RO-2430

February 26, 2003

Alameda County

MAR 0 4 2003

Mr. Scott Seery Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Environmental Health

Re: Fourth Quarter 2002 Groundwater Monitoring Report

ARCO Service Station # 4977 2770 Castro Valley Blvd Castro Valley, California **URS Project # 38486124**

Dear Mr. Seery

On behalf of Atlantic Richfield Company (ARCO - an affiliated company of the Group Environmental Management Company), URS Corporation (URS) is submitting the Fourth Quarter 2002 Groundwater Monitoring Report at ARCO Service Station # 4977, located at 2770 Castro Valley Blvd, Castro Valley, California.

If you have any questions regarding this submission, please call (510) 874-3280.

Sincerely,

URS CORPORATION

ett Reline

Scott Robinson Project Manager

Steve Krcik, R.G. Project Geologist

Enclosure:

Fourth Quarter 2002 Groundwater Monitoring Report

cc: Mr. Paul Supple, ARCO, PO Box 6549, Moraga, California 94570

Atlantic Richfield Company (a BP affiliated company)

P.O. Box 6549 Moraga, California 94570 Phone: (925) 299-8891 Fax: (925) 299-8872

February 27, 2003

Re: Fourth Quarter 2002 Groundwater Monitoring Report ARCO Station #4977 2770 Castro Valley Rd Castro Valley, CA

I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct.

Submitted by:

Paul Supple

Environmental Business Manager

FOURTH QUARTER 2002 GROUNDWATER MONITORING

ARCO SERVICE STATION #4977 2770 CASTRO VALLEY BLVD CASTRO VALLEY, CALIFORNIA

Prepared for Atlantic Richfield Company

February 26, 2003

Date:	February 26, 2003
Quarter:	4Q 02

ATLANTIC RICHFIELD COMPANY QUARTERLY GROUNDWATER MONITORING REPORT

Former Facility No.:	4977 Address:	2770 Castro Valley Blvd, Castro Valley, CA
ARCO Environmental En	gineer:	Paul Supple
Consulting Co./Contact P	erson:	URS Corporation / Scott Robinson
Consultant Project No.:		38486124
Primary Agency:		ACHCSA

WORK PERFORMED THIS QUARTER

(Fourth - 2002):

- 1. Performed fourth quarter 2002 groundwater monitoring event on December 16, 2002.
- 2. Prepared third quarter 2002 groundwater monitoring report.

WORK PROPOSED FOR NEXT QUARTER

(First - 2003):

- 1. Prepare and submit fourth quarter 2002 groundwater monitoring report.
- 2. Perform first quarter 2003 groundwater monitoring event.

Current Phase of Project:	GW monitoring/sampling
Frequency of Groundwater Sampling:	Wells MW-1 through MW-3
Frequency of Groundwater Monitoring:	Quarterly
Is Free Product (FP) Present On-Site:	No
Current Remediation Techniques:	Natural Attenuation
Approximate Depth to Groundwater:	6.76 ft (MW-3) to 8.55 ft (MW-1)
Groundwater Gradient (direction):	Southeast
Groundwater Gradient (magnitude):	0.029 feet per foot

DISCUSSION:

TPH-g was detected in all three wells at concentrations ranging from 77 μ g/L (MW-1) to 17,000 μ g/L (MW-2). Benzene was detected in all three wells at concentrations ranging from 1.8 μ g/L (MW-1) to 1,000 μ g/L (MW-2). MTBE was detected in all three wells at concentrations ranging from 42 μ g/L (MW-1) to 980 μ g/L (MW-2).

ATTACHMENTS:

- Table 1 Groundwater Elevation and Analytical Data
- Table 2 Summary of Groundwater Flow Direction and Gradient
- Table 3 Oxygenate Analytical Data
- Figure 1 Groundwater Elevation Contour and Analytical Summary Map December 16, 2002
- Attachment A Field Procedures and Field Data Sheets
- Attachment B Laboratory Procedures, Certified Analytical Reports and Chain-of-Custody Records
- Attachment C EDCC Report/ Geowell Submittal Confirmation

Table 1 Groundwater Elevation and Analytical Data

ARCO Service Station #4977 2770 Castro Valley Road Castro Valley, California

Sample ID	Date	Top of Casing Elevation (ft amsl)	Depth to Groundwater (ft. btc)	Groundwater Elevation (ft amsl)	TPH-g (mg/L)	Benzene (mg/L)	Toluene (mg/L)	Ethyl- benzene (mg/L)	Total Xylenes (mg/L)	MTBE (mg/L)
MW-1	04/19/02	161.11	11.21	149.90	660	12	1.3	4.3	0.80	38
	09/27/02		9.29	151.82	130	7.7	0.87	5.4	0.79	39
	12/16/02	vic	8.55	152.56	77	1.8	ND<0.50	0.69	ND<1.0	42
MW-2	04/19/02	161.87	6.59	155.28	28,000	970	120	860	6,900	760
	09/27/02		7.18	154.69	17,000	1,400	ND<50	1,200	3,700	1,400
	12/16/02	*	7.31	154.56	17,000	1,000	ND<50	980	3,300	980
MW-3	04/19/02	162.14	6.94	155.20	1,200	29	1.1	43	62	1,700
	09/27/02		8.26	153.88	740	- 7.8	ND<2.5	6.8	4.4	1,100
	12/16/02	*	6.76	155.38	1,200	13	ND<10	170	88	910

ams1 = above mean sea level

btc = below top of casing

TPHg = Total petroleum hydrocarbons in the gasoline range (C5-C9).

MTBE = Methyl tertiary butyl ether analyzed by EPA Method 8021B unless otherwise noted.

mg/L = micrograms per liter

ND< = Not detected at or above laboratory reporting limits

Source: The data within this table collected prior to September 2002 was provided to URS by Group Environmental Management Company and their previous consultants. URS has not verified the accuracy of this information.

^{* =}TPH, BTEX, and MTBE analyzed by EPA Method 8260B beginning on 4th Quarter Sampling event (12/16/02)

Table 2 Groundwater Flow Direction and Gradient

ARCO Service Station #4977 2770 Castro Valley Road Castro Valley, California

Date Measured	Average Flow Direction	Average Hydraulic Gradient
04/19/02	Southwest	0.038
09/27/02	Southwest	0.021
12/16/02	Southeast	0.029

Source: The data within this table collected prior to September 2002 was provided to URS by Group Environmental Management Company and their previous consultants. URS has not verified the accuracy of this information.

