SUPPLEMENTARY SITE ASSESSMENT REPORT January 28, 1994

FORMER MOBIL STATION 04-H6J 1024 Main Street Pleasanton, California

Alton Geoscience Project No.30-0065

Prepared For:

Mobil Oil Corporation 2063 Main Street, # 501 Oakley, California 94561

By:

Ron A. Scheele Staff Geologist

James A. Lehrman, R.G.
Associate, Northern California Operations

ALTON GEOSCIENCE 30A Lindbergh Avenue Livermore, California 94550

TABLE OF CONTENTS

Sect	ion	Page
1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION	1
3.0	BACKGROUND SITE CONDITIONS	2
4.0 4.1 4.2 4.3	FIELD ACTIVITIES Drilling and Soil Sampling Elevation Survey, Fluid-Level Monitoring, and Ground Water Sampling Soil and Ground Water Disposal	2 2 3 3
5.0	FINDINGS	4
6.0	CONCLUSIONS	5
7.0	REFERENCES	6
<u>Figu</u>	<u>res</u>	
1	Site Vicinity Map	
2	Site Plan	
3	Cross Section A-A'	
4	Cross Section B-B'	
5	Adsorbed-Phase Hydrocarbon Concentrations	
6	Ground Water Elevation Contour Map	
7	Dissolved-Phase Hydrocarbon Concentrations	

TABLE OF CONTENTS (Continued)

Tables

- 1 Summary of Soil Sampling and Analyses
- 2 Summary of Soil Sampling and Analyses for Physical Properties and Total Organic Carbon
- 3 Summary of Ground Water Monitoring and Analyses

Appendices

- A General Field Procedures, Boring Logs, and Well Construction Details
- B Analytical Methods, Official Laboratory Reports, and Chain of Custody Records
- C Survey Data

1.0 INTRODUCTION

Site assessment activities were performed to further characterize adsorbed-phase and dissolved-phase hydrocarbons beneath the site and offsite to the northwest, northeast, and southeast. Drilling activities were performed from November 15 through 19, 1993.

On November 18, 1993 a vacuum extraction test was performed on both the shallow (20-25 fbg) and deep (30-35 fbg) vadose zone. The results from this test will be issued in a separate report.

2.0 SITE DESCRIPTION

Present Site Use: The site is an inactive service station (Figure 2).

Past Site Use: The site was a gasoline service station until 1989. All former underground

storage tanks were removed in 1989; all associated dispenser islands and

product lines were also removed.

Future Site Use: There are currently no known plans to redevelop the site.

Adjacent Property: Private residences are located adjacent to the site to the east; railroad

tracks are located to the north. Across Stanley Boulevard to the south is an abandoned Union 76 service station presently under investigation.

Retail businesses are located across Main Street to the west.

Geography: The site is located approximately 1.75 miles east of Highway 680 at an

elevation of 348 feet above mean sea level (National Geodetic Vertical

Datum - 1929).

Regional Geology: The site is located within the Livermore Valley Basin. This area is

underlain by unconsolidated to semiconsolidated Quaternary sediments. These sediments are predominantly stream channel, fluvial and alluvial deposits composed of gravel, sand, silt, and clay (ACWD-Zone 7, 1989).

Regional

Hydrogeology: The site is located within the Amador Subbasin of the Livermore Valley

Ground Water Basin. The main surface water drainage areas in the Amador Subbasin are the Arroyo Valle and the Arroyo Mocho, both of which flow into the Arroyo de la Laguna, which is on the western edge of the subbasin. There are three municipal water supply wells within 0.5 mile of the site. Monitoring wells maintained by the City of Pleasanton are located approximately 230 feet to the south of the site. The estimated depth to regional ground water is 40 feet below grade (fbg) and the regional ground water flow direction is directed toward the north and

northeast (ACWD-Zone 7, 1993).

Ground Water Quality and Usage:

Ground water in the basin is designated as beneficial for domestic use. The nearest municipal production wells, 16L2, 16L5, and 16L7 are located approximately 945 feet north of the site. These wells were drilled to a depths of 151, 685, and 647 fbg, respectively.

3.0 BACKGROUND SITE CONDITIONS

- Twelve onsite and three offsite borings were drilled at the site between December 1989 and January 1992.
- Nine onsite and one offsite ground water monitoring wells were initially installed at the site. Four Monitoring Wells (MW-3, MW-5, MW-7, and MW-8) have a screened interval above the current static water level.
- Ground water has been encountered at depths from 48 to 33 fbg. Static water level was approximately 38 fbg due to high precipitation during the 1992 and 1993 winter months. The ground water gradient has been approximately 0.15 foot per foot to the east. The ground water gradient direction at this site varies from northwest to southeast as determined from previous ground water monitoring events. Ground water flow direction is potentially influenced from Kaiser Sand & Gravel mining operation discharge (up to 5670 gallons per minute in 1991 water year) into the Arroyo Valle, an intermittent stream approximately 250 feet south of the subject site (ACWD-Zone 7, 1991).
- Hydrocarbon concentrations in soil have been detected in the vicinity of the former tank
 cavity and former pipeline trenches, and extend to near-surface ground water. The lateral
 extent of hydrocarbons in soil have been adequately characterized.
- Free product has been detected in the vicinity of MW-2 and dissolved-phase hydrocarbons have been detected in the vicinity of MW-1, MW-4, and MW-9. The lateral extent of free product is characterized. The dissolved-phase hydrocarbons are not fully characterized.

4.0 FIELD ACTIVITIES

4.1 DRILLING AND SOIL SAMPLING

From November 15 to November 19, 1993, three monitoring wells (MW-10, MW-11, MW-12) were installed to depths ranging from 45 to 55 fbg, one recovery well (RW-1) was installed to a depth of 55 fbg, and four vapor extraction wells (VMW-1, VMW-2, VMW-3, VWM-4) were installed to depths ranging from 32 to 35 fbg (Figure 2). The ground water monitoring wells and recovery well were developed using a surge block and bailer for approximately one hour following each installation.

Soil samples were collected continuously in all wells using back to back California-modified split spoon samplers with the exception of Vapor Extraction Wells VMW-1, VMW-3, and VMW-4 which were sampled at 5-foot intervals using a California-modified split spoon sampler. Refer to Appendix A for details regarding general field procedures, boring logs, and ground water monitoring well construction details. See Figures 3 and 4 for geologic cross sections showing soil types beneath the site.

Soil samples collected during drilling were submitted to a state-certified laboratory and analyzed for total petroleum hydrocarbons as gasoline (TPH-G), benzene, toluene, ethylbenzene, and total xylenes (BTEX), total organic carbon (TOC), moisture content, dry density, porosity, air permeability, and sieve size analysis. The results of laboratory analysis of soil samples are listed in Tables 1 and 2, and are shown on Figure 5. Refer to Appendix B for a description of the analytical methods used, copies of the official laboratory reports, quality assurance/quality control (QA/QC) reports, and chain of custody records.

4.2 ELEVATION SURVEY, FLUID-LEVEL MONITORING, AND GROUND WATER SAMPLING

On November 22, 1993, well elevations were surveyed horizontally and vertically by Ron Archer Civil Engineer Inc. relative to a city benchmark (Appendix C). On November 30, 1993, fluid levels were measured in Monitoring Wells MW-1 through MW-12 and Recovery Well RW-1 (Table 3). See Figure 6 for a ground water elevation contour map, and Table 3 for a summary of ground water monitoring data.

On November 30, 1993, ground water samples were collected from the wells which did not contain free product, in accordance with standard regulatory protocol, . Refer to Appendix A for a description of fluid-level monitoring and ground water sampling procedures. Ground water samples were submitted to a state-certified laboratory and analyzed for TPH-G and BTEX. The results of ground water sample analyses are listed in Table 3, and are shown on Figure 7. Refer to Appendix B for a description of the analytical methods used, copies of the official laboratory reports, QA/QC reports, and chain of custody records.

4.3 SOIL AND GROUND WATER DISPOSAL

Approximately 12 cubic yards of soil cuttings were generated during drilling activities and stored onsite in Department of Transportation (DOT) approved drums pending disposal at a Mobil-approved disposal facility. Approximately 500 gallons of ground water generated during well development and sampling was stored onsite in a DOT-approved drum pending disposal at a Mobil-approved disposal facility.

5.0 FINDINGS

The results of this investigation are summarized as follows:

- The site is located within the Livermore Valley Basin at an elevation of approximately 348 feet above mean sea level. This area is underlain by unconsolidated to semiconsolidated Quaternary sediments. These sediments are predominantly stream channel, fluvial and alluvial deposits composed of gravel, sand, silt, and clay (ACWD-Zone 7, 1989).
- Soil and unconsolidated sediment underlying the site is generally composed of sandy silt to silty clay to a depth of approximately 30 fbg. From a depth of approximately 30 fbg to 55 fbg (the limit of boring data), the soil and unconsolidated sediment is composed of silty sand, sandy gravel to gravelly sand, and sandy silt to silty clay. The stratigraphy of this deeper interval includes discontinuous lenses of the above described soil types resulting in a horizontally and vertically hetergeneous section. Figures 3 and 4 (cross-sections A-A' and B-B', respectively) show the discontinuous nature of the soil beneath the site. The cross-sections were constructed using boring sample data, as well as downhole geophysical data collected during a previous site investigation.
- The static ground water level currently ranges from a depth of 37.78 to 40.58 fbg (an elevation of 307.95 to 310.29 feet above mean sea level [NGVD-1929]). The ground water elevation has dropped approximately 2.2 feet compared to the previous monitoring and sampling event in July 6, 1993. The average ground water gradient is approximately 0.03 foot-per-foot to the east.
- Liquid-phase hydrocarbons were observed in Monitoring Well MW-2 (0.48 foot), located approximately 10 feet north of the tank cavity, and a trace of liquid-phase hydrocarbons was detected in Recovery Well RW-1 located in the tank cavity.
- Dissolved-phase total petroleum hydrocarbons as gasoline (TPH-G) were detected in Monitoring Wells MW-1, MW-4, MW-6, MW-9, and MW-12 (maximum TPH-G concentration of 2,800 ppb in MW-9). No benzene concentrations were detected in ground water samples collected from Monitoring Wells MW-10 and MW-11.
- Hydrocarbons concentrations in soil as gasoline (TPH-G) were detected in Recovery Well RW-1, Monitoring Well MW-12 at 41.0 fbg, and Vapor Extraction Wells VMW-2, VMW-3, and VMW-4 (maximum TPH-G concentration of 3,500 ppm in RW-1 at 16 fbg). No benzene concentrations were detected in soil samples collected from Monitoring Wells MW-10, MW-11, and MW-12 at 14.0 and 32.0 fbg, or from Vapor Extraction Well VMW-2 at 9.5 fbg.

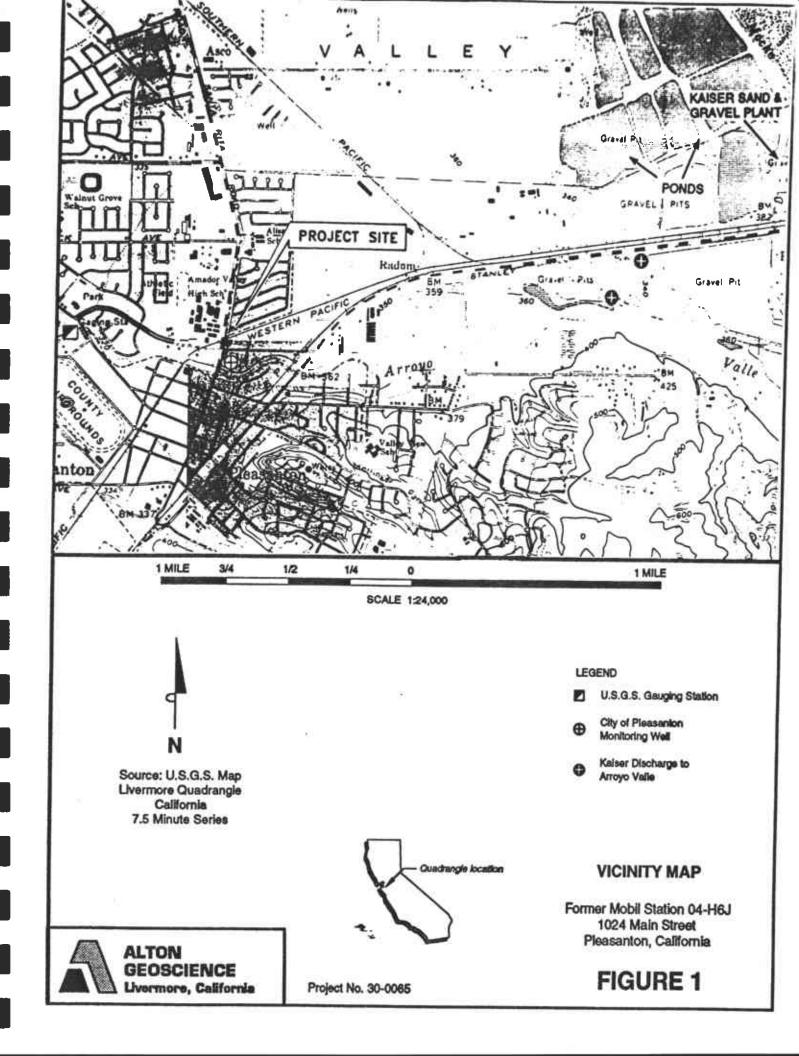
6.0 CONCLUSIONS

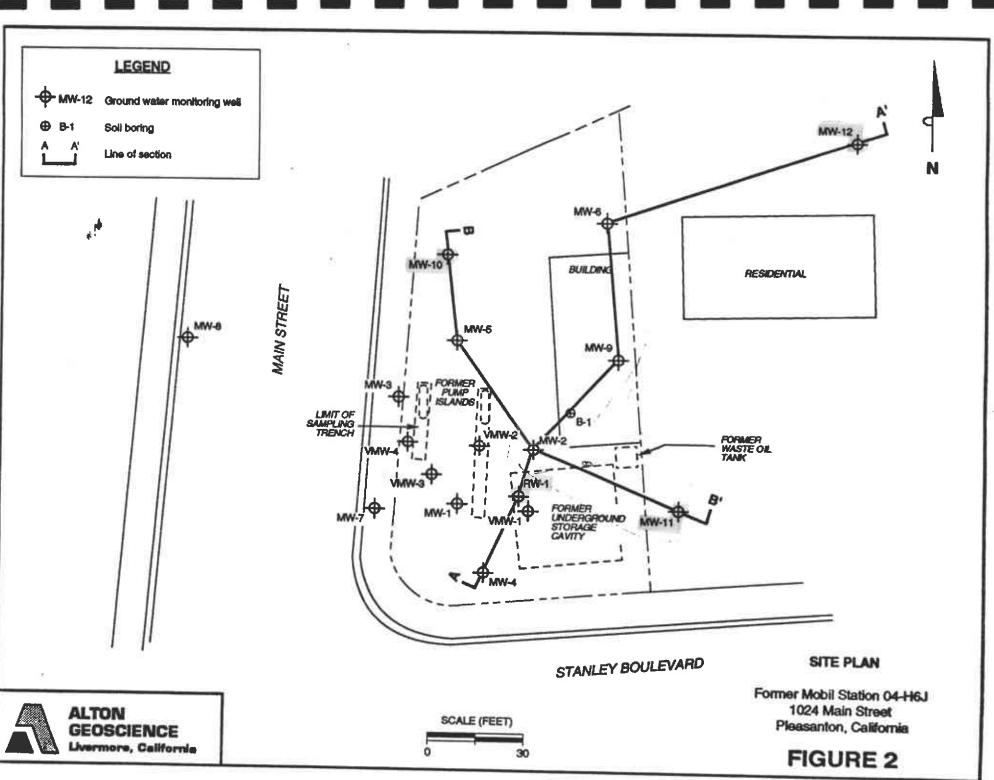
- Liquid-phase hydrocarbons were detected in the vicinity of the former underground storage tank cavity in Monitoring Well MW-2 and Recovery Well RW-1. The liquid-phase hydrocarbons thickness may have increased in MW-2 as a result of a decrease in the ground water elevation of approximately 2.2 feet. Liquid-phase hydrocarbons are adequately characterized in all directions.
- Dissolved-phase TPH-G hydrocarbons are present in the ground water beneath the site and offsite to the northeast. TPH-G and BTEX concentrations are adequately characterized to the southeast and northwest.
- Hydrocarbons concentrations in soil have been detected in the vicinity of the former underground storage tank cavity and former pump islands and extend vertically down to the ground water table. The lateral extent of TPH-G and BTEX concentrations in soil are adequately characterized in all directions.
- The soils and unconsolidated sediments beneath the site are heterogeneous. Discontinuous lenses of gravels, sands, silts, and silty clays exist beneath the site from a depth of approximately 30 fbg to at least 55 fbg.

The site assessment activities summarized in this report have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, expressed or implied, is made regarding the conclusions and recommendations presented in this report. The conclusions and recommendations are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.

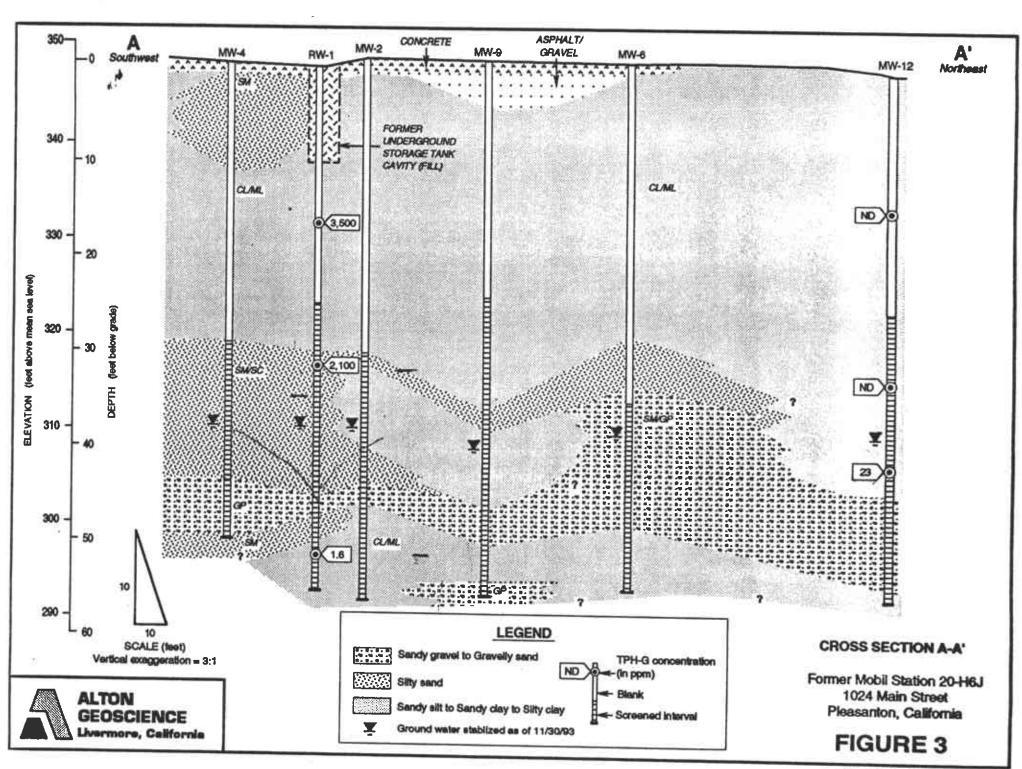
ŧ.

