

SOIL SAMPLING MONITORING WELL INSTALLATIONS **AND** INITIAL GROUNDWATER SAMPLING AT **1628 WEBSTER STREET** ALAMEDA, CALIFORNIA

SEPTEMBER 19, 1995

A GROUNDWATER CONSULTANCY H2OGEOL

.vcy 27 - 214d 12 d35 56
510-373-9211 - 479 32 56 56

CONTENTS

Lithe	ologic Logging INTRODUCTION
2.0	FIELD OPERATIONS AND INVESTIGATIVE METHODS
3.0	RESULTS AND DISCUSSION
4.0	CONCLUSIONS AND RECOMMENDATIONS 8
5.0	PROFESSIONAL CERTIFICATION
LIST 1	OF FIGURES SITE LOCATION MAP
2	MONITORING WELL AND BOREHOLE LOCATION MAP
3	POTENTIOMETRIC SURFACE MAP JULY 11, 1995
LIST	OF ATTACHMENTS
A	Permits/Forms
B	Borehole Lithologic Logs
C	Well Surveyor's Report
D	Soil Sample Analytical Results
E	Log of Well Sampling Activities
F	Groundwater Sample Analytical Results

P.O.Box 2165 - Livermore, California 94551 - 510-373-9211

SOIL SAMPLING
MONITORING WELL INSTALLATIONS
AND
INITIAL GROUNDWATER SAMPLING
AT
1628 WEBSTER STREET
ALAMEDA, CALIFORNIA

1.0 INTRODUCTION

The property at 1628 Webster Street in Alameda, California was identified as an underground tank leak site by the Alameda County Health Care Services Agency, Department of Environmental Health, Environmental Protection Division (ACHCSA). The location of 1628 Webster Street property is shown in Figure 1. The property owner retained H₂OGEOL to conduct this investigation.

A workplan for the installation of three monitoring wells was prepared and was submitted to ACHCSA on May 16, 1995. The ACHCSA approved the workplan in their letter was dated May 23, 1995, with the addition to the groundwater sample analytical suite of volatile halocarbons (E.P.A. Method 8010/601) and semi-volatile compounds (E.P.A. Method 8270/624).

1.1 PRESENT INVESTIGATION

The purpose of this investigation is twofold: to determine groundwater flow direction (more precisely direction of groundwater gradient, since the horizontal hydraulic conductivity anisotropy will remain unknown) of the shallow portion of the Posey/Merritt Aquifer and to ascertain the potential presence of underground storage tank derived petrochemicals. The chemicals analyzed and reported are: Total Extractable Petroleum Hydrocarbons as Gasoline (TPH-G), along with the associated aromatic hydrocarbons benzene (B), toluene (T), ethylbenzene (E), and total xylene isomers (X), which are collectively referred to as BTEX; and Total Oil and Grease (TOG), in soil and groundwater, and volatile halogenated organics (halocarbon compounds) and semivolatile (Base/Neutral Extractable) compounds in groundwater.

The present investigations consisted of drilling three soil sampling boreholes to depths of about six feet and collecting soil samples from immediately above the first encountered groundwater; drilling and installation of three monitoring wells to depths of about fifteen; and collecting and analyzing groundwater samples from the three monitoring wells.

All three of the monitoring wells, and a borehole that could not be deepened for monitoring well construction (BH-2) are located within the fenced property (Figure 2). A ZONE 7 Water Agency (also known as Zone 7 Alameda County Flood Control and Water Conservation District) Drilling Permit Application was filed on May 16, 1995 and issued on June 01, 1995 (Attachment A). Upon completion of the well construction, a California Department of Water Resources (DWR) form 188 was filled out for each well and submitted to Zone 7 as required by the permit (the original DWR form 188 was also submitted to ZONE 7 as stipulated in the permit cover letter. DWR forms 188 are also included in Attachment A.

2.0 FIELD OPERATIONS AND INVESTIGATIVE METHODS

Field investigations consisted of the installation of four boreholes. Three 4-inch diameter, approximately six foot deep soil sampling boreholes MW-1 (BH-1), BH-2, and MW-3 (BH-3) were hand augered on June 23, 1995 for the indicated purpose. Two of these boreholes were successfully deepened to fifteen feet, reamed to 6.25-inch diameter, and completed into monitoring wells MW-1 and MW-3 on July 05th and 06th, respectively.

2.1 Lithologic Logging

During augering of each borehole, soil characteristics were logged in the field by a geologist. Distinguishing features such as soil composition, color, texture, and unusual odors were noted. The soil characteristics were logged in the field according to the Unified Soil Classification System.

Logging began during the hand augering of the 4-inch soil sampling boreholes. Logging continued when each monitoring well installation borehole was extended to final depth (15.5 feet). Borehole lithologic logs with well completion diagrams are included in Attachment B.

The soil between borehole BH-2 (originally called MW-2) and the adjacent former remedial excavation collapsed into the borehole when it reached a depth of about seven feet. Because much of the Webster Street edge of the former remedial excavation showed evidence of extending beneath (with an air gap between the soil face and the "Geofabric" liner, a thick plastic sheeting) the adjacent concrete widening of the sidewalk (i.e., not a part of the formal sidewalk) a new location was selected for monitoring well MW-2 and a new borehole was hand augered and monitoring well MW-2 was completed on July 06, 1995. The locations of the borehole (BH-2) and monitoring wells are shown on Figure 2.

