HAZMAT 93 NOV 22 PM 2: 19

No. CO40459

No. GE 000741

UNDERGROUND TANK REMOVAL AND GROUNDWATER INVESTIGATION 4055 HUBBARD STREET OAKLAND, CALIFORNIA SCI 609.001

Prepared for:

Ms. Marianne Robison Buttner Properties 600 West Grand Avenue Oakland, California 94612

By:

Jeriann N. Alexander

Civil Engineer 40469 (expires 3/31/95)

R. William Rudolph

Geotechnical Engineer 741 (expires 12/31/96)

Subsurface Consultants, Inc. 171 - 12th Street, Suite 201 Oakland, California 94607 (510) 268-0461

November 19, 1993

I INTRODUCTION

This report presents the results of environmental engineering services performed by Subsurface Consultants, Inc. (SCI) during underground tank removal and groundwater monitoring at 4055 Hubbard Street in Oakland, California. SCI was retained by Buttner Properties, the property owner, to 1) observe tank removal, 2) obtain samples as required by the Alameda County Health Care Services Agency (ACHCSA), 3) observe backfill placement and compaction, and 4) determine impacts to groundwater.

II TANK, PIPING, AND PUMP ISLAND REMOVAL

A. Tank 1

Cottle Engineering (CE) was retained by the property owner to perform tank removal activities in 1990. As shown on the Site Plan Plate 1, the tank area was situated along the west side of the 4055 Hubbard Street property. One diesel tank (Tank 1) was known to exist in this area.

The pump island was configured for two dispensers, however only one dispenser was present in 1990. The dispenser was connected to Tank 1. At the location for the second dispenser, only capped pipes were visible.

In July 1990, CE removed the diesel tank. Initially, approximately 200 gallons of residual product were removed from the tank. CE exposed the top of the tank and purged the tank of vapors

by adding dry ice. Mr. Dennis Byrne, a Hazardous Materials Specialist with the Alameda County Health Care Service Agency (ACHCSA), and Ms. Cathleen Myers, of the City of Oakland Fire Department (OFD) were on-site to observe tank removal activities. The tank and associated piping were transported from the site under manifest.

B. Tank 2

Due to the presence of a pipeline which was not connected to Tank 1, the contractor was directed to expose the pipeline. The pipeline was not connected to the dispenser, however, it was connected to a second tank situated south of the Tank 1 excavation as shown on Plate 1.

The second tank was removed from the site by CE, using the same protocol as outlined for Tank 1. Prior to tank removal, the tank contents were visually checked and it appeared that the tank contained water.

C. Conditions Observed During Tank Removal

No visible deterioration of the tanks nor pipelines was observed. However, soil above the tanks, around the fill inlets beneath the dispenser island, and at several pipeline joints was discolored (greenish gray) and possessed petroleum odors. In addition, the upper 2 to 3 feet of soil exposed in the excavation sidewalls was oil stained. Soil below the oil stained layer and at depth in the excavation did not appears discolored. Groundwater was observed in the excavation at a depth of 5 feet. A slight sheen was observed on the groundwater surface.

D. Excavation Backfilling

Soils generated during tank removal were stockpiled adjacent to the excavation area. Since the excavation was situated adjacent to the right-of-way, the excavation was temporarily backfilled with the excavated soil. Additional imported soil was brought to the site to bring the excavation up to grade.

E. Environmental Sampling and Analysis

Soil and groundwater samples were obtained following tank removal as directed by Mr. Byrne of the ACHCSA. A discussion of sampling procedures is presented in Appendix A. Soil and water samples were refrigerated until delivery to Curtis & Tompkins, Ltd., an analytical laboratory certified by the State of California Department of Health Services, for waste and water testing.

Nine soil samples were obtained from the sidewalls and bottom of the tank area excavation. One additional soil sample was obtained from about 8 inches below the dispenser island. Sample locations are shown on Plate 1. In addition, 2 groundwater samples were obtained from the tank pits. The samples were analyzed for the following:

- 1. Total extractable hydrocarbons (EPA 3550/8015 mod.),
- 2. Total oil and grease (SMWW 17:5520EF), and
- 3. Benzene, toluene, xylene, and ethylbenzene (EPA 5030/8020).

Additionally, four samples obtained from the excavated contaminated soil were composited into one sample and analyzed for the following:

- 1. Volatile Organics (EPA 5030/8240),
- 2. Semivolatile organics, including pesticides and PCBs (EPA 3550/8270), and
- 3. Title 26 Metals (EPA 600 and 7000 series).

The results of the analyses are summarized in Tables 1, 2 and 3.

Test reports and Chain-of-Custody documents are presented in Appendix B.

II SUPPLEMENTAL EXCAVATION

A. General

In November 1992, Bay Area Tank and Marine (BATM) was retained by the property owner to remove the contaminated soils from the previous tank excavation, and 2) overexcavate soil within the dispenser area to remove contaminated materials within practical limits. The extent of the final excavations are shown on the Site Plan. The excavated soil was encapsulated in plastic and left onsite and the excavation was backfilled with imported material.

During excavation activities, soils which were sloughing off the east wall of the excavation caused a PVC water line to break. The line was repaired and the water which had filled the excavation was removed by H & H Environmental Services and recycled at their China Basin treatment facility.

B. Sampling and Analytical Testing

Soil samples were obtained as directed by Ms. Susan Hugo of the ACHCSA. Six (6) soil samples were obtained from the excavation sidewalls and five (5) samples were obtained from the dispenser trench (4 sidewalls samples; 1 bottom sample). Sample locations are presented on Plate 1. The samples were analyzed for the following:

- 1. Total extractable hydrocarbons (EPA 3550/8015 mod.),
- 2. Total oil and grease (SMWW 17:5520EF),
- 3. Benzene, toluene, xylene, and ethylbenzene (EPA 5030/8020),
- 4. Total volatile hydrocarbons (EPA 5030/8015 mod.), and
- 5. Total lead (EPA 7420).

Eight (8) soil samples were obtained from the contaminated soil stockpile and combined to form two (2) composite samples. The composite samples were analyzed for the following:

- 1. Total extractable hydrocarbons (EPA 3550/8015 mod.),
- 2. Total oil and grease (SMWW 17:5520EF),
- Total volatile hydrocarbons (EPA 5030/8015 mod.),
- 4. Benzene, toluene, xylene, and ethylbenzene (EPA 5030/8020),
- 5. Reactivity, corrosivity, and ignitability (RCI),

- 6. Volatile organics (EPA 8240),
- 7. Soluble lead (EPA 7420), and
- 8. Soluble Title 26 metals.

One (1) water sample was obtained from the tank excavation and one (1) from the dispenser excavation. The water samples were analyzed for the following:

- 1. Total extractable hydrocarbons (EPA 3550/8015 mod.),
- 2. Total oil and grease (SMWW 17:5520EF),
- Total volatile hydrocarbons (EPA 5030/8015 mod.),
- 4. Benzene, toluene, xylene, and ethylbenzene (EPA 5030/8020), and
- 5. Dissolved lead (EPA 7421).

Test results are summarized in Tables 1, 2 and 3. Test reports and Chain-of-Custody documents are presented in Appendix B.

C. Excavation Backfilling

The excavation was backfilled with clean import material. The material was placed in thin lifts (8 inch loose thickness) and compacted with a backhoe equipped with a vibrating head. During fill placement, the relative compaction was periodically checked.

III GROUNDWATER INVESTIGATION

A. Well Installation

Three monitoring wells were installed to assess groundwater quality in the tank area. Given the close proximity of the tank area to Halleck Street, the downgradient wells, 1 and 3 were located in the parking strip along the west side of the street. The upgradient well, 2, was located on-site. The well locations are shown on Plate 1. The logs of the borings and well completion details are presented on Plates 3 through 5. A detailed discussion of field procedures is presented in Appendix A.

A level survey was performed to determine the top of casing elevation (TOC) for the wells. The elevation reference used was the top of the curb, located at the northwest corner of Beach and Halleck Streets with a known elevation of 4.22 feet as indicated by a map provided by the City of Oakland. The benchmark referenced is shown on the Site Plan.

B. Analytical Testing

Select soil and groundwater samples were transmitted to Curtis & Tompkins, Ltd. for analytical testing. The sampling program included the following:

- Total extractable hydrocarbons (EPA 3550/8015 mod.),
- Total oil and grease (SMWW 17:5520EF),
- 3. Total volatile hydrocarbons (EPA 5030/8015 mod.), and
- 4. Benzene, toluene, xylene and ethylbenzene (EPA 5030/8020).

The test results are summarized in Tables 4 and 5. Test reports and Chain-of-Custody documents are presented in Appendix B.

C. Subsurface Conditions

Based on conditions exposed during tank removal and in the test borings, it appears that the site is overlain by about 2 to 4 feet of fill. The fill consists of about 1 foot of loose gravel underlain by clay intermixed with sand and gravel. In the tank vicinity, the fill was oily and darkly stained. The fill is underlain by native alluvial soils consisting predominately of silty clays.

Groundwater is situated about 3 to 4 feet below the groundsurface. The flow direction is towards the southwest at a gradient of about 1.4 percent. Groundwater flow direction and contours are presented on Plate 2.

IV DISCUSSION AND CONCLUSIONS

A. Soil Contamination

Upon removal of the tanks and dispenser, petroleum hydrocarbon contaminated soil was observed. The contaminants of concern include total extractable and volatile hydrocarbons, total oil and grease, BTEX and a variety of heavy metals. Excavation activities have successfully removed significantly contaminated soils in the dispenser and tank areas. However, elevated concentrations still remain at the excavation limits at depths up to about 5 feet.

Given that the contaminant concentrations appear to decrease with depth, we judge that the contamination left in-place is predominately related with the shallow fill layer. The contamination sources is likely past site usage related to a previous railroad spur in the area.

B. Groundwater Contamination

Concentrations of volatile and extractable range hydrocarbons have been detected in the wells during both sampling events performed to date. Oil and grease and BTEX have not been detected in any of the wells.

The hydrocarbon concentrations appear to be relatively similar in each well. As a result, we judge the contamination is more indicative of a regional problem and not primarily the result of past tank releases.

C. Recommendations

Soil remediation performed to date has removed up to 150 cubic yards of effected soil. Excavations were extended up to the practical limits given the presence of a City Street right-of-way and numerous subsurface utilities. The contaminated soil which remains in place appears to be associated with the fill present at the site. Based on our studies to date it does not appear that the contaminated fill nor previous tank releases have significantly impacted groundwater quality.

Remediation of the contaminated fill by its physical removal would require removal of some roadway and site improvements, and utilities, resulting in the disruption of traffic and water service

in the area. Due to 1) the distribution of contaminants and 2) the minimal impact on groundwater quality, we believe that the most appropriate response will be to leave the contaminated soil in place and continue groundwater monitoring. The next monitoring event is scheduled for December 1993. We recommend that the wells be analyzed for the contaminants of concern including total volatile and extractable hydrocarbons, total oil and grease, and BTEX.

The 150 cubic yards of contaminated soil was stockpiled onsite and covered with plastic sheeting. Based on the analytical
test results, it appears that the material could be disposed of at
a Class II landfill directly, or it could be bioremediated on-site
to reduce hydrocarbon concentrations and then disposed of at a
Class III landfill. Remediation contractor bids are still being
accepted and evaluated. Once a contractor is selected, their plan
will be implemented. The details of remediation will be presented
in a separate letter report.

V LIMITATIONS

This assessment was intended to provide a preliminary means of evaluating the risk of the property containing significant soil and groundwater contamination near the previous tanks. Contamination may exist in other areas not investigated by SCI.

The conclusions drawn from this assessment are an expression of our professional opinion, and do not constitute a warranty or guaranty, either expressed or implied. Additional investigative work, if undertaken, may modify the conclusions presented herein, as additional information is generated.

SCI has performed this assessment in accordance with generally accepted standards of care which exist in northern California at the time of this study. Please recognize that the definition and evaluation of environmental conditions is difficult and inexact. Judgements leading to conclusions and recommendations are generally made with an incomplete knowledge of the subsurface and/or historic conditions applicable to the site. In addition, the conclusions made herein reflect site conditions at the time of the investigation. These conditions may change with time and as such the conclusion may also change.

The conclusions and opinions presented herein may also be affected by rapid changes in the field of environmental engineering and the laws governing hazardous waste. The reader is advised to consult with SCI prior to relying upon the information provided.

List of Attached Tables:

Contaminant Concentrations in Soil Table 1

Contaminant Concentrations in Water Soil Table 2

Contaminant Concentrations in Stockpiled Soil Table 3

Groundwater Elevation Data Table 4

List of Attached Plates:

Site Plan Plate 1

Groundwater Data Plate 2

Plates 3 through 5 Log of Test Borings

Unified Soil Classification System Plate 6

Appendices:

Investigation Protocol Appendix A

Laboratory Test Reports Appendix B Chain-of-Custody Documents

Distribution:

Marianne Robison 1 copy:

> Buttner Properties 600 West Grand Avenue

Oakland, California 94612

Ms. Susan Hugo 1 copy:

Alameda County Health Care Services Agency

80 Swan Way, Room 200 Oakland, California 94621

JNA:RWR:egh

Table 1. CONTAMINANT CONCENTRATIONS IN SOIL

Sample	TVH	TEH	TOG	Benzene	Toluene	Xylene	Ethylbenzene	Lead
Designation	(mg/kg)	(mg/kg)	(mg/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(mg/kg)

1990 Excavation

1 @ 5'	1/0	<10	<50	<5	<5	<5	<5	-
2 @ 5'	NP-	<10	<50	<5	<5	23	<5	-
3@10'	HD.	24	<50	16	34	34	14	-
4 @ 3'	ND	<10	<50	<5	7.0	14	<5	-
5 @ 5'	NO-	<10	<50	<5	<5	<5	<5	-
6@10'	IXD.	27	<50	<5	<5	<5	<5	•
7 @ 5'	ND-	<10	<50	<5	<5	<5	<5	-
8 @ 5'	NO-	<10	<50	<5	< 5	<5	<5	-
9 @ 5'	ND-	<10	<50	< 5	<5	<5	<5	-
Dispenser	ND-	10,000	7,800	47	150	220	60	-

1992 Excavation

10 @ 6'	<1	3	<50	<5	<5	<5	<5	3
11 @ 5'	<1	<1	<50	<5	<5	<5	<5	3
12 @ 4'	<1	3	<50	<5	<5	<5	<5	4
13 @ 4'	<1	5	<50	<5	< 5	<5	<5	5
14 @ 3'	<1	220	190	<5	<5	<5	<5	120
15@3'	<1	1,100	690	<5	<5	34	15	72
16 @ 3'	97	1,700	420	<5	27	45	99	9
17 @ 3'	44	490	190	<5	20	170	76	20
18 @ 5'	27	450	310	<5	<5	35	62	5
19 @ 5'	<1	4	<50	<5	<5	<5	<5	4
20 @ 7'	<1	3	<50	<5	< 5	<5	<5	3

1993 Groundwater Investigation

MW-1 @ 3.5'	<1	<1	<50	<5	<5	<5	<5	-
MW-2 @ 3.0'	<1	9	<50	< 5	5	<5	<5	•
MW-3 @ 2.5'	<1	10	<50	< 5	< 5	<5	<5	-

TEH - Total Volatile Hydrocarbons

TEH = Total Extractable Hydrocarbons

TOG - Total Oil and Grease

mg/kg = milligrams per kilogram = parts per million

ug/kg = micrograms per kilogram = parts per billion

<1 = chemical not present at a concentration greater than the detection limit stabled

- = analysis not performed

Table 2.