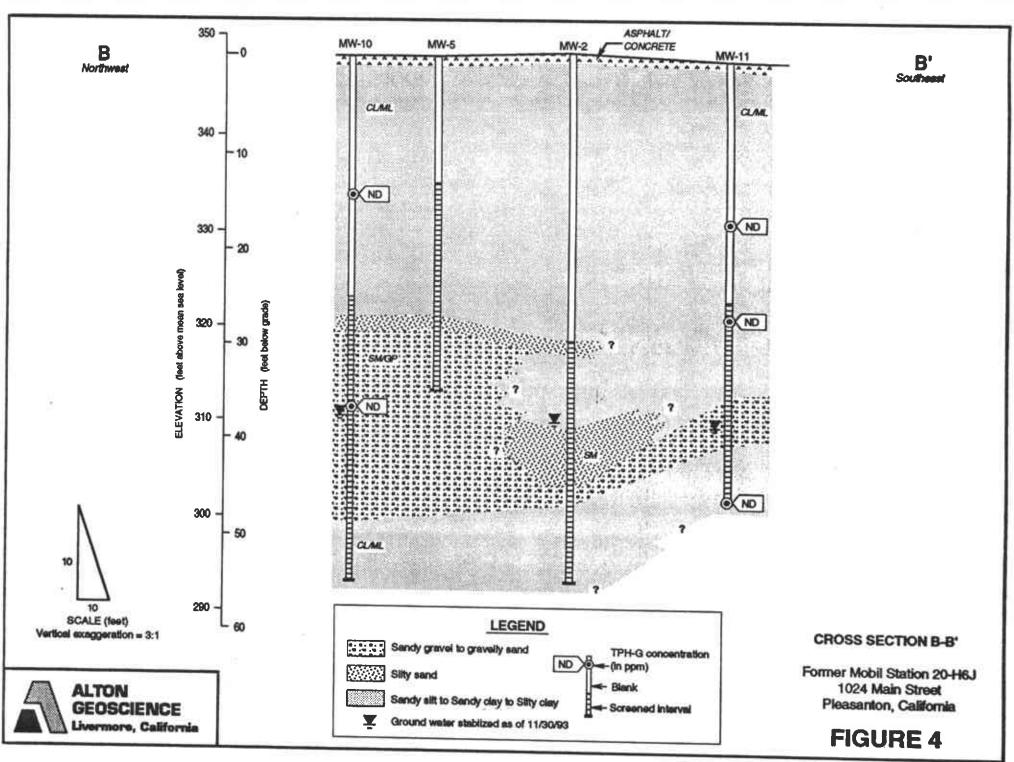
7.0 REFERENCES

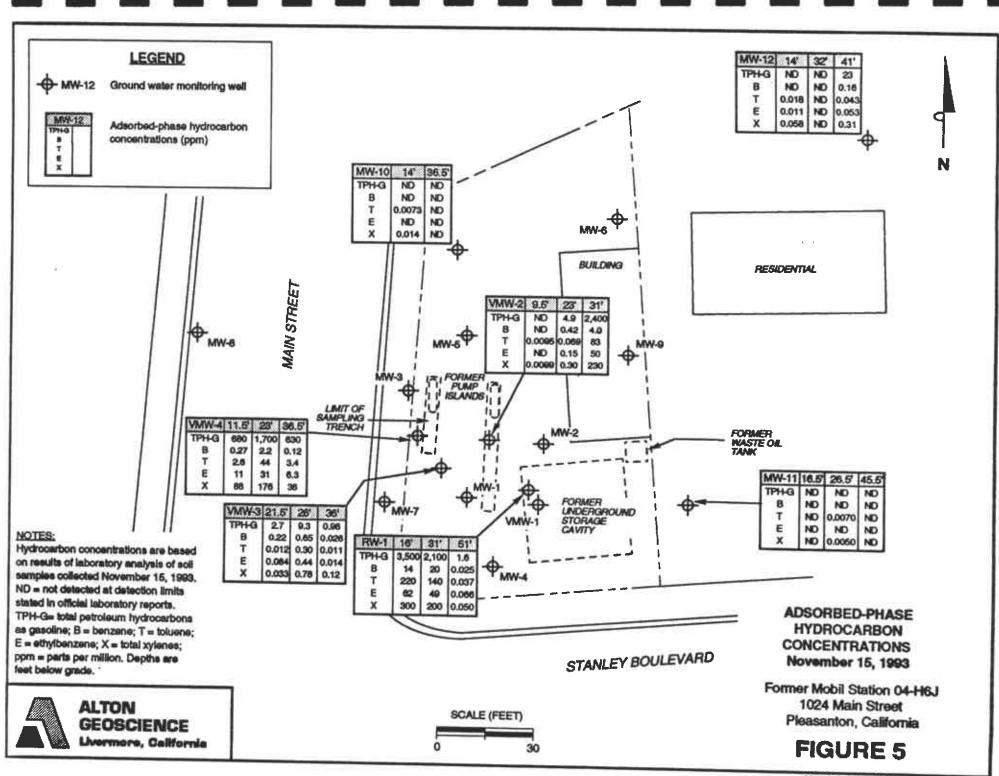

Alameda County Flood Control and Water Conservation District, Zone 7, June 24, 1992, Memorandum: Spring 1993 Ground Water Contour Map.

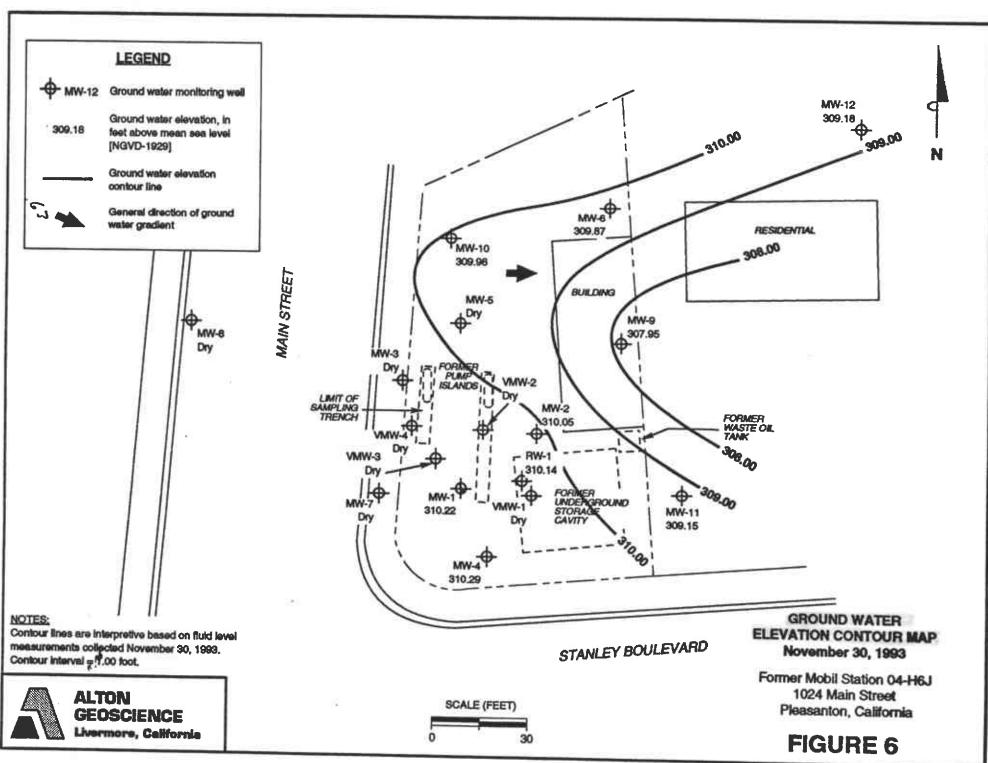

Alton Geoscience, July 31, 1992, Supplemental Site Investigation Report, Former Mobil Station 04-H6J, 1024 Main Street, Pleasanton, California.

Alton Geoscience, September 9, 1993, Quarterly Ground Water Monitoring and Sampling Report, Former Mobil Station 04-H6J, 1024 Main Street, Pleasanton, California.

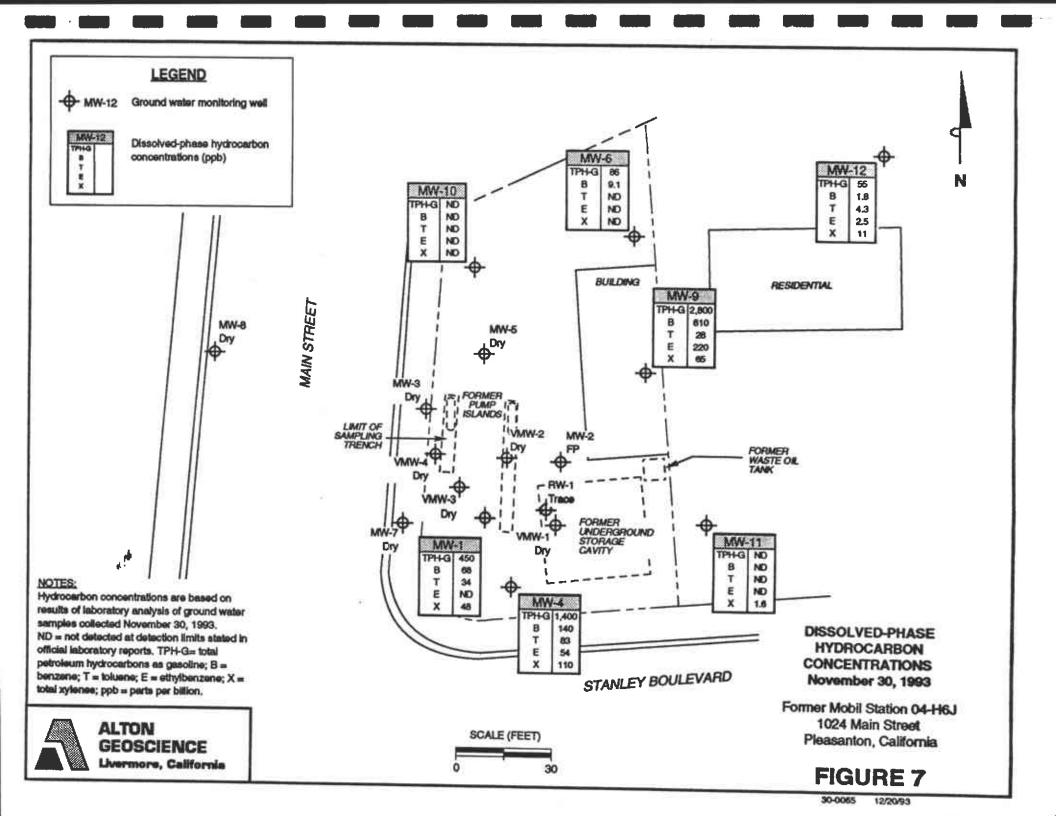

H20 Science, Inc., September 10 1993, Borehole Geophysical Survey, Former Mobil Station 04-H6J, 1024 Main Street, Pleasanton, California.


United States Geological Survey, 1961 (Photorevised 1980), Livermore and Dublin Quadrangles, 7.5 Minute Series, USGS, Denver, Colorado.





30-0065 12/20/93

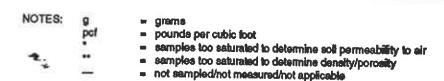


20.0000

Table 1 Summary of Soil Sampling and Analyses Former Mobil Station 10-H6J

1024 Main Street Pleasanton, California

Boring Number	Date of Sampling	Depth (feet)	TPH-G (ppm)	Benzene (ppm)	Toluene (ppm)	Ethylbenzene (ppm)	Total Xylenes (ppm)	Lab
RW-1	11/15/93	16.0	3,500	14	220	62	300	Comuin
	11/15/93	31.0	2,100	20	140	49	200	Sequeia
	11/16/93	51.0	1.6	0.025	0.037	0.066	0.050	Sequoia Sequoia
VMW-2	11/15/93	9.5	ND<1.0	ND<0.005	0,0095	ND<0.005	0.0099	Sequole
A	11/15/93	23.0	4.9	0.42	0.069	0.15	0.30	
P.	11/15/93	32.0	2,400	4.0	83	50	230	Sequeia Sequeia
VMW-3	11/16/93	21.5	2.7	0,22	0.012	0.084	0.033	
	11/16/93	26.0	9.3	0.65	0.30	0.44	0.78	Sequela
	11/16/93	36.0	0.98	0.026	0.011	0.014	0.12	Sequeia Sequeia
VMW-4	11/16/93	11.5	680	0.27	2.6	11		
	11/16/93	23.0	1,700	2.2	44	31	88	Sequola
	11/16/93	36.5	630	0.12	3.4	6.3	176 36	Sequeia Sequeia
MW-10	11/17/93	14.0	ND<1.0	ND o cor	20525			codoos
	11/17/93	36.5	ND<1.0	ND<0.005	0.0073	ND<0.005	0.014	Sequole
			14561.0	ND<0.006	ND<0.005	ND<0.005	ND<0.006	Sequole
MW-11	11/18/93	16.5	ND<1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	Comusio
	11/16/93	26.5	ND<1.0	ND<0.005	0.0070	ND<0.005	0.0050	Sequeia Sequeia
	11/18/93	45.5	ND<1.0	ND<0.005	ND<0.006	ND<0.005	ND<0.005	Sequoia
MW-12	11/17/93	14.0	ND<1.0	ND<0.005	0.018	0.011	0.050	Ť
	11/17/93	32,0	ND<1,0	ND<0.005	ND<0.005	ND<0.005	0.058 ND<0.005	Sequole
	11/17/93	41.0	23	0.16	0.043	0.063	0.31	Sequela Sequela
								·


NOTES: ppm

parts per million (mg/kg) total petroleum hydrocarbons as gasoline not detacted at or above method detection limit not measured/not available/not analyzed Depths are in feet below grade.

Table 2 Summary of Soil Sampling and Analyses for Physical Properties and Total Organic Carbon

Former Mobil Station 10-H6J 1024 Main Street Pleasanton, California

Boring Number	Date	Depth (feet)	Group Symbol	Total Organic Carbon (g/100g)	Moisture Content (%)	Dry Density (pof)	Porosity (%)	Air Permeability (darcy)	LAB
RW-1	11/15/93 11/15/93 11/15/93	16.0 16.5 46.0	CL CL SP	Ξ	15 18.0 11.8	99.1 119.5	 42.1 30.2	-	Sequoia Solea Solea
VMW-4	11/16/93	23.0	CL	-	_	_	_		Solea
MW-10	11/17/93 11/17/93 11/17/93 11/17/93	18.5 23.0 41.0 42.0	CL CL SW-GP SP-GP	0.22 0.030	19.9 16 — 11.6	109.3 — — — 110.9	35.8 — — 34.5	=	Solea Sequoia Sequoia Solea
MW-11	11/18/93 11/18/93 11/18/93	11.5 16.5 43.5	CL-ML ML CL	0.26 —	10.1 10 23.2	95.3 — 105.2	44.3 — 39.6	58.8	Solea Sequoia Solea
MW-12	11/17/93 11/17/93 11/17/93 11/17/93	11.0 14.0 32.0 51.5	CL-ML CL CL-ML SP-GP		11.8 10 — 15.0	101.8 — — ••	40.1 — —	20.9	Solea Sequola Solea Solea
W	1								

Former Mobil Station 04-H6J 1024 Main Street Pleasanton, California

Well ID	Date of Sampling	Casing Elevation (feet)	Free Product (feet)	Depth to Water (feet)	Ground Water Elevation (feet)	TPH-G (ppb)	TPH-D (ppb)	Benzene (ppb)	Toluene (ppb)	Ethyl- benzene (ppb)	Total Xylenes (ppb)	1,2-DCE (ppb)	Organic Lead (ppb)	Total Lead (ppb)	Lab
MW-1	04/12/90	348.03	0.00	43.57	304.46	3,600		73	13	3	180	45	ND<10		-
	10/18/90		0.00	43.18	304.85	5,000	ND<1000	700	360	170	480	54		_	SAL
	08/06/91	1 1	0.00	38.65	309.38	2,600	_	310	340	110	340	ND<25		NO 50	SAL
	01/08/92		0.00	38.68	309.35	2,400	-	270	370	18	340	14	ND<50	ND<5.0	SAL
	04/30/92		0.00	39.93	308,10	1,300	1 - 1	150	120	12	160	4.3	- ND-680		SAL
	07/31/92		0.00	43.05	304.98	ND<60		ND<0.5	ND<0.5	ND<0.6	ND<0.5	~		_	SEC
	10/27/92		0.00	42.86	305.17	2,700		320	310	84	310		_	_	SEC
	01/22/93		0.00	34.88	313.15	2,800	1 -	190	340	87	320		_	_	SEC
	04/05/93		0.00	33.71	314.32	6,000	l' - 1	410	460	51	500		_	_	SEC
	07/06/93		0.00	35.46	312.57	2,200	L -	140	240	32	180		_	_	SEC
	11/30/93		0.00	37.81	310.22	450	-	68	34	ND<0.5	48		_	_	SEC
MW-2	04/12/90	348,45	0.00	44.14	304,31	64,000		£ 500							-
	10/18/90		0.00	43.18	305,27	83,000	10,000	5,500	7,600	1,900	7,800	200	ND<10	_	SAL
	08/06/91		0.00	39.19	309.26	160,000	1 1	6,800	9,100	2,400	11,000	460	-		SAL
	01/08/92		0.02	39.40	309.07	100,000		16,000	25,000	4,300	19,000	330	- 1	330	SEQ
	04/30/92		0.00	40.50	307.95	71,000					- 1	1	-	- 1	_
	07/31/92		0.15	43.64	304.93	71,000		9,200	19,000	3,700	15,000	420	-	-	SEC
	10/27/92		Trace	43.53	304.92	_	_	_	_	-	- 1	-	- 1	-	
	01/22/93		Trace	35.55	312.90	_		-	-	-	- 4	- 1	- 1	- 1	_
	04/05/93	- 1	Trace	34,41	314.04		- 1		- 1		- 1	- 1	_	- 1	_
	07/06/93	- 1	Trace	35.98	312.47		-	- 1		-	- 1	- 1	_	- II	_
	11/30/93		0.48	38.76	310.05		_	- 1		-	- 1	- 1	_	_ 4	_
	1 1		37.0	00.70	010.05	_	_	-		- 1	- 1	2440	- 1	_	_
E-WW	04/12/90	347.97	0.00	23.18	324,79	2,100									
	10/18/90		0.00	14.28	333.69	1 1000000000000000000000000000000000000	ND<1000	32	56	31	170	117	ND<10		SAL
	08/06/91	1		Dry	_	_	-	3	3	1	5	2		-	SAL
	01/08/92		0.00	32.36	315.61	680					-	-	- 1	- 1	_
	04/30/92			Dry	_	_		8.9	26	8.5	72	5.7	-	-	SEQ
							-		- 1	- 1	- 1	_		_	_

NOTES: ppb = parts per billion (µg/l)

