ExxonMobil Refining & Supply Company

2300 Clayton Road, Suite 1250 P.O. Box 4032 Concord, CA 94524-4032 (925) 246-8747 Telephone (925) 246-8798 Facsimile gene.n.ortega@exxon.com

Gene N. Ortega Territory Manager Global Remediation - U.S. Retail

To SCM to identify potential neighbors. **EXONMOBIL**Refining & Supply

July 10, 2001

Ms. Eva Chu Alameda County Health Agency Division of Environmental Protection Department of Environmental Health 1131 Harbor Bay Parkway, 2nd Floor Alameda, California 94502

Subject:

Former Exxon RAS #7-0210, 7840 Amador Valley Boulevard, Dublin, California

Dear Ms. Chu:

Attached for your review and comment is a copy of the Report of Groundwater Monitoring, Second Quarter 2001 for the above-referenced site. The report, prepared by ETIC Engineering, Inc. of Pleasant Hill, California, details the results of the May 2001 sampling event.

If you have any questions or comments, please contact me at (925) 246-8747.

Sincerely,

Gene N. Ortega Territory Manager

ETIC Groundwater Monitoring Report dated July 2001 Attachment:

c: w/ attachment:

Mr. Winson B. Low - Valero Energy Corporation

w/o attachment: c:

Ms. Christa Marting - ETIC Engineering, Inc.

Report of Groundwater Monitoring Second Quarter 2001

Former Exxon Retail Site 7-0210 7840 Amador Valley Boulevard Dublin, California

Prepared for

ExxonMobil Refining and Supply Company P.O. Box 4032 2300 Clayton Road, Suite 1250 Concord, California 94524-4032

Prepared by

ETIC Engineering, Inc. 2285 Morello Avenue Pleasant Hill, California 94523 (925) 602-4710

Ted Moise
Project Manager

Heidi Dieffenbach-Carle, R.G. #6793
Senior Geologist

Tidy 10 2001

Date

SITE CONTACTS

Station Number: Former Exxon Retail Site 7-0210

Station Address: 7840 Amador Valley Boulevard

Dublin, California

ExxonMobil Project Manager: Gene N. Ortega

ExxonMobil Refining and Supply Company

P.O. Box 4032

2300 Clayton Road, Suite 1250 Concord, California 94524-4032

(925) 246-8747

Consultant to ExxonMobil: ETIC Engineering, Inc.

2285 Morello Avenue

Pleasant Hill, California 94523

(925) 602-4710

ETIC Project Manager: Ted Moise

Regulatory Oversight: Eva Chu

Alameda County Health Agency Division of Environmental Protection Department of Environmental Health 1131 Harbor Bay Parkway, 2nd Floor

Alameda, California 94502

(510) 567-6700

1. INTRODUCTION

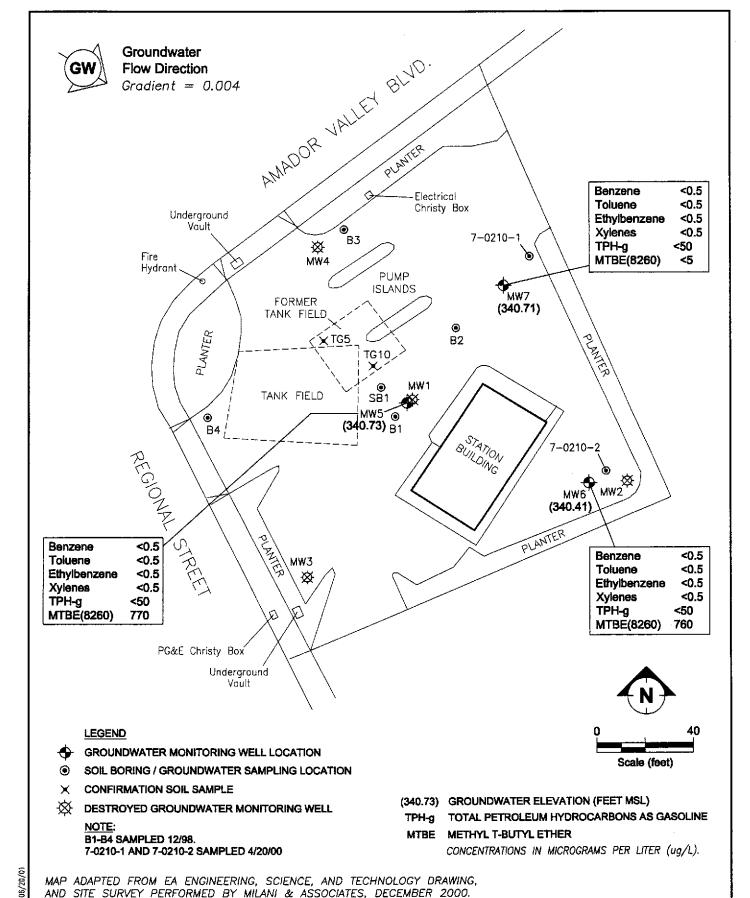
Former Exxon Retail Site (RS) 7-0210 is an active Valero service station located at 7840 Amador Valley Boulevard in Dublin, California. Land use in the area is a mixture of residential and commercial. The immediate vicinity of the site is commercial, consisting of shopping malls and parking lots. A Unocal service station with underground storage tanks (USTs) is located on the southwestern corner of the intersection. The site is located on essentially flat terrain with topography in the area sloping gently to the southeast.

Former Exxon RS 7-0210 was owned and operated by Texaco until 1988, when it was purchased by Exxon. In February 1990, Exxon replaced product dispensers and installed a vapor recovery system. In October 1991, Exxon replaced three 8,000-gallon single-walled steel USTs with the existing three 12,000-gallon double-walled fiberglass-reinforced plastic tanks. The product piping was also upgraded to double-walled fiberglass-reinforced plastic. The locations of the present and former tanks are indicated in Figure 1.

