		76.8	50-150			
Toluene	0.663	0.0050	**	0.800	•	82.9	50-150			
Ethylbenzene	0.716	0.0050	**	0.800		89.5	50-150			
Xylenes (total)	2.11	0.0050	#	2.40		87.9	50-150			
Surrogate: a, a, a-Trifluorotoluene	0.661			0.600		110	40-140			
Matrix Spike (0J11002-MS1)	So	ource: W0101	20-02RE	1Prepared	& Analyz	ed: 11-Oct	t-00			
Benzene	0.615	0.0050	mg/kg	0.800	ND	76.9	50-150			
Toluene	0.665	0.0050	ч	0.800	ND	83.1	50-150			
Ethylbenzene	0.712	0.0050	**	0.800	ND	89.0	50-150			
Xylenes (total)	2.14	0.0050	"	2.40	ND	89.2	50-150			
Surrogate: a,a,a-Trifluorotoluene	0.640		Ħ	0.600		107	40-140			
Matrix Spike Dup (0J11002-MSD1)	Se	ource: W0101	20-02RE	1Prepared	& Analyz	ed: 11-Oct	t-00			
Benzene	0.583	0.0050	mg/kg	0.800	ND	72.9	50-150	5.34	20	
Toluene	0.636	0.0050	Ħ	0.800	ND	79.5	50-150	4.46	20	
Ethylbenzene	0.683	0.0050	Ħ	0.800	ND	85.4	50-150	4.16	20	
Xylenes (total)	2.05	0.0050	#	2.40	ND	85.4	50-150	4.30	20	
Surrogate: a, a, a-Trifluorotaluene	0.634		11	0.600		106	40-140			

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 30-Oct-00 07:40

Total Metals by EPA 6000/7000 Series Methods - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J12013 - EPA 3050B										
Blank (0J12013-BLK1)				Prepared	& Analyz	ed: 12-Oc	t-00			
Lead	ND	1.0	mg/kg							
LCS (0J12013-BS1)				Prepared	& Analyz	ed: 12-Oc	t-00			
Lead	49.5	1.0	mg/kg	50.0		99.0	80-120			1
LCS Dup (0J12013-BSD1)				Prepared	& Analyz	ed: 12-Oc	t-00			
Lead	51.8	1.0	mg/kg	50.0		104	80-120	4,54	20	
Matrix Spike (0J12013-MS1)	. So	urce: W0101	97-01	Prepared	& Analyz	ed: 12-Oc	t-00			_
Lead	53.8	1.0	mg/kg	50.0	6.5	94.6	80-120			_
Matrix Spike Dup (0J12013-MSD1)	So	urce: W0101	97-01	Prepared	& Analyz	ed: 12-Oc	t-00			
Lead	53.4	1.0	mg/kg	50.0	6.5	93.8	80-120	0.746	20	

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-2029

Project Manager: Barbara Sieminski

Reported:

30-Oct-00 07:40

Notes and Definitions

CC-3 Continuing Calibration indicates that the quantitative result for this analyte includes a greater than 15% degree of uncertainty. The value as reported is within method acceptance.

P-01 Chromatogram Pattern: Gasoline C6-C12

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Chain-of-Custody-Record Fax copy of Lab Report and COC to Chevron Contact: M No Thamas Baulos 9-2029 Chevron Contact (Name) _ Chevron Facility Number ... 925 \ 842-8398 Facility Address 890W. Mac Arthur Blod, Dolland Service WOI0189 Consultant Project Number 346503.01 Chevron U.S.A. inc. Laboratory Name ... Consultant Hame Gettler-Ryan Inc P.O. BOX 5004 Laboratory Release Number Samplee Collected by (Name) Bushovo Address 6747 Signo Et, StcG, Dublin, CA94768 San Ramon, CA 94583 Collection Date 10/06/00
Signature 10/06/00 Project Contact (Name) Barbara Sieminski FAX (415)842-9591 (Phone) (925) 551-78(Fox Nymber) (925)571-7888 Analyses To Be Performed Ar Charcool Purpeoble Organics (8240) Extractoble Organics (8270) Purgeable Aromatica (8020) BIEX + TPH GAS (8020 + 8015) Purpedble Halocart (8010) TPH Dissel (8015) Old and Grease (5520) 000 Remarks D 11:05 OIA 13-8-6 OZA 11:20 B8-11 11:35 B8-16 10:30 B10-4 × 12:40 03A B10-6 hold 12:55 B10-10 04-A 12:55 B10-11 13:05 B10-16 hulid B2-4 13:45 B2-6 05A 06 A B2-11 Wold 14:30 B2-16 Relinquished By (Signoture) Sewil G-R Turn Around Time (Circle Choice) Date/Time /29 Received By (Signature) Organization Date/Time 10/06/00 24 Hre. 45 Hrs. Organization Date/Time Received By (Signature) Date/Time Organization Natingulahad By (Signature) 6 Days 10 Days Realisyed For Laboratory By (Signature) Date/Time Date/Time As Contracted Organization