Table 3
Oxygenate Analytical Data

ARCO Service Station #4977 2770 Castro Valley Boulevard Castro Valley, California

								1,2-Dichloro	- 1,2 Dibromo-
Well	Date	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	ethane	ethane (EDB)
Number	Sampled	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)
MW-1	12/16/02	ND<50	ND<5.0	42	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
MW-2	12/16/02	ND<5,000	ND<500	980	ND<50	ND<50	ND<50	ND<50	ND<50
MW-3	12/16/02	ND<1,000	ND<100	910	ND<10	ND<10	12	ND<10	ND<10

Note = All fuel oxygenate compounds analyzed using EPA Method 8260B

TBA = tert-Butyl alcohol

MTBE = Methyl tert-butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tert butyl ether

TAME = tert-Amyl methyl ether

µg/L = micrograms per liter

Well

(E) TRASH ENGLOSEIN

GROUNDWATER ELEVATION CONTOUR (FT/MSL)

APPROXIMATE GROUNDWATER FLOW DIRECTION AND GRADIENT

SITE MAP ADAPTED FROM DELTA ENVIRONMENTAL FIGURES. SITE DIMENSIONS AND FACILITY LOCATIONS NOT VERIFIED. NOTE:

30

SCALE IN FEET

Project No. 38486124

Arco Service Station #4977 2770 Castro Valley Boulevard Castro Valley, California

GROUNDWATER ELEVATION CONTOUR AND ANALYTICAL SUMMARY MAP Fourth Quarter 2002 (December 16, 2002)

FIGURE

60

(E) CONC, DRIVENAY

(E) CONC. SIDENALK

Wisteria Street

MW-2

154.56 17,000 1,000 980

⊕ B-2

(E) PLANTER

1

ATTACHMENT A FIELD PROCEDURES AND FIELD DATA SHEETS

FIELD PROCEDURES

Sampling Procedures

The sampling procedure for each well consists first of measuring the water level and depth to bottom, and checking for the presence of free phase petroleum product (free product), using either an electronic indicator and a clear TeflonTM bailer or an oil-water interface probe. Wells not containing free product are purged approximately three casing volumes of water (or until dewatered) using a centrifugal pump, gas displacement pump, or bailer. Equipment and purging method used for the current sampling event is noted on the attached field data sheets. During purging, temperature, pH, and electrical conductivity are monitored to document that these parameters are stable prior to collecting samples. After purging, water levels are allowed to partially (approximately 80%) recover. Groundwater samples (both purge and no purge) are collected using a Teflon bailer, placed into appropriate Environmental Protection Agency- (EPA) approved containers, labeled, logged onto chain-of-custody records, and transported on ice to a California State-certified laboratory. Wells with free product are not sampled and free product is removed according to California Code of Regulation, Title 23, Div. 3, Chap. 16, Section 2655, UST Regulations.

WELL GAUGING DATA

Project #	0212	6-RH2	Date	2/16/02		Client	BP/Arc	0 497	7
	•							•	
Site	2770	Castro Va	llen Blud.	Casho V	allen	· · · · ·			-

Well ID	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)		Volume of Immiscibles Removed (ml)	Depth to water	Depth to well bottom (ft.)	Survey Point: TOB or 700	
MW~1	4					8.55	15.10		
mw-z	4					7.31	14.81		
mu-3	4					6.76	15.11	4	
	<u> </u>								
•						ь			
				ø			P.		er v
		3		j. ja	<u> </u>				•
<u> </u>			r	•6					
							Ņ.		
	<u> </u>								مجبره في
3									
								ا مورون برا برا	34 · •
1						v.		: ∄	

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

ARCO / BP WELL MONITORING DATA SHEET

BTS #: 0	21216-RH	2-		Station# 497	7			
Sampler:	Ryan Ho	instedt:		Date: 12/16/02				
Well I.D.	•			Well Diameter	and the			
Total We		15.10		Depth to Water: 8.55				
Depth to	Free Prodi			Thickness of F	ree Product (feet);	<u>-</u>		
Reference	ed to:	PVD	Grade	D.O. Meter (if	req'd): (YSI) HACH			
	Well Diame (" 2" 3"	ler	0.04 0.16	4" 0.6 6" 1.4				
Purge Meth	D End Other:	Bailer isposable Bai Middleburg etric Submers extraction Pun	iDie np	\	Bailer Disposable Bailer Extraction Port that water level is below the top			
Top of Scre	en:		of screen. Otherwis	· -				
	U,2 I Case Vol	5 ume (Gals.)	X		2.75 Gals. culated Volume			
Time	Temp ("F)	pН	Conductivity (mS of AS)	Gals. Removed:	Observations			
1043	63.1	6.9	1516	4.25	cloudy, streen			
1044	63.1	6.9	1403	8.5	clear			
	well de	wated	Q 9.0 591		DTW= 13.35			
1055	64.7	6.9	1528	9.0	clear, Dow= 13.05			
Did well	dewater?	Yes)	No	Gallons actuall	y evacuated: q.o			
Sampling	Time:)55	-	Sampling Date	12/16/02			
Sample I.	D.: mw	- 1		_	Pace Sequoja Other			
Analyzed	for: 🌃	I-G) p(EX	MTBE TPH-D	Other: oxygenate	s, 1,2-DCA + EDB (8260)			
D.O. (if r	eq'd):		Pre-purge:	mg/L	Post-purge:	^{mg} /∟		
O.R.P. (i	f req'd):		Pre-purge:	mV	Post-purge:	mV		

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

ARCO / BP WELL MONITORING DATA SHEET

BTS #: 021216-RHZ	Station # 4977			
Sampler: Ryan Hanstedt	Date: 12/16/02			
Well I.D.: mw- 2 Well Diameter: 2 3 4 6 8				
Total Well Depth: 14.81 Depth to Water: 7.31				
Depth to Free Product:	Thickness of Free Product (feet):			
Referenced to: Fvo Grade	D.O. Meter (if req'd): YSI HACH			
Well Diameter Multiplier 1" 0.04 2" 0.16 3" 0.37 Purge Method: Bailer Disposable Bailer Middleburg Electric Submersible Extraction Pump Other:	Well Diameter Multiplier 4" 0.65 6" 1.47 Other radius² * 0.163 Sampling Method: Bailer Disposable Bailer Extraction Port Other:			
of screen. Other 1 Case Volume (Gals.) Specified	is a no-purge, confirm that water level is below the top rwise, the well must be purged.			
Time Temp (°F) pH (mS or µS)				
1107 69.3 6.9 1126	4.9 clear			
1108 70.3 6.8 1121	9.8			
1107 Well de watered @12.0 gel	120 DTW=12.87			
1115	07w=12.52, clear			
Did well dewater? (Yes) No	Gallons actually evacuated: 12.0			
Sampling Time: 1115	Sampling Date: 12/16/02			
Sample I.D.: ww-Z	Laboratory: Pace Sequoja Other			
Analyzed for: TH-G MEX MILE TPH-	D Other: oxygenotes, 1,2-DCA + EDB (8260)			
D.O. (if req'd): Pre-pur	ge: "118/L Post-purge: \ \.9 \ \frac{10g}{L}			
O.R.P. (if req'd): Pre-pur	ge: mV Post-purge: mV			

