

Groundwater Technology, Inc.

15010 W. 106th Street, Lenexa, KS 66215 USA Tel: (913) 599-0262 Fax: (913) 599-1043

February 2, 1996

Mr. G. Keith West General Motors Corporation Argonaut "A" - 1004H 485 W. Milwaukee Avenue Detroit, Michigan 48202

Subject:

Report of Sampling and Analysis Activities of June 26, 1995

for Work Plan Addendum #1

GMC TRUCK CENTER 8099 South Coliseum Way

Oakland, California

Dear Mr. West:

The following is a brief letter report presenting the findings of the field work conducted on June 26, 1995 at the above referenced facility. The purpose of the work completed during this phase was to collect data to assist in determining the horizontal and vertical impact of fugitive hydrocarbons at the site. The scope of work was performed in accordance with the Work Plan for Further Site Assessment, GMC Truck Center, 8099 Coliseum Way, Oakland, California dated January 26, 1995 and the Work Plan Addendum 1 dated February 2, 1996.

The areas investigated included the areas around the underground storage tanks (USTs) formerly located on the south side of the main building, the oil/water separator located on the northeast side of the main building, and the garbage collection area at the far northwest corner of the property. The field work included the advancement of ten corings and the collection of soil and groundwater samples from those corings. The original work plan called for the advancement of nine corings. The tenth coring was advanced near the north boundary of the site when free phase petroleum product was observed in the coring advanced to the north of the oil/water separator. The soil corings installed on June 26, 1995 include SB-18 through SB-27. The locations of these soil corings are shown on the attached coring location map. The soil coring locations were selected in areas believed to have been impacted by petrloeum hydrocarbons based upon previous assessment data.

487edd1.pro

#### Coring and Sampling Methods

Ten (10) soil cores were installed using a Geoprobe subsurface sampling system equipped with 2-inch outer diameter dual rod probes. Prior to coring each hole, all tools were steam cleaned to avoid cross contamination. The coring was supervised by a Groundwater Technology staff geologist who logged each coring in accordance with the Unified Soil Classification System.

Soil samples were collected with a 7/8-inch diameter inner rod with acetate liner. The samples were collected at approximately 5-foot and 10-foot depths. Each soil sample was field screened for hydrocarbon vapors using a photoionization detector (PID). After field screening, select soil samples were immediately transferred to clean brass liners, sealed with aluminum foil, capped with plastic end caps, secured with tape, labeled, logged on the chain of custody form, and placed on ice in preparation of shipment to a California certified laboratory for analysis.

Groundwater samples were collected from each coring through the temporary installation of slotted PVC well screen. A clean stainless steel bailer was used to retrieve the groundwater samples. The groundwater samples were placed in new clean sample containers, labeled, logged on the chain of custody form, and placed on ice in preparation of shipment to a California certified laboratory for analysis. Following the completion of the soil and groundwater sampling, the core holes were backfilled with neat cement and finished with asphalt or concrete to the existing grade.

#### Soil and Groundwater Sample Analysis

Selected soil samples and one groundwater sample from each coring were submitted for laboratory analysis of TPH as gasoline according to EPA Method 5030/8015; BTEX according to EPA Method 8020; and hydrocarbon screening for compounds ranging from diesel fuel through motor oil using a gas chromatograph (GC) and a flame ionization detector (FID). The GC/FID method samples were prepared using EPA Method 3550 and were analyzed according to protocols commonly referred to as modified EPA Method 8015.

#### Soil Sample Results

The soil samples collected from corings SB-18 and SB-19 drilled near the garbage collection area and the soil corings SB-24 through SB-26 drilled near the former USTs were not submitted for laboratory analysis. These samples were not analyzed because the extent of hydrocarbons in soil in these areas had been previously defined from data collected during the March 1995 field work and were considered to be beyond the defined limits of TPH in soil. These corings were installed to obtain groundwater quality data.

\_\_\_\_ ≤ GROUNDWATER TECHNOLOGY

The soil sample collected from a depth of 10-feet below grade from the coring identified as SB-20, north of the oil/water separator, contained TPH as mineral spirits at a concentration of 1,400 milligrams per kilogram (mg/kg), ethylbenzene at a concentration of 1.6 mg/kg, and total xylenes at a concentration of 17 mg/kg. The soil sample collected from a depth of 10-feet below grade from the coring identified as SB-23, southeast of the oil/water separator, contained TPH as gasoline at a concentration of 28 mg/kg, toluene at a concentration of 0.042 mg/kg, ethylbenzene at a concentration of 0.061 mg/kg, and total xylenes at a concentration of 0.32 mg/kg. The remaining three corings (SB-21, SB-22, and SB-27) did not contain any constituents above the method detection limits.

#### **Groundwater Sample Results**

Groundwater samples collected from SB-21 and SB-22, to the west and east of the oil/water separator, did not contain concentrations of TPH above the method detection limits. The sample from SB-21 contained toluene at a concentration of 0.5 micrograms per liter (ug/L) and ethylbenzene at a concentration of 0.7 ug/L. The groundwater sample collected from SB-22 contained toluene at a concentration of 0.6 ug/l. The groundwater sample collected from SB-20, to the north of the oil/water separator, contained free phase hydrocarbons and was characterized by the laboratory as containing 520,000 ug/L TPH as mineral spirits and 170,000 ug/L TPH as motor oil, 60 ug/L ethylbenzene, and 150 ug/L total xylenes. The groundwater samples collected from SB-23, to the south of the oil/water separator, contained 150 ug/L TPH as gasoline and 23,000 ug/L TPH as motor oil, 3,900 ug/L TPH as kerosene, 1.0 ug/L ethylbenzene, and 2.8 ug/L total xylenes. The groundwater sample collected from SB-27, about 150-feet north of the oil/water separator, contained 16,000 ug/L TPH as motor oil.

The groundwater sample collected from SB-18, located near the garbage collection area and SB-26, located on the CALTRANS property to the west of the gasoline and diesel USTs did not contain concentrations of TPH above the method detection limits. SB-18 did contain 8.1 ug/L toluene. The groundwater sample collected from SB-19, near the northwest corner of the building, contained TPH as motor oil at a concentration of 44,000 ug/L and toluene at a concentration of 0.3 ug/L. The groundwater samples collected from SB-24 and SB-25, on the CALTRANS property to the west of the building, contained TPH as motor oil at concentrations of 13,000 ug/L and 17,000 ug/L, respectively. In addition, SB-24 contained 0.4 ug/L toluene.

#### Findings

Based on the results of the previous and current investigations, petroleum hydrocarbons are present in the groundwater and soil at the site. The recently completed field work suggests that primarily dissolved concentrations of motor oil, combined with mineral spirits and kerosene, are present in groundwater in the area of the oil/water separator. In addition, dissolved concentrations of motor oil in groundwater appears to have migrated off-site in a southwest direction.

Based on this data, Groundwater Technology recommends that ten groundwater monitoring wells be installed on and around the site. These wells should be located in areas of the site in which the greatest impact to the subsurface has already been defined and in areas up- and down-gradient of these areas to monitor groundwater quality and potential migration of hydrocarbons on-site and offsite. The details of the proposed monitoring well installation work are provided in the Proposed

GROUNDWATER
TECHNOLOGY

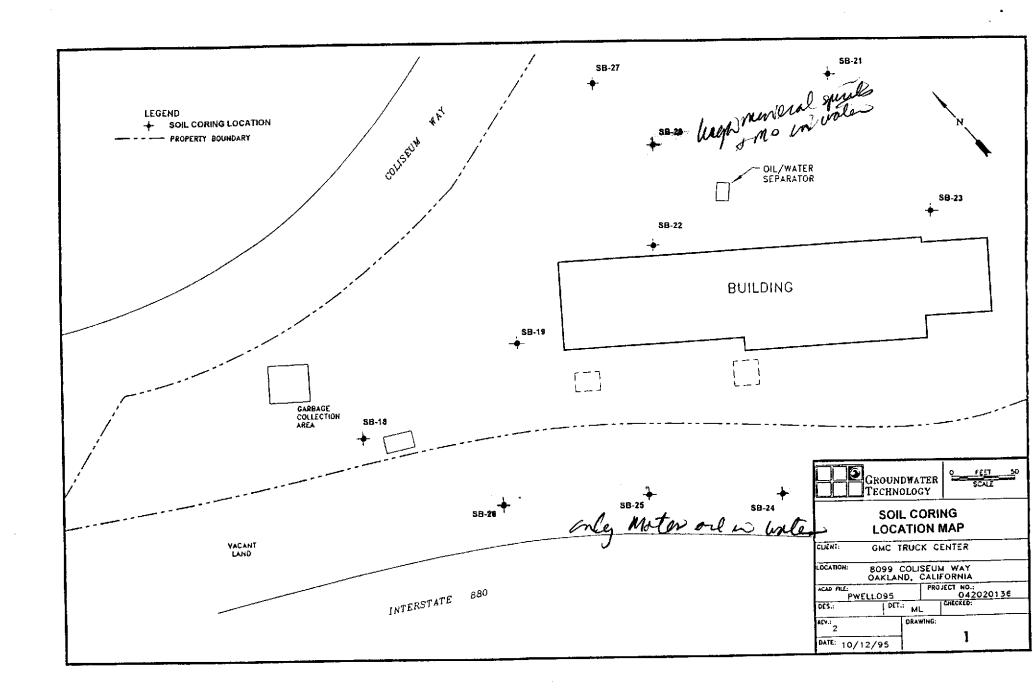
Work Plan Addendum 2 for Further Site Assessment Sampling Activities, dated February 2, 1996.

If you have any questions regarding the information contained in this report, please feel free to contact me at or (216) 349-0004.

Sincerely,

Groundwater Technology, Inc.