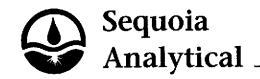
 Yes <u>Chain-of-Custody-Record</u> Fax copy of Lab Report and COC to Chevron Contact: No Thomas Bauhs 9-2029 Chevron Facility Number... Chevron Contact (Name) ... FOOTHY Address 890 W. Mac Arthur Blord, Delclan (Phone) (925) 842-8898 Laboratory Name Service W010189 Chevron U.S.A. Inc. Consultant Project Number 346503.01 P.O. BOX 5004 Consultant Name Gettler - Ryan Laboratory Release Number Samples Collected by (Name) Barbara Siemuski Address 6747 Siervact, Ste G. Dublin CA94568

Project Contact (Name) Barbara Sieminski

(Phone) (925) 551-755 (Fax Number) (925) 551-7888 San Ramon, CA 94583 FAX (415)842-9591 Collection Date 10/06/00 Signature Pricewing A = AF Charcool Analyses To Be Performed BIEX + TPH CAS //// Purgeable Arametica (8020) Purgeable Organica (8240) Extractable Organica (8270) Purgaable Halocarbons (5010) Oil and Gream (5520) 1PH Dissel (8015) ... 00 D Remarks Y٩ X **boon** \mathfrak{D} 13.10 X 12:50 OZA 16:00 OBA X 16:20 14:25 Date/Time /8/39 Received By (Signature) Date/Time Turn Around Time (Circle Cholos) Organization Relinquiched By (Signature) Organization Barbara Silewingle 10/06/00 24 Hre. 48 Hrs. Received By (Signature) Organization Date/Time Relinquiched By (Signature) Date/Time Organization 6 Days Realeyed For Laboratory By (Signature) Date/Time Date/Time Philod By (Signature) Organization As Contracted

10 October, 2000

Barbara Sieminski Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin, CA 94568


RE: Chevron Sequoia Report W010190

Enclosed are the results of analyses for samples received by the laboratory on 09-Oct-00 16:45. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Charlie Westwater Project Manager

CA ELAP Certificate #1271

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 10-Oct-00 18:39

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP-A,B,C,D	W010190-01	Soil	09-Oct-00 15:30	09-Oct-00 16:45

Sequoia Analytical - Walnut Creek

Charlie Westwater, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 1 of 6

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029

Project Manager: Barbara Sieminski

Reported:

10-Oct-00 18:39

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP-A,B,C,D (W010190-01) Soil	Sampled: 09-Oct-00	15:30 Rece	ived: 09-0	Oct-00 16:4	15				P-04
Purgeable Hydrocarbons	80	10	mg/kg	200	0Ј09010	09-Oct-00	10-Oct-00	EPA 8015/8020	
Benzene	0.25	0.050	*1	"	. ••	**		**	
Toluene	0.24	0.050	"	**	**	11	Ħ	Ħ	
Ethylbenzene	1.0	0.050	#	п	**	Ħ	II .	#	
Xylenes (total)	0.70	0.050	11	H		Ħ	n	"	
Methyl tert-butyl ether	ND	0.50	Ħ	н	et	#	"	11	
Surrogate: a.a.a-Trifluorotoluene		132 %	40-	140		,,	"		

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029

Reported: 10-Oct-00 18:39

Project Manager: Barbara Sieminski

Total Metals by EPA 6000/7000 Series Methods

Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP-A,B,C,D (W010190-01) Soil	Sampled: 09-Oct-00 15:	:30 Recei	ved: 09-0	Oct-00 16:4	5				
Lead	6.5	1.0	mg/kg	1	0Л10008	10-Oct-00	10-Oct-00	EPA 6010A	