CONTAMINANT CONCENTRATIONS IN WATER

Sample Designation	Date	TVH (ug/l)	TEH Diesel (ug/l)	TOG (mg/l)	Benzene (ug/l)	Toluene (ug/l)	Xylene (ug/l)	Ethylbenzene (ug/l)	Lead (ug/l)
xcavation Wat	er								
Tank 1 Excavation	7/23/90	<500	250,000	<20	3.1	<1	<1	<1	-
	<u>1</u>			l. <u></u>					
Tank 2 Excavation	7/23/90	<500	490,000	<20	4.0	<1	<1	<1	-
· · · · ·									
Tank Excavation	11/25/92	440	15,000	230	2.0	0.7	2.1	<0.5	<3
	, , , , , , , , , . , , , , , , , . , , . ,		 .		_				
Dispenser Pit	11/25/92	1700	15,000	25	<0.5	0.9	8.2	2	6
onitoring Well	l Water								
MW-1	6/2/93	160	<50	<5	<0.5	<0.5	<0.5	<0.5	-
_	9/15/93	120	<50	<5	<0.5	<0.5	<0.5	<0.5	-
	0.000	010	150	F3	۸۶	Δ.Ε.	0.5		
MW-2	6/2/93 9/15/93	210 150	150 50	<5° <5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	-
		······································					· · · · · ·		
MW-3	6/2/93	280	170	<5	<0.5	<0.5	<0.5	<0.5	_
	9/15/93	180	<50	<5	<0.5	<0.5	<0.5	<0.5	

TVH = Total Volatile Hydrocarbons

TEH = Total Extractable Hydrocarbons

TOG = Total Oll and Grease

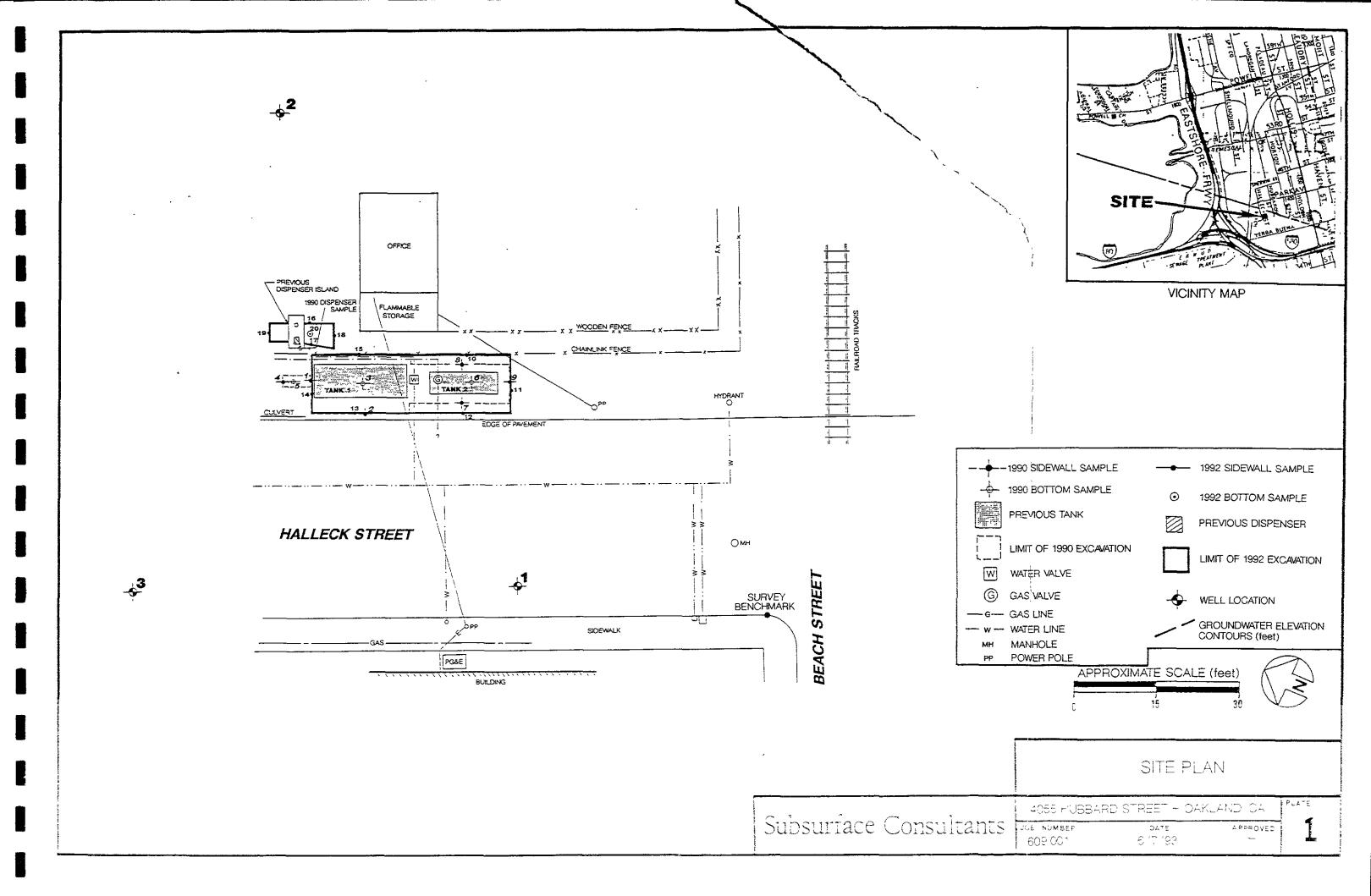
mg/l = milligrams per liter = perts per million

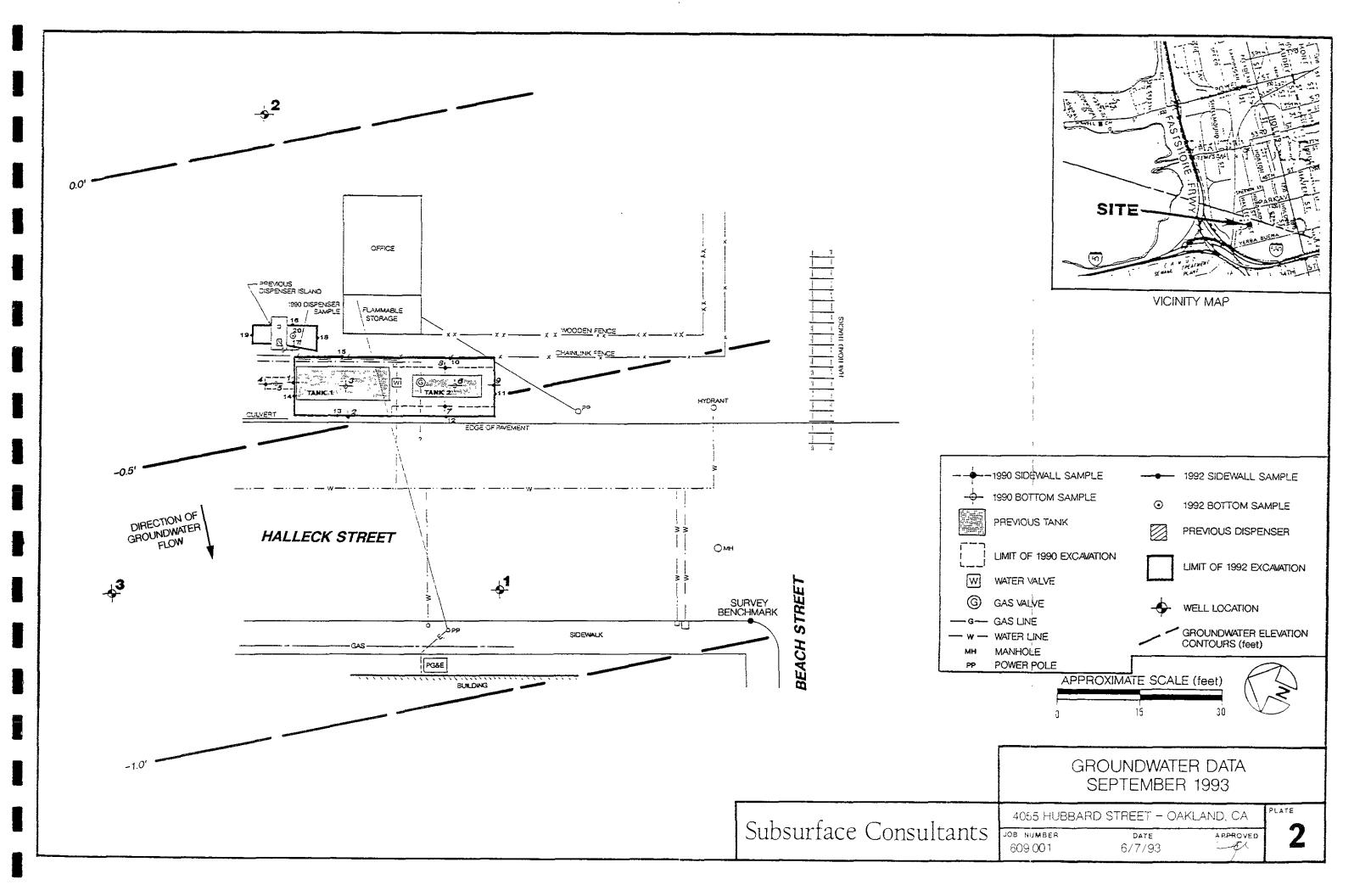
ug/l = micrograms per liter = parts per billion

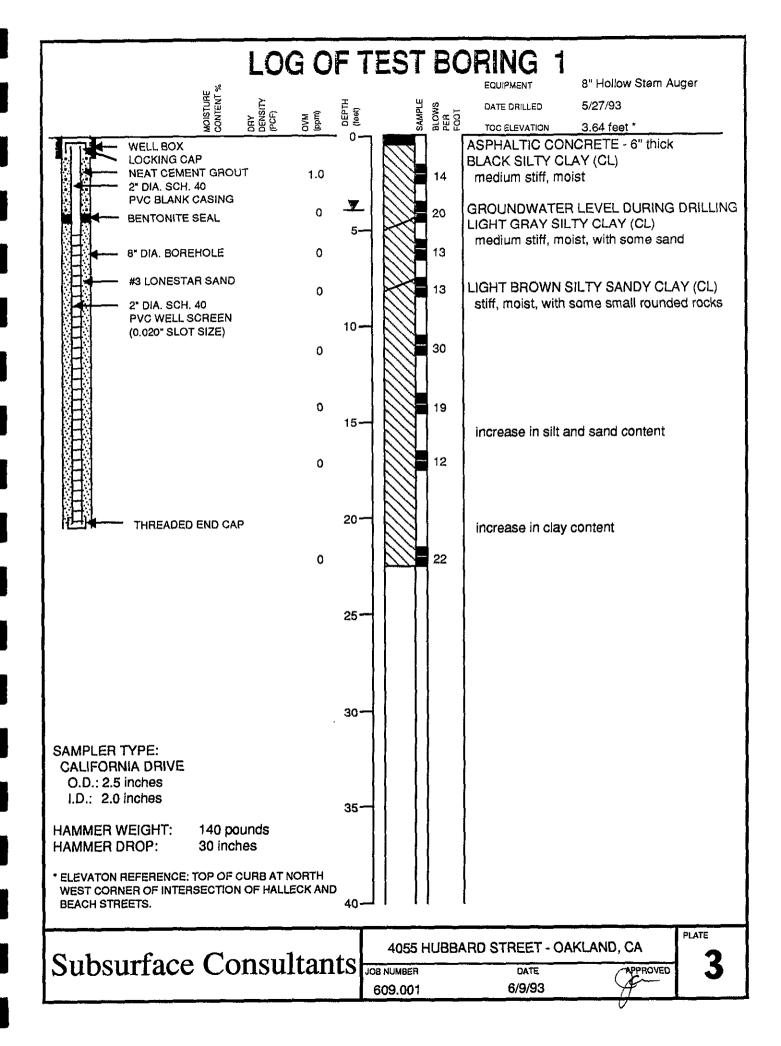
<0.5 = chemical not present at a concentration greater than the detection limit stated

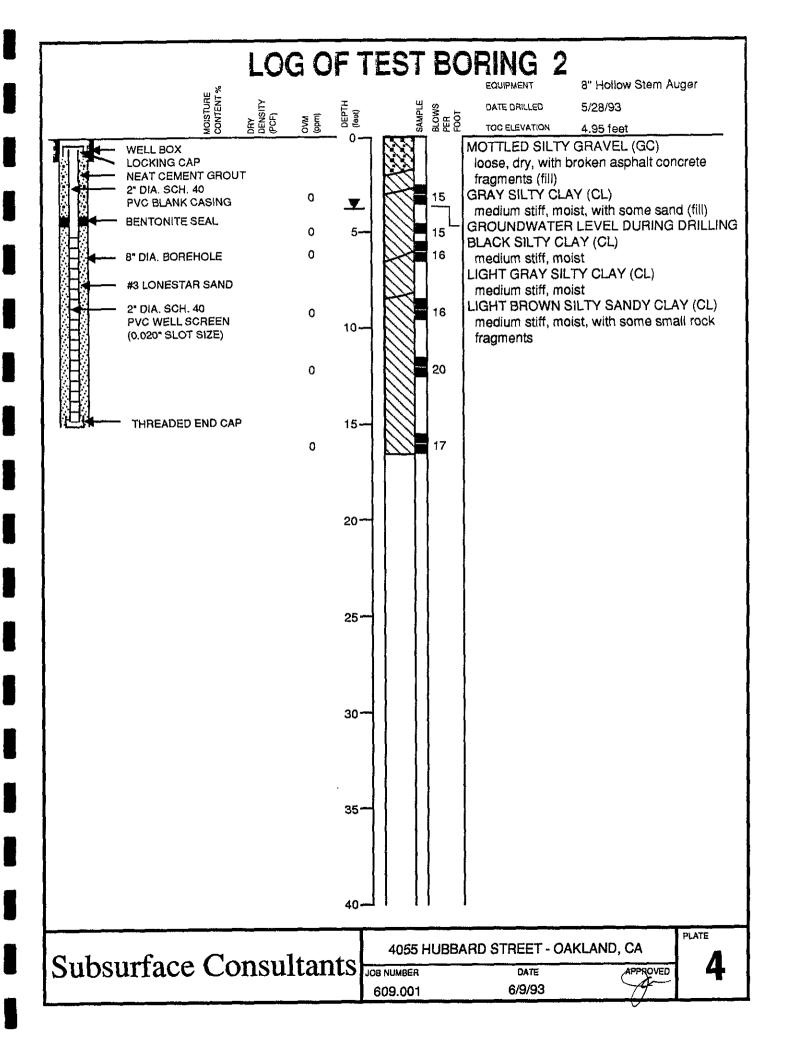
Table 3.
CONTAMINANT CONCENTRATIONS IN STOCKPILED SOIL

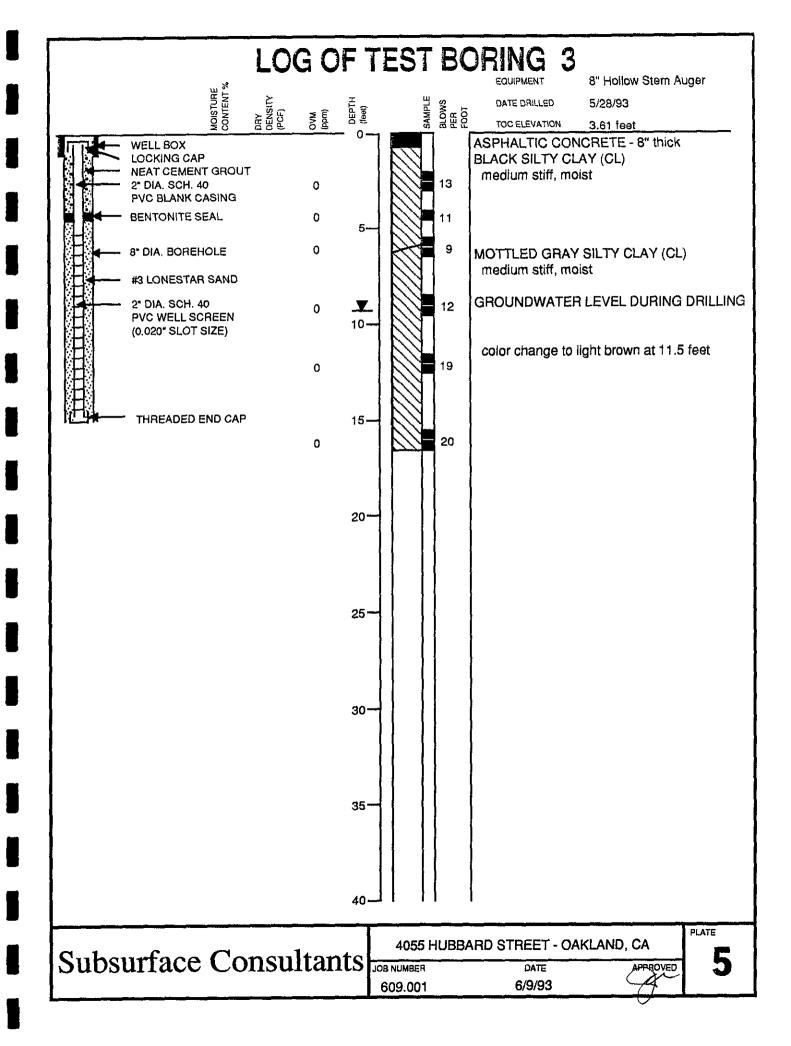
Sample Designation	Gasoline (mg/kg)	Diesel (mg/kg)	TOG (mg/kg)	Benzene (ug/kg)	Toluene (ug/kg)	Total Xylenes (ug/kg)	Ethyl- Benzene (ug/kg)	EPA 8240 Compounds	2-Methyl- Napthalene (ug/kg)	Phenanthrene (ug/kg)	Other EPA 8270 Compounds (ug/kg)
1990 Investigation											•
SP-1, 3, 5, 7	_	820	490	< 5	<5	40	<5	ND	1,400	590	ND
1992 Investigation											
SP-A, B, C, D	11	930	800	•	-	-	-	ND	-	-	-
SP-E, F, G, H	2	500	640	<5	<5	<5	<5	-	-	_	-


	Total Metal Concentrations	Soluble Metal Concentrations
l	SP-1, 3, 5, 7	SP-A, B, C, D
	(mg/kg)	(ug/l)
Antimony	<5	400
Arsenic	6.2	2,000
Barium	95	5,800
Beryllium	<0.5	20
Cadmium	0.0	00
	3.8	<30
Chromium (total)	40	1,400
Cobalt	11	420
Copper	130	<50
Lead	67	1,000
Mercury	<0.1	<0.1
Molybdenum	<0.5	<70
Nickel	37	1,800
Selenium	<2.5	00
		<30
Silver	<1	<50
Thallium	<5	<3,000
Vanadium	26	1,100
Zinc	200	12,000


Table 4.
GROUNDWATER ELEVATION DATA


Well Number	TOC Elevation (feet)	Date	Groundwater Depth (feet)	Groundwater Elevation (feet)
		0.44.000	3.63	0.01
MW-1	3.64	6/1/93 9/15/93	4.47	-0.83
MW-2	4.95	6/1/93	3.65	1.30
14444 5		9/15/93	4.90	0.05
MW-3	3.61	6/1/93	3.29	0.32
		9/15/93	4.32	-0.71


TOC = Top of casing


Reference elevation is the top of curb located at the northwest corner of Halleck and Beach Streets.