Groundwater monitoring wells MW1-MW4 were installed in May 1992 and monitored for petroleum hydrocarbons and benzene, toluene, ethylbenzene, and total xylenes (BTEX) until June 1995. These monitoring wells were destroyed in April 1996 as authorized by the Alameda County Health Agency Department of Environmental Health and the Regional Water Quality Control Board in a March 1996 site closure letter to Exxon. The locations of these former wells are presented in Figure 1. Three onsite groundwater monitoring wells (MW5-MW7, Figure 1) were installed on 14 and 15 November 2000 based on the results of a baseline investigation conducted in 1999, prior to the property transfer from ExxonMobil to Valero in June 2000.

2. GROUNDWATER MONITORING

On 9 May 2001, groundwater in wells MW5-MW7 (Figure 1) was gauged. Groundwater samples were collected from the wells and the samples were analyzed for Total Petroleum Hydrocarbons as gasoline (TPH-g), BTEX, and methyl t-butyl ether (MTBE). Samples were also analyzed for the oxygenates diisopropyl ether (DIPE), t-butyl alcohol (TBA), tert-amyl methyl ether (TAME), and tert-butyl ethyl ether (ETBE), and for the additives 1,2-dibromoethane (EDB) and 1,2-dichloroethane (1,2-DCA).


Current groundwater monitoring data and calculated groundwater elevations are presented in boldface type in Table 1, along with previous data. Current groundwater elevations are also shown in Figure 1. The groundwater flow direction on 9 May was to the southeast, with a gradient of approximately 0.004. Liquid-phase hydrocarbons were not observed in any of the wells.

After the depths to water were measured, the wells were purged. Field parameters of pH, temperature, and electrical conductance of the purged water were measured for approximately every well casing volume removed during purging. Copies of the field documents are included as Appendix A. When the field parameters were stable (less than a 10 percent change from the previous reading for temperature and electrical conductance and not more than 0.1 pH units) and approximately 3 casing volumes were removed from each well, purging was stopped and samples were collected using factory-cleaned disposable bailers. The samples were poured into 40-ml glass VOA vials and stored in an ice-filled cooler. All samples were handled and transported under chain of custody.

The samples were submitted to SPL, Inc. in Houston, Texas, and analyzed for TPH-g by Cal EPA-modified EPA Method 8015, for BTEX by EPA Method 8021B, and for MTBE, DIPE, TBA, TAME, ETBE, EDB, and 1,2-DCA by EPA Method 8260B. The results for these analyses are presented in boldface type, along with previous analytical data, in Table 1, and are shown in Figure 1. The laboratory analytical report and chain-of-custody documentation are included in Appendix B.

3. WORK PROPOSED FOR NEXT QUARTER

Groundwater in wells MW5-MW7 will be gauged and sampled in August 2001. The groundwater samples will be analyzed for TPH-g, BTEX, and MTBE.

MAP ADAPTED FROM EA ENGINEERING, SCIENCE, AND TECHNOLOGY DRAWING, AND SITE SURVEY PERFORMED BY MILANI & ASSOCIATES, DECEMBER 2000.

SITE PLAN SHOWING GROUNDWATER ELEVATIONS AND ANALYTICAL RESULTS FORMER EXXON RS 7-0210, 7840 AMADOR VALLEY BLVD., DUBLIN, CA. 9 MAY 2001

FIGURE:

TABLE 1 GROUNDWATER MONITORING DATA, FORMER EXXON RS 7-0210, 7840 AMADOR VALLEY BOULEVARD, DUBLIN, CA

Well No.	Date	Casing Elevation (feet msl)	Depth to Water (feet)	Groundwater Elevation (feet msl)	LPH Thickness (feet)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Total Xylenes (μg/L)	TPH-g (μg/L)	MTBE (μg/L)	Other Oxygenates and Additives (µg/L)
MW1	05/21/92	96.32	14.45	81.87	0.00	<0.5	<0.5	<0.5	<0.5	<50	NA	
	02/10/93	96.32	12.22	84.10	0.00	3.1	< 0.5	1.8	0.6	2,600	NA	
	05/20/93	96.32	10.74	85.58	0.00	1.9	< 0.5	1.8	<1.0	1,000	NA	
	06/23/93	96.32	11.74	84.58	0.00	1.0	< 0.5	1.2	< 0.5	1,300	NA	
	08/23/93	96.32	12.72	83.60	0.00	< 0.5	< 0.5	< 0.5	0.8	80	NA	
	10/25/93	96.32	13.99	82.33	0.00	< 0.5	< 0.5	0.8	1.3	140	NA	
	02/16/94	96.32	14.90	81.42	0.00	< 0.5	<0.5	< 0.5	< 0.5	<50	NA	
	04/16/94	96.32	14.49	81.83	0.00	<0.5 ^b	< 0.5	< 0.5	< 0.5	190	NA	
	07/26/94	96.32	15.11	81.21	0.00	<0.5 ^b	<0.5	<0.5	< 0.5	130	NA	
	10/05/94	96.32	15.69	80.63	0.00	<0.5	<0.5	<0.5	<0.5	< 50	NA	
	01/04/95	96.32	14.66	81.66	0.00	<0.5	<0.5	< 0.5	< 0.5	<50	NA	
	06/12/95	96.32	10.08	86.24	0.00	< 0.5	<0.5	< 0.5	< 0.5	<50	230	
			Well destroy	ed April 1996.								
MW2	05/21/92	95.91	14.30	81.61	0.00	<0.5	<0.5	<0.5	<0.5	<50	NA	
	02/10/93	95.91	12.34	83.57	0.00	< 0.5	< 0.5	< 0.5	<0.5	< 50	NA	
	05/20/93	95.91	10.73	85.18	0.00	<0.5	<0.5	< 0.5	<1.0	320	NA	
	06/23/93	95.91	11.74	84.17	0.00	< 0.5	< 0.5	< 0.5	< 0.5	130	NA	
	08/23/93	95.91	12.60	83.31	0.00	< 0.5	< 0.5	< 0.5	1.1	140	NA	
	10/25/93	95.91	13.86	82.05	0.00	< 0.5	< 0.5	0.5	2.4	75	NA	
	02/16/94	95.91	14.73	81.18	0.00	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	
	04/16/94	95.91	14.33	81.58	0.00	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	
	07/26/94	95.91	14.96	80.95	0.00	< 0.5	<0.5	< 0.5	< 0.5	<50	NA	
	10/05/94	95.91	15.49	80.42	0.00	<0.5	<0.5	< 0.5	<0.5	<50	NA	