TPH-G = total petroleum hydrocarbons as gasoline

TPH-D = total petroleum hydrocarbons as diesel

ND = not detected at detection limits stated in official laboratory reports

not measured/not analyzed/not applicable

1,2-DCE = 1,2-Dichloroethane

= reported by laboratory as non-gasoline mixture

well inaccessible

= wells installed by Kaprealian Engineering at former Unocal Station #0543

SAL = Superior Analytical Laboratories SEQ - Sequois Analytical

Former Mobil Station 04-H6J 1024 Main Street Pleasanton, California

Well ID	Date of Sampling	Casing Elevation (feet)	Free Product (feet)	Depth to Water (feet)	Ground Water Elevation (feet)	(ppb)	TPH-D (ppb)	Benzene (ppb)	Toluene (ppb)	Ethyl- benzene (ppb)	Total Xylenes (ppb)	1,2-DCE (ppb)	Organic Lead (ppb)	Total Lead (ppb)	Lab
E-WM	07/31/92		_	Dry			_			_	_	_			
(can't)	10/27/92		_	Dry	l. – 1	_	_	_	_	U _ J	2274		_	_	
	01/22/93		0.00	27.30	320.67	2,600		240	300	170	440	1 1	-	_	
	04/05/93			Dry	1 - II	_	-	_	_		_		-	_	SEC
	07/05/93	1	- 1	Dry		-	_	_	_ 1	=			- 1	_	_
	11/30/93		- 1	Dry			_	- 1		-	-	=	=	_	
W-4	10/18/90	348.07	0.00	43.16	304.91	9,600	2,000	180	500	200	1,200				
	08/06/91	1	0.00	38.65	309,42	8,600	_,	320	420	220	650	9	_		SAI
	01/08/92		0.00	38.65	309,42	3,400	_	600	680	220		ND<25		ND<5.0	SEC
	04/30/92		0.00	39.88	308.19	7,200	_	650	1,200	210	1,100	9.2	ND⊲50	-	SEC
	07/31/92	11	0.00	43.07	305.00	3,800		320	340		1,200	ND<50	- 1	_	SEC
	10/27/92		0.00	42.78	305,29	9,000		440	750	120	360	-	-	-	SE
	01/22/93		0.00	34.76	313.31	12,000		540	1,200	190	900	- 1	-		SE
	04/05/93		0.00	33.61	314.48	1,100		34		320	1,900	- 1	- 1	-	SEC
	07/06/93		0.00	35.37	312.70	4,000	_		18	12	31	- 1	- 1	- 1	SEC
	11/30/93		0.00	37.78	310.29	1,400	=	220 140	300 83	43 54	440 110		=	_	SEC
IW-5	10/18/90	347.97	_		_	_				- 1			_	_	SEC
	06/06/91		0.00	34.26	313.72	_	-	-		_	- 1	- 1	- 1	- 1	_
	01/08/92		0.00	34.22	313.75	_		-	- 1	-	- 1		-	- 1	_
	04/30/92	1	_	Dry	_	_		-	- 1	-	- 1	- 1	- 1	- 1	_
	07/31/92		_	Dry	_	= 1	-	_	-	-	- 1		- 1	- 1	_
- 0	10/27/92) A	- 1	Dry			-	- 1	-	-	- 1	- 1	- 1		_
	01/22/93		_	Dry		_	_		-	-	-	-	-	_	_
	04/05/93		_	Dry		I		-	- 1	- 1	- 1	-	-	- 1	_
	07/06/93		_	Div	_	_	_		_	- 1	- 1		- 1	- 1	_
	11/30/93		-	Dry	_		_	_	-	- 1	- 1	-	-	- 1	_
- 1					- 1		_	-	~ [- 1	- 1	-	- 1	_ 1	_

NOTES: ppb parts per billion (µg/l)

TPH-G = total petroleum hydrocarbons as gasoline TPH-D - total petroleum hydrocarbons as diesel

ND = not detected at detection limits stated in official laboratory reports

not measured/not analyzed/not applicable

1,2-DCE = 1,2-Dichloroethane

= reported by laboratory as non-gasoline mixture

well inaccessible

= wells installed by Kaprealian Engineering at former Unocal Station #0543

SAL - Superior Analytical Laboratories SEQ - Sequoia Analytical

Former Mobil Station 04-H6J 1024 Main Street Pleasanton, California

Well ID	Date of Sampling	Casing Elevation (feet)	Free Product (feet)	Depth to Water (feet)	Ground Water Elevation (feet)	TPH-G (ppb)	TPH-D (ppb)	Benzene (ppb)	Toluene (ppb)	Ethyl- benzene (ppb)	Total Xylenes (ppb)	1,2-DCE (ppb)	Organic Lead (ppb)	Total Lead (ppb)	Leb
MW-6	10/18/90	348.23	0.00	43.60	304.63	3,000	ND<1000	1,300	150	120	85	140	1,745,6	i state-f.	
7	08/06/91		0.00	39.07	309.16	1,600	0.0000000000000000000000000000000000000	220	10	5.2	14	140	i — ii		SAL
	01/08/92	1 1	0.00	39.18	309.05	370	I -	81	3.9	4.5		8.3		ND-65.0	SEQ
	04/30/92		0.00	40.46	307.77	610	1 -1	180	8.4	6.8	2.9	5.4	ND<50	-	SEQ
	07/31/92		0.00	43.61	304.62	96	1 _8	1,500	1,500	370	3.3	7.0	_		SEQ
	10/27/92	0	0.00	43.68	304.55	9,400	_	27	ND<0.5		1,100		- 1	_	SEQ
	01/22/93	10	0.00	35.66	312,57	250	_	12		6	10		- 1	_	SEQ
	04/05/93		0.00	34.41	313.82	190	1 [1	2,3	2.4 0.99	1.4	1.9	- 1	- 1	-	SEQ
	07/06/93		0.00	36.01	312.22	99		1.4		ND<0.5	0.5	- 1	- 1	- i	SEQ
	11/30/93		0.00	36.36	309.87	86		9.1	0.54	ND<0.5	ND<0.5	- 1			SEQ
							1 -1	9.1	ND<0.5	ND<0.5	ND<0.5	- 1		-	SEQ
MW-7	10/18/90	347.90	0.00	9.26	338.64	ND<50	ND<1000	اها	0.5	ND aa			1		
	08/08/91	- 1		Dry	_	_				ND<0.3	0.8	ND<0.5	- 1		SAL
	01/08/92	- 1	0.00	23.79	324.11	220	_	7.8	1.7	ND<0.3		- 1	- 1	- 1	
	04/30/92		-	Dry		_		7.5			0.55	- 1	- 1	-	SEQ
	07/31/92		_	Dry	- 1		_	_		_	-	- 1		- 1	_
	10/27/92		_	Dry		_	_		_	-	- 1	- 1	-	-	_
	01/22/93		_]	Dry	1		_	_			- 1	- 4	- 1	- 1	_
	04/05/93	10	- 4	Dry	_			_	-	-	- 1	-		- 1	_
	07/06/93	- 1	- 1	Dry	-	_	1 - 1	- 1	-	_	- 1	-	- 1	- 1	
	11/30/93		- 1	Dry	_	_	_	_	- 1	- 1	-	- 1		-	_
	1 1			.			-	-	- 1	- 1	-	- 1	- 1	-	_
B-WM	10/18/90	348.90	0.00	11.30	337.60	900	NO HOOD		_ 1	- 1		4	- 1	- 1	
	08/06/91		_	Dry	-		ND<1000	3	5	7	62	ND<0.5	-	_	SAL
	01/08/92	- 1	_	Dry		_		- 1	- 1	-	- 1	- 1	- 1	_	-
	04/30/92		_	Dry	_	_		-	- 1	- 1		- 1	_	_	_
	07/31/92		0.00	12.04	336.86	070	-1	-	-	-	-	- 1	- 1	_ ul	_
	10/27/92		_	Dry		270	- 1	ND<0.5	ND<0.5	ND<0.5	1.3	_	_	_	SEQ
	01/22/93			Dry	_	_	- 1	~		-	-	_		_	
				Diy	- 1	_	- 1	-	_ /	- 1	- 1	_		_	_

NOTES: ppb = parts per billion (µg/l)

TPH-Q = total petroleum hydrocarbons as gasoline TPH-D = total petroleum hydrocarbons as diesel

ND = not detected at detection limits stated in official laboratory reports

not measured/not analyzed/not applicable

1,2-DCE = 1,2-Dichloroethane

reported by laboratory as non-gasoline mixture

well inaccessible

= wells installed by Kaprealian Engineering at former Unocal Station #0543

SAL - Superior Analytical Laboratories

SEQ - Sequoia Analytical

Former Mobil Station 04-H6J 1024 Main Street Pleasanton, California

Well ID	Date of Sampling	Casing Elevation (feet)	Free Product (feet)	Depth to Water (feet)	Ground Water Elevation (feet)	TPH-G (ppb)	TPH-D (ppb)	Benzene (ppb)	Toluene (ppb)	Ethyl- benzene (ppb)	Total Xylenes (ppb)	1,2-DCE (ppb)	Organic Lead (ppb)	Total Lead (ppb)	Lab
MW-8	04/06/93		-	Dry	-	-	1	_		_				J. 65.55.	
(con't)	07/06/93		0.00	7.48	341.42	ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5	-	-	7.00	_
	11/30/93		· -	Dry	-	- 1	_	_			-		= 1	=	SEQ
MW-9	02/04/92	348.53	0.00	43.54	304,99	16,000	_	3,000	740						THE
	04/30/92		0.00	42.83	305.70	5,600		1,000	740	1,200	2,500	68	- 1	ND<5.0	SEQ
	07/31/92	1	0.00	47.36	301.17	93			120	410	350	ND<50	- 1	_	SEQ
	10/27/92		0.00	48.32	300.21	13,000		1,800 2,400	1,900	620	940	- 11	- 1		SEQ
	01/22/93		0.00	39.11	309,42	5,600		1,200	1,600	680	1,100	- 1	- 1	- 1	SEQ
	04/05/93		0.00	37.10	311.43	7,900	_	1,300	200 510	510	350	- 1	- 1	- 1	SEQ
	07/06/93		0.00	39.21	309.32	3,200	_	510	46	620 170	670	- 1	- 1	-	SEQ
	11/30/93		0.00	40.58	307.95	2,800	- 1	610	28	220	150 65	_	=	-	SEQ
MW-10	11/30/93	347.95	0.00	37.97	309.98	ND<50	_	ND<0.5	ND<0.5	ND<0.5	ND<0.5	_	_	_	SEQ
MW-11	11/30/93	347.58	0.00	38.41	309,15	ND<50	-	ND<0.5	ND<0.5	ND<0.5	1.6	_	_	_	SEQ
MW-12	11/30/93	347.15	0.00	37.97	309.16	65	-	1.8	4.3	25	11	_	_	_	SEQ
VMW-1	11/30/93	348.05	-	Dry	-	-	-	-	-	_	_	_ 1	-	_	
VMW-2	11/30/93	347.90	-	Dry	-	-	_	_	_	_	_	_	_		_
c-WMV	11/30/93	348.10	-	Dry	_	_	_	_	_	_	_ /			-	_
VMW-4	11/30/93	347.96	-	Dry	_		_	_	_		- 1	-	-	-	_
RW-1	11/30/93	347.89	Trace	37.75	310,14				_	-	-	-	-	-	_
-	300			Jr.10	310.14	-	-	-	-	-	-	- 1	-	-	_

NOTES: ppb = parts per billion (µg/l)

TPH-G = total petroleum hydrocarbons as gasoline

TPH-D = total petroleum hydrocarbons as diesel

ND = not detected at detection limits stated in official laboratory reports

not measured/not analyzed/not applicable

1,2-DCE = 1,2-Dichloroethane

reported by laboratory as non-gasoline mixture

wall inaccessible

 wells installed by Kaprealian Engineering at former Unocal Station #0543

SAL = Superior Analytical Laboratories

SEQ - Sequoia Analytical

Former Mobil Station 04-H6J 1024 Main Street Pleasanton, California

Well ID	Date of Sampling	Casing Elevation (feet)	Free Product (feet)	Depth to Water (feet)	Ground Water Elevation (feet)	TPH-G (ppb)	TPH-D (ppb)	Benzene (ppb)	Toluene (ppb)	Ethyl- benzene (ppb)	Total Xylenes (ppb)	1,2-DCE (ppb)	Organic Lead (ppb)	Total Leed (ppb)	Lab
MW-1#	12/16/92	351.18	II-	_	_	ND	ND	ND	ND	ND	ND	_	_	_	_
	02/02/93		0.00	37.76	313.42	_	_	_			_		_	_	-
MW-1#	03/01/93		0.00	36.26	314.92	-	_		-		_	_	_	_	_
(con't)	04/14/93	1	0.00	36.56	314.62	ND	ND	ND	ND	ND	ND	_	_	-	_
	05/14/93		0.00	37.27	313.91	-	_	_	_		-		_	_	_
	06/15/93		0.00	38.02	313.16	_	l –				_	- 1		_	
	07/06/93		0.00	38.06	313.12	ND	ND	ND	ND	ND	ND	-	-	_	_
	11/30/93		_	_	-	-	_		_	-	_	_	_	_	_
MW-2#	12/16/92	349.83	_	_	_	1,600	_	28	ND	5.1	5.6	_	_		_
	02/02/93	1	0.00	39.18	310.65	_	_	_		l – :	_	l – :	1		_
	03/01/93		0.00	34.33	315.50		_	_	_	l – 1	-		_	_	l –
	04/14/93		0.00	37.56	312.27	4,300	_	7.2	5.8	13	10	_	_ [_	_
	05/14/93		0.00	37.49	312.34	_	_	_	_					_	_
	06/15/93		0.00	39.34	310,49	_	-	_		1	_	l – 1			l _
	07/06/93		0.00	37.62	312.01	4,700	_	17	15	30	28		_	_	_
	11/30/93		_	-	-	` -	-		-	_	_	-	_	-	-
MW-3#	12/16/92	351.35	_	_	_ 1	ND	_	ND	ND	ND	ND	_	_	_	_
	02/02/93		0.00	40.62	310.73	_	-	_	-	_	_				
	03/01/93		0.00	35.7	315.65	_	-	-	_	_	_	_		_ 1	_
	04/14/93	1	0.00	38.97	312.38	ND	-	ND	ND	ND	ND	_ 1	_		l –
	05/14/93		0.00	39.07	312.28	_	-	_	_	_	_	_	_	_	_
	06/15/93		0.00	40.68	310.67	_	-	_	_		_	_	_	_	_
	07/06/93		0.00	37.82	313.53	ND	_	ND	ND	ND	ND	_	_		_
	11/30/93		-	_	-	_	_	_	_	-	_	_	_	_	_

NOTES: ppb = parts per billion (μg/l)

TPH-G = total petroleum hydrocarbone as gasoline

TPH-D = total petroleum hydrocarbons as diesel

ND = not detected at detection limits stated in official laboratory reports

not measured/not analyzed/not applicable

1,2-DCE = 1,2-Dichloroethane

= reported by laboratory as non-gasoline mixture

well inaccessible

 wells installed by Kapreelian Engineering at former Unocal Station #0543

SAL = Superior Analytical Laboratories

SEQ = Sequoia Analytical

APPENDIX A

GENERAL FIELD PROCEDURES, BORING LOGS, AND WELL CONSTRUCTION DETAILS

APPENDIX A

GENERAL FIELD PROCEDURES

A description of the general field procedures used during site investigation and monitoring activities is presented below. For an overview of protocol, refer to the appropriate section(s).

DRILLING AND SOIL SAMPLING

Soil borings are drilled using continuous-flight, hollow-stem augers. Borings that are not completed as monitoring wells are grouted to within 5 feet of the ground surface with a cement/bentonite slurry. The remaining 5 feet is filled with concrete.

Soil samples are obtained for soil description, field hydrocarbon vapor screening, and possible laboratory analysis. Soil samples are retrieved from the borings by one of two methods: 1) continuously, using a back-to-back standard split-spoon sampler; sample tubes are driven into the core with a mallet, or 2) at 2.5- or 5-foot intervals, using a standard split-spoon sampler lined with four 1.5-inch-diameter stainless steel or brass sample inserts. The split-spoon sampler is driven approximately 18 inches beyond the lead auger with a 140-pound hammer dropped from a height of 30 inches.

For hand auger borings and hand-held, power-driven auger borings, soil samples are retrieved using a hand-driven slide hammer lined with a 1.5-inch-diameter stainless steel sample tube.

During drilling activities, soil adjacent to the laboratory sample is screened for combustible vapors using a combustible gas indicator (CGI) or equivalent field instrument. For each hydrocarbon vapor screening event, a 6-inch-long by 2.5-inch-diameter sample insert is filled approximately 1/3 full with the soil sample, capped at both ends, and shaken. The probe is then inserted through a small opening in the cap, and a reading is taken after approximately 15 seconds and recorded on the boring log. The remaining soil recovered is removed from the sample insert or sampler, and described in accordance with the Unified Soil Classification System. For each sampling interval, field estimates of soil type, density/consistency, moisture, color, and grading are recorded on the boring logs.

SOIL SAMPLE HANDLING

Soil sample handling follows the same basic protocol for both drilling and excavation activities. Upon retrieval, soil samples are immediately removed from the sampler, sealed with Teflon sheeting and polyurethane caps, and wrapped with tape. Each sample is labeled with the project number, boring/well number, sample depth, geologist's initials, and date of collection. After the samples have been labeled and documented in the chain of custody record, they are placed in a cooler with ice at approximately 4 degrees Celsius (°C) prior to and during transport to a state-certified laboratory for analysis. Samples not selected for immediate analysis may be transported in a cooler with ice and archived in a frostless refrigerator at approximately 4°C for possible future testing.

WELL INSTALLATION

Monitoring wells are constructed of 4-inch-diameter, flush-threaded Schedule 40 PVC blank and screened (0.020-inch slot size) casing. Where possible, the screened interval will extend at least 10 feet above, and 10 to 20 feet below, the top of the ground water table. The annular space surrounding the screened casing is backfilled with Sri Supreme # 8 sand (filter pack) to approximately 2 feet above the top of the screened section.

Recovery wells are constructed of 6-inch diameter flush-threaded Schedule 40 PVC blank and screened (0.020-inch slot size) casing. Where possible, the screened interval will extend at least 10 feet above, and 10 to 20 feet below, the top of the ground water table. The annular space surrounding the screened casing is backfilled with No. 3 Monterey sand (filter pack) to approximately 2 feet above the top of the screened section.

Vapor Extraction wells are constructed of 4-inch diameter flush-threaded Schedule 40 PVC blank and screened (0.010-inch slot size) casing. The annular space surrounding the screened casing is backfilled with coarse aquarium sand (filter pack) to approximately 1 feet above the top of the screened section.

During monitoring and recovery well construction, the filter pack is completed by surging with a rig-mounted surge block. A 2 to 3 foot thick bentonite annular seal is placed above the filter pack. The remaining annular space is grouted with Portland cement and/or bentonite grout to the surface. Utility access boxes are installed slightly above grade. Locking, watertight caps are installed to prevent unauthorized access to the well, and limit infiltration of surface fluids.

FLUID LEVEL MONITORING

Fluid levels are monitored in the wells using an electronic interface probe with conductance sensors. The presence of liquid-phase hydrocarbons is verified using the interface probe and/or a hydrocarbon-reactive paste. The depth to liquid-phase hydrocarbons and water is measured relative to the top of casing. Well box or casing elevations are surveyed to within 0.02 foot relative to a county or city bench mark (see Appendix C for Survey data).

GROUND WATER PURGING AND SAMPLING

Ground water monitoring wells are purged and sampled in accordance with standard regulatory protocol. Typically, monitoring wells that contain no liquid-phase hydrocarbons are purged of ground water, prior to sampling, so that fluids sampled are representative of fluids within the formation. Temperature, pH, and specific conductance are typically measured after each well casing volume has been removed. Purging is considered complete when these parameters vary less than 10% from the previous readings, or when four casing volumes of fluid have been removed. Samples are collected without further purging if the well does not recharge within 2 hours to 80% of its volume before purging. The purged water is either pumped directly into a licensed vacuum truck or temporarily stored in labeled drums prior to transport to an appropriate treatment or recycling facility. If an automatic recovery system (ARS) is operating at the site, purged water may be pumped into the ARS for treatment.