G	ENERAL SOIL (CATEGORIES	SYM	BOLS	TYPICAL SOIL TYPES
		Clean Gravel with	GW		Well Graded Gravel, Gravel-Sand Mixtures
eive	COARSE GRAINED SOILS Wore than half coarse traction is larger than No. 4 seive size No. 4 seive size SAND More than half coarse fraction is emailer than half coarse traction is emailer than half coarse traction is emailer than	little or no fines	GP		Poorly Graded Gravel, Gravel-Sand Mixtures
SOILS No. 200 8		Gravel with more	GM		Silty Gravel, Poorly Graded Gravel-Sand-Silt Mixtures
GRAINED larger than I		than 12% fines	GC		Clayey Gravel, Poorly Graded Gravel-Sand-Clay Mixtures
ISE GR	SAND SAND More than half coarse fraction is smaller than No. 4 seive size	Clean Sand with	sw		Well Graded Sand, Gravelly Sand
COAF		little or no fines	SP		Poorly Graded Sand, Gravelly Sand
More		smaller than	SM		Silty Sand, Poorly Graded Sand-Silt Mixtures
			sc		Clayey Sand, Poorly Graded Sand-Clay Mixtures
lve			ML.		Inorganic Silt and Very Fine Sand, Rock Flour, Silty or Clayey Fine Sand, or Clayey Silt with Slight Plasticity
ILS to. 200 se	1	ND CLAY It Less than 50%	CL		Inorganic Clay of Low to Medium Plasticity, Gravelly Clay, Sandy Clay, Silty Clay, Lean Clay
FINE GRAINED SOILS More than half is smaller than No. 200 selve			OL		Organic Clay and Organic Silty Clay of Low Plasticity
GRAINED is smaller th			мн		Inorganic Silt, Micaceous or Diatomaceous Fine Sandy or Silty Soils, Elastic Silt
FINE than half		AND CLAY Greater than 50%	СН		Inorganic Clay of High Plasticity, Fat Clay
More	ł J				Organic Clay of Medium to High Plasticity, Organic Silt
	HIGHLY ORGA	NIC SOILS	РΤ		Peat and Other Highly Organic Soils

UNIFIED SOIL CLASSIFICATION SYSTEM

Subsurface Consultants JOB NUMBER

4055 HUBBARD STREET - OAKLAND, CA

PLATE

609.001

DATE 6/9/93

APPENDIX A

INVESTIGATION PROTOCOL

A. Excavation Sampling

Soil samples from the sidewalls and bottom of the excavation were obtained using a backhoe bucket. Once the bucket was brought to rest at the groundsurface, approximately 3 inches of soil was scraped away and a clean 2-inch-diameter brass liner was driven into the material with a mallet. The liner was withdrawn and Teflon sheeting was placed over the liner ends. The ends were then capped and sealed with duct tape. The samples were refrigerated on-site and remained refrigerated until delivery to the analytical laboratory.

Groundwater and perched water which filled the excavations was sampled using new disposable bailers. The samples were retained in glass containers supplied by the laboratory. The samples were refrigerated on-site and remained refrigerated until delivery to the analytical laboratory.

B. Test Borings

Prior to drilling, a drilling permit was obtained from the Alameda County Flood Control and Water Conservation District, Zone 7 and an encroachment permit was obtained from the City of Oakland. Additionally, Underground Service Alert was notified in order to clear the drilling locations for underground utilities. Test borings were drilled using a truck-mounted drill rig equipped with 8-inch diameter hollow stem augers. Our field engineer observed drilling operations, prepared detailed logs of conditions

encountered and obtained samples of representative materials. Test boring logs are presented on Plates 3 through 5. Soils have been field classified in accordance with the Unified Soil Classification System, as presented on Plate 6.

A California Drive Sampler (outside diameter of 2.5 inches, inside diameter of 2.0 inches) was used to obtain soil samples. The number of blows required to drive the sampler the final 12 inches of each 18-inch penetration was recorded. Drilling and sampling equipment was steam-cleaned prior to each use to reduce the likelihood of cross-contamination between samples and/or borings. Steam cleaning water was collected and stored on-site in 55-gallon drums for later disposal by others.

Soil samples were retained in 2.0-inch-diameter brass liners. Teflon sheeting was placed over the ends of the soil liners prior to capping and sealing with duct tape. The sealed liners were placed in ice-filled coolers and remained iced until delivery to the analytical laboratory. Chain-of-custody records accompanied the samples to the laboratory.

The shoe sample from each drive was retained in a plastic bag and screened for volatile organics using an Organic Vapor Meter (OVM). OVM readings are recorded on the Boring Logs.

The test borings were completed as groundwater monitoring wells, as detailed in the following section. Soil cuttings generated during drilling were added to the existing soil stockpile.

C. Groundwater Monitoring Wells

At the completion of drilling, a monitoring well was installed in each of the test borings. Well details are shown on the test boring logs. In general, the wells consist of 2-inch diameter, Schedule 40 PVC pipe having flush-threaded joints. All pipe was steam-cleaned prior to being placed in the boreholes.

The lower 10 to 15 feet of the wells consist of machineslotted well screen having 0.02-inch slots. The remaining portion of the wells consist of blank pipe. The wells were provided with a threaded bottom cap and locking top cap. The well screen was encased in a filter composed of Lonestar No. 3 washed sand. filter sand was placed by carefully pouring it through the annulus between the hollow stem of the auger and the well casing. Periodically, the augers were raised to allow the sand to fill the annulus between the casing and the borehole. The filter extends from just below the bottom of the well to one-half foot above the top of the screened section. A one-half foot thick bentonite pellet seal was placed above the sand filter. The annulus above The grout mixture the seal was backfilled with cement grout. consisted of portland cement mixed with clean water. monitoring well was completed below grade and protected by a traffic-rated valve box.

The wells were developed 4 days after installation in order to allow the grout seal to set. Initially, the depth to water was measured below the top of the well casing using an electric sounder. The well was also checked for free floating product. The wells were then developed by removing water with a new disposable

bailer until the measurements of pH, temperature and conductivity had stabilized. When the wells had recharged to within 80 percent of their initial level they were sampled with a new disposable bailer. Well development water was stored in 55 gallon drums and left on-site.

Groundwater samples were retained in glass containers precleaned by the laboratory. Container types were as specified by the laboratory for the analysis requested. Water samples were placed in ice-filled coolers and remained iced until delivery to the analytical laboratory. Chain-of-custody records accompanied the samples to the laboratory, copies of which are presented in Appendix B.

1990 TANK REMOVAL
ANALYTICAL TEST RESULTS

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (415) 486-0900

DATE RECEIVED: 07/23/90 DATE REPORTED: 08/07/90

RECEIVED

LAB NUMBER: 101151

AUG 20 1990 AM PM 7,8,9,11,12,12,2,4,5,6

CLIENT: SUBSURFACE CONSULTANTS

REPORT ON: 10 SOIL SAMPLES

1 SOIL COMPOSITE 2 WATER SAMPLES

PROJECT #: 609.001

LOCATION: HUBBARD TANK

RESULTS: SEE ATTACHED

Berkeley

QA/QC Approval

Figal Appeqva

Wilmington

Los Angeles

LAB NUMBER: 101151

CLIENT: SUBSURFACE CONSULTANTS PROJECT # : 609.001

LOCATION: HUBBARD TANK

DATE ANALYZED: 07/27/90 DATE REPORTED: 08/07/90

DATE RECEIVED: 07/23/90

ANALYSIS: HYDROCARBON OIL AND GREASE

METHOD: SMWW 17:5520F (503E)

LAB ID	SAMPLE ID	RESULT	UNITS	REPORTING LIMIT
101151-1	6 @ 10	ND	mg/Kg	5 0
101151-2	7 @ 5	ND	mg/Kg	5 0
101151-3	8 @ 5	ND	mg/Kg	5 0
101151-4	9 @ 5	ND	mg/Kg	5 0
101151-5	DISPENSER	7,800	mg/Kg	5 0
101151-12	1 @ 5	ND	mg/Kg	5 0
101151-13	2 @ 5	ND	mg/Kg	5 0
101151-14	3 @ 10	ND	mg/Kg	50
101151-15	4 @ 3	ND	mg/Kg	50
101151-16	5 @ 5	ND	mg/Kg	50
101151-17	SP1,3,5,7	490	mg/Kg	5 0

ND = Not detected at or above reporting limit

QA/QC SUMMARY

RPD, %	4
RECOVERY, %	8 7

LAB NUMBER: 101151

CLIENT: SUBSURFACE CONSULTANTS

PROJECT # : 609.001 LOCATION: HUBBARD TANK DATE RECEIVED: 07/23/90
DATE ANALYZED: 08/02/90

DATE REPORTED: 08/07/90

ANALYSIS: HYDROCARBON OIL AND GREASE

METHOD: SMWW 17:5520F (503E)

LAB ID	SAMPLE ID	RESULT	UNITS	REPORTING LIMIT
101151-6	DIESEL EXCAVATION WATER	ND	mg / L	20
101151-7	GAS EXCAVATION WATER	ND	mg / L	2 0

ND = Not detected at or above reporting limit

QA/QC SUMMARY

RPD, %
RECOVERY, %

LABORATORY NUMBER: 101151

CLIENT: SUBSURFACE CONSULTANTS

JOB #: 609.001

LOCATION: HUBBARD TANK

DATE RECEIVED: 07/23/90
DATE EXTRACTED: 07/24/90
DATE ANALYZED: 07/26/90

DATE REPORTED: 08/07/90

Extractable Petroleum Hydrocarbons in Soils & Wastes California DOHS Method LUFT Manual October 1989

LAB ID	CLIENT ID	GASOLINE RANGE (mg/Kg)	KEROSENE RANGE (mg/Kg)	DIESEL RANGE (mg/Kg)	REPORTING LIMIT (mg/Kg)
101151-1	6 @ 10	ND	ND	2.7	10
101151-2	7 @ 5	ND	ND	ND	10
101151-3	8 @ 5	ND	ND	ND	10
101151-4	9 @ 5	ND	ND	ND	10
101151-5	DISPENSER	ND	ND	10,000	100
101151-12	1 @ 5	ND	ND	ND	10
101151-13	2 @ 5	ND	ND	ND	10
101151-14	3 @ 10	ND	ND	24	10
101151-15	4 @ 3	ND	ND	ND	10
101151-16	5 @ 5	ND	ND	ND	10
101151-17	SP1,3,5,7	ND	ND	820	10

ND = Not Detected at or above reporting limit.

QA/QC SUMMARY

LABORATORY NUMBER: 101151

CLIENT: SUBSURFACE CONSULTANTS

JOB #: 609.001

LOCATION: HUBBARD TANK

DATE RECEIVED: 07/23/90
DATE EXTRACTED: 07/25/90
DATE ANALYZED: 07/26/90

DATE REPORTED: 08/07/90

Extractable Petroleum Hydrocarbons in Aqueous Solutions California DOHS Method LUFT Manual October 1989

LAB ID	CLIENT ID	GASOLINE RANGE (mg/L)	KEROSENE RANGE (mg/L)	DIESEL RANGE (mg/L)	REPORTING LIMIT (mg/L)
101151-6	DIESEL EXCAVATION	N ND	ND	250	5.0
101151-7	GAS EXCAVATION WATER	ND	ND	490	5.0

ND = Not detected at or above reporting limit.

QA/QC SUMMARY

RPD, %

RECOVERY, %

100

LABORATORY NUMBER: 101151

CLIENT: SUBSURFACE CONSULTANTS

JOB NUMBER: 609.001

JOB LOCATION: HUBBARD TANK

DATE RECEIVED: 07/23/90 DATE ANALYZED: 07/25/90

DATE REPORTED: 08/07/90

Benzene, Toluene, Ethyl Benzene, Xylenes by EPA 8020 Extraction by EPA 5030 Purge and Trap

LAB ID	CLIENT ID	BENZENE	TOLUENE	TOTAL XYLENES	ETHYL BENZENE	REPORTING LIMIT *
		(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
				,		
101151-1	6 @ 10	ND	ND	ND	ND	5.0
101151-2	7 @ 5	ND	ND	ND	ND	5.0
101151-3	8 @ 5	ND	ND	ND	ND	5.0
101151-4	9 @ 5	ND	ND	ND	ND	5.0
101151-5	DISPENSER	47	150	220	60	5.0
101151-1	2 1 @ 5	ND	ND	ND	ND	5.0
101151-13	_	ND	ND	23	ND	5.0
101151-1	4 3 @ 10	16	34	34	14	5.0
101151-1		ND	7.0	14	ND	5.0
101151-1		ND	ND	ND	ND	5.0
101151-1	7 SP1,3,5,7	ND	ND	40	ND	5.0

ND = Not detected at or above reporting limit.

QA/QC SUMMARY

RPD. %	2
RECOVERY, %	88

^{*} Reporting Limit applies to all analytes.

LABORATORY NUMBER: 101151 CLIENT: SUBSURFACE CONSULTANTS

JOB NUMBER: 609.001

JOB LOCATION: HUBBARD TANK

DATE RECEIVED: 07/23/90
DATE ANALYZED: 07/26/90
DATE REPORTED: 08/07/90

Benzene, Toluene, Ethyl Benzene, Xylenes by EPA 8020 Extraction by EPA 5030 Purge and Trap

LAB ID	CLIENT ID	BENZENE	TOLUENE	TOTAL XYLENES	ETHYL BENZENE	REPORTING LIMIT *	
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	
101151-6	DIESEL EXCAVATION WATER	3.1	ND	ND	ND	1.0	
101151-7	GAS EXCAVATION WATER	4.0	ND	ND	ND	1.0	

ND = Not detected at or above reporting limit.

* Reporting Limit applies to all analytes.