TABLE 1 GROUNDWATER MONITORING DATA, FORMER EXXON RS 7-0210, 7840 AMADOR VALLEY BOULEVARD, DUBLIN, CA

Well No.	Date	Casing Elevation (feet msl)	Depth to Water (feet)	Groundwater Elevation (feet msl)	LPH Thickness (feet)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Total Xylenes (μg/L)	TPH-g (μg/L)	MTBE (μg/L)	Other Oxygenates and Additives (µg/L)
MW2	01/04/95	95.91	14.44	81.47	0.00	<0.5	<0.5	<0.5	<0.5	<50	NA	
	06/12/95	95.91	10.10	85.81	0.00	<0.5	< 0.5	< 0.5	< 0.5	<50	59	
			Well destroy	ed April 1996.								
MW3	05/21/92	97.95	16.05	81.90	0.00	<0.5	<0.5	<0.5	<0.5	<50	NA	
2.2,7,0	02/10/93	97.95	13.77	84.18	0.00	<0.5	<0.5	<0.5	0.7	<50	NA	
	05/20/93	97.95	12.32	85.63	0.00	<0.5	<0.5	<0.5	<1.0	<50	NA	
	06/23/93	97.95	13.34	84.61	0.00	<0.5	< 0.5	< 0.5	< 0.5	<50	NA	
	08/23/93	97.95	14.30	83.65	0.00	2.3	1.2	1.4	4.1	<50	NA	
	10/25/93	97.95	15.62	82.33	0.00	NS	NS	NS	NS	NS	NS	
	02/16/94	97.95	16.48	81.47	0.00	NS	NS	NS	NS	NS	NS	
	04/16/94	97.95	16.61	81.34	0.00	NS	NS	NS	NS	NS	NS	
	07/26/94	97.95	16.72	81.23	0.00	< 0.5	<0.5	<0.5	<0.5	<50	NA	
	10/05/94	97.95	17.33	80.62	0.00	< 0.5	< 0.5	< 0.5	<0.5	< 50	NA	
	01/04/95	97.95	16.29	81.66	0.00	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	
	06/12/95	97.95	11.67	86.28	0.00	< 0.5	< 0.5	< 0.5	< 0.5	< 50	< 2.5	
			Well destroy	ed April 1996.								
MW4	05/21/92	96.69	14.59	82.10	0.00	<0.5	<0.5	<0.5	<0.5	<50	NA	
141 44 4	02/10/93	96.69	12.30	84.39	0.00	<0.5	<0.5	<0.5	<0.5	<50	NA	
	05/20/93	96.69	10.75	85.94	0.00	1.4	1.0	<0.5	1.8	<50	NA	
	06/23/93	96.69	11.78	84.91	0.00	<0.5	<0.5	<0.5	<0.5	<50	NA	
	08/23/93	96.69	12.82	83.87	0.00	<0.5	<0.5	<0.5	0.8	<50	NA	
	10/25/93	96.69	14.10	82.59	0.00	NS	NS	NS	NS	NS	NS	

TABLE 1 GROUNDWATER MONITORING DATA, FORMER EXXON RS 7-0210, 7840 AMADOR VALLEY BOULEVARD, DUBLIN, CA

MW4	02/16/94 04/16/94	96.69		(feet msl)	(feet)	Benzene (μg/L)	Toluene (µg/L)	benzene (μg/L)	Xylenes (μg/L)	TPH-g (μg/L)	MTBE (μg/L)	Oxygenates and Additives (µg/L)
141 44 -4		ባለ ለሁ	15.02	81.67	0.00	<0.5	<0.5	<0.5	<0.5	<50	NA	
	リコノエリノフェ	96.69	14.61	82.08	0.00	NS	NS	NS	NS	NS	NS	
	07/26/94	96.69	15.23	81.46	0.00	<0.5	<0.5	<0.5	<0.5	<50	NA	
	10/05/94	96.69	15.85	80.84	0.00	<0.5	12	<0.5	<0.5	<50	NA	
	01/04/95	96.69	14.84	81.85	0.00	<0.5	<0.5	<0.5	<0.5	<50	NA	
	06/12/95	96.69	10.07	86.62	0.00	<0.5	<0.5	<0.5	<0.5	<50	<2.5	
	00,12,30			ed April 1996.	-17-							
MW5	11/17/00	352.93	13.51	339.42	0.00	<0.5	<0.5	<0.5	2.46	240	1,500	
	11/17/00	352.93									1,600°	
	02/02/01	352.93	13.81	339.12	0.00	< 0.5	< 0.5	< 0.5	< 0.5	110	1,400	
	02/02/01	352.93									1,200°	
	05/09/01	352.93	12.20	340.73	0.00	<0.5	<0.5	<0.5	<0.5	<50	770 ^a	ND^c
MW6	11/17/00	352.66	13.47	339.19	0.00	<0.5	<0.5	<0.5	<0.5	<50	270	
	11/17/00	352.66									260°	
	02/02/01	352.66	13.79	338.87	0.00	< 0.5	< 0.5	< 0.5	< 0.5	<50	160	
	02/02/01	352.66		•							130°	
	05/09/01	352.66	12.25	340.41	0.00	<0.5	<0.5	<0.5	<0.5	<50	760°	ND^c
MW7	11/17/00	351.86	12.44	339.42	0.00	<0.5	<0.5	<0.5	<0.5	<50	<0.5	
	02/02/01	351.86	12.74	339.12	0.00	<0.5	< 0.5	<0.5	<0.5	<50	< 0.5	
	05/09/01	351.86	11.15	340.71	0.00	<0.5	<0.5	<0.5	<0.5	<50	<5ª	$\mathbf{ND}^{\mathfrak{c}}$