Blaine Tech: Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

ARCO / BP WELL MONITORING DATA SHEET

BTS #: 021216-RHZ				Station # 4977			
	Ryan Ha			Date: 12/16/02			
	mw- 3	•		Well Diameter: 2 3 4 6 8			
Total Wel	l Depth:	15.11		Depth to Water	E 6.76		
Depth to I	Free Produ				ree Product (feet):		
Reference	d to:	FVO	Grade	D.O. Meter (if	req'd): (Ysı)	НАСН	
Purce Metho	Well Diamet 1" 2" 3"	- , -	0.04 0.16	4" 0.6 6" 1.4	17 ²		
Purge Metho	Di E <u>le</u>	isposable Bail Middleburg ente Submers extraction Pum			Batter Bisposable Bailer Extraction Port		
Top of Scree	en:	 	٠.,		that water level is below the	e top	
of screen. Otherwise, the well must be purged. Substitute							
Time	Temp (°F)	pН	Conductivity (mS or (TS)	Gals. Removed	Observations	-	
1131	68.7	6.9	915	5.4	cloudy		
1132	70.7	6.9	913	70.8	torbid	······································	
1133	71.3	6.8	914	16.2	И		
				•			
Did well	dewater?	Yes (No)	Gallons actuall	y evacuated: 16.2	:	
Sampling	Time: w	10		Sampling Date	12/16/02		
Sample I.	D.: տա	-3		Laboratory:	Pace Sequo a Oth	ier	
Analyzed	for: Te	ig MEX	мтве трн-d		s, 12-DCA + EDB (824		
D.O. (if r	eq'd):		Pre-purge:	TIE/L	Post-purge:	7.3 mg/L	
O.R.P. (if			Pre-purge:		Post-purge:	mV.	
Blaine T	ech Serv	ices, Inc	. 1680 Rogers	Ave., San Jo	se, CA 95112 (408) 573-0555	

agc	af	Ĺ
-----	----	---

	警 bn	(Chain					f Cu	sto	dy	Re	cor	ď						On-site	Tim	e:			Tem	<u>δ:</u>			
963		Project	t Na	ıme	<u> </u>									_				Off- site	Tim	1e:			Tem	p:			
• 4		BP BU	/GE	ĽΜ	CO	Portfolio:								_				Sky Con	ditio	15:							
	·	BP Lab	ora	tory	Cor	atract Number	::											Meteoro	logica	al Ev	ents:						
Date:	12 16 02	_		•		Requested Du	Date	(mm	/dd/yy)		-					•		Wind Sp	eed:			A	Dire	ction:			
Send To:	***************************************					BP/GEM Facility	y No.:										Ī	Consultant/Contractor: URS									
_ab Name	·····					BP/GEM Facility		SS:	2770	Cast	ro Va	lley R	d, C	astro '	Valle	v. CA		Address	: 50	0 12	th St	., Ste	e, 200				
ab Addre	****					Site ID No.				O 49													609-40	14			
	Morgan Hill, CA 95	037				Site Lat/Long				1								-mail E	DD:	sye	d_rel	han@	gursco	orp.co:	n		
					(California Globa	1 ID#:_	\supset										Consult	int/Co	מחותכ	tor P	rojec	t No.:	J5-000	04977.01 00427		
ab PM:	Latonya Pelt					BP/GEM PM Co			PAI	ULSI	UPPL	E													0-874-3268		
Tele/Fax:	408-776-9600 / 408	-782-6308	3			Address:												Consult	int/Co	ontrac	tor P	M:	Scott	Robins	son		
	pe & QC Level: Send ED																	nvoice to	: Cor	isulta	nt/Cor	ntracto	or arŒ	P/GEM	(Tircle one)		
	Account No.:		-			Tele/Fax:						. **			•	•		BP/GEN	4 Wo	rk Re	lease	No:	INTRI	M -504	167		
•	Order No:			Mat	гiх				T I	reser	vativ	'es						ted Ans	llysis				1				
item No.	Sample Description	Time	Soil/Solid	Water/Liquid	Sediments Air	Laboratory No.	No of containers		Unpreserved H.SO.	HNO,	HCI			TPH-G/BTEX (8015/8021)	TPH -D (8015)	MTBE (8021) MTBE, TAME, ETBE	DIPE, TBA (8260)	1,2-DCA & EDB (8260)					Sam		int Lat/Long and omments		
1	MW-1	1055		X			4	,			X			X		×		Х				\top					
2	mw-2	1115		X			6				×			×		\ \ \ \ \		×									
3	mv-3	1146		X			6	\neg		1	'n			7		X		*			T	\top					
4	14.0	11.00					— —		+	1	1	1	\neg			- ^			<u> </u>	 	\top	1	-		- 		
5		 			-	1		╁	1	 						 	+		\top	 	1	+	1				
- 6		-	1	╁─┤	-			╢	+		1	\vdash				_	\dashv		+	+	+-	+	╂──		· ·		
		╂						╫┈		- 	 -		_				+			+	+	+	 				
		<u> </u>	-			1		-	-	-		1 1								-							
8		ļ	<u> </u>	igspace				_ _		<u> </u>	<u> </u>								-		┷	—	-				
9		<u> </u>	↓_			·		ــــــــــــــــــــــــــــــــــــــ		<u> </u>	<u> </u>					<u> </u>			4	↓			ـــــــ		***		
10			1	<u>. </u>							<u>L. </u>								<u> </u>			<u> </u>					
Sampler's	Name: Rush	uns feet	+		R	lelioquished By / Af	Filiation					Date		Time	- 1	Accepto	d By	/ Affilia:	tion				Date		Time		
		ne Fec			_	3-40		-5													.,						
hipmen		, , , , , , , , , , , , , , , , , , , 				7	7 5			 -		 	\neg		_	•••							1				
	t Method:				_								\neg										1				
	Tracking No:													<u> </u>									1 -				
	structions: Address In	voice to Bl	P/GE	M b	ut sen	d to URS for app	roval					ц			N												
ustody.	Seals In Place Yes	_No			Temp	perature Blank Y	es	No			Coo	ler Te	mpa	rature	on R	eceip	t	°F/C		1	пр Е	31ank	c Yes_	N	0		