Ground water samples are collected by lowering a 1.5-inch-diameter, bottom-fill, disposable polyethylene bailer just below the static water level in the well. The samples are carefully transferred from the check-valve-equipped bailer to 1-liter and 40-milliliter glass containers. The sample containers are filled to zero headspace and fitted with Teflon-sealed caps. Each sample is labeled with the project number, well number, sample date, and sampler's initials. Samples remain chilled at approximately 4°C prior to analysis by a state-certified laboratory.

CHAIN OF CUSTODY PROTOCOL

Chain of custody protocol is followed for all soil and ground water samples selected for laboratory analysis. The chain of custody form(s) accompanies the samples from the sampling locality to the laboratory, providing a continuous record of possession prior to analysis.

DECONTAMINATION

Drilling and Soil Sampling

Drilling equipment is decontaminated by steam cleaning before being brought onsite. The augers are also steam cleaned before each new boring is commenced. Prior to use, the sampler and sampling tubes are brush-scrubbed in a Liqui-nox and potable water solution and rinsed twice in clean potable water. Sampling equipment and tubes are also decontaminated before each sample is collected to avoid cross-contamination between borings.

Ground Water Sampling

Purging and sampling equipment that could contact well fluids is either dedicated to a particular well or cleaned prior to each use in a Liqui-nox solution followed by two tap water rinses.

LITHOLOGY (UNIFIED SOIL CLASSIFICATION SYSTEM)

	MAJOR DIVIS	IONS		TYPICAL NAMES
		CLEAN GRAVELS WITH	GW	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES
ω¥	GRAVELS MORE THAN HALF	LITTLE OR NO FINES	GP	POORLY-GRADED GRAVELS, GRAVEL-SAND MIXTURES
COARSE-GRAINED SOILS MORE THAN HALF IS LARGER THAN No. 200 SIEVE	COARSE FRACTION IS LARGER THAN No. 4 SIEVE SIZE	GRAVELS WITH OVER	GM	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES
SLARC	SIE VE SIZE	12% FINES	GC	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES
-GRA		CLEAN SANDS WITH	sw	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
ARSE WANT	SANDS	LITTLE OR NO FINES	SP	POORLY-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
MORE	MORE THAN HALF COARSE FRACTION IS SMALLER THAN NO. 4	SANDS WITH OVER	SM	SILTY SANDS, SAND-SILT MIXTURES
	SIEVE SIZE	12% FINES	sc	CLAYEY SANDS, SAND-CLAY MIXTURES
HAN			ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
INE-GRAINED SOILS THAN HALF IS SMALLER THAN No. 200 SIEVE	SILTS AN		CL	INORGANIC CLAYS OF LOW-TO MEDIUM-PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
NED S	FIGUID FIMIT (ESS THAN SU	OL	ORGANIC SETS AND ORGANIC SETY CLAYS OF LOW PLASTICITY
E-GRAINED AN HALF IS SA No. 200 SIEN			мн	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
FINE-	SILTS AN		СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
MORE	LIQUID LIMIT GR	EATER THAN 50	ОН	ORGANIC CLAYS OF MEDIUM- TO HIGH-PLASTICITY, ORGANIC SILTS
	HIGHLY ORG	ANIC SOILS	Pt	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

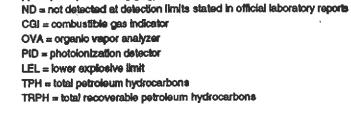
SYMBOLS AND NOTES

T SAMPLE INTERVAL

SAMPLE NOT RECOVERED

BENTONITE

CONCRETE

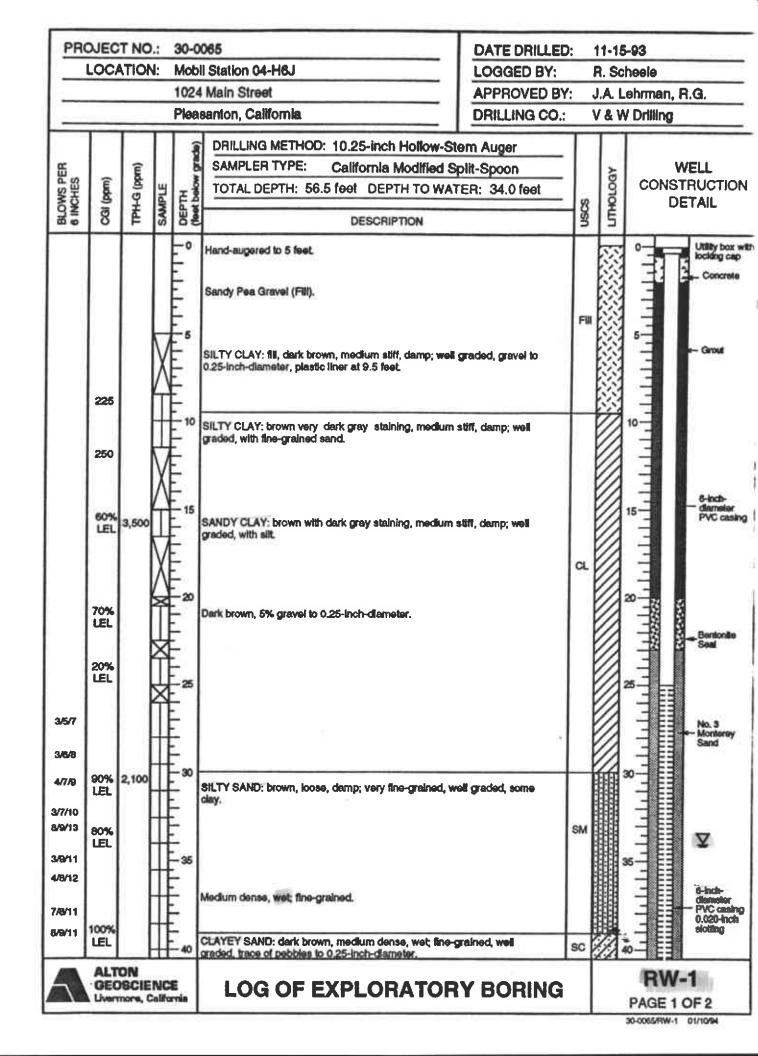

GROUT

FILTER SAND PACK

STATIC WATER LEVEL

WATER LEVEL ENCOUNTERED WHEN DRILLING

T



KEY TO BORING LOG

ppm = perts per million (mg/kg)

ppb = parts per billion (µg/kg)

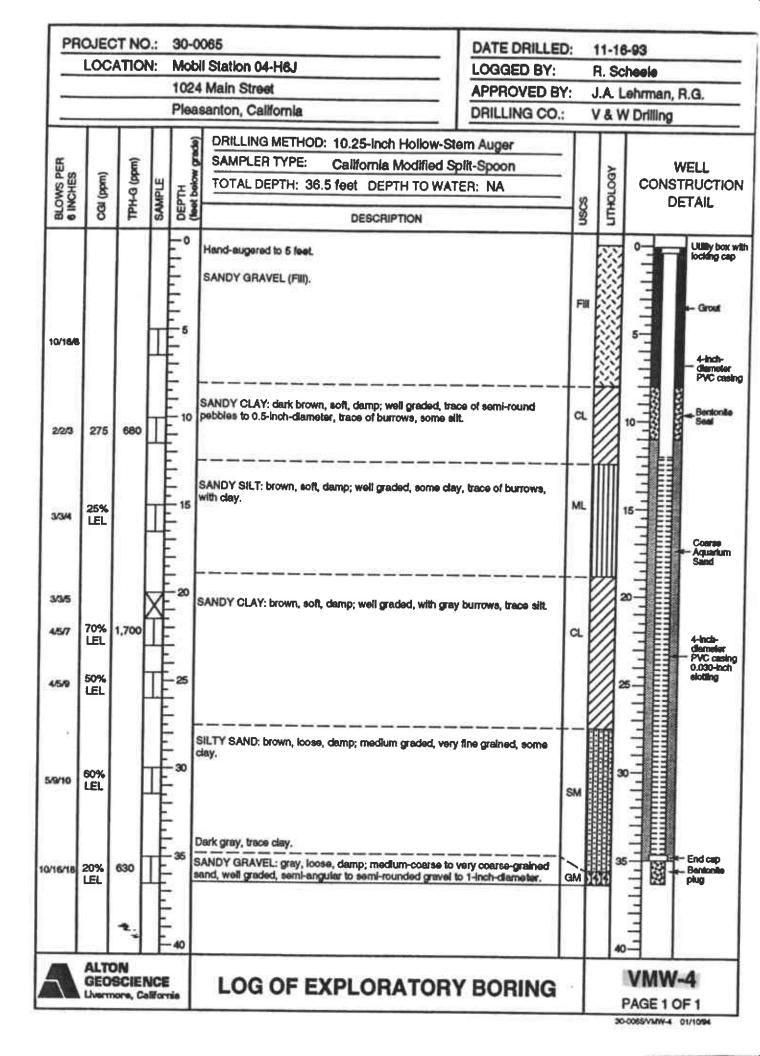
PROJECT NO.: 30-0065 **DATE DRILLED:** 11-15-93 LOCATION: Mobil Station 04-H6J LOGGED BY: R. Scheele 1024 Main Street APPROVED BY: J.A. Lehrman, R.G. Pleasanton, California DRILLING CO.: V & W Drilling DRILLING METHOD: 10.25-inch Hollow-Stern Auger BLOWS PER 6 INCHES SAMPLER TYPE: TPH-G (ppm) California Modified Split-Spoon WELL LITHOLOGY Cal (ppm) DEPTH (feet below CONSTRUCTION SAMPLE TOTAL DEPTH: 56.5 feet DEPTH TO WATER: 34.0 feet **DETAIL** SSS DESCRIPTION 8/11/14 SANDY CLAY: brown, medium dense, wet, fine-grained sand, well 100% 8/10/12 graded, some slit, SC LEL CLAYEY SAND: dark brown, medium dense, wet, fine-greined, wetl graded, CL trace of pebbles to 1/4" in diameter 100% SANDY GRAVEL: very dark gray, loose, test; well graded, fine- to very coarse-grained send, angular gravel to 0.33-inch-dameter. LEL GM SILTY SAND: brown, medium dense, wet; fine-grained, wed graded, some SM 3/6/14 7/8/19 400 0.020-inch 1,6 7/19/75 300 SANDY CLAY: brown, stiff, moist; fine-grained sand, well graded, reddish brown, Fe Oxide mottling. CL End cap Medium dense, sandstone clasts to 0.5-inch-diameter, black and reddish 0 brown mottling. 65 **ALTON RW-1 GEOSCIENCE** LOG OF EXPLORATORY BORING Livermore, California PAGE 2 OF 2

4		ON SCIE			LOG OF EXPLORATORY	BORING			MW- PAGE 1	
4/15/21 3/17/22				- - -40	Gravel to 1.5-Inch-diameter. 42.		GP		40-	
0/15/16 3/16/31	0	ND		- 36	Gray, dense; coarse- to very coarse-grained sand, well grad	led.			35-1	Y
0/12/18 1/35/50			H	-	The second Second					0.020-inc
27076 27275	0		Ш	-	SANDY GRAVEL: dark gray, medium dense, damp; fine- to sand, well graded, angular to semi-angular gravel to 1.0-incl sit. Increasing gravel.	h-cliameter, with	αм		30- 	4-lack demander PVC case
5/8/14				-	SILTY SAND: brown, medium dense, damp; fine- to medium graded, fining upwards.		SM			No. 8 Sri Supreme Seed
4/6/9	65			- 25 					25	
4/7/6 4/5/8	50		\parallel				CL.		NOON .	Seal
3/3/5	75			-20					20 1	Bentonik
2/3/4 3/3/4	75		\blacksquare		SANDY CLAY: brown, soft, damp; very fine-grained sand, w gray burrow, some slit.	vell graded, with				PVC cas
3/4/8 2/3/5	76	ND	Н	- - - - - 15	Increasing clay content.				15-	4-buth- Gamelo PVC cas
4/5/8 4/5/5				10 	Trace of gravel to 0.25-inch-diameter, some day, burrows.		ML		10-	
2/3/3 3/6/7			X							
22/3	100		П	5	SANDY SILT: brown, soft, damp; very fine-grained sand, we rootlets.	eil graded,			511	e- Groat
	0				Hand-augered to 5 feet. SILTY GRAVEL: dark brown, (fill).					Utility for locking of
BLOWS PER 6 INCHES	(mdd) (DO	TPH-G	SAMPLE	DEPTH (feet below	DESCRIPTION		nscs	ГТНОГОВУ	D	ETAIL
S PER ES	(Ex	TPH-G (ppm)	3	H How grade)	DRILLING METHOD: 10.25-Inch Holfow-Stem SAMPLER TYPE: California Modified Split- TOTAL DEPTH: 58.5 feet DEPTH TO WATER:	Spoon		OGY		WELL TRUCTK
_	_		_	Plea		PRILLING CO.:		/ & V	V Drilling	
				1024	Main Street	APPROVED BY:	٠,	J.A. L	Lehrman,	R.G.
I	LOC/	TIO	N:	Mob	I Station 04-H6J	OGGED BY:		R. Sc	cheele	

PROJECT NO.; 30-0065 **DATE DRILLED:** 11-17-93 LOCATION: Mobil Station 04-H6J LOGGED BY: R. Scheele 1024 Main Street **APPROVED BY:** J.A. Lehrman, R.G. V & W Drilling Pleasanton, California DRILLING CO .: DRILLING METHOD: 10.25-inch Hollow-Stem Auger BLOWS PER 6 INCHES SAMPLER TYPE: WELL TPH-G (ppm) California Modified Split-Spoon **LTHOLOGY** CGI (ppm) DEPTH (feet balow CONSTRUCTION SAMPLE TOTAL DEPTH: 56.5 feet DEPTH TO WATER: 36.5 feet DETAIL SSS DESCRIPTION 15/17/20 SANDY GRAVEL: gray, dense, damp; coarse to very coarse-grained sand, well graded, gravel to 0.75-inch-diameter. 16/19/22 QР 18/20/24 SANDY CLAY: brown, medium stiff, damp; very fine-grained sand, well graded, trace gravel to 0.25-inch-diameter, motiled. 7/9/11 CL End cap 5/6/9 increasing gravel to 10%. 65 80 ALTON **MW-10** LOG OF EXPLORATORY BORING GEOSCIENCE Livermore, Celifornia PAGE 2 OF 2

PROJECT NO .: 30-0065 DATE DRILLED: 11-18-93 LOCATION: Mobil Station 04-H6J LOGGED BY: R. Scheele 1024 Main Street **APPROVED BY:** J.A. Lehrman, R.G. Pleasanton, California DRILLING CO.: V & W Drilling DRILLING METHOD: 10.25-inch Hollow-Stern Auger BLOWS PER 6 INCHES TPH-G (ppm) SAMPLER TYPE: California Modified Split-Spoon WELL **ПТНОСОВ** (mdd) (bom) SAMPLE CONSTRUCTION DEPTH (feet balo TOTAL DEPTH: 46.5 feet DEPTH TO WATER: 35.0 feet SSSU DETAIL DESCRIPTION Utility box with locking cap Hand-augered to 5 feet. Concrete SILT: brown, very soft, damp; very fine-grained sand, poorly graded, trace day (Cuttings). ND SANDY SILT: brown, soft, damp; very fine-grained sand, well graded, some 4/8/11 85 Grout gravel to 0.75-inch-diameter, trace clay. Increasing % of gravel to 0.75-inch-diameter. 12/15/25 65 4-inchdiarnater PVC casing 130 ND No gravel. 11/16/28 Increasing clay. SANDY CLAY: dark gray, medium stiff, damp; very fine-grained sand, trace 8/11/14 125 Reddish brown mottling. 25 8/9/11 ND 70 Gray, worm burrows, mottling. 589 No. 8 Srl Supreme Send 8/10/10 SANDY SILT: brown, medium stiff, damp; very fine-grained send, trace clay. Gravel up to 15%. 50 4/7/8 4-inch-diameter PVC casing 8/9/14 0.020-Inch 9/12/15 slotting 11/13/14 Y GRAVELLY SAND: brown, medium dense, moist to well medium to 10/14/18 coarse-grained, gravel to 0.5-Inch-diameter. 7/10/12 SM 5% LEL ALTON MW-11 GEOSCIENCE LOG OF EXPLORATORY BORING Livermore, California PAGE 1 OF 2 30-0065/MW-11 01/10/94

PRO	NEC	TNO).:	30-0	0065	DATE DRILLED				
_	_	ATIO	_		il Station 04-H6J	LOGGED BY:	_	_	8-93 cheele	
				1024	Main Street	APPROVED BY			Lehrman,	BB
7				Plea	santon, California	DRILLING CO.:	_		V Drilling	n.a.
BLOWS PER 6 INCHES	CGI (ppm)	TPH-G (ppm)	SAMPLE	DEPTH (Net below grade)		olit-Spoon	8	ГТНОГОВУ	CONS	WELL TRUCTIO
B 0	8	F	3	_	DESCRIPTION		SOSI	1 -		
3/3/3 4/4/5 5/5/7				# 	SANDY CLAY: brown, moist, medium dense; very fine- graded, burrows, trace pebbles, some elit.	grained sand, well	CL.		40-	No. 6 Sr Beprens Sand 4-Inch- dismeter PVC cas 0.020-Inc slotting
11/12/15		ND	Д	-45	Increasing sand.		SM		45	End cap Bentonite plug
				- 50 - 55 - 55 - 60 - 70 - 75 - 75				7		
70 0		N SCIEN SCIEN			LOG OF EXPLORATORY	BORING			MW-	


-	OJEC	_	_	30-0	0065 D	ATE DRILLED):	11-1	7-93	
	LOC	ATIO	N:	Mot	oll Station 04-H6J	OGGED BY:		R. Sc	cheele	
				102	4 Main Street	PPROVED BY	Έ,	J.A. I	_ehrman,	R.G.
				Plea	santon, California	RILLING CO.:		V & V	V Drilling	
BLOWS PER 6 INCHES	(wdx	TPH-G (ppm)	T.E.	H T	DRILLING METHOD: 10.25-inch Hollow-Stem A SAMPLER TYPE: California Modified Split-S TOTAL DEPTH: 58.0 feet DEPTH TO WATER:	Spoon		LOGY	CONS	WELL TRUCTION
BLOV 6 INC	CGI (ppm)	H.	SAMPLE	DEPTH DEPTH	DESCRIPTION		uscs	итногову	0	ETAIL
3/4/6 3/5/5					Hand-augered to 5 feet. SILT: brown, very soft, damp; very fine-grained, poorly grade of clay. SANDY SILT: brown, soft, damp; very fine-grained sand, me				1,44,1,1,1,1,1,1,1,1,1	Utility born tooking cap Concrete
4/5/6 5/7/8 6/9/11 8/11/12	40			- 10 	Medium stiff, burrows, trace clay.				10	
9/10/12			T V	- 15 - 15 			ML		15-	4-inch- clamater PVC cash
6/9/12 7/9/12	30		Н	- 20	Increasing day.				20-	
¥10/14	-30				Numerous gray burrows.			Ш	Notice of	Berdonite Seal
7/9/11 6/8/11				_ 					25	
4/8/9 1/13/14	20		H		Increasing sand.					No. 8 Sri Supreme Sand
7/8/10 V11/15	100		H	-30	SANDY SILT: brown, medium stiff, damp; very fine-grained se graded, trace of gravel to 0.5-inch-diameter. Increasing semi-rounded gravel to 0.75-inch-diameter.	and, well			∞∃ ∭	
5/26/39 5/23/38					SANDY SILT: brown, very stiff, damp; very fine- to very-coars grained sand, well graded, semi-angular to semi-rounded grav 1-inch-diameter, sand clasts to 0.75-inch-diameter, yellow, tra	/el to	ML/ GM			4-inch- diameter PVC casing 0,020-inch
1/24/38				- 35 - -	SANDY CLAY: brown, medium stiff, damp; very fine-grained s graded, black mottling, trace of gravel to 0.25-inch-diameter.				35	alotting
/18/21	25			- 40	increasing gravel to 16%, increasing reddish brown and black mottling.		a			
4		ON SCIE			LOG OF EXPLORATORY	BORING			MW-PAGE 1	OF 2