Michael R. Sieczkówski CHMM


Project Manager

Thursburkland for Kenneth P. Johnson, R.G. Project Hydrogeologist

Attachments: Coring Location Map

c: B. Ferguson

C. Covert



## GROUNDWATER TECHNOLOGY, INC.

# TABLE 2 ADDENDUM 1 SOIL AND GROUNDWATER SAMPLING GROUNDWATER SAMPLE ANALYTICAL RESULTS GENERAL MOTORS CORPORATION WHITE TRUCK CENTER OAKLAND, CALIFORNIA

| Sample I.D. | Date     | Benzene<br>Collected<br>ug/L | Toluene<br>ug/L | Ethyl-<br>benzene<br>ug/L | Total<br>Xylenes<br>ug/L | TPH as<br>gasoline<br>ug/L | TPH as<br>diesel<br>ug/L | TPH as<br>mineral spirits<br>ug/L | TPH as<br>kerosene<br>ug/L | TPH as<br>motor oil<br>ug/L |
|-------------|----------|------------------------------|-----------------|---------------------------|--------------------------|----------------------------|--------------------------|-----------------------------------|----------------------------|-----------------------------|
| SB-18       | 06/26/95 | <0.3                         | 8.1             | <0.3                      | <0.5                     | <50                        | <1,000                   | <1,000                            | <1,000                     | <5,000                      |
| SB-19       | 06/26/95 | <0.3                         | 0.3             | <0.3                      | <0.5                     | <50                        | <2,500                   | <2,500                            | <2,500                     | 44,000                      |
| SB-20       | 06/26/95 | <0.3                         | <0.3            | 60                        | 150                      | <500                       | <2,500                   | 520,000                           | <2,500                     | 170,000                     |
| SB-21       | 06/26/95 | <0.3                         | 0.5             | 0.7                       | <0.5                     | <50                        | <1,000                   | <1,000                            | <1,000                     | <5,000                      |
| SB-22       | 06/26/95 | <0.3                         | 0.6             | <0.3                      | <0.5                     | <50                        | <1,000                   | <1,000                            | <1,000                     | <5,000                      |
| SB-23       | 06/26/95 | 0.5                          | <0.3            | 1.0                       | 2.8                      | 150                        | <2,500                   | <2,500                            | 3,900                      | 23,000                      |
| SB-24       | 06/26/95 | <0.3                         | 0.4             | <0.3                      | <0.5                     | <50                        | <1,000                   | <1,000                            | <1,000                     | 13,000                      |
| SB-25       | 06/26/95 | <0.3                         | <0.3            | <0.3                      | <0.5                     | <50                        | <1,000                   | <1,000                            | <1,000                     | 17,000                      |
| SB-26       | 06/26/95 | <0.6                         | <0.6            | <0,6                      | <1.0                     | <100                       | <1,000                   | <1,000                            | <1,000                     | <5,000                      |
| SB-27       | 06/26/95 | <0.3                         | <0.3            | <0.3                      | <0.5                     | <50                        | <1,000                   | <1,000                            | <1,000                     | 16,000                      |

# GROUNDWATER TECHNOLOGY, INC.

# TABLE 1 ADDENDUM 1 SOIL AND GROUNDWATER SAMPLING SOIL SAMPLE ANALYTICAL RESULTS GENERAL MOTORS CORPORATION WHITE TRUCK CENTER OAKLAND, CALIFORNIA

| Sample I.D.                                        | Date     | Benzene<br>Collected<br>mg/kg | Toluene<br>mg/kg | Ethyl-<br>benzene<br>mg/kg | Total<br>Xylenes<br>mg/kg | TPH as<br>gasoline<br>mg/kg | TPH as<br>diesel<br>mg/kg | TPH as<br>mineral spirits<br>mg/kg | TPH as<br>kerosene<br>mg/kg | TPH as<br>motor oil<br>mg/kg |
|----------------------------------------------------|----------|-------------------------------|------------------|----------------------------|---------------------------|-----------------------------|---------------------------|------------------------------------|-----------------------------|------------------------------|
| SB-20 *     SB-21     SB-22     SB-23 **     SB-27 | 06/26/95 | <0.10                         | <0.10            | 1.6                        | 17                        | <20                         | <200                      | 1400                               | <200                        | <2000                        |
|                                                    | 06/26/95 | <0.005                        | <0.005           | <0.005                     | <0.015                    | <1.0                        | <10                       | <10                                | <10                         | <100                         |
|                                                    | 06/26/95 | <0.005                        | <0.005           | <0.005                     | <0.015                    | <1.0                        | <10                       | <10                                | <10                         | <100                         |
|                                                    | 06/26/95 | <0.025                        | <b>0.042</b>     | <b>0.061</b>               | <b>0.32</b>               | <b>28</b>                   | <10000                    | <1000                              | <1000                       | <10000                       |
|                                                    | 06/26/95 | <0.005                        | <0.005           | <0.005                     | <0.015                    | <1.0                        | <200                      | <200                               | <200                        | <2000                        |

<sup>\*</sup> Indicates that the detection limit was raised due to high concentration of target analyte.

<sup>\*\*</sup> Indicates that the detection limit was raised due to matrix interference.



4080 Pike Lane Concard, CA 94520 (510) 685-7852 (800) 544-3422 Inside CA (800) 423-7143 Outside CA (510) 825-0720 FAX

July 17, 1995

Chris Desocio Groundwater Technology, Inc. 4057 Port Chicago Hwy. Concord, CA 94520

RE: GTEL Client ID:

042020136

Login Number:

C5060290

Project ID (number):

042020136,2010

Project ID (name):

GMC Trucking/8099 S. Coliseum Way, Oakland, CA

#### Dear Chris Desocio:

Enclosed please find the analytical results for the samples received by GTEL Environmental Laboratories, Inc. on 06/27/95 under Chain-of-Custody Number(s) 34059, 34060.

A formal Quality Assurance/Quality Control (QA/QC) program is maintained by GTEL, which is designed to meet or exceed the EPA requirements. Analytical work for this project met QA/QC criteria unless otherwise stated in the footnotes.

GTEL is certified by the Department of Health Service under Certification Number E1075.

If you have any questions regarding this analysis, or if we can be of further assistance, please call our Customer Service Representative.

Sincerely.

GTEL Environmental Laboratories, Inc.

Rashmi Shah

Laboratory Director

042020136

ANALYTICAL RESULTS

. Login Number:

C5060290

Project ID (name): GMC Trucking/8099 S. Coliseum Way, Oakland, CA

Project ID (number): 042020136.2010

Volatile Organics Method: EPA8020/15

Matrix: Aqueous

|                                                                 | 000000000000000000000000000000000000000                                                                         |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| GTFL Sample Number C5060290-01 C5060290-02 C5060290-03 C5060294 | 1211 A 2000 A |
| GTEL Sample Number C5060290-01 C5060290-02 C5060290-03 C5060290 | ACCOMPT #20000000                                                                                               |
|                                                                 | 200020200000                                                                                                    |
| FT (ent 10 S-18 S-19 S-20 S-                                    | COOK TOXXXXXX                                                                                                   |
| Client 10 SB-18 SB-19 SB-20 SF                                  | 200000000000000000000000000000000000000                                                                         |
|                                                                 |                                                                                                                 |
| Date Sampled 06/26/95 06/26/95 06/26/95 06/26/95                | 144.20.000                                                                                                      |
| Note Suitied Actions Actions                                    | <i>30</i>                                                                                                       |
| Date Spatished 07/07/95 07/03/95 07/03/95 07/03/95              | 1. 14 A. C.                                                                 |
| Date AnaTyzed 07/07/95 07/03/95 07/03/95 07/03                  | (18 <b>33)</b>                                                                                                  |
| 9000 (1.00),203                                                 | 300000000000000000000000000000000000000                                                                         |
| #13.4 F 4 100 100 100 100 1                                     |                                                                                                                 |
| UTUETOD FACEOF 1.UV 1.UV 1U.U                                   |                                                                                                                 |
|                                                                 |                                                                                                                 |

| Units                                  |              |                        |                  |                                              |
|----------------------------------------|--------------|------------------------|------------------|----------------------------------------------|
| ug/t                                   | < 0.3        | < 0.3                  | < 3.0            | < 0.3                                        |
| ug/L                                   | 8.1          | 0.3                    | < 3.0            | 0.5                                          |
| ug/L                                   | < 0.3        | < 0.3                  | 60.              | 0.7                                          |
| ug/L                                   | < 0.5        | < 0.5                  | 150              | < 0.5                                        |
| ug/L                                   | < 50.        | < 50.                  | < 500            | < 50.                                        |
| ************************************** | 80.2         | 83.2                   | 132.             | 94.8                                         |
|                                        | ug/L<br>ug/L | ug/L < 0.3<br>ug/L 8.1 | ug/L       < 0.3 | ug/L < 0.3 < 0.3 < 3.0<br>ug/L 8.1 0.3 < 3.0 |

#### Notes:

#### Ollution Factor:

Dilution factor indicates the adjustments made for sample dilution.

#### EPA8020/15:

"Test Methods for Evaluating Solid Waste. Physical/Chemical Methods", SW-846, Third Edition including promulgated Update 1. Gasoline Range Hydrocarbons (TPH) quantitated by GC/FID with purge and trap. Acceptability limits for recovery in the Bromofluorobenzene (BFB) surrogate is 62-129%.

#### C5060290-03:

Detection limit raised due to high levels of hydrocarbons. Hydrocarbon pattern not charateric of gasoline.