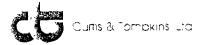
QA/	OC.	SUMMARY

RPD, %	18
RECOVERY, %	98

LABORATORY NUMBER: 101151-17 DATE RECEIVED: 07/23/90 CLIENT: SUBSURFACE CONSULTANTS DATE ANALYZED: 08/02/90 DATE REPORTED: 08/07/90

JOB #: 609.001

SAMPLE ID: SP1,3,5,7


EPA METHOD 8240: VOLATILE ORGANICS IN SOILS & WASTES Extraction Method: EPA 5030 - Purge & Trap

COMPOUND	Result	Reporting
	ug/kg	Limit (ug/kg)
ch lorome than e	ND	500
bromome than e	ND	500
vinyl chloride	ND	500
chloroethane	ND	500
methylene chloride	ND	250
acetone	ND	500
carbon disulfide	ND	250
trichlorofluoromethane	ND	250
1,1-dichloroethene	ND	250
1,1-dichloroethane	ND	250
1,2-dichloroethene (total)	ND	250
chloroform	ND	250
freen 113	ND	250
1,2-dichloroethane	ND	250
2 - butanone	ND	500
1,1,1-trichloroethane	ND	250
carbon tetrachloride	ND	250
vinyl acetate	ND	500
bromodichloromethane	ND	250
1,2-dichloropropane	ND	250
cis-1,3-dichloropropene	ND	250
trichloroethylene	ND	250
d i bromo ch l o rome than e	ND	250
1,1,2-trichloroethane	ND	250
b e n z e n e	ND	250
trans-1,3-dichloropropene	ND	250
2-chloroethylvinyl ether	ND	500
bromo form	ND	250
2 - h e x a n o n e	ND	500
4-methyl-2-pentanone	ND	500
1,1,2,2-tetrachloroethane	ND	250
tetrachloroethylene	ND	250
toluene	ND	250
chlorobenzene	ND	250
ethyl benzene	ND	250
styrene	ND	250
total xylenes	ND	250

ND = Not detected at or above reporting limit

QA/QC SUMMARY: SURROGATE RECOVERIES

ì			
	1,2-Dichloroethane-d4	101%	
	Toluene-d8	106%	
	Bromofluorobenzene	114%	

DATE REPORTED: 08/07/90

DATE RECEIVED: 07/23/90 LABORATORY NUMBER: 101151-17 CLIENT: SUBSURFACE CONSULTANTS DATE EXTRACTED: 07/25/90 DATE ANALYZED: 07/30/90

JOB #: 609.01

SAMPLE ID: SP1,3,5,7

EPA 8270: Base/Neutral and Acid Extractables in Soils & Wastes Extraction Method: EPA 3550 Sonication

	RESULT	REPORTING
ACID COMPOUNDS	ug/kg	LIMIT
		ug/kg
Phenol	ND	330
2 - Chlorophenol	ND	330
Benzyl Alcohol	ND	330
2-Methylphenol	МD	330
4-Methylphenol	ND	330
2-Nitrophenol	ND	1650
2,4-Dimethylphenol	ND	330
Benzoic Acid	ND	1650
2,4-Dichlorophenol	ND	330
4-Chloro-3-methylphenol	ND	330
2,4,6-Trichlorophenol	ND	330
2,4,5.Trichlorophenol	ND	1650
2,4-Dinitrophenol	ND	1650
4-Nitrophenol	ND	1650
4,6-Dinitro-2-methylphenol	ND	1650
Pentachlorophenol	ND	1650
BASE/NEUTRAL COMPOUNDS		
N-Nitrosodimethylamine	ND	330
Aniline	ND	330
Bis(2-chloroethyl)ether	ND	330
1,3-Dichlorobenzene	ND	330
1,4-Dichlorobenzene	ND	330
1,2-Dichlorobenzene	ND	330
Bis(2-chloroisopropyl)ether	ND	330
N-Nitroso-di-n-propylamine	ND	330
Hexachloroethane	ND	330
Nitrobenzene	ND	330
Isophorone	ND	330
Bis(2-chloroethoxy)methane	ND	330
1,2,4-Trichlorobenzene	ND	330
Naphthalene	ND	330
4-Chloroaniline	ND	330
Hexachlorobutadiene	ND	330
2-Methylnaphthalene	1,400	330
Hexachlorocyclopentadiene	ND	330
2-Chloronaphthalene	ND	330
2-Nitroaniline	ND	1650

EPA 8270

LABORATORY NUMBER: 101151-17

SAMPLE 1D: SP1,3,5,7

BASE/NEUTRAL COMPOUNDS RESULT REPORTING ug/kg LIMIT ug/kg Dimethylphthalate ND 330 Acenaphthylene ND 330 ND 2,6-Dinitrotoluene 330 3-Nitroaniline ND 1650 Acenaphthene ND 330 Dibenzofuran ND 330 2,4-Dinitrotoluene ND 330 Diethylphthalate ND 330 4-Chlorophenyl-phenylether ND 330 Fluorene ND 330 4-Nitroaniline ND 1650 N-Nitrosodiphenylamine ND 330 Azobenzene ND 330 4-Bromophenyi-phenylether ND 330 Hexachlorobenzene ND 330 Phenanthrene 590 330 Anthracene ND 330 Di-n-butylphthalate ND 330 Fluoranthene ND 330 Benzidine ND 330 ND 330 Pyrene Butylbenzylphthalate ND 330 3,3'-Dichlorobenzidine ND 1650 Benzo (a) anthracene ND 330 330 Chrysene ND Bis (2-ethylhexyl)phthalate ND 330 Di-n-octylphthalate ND 330 Benzo (b) fluoranthene ND 330 Benzo (k) fluoranthene ND 330 330 Benzo (a) pyrene ND Indeno (1,2,3-cd) pyrene ND 330 Dibenzo (a,h) anthracene ND 330 ND 330 Benzo (g,h,i) perylene

ND = Not detected at or above reporting limit.

EPA 8270

LABORATORY NUMBER: 101151-17

SAMPLE 1D: SP1,3,5,7

COMPOUND RESULT REPORTING ug/kg LIMIT CHLORINATED PESTICIDES ug/kg ND 330 alpha-BHC ND beta-BHC 330 gamma - BHC ND 330 delta-BHC ND 330 Heptachlor ND 330 Aldrin ND 330 Heptachlor Epoxide ND 330 ND 330 Endosulfan I 4,4'-DDE ND 330 ND Dieldrin 330 ND Endrin 330 Endosulfan II ND 330 4,4'-DDD ND 330 Endrin Aldehyde ND 330 ND 330 Endosulfan Sulfate 4,4'-DDT ND 330 ND Chlordane 1650 ND Toxaphene 1650 Methoxychlor ND 1650 ND Arocler 1016 1650 Aroclor 1221 ND 1650 Aroclor 1232 ND 1650 Aroclor 1242 ND 1650 Aroclor 1248 ND 1650 ND 1650 Aroclor 1254 Aroclor 1260 ND 1650

ND = Not detected at or above reporting limit.

QA/QC SUMMARY

=======================================					
Compound	%Recovery	Compound	%Recovery		
2-Fluorophenol	3 2	Nitrobenzene-d5	8 4		
Phenol-d5	67	2-Flourobiphenyl	72		
2,4,6-Tribromophenol	37	Terphenyl	48		

LABORATORY NUMBER: 101151-17 CLIENT: SUBSURFACE CONSULTANTS

PROJECT #: 609.001 LOCATION: HUBBARD TANK SAMPLE ID: SP1,3,5,7 DATE RECEIVED: 07/23/90
DATE ANALYZED: 07/26/90
DATE REPORTED: 08/07/90

Title 26 Metals in Soils & Wastes Digestion Method: EPA 3050

METAL	ETAL RESULT		METHOD
	mg/Kg	LIMIT mg/Kg	
Antimony	ND	5	EPA 6010
Arsenic	6.2	2.5	EPA 7060
Barium	95	0.5	EPA 6010
Beryllium	ND	0.5	EPA 6010
Cadmium	3.8	0.5	EPA 6010
Chromium (total)	4 0	0.5	EPA 6010
Cobalt	11	0.5	EPA 6010
Copper	130	1	EPA 6010
Lead	67	2.5	EPA 6010
Mercury	ND	0.1	EPA 7471
Molybdenum	ND	0.5	EPA 6010
Nickel	37	0.5	EPA 6010
Selenium	ND	2.5	EPA 6010
Silver	ND	1	EPA 6010
Thallium	ND	5	EPA 6010
Vanad i um	26	1	EPA 6010
Zinc	200	0.5	EPA 6010

ND = Not detected at or above reporting limit.

QA/QC SUMMARY

	======		=======================================	======	
	RPD,%	RECOVERY,%		RPD,%	RECOVERY, %
Antimony	2	93	Mercury	4	100
Arsenic	16	109	Molybdenum	<1	91
Barium	7	103	Nickel	1	110
Beryllium	2	104	Selenium	<1	108
Cadmium	2	75	Silver	<1	82
Chromium	<1	122	Thallium	<1	94
Cobalt	2	99	Vanad i um	2	109
Copper	3	102	Zinc	3	77
Lead	6	99			
========	======	=========			

Project Name: Aibtard	Tonk	· · · · · · · · · · · · · · · · · · ·		
SCI Job Number: 609.00	<u>/</u>			
Project Contact at SCI: J.A	exanter			
Sampled By: Loper				
Analytical Laboratory: Cuc	tis's Ton	nakins	>	·
Analytical Turnaround:	bormal			··
Sample Container	Sampling			9
Sample ID Type ¹ Type ²	Date	Hold	Analysis	Analytical Method
r6tto S I	7/20	Toa,	TEH W/gac	BINE
~7at5 9 ~		Tog	, IEH whose	1 BIXE
8ats: 3		Tra	IFH who	BTXE
- 9 at 5		TOY	TEH wyax	O BIXE
Dispenser S I	7/17	TOGI, T	EH was	STXE_
	7/1-1			
DIESEL Excanation Water	71-1-	TOG ,	TEH Who as	, BIXE
GAS Excanation Water	170190	TOGI	TEHU/go	J BIXE
_				
* * //	*	*	*	*
Released by:	<u>e</u> 3		 .	11, 22,00
Released by Courier:	,		Date: Date:	10/4-23-9D
Received by Laboratory: Mulu	Metter	· · · · · · · · · · · · · · · · · · ·		1/23/90 130a
Relinquished by Laboratory:	<u> </u>		Date:_	
Received by:			Date:	
Sample Type: W = water, S = s	soil. 0 = 0+	her (spe		
Container Type: V = VOA, P = O = other (sp	plastic, G			tube,

Notes to Laboratory:

⁻Notify SCI if there are any anomalous peaks on GC or other scans -Questions/clarifications...contact SCI at (415) 268-0461

Subsurface C	onsultants	(0(15)	CH & 2	AIN OF CUST	ODY RECORD FEST REQUEST
Project Name:	Hubbard -	Tank			
SCI Job Number:					
Project Contact a	t sci: <u>J.A/</u>	exander			
Sampled By:	•				
Analytical Labora	itory: <u>Curt</u>	is & Tomp	okins		
Analytical Turnar	ound: Norma	ul			
Sample ID Type	_	Sampling Date	<u> Hold</u>	Analysis	Analytical Method
Spl S		7/17	<u> </u>		
7 Sp3 S	_ <u>T</u>	7/17	(Compo	site for	CAM Metals
SP5: 5	<u> </u>	7/20	· ———	8240, 8270)+ pests+pcBŚ
SP7 S		7/20	TOG TEH BTXE	with gas	
12 1 ats' 5	T	7/17	TOG.	TE H w/gas	BIXE
11 2ats		<u> </u>	TOG	TEH W/MS	
14:3at10'	<u> </u>		TOG	IH who	BTXE
4at3' _ L			Tra	TEH Whas	BTXE
1 5at5		<u>————</u>	104	TEH Ulgas.	BNE
*	* 11\bar{\bar{\alpha}}	*	*	*	*
Released by:	Jan 10 0	<u>/</u>		Date:	10/4-23-9 D
Released by Courie	er d	···	·····	Date:	
Received by Labora	atory: Marie	Challer		Date:	1/23/4011309
Relinquished by La	C (f			Date:	. •
Received by:				Date:	· · · · · · · · · · · · · · · · · · ·
I Sample Type: W	= water. S = s	oil. 0 = ot	her (spe	aci for)	

Container Type: V = VOA, P = plastic, G = glass, T = brass tube, 0 = other (specify)

Totes to Laboratory:

-Notify SCI if there are any anomalous peaks on GC or other scans -Questions/clarifications...contact SCI at (415) 268-0461

1992 SUPPLEMENTAL EXCAVATION
ANALYTICAL TEST RESULTS

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

DATE RECEIVED: 11/30/92 DATE REPORTED: 12/08/92

LABORATORY NUMBER: 109380

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 609.001

LOCATION: HUBBARD TANK

RESULTS: SEE ATTACHED

Berkeley

Reviewed by

Reviewed

This report may be reproduced only in its entirety.

Los Angeles

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 609.001

LOCATION: HUBBARD TANK

DATE SAMPLED: 11/25/92 DATE RECEIVED: 11/30/92 DATE ANALYZED: 12/5,6/92

DATE REPORTED: 12/08/92

Total Volatile Hydrocarbons with BTXE in Soils & Wastes TVH by California DOHS Method/LUFT Manual October 1989 BTXE by EPA 5030/8020

LAB ID	SAMPLE ID	TVH AS GASOLINE (mg/Kg)	BENZENE (ug/Kg)	TOLUENE (ug/Kg)	ETHYL BENZENE (ug/Kg)	TOTAL XYLENES (ug/Kg)
109380-001	10 @ 6′	ND/1\	MD/6)	ND(5)	ND(5)	ND(5)
109380-001	11 @ 5'	ND(1) ND(1)	ND(5) ND(5)	ND(5)	ND(5)	ND(5)
109380-003	12 @ 4'	ND(1)	ND(5)	ND(5)	ND(5)	ND(5)
109380-004	13 @ 4'	ND(1)	ND(5)	ND(5)	ND(5)	ND(5)
109380-005	14 @ 3'	ND(1)	ND(5)	ND(5)	ND(5)	ND(5)
109380-006	15 @ 3'	7*	ND(5)	ND(5)	15	34
109380-008	17 @ 3′	44*	ND(5)	20	76	170
109380-009	18 @ 5′	27*	ND(5)	ND(5)	62	35
109380-010	19 @ 5'	ND(1)	ND(5)	ND(5)	ND(5)	ND(5)
109380-011	20 @ 7'	ND(1)	ND(5)	ND(5)	ND(5)	ND(5)

ND = Not detected at or above reporting limit; Reporting limit indicated in parentheses.

^{*} Chromatogram does not match the gasoline standard pattern.

QA/QC SUMMARY	QA/	QC	SUMMARY
---------------	-----	----	---------

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 609.001 LOCATION: HUBBARD TANK DATE SAMPLED: 11/25/92
DATE RECEIVED: 11/30/92
DATE ANALYZED: 12/5-8/92
DATE REPORTED: 12/08/92

Total Volatile Hydrocarbons with BTXE in Soils & Wastes TVH by California DOHS Method/LUFT Manual October 1989 BTXE by EPA 5030/8020

LAB ID	SAMPLE ID	TVH AS GASOLINE (mg/Kg)	BENZENE (ug/Kg)	TOLUENE	ETHYL BENZENE (ug/Kg)	TOTAL XYLENES (ug/Kg)
109380-007 109380-018	16 @ 3' COMPOSITE SP-A,B,C,D	97* 11*	ND(5) N/R	27 N/R	99 N/R	45 N/R
109380-023	COMPOSITE SP-E,F,G,H	2*	ND(5)	ND(5)	ND(5)	ND(5)

ND = Not detected at or above reporting limit; Reporting limit
 indicated in parentheses.
* Chromatogram does not match the gasoline standard pattern.

QA/QC SUMMARY

RPD, % 6
RECOVERY, % 85

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 609.001 LOCATION: HUBBARD TANK DATE SAMPLED: 11/25/92
DATE RECEIVED: 11/30/92
DATE ANALYZED: 12/2,3/92
DATE REPORTED: 12/08/92

Total Volatile Hydrocarbons with BTXE in Aqueous Solutions TVH by California DOHS Method/LUFT Manual October 1989 BTXE by EPA 5030/8020

LAB ID	SAMPLE ID	TVH AS GASOLINE (ug/L)	BENZENE	TOLUENE (ug/L)	ETHYL BENZENE (ug/L)	TOTAL XYLENES (ug/L)
109380-012 109380-013	TANK PIT WATER DISPENSER PIT WATER	440*	2.0 ND(0.5)	0.7 0.9	ND(0.5) 2.0	2.1

ND = Not detected at or above reporting limit; Reporting limit
 indicated in parentheses.
* Chromatogram does not match the gasoline standard pattern.

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 609.001 LOCATION: HUBBARD TANK DATE SAMPLED: 11/25/92
DATE RECEIVED: 11/30/92
DATE EXTRACTED:12/02/92
DATE ANALYZED: 12/5-12/7/92

DATE REPORTED: 12/08/92

Extractable Petroleum Hydrocarbons in Soils & Wastes California DOHS Method LUFT Manual October 1989

LAB ID	SAMPLE ID	KEROSENE RANGE (mg/Kg)	DIESEL RANGE (mg/Kg)	REPORTING LIMIT* (mg/Kg)
109380-001	10 @ 6'	ND	3	1
109380-002	11 @ 5'	ND	ND	1
109380-003	12 @ 4'	**	3	1
109380-004	13 @ 4'	**	5	1
109380-005	14 @ 3'	**	220	1
109380-006	15 @ 3′	**	1,100	10
109380-007	16 @ 3'	**	1,700	10
109380-008	17 @ 3'	**	490	10
109380-009	18 @ 5′	**	450	10
109380-010	19 @ 5′	**	4	1
109380-011	20 @ 7′	**	3	1
109380-018	COMPOSITE SP-A,B,C,D	**	930	10
109380-023	COMPOSITE SP-E,F,G,H	**	500	10

ND = Not Detected at or above reporting limit.

* Reporting limit applies to all analytes.

QA/QC SUMMARY: LABORATORY CHECK SAMPLE

^{**} Quantitated as diesel due to overlap of hydrocarbon ranges.

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 609.001 LOCATION: HUBBARD TANK DATE SAMPLED: 11/25/92
DATE RECEIVED: 11/30/92
DATE EXTRACTED:12/03/92
DATE ANALYZED: 12/06/92
DATE REPORTED: 12/08/92

Extractable Petroleum Hydrocarbons in Aqueous Solutions California DOHS Method LUFT Manual October 1989

LAB ID	SAMPLE ID	KEROSENE RANGE (ug/L)	DIESEL RANGE (ug/L)	REPORTING LIMIT* (ug/L)
109380-012	TANK PIT WATER	**	15,000	50
109380-013	DISPENSER PIT WATER	**	15,000	50

QA/QC SUMMARY: BS/BSD

^{*} Reporting limit applies to all analytes.