PROJECT NO.: 30-0065 DATE DRILLED: 11-17-93 LOCATION: Mobil Station 04-H6J LOGGED BY: R. Scheele 1024 Main Street **APPROVED BY:** J.A. Lehrman, R.G. Pleasanton, California DRILLING CO.: V & W Drilling DRILLING METHOD: 10.25-Inch Hollow-Stem Auger BLOWS PER 6 INCHES SAMPLER TYPE: TPH-G (ppm) California Modified Split-Spoon WELL **І**ТІНОГОВІ DEPTH (lest below s CGI (ppm) CONSTRUCTION SAMPLE TOTAL DEPTH: 58.0 feet DEPTH TO WATER: 45.0 feet DETAIL DESCRIPTION SANDY CLAY: brown, medium stiff, damp; very fine-grained sand, well 40 CL graded, reddish brown and black mottling, some gravel to 0.25-inch-diameter. 6/20/21 40 23 SANDY SILT: brown, medium stiff, moist; very fine-grained sand, well 14/15/17 No. 8 Srl ML Supreme Sand graded, black mottling. SILTY SAND: brown, loose, damp; fine- to medium-grained, well graded, ∇ SM gravel to 1.25-inch-diameter. CLAYEY GRAVEL: brown, very dense, wet; very fine- to very-coarse grained GC send, well graded, gravel to 2-inch-diameter. 50-31 4-Inch-diameter PVC casing 0.020-inch SANDY GRAVEL: dark gray, very dense, Wet; coarse-grained sand, well slotting 20/50-4.5 QΡ 125 graded, gravel to 1-inch-diameter. End cap 55 100 28/50/50 SANDY CLAY: brown, very stiff, wet; fine-grained sand, well graded, gravel to 0.25-inch-diameter, trace aft. CL -80 ALTON **MW-12 GEOSCIENCE** LOG OF EXPLORATORY BORING Livermore, California PAGE 2 OF 2

_	_	TNC	_			TE DRILLED):	11-1	5-93	
LOCATION: Mobil Station 04-H6J 1024 Main Street			LOGGED BY:			cheele				
				APPROVED BY:		J.A. Lehrman, RG		RG		
_				Plea	santon, California DF	RILLING CO.:		V & V	W Drilling	
BLOWS PER 6 INCHES	CGI (ppm)	TPH-G (ppm)	SAMPLE	DEPTH (feet below crects)	DRILLING METHOD: 10.25-Inch Hollow-Stem A SAMPLER TYPE: California Modified Split-S TOTAL DEPTH: 35.0 feet DEPTH TO WATER:	poon	nsos	глногову	CONS	WELL TRUCTION
œ	ŏ	F	3		DESCRIPTION		3	5	<u> </u>	
				5	Hand-augered to 5 feet. SANDY GRAVEL (FIII). Plastic liner at 9.5 feet.				0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	Utilly bor locking or - Concre - Grout - Grout - Grout - Germane - PVC ce
				10	SILTY CLAY: dark brown, medium stiff, damp; well graded, tra 0.25-inch-diameter.	ace of gravel to			10 1 1 1 1 1 1 1 1 1	Berstons Seed
				15	SANDY CLAY: brown with dark gray staining, medium stiff, da graded, with silt.	mp; medium	a		20-	Medium — Coarse Aquaria Sand
				-25	5% gravel to 0.25-inch-diameter.				25	4-inch- diameter PVC car 0.030-in slotting
		14		-30	SILTY SAND: brown, loose, damp; fine-grained, medium grade	od, some clay.	SM			e− End cap
					NOTE: VMW-1 is located -2.5 feet from RW-1. The soil description or from RW-1.	n this log le			35	- ciu cap
1		ON SCIE			LOG OF EXPLORATORY B	ORING			VMW PAGE 1	

PROJECT NO .: 30-0065 DATE DRILLED: 11-15-93 LOCATION: Mobil Station 04-H6J LOGGED BY: R. Scheele 1024 Main Street APPROVED BY: J.A. Lehrman, R.G. Pleasanton, California DRILLING CO.: V & W Drilling DRILLING METHOD: 10.25-inch Hollow-Stem Auger BLOWS PER 6 INCHES SAMPLER TYPE: TPH-G (ppm) California Modified Split-Spoon WELL LITHOLOGY DEPTH (feet below) CGI (ppm) CONSTRUCTION SAMPLE TOTAL DEPTH: 35.0 feet DEPTH TO WATER: NA SSS DETAIL DESCRIPTION 0 Utility box with locking cap Hand-augered to 5 feet. Concrete Sandy gravel (Fill). 9/12/14 200 Grout SANDY CLAY: brown, soft, damp; fine-grained sand, well graded, with slit. 8/10/16 4/9/12 300 ND 8/10/13 SANDY SILT: brown, medium stiff, damp; fine-grained sand, well graded, some clay, trace pebbles to 0.25-Inch-diameter, dark gray staining. 5/9/11 276 7/10/14 Dark gray; burrows. 5/7/8 6/8/11 275 3446 7/9/13 SANDY CLAY: brown, medium stiff, damp; fine-grained sand, well graded, 6/7/11 some silt, burrowa. 5/9/13 200 4.9 245 CL 3/4/7 5/8/10 Aquartum Sand SILTY SAND: brown, loose, damp; fine-grained, well graded. 30 7/11/15 90% 2,400 7/12/15 LEL 0/14/19 SANDY CLAY: brown, medium stiff, damp; fine-grained sand, well graded, CL some silt, burrows, trace gravel to 0.5-inch-diameter. 11/13/18 ALTON VMW-2 **GEOSCIENCE** LOG OF EXPLORATORY BORING Livermore, California PAGE 1 OF 1 30-0065VMW-2 01/10/94

PROJECT NO .: 30-0065 DATE DRILLED: 11-16-93 LOCATION: Mobil Station 04-H6J LOGGED BY: R. Scheele 1024 Main Street APPROVED BY: J.A. Lehrman, R.G. Pleasanton, California DRILLING CO.: V & W Drilling DRILLING METHOD: 10.25-Inch Hollow-Stem Auger BLOWS PER 6 INCHES SAMPLER TYPE: TPH-G (ppm) California Modified Split-Spoon WELL Odl (ppm) **УРОСОВУ** DEPTH (Neet below SAMPLE TOTAL DEPTH: 36.5 feet DEPTH TO WATER: NA CONSTRUCTION DETAIL DESCRIPTION Utility box with locking cap Hand-augered to 5 feet. Concrete Sand: light brown (Fill). 200 34/5 SANDY SILT: dark brown, soft, damp; fine-grained sand, well graded, Grout semi-angular peobles to 0.25-inch-diameter. Rootlets. 4-Inch-844/7 200 PVC casing Burrows (horizontal and vertical). Bentonita Seal 300 4/5/8 200 27 SANDY CLAY: brown, soft, damp; very fine-grained sand, well graded, trace Aquartum Sand of burrows, dark gray staining, some slit. 3/4/5 CL 9.3 4/5/6 LEL 4-inch-diameter PVC casing 0.030-inch alotting SILTY SAND: brown, soft, damp; fine-grained, well graded, mottled, some SM 6/7/10 LEL SANDY CLAY: brown, soft, damp; fine-grained sand, well graded. End cap Bentonile SILTY SAND: dark gray, medium stiff; fine- to medium-grained. SM plug 35 SANDY GRAVEL: gray, loose, damp; medium- to very coarse-grained, well 12/19/22 250 0.98 GM graded, semi-angular to semi-rounded gravel to 1.0-inch-diameter. ALTON VMW-3 GEOSCIENCE LOG OF EXPLORATORY BORING Livermore, California PAGE 1 OF 1 30-0065VMW-3 01/10/94

APPENDIX B

ANALYTICAL METHODS, OFFICIAL LABORATORY REPORTS, AND CHAIN OF CUSTODY RECORDS

APPENDIX B

ANALYTICAL METHODS, OFFICIAL LABORATORY REPORTS, AND CHAIN OF CUSTODY RECORDS

ANALYTICAL METHODS

All analyses were performed by a state-certified laboratory in accordance with the following methods:

Sample Analysis

Soil

Water

Total Petroleum Hydrocarbons
as Gasoline (TPH-G)

EPA Method 8015

EPA Method 8015

Benzene, Toluene,
Ethylbenzene, and
Total Xylenes (BTEX)

EPA Method 8020

EPA Method 8020

OFFICIAL LABORATORY REPORTS AND QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) REPORTS

Official laboratory and QA/QC reports are provided by the state-certified laboratory performing the analyses. The QA/QC reports for samples from each group of analyses completed for a single gas chromatograph calibration are provided.

CHAIN OF CUSTODY PROTOCOL

Chain of Custody protocol was followed for all samples selected for laboratory analysis. The Chain of Custody form(s) accompanies the samples from the sampling locality to the laboratory, providing a continuous record of possession prior to analysis.

SEQUOIA ANALYTICAL

1900 Bates Avenue • Suite LM • Concord, California 94520 (510) 686-9600 • FAX (510) 686-9689

Alton Geoscience 30-A Undbergh Ave. Livermore, CA 94550

Client Project D: Sample Matrb:

Mobil 04-HeJ / 30-0065 Soll

Sampled: Received:

The state of the s

Nov 15, 1993 Nov 20, 1993

Attention: Jlm Lehrman

Analysis Method: First Sample #:

EPA 5030/8015/8020 311-1694

Reported: Dec 2, 1993

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 311-1694 RW-1/16.0	Sample I.D. 311-1696 RW-1/31.0	Sample I.D. 311-1698 RW-1/51.0*	Sample I.D. 311-1699 VMW-2/9.5	Sample I.D. 311-1700 VMW-2/23.0	Sample I.D. 311-1701 VMW-2/32.0
Purgeable Hydrocarbons	1.0	3,500	2,100	1.6	N.D.	4.9	2,400
Benzene	0.005	14	20	0.025	N.D.	0.42	4.0
Toluene	0.005	220	140	0.037	0.0095	0.069	83
Ethyl Benzene	0.005	62	49	0.066	N.D.	0.15	50
Total Xylenes	0.005	300	200	0.050	0.0099	0.30	230
Chromatogram Patt	ern:	Gasoline	Gasoline	Gasoline		Gasoline	Gasoline

Quality Control Data

Report Limit Multiplication Factor: Date Analyzed:	250 11/26/93	250 11/26/93	1.0 11/26/93	1.0 11/26/93	1.0 11/26/93	100 11/26/93
Instrument identification:	HP-2	HP-2	HP-2	HP-2	HP-2	HP-2
Surrogate Recovery, %: (QC Limits = 70-130%)	122	111	119	106	112	140*

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Karen L. Enstrom **Project Manager**

Please Note:

REVISED REPORT DEC. 17, 1993

* High surrogate percent recovery is due to matrix interference causing the surrogate to coelute with 🔩 another peak.

SEQUOIA ANALYTICAL

1900 Bates Avenue • Suite LM • Concord, California 94520 (510) 686-9600 • FAX (510) 686-9689

Alton Geoscience Client Project ID: 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Jim Lehrman

Mobil 04-H6J / 30-0065 Sample Matrix:

Soll Analysis Method:

EPA 5030/8015/8020

First Sample #: 311-1702

Sampled: Received:

Nov 16, 1993 Nov 19, 1993

Reported: Dec 2, 1993

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 311-1702 VMW-3/21.5	Sample I.D. 311-1703 VMW-3/26.0'	Sample I.D. 311-1704 VMW-3/36.0	Sample I.D. 311-1705 VMW-4/11.5	Sample I.D. 311-1706 VMW-4/23.0	Sample I.D. 311-1707 VMW-4/36.5
Purgeable Hydrocarbons	1.0	2.7	9.3	0.98	680	1,700	630
Benzene	0.005	0.22	0.65	0.026	0.27	2.2	0.12
Toluene	0.005	0.012	0.30	0.011	2.6	44	3.4
Ethyl Benzene	0.005	0.084	0.44	0.014	11	3 1	6.3
Total Xylenes	0.005	0.033	0.78	0.12	88	176	38
Chromatogram Patte	ern:	Gasoline	Gasoline	Gasoline	Gasoline	Gasoline	Gasoline

Quality Control Data

Report Limit Multiplication Factor:	1.0	5.0	1.0	10	100	20
Date Analyzed:	11/26/93	11/26/93	11/26/93	11/26/93	11/26/93	11/26/93
Instrument Identification:	HP-2	HP-2	HP-4	HP-2	HP-4	HP-2
Surrogate Recovery, %: (QC Limits = 70-130%)	117	108	98	99	90	103

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Karen L. Enstrom **Project Manager**

Please Note:	
	REVISED REPORT DEC. 17, 1993

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Jim Lehrman

Client Project ID: Mobil 04-H6J / 30-0065 Sample Matrix:

Soll

Analysis Method: EPA 5030/8015/8020

First Sample #: 311-1708 Sampled: Nov 17-18, 1993

Received: Nov 19, 1993

Reported: Dec 2, 1993

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit mg/kg	Sample I.D. 311-1708 MW-10/14.0	Sample I.D. 311-1711 MVV-10/36.5	Sample I.D, 311-1715 MW-11/16.5	Sample I.D. 311-1716 MW-11/26.5'	Sample I.D. 311-1718 MW-11/45.5	Sample I.D. 311-1720 MW-12/14.0
Purgeable Hydrocarbons	1.0	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Benzene	0.005	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Toluene	0.005	0.0073	N.D.	N.D.	0.0070	N.D.	0.018
Ethyl Benzene	0.005	N.D.	N.D.	N.D.	N.D.	N.D.	0.011
Total Xylenes	0.005	0.014	N.D.	N.D.	0.0050	N.D.	0.058
Chromatogram Patte	ern:	••	••	••	••	••	

Quality Control Data

Report Limit Multiplication Factor:	4.0			-		
	1.0	1.0	1.0	1.0	1.0	1.0
Date Analyzed:	11/26/93	11/26/93	11/26/93	11/26/93	11/26/93	11/26/93
Instrument Identification:	HP-4	HP-4	HP-4	. , HP-4	HP-4	•
Surrogate Recovery, %: (QC Limits = 70-130%)	98	105	108	98	111	HP-2 107

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Karen L. Enstrom Project Manager

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Jim Lehrman

Client Project ID: Mobil 04-H6J / 30-0065 Sample Matrix:

Soll EPA 5030/8015/8020

Analysis Method: First Sample #: 311-1721

Sampled: Nov 18, 1993 Received: Nov 19, 1993

Reported: Dec 2, 1993

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Reporting Limit mg/kg	Sample i.D. 311-1721 MW-12/32.0	Sample I.D. 311-1722 MW-12/41.0	
1.0	N.D.	23	
0.005	N.D.	0.16	
0.005	N.D.	0.043	
0.005	N.D.	0.053	
0.005	N.D.	0.31	
ern:	••	Gasoline	
	1.0 0.005 0.005	Limit i.D. 311-1721 MW-12/32.0 1.0 N.D. 0.005 N.D.	Limit i.D. 1.D. 311-1722 311-1722 MW-12/32.0° MW-12/41.0° 1.0 N.D. 23 0.005 N.D. 0.16 0.005 N.D. 0.043 0.005 N.D. 0.053

Quality Control Data

Report Limit Multiplication Factor:	1.0	1.0
Date Analyzed:	11/26/93	11/26/93
Instrument Identification:	HP-2	HP-2
Surrogate Recovery, %: (QC Limits = 70-130%)	106	179*

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard, Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

aren L. Enstrom **Project Manager**

Please Note:

* High surrogate percent recovery is due to matrix interference causing the surrogate to coelute with another peak.

SEQUOIA ANALYTICAL

1900 Bates Avenue • Suite LM • Concord, California 94520 (510) 686-9600 • FAX (510) 686-9689

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Jim Lehrman Cilent Project ID: Sample Descript: Analysis for: First Sample #:

Mobil 04-H6J / 30-0065 Soil

SON Boroom

Percent Moisture 311-1694

Sampled: 11/15-18/93 Received: Nov 19, 1993 Extracted: Dec 9, 1993

Analyzed: Reported:

Dec 9, 1993 Dec 13, 1993

LABORATORY ANALYSIS FOR:

Percent Moisture

Sample Number	Sample Description	Detection Limit %	Sample Result %
311-1694	RW-1/16.0'	0.0010	15
311-1710	MW-10/23.0°	0.0010	16
311-1715	MW-11/16.5'	0.0010	10
311-1720	MW-12/14.0'	0.0010	10

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Karen L. Enstrom Project Manager

SEQUOIA ANALYTICAL

1900 Bates Avenue • Sulte LM • Concord, California 94520 (510) 686-9600 • FAX (510) 686-9689

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Jim Lehrman

Client Project ID: Sample Descript: Mobil 04-H6J / 30-0065

Soil

Total Organic Carbon

Analysis for: Total Org. First Sample #: 311-1710

Sampled: Received:

11/15-18/93 Nov 20, 1993

Analyzed: Reported: Dec 1, 1993 Dec 13, 1993

LABORATORY ANALYSIS FOR:

Total Organic Carbon

Sample Number	Sample Description	Detection Limit g/100g	Sample Result g/100g
311-1710	MW-10/23.0'	0.030	0.22
311-1712	MW-10/41.0	0.030	0.030
311-1715	MW-11/16.5	0.030	0.26
311-1720	MW-12/14.0'	0.030	0.56

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Karen L. Enstrom Project Manager Please Note:

California Fertilizer Association, "California Soil Testing Procedures".

atta areserva Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Jim Lehrman

Client Project ID: Mobil 04-H6J / 30-0065 Matrix:

Solid

QC Sample Group: 3111694-1723

Reported: Dec 13, 1993

QUALITY CONTROL DATA REPORT

ANALYTE	Benzens	Toluene	Ethyl	Xylenes	
			Benzene	Aylenda	
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	A. Tuzon	A Tuzon	A. Tuzon	A Tuzon	
MS/MSD					
Batch#:	3112467	3112467	3112467	3112467	
Date Prepared:	11/30/93	11/30/93	11/30/93	11/30/93	
Date Analyzed:	11/30/93	11/30/93	11/30/93	11/30/93	
Instrument I.D.#:	HP-4	HP-4	HP-4	HP-4	
Conc. Spiked:	0.40 mg/kg	0.40 mg/kg	0.40 mg/kg	1.2 mg/kg	
Matrix Spike					
% Recovery:	90	95	98	96	
Matrix Spike					
Duplicate %					
Recovery:	90	95	95	98	
Relative %					
Difference:	0.0	0.0	3.1	2.1	

% Recovery Control Limits:	55-145	47-149	47-155	56-140	
LCS % Recovery:	89	92	92	94	
Date Prepared: Date Analyzed: Instrument I.D.#:	11/30/93 11/30/93 HP-4	11/30/93 11/30/93 HP-4	11/30/93 11/30/93 HP-4	11/30/93 11/30/93 HP-4	
LCS Batch#:	LCS113093	LCS113093	LCS113093	LCS113093	

SEQUOIA ANALYTICAL

Karen L Enstrom Project Manager

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Jim Lehrman

Client Project ID: Mobil 04-H6J / 30-0065

Matrix: Soli

QC Sample Group: 3111694-1720

Reported: Dec 13, 1993

QUALITY CONTROL DATA REPORT

ANALYTE % Moisture Method: **EPA 150.3** Analyst: A.P.