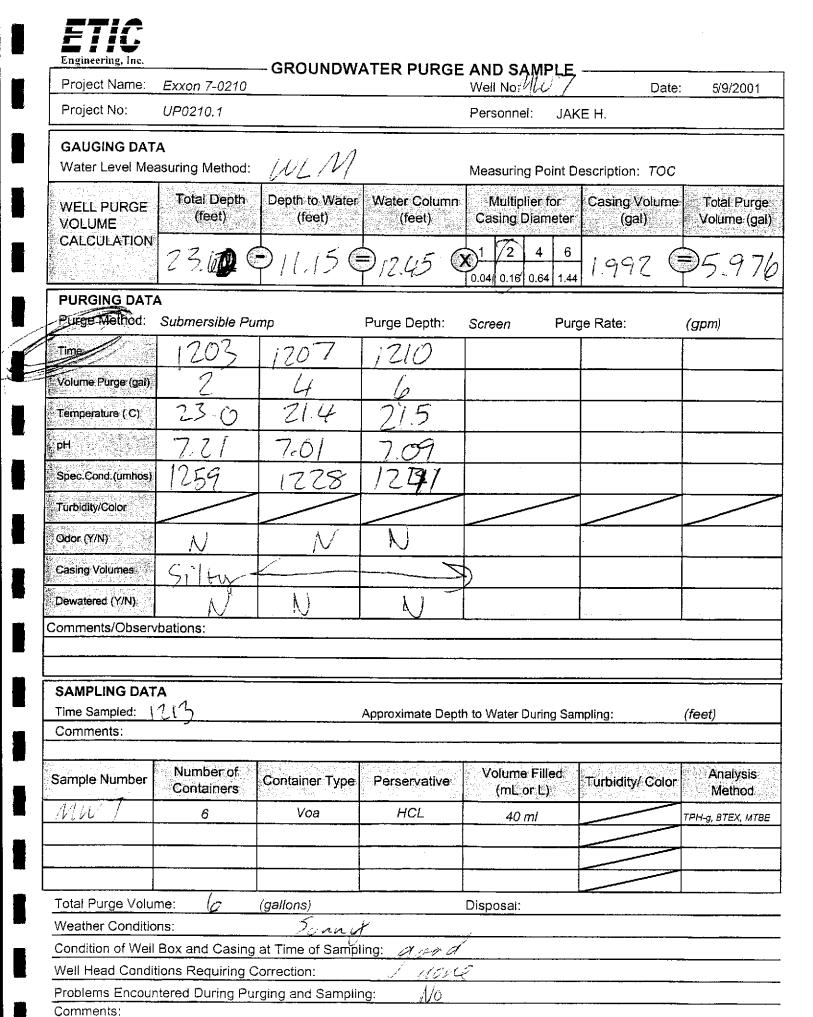
TABLE 1 GROUNDWATER MONITORING DATA, FORMER EXXON RS 7-0210, 7840 AMADOR VALLEY BOULEVARD, DUBLIN, CA

Well No.	Date	Casing Elevation (feet msl)	Depth to Water (feet)	Groundwater Elevation (feet msl)	LPH Thickness (feet)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (μg/L)	TPH-g (μg/L)	MTBE (μg/L)	Other Oxygenates and Additives (µg/L)
a b c	A peak elutir	_	enzene, suspe	ected to be MTBE.		ert-amyl met	hyl ether, te	rt-butyl ethy	l ether, 1,2-c	libromoetl	nane, and 1,	2-dichloroethane.
LPH TPH-g MTBE NA ND NS	Total Petrole Methyl tertia		ons as gasoline	е.								
feet msl μg/L	Feet relative Micrograms	to mean sea lev per liter.	rel.									

Appendix A

Field Documents

Client: ExxonN	1obil				Date:	5/9/2001	
Project Numbe	r: UP0210.1				Station Number	7-0210	
Site Location: 7840 AMADO	R VALLY BLV	D., DUBLIN, C	4		Samplers:	JAKE H.	
MONITORING WELL NUMBER	DEPTH TO WATER (TOC)	DEPTH TO PRODUCT (TOC)	APPARENT PRODUCT THICKNESS	AMOUNT OF PRODUCT REMOVED	MONITORING WELL INTEGRITY	DEPTH TO BOTTOM: (TOC)	WELL CASING DIAMETER
<i>MM-</i> 5	12.20					24.10	2"
<i>MM</i> -6	12.25					24.45	2*
MM-7	11.15					2360	2"
			•	- "			



F. Proicets 70210/Public/sampling/[purge form.xls]Sheet1

Engineering, Inc. - GROUNDWATER PURGE AND SAMPLE Project Name: Date: 5/9/2001 Exxon 7-0210 Well No: Project No: UP0210.1 Personnel: JAKE H. **GAUGING DATA** Water Level Measuring Method: Measuring Point Description: TOC Total Depth Depth to Water Water Column Multiplier for Casing Volume Total Purge: **WELL PURGE** (feet) (feet) (feet). Casing Diameter (gal) Volume (gal) VOLUME CALCULATION 904 0.16/ 0.64 **PURGING DATA** Purge Method: Submersible Pump Purge Depth: Purge Rate: (gpm) Screen Time Volume Purge (gal) Temperature (C) > 686 pH: Spec.Cond.(umhos) Turbidity/Color Odor (Y/N) Casing Volumes: Dewatered (Y/N) Comments/Observbations: SAMPLING DATA Time Sampled: Approximate Depth to Water During Sampling: (feet) Comments: Number of Volume Filled Analysis Sample Number Turbidity/ Color Container Type Perservative Method Containers (mL or L) Voa **HCL** WW5 6 40 ml TPH-g, BTEX, MTBE 6 Total Purge Volume: (gallons) Disposal: Weather Conditions: Condition of Well Box and Casing at Time of Sampling: Well Head Conditions Requiring Correction: None Problems Encountered During Purging and Sampling: MY MAN Comments:

Engineering, Inc.		- GROUNDWA	ATER PURGE	AND SAME	PLE —				
Project Name:	Exxon 7-0210			Well No: ////// Date: 5/9/2001					
Project No:	UP0210.1			Personnel:	JAKE H.				
GAUGING DAT Water Level Mea		WLM		Measuring Po	oint Description: TOC				
WELL PURGE VOLUME	Total Depth (feet)	Depth to Water (feet)	Water Column (feet)	Multiplier Casing Diam	to the system of	Total Purge Volume (gal)			
CALCULATION	24.45 €	12.75	12.2	1 2 4	1.44 1.952	\$ 5.856			
PURGING DATA									
Purge the hod:	Submersible Pur	-	Purge Depth:	Screen	Purge Rate:	(gpm)			
Time	1136	1138	1141						
Volume Purge (gal)	2	4	6						
Temperature (C)	72.4	218	21.5						
pH -	GAI	6.97	7,15						
Spec.Cond (umhos)	1195	1186	1199						
Turbidity/Color :									
Odor (Y/N)	1		1						
Casing Volumes	Situ		170						
Dewatered (Y/N)	110								
Comments/Obser	vbations:		<u> </u>	1					
SAMPLING DAT	F A		<u>-</u>						
	142		Approximate Dept	h to Water Durit	ng Sampling:	(feet)			
Comments:						- 			
Sample Number	Number of Containers	Container Type	Perservative	Volume Fil (mL or L	- CALIFFORD OF COLOR	Analysis Method			
MINIE	6	Voa	HCL	40 ml		TPH-g, BTEX, MTBE			
			-						
Total Purge Volu	lme: 1/2	(gallons)	<u> </u>	Disposal:		1			
Weather Condition		5 und							
Condition of Wel	l Box and Casing	11	ling: 900G						
Well Head Cond	itions Requiring C	Correction:	don	e					
	ntered During Pu	rging and Sampli	ng: ŊəM	l					
Comments: FrProjects 70217 Public samp	oiing/purge jorm.xls/Shect1	W-11-1							

F: Projects 70210 Public/sampling/[purge form.xis]Sheet1

Appendix B Laboratory Analytical Reports

EXXON Company U.S.A.

Certificate of Analysis Number: 01050388

Report To:

ETIC Engineering, Inc.

John Ortega

2285 Morello Avenue

Pleasant Hill California

94523-

ph: (925) 602-4710

fax: (925) 602-4720

Project Name:

:

UP0210.1

Site:

7-0210

Site Address:

7840 Amador Valley Blvd.

Dublin

CA

PO Number:

EWR#21012153

State:

California

State Cert. No.:

1903

Date Reported:

5/23/01

This Report Contains A Total Of 14 Pages

Excluding This Page

And

Chain Of Custody

Received

MAY 2 9 2001

ETIC Engineering inc.

5/23/01

Case Narrative for: EXXON Company U.S.A.

Certificate of Analysis Number:

01050388

Report To:

ETIC Engineering, Inc.

John Ortega

2285 Morello Avenue

Pleasant Hill California

94523-

ph: (925) 602-4710

fax: (925) 602-4720

Project Name: Site: UP0210.1

7-0210

Site Address:

7840 Amador Valley Blvd.

Dublin

CA

PO Number:

EWR#21012153

State:

California

State Cert. No.:

1903

Date Reported:

5/23/01

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

01050388 Page 1

5/23/01

Sonia West

Senior Project Manager

Date

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054

OUSTON, TEXAS 7705. (713) 660-0901

EXXON Company U.S.A.

Certificate of Analysis Number:

01050388

Report To:

Fax To:

ETIC Engineering, Inc.

John Ortega

2285 Morello Avenue

Pleasant Hill California

94523-

ph: (925) 602-4710

fax: (925) 602-4720

ETIC Engineering, Inc.

John Ortega

rtega fax : (925) 602-4720

Project Name:

.

UP0210.1 7-0210

Site: Site Address:

7840 Amador Valley Blvd.

Dublin

CA

PO Number:

EWR#21012153

State:

Date Reported:

California

State Cert. No.:

1903

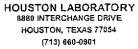
5/23/01

Cli	ent Sample ID	Lab Sample ID	Matrix	Date Collected	Date Received	COC ID	HOLD
/W-5		01050388-01	Water	5/10/01 11:20:00 AM	5/12/01 10:00:00 AM		
лW-6		01050388-02	Water	5/10/01 11:42:00 AM	5/12/01 10:00:00 AM		
MW-7		01050388-03	Water	5/10/01 12:13:00 PM	5/12/01 10:00:00 AM		

Soma West

5/23/01

Date


onia West

enior Project Manager

Joel Grice Laboratory Director

Ted Yen

Quality Assurance Officer

Client Sample ID MW-5 Collected: 5/10/01 11:20:00 SPL Sample ID: 01050388-01

Site: 7-0210

			Site	9: 7-02	210				
Analyses/Method	Result		Rep.Limit		Dil. Factor	QUAL	Date Analyzed	Analyst	Seq. #
GASOLINE RANGE ORGANICS				MCL	CA	GRO	Units: uç	/L	
Gasoline Range Organics	ND		50		1		05/18/01 23:01	DL	677907
Surr: 1,4-Diffuorobenzene	104	%	62-144		1		05/18/01 23:01	DL	677907
Surr: 4-Bromofluorobenzene	103	%	44-153		1		05/18/01 23:01	DL	677907
PURGEABLE AROMATICS				MCL	SW8	021B	Units: ug)/L	
Benzene	ND		0.5		1		05/18/01 23:01	DL	677850
Ethylbenzene	ND		0.5		1		05/18/01 23:01	DL	677850
Toluene	ND		0.5		1		05/18/01 23:01	DL	677850
m,p-Xylene	ND		0.5		1		05/18/01 23:01	DL	677850
o-Xylene	ND		0.5		1		05/18/01 23:01	DL	677850
Xylenes, Total	ND		0.5		1		05/18/01 23:01	DL	677850
Surr: 1,4-Difluorabenzene	95.8	%	72-137		1		05/18/01 23:01	DL	677850
Surr: 4-Bromofluorobenzene	91.3	%	48-156		, 1		05/18/01 23:01	DL	677850
VOLATILE ORGANICS BY METH	IOD 8260B			MCL	SW8	260B	Units: ug	ı/L	
1,2-Dibromoethane	ND	•	5		1		05/15/01 11:00	1¢	672796
1,2-Dichloroethane	ND		5	•	1		05/15/01 11:00	JC	672796
Diisopropyl ether	ND		10		1		05/15/01 11:00	JC	672796
Methyl tert-butyl ether	770		50		10		05/17/01 10:53	1C	675318
t-Butyl alcohol	ND		500		1		05/15/01 11:00	JC	672796
tert-Amyl methyl ether	ND		10		1		05/15/01 11:00	JC	672796
tert-Butyl ethyl ether	ND		10		1		05/15/01 11:00	JC	672796
Surr: 1,2-Dichloroethane-d4	100	%	62-119		10		05/17/01 10:53	JC	675318
Surr: 1,2-Dichloroethane-d4	94.0	%	62-119		1		05/15/01 11:00	JC	672796
Surr: 4-Bromoffuorobenzene	90.0	%	78-123		10		05/17/01 10:53	1C	675318
Surr: 4-Bromofluorobenzene	94.0	%	78-123		1		05/15/01 11:00	1C	672796
Surr: Toluene-d8	106	%	74-122		1		05/15/01 11:00	JC	672796
Surr: Toluene-d8	106	%	74-122		10		05/17/01 10:53	JC	675318
-,									