^{**} Quantitated as diesel due to overlap of hydrocarbon ranges.

Client: Subsurface Consultants Laboratory Login Number: 109380

Project Name: Hubbard Tank Project Number: 609.001

Report Date: 08 December 92

ANALYSIS: pH

Lab ID	Sample ID	Matrix	Sampled	Received	Analyzed	Result	Units	Method	Analyst	QC Batch
109380-018	SP-A,B,C,D COMPOSITE	Soil	25-NOV-92	30-NOV-92	07-DEC-92	7.7	SU *	EPA 904	55 TR	7662
							* Soil	pH meas	sured as wa	ter
								•		
	, *									
	· · · · · · · · · · · · · · · · · · ·									

QC Batch Report

Client:

Subsurface Consultants

Project Name: Hubbard Tank

Project Number: 609.001

Laboratory Login Number: 109380

Report Date: 08 December 92

ANALYSIS: pH

QC Batch Number:

7662

Calibration Verification Results

Sample	Result	TV	Difference	Limit	Analyzed
ICA	10.02	10.00	.02	< 0.10	07-DEC-92
CCV	7.02	7.00	.02	< 0.10	07-DEC-92
CCV	7.00	7.00	.00	< 0.10	07-DEC-92

Sample Duplicate Results

Sample	Duplicate	RPD	Analyzed
7.74	7.74	0%	07-DEC-92

LABORATORY NUMBER: 109380-018 CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 609.001 LOCATION: HUBBARD TANK

SAMPLE ID: COMPOSITE SP-A,B,C,D

DATE SAMPLED: 11/25/92
DATE RECEIVED: 11/30/92
DATE ANALYZED: 12/2,7/92
DATE REPORTED: 12/07/92

PARAMETER	RESULT	UNITS	REPORTING LIMIT	METHOD
RELEASABLE CYANIDE	ИД	mg/Kg	1	SW-846 SECTION 7.3.3.2
RELEASABLE SULFIDE	ND	mg/Kg	1	SW-846 SECTION 7.3.4.1
IGNITABILITY	DOES NO	OT IGNITE		SW-846 SECTION 7.1
FREE LIQUID	NO FREE	E LIQUID E	RESENT	EPA 9095

ND = Not detected at or above reporting limit.

QA/QC SUMMARY	•		RECOVERY,	
		====		=======================================
CYANIDE	<1		97	
SULFIDE	<1		74	
	======	====		~========

Client: Subsurface Consultants Laboratory Login Number: 109380

Project Name: Hubbard Tank Report Date: 07 December 92

Project Number: 609.001

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric) METHOD: SMWW 17:5520BF

ab ID	Sample ID	Matrix	Sampled	Received	Analyzed	Result	Units	RL	Analyst	QC Batc
09380-012	TANK PIT WATER	Water	25-NOV-92	30-NOV-92	02-DEC-92	230	mg/L	5	TR	760
09380-013	DIPENSER PIT WATER	Water	25-NOV-92	30-NOV-92	02-DEC-92	25.	mg/L	5	ŤR	760

ND = Not Detected at or above Reporting Limit (RL).

QC Batch Report

Client:

Subsurface Consultants

Laboratory Login Number: 109380

Project Name:

Hubbard Tank

07 December 92

Project Number: 609.001

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric)

QC Batch

Report Date:

Number:

7605

Blank Results

Sample ID Result

Units MDL

Method

Date Analyzed

BLANK

ND

5 mg/L

SMWW 17:5520BF

02-DEC-92

Spike/Duplicate Results

Sample ID Recovery

Method

Date Analyzed

BS

87%

SMWW 17:5520BF

02-DEC-92

BSD

86%

SMWW 17:5520BF

02-DEC-92

Average Spike Recovery Relative Percent Difference

86% 1.2%

Control Limits 80% - 120%

< 20%

Client: Subsurface Consultants Laboratory Login Number: 109380

Project Name: Hubbard Tank Report Date: 07 December 92

Project Number: 609.001

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric) METHOD: SMWW 17:5520EF

Lab ID	Sample ID	Matrix	Sampled	Received	Analyzed	Result	Units	RL	Analyst	QC Batch
109380-001	10 a 6'	Soil	25-NOV-92	30-NOV-92	04-DEC-92	МД	mg/Kg	50	TR	7651
109380-002	11 a 5'	Soil	25-NOV-92	30-NOV-92	04-DEC-92	ОИ	mg/Kg	50	TR	7651
109380-003	12 a 4'	Soil	25-NOV-92	30-NOV-92	04-0EC-92	МО	mg/Kg	50	TR	7651
109380-004	13 a 4'	Soil	25-NOV-92	30-NOV-92	04-DEC-92	ND	mg/Kg	50	τR	7651
109380-005	14 8 3′	Soil	25-NOV-92	30-NOV-92	04-DEC-92	190	mg/Kg	50	TR	7651
109380-006	15 a 3'	Soil	25-NOV-92	30-NOV-92	04-DEC-92	690	mg/Kg	50	TR	7651
109380-007	16 a 3'	Soil	25-NOV-92	30-NOV-92	04-DEC-92	420	mg/Kg	50	TR	7651
109380-008	17 a 3'	Soil	25-NOV-92	30-NOV-92	04-DEC-92	190	mg/Kg	50	TR	7651
109380-009	18 a 5'	Soil	25-NOV-92	30-NOV-92	04-DEC-92	310	mg/Kg	50	TR	7651
109380-010	19 a 5'	Soil	25-NOV-92	30-NOV-92	04-DEC-92	ND	mg/Kg	50	TR	7651
109380-011	20 a 7'	Soil	25-NOV-92	30-NOV-92	04-DEC-92	ND	mg/Kg	50	TR	7651
109380-018	SP-A,B,C,D COMPOSITE	Soil	25-NOV-92	30-NOV-92	04-DEC-92	800	mg/Kg	50	TR	7651
109380-023	SP-E,F,G,H COMPOSITE	Soil	25-NOV-92	30-NOV-92	04-DEC-92	640	mg/Kg	50	TR	7651

ND = Not Detected at or above Reporting Limit (RL).

QC Batch Report

Client:

Subsurface Consultants

Laboratory Login Number: 109380

Project Name: Hubbard Tank

07 December 92

Project Number: 609.001

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric)

QC Batch

Report Date:

Number:

7651

Blank Results

Sample ID Result

MDL Units

Method

Date Analyzed

BLANK

ИД

50 mg/Kg SMWW 17:5520EF

04-DEC-92

Spike/Duplicate Results

Sample ID Recovery

Method

Date Analyzed

BS

888

SMWW 17:5520EF

04-DEC-92

SMWW 17:5520EF

BSD

84%

04-DEC-92

Average Spike Recovery Relative Percent Difference

86% 4.4% Control Limits 80% - 120%

< 20%

LABORATORY NUMBER: 109380 DATE SAMPLED: 11/25/92

CLIENT: SUBSURFACE CONSULTANTS

PROJECT: 609.001

DATE RECEIVED: 11/30/92
DATE ANALYZED: 12/07/92

LOCATION: HUBBARD TANK

DATE REPORTED: 12/07/92

ANALYSIS: TOTAL LEAD

ANALYSIS METHOD: EPA 7420

LAB ID	SAMPLE ID	RESULT	UNITS	REPORTING LIMIT
109380-001	10 @ 6'	3	mg/Kg	3
109380-002	11 @ 5'	3	mg/Kg	3
109380-003	12 @ 4'	4	mg/Kg	3
109380-004	13 @ 4'	5	mg/Kg	3
109380-005	14 @ 3'	120	mg/Kg	3
109380-006	15 @ 3'	72	mg/Kg	3
109380-007	16 @ 3'	9	mg/Kg	3
109380-008	17 @ 3'	20	mg/Kg	3
109380-009	18 @ 5'	5	mg/Kg	3
109380-010	19 @ 5'	4	mg/Kg	3
109380-011	20 @ 7′	3	mg/Kg	3

QA/QC SUMMARY:

	2 = = = = = = = = = = = = = = = = = = =
RPD, % RECOVERY, %	3 93

CLIENT: SUBSURFACE CONSULTANTS

PROJECT: 609.001

LOCATION: HUBBARD TANK

DATE SAMPLED: 11/25/92

DATE RECEIVED: 11/30/92 DATE ANALYZED: 12/01/92

DATE REPORTED: 12/07/92

ANALYSIS: DISSOLVED LEAD ANALYSIS METHOD: EPA 7421

LAB ID	SAMPLE ID	RESULT	UNITS	REPORTING LIMIT
109380-012	TANK PIT WATER	ND	ug/L	3
109380-013	DISPENSER PIT WATER	6	ug/L	3

ND = Not detected at or above reporting limit.

RECOVERY, %

CLIENT: SUBSURFACE CONSULTANTS

PROJECT: 609.001

LOCATION: HUBBARD TANK

DATE SAMPLED: 11/25/92

DATE RECEIVED: 11/30/92 DATE ANALYZED: 12/03/92

DATE REPORTED: 12/07/92

ANALYSIS: STLC LEAD

EXTRACTION METHOD: WASTE EXTRACTION TEST: CCR TITLE 26 SECTION 22-66700

ANALYSIS METHOD: EPA 7420

LAB ID SAMPLE ID RESULT UNITS REPORTING LIMIT

109380-023 COMPOSITE SP-E,F,G,H 1000 ug/L 60

QA/QC SUMMARY:

RPD, %

RECOVERY, % 98

LABORATORY NUMBER: 109380-018
CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 609.001 LOCATION: HUBBARD TANK

SAMPLE ID: COMPOSITE SP-A,B,C,D

DATE SAMPLED: 11/25/92
DATE RECEIVED: 11/30/92
DATE ANALYZED: 12/03/92
DATE REPORTED: 12/07/92

Soluble Title 26 Metals in Soils & Wastes Extraction by Waste Extraction Test: CCR Title 26 Section 22-66700

METAL	RESULT	REPORTING LIMIT	METHOD
	ug/L	ug/L	
Antimony	400	300	EPA 6010
Arsenic	2000	2000	EPA 6010
Barium	5800	50	EPA 6010
Beryllium	20	10	EPA 6010
Cadmium	ND	30	EPA 6010
Chromium (total)	1400	50	EPA 6010
Cobalt	420	90	EPA 6010
Copper	ND	50	EPA 6010
Lead	1000	1000	EPA 6010
Mercury	ND	0.1	EPA 7471
Molybdenum	ND	70	EPA 6010
Nickel	1800	200	EPA 6010
Selenium	ND	30	EPA 7740
Silver	ND	50	EPA 6010
Thallium	ND	3000	EPA 6010
Vanadium	1100	50	EPA 6010
Zinc	12000	100	EPA 6010

ND = Not detected at or above reporting limit.

QA/QC SUMMARY

	RPD.%	RECOVERY, %		RPD,%	RECOVERY, %
Antimony	. 4	106	Mercury	4	102
Arsenic	2	98	Molybdenum	<1	106
Barium	1	108	Nickel	<1	111
Beryllium	2	108	Selenium	4	109
Cadmium	3	96	Silver	<1	107
Chromium	3	110	Thallium	<1	99
Cobalt	1	108	Vanadium	<1	109
Copper	<1	105	Zinc	1	105
Lead	<1	92			

Curtis & Tompkins, Ltd.

LABORATORY NUMBER: 109380-018

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 609.001

LOCATION: HUBBARD TANK

DATE SAMPLED: 11/25/92

DATE RECEIVED: 11/30/92

DATE ANALYZED: 12/04/92

DATE REPORTED: 12/07/92

SAMPLE ID: COMPOSITE SP-A,B,C,D

EPA METHOD 8240: VOLATILE ORGANICS IN SOILS & WASTES

COMPOUND	Result	Reporting *
	ug/Kg	Limit (ug/Kg)
Chloromethane	ND	500
Bromomethane	ND	500
Vinyl chloride	ND	500
Chloroethane	ND	500
Methylene chloride	ND	1,000
Acetone	ND	1,000
Carbon disulfide	ND	300
Trichlorofluoromethane	ND	300
1,1-Dichloroethene	ND	300
1,1-Dichloroethane	ND	300
cis-1,2-Dichloroethene	ND	300
trans-1,2-Dichloroethene	ND	300
Chloroform	ND	300
Freon 113	ND	300
1,2-Dichloroethane	ND	300
2-Butanone	ND	500
1,1,1-Trichloroethane	ND	300
Carbon tetrachloride	ND	300
Vinyl acetate	ND	500
Bromodichloromethane	ND	300
1,2-Dichloropropane	ND	300
cis-1,3-Dichloropropene	ND	300
Trichloroethene	ND	300
Dibromochloromethane	ND	300
1,1,2-Trichloroethane	ND	300
Benzene	ND	300
trans-1,3-Dichloropropene	ND	300
Bromoform	ND	300
2-Hexanone	ND	500
4-Methyl-2-pentanone	ND	500
1,1,2,2-Tetrachloroethane	ND	300
Tetrachloroethene	ND	300
Toluene	ND	300
Chlorobenzene	ND	300
Ethyl benzene	ND	300
Styrene	ND	300
Total xylenes	ND	300
TO CAT WATCHED	.,,	

ND = Not detected at or above reporting limit
* High reporting limit due to high concentration of hydrocarbons.

OA/OC SUMMARY: SURROGATE RECOVERIES

1,2-Dichloroethane-d4	84	8
Toluene-d8	81	ક્ર
Bromofluorobenzene	87	ક

Curtis & Tompkins, Ltd.

LABORATORY NUMBER: METHOD BLANK
CLIENT: SUBSURFACE CONSULTANTS

DATE ANALYZED: 12/04/92
DATE REPORTED: 12/07/92

PROJECT ID: 609.001 LOCATION: HUBBARD TANK

SAMPLE ID: n/a

EPA METHOD 8240: VOLATILE ORGANICS IN SOILS & WASTES

COMPOUND	Result	Reporting
	ug/Kg	Limit (ug/Kg)
Chloromethane	ND	200
Bromomethane	ND	200
Vinyl chloride	ND	200
Chloroethane	ND	200
Methylene chloride	ND	500
Acetone	ND	500
Carbon disulfide	ND	100
Trichlorofluoromethane	ND	100
1,1-Dichloroethene	ND	100
1,1-Dichloroethane	ND	100
cis-1,2-Dichloroethene	ND	100
trans-1,2-Dichloroethene	ND	100
Chloroform	ND	100
Freon 113	ND	100
1,2-Dichloroethane	ND	100
2-Butanone	ND	200
1,1,1-Trichloroethane	100	100
Carbon tetrachloride	ND	100
Vinyl acetate	ND	200
Bromodichloromethane	ND	100
1,2-Dichloropropane	ND	100
cis-1,3-Dichloropropene	ND	100
Trichloroethene	ND	100
Dibromochloromethane	ND	100
1,1,2-Trichloroethane	ND	100
Benzene	ND	100
trans-1,3-Dichloropropene	ND	100
Bromoform	ИD	100
2-Hexanone	ND	200
4-Methyl-2-pentanone	ND	200
1,1,2,2-Tetrachloroethane	ND	100
Tetrachloroethene	ND	100
Toluene	ND	100
Chlorobenzene	ND	100
Ethyl benzene	ND	100
Styrene	ND	100
Total xylenes	ND	100
room ni nomen		

ND = Not detected at or above reporting limit

QA/QC SUMMARY: SURROGATE RECOVERIES

=======================================		.====
1,2-Dichloroethane-d4	101 %	
Toluene-d8	93 %	

Bromofluorobenzene 94 %

MS/MSD SUMMARY SHEET FOR EPA 8240

Matrix Sample Number: 109380-018

Lab No.: QC37819 QC37820 Sample type: SOIL

Batch No.: 7627

Date Analyzed: 04-DEC-92 Spike File: BL407

Spike Dup File: BL408

MATRIX SPIKE DATA (spiked at 25 ppb)

SPIKE COMPOUNDS	READING	RECOVERY	STATUS	LIMITS *
1,1-Dichloroethene	21.94	88 %	OK	59 - 172
Trichloroethene	21.72	87 %	OK	62 - 137
Benzene	21.29	85 %	OK	66 - 142
Toluene	23.34	93 %	OK	59 - 139
Chlorobenzene	22.53	90 ક	OK	60 - 133
SURROGATES				
1,2-Dichloroethane-d4	21.23	85 %	OK	70 - 121
Toluene-d8	19.84	79 %	NOT OK	81 - 117
Bromofluorobenzene	23.56	94 ક	OK	74 - 121

MATRIX SPIKE DUP DATA (spiked at 25 ppb)

	:========:			========
SPIKE COMPOUNDS	READING	RECOVERY	STATUS	LIMITS
1,1-Dichloroethene	21.65	87 %	OK	59 - 172
Trichloroethene	20.11	80 ક	OK	62 - 137
Benzene	20.50	82 %	OK	66 - 142
Toluene	21.98	88 %	OK	59 - 139
Chlorobenzene	20.36	81 %	OK	60 - 133
SURROGATES				
1,2-Dichloroethane-d4	22.97	92 %	OK	70 - 121
Toluene-d8	19.58	78	NOT OK	81 - 117
Bromofluorobenzene	22.74	91 ક	OK	74 - 121