GTEL Concord, CA C5060290:1



042020136

ANALYTICAL RESULTS

Login Number:

C5060290

Project ID (number): 042020136.2010

Project ID (name): GMC Trucking/8099 S. Coliseum Way, Oakland, CA

Volatile Organics Method: EPA8020/15

Matrix: Aqueous

| PTEL 6 3 18 1 6T (C) 200          | ne cenencon ne cenencon.nz cenencon.ne |
|-----------------------------------|----------------------------------------|
| GTEL Sample Number C5060290:      | -02 CX00530-00 CX00536-01 cxc00520-00  |
|                                   | .27 SB-23 SB-24 SB-25                  |
| Client ID SB-                     |                                        |
| · · · · · · · · · · · · · · · · · | 795 06/76/95 06/26/95 06/26/95         |
| Date Samoled 06/26/               | /95 06/26/95 06/26/95 06/26/95         |
|                                   | /05 07/06/05 07/07/95 07/06/95         |
| Date Analyzed 07/07/              | /95 07/06/95 07/07/95 07/06/95         |
| 9900000                           |                                        |
| Nilution Factor 1                 | 00 1.00 1.00 1.00                      |

| Reporting |                 |                                                 |                                                                                              |                                                                                     |                                                                                     |
|-----------|-----------------|-------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Limit     | Units           | Con                                             | centration:                                                                                  |                                                                                     |                                                                                     |
| 0.3       | ug/L            | < 0.3                                           | 0.5                                                                                          | < 0.3                                                                               | < 0.3                                                                               |
| 0.3       | ug/L            | 0.6                                             | < 0.3                                                                                        | 0.4                                                                                 | < 0.3                                                                               |
| 0.3       | ug/L            | < 0.3                                           | 1.0                                                                                          | < 0.3                                                                               | < 0.3                                                                               |
| 0.5       | ua/L            | < 0.5                                           | 2.8                                                                                          | < 0.5                                                                               | < 0.5                                                                               |
| 50        | ua/L            | < 50∶                                           | 150                                                                                          | < 50.                                                                               | < 50.                                                                               |
|           | economico.<br>¥ | 79.7                                            | 109.                                                                                         | 120.                                                                                | 109.                                                                                |
|           |                 | Limit Units 0.3 ug/L 0.3 ug/L 0.3 ug/L 0.5 ug/L | Limit Units Con  0.3 ug/L < 0.3  0.3 ug/L 0.6  0.3 ug/L < 0.3  0.5 ug/L < 0.5  50. ug/L < 50 | Limit         Units         Concentration:           0.3         ug/L         < 0.3 | Limit         Units         Concentration:           0:3         ug/L         < 0.3 |

#### Notes:

#### Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

#### EPA8020/15:

"Test Methods for Evaluating Solid Waste. Physical/Chemical Methods", SW-846. Third Edition including promulgated Update 1. Gasoline Range Hydrocarbons (TPH) quantitated by GC/FID with purge and trap. Acceptability limits for recovery iπ the Bromofluorobenzene (SFB) surrogate is 62-129%.

#### C5060290-08:

Uncategorized compound is not included in gasoline concentration.

GTEL Concord, CA C5060290:2



042020136

ANALYTICAL RESULTS

Login Number:

C5060290

Project ID (number): 042020136.2010

Project ID (name): GMC Trucking/8099 S. Coliseum Way, Oakland, CA

Volatile Organics Method: EPA8020/15

Matrix: Aqueous

| GTEL Sample Number C5060290-09 C5060290-15 C5060 | ANDEONOCOGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOGOG |
|--------------------------------------------------|----------------------------------------------|
|                                                  |                                              |
|                                                  |                                              |
|                                                  |                                              |
|                                                  |                                              |
|                                                  |                                              |
|                                                  |                                              |
|                                                  |                                              |
|                                                  |                                              |
| Client ID 58:25 SB:27 TRIP                       |                                              |
|                                                  |                                              |
|                                                  |                                              |
|                                                  |                                              |
|                                                  |                                              |
|                                                  |                                              |
| Date Sampled 06/26/95 06/26/95 06                |                                              |
|                                                  |                                              |
|                                                  |                                              |
|                                                  |                                              |
|                                                  |                                              |
| Date Analyzed 07/03/95 07/07/95 07               |                                              |
|                                                  |                                              |
|                                                  |                                              |
|                                                  |                                              |
|                                                  |                                              |
| Dilution Factor 2.00 1.00                        | <br>***************************************  |
|                                                  | <br>                                         |
|                                                  |                                              |

| <br> | ing |
|------|-----|

| Analyte         | Limit | Units    | Car   | ncentration: |               |    |
|-----------------|-------|----------|-------|--------------|---------------|----|
| Benzene         | 0.3   | ug/L     | < 0.6 | < 0.3        | < 0.3         |    |
| Toluene         | 0.3   | ug/L     | < 0.6 | < 0.3        | < 0.3         |    |
| Ethylbenzene    | 0.3   | ug/L     | < 0.6 | < 0.3        | < 0.3         |    |
| Xylenes (total) | 0.5   | ug/L     | < 1.0 | < 0.5<br>>50 | < U.5         |    |
| TPH as GAS      | 50.   | ug/L     | < 100 | <:50.        | < 30.<br>Ω5 Λ | •• |
| BFB (Surrogate) |       | <u> </u> | 90.1  | 54.2         | 03.0          |    |

#### Notes:

#### Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

#### EPA8020/15:

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition including promulgated Update 1. Gasoline Range Hydrocarcons (TPH) quantitated by GC/FID with purge and trap. Acceptability limits for recovery in the Bromofluorobenzene (BFB) surrogate is 62-129%.

#### C5060290-09:

Detection limit raised due to low sample volume.

GTEL Concord, CA C5060290:3



042020136

ANALYTICAL RESULTS

Login Number:

C5060290

Project ID (number): 042020136.2010

Project ID (name): GMC Trucking/8099 S. Coliseum Way, Oakland, CA

Volatile Organics Method: EPA8020/15

Matrix: Solids

|                                                               | <del>-</del> |
|---------------------------------------------------------------|--------------|
| ######################################                        | 68           |
| GTEL Sample Number                                            | 28.          |
|                                                               | 33 <u>.</u>  |
| Client ID SB-20 (SOIL) SB-21 (SOIL) SB-22 (SOIL) SB-23 (SOIL) | <b>98</b>    |
| CHICA TO TO TO TO TO TO TO THE                                | <b>88</b>    |
| Date Sampled 06/26/95 06/26/95 06/26/95 06/25/95              | 33           |
| DSE6 2980 160 00/50/32 00/50/32 00/50/33                      | 26           |
| and a set a 2010 to 5                                         | <b>.</b>     |
| Date Analyzed 07/08/95 07/04/95 07/04/95 07/05/95             | 200          |
| Date rate: 1200                                               | 33           |
| Fig. 17 F ± 20 0 1 00 1 00 5 00                               | 88 ·         |
| UT UTION PACEOR 20.00 1.00 1.00 2.00                          | <u>~~</u>    |

|                 | Reporting |       |        |                    |              |         |
|-----------------|-----------|-------|--------|--------------------|--------------|---------|
| Analyte         | Limit     | Units | Co     | oncentration:Wet W | <u>eight</u> |         |
| Benzene         | 0.005     | mg/kg | < 0.10 | < 0.005            | < 0.005      | < 0.025 |
| Toluene         | 0.005     | mg/kg | < 0.10 | < 0.005            | < 0.005      | 0.042   |
| Ethylbenzene    | 0.005     | mg/kg | 1.6    | < 0.005            | < 0.005      | 0.061   |
| Xylenes (total) | 0.015     | mg/kg | 17.    | < 0.015            | < 0.015      | 0.32    |
| TPH as GAS      | 1.0       | mg/kg | < 20.  | < 1.0              | < 1.0        | 28.     |
| BFB (Surrogate) |           | ¥     | 120.   | 77.3               | 102.         | 102.    |

#### Notes:

#### Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

#### EPA8020/15:

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846. Third Edition including promulgated Update 1. Modification for TPH as gasoline as per California State Water Resources Board LUFT Manual protocols, May 1988 revision. Acceptability limits for recovery in the Bromofluorobenzene (BFB) surrogate is 60-119%.

GTEL Concord. CA C5060290:1



042020136

ANALYTICAL RESULTS

Login Number:

C5060290

Project ID (number): 042020136.2010

Project ID (name): GMC Trucking/8099 5. Coliseum Way, Oakland, CA

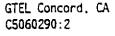
Volatile Organics Method: EPA8020/15

Matrix:

Solids

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE WAR PROPERTY.                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /00/00/00/00/00/00 (CO                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | geroteoteogeooge                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200.000.000.000                         |
| GTEL Sample Number C5060290-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /00010000000000                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 655055555555555                         |
| AND THE PROPERTY OF THE PROPER | **************************************  |
| Client ID SB-27 (SOIL) :- :-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 400000000000000000000000000000000000000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,0000000000000000000                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,000,000,000,000,000                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **********                              |
| Date Sampled 06/25/95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /000000000000000000                     |
| 1)A  P \AIT  PI \ UU(LU) 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 65000000000000000000000000000000000000  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200.00000000000000000000000000000000000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 400,00000000000000000000000000000000000 |
| Date AnaTyzed 07/04/95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200000000000000000000000000000000000000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A0040000000000000000000000000000000000  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30703030303030303                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200000000000000000000000000000000000000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***********                             |
| 11 111 1011 F4CLUI 1.VV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 900000000000000000000000000000000000000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |

| Analyte Limit Units Concentration:Wet Weight  Renzene 0:005 mg/kg < 0.005 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Benzene 0:005 mg/kg < 0.005                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Toluene 0.005 mg/kg < 0.005                                               | <br>***********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ethylbenzene 0:005 mg/kg < 0:005                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $v_{\text{long}}$ (total) 0.015 mg/kg < 0.015                             | • •<br>conservations ended to the second to the |
| TPH as GAS 1:0 mg/kg < 1.0                                                | # <b>#</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8FB (Surrogate) % 97.9                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |


#### Notes:

#### Dilution Factor:

Oflution factor indicates the adjustments made for sample dilution.