WELLHEAD INSPECTION CHECKLIST

ob Number _	2770 Castro 021216-Rt				nician	Ryan	Hanstedt	
Well ID	Well Inspected - No Corrective Action Required	Water Bailed From Wellbox	Wellbox Components Cleaned	Cap Replaced	Lock Replaced	Other Action Taken (explain below)	Well Not inspected (explain below)	Repair Order Submitted
พพ-เ		X			χ			
mw-2					χ			
mw-3		<u> </u>			×			
						,		
								Ne de
								Name of the second
							.,	71
								£,
						1	477.4	
						,	2	
· · · · · · · · · · · · · · · · · · ·								
					, ,			*
							ļ 	
					·			\$ 100 M \$ 100
·	·							
				<u> </u>				L
NOTES:							. · · · · · · · · · · · · · · · · · · ·	
						,		
							1.	

www.blainelech.com

Page _____of ____

BP GEM OIL COMPANY TYPE A BILL OF LADING

BILL OF LADING FOR NON-SOURCE RECORD HAZARDOUS **PURGEWATER** RECOVERED FROM GROUNDWATER WELLS AT BP GEM OIL COMPANY FACILITIES IN THE STATE OF CALIFORNIA. THE NON-HAZARDOUS PURGE- WATER WHICH HAS BEEN RECOVERED FROM GROUND- WATER WELLS IS COLLECTED BY THE CONTRACTOR, MADE UP INTO LOADS OF APPROPRIATE SIZE AND HAULED BY DILLARD ENVIRONMENTAL TO THE ALTAMONT LANDFILL AND RESOURCE RECOVERY FACILITY IN LIVERMORE, CALIFORNIA.

The contractor performing this work is RLAINE TECH SERVICES, INC. (BTS), 1680 Rogers Avenue, San Jose, CA 95112 (phone [408] 573-0555). Blaine Tech Services, Inc. is authorized by BP GEM OIL COMPANY to recover, collect, apportion into loads the Non-Hazardous Well Purgewater that is drawn from wells at the BP GEM Oil Company facility indicated below and deliver that purgewater to BTS. Transport routing of the Non-Hazardous Well Purgewater may be direct from one BP GEM facility to the designated destination point; from one BP GEM facility; from a BP GEM facility to the designated destination point via another BP GEM facility; from a BP GEM facility, or any combination thereof. The Non-Hazardous Well Purgewater is and remains the property of BP GEM Oil Company.

This Source Record BILL OF LADING was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the BP GEM Oil Company facility described below:

4977		
Station #	- (***) -	<u> </u>
9.7700 atm (1-10	Died /	-h 1 h-) a .
Z770Castro Valle Station Address	4 DIVA 1 1 a	SINO VALUE
Total Gallons Collected From Gro	undwater Moi	nitoring Wells:
		moring ", viii.
		<u> </u>
added equip.	any other	
rinse water Z	adjustments	
TOTAL GALS.	loaded onto	
RECOVERED 29	BTS vehicle	e# /5
BTS event#	time	date
45-15-24 NOTE	15	·-/12/
- 02/226 02/2/6-RIYZ	1400	12/16/02
signature	· · · · · · · · · · · · · · · · · · ·	
*********	******	******
REC'D AT	time	date
		/ /
unloaded by		
signature		

ATTACHMENT B

LABORATORY PROCEDURES, CERTIFIED ANALYTICAL REPORTS, AND CHAIN-OF-CUSTODY RECORDS

LABORATORY PROCEDURES

Laboratory Procedures

The groundwater samples were analyzed for the presence of the chemicals mentioned in the chain of custody using standard EPA methods. The methods of analysis for the groundwater samples are documented in the certified analytical report. The certified analytical reports and chain-of-custody record are presented in this attachment. The analytical data provided by the laboratory approved by Group Environmental Management Company have been reviewed and verified by that laboratory.

7 January, 2003

Scott Robinson URS Corporation 500 12th Street, Suite 100 Oakland, CA 94607

RE: ARCO #4977, Castro Valley, CA Sequoia Work Order: MLL0681

Enclosed are the results of analyses for samples received by the laboratory on 12/17/02 17:20. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Latonya Pelt Project Manager

CA ELAP Certificate #1210

Johnya K. Pelt

URS Corporation 500 12th Street, Suite 100 Oakland CA, 94607 Project: ARCO #4977, Castro Valley, CA Project Number: ARCO #4977, Castro Valley, CA

Project Manager: Scott Robinson

MLL0681 Reported: 01/07/03 13:53

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	MLL0681-01	Water	12/16/02 10:55	12/17/02 17:20
MW-2	MLL0681-02	Water	12/16/02 11:15	12/17/02 17:20
MW-3	MLL0681-03	Water	12/16/02 11:40	12/17/02 17:20

There were no custody seals that were received with this project.

URS Corporation 500 12th Street, Suite 100 Oakland CA, 94607 Project: ARCO #4977, Castro Valley, CA Project Number: ARCO #4977, Castro Valley, CA

Project Manager: Scott Robinson

MLL0681 Reported: 01/07/03 13:53

BTEX by EPA Method 8260B Sequoia Analytical - Sacramento

	-	uoia i kiia							1
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (MLL0681-01) Water	Sampled: 12/16/02 10:55	Received:	12/17/02	2 17:20			···		
Ethanol	ND	50	ug/l	1	2120442	12/27/02	12/27/02	EPA 8260B	
Tert-butyl alcohol	ND	5.0	**	**	H	II	H	п	
Methyl tert-butyl ether	42	0.50	**	*	"	п	"	If	
Di-isopropyl ether	ND	0.50	"	**	"	. 11	**	**	
Ethyl tert-butyl ether	ND	0.50	*1	**	"	Ħ	"	H	
Tert-amyl methyl ether	ND	0.50	п	**	**	tt	**	•	
1,2-Dichloroethane	ND	0.50	п	н	n	**	11	•	
1,2-Dibromoethane (EDB)	ND	0.50	п	11	11	**	IJ	**	
Benzene	1.8	0.50	н	II .	"	**	II	11	
Ethylbenzene	0.69	0.50	н	ii ii	II .	n	П	n	
Toluene	ND	0.50	Ħ	II.	II	H	п	*	
Xylenes (total)	ND	1.0		**	**	"	II .	"	
Gasoline (C6-C10)	7 7	50	*	**	H	11	it	*	HC-12
Surrogate: Toluene-d8		98 %	60	-140	"	"	n	"	
Surrogate: 4-BFB		99 %	60-	-140	"	" .	"	"	
Surrogate: 1,2-DCA-d4		116%	60	-140	"	n	rt	"	
MW-2 (MLL0681-02) Water	Sampled: 12/16/02 11:15	Received:	12/17/0	2 17:20					
Ethanol	ND	5000	ug/l	100	2120476	12/27/02	12/27/02	EPA 8260B	
Tert-butyl alcohol	ND	500	11		*	п	**	n .	
Methyl tert-butyl ether	980	50	19	"	*	H	**	u	
Di-isopropyl ether	ND	50	II.	11	"	tt .	"	17	
Ethyl tert-butyl ether	ND	50	II	ji .	11	**	"	**	
Tert-amyl methyl ether	ND	50	н	11	П	"	**	"	
1,2-Dichloroethane	ND	50	ŧŧ	III	п		"	*	
1,2-Dibromoethane (EDB)	ND	50	Ħ	"	п	"		*	
Benzene	1000	50	H	ıt	II	17	11	11	
Ethylbenzene	980	50	**	**	11	**	II	#	
Toluene	ND	50	**	**	**	"	Ħ	17	
Xylenes (total)	3300	100	Ħ		"	**	Ħ	**	
Gasoline (C6-C10)	17000	5000	**			"	H	"	
Surrogate: Toluene-d8		104 %	60	-140	"	"	"	"	
Surrogate: 4-BFB		101 %	60	-140	n	"	"	n	
Surrogate: 1,2-DCA-d4		116%	60	-140	rr	"	17	"	