RPD DATA

######################################		========				====
SPIKE COMPOUNDS	SPIKE	SPIKE DUP	RPD	STATUS	LIMITS	*
1,1-Dichloroethene	21.94	21.65	1	₹ OK	<	22
Benzene	21.72	20.11	8	₹ OK	<	21
Trichloroethene	21.29	20.50	4	ક OK	<	24
Toluene	23.34	21.98	6	% OK	<	21
Chlorobenzene	22.53	20.36	10	% OK	<	21

^{*} Limits from CLP SOW 2/88

LCS SUMMARY SHEET FOR EPA 8240

Lab No.: QC37818 Sample type:

Batch No.: 7627

SOIL

Date Analyzed: 04-DEC-92 Spike File: BL409

BLANK SPIKE DATA (spiked at 50 ppb)

SPIKE COMPOUNDS 1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	READING 53.93 43.93 45.93 47.72 45.28	RECOVERY 108 % 88 % 92 % 95 % 91 %	STATUS OK OK OK OK OK	LIMITS * 59 - 172 62 - 137 66 - 142 59 - 139 60 - 133
SURROGATES 1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	55.93	112 %	OK	70 - 121
	49.41	99 %	OK	81 - 117
	51.78	104 %	OK	74 - 121

^{*} Limits from CLP SOW 2/88

CHAIN OF C	SUSTODY FO	RI	M																									F	ŊĠ	E_				OF			
PROJECT NAME:	Hubbo	ኢፎረ	1	T	an	<u>k</u> _																						_ [ſΛ	IVF.	/SIS	S RI	QU	EST	D 	-1
JOB NUMBER: _	609.001 ACT: <u>Jeri</u> Al								_	LAI	B: _			\mathcal{C}	ur	ti-	5 (r	Te	<u>9</u> n	121	kie	15													n	
PROJECT CONTA	act: <u>Jeri</u> Al	647	aμ	.de	R_					TU	RNA	ARC	NUC	ID:			No	Rr	nа	_								_			İ				1	CIETANS	
SAMPLED BY: _	Dennis Alex	AV	rde	er						RE	QUI	ES1	ΓED	B	Y: _		بعا	2	A	ex	ai	rd	el	·				_					-		- 1		۸
				MAT	BIX			(XON	1IAII	NEUS	 } 		ME PITE	SEI	OD)				SAN	<i>A</i> PL	ING	DΛ	ΙE										Lead	3///	ζι άα ια>
LABORATORY I.D. NUMBER	SCI SAMPLE NUMBER	WATER	SOIL	WASTE	AIR		40A	ָרָלָ בַּיּי					HCL	12804	E S S H	<u>છ</u>	NONE	MC			DAY	1	EVI		71	 МЕ		NOTES	TVHI	BTXE	TEH	700	RCI	8240	5770		+1966
	SP-A)		Ż				- - - -	- - - - - -	-		<u> </u>				- - -	X	 	1	1	12	2	C	1/2	-	-	-			X		X	X	\overline{X}	X	_ _ >	\ \ X	
	Sb-D) g			 		_ -		 -		- - - -	_		- -	_		 	_	- -		-		-		-									1 1		_ -	-	- -
	SP-E) + SP-F + SP-G \$		X				- - - - - -				<u> </u>		-			X		1	1		25	, ,	7 2	- - - -	-		_	_	X	X	X	X	_		X	 -	- -
	SP-G \$	_	- -	_		-	_ -	- -		-											- -	- -			- -						_		_				
COMMENTS & NO	IES:													Ţ-	••••													OY I									
COMMENTO A NO	.20.													1)er	vvi	0	al	Sigr Wo Sigr	m	le1	4/3	0/47	E/T E/T	:05	اسم		EIVI							DATE	<u> </u>	
															:,L.Ę,	100	טט	1. ((Oigi	ш	0107						,	_								1	
l L														138	ELE	۸SE	D B	Y: ((Sigi	nat	ure)		DΛΙ	E/T	IME		EC	EIVI	ED) 	Y	Sig	nalu	re) <u>[]</u>	30.	MIE らる。	17	<i>√o</i> ≥
																	S	SU	ıb	SI	ui	·[:	ac	e		Co	> 11	St.		la	'n	ts	, <u>]</u>	ln	C.		

171 12TH STREET, SUITE 201, OAKLAND, CALIFORNIA 94607 (510) 268-0461 · FAX: 510-268-0137

CHAIN OF CUSTODY FO	DR	M																										PΛ	GE				_ C)F_			
PROJECT NAME:Hub	bas	<u>d</u>		Tai	nΚ																					_			,	VΝΛ	LYS	IS I			SIE	D :	
JOB NUMBER: 609. PROJECT CONTACT: Leri A SAMPLED BY: Denvis Ale	oo 1 lex	<u>'</u> 24	de	 R				_	TU	ıRI	۱AF	3O1	UNI	D: _			Ν	ORV	u _a	4													Lead (Olongo Lille)				
SCI LABORATORY SAMPLE		Γ	Γ	IRIX				CON	ITAII	NEI	ns	_	—[?]		EM'	VED	_					LIN	- DA	JE				77	ļ.	,	7 7	had la	י וכ	'l			
I.D. NUMBER NUMBER	WATER			AB			Ø N	17EB	PINT	12 BE	Jak	_	된	₽SQF HSSQr	E S S S	301	NONE	MONI		DAY	-	YEA	ŧ	T	IME	- :	NOTES					1/2/X		-			
20@7'	-	文											_	-		-	_	<u> </u>	- -	2 5	<u>-</u>	<u>- -</u>	<u>-</u> -	-	- -	- - - -	- -	1	1		1	1	_l_	- -	· 	 	
Tank Pit wake	X	-	-	-			X	X	-		X		入	-		X	_	-			-}-	-	- -		-	-	-	1	İ		(X			. . <u> </u>	_		
Dispenser Pit WATER	X			-		_ _ _	X	X	X			_ _ _	X	_ _ _		X						_ - - -				- - - -		X	<u>/</u>	<u> </u>	\\ \\ \ -\-	_ _	X				
	-					— — —						_ _ _			 	- 							- -	- - - - -					- - -		- - -			- -			
		<u>_</u> _	<u></u>	<u></u>					[!			<u> </u>	1									I OF	L_	118	 TO	DV	DE)BI				_l_ 	1.	<u> </u>	
COMMENTS & NOTES:														0	PM	<u>Ma</u>	a	: (Sig	n0	ture.)	DA So	IE/I	IME 2:0:	5 _{p.m}	RE	CEIV	ΈD	BY:	(Si	gna					IIME	
														UEL	.EA	SED	Β'n	': (Siç	gna	lure)	IJΛ	IE/I	IME		1 %E	CEIV	にリ	BY	(5)	gna	ure	; ;	ייעו	JE/ 	i avit	1 1

Subsurface Consultants, Inc.

171 12TH STREET, SUITE 201, OAKLAND, CALIFORNIA 94607 (510) 268-0461 - FAX: 510-268-0137

CHAIN OF C	USTODY FO	ORM			PAGE OF
PROJECT NAME:		Hubbard To	unk		ANALYSIS REQUESTED
				Curtis & Tompkins	
PROJECT CONTA	CT: Jeri A	lexander	TURNAROUN	D: Normal	
SAMPLED BY:	Dennis Ale	xander	REQUESTED	BY: <u>Leei Alexander</u>	
		MAITHX	CONTAINERS	METHOD PRESERVED SAMPLING DATE	read
LABORATORY 1D. NUMBER	SCI SAMPLE NUMBER	WATER SOIL WASTE	OA INT UBE		NOTES TOG TOG TOG
	10@6'	ו ו ועו ו	VOA TUBE HCL		XXXXX
	11 @ 5'		 	<u>├─├─ </u> ॅ}─ ┼┼┼┼┼┼┼┼┼┼	
	13@4'			△ + -+ -+ - × + -+ -+ + + -	
	14@3' 15@3'	<u> </u>		<u> </u>	
	16@3'				
	1703' 1805'				
	1905'			X 11/2592	
				CHAIN OF CU	JSTODY RECORD

COMMENTS & NOTES:	CHAIN OF CUSTODY RECORD
COMMENTS & NOTES.	RELEASED BY: (Signature) DATE/TIME RECEIVED BY: (Signature) DATE/TIME
	Dennis alexandes 1/30/52 2:05pm
	RELEASED BY: (Signature) DATE/TIME RECEIVED BY: (Signature) DATE/TIME
	RELEASED BY: (Signature) DATE/TIME RECEIVED BY (Signature) DATE/TIME
	11-30.92 1.405
•	
	Subsurface Consultants, Inc.
	17.1 12.11.1 STREET, SUITE 20.1, OAKLAND, CALIFORNIA 94607 (5.10) 268-046.1 · FAX: 5.10-268-0137

JUNE 1993 MONITORING EVENT
ANALYTICAL TEST RESULTS

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

DATE RECEIVED: 06/02/93 DATE REPORTED: 06/09/93

LABORATORY NUMBER: 111081

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 609.001

LOCATION: HUBBARD STREET TANK PROJECT

RESULTS: SEE ATTACHED

Reviewed by

Reviewed by

This report may be reproduced only in its entirety.

Berkeley Los Angeles

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 609.001

LOCATION: HUBBARD STREET TANK PROJECT

DATE SAMPLED: 06/01/93

DATE RECEIVED: 06/02/93 DATE ANALYZED: 06/05/93

DATE REPORTED: 06/09/93

Total Volatile Hydrocarbons with BTXE in Aqueous Solutions
TVH by California DOHS Method/LUFT Manual October 1989
BTXE by EPA 5030/8020

LAB ID	SAMPLE ID	TVH AS GASOLINE (ug/L)	BENZENE	TOLUENE	ETHYL BENZENE (ug/L)	TOTAL XYLENES (ug/L)
111081-1 111081-2 111081-3	MW-1 MW-2 MW-3	160* 210* 280*	ND(0.5) ND(0.5) ND(0.5)	ND(0.5) ND(0.5) ND(0.5)	ND(0.5) ND(0.5) ND(0.5)	ND(0.5) ND(0.5) ND(0.5)

*Does not match gasoline standard.

ND = Not detected at or above reporting limit; Reporting limit indicated in parentheses.

QA/QC SUMMARY	QA/QC	SUMMARY
---------------	-------	---------

RPD, % 7
RECOVERY, % 107

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 609.001

LOCATION: HUBBARD STREET TANK PROJECT

DATE SAMPLED: 05/27/93
DATE RECEIVED: 06/02/93

DATE RECEIVED: 06/02/93
DATE ANALYZED: 06/07/93

DATE REPORTED: 06/09/93

Total Volatile Hydrocarbons with BTXE in Soils & Wastes TVH by California DOHS Method/LUFT Manual October 1989 BTXE by EPA 5030/8020

LAB ID	SAMPLE ID	TVH AS GASOLINE (mg/Kg)	BENZENE (ug/Kg)	TOLUENE	ETHYL BENZENE (ug/Kg)	TOTAL XYLENES (ug/Kg)	
111081-4	MW-1 at 3.5	ND(1)	ND(5)	ND(5)	ND(5)	ND(5)	•

ND = Not detected at or above reporting limit; Reporting limit indicated in parentheses.

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 609.001

LOCATION: HUBBARD STREET TANK PROJECT

DATE SAMPLED: 05/28/93 DATE RECEIVED: 06/02/93 DATE ANALYZED: 06/04/93

DATE REPORTED: 06/09/93

Total Volatile Hydrocarbons with BTXE in Soils & Wastes TVH by California DOHS Method/LUFT Manual October 1989 BTXE by EPA 5030/8020

LAB ID	SAMPLE ID	TVH AS GASOLINE (mg/Kg)	BENZENE (ug/Kg)	TOLUENE	ETHYL BENZENE (ug/Kg)	TOTAL XYLENES (ug/Kg)
111081-5	MW-2 at 3.0	ND(1)	ND(5)	ND(5)	ND(5)	ND(5)
111081-6	MW-3 at 2.5	ND(1)	ND(5)	ND(5)	ND(5)	ND(5)

ND = Not detected at or above reporting limit; Reporting limit indicated in parentheses.

QA/QC SUMMARY

RPD, %
RECOVERY, %
100

Client: Subsurface Consultants Laboratory Login Number: 111081

Project Name: Hubbard Tank Report Date: 09 June 93

Project Number: 609.001

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric) METHOD: SMWW 17:5520BF

Lab ID	Sample ID	Matrix	Sampled	Received	Analyzed	Result	Units	RL	Analyst	QC Batc
111081-001	MW-1	Water	01-JUN-93	02-JUN-93	08-JUN-93	ND	mg/L	5	TR	949
111081-002	MW-2	Water	01-JUN-93	02-JUN-93	08-JUN-93	ND	mg/L	5	TR	949
11081-003	MW-3	Water	01-JUN-93	02-JUN-93	08-JUN-93	ND	mg/L	5	TR	949
						,				
						2				
		-								
		•								

ND = Not Detected at or above Reporting Limit (RL).

QC Batch Report

Client:

Subsurface Consultants

Laboratory Login Number: 111081

Project Name: Hubbard Tank

09 June 93 Report Date:

Project Number: 609.001

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric) QC Batch

Number: 9490

Blank Results

Sample ID Result MDL

Units

Method

Date Analyzed

BLANK

ND

5 mg/L SMWW 17:5520BF

08-JUN-93

Spike/Duplicate Results

Sample ID Recovery

Method

Date Analyzed

BS

SMWW 17:5520BF

08-JUN-93

BSD

888 85%

SMWW 17:5520BF

08-JUN-93

Average Spike Recovery Relative Percent Difference

86% 2.6% Control Limits 80% - 120%

< 20%

Client: Subsurface Consultants Laboratory Login Number: 111081

Project Name: Hubbard Tank Report Date: 09 June 93

Project Number: 609.001

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric) METHOD: SMWW 17:5520EF

.ab IO	Sample ID	Matrix	Sampled	Received	Analyzed	Result	Units	RL	Analyst	QC Batc
111081-004	MW-1 a 3.5	\$oil	27-MAY-93	02-JUN-93	04-JUN-93	ND	mg/Kg	50	TR	947
111081-005	MW-2 @ 3.0	Soil	27-MAY-93	02-JUN-93	04-JUN-93	ND	mg/Kg	50	TR	947
11081-006	MW-3 a 2.5	Soil	27-MAY-93	02-JUN-93	04-JUN-93	NO:	mg/Kg	50	TR	947
						•				
						-				
						.*				

ND = Not Detected at or above Reporting Limit (RL).

QC Batch Report

Client:

Subsurface Consultants

Laboratory Login Number: 111081

Project Name: Hubbard Tank

09 June 93

Project Number: 609.001

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric) QC Batch

Number:

Report Date:

9472

Blank Results

Sample ID Result

MDL Units Method

Date Analyzed

BLANK

ND

50 mg/Kg

SMWW 17:5520EF

04-JUN-93

Spike/Duplicate Results

Sample ID Recovery

Method

Date Analyzed

BS

85%

SMWW 17:5520EF

04-JUN-93

BSD

84%

SMWW 17:5520EF

04-JUN-93

Control Limits

Average Spike Recovery Relative Percent Difference 85%

80% - 120% -

.9%

< 20%

LABORATORY NUMBER: 111081

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 609.001

LOCATION: HUBBARD STREET TANK PROJECT

DATE SAMPLED: 06/01/93 DATE RECEIVED: 06/02/93 DATE EXTRACTED: 06/03/93 DATE ANALYZED: 06/04/93 DATE REPORTED: 06/09/93

Extractable Petroleum Hydrocarbons in Aqueous Solutions California DOHS Method LUFT Manual October 1989

LAB ID	CLIENT ID	KEROSENE RANGE (ug/L)	DIESEL RANGE (ug/L)	REPORTING LIMIT* (ug/L)
111081-1	MW-1	ND	ND	
111081-2	MW-2	ND	150 +	
111081-3	MW-3	ND	170 +	

ND = Not detected at or above reporting limit.

- * Reporting limit applies to all analytes.
- + Pattern does not match standard

QA/QC SUMMARY

RPD, %	4
RECOVERY, %	84

LABORATORY NUMBER: 111081

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 609.001

LOCATION: HUBBARD STREET TANK PROJECT

DATE SAMPLED: 05/27,28/93 DATE RECEIVED: 06/02/93 DATE EXTRACTED: 06/03/93 DATE ANALYZED: 06/05/93 DATE REPORTED: 06/09/93

Extractable Petroleum Hydrocarbons in Soils & Wastes California DOHS Method LUFT Manual October 1989

LAB ID	SAMPLE ID	KEROSENE RANGE (mg/Kg)	DIESEL RANGE (mg/Kg)	REPORTING LIMIT* (mg/Kg)
111001 4	MU-1 -+ 2 F	ND	ND	1
111081-4 111081-5	MW-1 at 3.5 MW-2 at 3.0	**	9 +	1
111081-6	MW-3 at 2.5	**	10 +	1

ND = Not Detected at or above reporting limit.