#### EPA8020/15:

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition including promulgated Lodate 1. Modification for TPH as gasoline as per California State Water Resources Board LUFT Manual protocols. May 1988 revision. Acceptability limits for recovery in the Bromofluorobenzene (BFB) surrogate is 60-119%.





042020136

QUALITY CONTROL RESULTS

Login Number:

C5060290

Project ID (number): 042020136.2010

Project ID (name): 042020156.2010

Project ID (name): GMC Trucking/8099 S. Coliseum Way, Oakland. CA

Volatile Organics Method: EPA8020/15

Matrix: Aqueous

### Method Blank Results

QC Batch No:

M070395-1

Date Analyzed.

03-JUL-95

|                 | Date Analyzed: | 03-JUL-95         |                                          |
|-----------------|----------------|-------------------|------------------------------------------|
| Analyte         |                | Method:EPA8020/15 | Concentration: ug/L                      |
| Benzene         |                | < 0.30            |                                          |
| Toluene         |                | ~ n an            | VA-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 |
| Ethylbenzene    |                | < 0.30            |                                          |
| Xylenes (Total) |                | < 0.50            |                                          |
| TPH as Gasoline |                | < 50.0            |                                          |

Notes:



042020136

QUALITY CONTROL RESULTS

Login Number:

C5060290

Project ID (number): 042020136.2010 Project ID (name): GMC Trucking/8099 S. Coliseum Way, Oakland, CA **Volatile Organics** 

Method: EPA8020/15

Matrix: Solids

### Method Blank Results

QC Batch No:

F070495-1

Date Analyzed:

04-JUL-95

|                 | Date Analyzed: | U4-JUE-95          |                      |
|-----------------|----------------|--------------------|----------------------|
| Analyte         |                | Method: EPA8020/15 | Concentration: mg/kg |
| Benzene         |                | < 0.0050           |                      |
| Toluene         |                | < 0.0050           |                      |
| Ethylbenzene    |                | < 0.0050           |                      |
| Xylenes (Total) |                | < 0.015            |                      |
| TPH as Gasoline |                | < 1.0              |                      |

Notes:



Client Number: 042020136 Project ID: GMC Trucking 8099 S. Coliseum Way

Oakland, CA Work Order Number: C5-06-0290

## ANALYTICAL RESULTS

# Hydrocarbons in Water

| GTEL Sample Number           |                          | 01 <sup>f</sup> | 029         | PE0      | 04 <sup>f</sup> |
|------------------------------|--------------------------|-----------------|-------------|----------|-----------------|
| Client Identification        |                          | SB-18           | SB-19       | S8-20    | SB-21           |
| Date Sampled                 |                          | 06/26/95        | 06/26/95    | 06/26/95 | 06/26/95        |
| Date Extracted               |                          | 06/28/95        | 06/28/95    | 06/28/95 | 06/28/95        |
| Date Analyzed                |                          | 07/10/95        | 07/18/95    | 07/18/95 | 07/15/95        |
| Analyte                      | Detection<br>Limit, ug/L |                 | Concentrati | on, ug/L |                 |
| TPH as gasolineb             | 50                       | <1000           | <2500       | <2500    | <1000           |
| TPH as mineral spirits       | 50                       | < 1000          | <2500       | 520000   | <1000           |
| TPH as kerosene              | 50                       | <1000           | <2500       | <2500    | <1000           |
| TPH as diesel fuel           | 50                       | <1000           | <2500       | <2500    | <1000           |
| TPH as motor oil             | 250                      | <5000           | 44000       | 170000   | <5000           |
| Detection Limit Multiplier   |                          | 20              | 50          | 50       | 20              |
| O-Terphenyl surrogate, % rec | overy                    | 72.1            | 101         | 142      | 152             |

- Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, USEPA, November, 1986. O-Terphenyl surrogate acceptability limits are 50-150%.
- Quantitation uncertain due to analyte losses during extraction and chromatographic interference by the solvent
- Results taken from multiple dilutions.
- f. Detection limit raised due to matrix interference.
- Detection limit raised due to high concentration of target analytes. g.



Client Number: 042020136
Project ID: GMC Trucking
8099 S. Coliseum Way
Oakland, CA
Work Order Number: C5-06-0290

## ANALYTICAL RESULTS

# Hydrocarbons in Water

| GTEL Sample Number           |                          | 05 <sup>f</sup> | 069         | 079      | 089      |
|------------------------------|--------------------------|-----------------|-------------|----------|----------|
| Client Identification        |                          | \$8-22          | \$B-23      | SB-24    | \$B-25   |
| Date Sampled                 |                          | 06/26/95        | 06/26/95    | 06/26/95 | 06/26/95 |
| Date Extracted               |                          | 06/28/95        | 06/28/95    | 06/28/95 | 06/28/95 |
| Date Analyzed                |                          | 07/18/95        | 07/15/95    | 07/18/95 | 07/18/95 |
| Analyte                      | Detection<br>Limit, ug/L |                 | Concentrati | on, ug/L |          |
| TPH as gasoline <sup>b</sup> | 50                       | <1000           | <2500       | <1000    | <1000    |
| TPH as mineral spirits       | 50                       | < 1000          | <2500       | <1000    | <1000    |
| TPH as kerosene              | 50                       | <1000           | 3900        | <1000    | <1000    |
| TPH as diesel fuel           | 50                       | <1000           | <2500       | <1000    | <1000    |
| TPH as motor oil             | 250                      | <5000           | 23000       | 13000    | 17000    |
| Detection Limit Multiplier   |                          | 20              | 50          | 20       | 20       |
| O-Terphenyl surrogate, % rec | overv                    | 103             | 109         | 50.5     | 54.3     |

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, USEPA, November, 1986. O-Terphenyl surrogate acceptability limits are 50-150%.



Quantitation uncertain due to analyte losses during extraction and chromatographic interference by the solvent b.

Detection limit raised due to matrix interference. f.

Detection limit raised due to high concentration of target analytes. g.

Client Number: 042020136 Project ID: GMC Trucking 8099 S. Coliseum Way Oakland, CA

Work Order Number: C5-06-0290

## ANALYTICAL RESULTS

# Hydrocarbons in Water

| GTEL Sample Number           |                          | <sub>09</sub> d,f | 159         | GCK<br>070895   |  |
|------------------------------|--------------------------|-------------------|-------------|-----------------|--|
| Client Identification        |                          | \$B-26            | SB-27       | METHOD<br>BLANK |  |
| Date Sampled                 |                          | 06/26/95          | 06/26/95    | -               |  |
| Date Extracted               |                          | 06/28/95          | 06/28/95    | 06/28/95        |  |
| Date Analyzed                |                          | 07/18/95          | 07/18/95    | 07/08/95        |  |
| Analyte                      | Detection<br>Limit, ug/L |                   | Concentrati | on, ug/L        |  |
| TPH as gasolineb             | 50                       | <1000             | <1000       | <50             |  |
| TPH as mineral spirits       | 50                       | < 1000            | <1000       | <50             |  |
| TPH as kerosene              | 50                       | <1000             | <1000       | <50             |  |
| TPH as diesel fuel           | 50                       | <1000             | <1000       | <50             |  |
| TPH as motor oil             | 250                      | <5000             | 16000       | <250            |  |
| Detection Limit Multiplier   |                          | 20                | 20          | 1               |  |
| O-Terphenyl surrogate, % red | covery                   | 14.0              | 180e        | 124             |  |

- Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, USEPA, November, 1986. O-Terphenyl surrogate acceptability limits are 50-150%.
- Quantitation uncertain due to analyte losses during extraction and chromatographic interference by the solvent b. peak.
- Estimated concentration due to low surrogate recovery; insufficient sample available for re-extraction. d.
- Surrogate recovery is less than upper control limit due to target compound interference. a.
- Detection limit raised due to matrix interference. f.
- Detection limit raised due to high concentration of target analytes. g.



Client Number: 042020136 Project ID: GMC Trucking 8099 S. Coliseum Way

Oakland, CA Work Order Number: C5-06-0290

## ANALYTICAL RESULTS

## Hydrocarbons in Soil

Method: GC-FIDa

|                               |                              |          |              |          | 1               |
|-------------------------------|------------------------------|----------|--------------|----------|-----------------|
| GTEL Sample Number            |                              | 109      | 11           | 12       | 13 <sup>f</sup> |
| Client Identification         |                              | SB-20    | \$B-21       | SB-22    | SB-23           |
| Date Sampled                  |                              | 06/26/95 | 06/26/95     | 06/26/95 | 06/26/95        |
| Date Extracted                |                              | 06/28/95 | 06/28/95     | 06/28/95 | 06/28/95        |
| Date Analyzed                 |                              | 07/15/95 | 07/11/95     | 07/11/95 | 07/18/95        |
| Analyte                       | Detection<br>Limit,<br>mg/Kg |          | Concentratio | n, mg/Kg |                 |
| TPH as gasolineb              | 10                           | <200     | <10          | <10      | <1000           |
| TPH as mineral spirits        | 10                           | 1400     | <10          | <10      | < 1000          |
| TPH as kerosene               | 10                           | <200     | <10          | <10      | < 1000          |
| TPH as diesel fuel            | 10                           | <200     | <10          | <10      | <1000           |
| TPH as motor oil              | 100                          | <2000    | < 100        | <100     | <10000          |
| Detection Limit Multiplier    |                              | 20       | 1            | 11       | 100             |
| O-Terphenyl surrogate, % reco | very                         | 119      | 61.5         | 78.5     | 108             |

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, USEPA, November, 1986. Results reported on a wet weight basis. O-Terphenyl surrogate acceptability limits are 50-150%.



All and a second

Quantitation uncertain due to analyte losses during extraction and chromatographic interference by the solvent b.