URS Corporation 500 12th Street, Suite 100 Oakland CA, 94607 Project: ARCO #4977, Castro Valley, CA Project Number: ARCO #4977, Castro Valley, CA

Project Manager: Scott Robinson

MLL0681 Reported: 01/07/03 13:53

BTEX by EPA Method 8260B Sequoia Analytical - Sacramento

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-3 (MLL0681-03) Water	Sampled: 12/16/02 11:40	Received:	12/17/02	17:20					
Ethanol	ND	1000	ug/l	20	2120476	12/27/02	12/27/02	EPA 8260B	
Tert-butyl alcohol	ND	100	It	•	n	μ	H	**	
Methyl tert-butyl ether	910	10	II .		"	II .	"	Ħ	
Di-isopropyl ether	ND	10	"	"	"	IJ	••	•	
Ethyl tert-butyl ether	ND	10	#	71	**	п	"	**	
Tert-amyl methyl ether	12	10	**		"	п	"	"	
1,2-Dichloroethane	ND	10	**	**	"	II .	"	11	
1,2-Dibromoethane (EDB)	ND	10	+1	,	"	п	11	"	
Benzene	13	10	11	"	11	11	11	*	
Ethylbenzene	170	10	19	**	11	**	II .	77	
Toluene	ND	10	H	**	11	H	n	*	
Xylenes (total)	88	20	**	11	li	"	II .	**	
Gasoline (C6-C10)	1200	1000	**	"	11	"	п	**	
Surrogate: Toluene-d8		103 %	60-	-140	#	n	"	"	
Surrogate: 4-BFB		102 %	60-	-140	#	"	"	"	
Surrogate: 1,2-DCA-d4		128 %	60-	-140	"	"	n	"	

URS Corporation 500 12th Street, Suite 100 Oakland CA, 94607 Project: ARCO #4977, Castro Valley, CA Project Number: ARCO #4977, Castro Valley, CA

Project Manager: Scott Robinson

MLL0681 Reported: 01/07/03 13:53

BTEX by EPA Method 8260B - Quality Control Sequoia Analytical - Sacramento

Analuta	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	PHUIT	Onns	Tevel	Result	/orcec	rannes.	KI D	LAMILLE	110100
Batch 2120442 - EPA 5030B [P/T]										
Blank (2120442-BLK1)				Prepared	& Analyze	ed: 12/27/	02			
Ethanol	ND	50	ug/l							
Tert-butyl alcohol	ND	5.0	*							
Methyl tert-butyl ether	ND	0.50	"							
Di-isopropyl ether	ND	0.50	**							
Ethyl tert-butyl ether	ND	0.50	н							
Tert-amyl methyl ether	ND	0.50	. "							
1,2-Dichloroethane	ND	0.50	"							
1,2-Dibromoethane (EDB)	ND	0.50	П							
Benzene	ND	0.50	"							
Ethylbenzene	ND	0.50	Ħ							
Toluene	ND	0.50	n							
Xylenes (total)	ND	1.0	**							
Gasoline (C6-C10)	ND	50	**							
Surrogate: Toluene-d8	26.5		"	25.0		106	60-140			
Surrogate: 4-BFB	26.5		"	25.0		106	60-140			
Surrogate: 1,2-DCA-d4	31.0		"	25.0		124	60-140			
Laboratory Control Sample (2120442-I	BS1)			Prepared	& Analyz	ed: 12/27/	02			
Methyl tert-butyl ether	22.6	0.50	ug/l	22.4		101	60-140			
Benzene	14.6	0.50	"	13.6		107	70-130			
Toluene	83.4	0.50	п	83.4		100	70-130			
Gasoline (C6-C10)	1110	50	п	1100		101	70-130			
Surrogate: Toluene-d8	24.8		n	25.0		99	60-140			
Surrogate: 4-BFB	25.5		n	25.0		102	60-140			
Surrogate: 1,2-DCA-d4	31.7		Ħ	25.0		127	60-140			
Matrix Spike (2120442-MS1)	S	ource: S21267	73-04	Prepared	& Analyz	ed: 12/27/	02			
Methyl tert-butyl ether	19.7	0.50	ug/l	22.4	ND	88	60-140			
Benzene	12.3	0.50	"	13.6	ND	90	70-130			
Toluene	72.2	0.50	"	83.4	ND	87	70-130			
Gasoline (C6-C10)	893	50	11	1100	ND	81	60-140			
Surrogate: Toluene-d8	25.3		,,	25.0		101	60-140			

Sequoia Analytical - Morgan Hill

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

URS Corporation 500 12th Street, Suite 100 Oakland CA, 94607 Project: ARCO #4977, Castro Valley, CA