* Reporting limit applies to all analytes.

+ Pattern does not match standard

QA/QC SUMMARY

RPD, %	5
RECOVERY, %	89

							1)			į					•									ſ		ì				
CHAIN OF CU	STODY FOR	M																									F	PAC			1240	10.0	O			 -1	
PROJECT NAME: JOB NUMBER: PROJECT CONTAC SAMPLED BY:	1009.001 ot: J.Alexan	de	~		Tan					TUR	NAR	QU	ND): _		\mathcal{V}_0	10	na Ca	J M	v							 	اد	t h	5MWW175520EF		IS RE		5011	D		
			М	ATF	RIX	T		CON	ITAI	NERS				THO			_			4 4 4 5		~ r	ATI					BE		SMI							
LABORATORY I.D. NUMBER	SCI SAMPLE NUMBER	WATER	SOIL	1 2 C	_		4	LITER	FINIT	TUBE		اپر	80	HNO3	ш	NE	 40M	тн	S DA	AMI Y	YE	_[-	ME		NOTES	TVH +BTEX	TEHE	10g							
	MW-1	≸ X	8	<u> </u>	₹		3	5 2	計	릭_	╀╌┨	보 メ	끸	튀	X	ž	ग	_	0		9	_	7	3	4	5	<u>z</u>	×	X	×							
111081 -1	MW-2	[]	_	+	_ _		3	2				Ź		士	· α		0	6	0		2	3	1	4	3	0		Y	X	X			\bot	_	_ -	_	
-3	MW-3	凶		4			3	2	_	_ _	-	2			스	 -	0	6	P	4	9	3	1	5	4	5	-	ᅩ	Ĭ [×]	X	-	$\left \cdot \right $			-	-	
	MW-1 at 3.5	-	,	╁	-{-	\vdash	\vdash	\dashv	力	$\frac{1}{x}$	+		-		人		O	5	2	1	9	3		_				×	区	×						1	1
-5	MW-7 at 3.0		Ź							X_					Х		0	5	2	8	7	3	_		_	-	-	X	X	X		$\left - \right $	-		- -	+	$\left\{ \right.$
V -6	MW-3at 2.5	lacksquare	4	4	_ _					싀_					二		O	5	2	8	9	3	-	-	\vdash	├-	╂	-		+-	 -	\vdash	-	\dashv		-	
		+	├─┼	╁	┪		-		1													_															1
				丁																		_	-	_	_	-	╀	-	╂	┨—	\vdash	$\left \cdot \right $		-	\dashv	- -	-
		-		+	\dashv	-	_	-	$\left \cdot \right $		-		_		-	 -						-	-	-													
		- !	<u>ll</u>			<u>ميــــــــــ</u>	! -	<u> </u>	لسيا				L	J			•																				7
	CHAIN	OF (CUS	TO	DY R	EC(ORE)			1						СО	ММ	ENT	S &	NOT	ES	:														
RELEASED BY: (Sign	ature) DATE	/ TIM	NE.	RE	ECEIVI	ED B	Y: (6	Signa	atgre	a) /		•	7	E / T		ı																					I
Devision Alexand	11.	24	5	0	1 _m	M	3	Q,	Tu	M.	1	6/	Q/	3 2) :4	5																					
RELEASED BY: (Sign				RE	ECEIX	20 E	3Y: (8	Signa	ature	a)				E/T																لليسلسينين							
RELEASED BY: (Sign	ature) DATE	/ TIA	ЛE	RI	ECEIV	ED E	3Y: (Sign	ature	e)	· · · · · ·	E	OAT	E/T	IME																	nt					
RELEASED BY: (Sign	pature) DATE	-1 ! / TIN	ΜE	RI	ECEIV	ED E	3Y: (Sign	atur	e)		C	TAC	E/T	TIME			17	1 12	eTH	ST	REI (5	ET, 10)	SU 268	ITE 1-04	201 61	FA	AKI X:	LAN 510-	D, (268	CALI 1-013	IFOF 37	INIA	94	607		

WELL DEVELOPMENT FORM

Project Name: HUBBARD TANK	Well Number:
Job No.: 609.001	Well Casing Diameter: inches
Developed By:	Date:
TOC Elevation:	
TOC Elevation.	
20	121
Depth to Casing Bottom (below TOC)	95=3.63
Depth to Groundwater (below TOC) $\frac{3.68-0.5}{2}$	1/ 7-
Feet of Water in Well	16.70 feet
Casing Volume (feet of water x Casing DIA 2 x 0.0408	gallons
Tonn 9 Posts	/ Floatrania Soundar / Other
Development Method	And the state of t
Development Method	
1 7.20 66.0 l. 7.14 65-6 1.	73×1000 16×1000 89×1000 11 85×1000 11 11 11 11 11 11 11 11 11
73 7-19 65.4 1	.46×1000
36 718 65.3 1	.40X100011
29 7.19 65.4 1	.43×1000
otal Gallons Removed	gailons
Depth to Groundwater After Development (below TOC	$\frac{b \cdot 4c}{b \cdot 4c}$ feet
ubsurface Consultants	HUBBARD TANK OAKLAND, CA

Date:	neter:	feet feet gallons
Well Casing Diar Date: Weather: Electronic Soul Well Casing Diar Weather: Salining Salining	neter:	feet feet feet gallons er Comments
Electronic Soul	nder / Oth	feet feet feet gallons er Comments
Electronic Soul	nder / Oth	feet feet feet gallons er Comments
Electronic Soul	nder / Oth	feet feet feet gallons er Comments
Electronic Soul	ty S%	feet feet gallons
Electronic Soul	ty S%	feet gallons ser Comments
Electronic Soul	ty S%	gallons er Comments
Electronic Sour	ty S%	Comments
Electronic Soul MENTS tivity os/cm) Salini	ty S%	Comments
IENTS tivity os/cm) Salinit	ty S%	Comments
NENTS tivity os/cm) Salinit	ty S%	Comments
NENTS tivity os/cm) Salinin	ty S%	Lice
		A C C A L C C
3 X 1006		\
) X/000		11
X1000		11
(1000		<u> </u>
<u> </u>		17
<u> </u>		,
		gallons
	7-25	feet
•		
	×/000	7-25

609.001

6/1/93

WELL DEVELOPMENT FORM

Project Name: HUBBARD TANK	Well Number:
Job No.: 609.001	Well Casing Diameter: inches
Developed By: FU	Date:
TOC Elevation:	Weather:
	1 1/1 1/2
Depth to Casing Bottom (below TOC)	/5 // ₂ /5 / feet
Depth to Casing Bottom (below TOC) Depth to Groundwater (below TOC) 3.34	-0.05=3.29 $4-81/2=3.4$
Feet of Water in Well	11 X T
Casing Volume (feet of water x Casing DIA 2 x 0.0	0408) gallons
Depth Measurement Method Tape & Pa	aste / Electronic Sounder / Other
Development Method	and continue
you for fire	C ^T
	ASUREMENTS
Gallons Removed pH Temp (%) 7-02 7-5.3 1 5.76 68.8 3 696 66.2 7-04 64.9 7-03 64.9 7-08 64.4 7-08 64.8 7-06 64.8 7-06 64.8 7-06 64.8 7-06 64.2 Total Gallons Removed	Conductivity (micromhos/cm) Salinity S% Comments 2.36 × 1000 2.00 × 1000 1.88×1000 1.90 × 1000 1.69 × 1000 1.45 × 1000 1.45 × 1000 1.43 × 1000 1.39 × 1000
Depth to Groundwater After Development (below 7	roc): +/L feet
15 7.04 63.7	
Subsurface Consultants	HUBBARD TANK - OAKLAND, CA JOB NUMBER DATE APPROVED 609.001 6/1/93

WELL SAMPL	ING FORM	
Project Name: HUBBARD TANK	Well Number:	
Job No.: 609.001	Well Casing Diameter:	inch
Sampled By:	_ Date:	
TOC Elevation:	1 1 1 1 1	
Depth to Casing Bottom (below TOC)		feet
	~ 7	feet
Depth to Groundwater (below TOC)		
Feet of Water in Well		feet
Depth to Groundwater When 80% Recovered	.7.22	feet
Casing Volume (feet of water x Casing DIA 2 x 0.0408)		gallons
Depth Measurement Method Tape & Paste	/ Electronic Sounder / Ott	ner
Free Product		
Purge Method DISPOSABLE BAILER		
Gallons Removed pH Temp (°c) (micros 65.4 1.4 25 26 218 65.3 1.4	ductivity mhos/cm) Salinity S%	Comments NUNCY
Total Gallons Purged		gallons
Depth to Groundwater Before Sampling (below TOC) —	6.42	feet
Sampling Method DISPOSABLE BAILER		
Containers Used		
40 [/] ml liter	pint	
ubsurface Consultants JOB NUMBER	HUBBARD TANK - OAKLAND, CA	PLATE
IDSUTTACE CONSUITANTS JOB NUMBE	ER DATE	APPROVED

WELL SAMPLING FORM

Project Name: HUBBARD TA	ANK	Well Number:	
Job No.: 609.001	·	Well Casing Diameter:	
Sampled By:		Date:	
TOC Elevation:		Weather:	
Depth to Casing Bottom (below Depth to Groundwater (below T Feet of Water in Well Depth to Groundwater When 80 Casing Volume (feet of water x Depth Measurement Method	TOC) 150 OC) 500 ORecovered 500 Casing DIA 2 x 0.0408) Tape & Paste	/ S. G.S. / Electronic Sounder /	feet feet feet feet gallons Other
Gallons Removed pH 15 7.16 18 7.12 21 7.2	Temp (°c) (micro	iductivity omhos/cm) Salinity S%	Comments Hur Ku Jur Ky Mur Ky
Containers Used	2 / Sampling (below TOC) - POSABLE BAILER 2 2 2 2 1 liter	5-74 pint	gallons
ubsurface Con	Sultants JOB NUM 609.0		APPROVED PLATE

WEI	ISA	MOL	ING	FORM	ı
UVI		INIT L	3146	1 (1)	и

Project Name: HU	BBARD TANK	Well Number:	No
Job No.:609		Well Casing Diamete	er: inch
Sampled By:		Date:	197
		,	· · · · · · · · · · · · · · · · · · ·
Depth to Casing Bott	om (below TOC)	7-7-13	feet
Depth to Groundwate	er (below TOC)	1'.21	
Feet of Water in Well	l 		feet
Depth to Groundwate	er When 80% Recovered	1	feet
		0408) 1.03	gallons
		aste / Electronic Sounder	*
	,		
	DISPOSABLE BAILER		
Gallons Removed 15 18 21 25	7.08 64.8	(micromhos/cm) Salinity S	
Total Gallons Purged	25		gallons
	er Before Sampling (below To	00)5.70	feet
Sampling Method	DISPOSABLE BAILER		
Containers Used	3	2	
Containers Osed	40 ml	liter pint	•
1 0		HUBBARD TANK - OA	AKLAND, CA
- ·	<u> </u>	1.000/4.10	
ubsurtace	e Consultants	JOB NUMBER DATE 609.001 6/1/93	APPROVED

SEPTEMBER 1993 MONITORING EVENT
ANALYTICAL TEST RESULTS

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Subsurface Consultants
171 12th Street
Suite 201
Oakland, CA 94608

Date: 30-SEP-93

Lab Job Number: 112301 Project ID: 609.001

Location: Hubbard Tank

Reviewed by:

Reviewed by:

This package may be reproduced only in its entirety.

LABORATORY NUMBER: 112301

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 609.001

LOCATION: HUBBARD STREET

DATE SAMPLED: 09/15/93

DATE RECEIVED: 09/15/93 DATE ANALYZED: 09/17/93

DATE REPORTED: 09/30/93

Total Volatile Hydrocarbons with BTXE in Aqueous Solutions TVH by California DOHS Method/LUFT Manual October 1989 BTXE by EPA 5030/8020

LAB ID	SAMPLE ID	TVH AS GASOLINE (ug/L)	BENZENE (ug/L)	TOLUENE (ug/L)	ETHYL BENZENE (ug/L)	TOTAL XYLENES (ug/L)
112301-1 112301-2	MW-1 MW-2	120* 150*	ND(0.5) ND(0.5)	ND(0.5) ND(0.5)	ND(0.5) ND(0.5)	ND(0.5) ND(0.5)
112301-3	MW-3	180*	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)

*Single peak, does not match gasoline standard.

ND = Not detected at or above reporting limit; Reporting limit indicated in parentheses.

QA/QC SUMMARY

RPD, %	<1
RECOVERY, %	97

Client: Subsurface Consultants Laboratory Login Number: 112301

Project Name: Hubbard Tank Report Date: 30 September 93

Project Number: 609.001

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric) METHOD: SMWW 17:5520BF

ab ID	Sample ID	Matrix	Sampled	Received	Analyzed	Result	Units	RL	Analyst	QC Bato
12301-001	ми-1	Water	15-SEP-93	15-SEP-93	23-SEP-93	ND	mg/L	5	TR	1065
12301-002	MM-5	Water	15-SEP-93	15-SEP-93	23-SEP-93	ИD	mg/L	5	TR	1065
12301-003	MW-3	Water	15-SEP-93	15-SEP-93	23-SEP-93	ND	mg/L	5	TR	1065
	•									

ND = Not Detected at or above Reporting Limit (RL).

QC Batch Report

Client:

Subsurface Consultants

Laboratory Login Number: 112301

Project Name: Hubbard Tank

Report Date: 30 September 93

Project Number: 609.001

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric) QC Batch Number: 10656

Blank Results

Sample ID Result MDL Units

Method

Date Analyzed

BLANK

ND

5 mg/L

SMWW 17:5520BF

23-SEP-93

Spike/Duplicate Results

Sample ID Recovery

Method

Date Analyzed

BS

89%

SMWW 17:5520BF

23-SEP-93

85%

SMWW 17:5520BF

BSD

23-SEP-93

Control Limits 80% - 120% 87% Average Spike Recovery

Relative Percent Difference

4.7%

< 20%

_	HAIN OF CU	ICTODY FOR	2 K/I				•																				PA	١GE	=		上		OF		1	
	•				_																							- -	Al	IAL	YSIS	RE	QUE	STE	D_	_
10	ROJECT NAME: _ OB NUMBER: _	100.00							L	AB: (<u> </u>	AV		15	✓	ŁΊ	۵	m	P	ا ا	ัท	5.														
P	ROJECT CONTAC	T: Mariar	n 1	Ja	tac	Ы.			_ 7	URN	AΗ	UU	NL):	u	IOK A	<u> </u>	<u>^</u>	<u>.</u>	<u>'</u>	1 -								N				1			
S	AMPLED BY:				<u>,</u>				. F	REQL	JES	TE	D E	3Y: _	7	1	и	10		27	<u></u>							LI X	ğ							
<u> </u>				MAT	RIX		,	гиоэ	AIN	ERS			-	THO					SA	MP	LINC	à DA	ΛTE					d (d d							
	LABORATORY I.D. NUMBER	SCI SAMPLE NUMBER	WATER	WASTE	AIR		VOA	LITER	1.BE			보다	12804	FNO	8	NONE	ON	(1)	DAY	Ţ,	(EAI	R		TIMI	 E	- STICK			P d	日日						
-	- 70)		- × s	┧╧╢	<u> </u>	+-	3	= -	+	+	-	$\stackrel{>}{\rightarrow}$	ᅴ		Z		1	1/1	15	1	9/1	1	1	50		-1-		4				1	1			
13	115301 -1	MW-1		1-1		+		ī					X		Ź		> (_5		1) /		20		1_	- -	_;	X,	_	_	_ -	_ _	- -	-	-
1	<u> </u>	11	X								_				X	٤	2 6	11	- -	3 6	1	<u>\</u>	<u> </u>) (-}-		솨		- -		-}-	- -	-
				_ _	_ _			-	_	- -				 ,						- 17	7 3	3 1	,	7	5 0	5	-	ᆉ	-	十	-	+	+	╁	-	-
	-2_	MW-Z	<u> X </u>	- -		-{	3		+	-		X.	$\overline{}$		$\ddot{\sim}$) (7	-	<u>}</u>			- -	, ,	0		╅		\overline{x}	十	_	7	7	_		
1		"	- <u> </u>	-			-	++	+-				X	:	$\stackrel{\wedge}{\hookrightarrow}$			/- -		7	1-1-		7	<u> </u>	0 7	5	1	-		\overline{X}						
		11	- X		╂╌╂╴	╁	1-	╂╂	╌			-		-	(۵		1	'																_ _	_ _	_ _
ŀ	-3	MN-3	X	- -			13		1			X			X		2	9	I			> 1		C L			_[<u> </u>		_	}	_ -	-	-}-	-}-	_ -
ŀ		"	X										Χ	1	X	1		1	<u> </u>		7	3		, (<u>0</u>			ΔĮ	\exists	\dashv	-	-	╌	- -	
İ		"		_ _		_ _	<u> </u>	┞╁┞	- -		<u> </u>			┨╼╂	X_		2	4	4	2	1	╧	4	6	1	-	-	十	-		-	十	+	- -	\dashv	-
Į						丄	1_	LL			<u> </u>					<u></u>			!		!	_		!	1				l				<u>l-</u>			
																																				