Sonia West

Sonia West Project Manager

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

Client Sample ID MW-6 Collected: 5/10/01 11:42:00 SPL Sample ID: 01050388-02

Site: 7-0210

			3116	3; /-U,	210				
Analyses/Method	Result		Rep.Limit		Dil. Factor	QUAL	Date Analyzed	Analyst	Seq. #
GASOLINE RANGE ORGANICS				MCL	CA_	GRO	Units: ug	ı/L	
Gasoline Range Organics	ND		50		1		05/18/01 23:25	DL	677908
Surr: 1,4-Difluorobenzene	104	%	62-144		1		05/18/01 23:25	DL	677908
Surr: 4-Bromofluorobenzene	99.3	%	44-153		1		05/18/01 23:25	DL	677908
PURGEABLE AROMATICS		-		MCL	SW8	021B	Units: ug	ı/L	
Benzene	ND		0.5		1		05/18/01 23:25	DL	677851
Ethylbenzene	ND		0.5		1		05/18/01 23:25	DL	677851
Toluene	ND		0.5		1		05/18/01 23:25	DL	677851
m,p-Xylene	ND		0.5		1		05/18/01 23:25	DL	677851
o-Xylene	ND		0.5		1		05/18/01 23:25	DL	677851
Xylenes, Total	ND		0.5		1		05/18/01 23:25	DL	677851
Surr: 1,4-Difluorobenzene	91.7	%	72-137		1		05/18/01 23:25	DL	677851
Surr: 4-Bromofluorobenzene	86.4	%	48-156		1		05/18/01 23:25	DL	677851
VOLATILE ORGANICS BY METI	HOD 8260B			MCL	SW8	260B	Units: ug	ı/L	
1,2-Dibromoethane	ND		5		1		05/15/01 12:13	JC	672732
1,2-Dichloroethane	ND		5		1		05/15/01 12:13	JC	672732
Diisopropyl ether	ND		10		1		05/15/01 12:13	JC	672732
Methyl tert-butyl ether	760		50		10		05/17/01 11:17	JC	675319
t-Butyl alcohol	ND		500	······································	1		05/15/01 12:13	JC	672732
tert-Amyl methyl ether	ND		10		1		05/15/01 12:13	JC	672732
tert-Butyl ethyl ether	ND		10		1		05/15/01 12:13	JC	672732
Surr: 1,2-Dichloroethane-d4	98.0	%	62-119		1		05/15/01 12:13	JC	672732
Surr: 1,2-Dichloroethane-d4	98.0	%	62-119		10		05/17/01 11:17	JC	675319
Surr: 4-Bromofluorobenzene	92.0	%	78-123		1		05/15/01 12:13	JC	672732
Surr: 4-Bromofluorobenzene	92.0	%	78-123		10		05/17/01 11:17	JC	675319
Surr: Toluene-d8	106	%	74-122		1		05/15/01 12:13	1C	672732
Surr: Toluene-d8	108	%	74-122		10		05/17/01 11:17	JC	675319

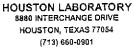
Some West

Sonia West Project Manager

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank


* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

Client Sample ID MW-7 Collected: 5/10/01 12:13:00 SPL Sample ID: 01050388-03

Site: 7-0210

			Site	∌; 7-0;				
Analyses/Method	Result		Rep.Limit		Dil. Factor QUAL	Date Analyzed	Analyst	Seq. 7
GASOLINE RANGE ORGANICS				MCL	CA_GRO	Units: ug/	L	
Gasoline Range Organics	ND		50		1	05/18/01 23:49	DL	677909
Surr: 1,4-Difluorobenzene	105	%	62-144		1	05/18/01 23:49	DL	677909
Surr: 4-Bromofluorobenzene	98.7	%	44-153		1	05/18/01 23:49	DL	677909
PURGEABLE AROMATICS				MCL	SW8021B	Units: ug/	<u>'L</u>	
Benzene	ND		0.5		1	05/18/01 23:49	DL	677852
Ethylbenzene	ND		0.5		1	05/18/01 23:49	DL	677852
Toluene	ND		0.5		1	05/18/01 23:49	DL	677852
m,p-Xylene	ND		0.5		1	05/18/01 23:49	DL	677852
o-Xylene	ND		0.5		1	05/18/01 23:49	DL	677852
Xylenes,Total	ND		0.5		1	05/18/01 23:49	DL	677852
Surr: 1,4-Difluorobenzene	92.1	%	72-137		1	05/18/01 23:49	DL	677852
Surr: 4-Bramofluarobenzene	88.7	%	48-156		1	05/18/01 23:49	DL	677852
VOLATILE ORGANICS BY METI	HOD 8260B			MCL	SW8260B	Units: ug/	′L	
1,2-Dibromoethane	ПИ		5		1	05/15/01 12:38	JC	672733
1,2-Dichloroethane	ND		5		1	05/15/01 12:38	JC	672733
Diisopropyl ether	ND		10		1	05/15/01 12:38	JC	672733
Methyl tert-butyl ether	ND		5		1	05/15/01 12:38	JC	672733
t-Butyl alcohol	ND		500	•	1	05/15/01 12:38	JC	672733
tert-Amyl methyl ether	ND		10		1	05/15/01 12:38	JC	672733
tert-Butyl ethyl ether	ND		10		1	05/15/01 12:38	JC	672733
Surr: 1,2-Dichloroethane-d4	96.0	%	62-119		1	05/15/01 12:38	JC	672733
Surr: 4-Bromofluorobenzene	92.0	%	78-123		1	05/15/01 12:38	JC	672733
Surr: Toluene-d8	104	%	74-122		1	05/15/01 12:38	JC	672733