Project Number: ARCO #4977, Castro Valley, CA

Project Manager: Scott Robinson

MLL0681 Reported: 01/07/03 13:53

BTEX by EPA Method 8260B - Quality Control Sequoia Analytical - Sacramento

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2120442 - EPA 5030B [P/T]										
Matrix Spike (2120442-MS1)	So	ource: S21267	3-04	Prepared	& Analyze	ed: 12/27/	02			
Surrogate: 4-BFB	25.2		ug/l	25.0		101	60-140			
Surrogate: 1,2-DCA-d4	29.9		"	25.0		120	60-140			
Matrix Spike Dup (2120442-MSD1)	So	ource: S21267	3-04	Prepared	& Analyze	ed: 12/27/	02			
Methyl tert-butyl ether	20.0	0.50	ug/l	22.4	ND	89	60-140	2	25	
Benzene	12.4	0.50	ır	13.6	ND	91	70-130	0.8	25	
Toluene	71.1	0.50	н	83.4	ND	85	70-130	2	25	
Gasoline (C6-C10)	901	50	н	1100	ND	82	60-140	0.9	25	
Surrogate: Toluene-d8	25.0		"	25.0		100	60-140			
Surrogate: 4-BFB	25.8		n	25.0		103	60-140			
Surrogate: 1,2-DCA-d4	30.8		"	25.0		123	60-140			
Blank (2120476 - EPA 5030B [P/T] Blank (2120476-BLK1)	ND	50	ue/l	Prepared	& Analyze	ed: 12/30/	02			
Ethanol	ND	50	u g /l							
Tert-butyl alcohol	ND	5.0	" H							
Methyl tert-butyl ether	ND	0.50	"							
Di-isopropyl ether	ND ND	0.50 0.50	,,							
Ethyl tert-butyl ether	ND ND	0.50	n							
Tert-amyl methyl ether 1,2-Dichloroethane	ND ND	0.50								
1,2-Dismoloethane (EDB)	ND	0.50	**							
Benzene	ND	0.50	"							
Ethylbenzene	ND	0.50	**							
Toluene	ND	0.50	11							
Xylenes (total)	ND	1.0	n							
-	ND	50	п							
Gasoline (C6-C10)										
	24.7		"	25.0		99	<i>60-140</i>			
Gasoline (C6-C10) Surrogate: Toluene-d8 Surrogate: 4-BFB	24.7 23.8		"	25.0 25.0		99 95	60-140 60-140			

URS Corporation 500 12th Street, Suite 100 Oakland CA, 94607 Project: ARCO #4977, Castro Valley, CA Project Number: ARCO #4977, Castro Valley, CA

Project Manager: Scott Robinson

MLL0681 Reported: 01/07/03 13:53

BTEX by EPA Method 8260B - Quality Control Sequoia Analytical - Sacramento

	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Result	- Diffit	Omis	20,01	100001					
			Prepared	& Analyza	ed: 12/27/0)2			
ND	50	110/1	Trepared	oc many Ex	JG. 12/2//				
		,,							
		D.							
		**							
		**							
		**				•			
•		**							
		**							
	0.50	**							
		н							
		н							
		11							
1,2	*-								
26.5		"	25.0		106	60-140			
26.5		"	25.0		106	60-140			
31.0		"	25.0		124	60-140			
1)			Prepared	& Analyze	ed: 12/30/0	02			
19.5	0.50	ug/l	22.4		87	60-140			
13.7	0.50	**	13.6		101	70-130			
80.0	0.50	**	83.4		96	70-130			
1060	50	H	1100		96	70-130			
24.4			25.0		98	60-140			
		"							
28.3		"	25.0		113	60-140			
2)			Prepared	& Analyze	ed: 12/27/0				
22.6	0.50	ug/l	22.4		101				
14.6	0.50	rr	13.6		107	70-130			
83.4	0.50	n	83.4		100				
1110	50	**	1100		101	70-130			
24.8		"	25.0	 	99	60-140		<u>.</u>	
	26.5 31.0 19.5 13.7 80.0 1060 24.4 24.4 28.3 2) 22.6 14.6 83.4	ND 5.0 ND 0.50 ND 1.0 ND 50 110 19.5 0.50 13.7 0.50 80.0 0.50 1060 50 24.4 24.4 28.3 29 22.6 0.50 14.6 0.50 83.4 0.50 1110 50	ND 5.0 " ND 0.50 " ND 1.0 " ND 50 " 26.5 " 26.5 " 31.0 " 19.5 0.50 ug/l 13.7 0.50 " 80.0 0.50 " 1060 50 " 24.4 " 24.4 " 28.3 " 2) 22.6 0.50 ug/l 14.6 0.50 " 83.4 0.50 "	ND 50 ug/l ND 5.0 " ND 0.50 " ND 1.0 " ND 50 " 26.5 " 25.0 26.5 " 25.0 31.0 " 25.0 1) Prepared 19.5 0.50 ug/l 22.4 13.7 0.50 " 13.6 80.0 0.50 " 83.4 1060 50 " 1100 24.4 " 25.0 28.3 " 25.0 2 Prepared 22.6 0.50 ug/l 22.4 14.6 0.50 " 13.6 83.4 0.50 " 83.4 1110 50 " 1100	ND 50 ug/l ND 5.0 " ND 0.50 " ND 1.0 " ND 1.0 " ND 50 " 26.5 " 25.0 31.0 " 25.0 19.5 0.50 ug/l 22.4 13.7 0.50 " 13.6 80.0 0.50 " 83.4 1060 50 " 1100 24.4 " 25.0 24.4 " 25.0 24.4 " 25.0 25.0 26.5 " 100 27.0 " 13.6 80.0 0.50 " 83.4 1060 50 " 1100	ND 50 ug/l ND 5.0 " ND 0.50 " ND 1.0 " ND 1.0 " ND 50 " 26.5 " 25.0 106 31.0 " 25.0 124 1) Prepared & Analyzed: 12/30/4 13.7 0.50 " 13.6 101 80.0 0.50 " 83.4 96 1060 50 " 1100 96 24.4 " 25.0 98 28.3 " 25.0 113 2) Prepared & Analyzed: 12/27/6 14.6 0.50 " 13.6 107 83.4 0.50 " 83.4 100 1110 50 " 1100 101	ND 5.0 " ND 0.50 " ND 1.0 " ND 50 " 26.5 " 25.0 106 60-140 26.5 " 25.0 106 60-140 27.0 124 60-140 19.5 0.50 ug/l 22.4 87 60-140 28.3 " 25.0 98 60-140 24.4 " 25.0 98 60-140 24.4 " 25.0 98 60-140 24.4 " 25.0 98 60-140 24.4 " 25.0 98 60-140 28.3 " 25.0 113 60-140 29 Prepared & Analyzed: 12/27/02 20 Prepared & Analyzed: 12/27/02	ND 50 ug/l ND 5.0 " ND 0.50 " ND 1.0 " ND 50 " 26.5 " 25.0 106 60-140 26.5 31.0 " 25.0 124 60-140 1) Prepared & Analyzed: 12/30/02 19.5 0.50 ug/l 22.4 87 60-140 13.7 0.50 " 13.6 101 70-130 80.0 0.50 " 83.4 96 70-130 1060 50 " 1100 96 70-130 24.4 " 25.0 98 60-140 24.4 " 25.0 98 60-140 24.4 " 25.0 98 60-140 28.3 " 25.0 113 60-140 2) Prepared & Analyzed: 12/27/02 22.6 0.50 ug/l 22.4 101 60-140 11.6 0.50 " 13.6 107 70-130 83.4 0.50 " 83.4 100 70-130 1110 50 " 1100 101 70-130	ND 50 ug/l ND 5.0 " ND 0.50 " ND 1.0 " ND 1.0 " ND 1.0 " ND 1.0 " ND 50 " 26.5 " 25.0 106 60-140 31.0 " 25.0 124 60-140 11) Prepared & Analyzed: 12/30/02 19.5 0.50 ug/l 22.4 87 60-140 13.7 0.50 " 13.6 101 70-130 80.0 0.50 " 83.4 96 70-130 1060 50 " 1100 96 70-130 24.4 " 25.0 98 60-140 24.4 " 25.0 98 60-140 24.4 " 25.0 98 60-140 24.4 " 25.0 98 60-140 24.4 " 25.0 98 60-140 24.4 " 25.0 98 60-140 24.4 " 25.0 98 60-140 24.4 " 25.0 98 60-140 24.4 " 25.0 98 60-140 25.0 " 83.4 100 70-130 26.5 " 1100 101 70-130 27.5 " 13.6 107 70-130 28.6 " 33.6 107 70-130 29.6 " 13.6 107 70-130 1100 101 70-130