1		CHAIN	of Ci	JSTO	Y Y CIC	REC	ORI)								_ '	CO	MME	NIS	a r	(O)	E5:														
	RELEASED BY; (Sign	9-15-43	E/TIME	1	HECEI	VED	BY: (Signa	lure)	1		Φ.	AT	E/TI	ME																					
	RELEASED BY: (Sign		E/TIME		RECEI	VED	BY: (Signa	(oto)	· -		E	AT	E/TI	ME																					-
	RELEASED BY: (Sig	nature) DAT	TE / TIME		RECE	VED	BY: (Signa	turo))		ŗ	TAC	EIT	IME	=															ar					
	RELEASED BY: (SIG	nature) DA	TE / TIME		RECE	VED	BY: (Signa	ture			J	TAC 	E/T	IME		_	171	12	ГΗ :	ATE	EE (510	T, S 0) 2	UIT 68-	E 2	01, (1 • F	AC XA	KLA :: 51	ND 0-2	, C/ 68-	ALIF 0137	ORI 7	ΑIΑ	948	i07	

			_	1	o oʻ	+																						P/	\GE		IALY	'SIS	_		TEC]
JOB NUMBER: PROJECT CONTAC	<u>609-00</u> ot: <u>Jenunn</u>	1	70	ile le	X X L	in_	Le	Υ		_	LA TU RI	JRN EQL	IAR JES	OU TEI	ND ND	: _ :Y:	5	ر آو	at or vio	m Lh	10 10	() ()	n p	5X1	in	r p b	_ 									
LABORATORY	sci			MA	TRIX	, 	1		100	IATI	INE	as	7								SA	MPI	ING	DAT	E											
I.D. NUMBER	SAMPLE NUMBER	WATER	SOIL	WASTE	AIR			VOA	LITER	FNIG	TUBE			달	50.7	HNO3	<u>5</u>	NONE	MON	гн	DAY	Y	EAR		TI	ME	NOTES	1								
	MW-I						\prod	_	X			\Box	1	\Box	1		1	×		1	\perp	-		_	_		1	1	٩_	1	+	_	_	-		-
	MW-Z	X					1	<u> </u>	Z.	1				1	1		Z	X		1	士	_					1	\downarrow		 		土				
	MW-3	X	-				1	_	X				-	_	- 		Z	×		-		+	-	-			-	+	4	+	+	+	+	 		_
				-			7	7																				1		1				E		
			-				-													-				_				$\frac{1}{2}$	1	\pm	1	_				
																						1	+				1	1		土	土		+	上		
	SAMPLE NUMBER SAMPLE SA																																			

	CHAIN OF COS	TODT RECORD		OCIENTELITY & HOTEO.
RELEASED BY: (Signature)	DATE / TIME	RELEASED BY: (Signature)	DATE / TIME	
Mars Is	10-19-93 4:08m			
RELEASED BY: (Signature)	DATE / TIME	RELEASED BY: (Signature)	DATE / TIME	
RELEASED BY: (Signature)	DATE / TIME	RELEASED BY: (Signature)	DATE / TIME	
				Subsurface Consultants, Inc.
RELEASED BY: (Signature)	DATE/TIME	RELEASED BY: (Signature)	DATE/TIME	171 12TH STREET, SUITE 201, OAKLAND, CALIFORNIA 94607
		Tuesa K. Morrisa	10/19/93 4:08/	(510) 268-0461 • FAX: 510-268-0137

2323 5th Street Berkeley, CA 94710 Phone: (510) 486-0900

FAX: (510) 486-0532

FAX TRANSMISSION

en Tlexande	
COMPANY	FAX NUMBER
From:	
NAME Laurida Browne	
Reference:	
Message:	

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710. Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Subsurface Consultants 171 i2th Street Suite 201 Oakland, CA 94608

Date: 28-OCT-93 Lab Job Number: 112797

Project ID: 609.001

Location: Hubbard Tank

Reviewed by:

Reviewed by:

This package may be reproduced only in its entirety.

Barkeley

Los Angeles

LABORATORY NUMBER: 112797

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 609.001

LOCATION: HUBBARD STREET

DATE RECEIVED: 10/19/93
DATE EXTRACTED: 10/21/93
DATE ANALYZED: 10/23/93

DATE REPORTED: 10/28/93

Extractable Petroleum Hydrocarbons in Aqueous Solutions California DOHS Method LUFT Manual October 1989

LAB ID	CLIENT ID	KEROSENE RANGE (ug/L)	DIESEL RANGE (Ug/L)	REPORTING (ug/L)
112797-1	MW-1	ND	ND	50
112797-2	MW-2	**	50	50
112797-3	MW-3	ND	ND	50

ND = Not detected at or above reporting limit.

* Reporting limit applies to all analytes.

** Kerosene range not reported due to overlap of hydrocarbon ranges.

QA/QC SUMMARY

CHAIN OF CU PROJECT NAME: JOB NUMBER: PROJECT CONTAGE	Hubbard 609-00 T: Teriann	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		le	e e		er			10	AB: .	ARC	ON M	MITI-		1) q	γÇ	M	1 1	m A				-	AG	 IAL Y	SIS I		DEST	ED	
LABORATORY I.D. NUMBER 127-97-1 2 3	SCI SAMPLE NUMBER MW-1 MW-2	X X WATER		MA	TRIX		VOA		PINT	ANE H	RS		PF	MET	HOI ERV	D PED	NON WONE				MPUN	IG DA	ATE	IME	OTES							
RELEASED BY: (Signal	1019-93	1711	Œ 09~	F	DY I	SED	BY:	(Skg							TIM			GON	M/IEI	tis (L NOT	ES:							-			

DATE / TIME

DATE / TIME

RELEASED BY: (Signature)

RELEASED BY: (Signature)

DATE / TIME

DATE / TIME

RELEASED BY: (Signature)

RELEASED BY: (Signature)

Subsurface Consultants, Inc.

171 12TH STREET, SUITE 201, OAKLAND, CALIFORNIA 94607

(510) 268-0461 • FAX: 510-268-0137

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Subsurface Consultants 171 12th Street Suite 201 Oakland, CA 94608

Date: 28-OCT-93

Lab Job Number: 112797 Project ID: 609.001

Location: Hubbard Tank

Reviewed by:

Reviewed by: _

This package may be reproduced only in its entirety.

Los Angeles

LABORATORY NUMBER: 112797

CLIENT: SUBSURFACE CONSULTANTS

PROJECT ID: 609.001

LOCATION: HUBBARD STREET

DATE RECEIVED: 10/19/93 DATE EXTRACTED:10/21/93

DATE EXTRACTED: 10/21/93 DATE ANALYZED: 10/23/93 DATE REPORTED: 10/28/93

Extractable Petroleum Hydrocarbons in Aqueous Solutions California DOHS Method LUFT Manual October 1989

LAB ID	CLIENT II	D	KEROSENE RANGE (ug/L)	DIESEL RANGE (ug/L)	REPORTING LIMIT* (ug/L)
112797-1	MW-1		ND	ND	50
112797-2	MW-2		**	50	50
112797-3	MW-3		ИД	ИD	50

ND = Not detected at or above reporting limit.

* Reporting limit applies to all analytes.

** Kerosene range not reported due to overlap of hydrocarbon ranges.

QA/QC SUMMARY

							•)											1)			1			ı							
CHAIN OF CL	ISTODY FOR	M																											PA	\GE	Ē	1			OF	1		
	. 1 1 1 1		~ 1	7	٠.	4																							Ė	-		IAL.	YSIS		QUES	STED)	~
PROJECT NAME: _	Huppard		\geq	ठ	ee.														d		·-E			<u></u>	<i>)</i> .				ľ	T	T	7	T	T				_
JOB NUMBER:	609-DD	1	-								L	AB:	_	<u>_</u>	\mathcal{O}	1 1	77	,	8		<u>-</u> [J		ή,	91	-11	<u> </u>			l								-	
PROJECT CONTAC	ct: <u>Tenann</u>		<u> </u>	lle	XC	<u>in</u>	4	W			TI	URI	VAF	ROL	JNI	D: .		巴	7 T	<u>n</u>	Λίλ	<u> </u>	77										1				1	
SAMPLED BY:	Fernando	[]	é	le	2						R	EQ	UES	STE	D.	BY:	۔ نــا	<u>Je</u>	nì e	Δŀ	<u> </u>	1	<u> 11</u>	ex	4	n	ρß	V]								1	
	•																											.]]			
				MA	TRI)	K			co	– NTA	INE	RS		F		ETH SEF		מ										l	1					1		1		
LABORATORY	scı ·	\Box	Γ	Γ			-	\neg	\neg					i	,,,	<u> </u>		Ī	1		S	٩MF	LIN	g D/	ATE										١		\ 	
LABORATORY I.D. NUMBER	SAMPLE NUMBER	65		世)	}	ı		<u>س</u>		111				ጟ			ш				\neg		7				<u> </u>	13								1	
		WATER	잉	WASTE	AH.			Š	띮	N.	TUBE			로	H2SC	E NOS	낊	NONE	MOH	1771	DAY		YEA	R	-	IME	•	NOTES	14		1							
112757-1	MW-1_	X	-	۲			┪		文						_=_	=	Z	W		7	T	1	T	十	\top	T	T		×	7	1	1						_
1																														\prod								_
-2	MM-5	X							X								区	M									\perp		₽	⇅		_	\perp		1_		_	
			<u>L</u> .	_		_	_		_					_			ļ.,	ļ.,		_		-		_	_	- -	_	- -	\downarrow	}	+	_	- -	-	 _		-	
	MW-5	∇		├-	_		_		X,					_		_	丫	W	 			-	- -	+	- -	- -	+	╢	Ł	4		-	_	-	├	$\ \cdot\ $		-
			-	-			-		-			-			-		\vdash	├-	╂─┤	-			- -	╁		╁	╁╌	┨	╂╴	十	+-	- -	-	- -	┼─		-	_
	<u></u>	-	├-	┞	-			_				-	_	_	-	-	\vdash		╂─┤		-	1		十	-	╁	\dagger	1	†-	+	+	†	+	+	+		\dashv	
			t^-	1	1				-							 	-	1				7		-	1	-	1		1	1		1						_
]_				ightharpoonup	\perp							_
														_	<u> </u>	_	<u> </u>					\perp	_ _	_	_	4-	_	- -	╀	4	_ _	4	4	-	_			_
	الاستان المساول المساول والمساول والمساول والمساول			L													L	<u> </u>											1									_ر
																														اسادوديد				·				حي
	CHAIN (OF C	CUS	STO	ODY	RE	CC)RD)										COI	MM	ENTS	8.1	OTE	S:														
RELEASED BY: (Signa)(ire) DATE	/ TIM	Æ	F	RELE	ASE	DΒ	Y: (Sign	atur	Θ)	···		D	ATI	E/T	IME																					
Mun. 1 1		livid		1				•	-		-																											
WHITH A		Ш.	- Y : -		2515	ASE	n e	V- //	Slan	ahur				n	ΔΤ	E/T	ILAF	_																				
RECEASED BY: (Signa	iture) DATE	, (UM 	rsC,	'	1CLE	:40E		: I - Ç	siği i	aluf	a)			U	W11		*141C	•																				
<u> </u>		<u> </u>		1														}															·····					
RELEASED BY: (Signa	ature) DATE	/ TIM 	<i>I</i> E		RELE	EASE	D B	Y: (Sign	alur	e)			D	TA	E/1	IME	•		d	1 .			C.				٠,		~~ ·~	. 1	4		4.~	.1		_	
				\perp															i		ub														-			
RELEASED BY: (Signa	alure) DATE	/ TIM	ΛE	1	RELE	EASE	D B	Y: {	Sign	alur	6)	ć	1	۱ I	Î	E/T		- 1		171	127	HS									ND, 1 0-268			RNI	A 9	4607	7	
			~	+	(u	- esa	k	h	by	1	24		lo	19	93	3/5	/:0	8p	·		~		(3 I U	7 26	o- U4	101	FFA	Λ.	310	-201	p-U	13/					

WELL SAMPLING FORM

Project Name: 4055	Hubbard Stre	eet		Weil Numl	oer: <u>MW-1</u>		
Job No.: 609.001				Well Casir	ng Diameter:	2	inch
Sampled By: Fernan				Date:		· · · · · · · · · · · · · · · · · · ·	
TOC Elevation: <u>20.</u>				Weather:	~ `~ `		
Depth to Casing Botto	m (below TO	C)	· · · · ·	<u> 20. 2</u>	.<		feet
Depth to Groundwater				لیک رئیس ا	~ ,		feet
Feet of Water in Well				15	<u>.78</u>	 	feet
Depth to Groundwater				المساس المساسطين المساسطين	<u> </u>		feet
Casing Volume (feet o					258		. gallons
					nic Sounder		
Depth Measurement N							
Free Product							
Purge Method	· ,).^		<u>y :</u>				
Gallons Removed	pH 7.27 6.78	Temp (°d)	Conduct (micromho	ivity		- Sana	nments - COUV
1/2	6.76	67.5	1.1	SKIOO	0	,	ţ
S	6.27	67.3	1,19	41000	:		\ '
10 .	6-77	67.3	1.18	טיסוא			11
12	6.77	67.5	101	४४७०	0	12	_ gallons
Total Gallons Purged		,	noi.	6.32	ria :	400	feet
Depth to Groundwater	J		,			· · · · · · · · · · · · · · · · · · ·	100t
Sampling Method	115005	able 1/3	aller,		./- · 3		
Containers Used _	40 ml		liter		pint	*	
				,	<u>.</u> .	. <u>.</u>	
	~		4055 HU	BBARD S	TREET - OAI	KLAND, CA	PLATE
Subsurface	Cons	ultants	JOB NUMBER		DATE	, APPRO	OVED
		9	609.001		**	<u> </u>	

W.

		WELL S	SAMPLIN	IG FORM			
Project Name: 4055 H	ubbard Str	eet		Well Num	ber: MW*3	WW-	
Job No.: 609.001				Well Casi	ng Diameter:	2	in c h
Sampled By: Fernand	o Velez				9- 5-		
TOC Elevation:15.1	3			Weather:	<u> </u>		
Depth to Casing Bottom Depth to Groundwater (Feet of Water in Well	below TOC	C)		10.			feet feet feet
Depth to Groundwater \	Nhen 80%	Recovered .			<u>a</u>		feet
Casing Volume (feet of	water x Ca	sing DIA ² x 0	.0408) —		1, 6	·····	_ gallons
Depth Measurement Me	ethod	Tape & F	Paste /	Electron	ic Sounder	/ Other	<u></u>
Purge Method	1.50	Q zinh's	Var				
Gallons Removed	<u> </u>	FIELD ME 25 Temp (°c) 33-3 5-1 52-0	Condu (microm) 1.0	ctivity nos/cm) (2 2 2 2 (2 2 2 2 (2 2 2 2		<u>- 647</u> <u>- Sétr</u>	omments
Table College Payment	6.73	2.3	1.05	—— <u>——</u>		8	gallons
Total Gallons Purged - Depth to Groundwater I			roc) —	5.42 rosabl	· baj	<u></u>	feet
Sampling Method Containers Used	3 40 ml		liter	~ \a> u	pint	*;	
ubsurface (Cons	ultants	4055 H		TREET - OAK		PLATE

609.001

W	ELL SAMPLING FORM
Project Name: 4055 Hubbard Street	Well Number: MW-2
Job No.: 609.001	Well Casing Diameter: 2 inch
Sampled By: Fernando Velez	Date:
TOC Elevation:15.13	Weather:
	· · · · · · · · · · · · · · · · · · ·
Depth to Casing Bottom (below TOC)	// m m
Depth to Groundwater (below TOC)	(2.6)
Feet of Water in Well	
Depth to Groundwater When 80% Recove	171
Casing Volume (feet of water x Casing DI	A ² x 0.0408) gallons
Depth Measurement Method Ta	ape & Paste / Electronic Sounder / Other
Free Product	
Purge Method	30.61
Gallons Removed pH Temp	Conductivity (c) (micromhos/cm) Salinity S% Comments 1.07 × (0.00 Clacer 1.14 × (0.00 Semi-cical 1.13 × (0.00 Semi-ru Semi-ru gallons
Depth to Groundwater Before Sampling (b	selow TOC) feet
San Je on Cala	Note 1 de la constant
2	7.
Containers Used 40 ml	liter pint
haveface Companies	4055 HUBBARD STREET - OAKLAND, CA
ubsurface Consulta	LILS JOB NUMBER DATE APPROVED

609.001