Detection limit raised due to matrix interference. f.

Detection limit raised due to high concentration of target analytes. g.

Client Number: 042020136 Project ID: GMC Trucking 8099 S. Coliseum Way Oakland, CA Work Order Number: C5-06-0290

## ANALYTICAL RESULTS

Hydrocarbons in Soil

| GTEL Sample Number            |                              | 14 <sup>f</sup> | GCJ<br>062995   |          |          |
|-------------------------------|------------------------------|-----------------|-----------------|----------|----------|
| Client Identification         |                              | SB-27           | METHOD<br>BLANK |          |          |
| Date Sampled                  |                              | 06/26/95        | _               |          |          |
| Date Extracted                |                              | 06/28/95        | 06/28/95        |          |          |
| Date Analyzed                 |                              | 07/12/95        | 06/29/95        |          |          |
| Analyte                       | Detection<br>Limit,<br>mg/Kg |                 | Concentratio    | n, mg/Kg |          |
| TPH as gasolineb              | 10                           | <200            | <10             |          |          |
| TPH as mineral spirits        | 10                           | <200            | <10             |          |          |
| TPH as kerosene               | 10                           | <200            | <10             |          |          |
| TPH as diesel fuel            | 10                           | <200            | <10             |          |          |
| TPH as motor oil              | 100                          | <2000           | <100            |          |          |
| Detection Limit Multiplier    |                              | 20              | 11              |          |          |
| O-Terphenyl surrogate, % reco | overy                        | 73.9            | 106             |          | <u> </u> |

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, USEPA, November, 1986. Results reported on a wet weight basis. O-Terphenyl surrogate acceptability limits are 50-150%.



Quantitation uncertain due to analyte losses during extraction and chromatographic interference by the solvent

Detection limit raised due to matrix interference.