URS Corporation 500 12th Street, Suite 100 Oakland CA, 94607 Project: ARCO #4977, Castro Valley, CA Project Number: ARCO #4977, Castro Valley, CA

Project Manager: Scott Robinson

MLL0681 Reported: 01/07/03 13:53

BTEX by EPA Method 8260B - Quality Control Sequoia Analytical - Sacramento

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2120476 - EPA 5030B [P/T]										
Laboratory Control Sample (2120476-BS2)				Prepared	& Analyz	ed: 12/27/	02			
Surrogate: 4-BFB	25.5		ug/l	25.0		102	60-140			
Surrogate: 1,2-DCA-d4	31.7		"	25.0		127	60-140			
Matrix Spike (2120476-MS1)	So	ource: S21257	0-07	Prepared	& Analyzo	ed: 12/30/0	02			
Methyl tert-butyl ether	21.9	0.50	ug/l	22.4	2.4	87	60-140			
Benzene	12.3	0.50	"	13.6	ND	90	70-130			
Toluene	71.4	0.50	**	83.4	ND	86	70-130			
Gasoline (C6-C10)	910	50	"	1100	ND	81	60-140			
Surrogate: Toluene-d8	25.9		"	25.0		104	60-140			
Surrogate: 4-BFB	26.2		"	25.0		105	60-140			
Surrogate: 1,2-DCA-d4	31.4		*	25.0		126	60-140			
Matrix Spike Dup (2120476-MSD1)	So	ource: S21257	0-07	Prepared	& Analyze	ed: 12/30/0	02			
Methyl tert-butyl ether	21.9	0.50	ug/l	22.4	2.4	87	60-140	0	25	
Benzene	12.6	0.50	"	13.6	ND	93	70-130	2	25	
Toluene	73.4	0.50	**	83.4	ND	88	70-130	3	25	
Gasoline (C6-C10)	936	50	"	1100	ND	83	60-140	3	25	
Surrogate: Toluene-d8	24.8		"	25.0		99	60-140			
Surrogate: 4-BFB	25.9		"	25.0		104	60-140			
Surrogate: 1,2-DCA-d4	30.2		"	25.0		121	60-140			

URS Corporation 500 12th Street, Suite 100 Oakland CA, 94607 Project: ARCO #4977, Castro Valley, CA

Project Number: ARCO #4977, Castro Valley, CA

Project Manager: Scott Robinson

MLL0681 Reported: 01/07/03 13:53

Notes and Definitions

HC-12 Hydrocarbon pattern is present in the requested fuel quantitation range but does not resemble the pattern of the requested fuel.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

i bp	Project Name	Chain of Custody Record	On-site
THE SECOND PARTY NAMED IN	Llolect Mame		Off- sin

On-site Time;	Temp:	
Off-site Time;	Temp:	
Sicy Conditions:		
Meteorological Events:		

MILO481) BP BU/GEM CO Portfolio: EP Laboratory Contract Number: Requested Due Date (mm/dd/yy) Direction: Winc Speed: BP/GEM Facility No.: Send To: Consultant/Contractor: URS SEQUOIA 2770 Castro Valley Rd, Castro Valley, CA Address: 500 12th St., Ste, 200 BP/GEM Facility Address: Lab Name: Lab Address: 885 Jarvis Dr. Oakland, CA 94609-4014 ARCO 4977 S≍a ID No. Morgan Hill, CA 95037 Site Lat/Lone. e-mail BDD: syed rehan@urscorp.com Consultant/Contractor Project No.: 15-00004977.01 00427 ⊊⊆alifornia Ciobal ID #:_ PAUL SUPPLE Consultant Tele/Fax: 5:0-874-1735/5:10-874-3268 BP/CEM PM Contact: Lab PM: Latonya Pelt Consultant/Contractor PM: Scott Robinson Tele/Fax: 408-776-9600 / 408-782-5308 Address: Invoice to: Consultant/Contractor or (BP/GEM (Gircle ont) Report Type & QC Level: Send EDF Reports BPAGEM Work Release Not INTRIM-50467 Tele/Fax: BP/GEM Account No.: Preservatives Requested Analysis Matrix Lab Bottle Order No: MIDE, TAME, BIDE MPR, TRA (\$260) No. of containers TPH-D (8015) TPH-G/BTBX Water/Liguid Unpreserved Sample Point Lat/Long and Sediments Air Sample Description Time Laboratory No. Item No. Comment 41 18440 1055 01 **// W/M** 灭 ≫ X 6 1115 2 mw-2 3 MU>-3 1146 4 5 6 7 8 9 10 Accepted By / Miliation Sampler's Name: Relinauished By / Affiliation Sampler's Company: Shipment Date: Shipment Method: Shipment Tracking No: gecial Instructions: Address Invoice to BP/GEM but send to URS for approval °F/C Temperature Blank Yes Trip Blank Yes No. Cooler Temperature on Receipt dy Seals in Place Yes No

SEQUOIA ANALYTICAL SAMPLE RECEIPT LOG

CLIENT NAME: REC. BY (PRINT) WORKORDER:	URS PICLE		DATE Received at Lab: TIME Received at Lab: LOG INDATE:		72/17/02 1760. 12-79-02		Drinking water regulatory pur Wastewater for regulatory pur	poses: YES/10
CIRCLE THE APPROX	PRIATE RESPONSE	LAB SAMPLE#	#	CLIENT ID .		Sample Matrix	DATE SAMPLED	REMARKS: CONDITION (ETC.)
1. Custody Scal(s)	Present / Absent Intact / Broken*	ĵ.		MW-1 1-2	(6) Vorsite	(v)	12/16/67	Z110030
2. Chain-of-Custody	Present / Absent*	7		- 4-3			\rangle :	<i>y</i>
Traffic Reports or Packing List:	Present / Absent		· ·· · · · ·			+ -1		. /
4. Airoill:	· Airbill / Sticker Present / Absent						•	
S. Airbiil#:							<u> </u>	
6. Sample Labels:	Prescrit / Absent		•		1,1			,
7. Sample IDs:	Listed / Not Listed							
8. Sample Condition:	on Chain-of-Custody Majet / Broken* / Leaking*		<u>.</u>	1	7.	7		
9. Does information on custody reports, traffic reports and sample labels agree?	(S)/No*				a) 27 !-			
10. Sample received within hold time:	Res / No*			· /·.	,	<u> </u>		
11. Proper Preservatives used:	* Ps/No*					, i		
12. Temp Rec. at Lab: (Acceptance range for sample requiring thermal pres.:4+/-2* **Exception (if any):							With Tributer and Control of the Control	5.