Date Analyzed: Dec 9, 1993

> Sample #: 3111715

Sample

Concentration: 10%

Sample **Duplicate**

Concentration: 9%

> % RPD: 11%

% RPD:

Control Limits:

0-30

SEQUOIA ANALYTICAL

Karen Enstrom Project Manager

SOLEA TESTING GROUP

Statement of Additions and Omissions

Sequola Analytical 1900 Bates Avenue, Suite LM Concord, CA 94520

Laboratory Test Results; Alton Geoscience

December 7, 1993

STG Client No.:

SQA.001

- 1. Sample 3111723 was too saturated for density determination. Porosity was not attainable.
- 2. Samples 3111695, 3111706, & 3111709 were too moist for air permeability.

Sample No.	Boring No.	Depth (fL)	Sample Description	Group Symbol	Moisture Content %	Dry Density,po	Specific Gravity			Seturation
3111694			Brown Lean Clay w/Sand	CL			- Carriery	Ratio	*	*
3111695			Brown Lean Clay	CL	18.0	99.1	2.74	0.700		
3111697		ŀ	Olive-Brown Sand	SP	11.8	119.5	2.74	0.726		68.1
3111706			Brown Lean Clay	CL	.,,,	110.0	6.1 9	0.432	30.2	75.1
3111709			Dark Brown Lean Clay	CL	19.9	109.3	0.70		,	
3111710			· · · · · · · · · · · · · · · · · · ·		13.3	109.5	2.73	0.559	35.8	97.1
3111712			Brown Sand w/Gravel	sw						
3111713			Brown Sand w/Clay & Gravet	SP-SC	11.6	110.9				- i - 4
3111714			Brown Silty Clay	CL-ML	10.1		2.71	0.526	34.5	60.0
3111715					10.1	95.3	2.74	0.795	44.3	34.7
3111717			Brown Lean Clay	CL	23.2	105.0				- 1
3111719			Brown Silty Clay	CL-ML		105.2	1	0.656	39.6	98.7
3111720				CL-ML	11.8	101.8	2.72	0.669	40.1	48.0
111721			Brown Sandy Lean Clay	~					Å.	
111723				CL						
			ound wy oray a Graver	SP-SC	15.0		2.71			
****	1									
								İ		
			ł							
8.94 1.34								i i kira iyo		
1,514										

SOLEA
SOLEA TESTING GROUP

LABORATORY SUMMARY REPORT

Sequoia Analytical-Alton Geoscience

DRAWN CLM

9ATE 12/7/93

PROJECT SQA.001 LRN **4388**

APPROVED F

PAGE

AIR PERMEABILITY REPORT

0688

4388

Flexible Wall Method

Project: Sequoia Analytical

Project No.: on Geoscle

LRN:

Sample I.D.:

3111714

Boring:

Depth:

Sample Descri	priori,		Brown Sil	ty Clay (CL-	ML)			
MOIS	TURE DATA			Before Te	Mario de la Mario de Mario de Caracteria de			
Setup Date:	11/29/93	Julian day 333	Specimen	Trimming		8	After Tea	R
Tere No.:			and the second			Specimen	Solide	To
Wet Soil & Tare We		grams	100				191	E.C. /
Dry Soil & Tare We	ght:	grama				- 0/0.4	April Paring on a	4
Tare Weight:		grams			- 	537.0	- 	Section 1
Wet Soll Weight:		grams	453.4		4 (4)4 (4 4 4 4 4	125.3		
Dry Soil Weight:		grama	411.70			453.1	to mortificate it is not a	45.
Water Content:		×	10.13			411.70	There's	411
SPECIMEN I	DATA	initial	Final			10.06		10.
·		5.630	5.630			TEST DATA		
Length:	inches		0.000	TRIAL	FLOW	TIME,	lec .	FLO
				NO.	mi	1ST	2MD	In/se
	Average	5.630	P. 000	 '	25	6.84	6.85	3.65
		1,930	5.630	2	25	3.70	3.68	6.77
Nameter:	Inches	1.930	1.930	3	50	4.45	4.43	1
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	III.CZ108	1		4	250	12.71	12.68	11.26
	Average	1000		5	500	15.74	15.76	19.69
ength, Ave.	Average	1.930	1.930	6	25	6.90	6.87	31.74
	centimeters	14.300	14.300	TRIAL		ENTRY PRESS		3.631
iameter, Ave.	centimeters	4.902	4.902	MO.	Left, cm	Right, cm		
onsol Pressure	CLU ₂	18.874	18.874	1	52.35	50.25	pel	Pasca
	pei			2	53.40	49.10		205.9
pecific Gravity:		2.70	the table	3	55.50	46.80		421.7
olids Weight, cc:	We	411.70	411.70	4	60.10	41.80		853.2
olume Total, oc:	Vt.	269.91	269.91	5	68.90			1794.7
olume Solids, oc:	Ve	152.48	152.48	6	52.35	32.20		3599.2
olume Volds, ec:	w	117.43	117.43	TRIAL	02.00	50.75		156.9
lume Water, cc:	W	41.70	41,40	NO.	1-0 -	EXIT PRESSUE	RE, Pe	
id Ratio		0.770	0.770	1	Left, cm	Right, em	pel	Pascal
Saturation	S	35.51	35.26		56.00	54.80		117.7
Porosity	n	43.51	43.51	2	56.60	54.30		225.6
Moisture	M	10.13	10.06	3	57.80	53.10		460.9
Density, pcf	7	95.23	95.23	-4-	60.45	50.55		970.9
			30.23	5	65.80	45.70		1951.6
ABSU	mptions & Note		eorda u	- 6	56.00	54.75		122.6
"initial" data based o			Andrew Comment	TRIAL		IR PERMEABILI	TY	Emilio I
"Final" data based o	n measured wait	and and a	imensions.	NO.	Crm ^a	2/(Pe+Pi)	Darcy	
cimen out of the cel	which may allo	unts and dimens	Hons on	1	5.70E-07	6.2E-03	5.76E+01	James (Pall)
ecimen out of the cell which may allow change in water content d volume.			er content	2	4.76E-07		4.81E+01	
				3	3.95E-07	4	3.99E+01	
				4	3.28E-07			
			- 4	5	2.64E-07		3.32E+01	
				6	1.46E-06		2.66E+01	
	-				1.406476	7.2E-03	1.47E+02	

CHECKED

PAGE

DSJ

12/3/93

A 2

AIR PERMEABILITY REPORT

0689

4388

SOLEA TESTING CROUP

Flexible Wall Method

Project: Sequoia Analytical

Project No.: on Geoscie

LRN:

Sample I.D.:

3111719

Boring:

Depth:

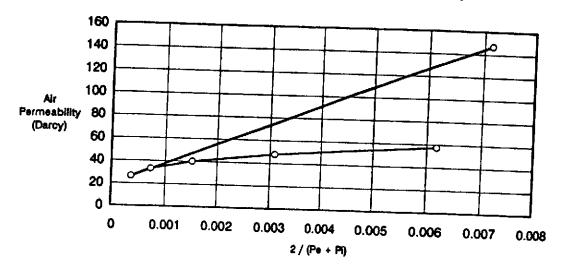
Sample Description:

Brown Silty Clay (CL-ML)

Setup Date:	TURE DATA			Before Tee		ı	After Tee	•
Tare No.:	11/29/93	Julian day 333		Trimming	Misc.	Specimen	Solids	Tot
Wet Soll & Tare Wei			A STATE OF A		2 24.5			tur.
Dry Soll & Tare Wei		grams	rpo esta de p		-	646.1	112.00	
Tare Weight:	ync:	grams	Market State of the State of th		₩ ×2.75	590.8		13-4.
Wet Soil Weight:		- grame	The second second second		Park of the Park	122.5		1134
Dry Soil Weight:		grame	524.2		and the same	523.6	-Lander Mary Lander	523
Water Content:	····	grams %	468.30	 		468.30		468.
		70	11.94			11.81		11.8
SPECIMEN D	ATA	initial	Final			TEST DATA		
		6.000	6.000	TRIAL	FLOW	TIME,		
Length:	inches			NO.	mi	187	2ND	PLO
			'	1	25	7.80		milae
· · · · · · · · · · · · · · · · · · ·	Average	6.000	6.000	2	25	 	7.57	3.290
		1.930	1.930	3	50	4.33	4.35	5.760
Diameter:	Inches	j			250	4.90	4.96	10.05
	1			5		15.03	15.05	16.62
	Average	1.930	1.930	6	25	18.70	18.72	26.72
ength, Ave.	centimeters	15.240	15,240	TRIAL		7.81	7.59	3.269
Sameter, Ave.	centimeters	4.902	4.902			ENTRY PRES	SURE, PI	1.
rea	Cm ²	18.874	18.874	NO.	Left, cm	Flight, on	pel	Pascal
Onsoi Pressure	pei	10.074	10.074	1	52.65	49.90		269.7
specific Gravity;	2.5	2.70		2	54.05	48.40		554.1
iolids Weight, co:	Wa	468.30	100 00	3	57.10	45.10		1176.8
olume Total, cc:	vı		468.30	4	62.95	38.70		2378.2
olume Solids, oc:	Vs	287.65 173.44	287.65	5	74.85	25.90		4800.5
olume Voids, oc:	w		173.44	- 6	52.70	49.90		274.6
olume Water, cc:		114.20	114.20	TRIAL		EXIT PRESSU	RE, Po	in 18
old Ratio		55.90 .	55.30	NO.	Left, cas	Right, on	pel	Pascal
Saturation		0.658	0.658	1	55.90	54.90		98.1
	s	48.95	48.42	2	56.40	54.45		191.2
Porosity Moisture	n	39.70	39.70	3	57.45	53.45		392.3
110000	N	11.94	11.81	4	59.40	51.60		764.9
y Density, pcf	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	101.64	101.64	5	63.30	47.90		1510.3
				6	55.90	54.90		98.1
	mptions & Note			TRIAL	1961	IR PERMEABI	JTY	
"Initial" data based				NO.	cm²	2/(Pe+Pt)	Darcy	
2) "Final" data based on measured weights and dimensions on				1	2.82E-07	5.4E-03	2.85E+01	
ecimen out of the ce	Il which may alic	w change in wat	ler content	2	2.33E-07	2.7E-03	2.35E+01	
d volume.				3	1.88E-07	1.3E-03		
				4	1.50E-07	6.4E-04	1.89E+01	
	₹.			5	1.17E-07		1.52E+01	
				6	2.74E-07	3.2E-04	1.19E+01	
				Average	4.17E-V/	5.4E-03	2.76E+01	

DRAWN

DATE

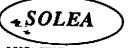

CHECKED

PAGE A 2

AIR PERMEABILITY TEST

Modified ASTM D-4525 (1)

Air Permeability vs. Reciprocal Mean Pressure


SAMPLE I.D.:	3111714.0
BORING:	
DEPTH:	

STAGE:	initial	Final
MOISTURE, %:	10.1	10.1
DRY DENSITY, pcf:	95.2	95.2
SATURATION, %:	35.5	35.3
VOID RATIO, e:	0.770	0.770

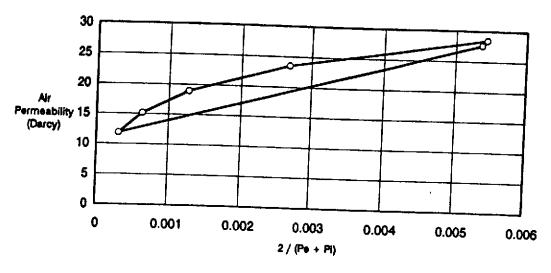
	T			
TRIAL	AIR PERMEABILITY			
	cm²	DARCY		
1	5.7E-7	5.8E+1		
2	4.8E-7	4.8E+1		
3	4.0E-7	4.0E+1		
4	3.3E-7	3.3E+1		
5	2.6E-7	2.7E+1		
6	1.5E-6	1.5E+2		
AVERAGE	5.8E-7	5.9E+1		

Notes:

- (1) Test Procedure is modified as follows:
 - a) Test is performed on specimen at the "as received" moisture content, without oven drying.
 - b) A Flexible-Wall Permeameter Cell is used. The specimen is confined to an estimate of the
 - c) Air flow applied is low to simulate gradients typical with vapor extraction equipment.
- (2) Sample consolidated to:
- (3) Sample Description: Brown Silty Clay (CL-ML)

AIR PERMEABILITY TEST REPORT

SOLEA TESTING GROUP


Sequoia Analytical

DRAWN	PROJECT NO.	LRN	OATE	APPROVED	
CLM	Alton Geoscien	4388	12/3/93	=======================================	PAGE

AIR PERMEABILITY TEST

Modified ASTM D-4525 (1)

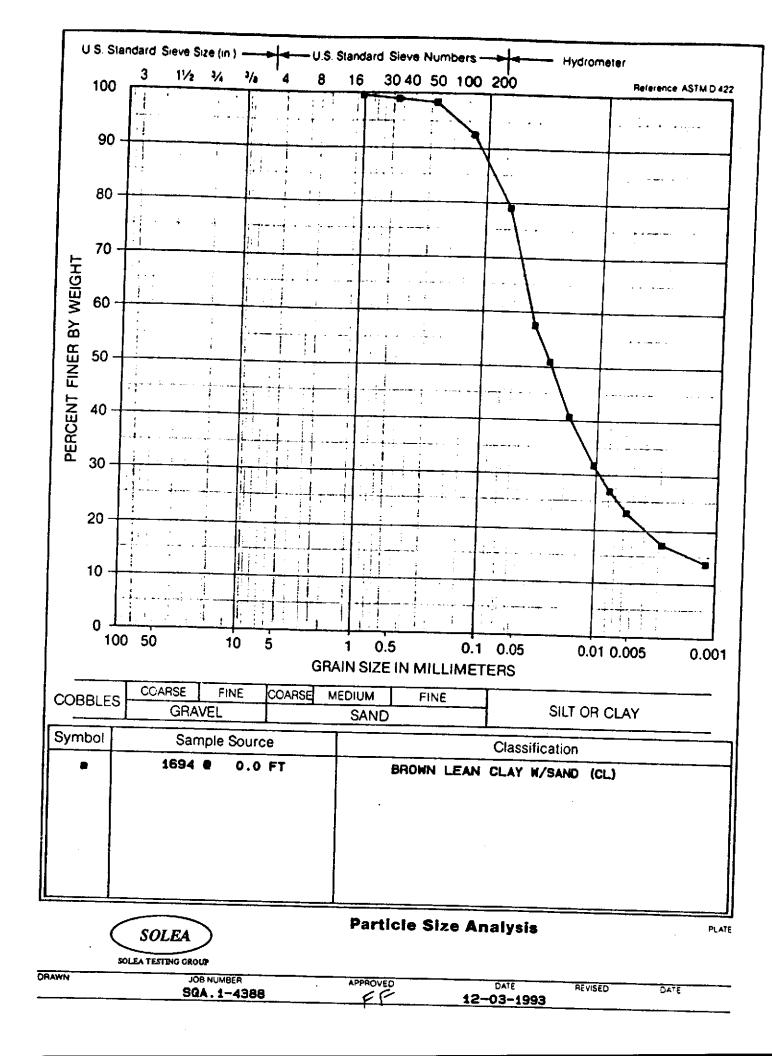
Air Permeability vs. Reciprocal Mean Pressure

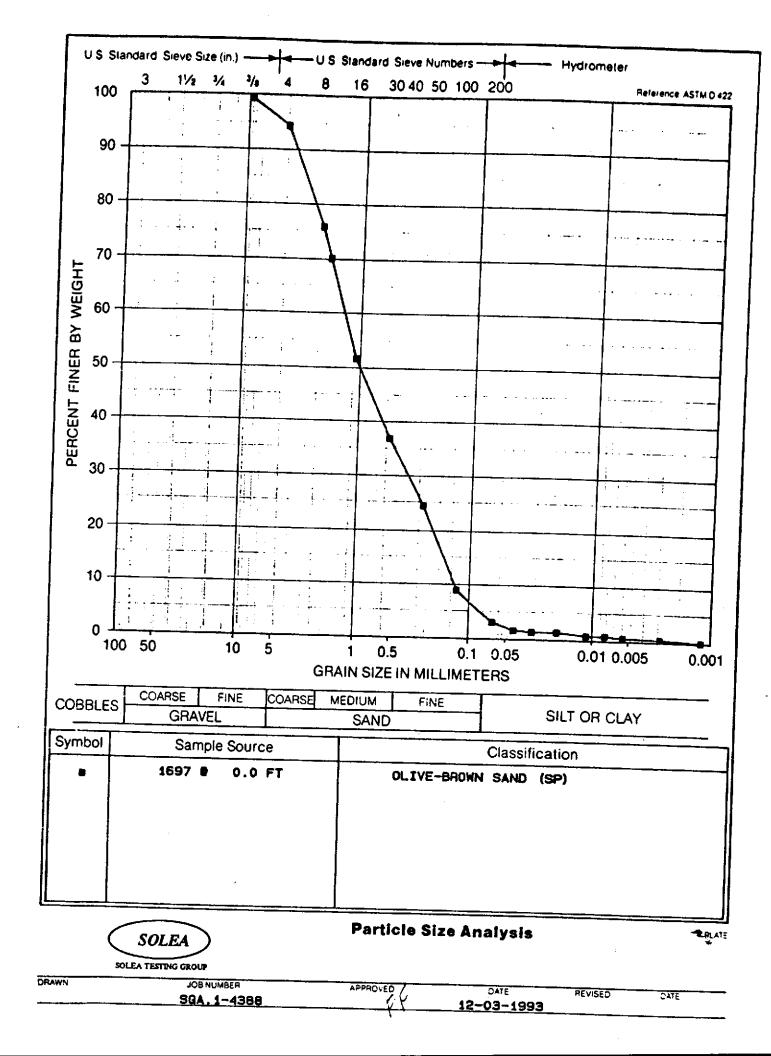
SAMPLE I.D.:	3111719.0
BORING:	
DEPTH:	
	·····