|     | GTEL            |
|-----|-----------------|
| === | INVIDENTAL INC. |

4080 PIKE LANE, SUITE C CONCORD, CA 94520 (510) 685-7852 (800) 423-7143

# CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST

34059

| INVIDENTALISM                    |                                      | (800                                                                                                                                                                                                              | ) 42            | 3-71          | 43         |                |                    |                                        |                                              |             |           |          |              |          |                |          |                                           |                         |                              |                                       |                                         |                          | المنافع                 | W            | M                  | 818                         | 11                                 | <u> (U:</u>                          | 811              |                                           |                                              |                                                |                                                  |                                           |          |                                             | UI        | HEF |              |
|----------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|------------|----------------|--------------------|----------------------------------------|----------------------------------------------|-------------|-----------|----------|--------------|----------|----------------|----------|-------------------------------------------|-------------------------|------------------------------|---------------------------------------|-----------------------------------------|--------------------------|-------------------------|--------------|--------------------|-----------------------------|------------------------------------|--------------------------------------|------------------|-------------------------------------------|----------------------------------------------|------------------------------------------------|--------------------------------------------------|-------------------------------------------|----------|---------------------------------------------|-----------|-----|--------------|
| Company Name:                    |                                      |                                                                                                                                                                                                                   |                 |               | Ph         | one            | #:                 | $\mathcal{L}_{i}$                      | ()                                           | $\delta E$  | 7,        | . :      | Ä,           | 7        |                | 144.9E   | Ep. 5                                     |                         |                              |                                       |                                         | A\                       |                         | المحجيدة     |                    |                             | 78                                 | 4-4597                               |                  | - 1                                       | D.                                           |                                                |                                                  |                                           |          | $\neg \Gamma$                               | T         |     |              |
| Company Address                  | WINTER T                             | Fe                                                                                                                                                                                                                | 11              |               | F/<br>Si   | \X #:<br>te Lc | cati               | ion:                                   |                                              | <del></del> |           | <u>:</u> |              |          |                |          | BTEX/Gas Hydrocarbons PID/FID-C with MTBE | ☐ Diesel ☐ Screen*Z     | 4                            | О                                     |                                         |                          |                         |              |                    |                             |                                    | П                                    |                  | □ <sub>S</sub>                            | TCLP Metals 🗆 VOA 🗀 Semi-VOA 🖰 Pest 🗔 Herb 🗀 | EPA Metals - Priority Pollutant 🗆 TAL 🗀 RCRA 🔾 |                                                  | Load 239.2 □ 200.7 □ 7420 □ 7421 □ 6010 □ |          |                                             |           |     |              |
| 4057 Pa                          | AT CHICA                             | 1.6.1                                                                                                                                                                                                             | ŗ.              | thu           | إبار       | (              | 1<br>177           | 1.11                                   | <u>.                                    </u> | 1)          | /         | . 1      | A K          | (i)!     | <u>///&gt;</u> |          | T.                                        | Sci                     |                              | 503                                   |                                         |                          |                         |              | !                  | Ì                           |                                    | .25)                                 | -                | gg                                        | Pes                                          | ij                                             | -                                                | Ü                                         |          | Ţ                                           |           |     |              |
| Project Manager:                 |                                      | ·                                                                                                                                                                                                                 |                 |               | ,CI        | ient           | Proj<br>~          | ject                                   | D:  <br> //                                  | ۳,          | /         |          |              |          |                | O        | ÿ                                         | esel                    |                              | SM                                    |                                         |                          |                         |              |                    |                             | +) SB                              | es (+                                |                  | Ten                                       | Q<br>U                                       | Ĭ.                                             |                                                  | 7421                                      |          | acilvii<br>acilvii                          |           |     |              |
| Chris                            | bocco                                |                                                                                                                                                                                                                   |                 |               | <u>_(N</u> | AME            | ) <u>C</u>         | :::::::::::::::::::::::::::::::::::::: | · 11                                         | rini)       | <u></u>   | ,        | •            |          |                | MTBE     | E O                                       |                         | [S                           | 3.2                                   | !                                       | [ 4                      |                         |              |                    | 훈                           | Z                                  | Ž                                    | į                | S S                                       | ><br>Ē                                       | ant                                            | 밌                                                |                                           |          | 8                                           | ĺ         |     | 1            |
| I attest that the pro-           | per field sampling<br>sed during the |                                                                                                                                                                                                                   |                 |               |            | ampi           | êt iz              | 481111                                 | <del>2</del> (F                              | 1811)<br>[] | •         |          |              |          |                | Ë        | ls P                                      | Gas                     | Įğ                           | 14.                                   | 3 0                                     | %                        | , D                     | l۵           | 0                  | 83                          | ŢĀĹ                                | TAL                                  |                  | ţicid                                     | S                                            | ollu.                                          | Ĕ                                                | 745                                       | 1        | ٢                                           | -         |     | 1            |
| collection of these              | samples.                             | Phone #: AP 67  Phone #: AP 67  Phone #: AP 67  Site Location:  Client Project ID: (#) /  Client Project ID: (#) /  Client Sampling Sampler Name (Print):  d during the imples.  Phone #: AP 67  FINAL PROJECT PA |                 |               |            |                |                    |                                        |                                              |             | <u>/)</u> | : :<br>  | 1 !          | <u>`</u> |                | Ι₫       | - Page                                    | i<br>E                  | S                            | =                                     | . S                                     | <sup>6</sup>             | 502                     | 95           | 8                  | ď                           | 2407                               | 270/                                 |                  | Pes                                       | OAC                                          | J. F                                           | ğ                                                | 7                                         | 1        | e                                           | Ì         |     |              |
|                                  |                                      | 1 1                                                                                                                                                                                                               |                 | Mati          |            |                |                    | I.                                     | reti                                         | 10d<br>rve  |           |          | Sa           | mp       | ling           | 8020     | Varoc                                     | Hydrocarbons GC/FID Gas | Hydrocarbon Profile (SIMDIS) | Oil and Grease 413.1 □ 413.2 □ SM-503 | TPH/IR 418.1 □ SM 503 □                 | FDB by 504 T DBCP by 504 | EPA 503.1 □ EPA 502.2 □ | EPA 8        | EPA 602   EPA 8020 | EPA 608 🗌 8080 🗆 PCB only 🗔 | EPA 624/PPL - 8240/TAL - NBS (+15) | EPA 625/PPL 🗆 8270/TAL 🗋 NBS (+25) 🗅 | EPA 610 🗆 8310 🗀 | EP TOX Metals 🗌 Pesticides 🖟 Herbicides 🖰 | ۷ 🗅                                          | . Prio                                         | CAM Metats TTLC ☐ STLC ☐                         | 20                                        |          | Corrosivity [] Flash Point [] Reactivity [] |           |     |              |
| Field                            | GTEL<br>Lab#                         | # CONTAINERS                                                                                                                                                                                                      | $\top$          | T             | <u>;</u>   |                |                    |                                        |                                              |             |           |          |              |          |                | D        | as H                                      | l of                    | 5                            | Grea                                  | 418                                     | 504                      | 3.1                     | Ē            |                    | 8                           | 4/PP                               | 5/6                                  | 0                | Şĕ                                        | Aetal                                        | etals                                          | ğ                                                | 39.2                                      | S, C     | N N                                         |           |     |              |
| Sample<br>ID                     |                                      | <u>\$</u>   9                                                                                                                                                                                                     | ŗ,              |               |            | ( <u></u>      | 1                  | 2                                      | ŏ                                            | ΩE          | ÄΩ        | ሞ<br>ሞ ፭ | កែ           |          | កា             | BTEX 602 | XVG                                       |                         | 5                            | 908                                   | ¥ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | 1 20                     | A 50                    | A            | A                  | ¥ 60                        | A 62                               | A 62                                 | A 61             | P                                         | 9                                            | M A                                            | \$                                               | ad 2                                      | gan      | 7108                                        |           |     |              |
|                                  | (Lab Use)<br>only                    | Ö 3                                                                                                                                                                                                               | SOIL            | A H           | SC 8       | ОТНЕЯ          | 茊                  | E<br>O<br>N<br>I                       | H <sub>2</sub> SO <sub>4</sub>               | 빌           | 35        | ₽ŝ       | OATE         |          | TIME           | <u> </u> | E L                                       | Î                       | Í                            | Ò                                     | <u> </u>                                | [                        | 3 6                     | 묘            | <u> </u>           | ш                           | <u> </u>                           | 급                                    | Εğ               | ä                                         | 1                                            | ü                                              | 3                                                | 2                                         | <u> </u> | 4                                           | -         |     | +            |
| SB-18                            | 01                                   | 2                                                                                                                                                                                                                 | $\langle      $ |               | _ _        | _              | X                  |                                        |                                              | _           | ΧĮ        |          | 6/2          | 6        |                | ļ        | X                                         | ΊX                      | . _                          | <u> </u>                              | _                                       | -                        |                         | ļ            |                    | <u> </u>                    | _                                  |                                      |                  |                                           |                                              |                                                |                                                  |                                           |          | $\dashv$                                    |           | - - |              |
| SB-19                            | _02_                                 | 3                                                                                                                                                                                                                 |                 |               |            |                | _                  |                                        |                                              |             | Ц         |          | \            |          |                | -        | .   _                                     | 11                      | -                            | -                                     | -                                       | - -                      | +                       |              | <b>├</b>           | _                           |                                    | -                                    |                  |                                           | _                                            |                                                | }                                                |                                           | $\dashv$ | +                                           |           |     | +            |
| SB-19<br>5B-20                   | 03_                                  | 3                                                                                                                                                                                                                 |                 |               |            |                |                    |                                        |                                              |             |           |          |              |          |                |          | 1.1                                       | _ _                     | 4_                           | <del> </del>                          | - -                                     |                          | -                       | -            | ļ.—                |                             | _                                  |                                      |                  |                                           |                                              |                                                | _                                                |                                           |          | $\dashv$                                    | -         | - - |              |
| 5B-2-1                           | 04                                   | 3 3                                                                                                                                                                                                               |                 | $\sqcup$      | _ _        |                |                    | _                                      |                                              |             | Ц         |          |              | _        |                | -        | $\downarrow \downarrow$                   | 11                      | 1-                           | - -                                   | -                                       | _                        | -                       | <del> </del> | -                  | <u> </u>                    | -                                  | <del> </del>                         |                  | -                                         |                                              |                                                |                                                  | _                                         | $\vdash$ | $\dashv$                                    | 十         |     | +            |
| 5B - 21<br>5B - 22               | <i>0</i> 5 ~                         | 311                                                                                                                                                                                                               |                 | 1_1           | _ _        |                | _\                 |                                        |                                              |             |           |          |              |          |                | -        | - -                                       |                         | \  <u> </u>                  | - -                                   |                                         |                          |                         | -            |                    |                             |                                    |                                      | _                |                                           | —                                            |                                                |                                                  |                                           |          |                                             | $\dashv$  |     | -            |