Donia West

Sonia West Project Manager

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

Quality Control Documentation

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 (713) 560-0901

Quality Control Report

EXXON Company U.S.A. UP0210.1

Analysis: Method:

RuntD:

Analysis Date:

Purgeable Aromatics

VARE_010518A-675753

05/18/2001 12:03

SW8021B

WorkOrder:

01050388

Lab Batch ID:

R35467

Method Blank

Units:

Analyst:

ug/L DL

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

01050388-01A

MW-5

01050388-02A 01050388-03A MW-6 MW-7

Analyte	Result	Rep Limit
Benzene	ON	0.50
Ethylbenzene	ND	0.50
Methyl tert-butyl ether	DN	2.0
Toluene	ND	0.50
m,p-Xylene	ND	0.50
o-Xylene	ND	0.50
Xylenes,Total	ND	0.50
Surr: 1,4-Difluorobenzene	90.6	72-137
Surr: 4-Bromoffuorobenzene	91.8	48-156

Laboratory Control Sample (LCS)

RunID:

VARE_010518A-675752

Units: ug/L

Analysis Date:

05/18/2001 11:40

DL Analyst:

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Benzene	50	51	102	70	130
Ethylbenzene	50	51	102	70	130
Methyl tert-butyl ether	50	56	112	70	130
Toluene	50	51	101	70	130
m,p-Xylene	100	100	100	70	130
o-Xylene	50	51	102	70	130
Xylenes,Total	150	151	101	70	130

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

01050359-03

RunID:

VARE_010518A-677835

Units:

ug/L

Analysis Date:

05/18/2001 14:05

DL Analyst:

Analyte	Sample Result	MS Spike Added	MS Resuit	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Benzene	ND	20	21	103	20	20	102	0.245	21	32	164
Ethylbenzene	ND	20	21	103	20	21	104	0.696	19	52	142
Methyl tert-butyl ether	19	20	39	101	20	40	103	1.44	20	39	150

Qualifiers:

ŧ

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 (713) 660-0901

Quality Control Report

EXXON Company U.S.A.

UP0210.1

Analysis: Method: Purgeable Aromatics

SW8021B

WorkOrder:

01050388

Lab Batch ID:

R35467

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

01050359-03

RunID:

VARE_010518A-677835

Units:

ug/L

Analysis Date:

05/18/2001 14:05

Analyst:

lyst: DL

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit		High Limit
ľoluene	ND	20	20	101	20	20	101	0.209	20	38	159
m,p-Xylene	ND	40	41	102	40	41	103	0.845	17	53	144
o-Xylene	ND	20	21	104	20	21	104	0.0522	18	53	143
Kylenes,Total	ND	60	62	103	60	62	103	0	18	53	144

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 (713) 660-0901

Quality Control Report

EXXON Company U.S.A. UP0210.1

Analysis: Method:

RunID:

nalysis Date:

Gasoline Range Organics

CA_GRO

WorkOrder:

01050388

Lab Batch ID:

R35584

Method Blank

VARE_010518B-677876

05/18/2001 12:03

Units: Analyst:

mg/L DL

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

01050388-01A 01050388-02A MW-5 MW-6

01050388-03A

MW-7

Analyte	Result	Rep Limit
Gasoline Range Organics	ND	0.050
Surr: 1,4-Difluorobenzene	103.3	62-144
Surr: 4-Bromoffuorobenzene	102.7	44-153

Laboratory Control Sample (LCS)

RunID:

Analysis Date:

VARE_010518B-677874

Units: mg/L

05/18/2001 11:16

DL Analyst:

Anaiyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Gasoline Range Organics	1	1.1	110	70	130

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

01050359-04

RuniD:

VARE_010518B-677879

Units:

mg/L

Analysis Date:

05/18/2001 14:54

DL Analyst:

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	1 11	RPD Limit		High Limit
Sasoline Range Organics	ND	0.9	0.9	95.7	0.9	0.91	96.2	0.463	36	36	160

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 (713) 660-0901

Quality Control Report

EXXON Company U.S.A. UP0210.1

Analysis:

RunID:

Analysis Date:

Volatile Organics by Method 8260B

Method: SW8260B

WorkOrder:

01050388

Lab Batch ID:

R35306

Method Blank

Q_010514C-672700 Uni

05/15/2001 3:16

Units: ug/L

JC

Analyst:

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

01050388-018

MW-5

01050388-028

MW-6

01050388-03B

MW-7

Analyte	Result	Rep Limit
1,2-Dibromoethane	ND	5.0
1,2-Dichloroethane	ND	5.0
Diisopropyl ether	ND	10
Methyl tert-butyl ether	ND	5.0
t-Butyl aicohol	ND	500
tert-Amyl methyl ether	ND	10
tert-Butyl ethyl ether	ND	10
Surr: 1,2-Dichloroethane-d4	98.0	62-119
Surr. 4-Bromofluorobenzene	90.0	78-123
Surr: Toluene-d8	108.0	74-122

Laboratory Control Sample (LCS)

RunID:

Q_010514C-672699

Units: ug/L

Analysis Date:

05/15/2001 2:27

Analyst: JC

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
1,1-Dichloroethene	50	48	96	61	145
Benzene	50	49	98	76	127
Chlorobenzene	50	48	96	75	130
Toluene	50	47	94	. 76	125
Trichloroethene	50	46	92	71	120