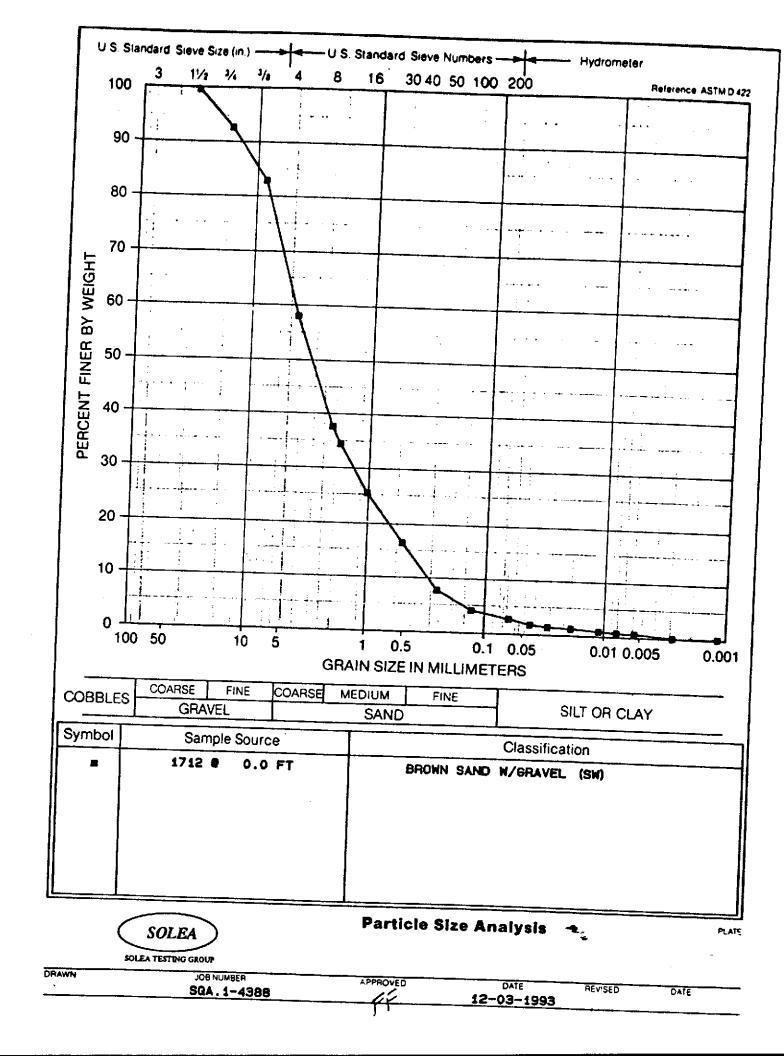
STAGE:	Initial	Final
MOISTURE, %:	11.9	11.8
DRY DENSITY, pcf:	101.6	101.6
SATURATION, %:	48.9	48.4
VOID RATIO, e:	0.658	0.658

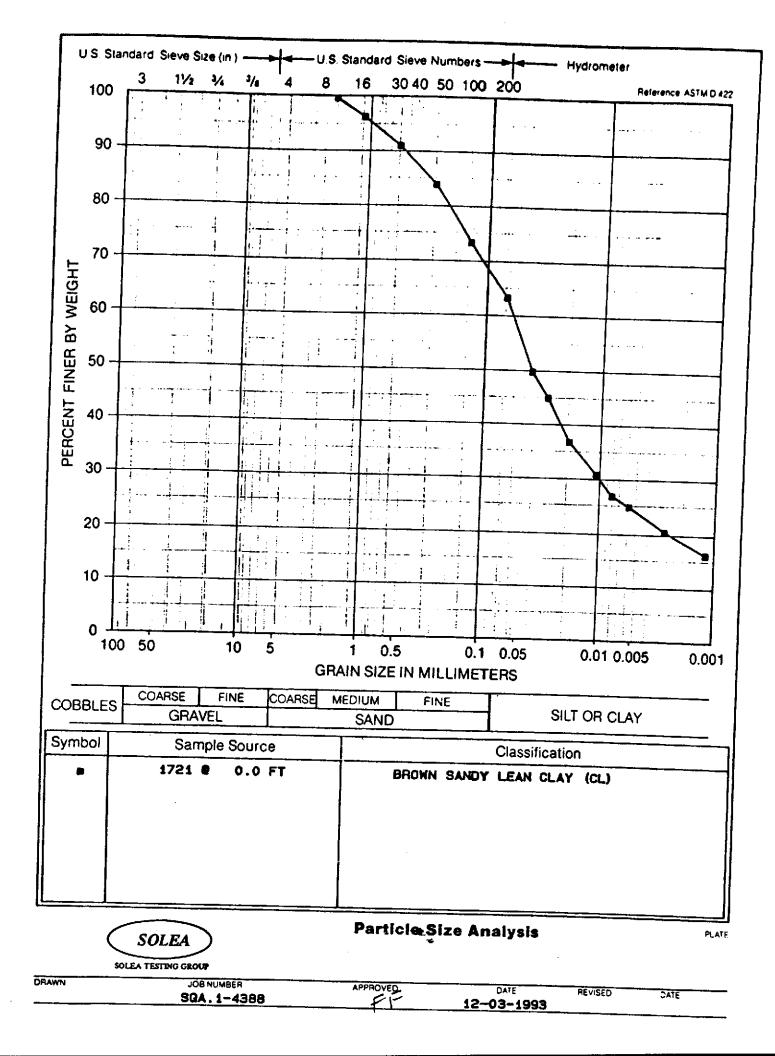
AIR PERMEABILITY	
CLU ₅	DARCY
2.8E-7	2.8E+1
2.3E-7	2.4E+1
1.9E-7	1.9E+1
1.5E-7	1.5E+1
1.2E-7	1.2E+1
2.7E-7	2.8E+1
2.1E-7	2.1E+1
	2.8E-7 2.3E-7 1.9E-7 1.5E-7 1.2E-7 2.7E-7

- (1) Test Procedure is modified as follows:
 - a) Test is performed on specimen at the "as received" moisture content, without oven drying.
 - b) A Flexible-Wall Permeameter Cell is used. The specimen is confined to an estimate of the "in-situ" pressure.
- c) Air flow applied is low to simulate gradients typical with vapor extraction equipment. (2) Sample consolidated to:
- (3) Sample Description: Brown Silty Clay (CL-ML)


SOLEA


AIR PERMEABILITY TEST REPORT


SOLEA TESTING GROUP


Sequoia Analytical

2012A 1ESTRO GROUP			Sequoia Analytical
CLM	PROJECT NO. Alton Geoscien	LRN 4388	DATE APPROVED PAGE
			:4/3/2

Project Name: SEQUOIA ANALYTICAL Project Number: SQA.1-4388

Test Date: 12-03-1993 Location: 1694 @ 0.0

Total Sample Weight (g): 50.0

Percent Passing No. 10 Sieve: 100.0

Weight of Split Sample Used (g): 50.0

Specific Gravity (g/cc): 2.70 Hygroscopic Moisture (%): 0.0

Hydrometer Correction Value (div): 5.5

Liquid Limit: ---Plasticity Index: ---

Soil Composition (%): Particle Diameter (mm):

Gravel: 0.0 ₱ 60% Passing : 4.49E-2

Sand : 20.4 @ 30% Passing : 1.02E-2

Silt : 57.7 @ 10% Passing : 4.54E-4

Clay : 21.9

Coefficient of Curvature : 5.11E 0

Coefficient of Uniformity: 9.89E 1

Soil Classification : BROWN LEAN CLAY W/SAND

Symbol : CL*

Frost Classification: F4*

Data Entry By: CLM File #: 659

Project : SEQUOIA ANALYTICAL ID : SQA.1-4388 Test Date : 12-03-1993

Data Entry By : CLM Location : 1694 @ 0.0 Data File : TEST0659

Sieve Name	Sieve Size (mm)	Cum. Weight Retained (g)	Percent of Total Weight Passing
5.000 in 3.000 in 1.500 in 3/4 in 3/8 in No. 4 No. 8 No. 10 No. 16 No. 30 No. 50 No. 100 No. 200	125.000 75.000 37.500 19.000 9.500 4.750 2.360 2.000 1.180 0.600 0.300 0.150 0.075	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.4 98.8 93.0 79.6

Project : SEQUOIA ANALYTICAL ID : SQA.1-4388 Test Date : 12-03-1993

Data Entry By : CLM Location : 1694 @ 0.0 Data File : TEST0659

Elapsed Time (min)	Hydrometer Reading	Temperature (deg C)	<pre>of Total Passing in Solution</pre>	Particle Diameter (mm) in Suspension
1	34.5	22.0		
2	31.1		58.1	0.04277
5	26.0	22.0	51.4	0.03102
15	21.5	22.0	41.3	0.02034
30		22.0	32.4	0.01210
60	19.1	22.0	27.7	0.00869
250	17.1	22.0	23.7	0.00622
	14.0	22.7	17.9	——————————————————————————————————————
1440	12.8	20.0	14.4	0.00308
				0.00133

Project Name: SEQUOIA ANALYTICAL

Project Number: SQA.1-4388

Test Date: 12-03-1993

Location: 1697 @ 0.0

Total Sample Weight (g): 229.9

Percent Passing No. 10 Sieve: 70.8

Weight of Split Sample Used (g): 120.0

Specific Gravity (g/cc): 2.74 Hygroscopic Moisture (%): 0.0

Hydrometer Correction Value (div): 5.5

Liquid Limit: ---Plasticity Index: ---

Soil Composition (%): Particle Diameter (mm):

Gravel: 5.0 @ 60% Passing : 1.47E 0

Sand : 91.1 ₱ 30% Passing : 3.90E-1

Silt : 2.6 € 10% Passing : 1.51E-1

Clay : 1.3

Coefficient of Curvature: 6.86E-1

Coefficient of Uniformity: 9.73E 0

Soil Classification : OLIVE-BROWN SAND

Symbol : SP*

Frost Classification: NFS

Data Entry By: CLM

File #1 660

Project: SEQUOIA ANALYTICAL ID: SQA.1-4388 Test Date: 12-03-1993

Data Entry By : CLM Location : 1697 @ 0.0 Data File : TEST0660

Sieve Name	Sieve Size (mm)	Cum. Weight Retained (g)	Percent of Total Weight Passing
5.000 in	125.000	0.0	
3.000 in	75.000	0.0	100.0
1.500 in		0.0	100.0
· ·	37.500	0.0	100.0
3/4 in	19.000	0.0	100.0
3/8 in	9.500	0.0	
No. 4	4.750	_	100.0
No. 8		11.4	95.0
	2.360	53.9	76.6
No. 10	2.000	67.2	70.8
No. 16	1.180	31.3	
No. 30	0.600		52.3
No. 50		56.1	37.7
	0.300	77.1	25.3
No. 100	0.150	103.3	9.8
No. 200	0.075	113.3	4.0

Project : SEQUOIA ANALYTICAL ID : SQA.1-4388 Test Date : 12-03-1993

Data Entry By : CLM Location : 1697 @ 0.0 Data File : TEST0660

Elapsed Time (min)	Hydrometer Reading	Temperature (deg C)	<pre>\$ of Total Passing in Solution</pre>	Particle Diameter (mm) in Suspension
1	9.5	21 5		
2		21.5	2.5	0.05005
-	9.1	21.5	2.3	0.03547
. 5	9.1	21.5	2.3	
15	8.1	21.5	-	0.02243
30	8.0	22.0	1.7	0.01302
60	7.5		1.7	0.00916
250		22.0	1.4	0.00649
	7.0	22.7	1.2	
1440	7.0	20.0	0.9	0.00316
		77.5	0.7	0.00136

Project Name: SEQUOIA ANALYTICAL

Project Number: SQA.1-4388

Test Date: 12-03-1993

Location: 1712 @ 0.0

Total Sample Weight (g): 302.3

Percent Passing No. 10 Sieve: 35.1

Weight of Split Sample Used (g): 101.8

Specific Gravity (g/cc): 2.70 Hygroscopic Moisture (%): 0.0

Hydrometer Correction Value (div): 5.5

Liquid Limit: ---Plasticity Index: ---

Soil Composition (%): Particle Diameter (mm):

Gravel: 41.5 @ 60% Passing : 4.95E 0

Sand : 55.1 @ 30% Passing : 1.49E 0

Silt : 2.3 @ 10% Passing : 3.40E-1

Clay : 1.1

Coefficient of Curvature : 1.31E 0

Coefficient of Uniformity: 1.46E 1

Soil Classification : BROWN SAND W/GRAVEL

Symbol : SW

Frost Classification: NFS

Data Entry By: CLM

File #: 661

Project: SEQUOIA ANALYTICAL ID: SQA.1-4388 Test Date: 12-03-1993

Data Entry By : CLM Location : 1712 @ 0.0 Data File : TEST0661

Sieve Name	Sieve Size (mm)	Cum. Weight Retained (g)	Percent of Total Weight Passing
5.000 in	125.000	0.0	100.0
3.000 in	75.000	0.0	100.0
1.500 in	37.500	0.0	100.0
3/4 in	19.000	21.1	93.0
3/8 in	9.500	50.5	83.3
No. 4	4.750	125.4	58.5
No. 8	2.360	186.6	38.3
No. 10	2.000	196.3	35.1
No. 16	1.180	26.1	26.1
No. 30	0.600	52.3	17.1
No. 50	0.300	77.3	8.4
No. 100	0.150	87.6	4.9
No. 200	0.075	91.8	3.4

Project: SEQUOIA ANALYTICAL ID: SQA.1-4388 Test Date: 12-03-1993

Data Entry By : CLM Location : 1712 @ 0.0 Data File : TEST0661

Elapsed Time (min)	Hydrometer Reading	Temperature (deg C)	<pre>† of Total Passing in Solution</pre>	Particle Diameter (mm) in Suspension
1	12.5	21 5		
2		21.5	2.5	0.04979
2	11.5	21.5	2.1	0.03541
5	11.0	21.5	2.0	
15	10.0	21.5	· =	0.02246
30	9.2		1.6	0.01304
60		22.0	1.4	0.00921
	9.0	22.0	1.3	0.00652
250	7.1	22.7	0.7	
1440	7.8			0.00320
	7.0	20.0	0.8	0.00137

Project Name: SEQUOIA ANALYTICAL

Project Number: SQA.1-4388

Test Date: 12-03-1993

Location: 1721 @ 0.0

Total Sample Weight (g): 50.0

Percent Passing No. 10 Sieve: 100.0

Weight of Split Sample Used (g): 50.0

Specific Gravity (g/cc): 2.70 Hygroscopic Moisture (%): 0.0

Hydrometer Correction Value (div): 5.5

Liquid Limit: ---

Plasticity Index: ---

Soil Composition (%):

Particle Diameter (mm):

Gravel: 0.0

€ 60% Passing : 6.46E-2

Sand : 36.2

@ 30% Passing : 1.07E-2

Silt : 39.6

@ 10% Passing : 3.39E-4

Clay : 24.2

Coefficient of Curvature : 5.26E 0

Coefficient of Uniformity: 1.91E 2

Soil Classification : BROWN SANDY LEAN CLAY

Symbol : CL*

Frost Classification: F4*

Data Entry By: CLM

File #: 662

Project: SEQUOIA ANALYTICAL ID: SQA.1-4388 Test Date: 12-03-1993

Data Entry By : CLM Location : 1721 @ 0.0 Data File : TEST0662

			-
Sieve Name	Sieve Size (mm)	Cum. Weight Retained (g)	Percent of Total Weight Passing
5.000 in 3.000 in 1.500 in 3/4 in 3/8 in No. 4 No. 8 No. 10 No. 16 No. 30 No. 50 No. 50 No. 100 No. 200	125.000 75.000 37.500 19.000 9.500 4.750 2.360 2.000 1.180 0.600 0.300 0.150 0.075	0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 4.3 7.8 13.1 18.1	100.0 100.0 100.0 100.0 100.0 100.0 100.0 96.6 91.4 84.4 73.8 63.8

Project: SEQUOIA ANALYTICAL ID: SQA.1-4388 Test Date: 12-03-1993

Data Entry By : CLM Location : 1721 @ 0.0 Data File : TEST0662

Elapsed Time (min)	Hydrometer Reading	Temperature (deg C)	<pre>\$ of Total Passing in Solution</pre>	Particle Diameter (mm) in Suspension
1	30 E			
ā	30.5	22.0	50.2	0.04407
2	28.1	22.0	45.5	0.03170
5	24.0	22.0	37.4	
15	21.0	22.0		0.02062
30	19.0		31.4	0.01214
60		22.0	27.5	0.00869
	18.0	22.0	25.5	0.00618
250	15.5	23.0	21.0	
1440	14.0	20.0		0.00304
	_,,,	20.0	16.8	0.00132