| 56-23<br>56-24<br>56-25<br>58-26 | 06_                                  | 333                                                                                                                                                                                                               | 1               |               |            | 1              | $\perp$            |                                        | <u> </u>                                     |             | -         |          | _            |          |                | .        | - - -                                     |                         |                              | - -                                   | - -                                     | -                        | -                       | -            | ╄                  | <del> </del> -              | <b> </b>                           |                                      | -                |                                           | -                                            |                                                |                                                  | -                                         |          | -                                           | +         | ╅   | +            |
| 56-24                            | 07                                   | 3                                                                                                                                                                                                                 | - -             | _             | _ _        | _ '            |                    |                                        |                                              |             | - -       |          |              |          |                | -        | -  -                                      |                         | ][_                          |                                       |                                         | - -                      | -  -                    | -            | ┼-                 | <del> </del> —              | -                                  | -                                    |                  | -                                         |                                              |                                                | <del> </del>                                     |                                           |          | -                                           |           |     | -            |
| SB-25                            | 08                                   | <u> 3 </u>                                                                                                                                                                                                        |                 |               | -          | _              |                    |                                        |                                              | <del></del> | ٠,        |          |              |          |                | - -      | -  -                                      |                         | -                            | - -                                   | - -                                     | -                        |                         |              | ╁                  | ┡                           | ļ                                  | -                                    | -                | <del> </del>                              | _                                            | ╁                                              | -                                                |                                           | -        | _                                           | -         | +   | +-           |
| 5B - 26 1                        | 09                                   | 3 \                                                                                                                                                                                                               | 4               | $\perp \perp$ | -          | ļ.,            | $\underline{\psi}$ |                                        |                                              |             | Y         |          |              |          |                | -        | -  -                                      |                         | / -                          | -                                     | - -                                     | -                        |                         | <del>-</del> | -                  | ├—                          |                                    | $\vdash$                             |                  | -                                         | <u> </u> -                                   | ┼-                                             |                                                  | $\vdash$                                  |          | _                                           | +         |     |              |
| SB-20<br>SB-21                   | 10                                   | <u> </u>                                                                                                                                                                                                          | $ \lambda $     |               | 4          |                |                    |                                        |                                              |             | X         |          | <u> </u>     |          |                | -        | .  -                                      | -                       | <del> </del>   —             | +                                     |                                         | - -                      | - -                     | +            | ╁╾                 | ┨—                          | ╁─                                 | <del> </del>                         |                  | -                                         |                                              | ╁                                              |                                                  |                                           |          |                                             | +         | +   | +            |
| 50-21                            | · ()                                 |                                                                                                                                                                                                                   | X               |               | ·          | <u> </u>       |                    |                                        |                                              |             | Χ.        |          | _\           |          |                |          | Ψ                                         | _  <u> </u>             | 4_                           | Ц,                                    |                                         |                          | 3145                    | ┸            | <u> </u>           | ١.,                         | 1                                  | <u> </u>                             |                  | ا                                         | <u>L.</u>                                    | !                                              | <del>                                     </del> | •                                         | اـــــا  | 701                                         | 1 -       | !-  | <del>'</del> |
| TAT                              | Specia                               | I Han                                                                                                                                                                                                             | ıdlir           | ıg            |            |                | SPE                | CIA                                    | L DE                                         | TEC         | OTIC      | N L      | IMIT         | S        |                |          |                                           |                         |                              |                                       | HE                                      | MAH                      | (RS:                    | /            | 1Y160              | ent                         | of                                 | . /1<br>S.                           | C                | - f                                       | LY.                                          | $1t\mu$                                        | <i>t</i> -                                       | J.r                                       | \        | 10F                                         | 15<br>1 d |     |              |
|                                  | GTEL Contact Quote/Contract #        |                                                                                                                                                                                                                   |                 |               |            | -              |                    |                                        |                                              |             |           |          |              |          |                |          |                                           |                         |                              |                                       | (n                                      | હાત્                     | 20                      | -            | 1/                 | eą i                        | ۮ                                  | KC!                                  | ٦ <b>ر</b>       | 1.5                                       | . 1                                          | vr                                             | AC.                                              | h                                         | (a       | w                                           | LIA       |     |              |
| 7 Business Days                  | Confirmation # _                     |                                                                                                                                                                                                                   |                 |               |            | -              |                    |                                        |                                              |             |           |          |              |          |                |          |                                           |                         |                              |                                       | 12                                      | ak                       | <u> </u>                | 5            | 1. r               |                             | 20                                 | H1                                   | ,>مر             |                                           |                                              |                                                | _                                                |                                           |          |                                             |           |     |              |
| Other<br>Business Days D         | P.O. #                               |                                                                                                                                                                                                                   |                 |               |            | _  -           | SPE                | CIA                                    | . RE                                         | POF         | TIN       | IG P     | EOL          | JIRE     | MENT           | S        |                                           |                         |                              |                                       | Lab                                     | o Us                     | e Or                    | ly Lo        | ) <b> </b> #:      |                             |                                    |                                      |                  |                                           |                                              | ;                                              | Stora                                            | age (                                     | Loca     | ion                                         |           |     |              |
| Dosiness Days C.                 |                                      |                                                                                                                                                                                                                   |                 |               |            | $\exists$      |                    |                                        |                                              |             |           |          |              |          |                |          |                                           |                         |                              |                                       | 6                                       | _ •¹,                    | ξ.                      |              |                    |                             |                                    |                                      |                  |                                           |                                              | ł                                              | CF                                               | 2                                         |          |                                             |           |     |              |
| Blue CLP []                      | QA/QC Level Other []                 |                                                                                                                                                                                                                   |                 |               |            | _              | FAX                |                                        |                                              |             |           |          |              |          |                |          |                                           | :_                      |                              |                                       | Wo                                      |                          | Order                   |              |                    |                             |                                    |                                      |                  |                                           |                                              |                                                |                                                  |                                           |          |                                             |           |     |              |
|                                  | Relinguished                         | by Sa                                                                                                                                                                                                             | ampl            | ģr:           | -          |                |                    |                                        |                                              |             |           |          |              |          |                | Dat      | le                                        |                         | ١                            | Tin                                   |                                         |                          | Re                      | Pive         | d by               | <i>i</i>                    |                                    | گھس<br>پر مریب                       | 1                | 20                                        |                                              |                                                | ,                                                | 1                                         | ( 7      | 0 /                                         | 711       |     |              |
| CUSTODY                          | 1 Dud                                | <u>G A</u>                                                                                                                                                                                                        | -               | 1/            | 11-6       | 1.             |                    |                                        |                                              |             |           |          |              |          | <b> </b>       |          | 7                                         | (4)                     | 11.                          |                                       | <u>, /</u>                              | <u>40</u>                | XZ                      | 1/0          | ed by              | <i>y~</i>                   | × 6                                | . 0                                  | 16-2             | 4/3                                       | 1/20                                         | مدے م                                          |                                                  | <u> </u>                                  |          |                                             |           |     |              |
| RECORD                           |                                      | by:                                                                                                                                                                                                               | '               |               | į          |                |                    |                                        |                                              |             |           |          |              |          |                | Dal      | ie.                                       | ,<br>                   |                              | Tin                                   | ue                                      | ,                        | l ue                    | .eivt        | ru Dy              | •                           |                                    |                                      |                  |                                           |                                              |                                                |                                                  |                                           |          |                                             |           |     |              |
|                                  | Relinguished                         | l bv:                                                                                                                                                                                                             |                 |               |            |                |                    |                                        |                                              |             |           |          |              |          | 1-             | Dat      | le                                        |                         | l                            | Tin                                   | ne                                      |                          |                         |              | ed by              |                             |                                    |                                      |                  |                                           |                                              |                                                |                                                  |                                           |          |                                             |           |     | _            |
|                                  |                                      | CIDATUS 10000 Waybill # MONAGON DEMANAN                                                                                                                                                                           |                 |               |            |                |                    |                                        |                                              |             |           |          | :(; <u>)</u> | 11/      | 24)            | 11       | 17/                                       | 100                     | 2.11                         |                                       |                                         |                          |                         |              |                    |                             |                                    |                                      |                  |                                           |                                              |                                                |                                                  |                                           |          |                                             |           |     |              |