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

01050354-16

RunID:

Q_010514C-672729

Units:

ug/L

Analysis Date:

05/15/2001 11:25

Analyst: JC

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
1,1-Dichloroethene	QX	50	48	96	50	48	96	0	14	38	172
Benzene	5.0	50	54	98	50	54	98	0	11	66	134
Chlorobenzene	ND	50	51	102	50	501	100	2	13	67	115
Toluene	ND	50	52	96	50	51	94	2	13	59	125

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

Analysis:

Method:

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054

(713) 660-0901

Quality Control Report

EXXON Company U.S.A. UP0210.1

Volatile Organics by Method 8260B

SW8260B

WorkOrder:

01050388

Lab Batch ID:

R35306

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

01050354-16

RunID:

Q_010514C-672729

Units:

ug/L

Analysis Date:

05/15/2001 11:25

Analyst:

JC

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD :	i i	High · Limit '
Trichloroethene	ND	50	49)	98	50	48	96	14	61	134

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 (713) 660-0901

Quality Control Report

EXXON Company U.S.A. UP0210.1

Analysis: Method:

RunID:

Volatile Organics by Method 8260B

SW8260B

WorkOrder:

01050388

Lab Batch ID:

R35447

Method Blank

Q_010516D-675302

Units: ug/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date: 05/

05/17/2001 7:09

Analyst: JC

01050388-01B

MW-5

01050388-02B

MW-6

Analyte	Result	Rep Limit
Methyl tert-butyl ether	ND	5.0
Surr: 1,2-Dichloroethane-d4	98.0	62-119
Surr: 4-Bromofluorobenzene	92.0	78-123
Surr: Toluene-d8	106.0	74-122

Laboratory Control Sample (LCS)

RunID:

Q_010516D-675303

Units: ug/L

Analysis Date:

05/17/2001 7:34

Analyst; JC

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
1,1-Dichloroethene	50	44	88	61	145
Benzene	50	45	90	76	127
Chlorobenzene	50	46	92	75	130
Toluene	50	44	88	76	125
Trichloroethene	50	48	96	71	120

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

01050502-04

RunID:

Q_010516D-675324

Units:

ug/L

Analysis Date:

05/17/2001 13:19

Analyst: JC

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
1,1-Dichioroethene	38	100	140	102	100	120	82	22 *	14	38	172
enzene	ND	100	100	100	100	98	98	2	11	66	134
Shlorobenzene	ND	100	100	96	100	96	92	4	13	67	115
Toluene	ND	100	98	98	100	90	90	9	13	59	125
richlaroethene	25	100	120	95	100	120	95	0	14	61	134

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

Sample Receipt Checklist And Chain of Custody

EXXON COMPANY, US	SA. (West Coas	CHAIN	OF CUSTOD	DY RECORD NO.	01050	SSX Page	e of
Exxon Engineer: Dario Kovse Phone: 925 6024710 Consultant Co. Name 27 1 C Eng. Contact: John Ortega Address: 2285 Mary Clo Ave Fax: 925 6024720			ANALYSIS REQUEST: (CHECK APPROPRIATE BOX) OTHE				
RAS # 7 - 0210 Facility/State ID # (TN AFE # (Terminal Only): Cons Location 7 C D Amec do C (City) AFEE Consultant Work Release #: 2 01215 5 Sampled By: Care		O ONTAINERS CONTAINER SIZE [1]	8015 GRO 💢 80	20 0 8260 C TES (7) 8260 G HR 413.1 D		METALS, TOTAL G METALS, TCLP C LEAD, TOTAL 239.1 G 742.1 G LEAD, TCLP C LEAD, DISSOLVED G LEAD TOTAL G REACTIVITY G CORROSIVITY C. FLASH PONT C	PURGEABLE HYDROCARBON 6010 ☐ 601 ☐ TPH//R 4181 ☐ TOX/TOH ☐
NIN7 Spolu 1213		é X	XX				
24 HR. * 72 HR. * 48 HR. * 96 HR. * 8 Business *Contact US Prior to Sending Sample *CONTRACT NO. C41483	SPECIAL DETECTION LIMITS (Specify) SPECIAL REPORTING REQUIREMENTS (Special Reporting Requirements)	ecify)		ARKS: USE ONLY Lot #			ge Location
	FAX [] LIV FAX C-O-C W/REPOR Da 5/10 Da	(9 (0 / te	Time Time	Received By: Received By: Received By:	50388 LAB	WORK RELEASE 5/12/0 Cooler Temp:	#21612153 1 1000 4 c

Sample Receipt Checklist

Workorder: 01050388			Received By:		NB	
Date and Time Received: 5/12/01 10:00:00 AM		Carrie		name:	Fed£x	
Temperature: 4			Chilled by:		Water Ice	
1. Shipping container/co	ooler in good condition?	Yes 🗹	No 🗌	Not Prese	ent 🗆	
2. Custody seals intact on shippping container/cooler?		Yes 🗌	No 🗆	Not Prese	ent 🗹	
3. Custody seals intact on sample bottles?		Yes 🗌	No 🗆	Not Prese	ent 🗹	
4. Chain of custody pres	sent?	Yes 🗹	No 🗆			
5. Chain of custody sign	ned when relinquished and received?	Yes 🗹	No 🗆			
6. Chain of custody agrees with sample labels?		Yes 🗹	No 🗌			
7. Samples in proper co	ntainer/bottle?	Yes 🗹	No 🗀			
8. Sample containers in	tact?	Yes 🗹	No 🗀			
9. Sufficient sample vol	ume for indicated test?	Yes 🔽	No 🗌			
0. All samples received	within holding time?	Yes 🗹	No 🗌			
1. Container/Temp Blank temperature in compliance?		Yes 🗹	No 🗌			
Water - VOA vials have zero headspace?		Yeş 🗹	No 🗀	Not Appli	cable 🗌	
3. Water - pH acceptable	e upon receipt?	Yes 🗹	No 🗌	Not Appli	cable 🗌	
SPL Representative:		Contact Date				
Client Name Contacte	od:					
Non Conformance Issues:						
Client Instructions:						