Specific Gravity Test HLA Laboratory Analysis Routines Ver 3.0

Project : SEQUOIA ANALYTICAL

ID : SQA.1-4388

Test Date : 12-03-1993

Data Entry By : CLM

Data File : TEST0658

Boring Desc.	Depth (ft)	<pre>% Passing #4 Screen</pre>	-#4 Portion	Specific Gravity +#4 Portion	Average
		~~~~~~			
1695	0.0	100.0	2.74		2.74
1697	0.0	100.0	2.74		
1709	0.0	100.0	2.73		2.74
1713	0.0	100.0	2.71		2.73
1714	0.0	100.0	2.74		2.71
1717	0.0	100.0			2.74
1719	0.0	100.0	2.79		2.79
1723	0.0		2.72		2.72
1 · 4 · 2	0.0	100.0	2.71		2.71



(415) 364-9600 (510) 686-9600 (916) 921-9600

Consulting Firm N	ame: M. TON	GEOS	ENE		,	Site SS	. A.	04	1-40	<del></del>	<del></del>		Ter	hase of Work:
Address: 3	4 / 77	BEALL		-	.			_	_		s= 2		┨╖	A. Emrg. Respons
City: Telephone: 67	ERMORE	tale CA		945	寸	MODIIS	Ne Addr	ess: /C	-0		<i>31 P</i> X	<i>9</i> 84×	Oh.	B. Site Assessmer
Tologland	10 400 mg		7.0	COOR AND OF	<u> </u>	MODII E	ngineer	CITZ	KINI	- ro	utc 1		- -	C. Remediation
Telepriorie.		127 (m.)	FAX#: Q	10) 6467,16		Consult	tant Proj	ect#:	<u> 30-0</u>	065			70	D. Monitoring
Project Contact:					E	Sequoi	a's Work	Order P					0	E. OGC/Claims
Turnaround Time			Vorking Days)						A	nalyses	Reques	ted	_	
	Other		**							1	N. K	5/	لمركن	6 / 5
Client Sample I.D.	Date/Time Sampled	Matrix Description	# of Containers	Sequola's Sample #	/	1847 V	41 14 14 14 14 14 14 14 14 14 14 14 14 1	NOTA .	W. A. C.		ALCON I	\$ / \$ - \$ \$ \$		Comments
1. RW-1/16.0'	11/15/93 m 2:00: <u>7</u> 1	5012	one		X			1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	Ť	
1. KW-1/16.5	12:00		1								×	넜	×	3111694
3. RW-1/31,0	1/15/43				×		: -	وفعرا أهدو	1. 5		<del>  ^</del>	╬	극	1695
4.RW-1/46.0					<del></del>	1			×			+	$\dashv$	1696
5.Rw-1/5/50	3001110-110 S 200				<u>કે જ</u> પ્ર						×	X	_	1697
6.VNW: 2419.5	1000		122 I I	961	×					1.	-	$\bot \downarrow$	_	1698
7.VHW. 2/33.0					×	-	· ·	7.		<u> </u>		$\coprod$	$\bot$	1699
					×					il di ili				1700
8VHW. 2/32.0		<del></del>			×			14 (4) 13 (4)	7.8		d lat			1701
פנונ/בישועפ	10:45 am	A. C.			X		<u> </u>					$\prod$	$\top$	1702
10VMW-3/26.0	10:45 cm	V	V		Х								+	V 1703
Relinquished By:	Ken To	Kul	Date: //////	び Time: /830	,	Receiv	ed By:				Date:	<u> </u>	<del>-</del>	· 1105
Relinquished By:			Date:	Time:	$\neg$	Receiv					Date:			Time:
Relinquished By:			Date:	Time:	- 1	Pacali-	nd D	70	12-				<del> '</del>	गरान्छ ,



Redwood City:

Date: 1/1943 Time 1870

(415) 364-9600

Concord: (510) 686-9600 ANALYTICAL Secremento: (916) 921-9600 Consulting Firm Name: ALTON GEOSCIENCE Site SS #: 04 - 1165 Phase of Work: Q A. Emrg. Response

Mobil Site Address: 1024 MANN ST. State: CA Zio Code: 94550 Mobil Engineer: CHERINE FOUTCH B. Site Assessment C. Remediation Telephone: (5ν) 606-9150 FAX#: (50) 606-9240 Consultant Project #: 30-0065 O D. Monitoring Project Contact: J7M LEHR NAW Sampled by: Kow Scheduse's Work Order Release #: D E. OGC/Claims (1) Turnaround Time: Standard TAT (5 - 10 Working Days) Analyses Requested Other ____ Client Date/Time Matrix # of Sequola's Sample I.D. Sampled Description Containers Sample # Comments 1.VMW-3/36.0 11/16/93 SOIL ONE 1311704 1705 1706 707 1708 1709 X X 710 **43 88** 9. MW 10/41.0 18: 50 am Х × 712 MW-10 /42.0' 1/17/93 8:300 10.MW-11/11.5' 11/8/93 3:20p 1713 1714 Relinquished By: Date: /////73 Time: 1830 Received By: Date: Time: Relinquished By: Date: Time: Received By: Relinquished By: Date: Time:

Received By:



Redwood City: Concord:

(415) 364-9600 (510) 686-9600

(916) 921-9600 Consulting Firm Name: ALTON GEOSCIENCE Site SS #: 04-465 Phase of Work: Address: Q A. Emrg. Response Mobil Site Address: 1024 MAIN STREET O.B. Site Assessment Zip Code: 94550 | Mobil Engineer: CHERINE FOUTCH C. Remediation FAX#: 570 606-9260 | Consultant Project #: Telephone: / 30-0065 O D. Monitoring Project Contact: JIM LEHRMAN Sampled by: Row SCHEELE Sequola's Work Order Release #: D E. OGC/Claims Turnaround Time: ** Standard TAT (5 - 10 Working Days) Analyses Requested Other ____

Client Sample I.D.	Date/Time Sampled	Matrix Description	# of Containers	Sequoia's Sample #	1	21/2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				1. (p)	A SA		Comments
1.MW-11/16.5	11/18/93 3:20pm	5011	one		X		<u> </u>	/ <b>v</b>	76.	×	<u> </u>	<del>/</del>	<b>1</b>	
2.Mw 11/26.5'	11 /18/93 3:30pm	1 1			×			<del>  ^-</del>				+	<u> </u>	3111715
3.MW-11/43.5	11/18/93 3:30 pm					£1.75				,		+-	<u> </u>	1716
MW-11/45.5	11/18/93 3-30pm				X						×	×	<del> -</del>	1717
MH2 /11.01	118/93 8:00am				<u> </u>	-	·						_	1718
	18:06 m				X			×		3.5	×	X	X	1719
MW-12/320	11/18/93 Biocom	**			Ϋ́		<del></del>	-		×		-		1720
MW-13/41.0'	8:000				×				×					1721
1-1-1	11/18/93 8100an	<b>V</b>										$\bot$		1722
0.										*	X	X	_	¥ 1723

Relinquished By:	Date: //_//:	Time: (CC)	Constitut D		
Relinquished By:		1111.0.73.00	Received By:	Date:	Time:
. Tom April 100 By.	Date:	Time:	Received By:	Date:	
Relinguished By:	Date:	Time:	Panel and S	Daie.	Time:
Method of Shipment		LIJUM,	Received By:	Date: 1/1993	Time: /4/ (C)



Alton Geoscience 30-A Lindbergh Ave. Livermore, CA 94550 Attention: Jim L.

Client Project ID: Sample Matrix:

First Sample #:

Mobil 04-H6J / 30-0065

Water

Analysis Method: EPA 5030/8015/8020 311-2614

Sampled: Received:

Nov 30, 1993

Nov 30, 1993 Reported: Dec 13, 1993

### TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit µg/L	Sample I.D. 311-2614 MW 10	Sample I.D. 311-2615 MW 11	Sample I.D. 311-2616 MW 12	Sample I.D. 311-2617 MW 1	Sample I.D. 311-2618 MW 4	Sample I.D. 311-2619 MW 6
Purgeable Hydrocarbons	50	N.D.	N.D.	55	450	1,400	86
Benzene	0.5	N.D.	N.D.	1.8	68	140	9.1
Toluene	0.5	N.D.	N.D.	4.3	34	83	N.D.
Ethyl Benzene	0.5	N.D.	N.D.	2.5	N.D.	54	N.D.
Total Xylenes	0.5	N.D.	1.6	11	48	110	N.D.
Chromatogram Patte	m:	••	••	Gasoline	Gasoline	Gasoline	Discrete Peaks

**Quality Control Data** 

Report Limit Multiplication Factor:	1.0	1.0	1,0	5.0	4.0	1.0
Date Analyzed:	12/9/93	12/10/93	12/9/93	12/9/93	12/9/93	12/10/93
Instrument Identification:	HP-5	HP-2	HP-5	HP-5	HP-5	HP-2
Surrogate Recovery, %: (QC Limits = 70-130%)	96	97	92	101	91	99

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

**SEQUOIA ANALYTICAL** 

Karen L Enstrom **Project Manager** 



Alton Geoscience 30-A Lindbergh Ave. Livermore, CÃ 94550 Attention: Jim L.

Client Project ID: Sample Matrix: Analysis Method:

First Sample #:

Mobil 04-H6J / 30-0065

Water

EPA 5030/8015/8020

311-2620

Sampled: Received:

Nov 30, 1993 Nov 30, 1993

Reported: Dec 13, 1993

#### TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 311-2620 MW 9	
Purgeable Hydrocarbons	50	2,800	
Benzene	0.5	610	
Toluene	0.5	28	
Ethyl Benzene	0.5	220	
Total Xylenes	0.5	65	
Chromatogram Pattern	n:	Gasoline	

#### **Quality Control Data**

Report Limit Multiplication Factor:

20

Date Analyzed:

12/9/93

Instrument Identification:

HP-5

Surrogate Recovery, %:

95

(QC Limits = 70-130%)

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

**SEQUOIA ANALYTICAL** 

Karen L. Enstrom Project Manager

1984 SMC 1985, 11

Alton Geoscience 30-A Undbergh Ave. Livermore, CA 94550 Attention: Jim L.

Client Project ID: Mobil 04-H6J / 30-0065

Matrix: Liquid

QC Sample Group: 3112614-20

Reported: Dec 13, 1993

1 297 1 1234,000

#### **QUALITY CONTROL DATA REPORT**

ANALYTE	Benzene	Taluene	Ethyl	Xylenes	
Method:	EPA 8020	EPA 8020	Benzene		
Analyst:	J.F.	J.F.	EPA 8020 J.F.	EPA 8020 J.F.	
MS/MSD					
Batch#:	3120142	3120142	3120142	3120142	
Date Prepared:	12/9/93	12/9/93	12/9/93	12/9/93	
Date Analyzed: nstrument i.D.#:	12/9/93 HP-5	12/9/93 HP-5	12/9/93 HP-5	12/9/93 HP-5	
Conc. Spiked:	20 μg/L	20 μg/L	20 μg/L	60 μg/L	
Matrix Spike					
% Recovery:	118	109	102	102	
Matrix Spike					
Duplicate % Recovery:	130	114	102	100	
Relative %					
Difference:	9.7	4.5	1.9	0.0	

LCS Batch#:	3LC\$120993	3LC\$120993	3LCS120993	3LCS120993	
Date Prepared: Date Analyzed: Instrument I.D.#:	12/9/93 12/9/93 HP-5	12/9/93 12/9/93 HP-5	12/9/93 12/9/93 HP-5	12/9/93 12/9/93 HP-5	
LCS % Recovery:	1113	112	108	107	
% Recovery Control Limits:	71-133	72-128	72-130	71-120	

SEQUOIA ANALYTICAL

Karen L. Enstrom Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.



Redwood City: Concord: Sacramento:

(415) 364-9600 (510) 686-9600

Complete Time 1214		THORE	Sacramento: (916) 921-9600
Consulting Firm Name: Alk (x	OSCIPALE	Site SS #: Michil OU /	Phase of Work:
Address: 30 A Lord Bage	Auc	100/101	
city: Pleasont State: C1	7 Zin Code: 54550)	Mobil Engineer 5	☐ B. Site Assessment
Telephone: 606-5/50	FAX#:		Q C. Remediation
		Consultant Project #: 30 - 000	@ D. Monitoring
Turnes and Time O	pled by: Sin - Xmin 5	Sequola's Work Order Release #:	Q E. OGC/Claims
Turnaround Time:  Standard TAT (5 - 10 Other	Working Days)	<i>T</i> , , , , , , , , , , , , , , , , , , ,	s Requested
All All			
Sample I D Committee   Matrix	# of Sequoia's n Containers Sample #	24 24 16 28 24 16 16 16 16 16 16 16 16 16 16 16 16 16	
1. MW10 11-30 H20		<del> </del>	Comments
2. mw 11 11 11			3112614 4
3. MW 12 11 "	I	<del>,  </del>	615 V
4. mw 1 1/1 1/1	2 X	<del>┸</del> ┼╍╍┼╼╍╌┤┈┈┈┼	616
5. mw 4 11	2 1	<del></del>	617 A-
6. MW6 " "	2 1	<del>-</del>	618
7. mw9 " 1	2 X		619
8.		<del> </del>	620 4
9.		<del>                                     </del>	
10.		<del></del>	<del> </del>
Relinquished By:	Date 1/ VuSa		
Relinquished By:	Date://:35/73 Time:/500	Received By And Variant	Date: 11/3/7; Time: 1500
Relinquished By:	Date: Time:	Received By:	Date: Time:
Method of Shipment	Date: Time:	Received By:	Date: Time:

## APPENDIX C SURVEY DATA

## RON ARCHER

CONSULTING . PLANNING . DESIGN . BURVEYING

4133 Mohr Ave., Suite E • Pleasanton, CA 94566 (510) 462-9372

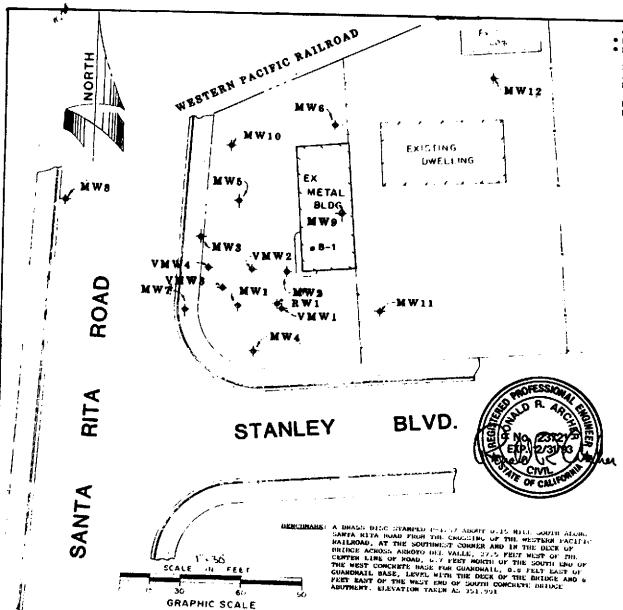


OCTOBER 24,199Ø

* REVISED: FEBRUARY 3, 1992 * REVISED: NOVEMBER 22, 1993 JOB NO. 1739

ELEVATIONS OF EXISTING MONITOR WELLS AT THE OLD MOBIL STATION LOCATED AT THE CORNER OF STANLEY BLVD. AND SANTA RITA ROAD, PLEASANTON CALIFORNIA.

FOR: ALTON GEOSCIENCE PROJECT NO.38-865


BENCHMARK: A BRASS DISC STAMPED P-1257 ABOUT Ø.15 MILE SOUTH ALONG SANTA RITA ROAD FROM THE CROSSING OF THE WESTERN PACIFIC RAILROAD, AT THE SOUTHWEST CORNER AND IN THE DECK OF BRIDGE ACROSS ARROYO DEL VALLE, 27.5 FEET WEST OF THE CENTER LINE OF ROAD, 6.7 FEET NORTH OF THE SOUTH END OF THE WEST CONCRETE BASE FOR GUARDRAIL, Ø.8 FEET EAST OF GUARDRAIL BASE, LEVEL WITH THE DECK OF THE BRIDGE AND 6 FEET EAST OF THE WEST END OF SOUTH CONCRETE BRIDGE ABUTMENT. ELEVATION TAKEN AS 351.991

#### MONITOR WELL DATA TABLE

VELL NO.	ELEVATION	DECELORICS
		DESCRIPTION
MEN 1	348.₽3	TOP OF CASING
•	348.49	TOP OF BOX
MW2	348.45	TOP OF CASING
	348.72	TOP OF BOX
Me/3	347.97	
HE TO	348.27	TOP OF CASING TOP OF BOX
1 Car		101 OF IAA
MW4	348.Ø7 348.46	TOP OF CASING
	340.40	TOP OF BOX
M6V5	347.97	TOP OF CASING
	348.37	TOP OF BOX
MW6	348.23	TOP OF CASING
	348.61	TOP OF BOX
MN7	347.90	TOD OF GLOSS
	348.40	TOP OF CASING TOP OF BOY

#### MONITOR WELL DATA TABLE

\$255385655586555		<b></b>
WELL NO.	ひし ひひょかしへい	B. 20.0
	x=====x===============================	
MW8	348.90	TOP OF CASING
	349.25	TOP OF BOX
MW9	348.53	TOP OF CASING
	349.06	TOP OF BOX
MeV 1 Ø	347.95	
	348.12	TOP OF CASING
	340.12	TOP OF BOX
MW11	347.56	TOP OF CASING
	347.97	TOP OF BOX
MW12	347.15	TOD OF CLEINS
	347.53	TOP OF CASING TOP OF BOX
RW1	347.89	
	348.53	TOP OF CASING
	340.33	TOP OF BOX
VMW1	348.05	TOP OF CASING
	348.58	TOP OF BOX
VMW2	3 <b>47.9</b> Ø	TOP OF CASING
	348.48	TOP OF BOX
VMW3	348.10	TOD OF GLANIC
	348.48	TOP OF CASING
	V10110	TOP OF BOX
VMv4	347.95	TOP OF CASING
	348.32	TOP OF BOX



OCTOBER 24,1996

. REVISED: PERMIARY 3. 1902 · REVISED: NOVEMBER 22, 1963 JOB 340. 1739

PLAT SHOWING EXISTING MONITOR WELLS AT THE OLD HEBSIL STATION LOCATED AT THE COMMER OF STANLEY BLVD. AND SANTA RITA BOAD. PLEASANTON CALIFORNIA.

PUR: ALTON GEOSCIENCE PROJECT NO.38-865

11+44E24±4064¢482 <b>A</b> ±&8	MAINS WILL DATE	Tem b Could see see see see see see see see see se
22222222222222222		<b>                                     </b>
MPT3	348.63	TOP OF CASING
	348.49	TOP OF HOL
1972		
	348.45	TOP OF CASING
	148.72	TOP OF BOX
MACA	347.97	
	348. 27	TOP OF CALERD
	*****	TOP OF SEE
1016	345,87	TOP OF CASES
	344.46	TOP OF MOK
		NOT OF EACH
1015	347.97	TOP OF CHERE
	344.27	10F OF BOX
unt.		<del></del>
	340.23 346.61	TOP OF CHARGE
	0.61	TOP OF BOX
1077	347.50	TOP OF CHEME
	348.40	70P OF BOX
<del>100</del>	345.90	TOP OF CASES
	349.23	TOP OF SEE
40-0	240.53	
_ <del>-</del>	349.04	TOP OF CASING
		TOP OF HOL
· ·	347.66	TOP OF CASES
	349.12	TOP OF MILE
MAY S.	347.96	
	347.97	TOP OF CARRIED
	241.94	TOP OF SOR
MPEZ	347.13	TOP OF CLASSES
	347.33	TOP OF BOX
<b>100</b> 1		
Mar.T	347.00	TOP OF CASHIEL
	349.53	TOP OF BOX
Water	348.66	
—·•	343.54	ACL CATHER
	******	TOP OF BOX
<b>4072</b>	347.56	TOP OF CASING
	343.48	70° OF BOX
*****		Annual Annual States
WC	344.10	TOP OF CASING
	340.46	TOP OF BOX
1000	347.85	
	341.22	TOP OF CARBON
	<del>-</del>	TOP OF MICK
22246168222246243822 <b>1</b> E	**********	24 S 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

January 28, 1994

Mr. Craig Mayfield
Alameda County Flood Control and WCD
Zone 7
5997 Parkside Drive
Pleasanton, California 94588

ATTN:

MR. CRAIG MAYFIELD

SITE:

FORMER MOBIL STATION 04-H6J

1024 MAIN STREET

PLEASANTON, CALIFORNIA

RE:

SUPPLEMENTARY SITE ASSESSMENT REPORT

Dear Mr. Mayfield:

Alton Geoscience submits this supplementary site assessment report for former Mobil Station 04-H6J, located at 1024 Main Street in Pleasanton, California. This work was performed in accordance with the Alton Geoscience work plan dated September 8, 1993.

Please call us at (510) 606-9150, if you have questions regarding this project.

Sincerely,

ALTON GEOSCIENCE

Ron A. Scheele Staff Geologist

/

James A. Lehrman

Associate

enclosure

cc: Ms. Cherine Foutch, Mobil Oil Corporation

Mr. Lester Feldman, RWQCB

M:\...\04h6jr1.ssa

January 28, 1994

Mobil Oil Corporation 2063 Main Street, # 501 Oakley, California 94561

ATTN:

MS. CHERINE FOUTCH

SITE:

FORMER MOBIL STATION 04-H6J

1024 MAIN STREET

PLEASANTON, CALIFORNIA

RE:

SUPPLEMENTARY SITE ASSESSMENT REPORT

Dear Ms. Foutch:

Alton Geoscience submits this supplementary site assessment report for former Mobil Station 04-H6J, located at 1024 Main Street in Pleasanton, California. This work was performed in accordance with the Alton Geoscience work plan dated September 8, 1993.

Please call us at (510) 606-9150, if you have questions regarding this project.

Sincerely,

ALTON GEOSCIENCE

Ron A. Scheele

Staff Geologist

James A. Lehrman

Associate

enclosure

cc: Mr. Lester Feldman, CRWQCB, San Francisco Bay Region

Mr. Craig Mayfield, Alameda County

M:\...\04h6jr1.ssa

#### January 28, 1994

California Regional Water Quality Control Board San Francisco Bay Region 2101 Webster Street, Suite 500 Oakland, California 94566-0802

ATTN:

MR. LESTER FELDMAN

SITE:

FORMER MOBIL STATION 04-H6J

1024 MAIN STREET

PLEASANTON, CALIFORNIA

RE:

SUPPLEMENTARY SITE ASSESSMENT REPORT

Dear Mr. Feldman:

Alton Geoscience submits this supplementary site assessment report for former Mobil Station 04-H6J, located at 1024 Main Street in Pleasanton, California. This work was performed in accordance with the Alton Geoscience work plan dated September 8, 1993.

Please call us at (510) 606-9150, if you have questions regarding this project.

Sincerely,

ALTON GEOSCIENCE

Ron A. Scheele

Staff Geologist

James A. Lehrman

Associate

enclosure

Ms. Cherine Foutch, Mobil Oil Corporation cc:

Mr. Craig Mayfield, Alameda County Flood Control & WCD

M:\...\04h6jr1.ssa