|   | GTEL                                |
|---|-------------------------------------|
| = | JATODING EIVOL<br>DWI EIIFOILOEIVAL |

4080 PIKE LANE, SUITE C CONCORD, CA 94520 (510) 685-7852 (800) 423-7143

# CHAIN-OF-CUSTODY RECORD<sup>†</sup> AND ANALYSIS REQUEST

34060

| FYSOSIDS INC                            |                                              | (800         | ) 42           | 3-71         | 143     |                  |                  |          |            |               |               |                   |             |              | 110      | U.         |                                             | 2.                                               | V: 73                                 |                                                                              |                          | A                   | MA             | 1                    | 8 8                  | iΕ          | QU):                                         | 8                |                                              |                                              | ,                                              |                 |                                           |              |                                                | U        | Lili          |    |  |  |
|-----------------------------------------|----------------------------------------------|--------------|----------------|--------------|---------|------------------|------------------|----------|------------|---------------|---------------|-------------------|-------------|--------------|----------|------------|---------------------------------------------|--------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------|--------------------------|---------------------|----------------|----------------------|----------------------|-------------|----------------------------------------------|------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------|-----------------|-------------------------------------------|--------------|------------------------------------------------|----------|---------------|----|--|--|
| Company Name:                           |                                              |              |                |              | Pl      | ione             | #: .             | Sic      | 2 6        | 77            | -             | 2                 | 38          | 7            | 232      | ت / در داد | 3 HJ                                        | 17.00                                            | in realization.                       |                                                                              |                          | ه د ده د بیشه       |                |                      |                      |             | 41.4.                                        |                  |                                              | П                                            | Ì                                              |                 | $\Box$                                    |              | Т                                              |          |               |    |  |  |
| C. GIT                                  | <u>.                                    </u> |              |                |              | F#      | XX #             | :                |          |            |               | L             |                   |             |              |          | l O        | \ci                                         |                                                  |                                       |                                                                              |                          | 1                   |                | ļ                    | 1                    |             | l                                            | ı                |                                              | e j                                          | υĮ                                             | 1               |                                           | 1            |                                                | - {      |               | 1  |  |  |
| Company Addres                          | S:                                           |              |                |              | Si      | te Lo            | ocat             |          |            |               |               |                   |             |              | 1        | 191        | ce e                                        |                                                  | IJ                                    |                                                                              |                          | l                   |                |                      |                      | ,,          |                                              |                  | Ö                                            | 힐                                            | A B                                            | İ               |                                           | ]            |                                                |          | İ             |    |  |  |
| 1405-7<br>Project Manager:              | ORT. CHIL                                    | .116         | 3              | 1/2          | A 31 A  | $-t_{\perp}^{T}$ | ON               | (0)      | 6 <u>D</u> | $\mathcal{L}$ | 01            | 130               | 17.1        | u\>          | 1        | Ę          | Sc                                          |                                                  | ဥ္တ                                   |                                                                              |                          |                     | 1              | ļ                    |                      | (S)         | 뛼                                            |                  | cigo                                         | Pes                                          | Ö                                              |                 |                                           |              | 및                                              | -        | ļ             |    |  |  |
| Project Manager:                        | _                                            |              |                | (            | اک      | ient             | Pro              | ect      | ID: (      | <b>/</b> /)   | 7             |                   |             |              | la       | ৰ্         | leg<br>Sel                                  |                                                  | SM                                    |                                                                              |                          |                     |                |                      |                      | +) 55       | 3(                                           |                  | ē                                            |                                              | ¥.                                             |                 | 121                                       |              | Clavel                                         |          |               |    |  |  |
| 1 Chris                                 | De Socio                                     |              |                |              | (N      | АМЕ              |                  |          |            |               |               | $\in$ $M^{\circ}$ |             |              |          |            | MTBE                                        |                                                  | ö                                     | Ö                                                                            | 2                        |                     | IJ             |                      |                      | j           | בֻ<br>ב                                      | () NBS (+15)     | 뮑                                            | -                                            | õ                                              | ١               | =                                         |              | Ö                                              | - 1      | Rea           | -  |  |  |
| I attest that the proprocedures were us | per field sampling                           |              |                |              |         |                  |                  |          | e (P       | rint):        |               |                   |             |              | Ε        | S PIC      | Ses                                         | SIQ!                                             | 413                                   | נו                                                                           | 52                       |                     | r=1            |                      | B onty               | AL          | 퓕                                            |                  | ğ                                            | Sen                                          | E S                                            | STC             | 7420                                      | }            | 5                                              | 1        |               |    |  |  |
| collection of these                     | samples. '                                   |              |                | 17           | 21E     | Œ,               | €.               | ]        | <u> 10</u> | 1/7           | € Y           |                   |             |              | <b>.</b> | E          | 9                                           | (S)                                              | 0                                     | SM 503 🗆                                                                     | ۳.<br>و                  | 502.                | 5              |                      | ä                    | 40/1        | 707                                          |                  | Pesti                                        | A                                            | ŭ<br>2                                         | S               | 뭐                                         |              | Pa                                             | -        |               |    |  |  |
|                                         |                                              |              | 1              | Mati         | rix     |                  |                  |          |            | od            |               |                   | Sam         | pling        | 8020     | Toca       | Hydrocarbons GC/FID Gas □ Diesel □ Screep-□ | Hydrocarbon Profile (SIMDIS)                     | Oil and Grease 413.1 🗀 413.2 🗀 SM-503 | S.                                                                           | EDB by 504 □ DBCP by 504 | 503.1 🗆 EPA 502.2 🗀 | EPA 8010       | EPA 602 🗆 EPA 8020 🗆 | EPA 608 □ 8080 □ PC8 | ☐ 8240/TAL  | EPA 625/PPL ☐ 8270/TAL (☐ NBS (+25) □        | EPA 610 🗆 8310 🗅 | EP TOX Metals [] Pesticides [] Herbicidos [] | TCLP Metals 🗆 VOA 🖂 Semi-VOA 🗇 Pest 🗇 Herb 🗇 | EPA Metals - Priority Pollutant ☐ TAL ☐ RCRA ☐ | CAM Metais TTLC | Lead 239.2 ☐ 200.7 ☐ 7420 ☐ 7421 ☐ 6010 ☐ |              | Corrosivity (_] Flash Point (_] Reactivity (_) |          |               |    |  |  |
| Field                                   | GTEL                                         | # CONTAINERS | -r             |              |         | <del>, -</del>   |                  | Pr       | ese        | rve           | <b>1</b>      | -                 |             | <u> </u>     | - []     | Ť          | Supp                                        | e co                                             | ease                                  | 1.0                                                                          | 8                        | ū                   |                | <u>ü</u>             |                      | PP          | 젍                                            | 8                | Weta                                         | tals (                                       | sls                                            | sis             |                                           | Organic Lead | 7 ≥                                            |          |               |    |  |  |
| Sample                                  | Lab #                                        | TA a         |                |              |         | or.              |                  |          | 4          |               | وال           | 5                 |             |              | 802      | Sga        | Scart                                       | ğ                                                | ā<br>G                                | Π.<br>4                                                                      | by 5                     | 503.                | 601            | 602                  | 809                  | 624/        | 625/                                         | 8                | ő                                            | ğ                                            | Met                                            | Σ               | 23                                        | ğ            | OSIV                                           |          |               |    |  |  |
| ID                                      | (Lab Use)<br>only                            | # CONT       | Soft           | AIR          | SLUDGE  | ОТНЕЯ            | 끚                | HNO3     | H2SO4      | i<br>i<br>i   |               |                   | DATE        | TIME         | STEX     | Ē          | , y d                                       | Į į                                              | E                                     | TPH/IR 418.1                                                                 | BC3                      | EPA                 | EPA            | EPA                  | EPA                  | EPA 624/PPL | EPA                                          | EPA              | EP 1                                         | 힏                                            | EPA                                            | 3               | ě                                         | ő            | ઉ                                              |          | ł             |    |  |  |
|                                         |                                              | 1            | -              | <del> </del> | S G     | -   -            | <u>.</u>         | <u></u>  |            |               | 7             |                   | 7 -         | ļ <i>-</i>   |          |            |                                             | <del> </del>                                     | ļŬ                                    | <u> </u>                                                                     | 1 <u> </u>               | _                   |                |                      |                      |             |                                              |                  |                                              |                                              |                                                |                 |                                           |              | $\exists$                                      |          |               | 1  |  |  |
| SB-22                                   |                                              | 1.           | ╁              |              |         | -                | +                |          |            |               | <del>\</del>  | -                 | 24          | <u></u>      | -        | 小大大人       | 1-()                                        |                                                  |                                       |                                                                              |                          |                     |                |                      |                      |             |                                              |                  |                                              |                                              |                                                |                 |                                           |              |                                                |          | _             |    |  |  |
| <u>5B-23</u>                            | 13                                           | 1            | - }            | ╁┼           |         | -                |                  | -        |            |               |               | - -               | $\parallel$ |              | -        | 13         | T                                           |                                                  |                                       |                                                                              |                          |                     |                |                      |                      |             |                                              |                  |                                              |                                              |                                                | -               | П                                         | _            | 一                                              | _        | 1             | +- |  |  |
| 3B-274                                  | 14                                           | <u> </u>     | ĮX.            |              | _ _     | -                | 1                |          |            |               |               | - -               | YK          |              | $\vdash$ | 1          | $\mathbb{R}$                                | -                                                | -                                     | <del> </del>                                                                 | <u> </u> -               |                     | -              |                      |                      |             |                                              |                  | $\mid \rightarrow \mid$                      |                                              |                                                |                 |                                           |              | $\dashv$                                       |          | _             |    |  |  |
| 50-77                                   | 15                                           | 3 1          | <del>} -</del> | ╀            | +       | -                | X                |          |            |               | $\leftarrow$  |                   | <b>∜</b> _  | <del> </del> |          |            | 1                                           | i—                                               | _                                     |                                                                              |                          | _                   | -              | <u> </u>             |                      |             |                                              |                  |                                              |                                              |                                                |                 |                                           |              |                                                | _        | _{            | +  |  |  |
| 5B-23<br>3B-27<br>5B-77<br>Flipblank    | 16                                           | 1 ×          | $\langle   -$  | -            |         | -                | 1                |          |            |               | ╌             |                   |             | <u> </u>     | -        | X          | 4                                           |                                                  |                                       |                                                                              |                          | ├                   | <b> </b>       | -                    |                      |             | -                                            |                  |                                              |                                              | $\vdash$                                       |                 |                                           | $\dashv$     |                                                |          | -             | -  |  |  |
| <u> </u>                                |                                              |              | -              |              | +       |                  | -                |          | -          | _             | <del>[</del>  |                   | +           | <b> </b>     | -        | -          | +                                           | <del>                                     </del> | -                                     | <del> </del>                                                                 |                          | ├                   | <del> </del>   |                      | -                    |             |                                              | -                | -                                            |                                              |                                                |                 |                                           |              |                                                | -        | 十             | +  |  |  |
| 50-24                                   |                                              | 3            | -              |              | _ -     | <u>-</u>         | -  -             |          |            |               | <del> </del>  |                   | _           | ·            | -        | ╁          | <del> </del>                                |                                                  | -                                     | <del> </del> -                                                               | -                        |                     |                |                      |                      |             |                                              |                  |                                              | - <b></b>                                    | -                                              |                 |                                           |              |                                                | $\dashv$ |               | -  |  |  |
| 56.25                                   | <u> </u>                                     |              | -              | $\Box$       | _ _     | -                | 1                |          |            |               | †<br>T.       |                   |             | .            | -}       | -  -       | -i                                          |                                                  | <del>-</del>                          | <del> </del>                                                                 |                          |                     |                | $\vdash$             |                      |             |                                              |                  | $\vdash$                                     |                                              |                                                |                 | $\square$                                 |              |                                                | 1        | _             | +- |  |  |
| 58 - 26                                 | ···                                          | 3            | 4_             | -            |         | <u> </u>         | <i>\lambda_i</i> |          |            |               |               |                   | -}          | ļ            | -        | #          |                                             | ļ                                                | <del> </del>                          | ┢                                                                            |                          |                     | <del> </del> — | <del> </del> —       |                      |             |                                              |                  |                                              |                                              |                                                |                 |                                           |              | $\dashv$                                       | 一        | -             | -  |  |  |
| 50 30                                   |                                              | <u> </u>     | <u> </u> x     |              | $\perp$ |                  |                  |          |            |               | -             | -                 |             | <del> </del> | -        | <u> </u>   | +                                           |                                                  | <del> </del>                          | <b>}</b> -                                                                   | <del> </del>             | $\vdash$            |                |                      | -                    |             | -                                            | -                | -                                            |                                              | -                                              |                 | -                                         |              |                                                |          | $\dashv$      | -  |  |  |
| 50-121                                  |                                              |              | 1              |              | •       |                  | L                | <u> </u> |            |               | $\Delta \Box$ |                   | 1/          | 1            | `        |            | <u> </u>                                    | <u> </u>                                         | ┸┰                                    | <u> </u>                                                                     | 10.13                    | <u> </u>            |                | <u> </u>             |                      |             |                                              |                  |                                              |                                              | <u>!</u>                                       |                 | <u></u>                                   |              | !                                              | !        | -!-           |    |  |  |
| TAT                                     | Special                                      | Han          | dlin           | g            |         | 1                | SPE              | CIA      | L. DE      | TEC           | 4OIT          | 4 LIM             | IITS        |              |          |            |                                             |                                                  |                                       | Ht.N                                                                         | AAR                      | KS:                 | 1              |                      |                      |             |                                              |                  | 2.4                                          |                                              |                                                |                 |                                           |              | , ,                                            |          |               |    |  |  |
|                                         | GTEL Contact<br>Quote/Contract #             |              |                |              |         | -                |                  |          |            |               |               |                   |             |              |          |            |                                             |                                                  | ı                                     |                                                                              |                          |                     |                |                      |                      | ű           | <u>,                                    </u> |                  |                                              |                                              |                                                |                 |                                           |              |                                                |          |               |    |  |  |
| 7 Business Days                         | Confirmation #                               |              |                |              |         | -                |                  |          |            |               |               |                   |             |              |          |            |                                             |                                                  | ŀ                                     |                                                                              |                          |                     |                |                      |                      |             |                                              |                  |                                              |                                              |                                                |                 |                                           |              |                                                |          |               |    |  |  |
| OtherBusiness Days                      | P.O. #                                       |              |                |              |         |                  | SPE              | CIA      | . RE       | POR           | TINC          | 3 RE              | QUIR        | EMENT        | S        |            |                                             |                                                  |                                       | Lab                                                                          | Use                      | Onl                 | y Lo           | t#:                  |                      |             |                                              | -                |                                              |                                              |                                                | Stora           | age l                                     | _oca         | lion                                           |          |               |    |  |  |
| Business Days Li                        | <del> </del>                                 |              |                |              |         | $\exists$        |                  |          |            |               |               |                   |             |              |          |            |                                             |                                                  |                                       |                                                                              |                          |                     |                |                      |                      |             |                                              |                  |                                              |                                              | -                                              | , (             | oF                                        | - 2          | <u>.</u>                                       |          |               |    |  |  |
| Blue [] CLP []                          | QA/QC Level                                  |              |                |              |         |                  |                  |          |            |               |               | 1                 | Wor         | rk Or        | der      | H;         | <u>~ l</u>                                  | $\preceq c$                                      | 26                                    | 50                                                                           | 7                        | 9                   | Ð              |                      | - '                  |             |                                              |                  |                                              |                                              | <u>-</u>                                       |                 |                                           |              |                                                |          |               |    |  |  |
| 5100 2                                  | Relinquished                                 | hy Sa        | ımnlı          | or:          | //      |                  |                  |          |            |               |               |                   |             |              | Dat      | e l        |                                             |                                                  |                                       | Work Order #: (5060790) Time Received by: Life FM 100m Ludyn Librare 6:10 FM |                          |                     |                |                      |                      |             |                                              |                  |                                              |                                              |                                                |                 |                                           |              |                                                |          |               |    |  |  |
| CUETODY                                 | //                                           | nid          |                |              | $V_{O}$ | uiff.            | <del>/</del>     |          |            |               |               |                   |             | -1/2         |          | 10         | H                                           | 1                                                | 210                                   | 201                                                                          | n                        |                     | W              | la                   | <u>u</u>             | n           | $\simeq$                                     | 21               | 134                                          | 24                                           | 1,0                                            |                 | _0                                        | 11/6         |                                                | 100      | <del></del> - |    |  |  |
| CUSTODY                                 | Relinquished                                 |              | ()             |              |         | 7-               |                  |          |            |               |               |                   |             |              | Dat      | q          | i                                           |                                                  | Time                                  | el                                                                           |                          | Rec                 | eive           | d by                 | 1                    |             |                                              |                  |                                              |                                              |                                                |                 |                                           |              |                                                |          |               |    |  |  |
| RECORD                                  |                                              |              |                |              |         |                  |                  |          |            |               |               |                   |             |              | Dat      |            |                                             |                                                  | Time                                  |                                                                              | -                        | Rec                 | oive:          | rl by                | Lah                  | niali       | JIV.                                         |                  |                                              |                                              |                                                |                 |                                           | -            |                                                |          |               |    |  |  |
| ,                                       | Relinquished                                 | Dy:          |                |              |         |                  |                  |          |            |               |               |                   |             | 12.13        | 5.7/     |            | 1                                           |                                                  | 3 Z                                   |                                                                              |                          |                     |                | -                    |                      |             |                                              | r/               | 1                                            | 1                                            | 2                                              | 130             | ورجريم                                    | جعدح         | -17                                            |          |               |    |  |  |
|                                         |                                              |              |                |              |         |                  |                  |          |            |               |               |                   |             |              | كنساسيد  |            |                                             |                                                  |                                       | ***************************************                                      |                          |                     |                | _                    |                      |             |                                              |                  |                                              |                                              |                                                |                 |                                           |              |                                                |          |               |    |  |  |