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 10-Oct-00 18:39

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J09010 - EPA 5030B [P/T]										
Blank (0J09010-BLK1)				Prepared	& Analyz	ed: 09-Oc	t-00			
Purgeable Hydrocarbons	ND	1.0	mg/kg	• •						
Benzene	ND	0.0050	*							
Toluene	ND	0,0050	•							
Ethylbenzene	ND	0.0050	n							
Xylenes (total)	ND	0.0050	**							
Methyl tert-butyl ether	ND	0.050	•							
Surrogate: a, a, a-Trifluorotoluene	0.634		"	0.600		106	40-140	-		
LCS (0J09010-BS1)				Prepared	& Analyz	ed: 09 - Oc	t-00		-	
Benzene	0.684	0.0050	mg/kg	0.800		85.5	50-150			
Foluene	0.712	0.0050	Ħ	0.800		89.0	50-150			
Ethylbenzene	0.742	0.0050	n	0.800		92.7	50-150			
Xylenes (total)	2.22	0.0050	н	2.40		92.5	50-150			
Surrogate: a,a,a-Trifluorotoluene	0,672		"	0.600		112	40-140			
Matrix Spike (0J09010-MS1)	So	ource: W0100	73-02	Prepared	& Analyz					
Benzene	0.612	0.0050	mg/kg	0.800	ND	76.5	50-150			
Tohuene	0.650	0.0050	n	0.800	ND	81.2	50-150			
Ethylbenzene	0.692	0.0050	н	0.800	. ND	86.5	50-150			
Xylenes (total)	2.04	0.0050	•	2.40	ND	85.0	50-150			
Surrogate: a,a,a-Trifluorotoluene	0.552		77	0.600		92.0	40-140			
Matrix Spike Dup (0J09010-MSD1)	Se	ource: W0100	73-02	Prepared	& Analyz	ed: 09-Oc	ţ-00			
Benzene	0,606	0.0050	mg/kg	0.800	ND	75.7	50-150	0.985	20	
Tohiene	0.644	0.0050	-	0.800	ND	80.5	50-150	0.927	20	
Ethylbenzene	0.686	0.0050	**	0.800	ND	85.7	50-150	0.871	20	
Xylenes (total)	2.03	0.0050	**	2.40	ND	84.6	50-150	0.491	20	
Surrogate: a, a, a-Trifluorotoluene	0.522		n	0.600		87.0	40-140			

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-2029 Project Manager: Barbara Sieminski Reported: 10-Oct-00 18:39

Total Metals by EPA 6000/7000 Series Methods - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0J10008 - EPA 3050B										
Blank (0J10008-BLK1)				Prepared	& Analyz	ed: 10-Oc	t-00			
Lead	ND	1.0	mg/kg							
LCS (0J10008-BS1)				Prepared	& Analyz	ed: 10-Oc	t-00			
Lead	54.0	1.0	mg/kg	50.0		108	80-120			· · · · ·
LCS Dup (0J10008-BSD1)				Prepared	& Analyz	ed: 10-Oc	t-00			
Lead	50.5	1.0	mg/kg	50.0		101	80-120	6.70	20	•
Matrix Spike (0J10008-MS1)	So	ource: W0101	91-01	Prepared	& Analyz	ed: 10-Oc	t-00			
Lead	49.5	1.0	mg/kg	50.0	9.5	80.0	80-120			· · · · ·
Matrix Spike Dup (0J10008-MSD1)	So	ource: W0101	91-01	Prepared	& Analyz	ed: 10-Oc	t-00			
Lead	60.0	1.0	mg/kg	50.0	9.5	101	80-120	19.2	20	<u>-</u>

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-2029

Project Manager: Barbara Sieminski

Reported: 10-Oct-00 18:39

Notes and Definitions

P-04 Chromatogram Pattern: Gasoline C6-C12 + Unidentified Hydrocarbons C6-C12

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Chain-of-Custody-Record Fax copy of Lab Report and COC to Chevron Contact: M'No Chevron Contact (Hame) Thomas Baulis Chevron Facility Number 9-2029 Foolity Address 890 W. MacArthur Blood Dalcland (Phone) (925) 842 - 8898 Loboratory Name Seguesie WC10190 Chevron U.S.A. Inc. Consultant Project Number. 346503.01 P.O. BOX 5004 Consultant Name Getter-Ryan The Laboratory Release Number Samples Collected by (Home) Barbara Sieminski San Ramon, CA 94583 MARON 6747 Sierra Cf. SteG. Dublin CA 94568 FAX (415)842-9591 Project Contact (Name) Barbara Sieminski Collection Date 10/09/00 (Phone) (925) 551-7555 (Fex Number) (925) 551-7888 (\$020 + \$015) TPH Glass (\$015) Off and Grease (\$520) Analyses To Be Performed Purgeable Aromotice (8020)
Purgeable Organics (8240)
Extractable Organics (8270) Purgeable Halocarbara (2010) 900 Remarks 15:30 OIA-D 15:32 X 15:34 15:36 Date/Time 16 45 Turn Around Time (Circle Cholce) Received By (Signature) Organization Date/Time Relinquished By (Signature) Organization 10/09/00 Derber Fler 24 Hz. 48 Hrs. Date/Time Organization Dote/Ilme Received By (Signature) Relinguished By (Signature) Organization 6 Days 10 Doye Recieved For Laboratory By (Signature) Date/Time Relinquished By (Signature) Organization As Contracted Konald Coensen