Sample Receipt Log
Revision 2.2 (04/11/02)
Replaces Rovision 2.1 (11/10/00)
Effective 04/15/02

Page of)

ATTACHMENT C EDCC REPORT/ GEOWELL SUBMITTAL CONFIRMATION

Error Summary Log

02/19/03 EDF 1.2i All files present in deliverable.

Laboratory:

Sequoia Analytical Laboratories, Inc., Morgan Hill, CA

Project Name:

ARCO #4977, Castro Valley

Work Order Number:

MLL0681

Global ID:

NA

Lab Report Number:

MLL0681010720031355

Report Summary

Labreport	Sampid	Labsampid	Mtrx	Q¢	Anmcode	Exmcode	Logdate	Extdate	Anadate	Lablotctl	Run	Sub
MLL06810107200	MW-1	MLL068101	W	ÇS	8260+OX	SW5030B	12/16/02	12/27/02	12/27/02	2120442	1	SEQS
31355												
MLL06810107200	MW-2	MLL068102	W	cs	8260+OX	SW5030B	12/16/02	12/27/02	12/27/02	2120476	1	SEQS
31355										0400470		0500
MLL06810107200	MW-3	MLL068103	W	CS	8260+QX	SW5030B	12/16/02	12/27/02	12/27/02	2120476	1	SEQS
31355												
		S21257007	W	NC	8260+OX	SW5030B	1.1	12/30/02	12/30/02	2120476	1	SEQS
		S21267304	W	NC	8260+OX	SW5030B	1.1	12/27/02	12/27/02	2120442	1	SEQS
		2120442BS1	WQ	BS1	8260+OX	SW5030B	11	12/27/02	12/27/02	2120442	1	SEQS
		2120442BLK1	WQ	LB1	8260+OX	SW5030B	11	12/27/02	12/27/02	2120442	1	SEQS
		2120442MS1	W	MS1	8260+OX	SW5030B	II	12/27/02	12/27/02	2120442	1	SEQS
		2120442MSD1	W	SD1	8260+OX	SW5030B	11	12/27/02	12/27/02	2120442	1	SEQS
		2120476BS1	WQ	BS1	8260+OX	SW5030B	11	12/30/02	12/30/02	2120476	1	SEQS
		2120476BS2	WQ	BS2	8260+OX	SW5030B	11	12/27/02	12/27/02	2120476	1	SEQS
		2120476BLK1	WQ	LB1	8260+OX	SW5030B	11	12/30/02	12/30/02	2120476	1	SEQS
		2120476BLK2	WQ	LB2	8260+OX	SW5030B	11	12/27/02	12/27/02	2120476	1	SEQS
		2120476MS1	W	MS1	8260+OX	SW5030B	11	12/30/02	12/30/02	2120476	1	SEQS
		2120476MSD1	W	SD1	8260+OX	SW5030B	11	12/30/02	12/30/02	2120476	1	SEQS

EDFSAMP: Error Summary Log

Error type	Logcode	Projname	Npdiwo	Sampid	Matrix
There are no errors in this data file					

EDFTEST: Error Summary Log

Error type	Labsampid	Qccode	Anmcode	Exmcode	Anadate	Run number
There are no errors in this data file					11	0

EDFRES: Error Summary Log

Error type	Labsampid	Qccode	Matrix	Anmcode	Pvccode	Anadate	Run number	Parlabel
Warning: extra parameter	2120442MS1	MS1	w	8260+OX	PR	12/27/02	1	GRO
Warning: extra parameter	2120442MSD1	SD1	w	8260+OX	PR	12/27/02	1	GRO
Warning: extra parameter	2120476MS1	MS1	w	8260+OX	PR	12/30/02	1	GRO
Warning: extra parameter	2120476MSD1	SD1	w	8260+OX	PR	12/30/02	1	GRO
Warning: extra parameter	MLL068101	CS	w	8260+OX	PR	12/27/02	1	GRO
Warning: extra parameter	MLL068101	cs	w	8260+OX	PR	12/27/02	1	XYLENES
Warning: extra parameter	MLL068102	cs	W	8260+OX	PR	12/27/02	1	GRO
Warning: extra parameter	MLL068102	cs	w	8260+OX	PR	12/27/02	1	XYLENES
Warning: extra parameter	MLL068103	cs	w	8260+OX	PR	12/27/02	1	GRO
Warning: extra parameter	MLL068103	cs	w	8260+OX	PR	12/27/02	1	XYLENES
Warning: extra parameter	\$21257007	NC	w	8260+OX	PR	12/30/02	1	GRO
Warning: extra parameter	S21267304	NC	w	8260+OX	PR	12/27/02	1	GRO
Warning: extra parameter	2120442BLK1	LB1	WQ	8260+OX	PR	12/27/02	1	GRO
Warning: extra parameter	2120442BLK1	LB1	WQ	8260+OX	PR	12/27/02	1	XYLENES
Warning: extra parameter	2120442BS1	BS1	wq	8260+OX	PR	12/27/02	1	GRO
Warning: extra parameter	2120476BLK1	LB1	WQ	8260+OX	PR	12/30/02	1	GRO
Warning: extra parameter	2120476BLK1	LB1	WQ	8260+OX	PR	12/30/02	1	XYLENES
Warning: extra parameter	2120476BLK2	LB2	WQ	8260+OX	PR	12/27/02	1	GRO
Warning: extra parameter	2120476BLK2	LB2	WQ	8260+OX	PR	12/27/02	1	XYLENES
Warning: extra parameter	2120476BS1	BS1	wa	8260+OX	PR	12/30/02	1	GRO
Warning: extra parameter	2120476BS2	BS2	WQ	8260+OX	PR	12/27/02	1	GRO

EDFQC: Error Summary Log

Error type	Lablotctl	Anmcode	Parlabel	Qccode	Labqcid
There are no errors in this data files					

EDFCL: Error Summary Log

Error type	Cirevdate	Anmcode	Exmcode	Parlabel	Clcode
There are no errors in this data file	11	:			