2.2 Soil Sampling

The soil sampling boreholes were drilled with 4-inch AMS soil augers. The hand augered boreholes were advanced until an increase in moisture content indicated that the water table was being approached. Borehole MW-1 was advanced to 6.1 feet, MW-2 (BH-2) to 6.0 feet, and MW-3 to 5.5 feet. First encountered water was at 6.35 ± 0.05 feet in all three boreholes.

The soil samples were collected from the bottom of the augered boreholes using an AMS slide hammer to drive a core sampler. A 6-inch long brass soil sample retaining cylinder was housed within the core sampler. When the sampler was extracted from the borehole and disassembled, the brass cylinder was removed. The ends of the brass cylinder were covered with aluminum foil and a tight fitting "cap plug" was affixed to each end so as to ensure air tightness. The sealed tubes were labeled and then placed onto ice (water frozen in a 2-liter plastic bottle) in an ice chest while awaiting transport to Chromalab, Inc., a state certified laboratory, for analysis following proper chain of custody documentation (presented in Attachment C with the laboratory analytical report).

2.3 Monitoring Well Installation

Well construction commenced after each hand augered borehole was reamed to is final diameter. A ten foot section of flush threaded 2-inch inside diameter schedule 40 PVC well casing and slotted screens was installed into each monitoring well borehole. Each well was constructed with screen factory slotted to 0.020-inch. Sand (RMC Lonestar, No.3) was poured into the annulus from the ground surface until the sand was about one half foot above the screen. After the required amount of sand was added to the annulus, a one half foot bentonite chip seal was placed above the sand pack. The bentonite chips were hydrated with potable water poured from the surface. A neat cement seal was added to prevent infiltration of the sand pack from surface runoff. The well was secured with a locking cap and traffic rated box set onto concrete and sloped to drain away from the lid. The three monitoring wells were constructed identically, as follows:

WELL CONSTRUCTION DETAILS

Well Number	Borehole Diameter (inches)	Casing/ Screen Diameter (inches)	Total Borehole Depth (feet)	Total Well Depth (feet)	Screened Interval (feet)
MW-1	6.25	2	15.5	15.05	5-15
MW-2	6.25	2	15.5	15.05	5-15
MM-3	6.25	2	15.5	15.05	5-15

Each monitoring well was developed on July 05 and 06, 1995 by the surge and pump technique. Well development continued until the turbidity was lowered to a point where the amount of sediment in the produced water would not interfere with the laboratory analytical procedures. Development occurred prior to the placement of the bentonite and the pouring of the neat cement grout seal. This sequence was followed to ensure that the sandpack was settled to its final depth. Since development occurred prior to grouting, there could be no effect on the seal by well development (the usual reason for waiting from 48 to 72 hours between installation and development of monitoring wells).

The wells were surveyed by Ron Archer Civil Engineer, Inc. on July 14, 1995. The borehole (BH-2) and well locations are shown on Figure 2 and the surveyor's report in included as Attachment D.

2.4 Monitoring Well Purging and Sampling

The monitoring wells were purged by pumping with an "ES-60" submersible pump marketed for monitoring well purging by Enviro-Tech Services Co. of Martinez, California. Field measured water quality parameters were measured using a Cambridge Scientific Industries Hydac $^{\text{TM}}$ Conductivity Temperature pH Tester. Well purging activities and the field measured water quality parameters are documented in Attachment E. For each well, purging continued until specific conductance stabilized to +/-5% on consecutive readings.

The purge pump was slowly removed from each well while running to allow a sweeping of the wellbore, preventing significant surging of the wellbore and drainage of the discharge tubing into the well. Groundwater samples for TPH-D and TOG (nonvolatile) analysis were collected in one liter amber bottles directly from the end of the pump discharge tubing. Groundwater samples for TPH-G plus BTEX, volatile halocarbons, and semi-volatile compounds analysis were collected using a precleaned TeflonTM bailer suspended from a new nylon twine line, and emptied through a precleaned TeflonTM pepcock type bottom emptying device. One liter amber bottles were used for samples for semi-volatile compound and samples for volatile compound analysis were collected in 40-mL glass vials with TeflonTM septum lids, in duplicate.

Groundwater sample bottles were labeled and placed in an ice chest with 2 Liter plastic bottles containing ice. Chain-of-Custody forms were filled out and were delivered with the ice chest to Chromalab, Inc. of Pleasanton, California, a state certified laboratory. Laboratory reports and Chain-of-Custody documentation are contained in Attachment F.

3.0 RESULTS AND DISCUSSION

3.1 Geology and Borehole Lithology

The 1628 Webster Street property lies near the center of the western third of the late Pleistocene beach ridge that forms southern Alameda island (predevelopment peninsula), at an elevation of about 15 feet above mean sea level (amsl). The entire late Pleistocene beach ridge is comprised to a depth of 20 to 50 feet of the local phase of the Posey/Merritt Formations (Posey sands and Merritt sands). The ground surface slopes gently northward (Figure 1) toward a now filled predevelopment tidal flat.

Each of the three monitoring well boreholes encountered clayey sand of the Posey/Merritt Formations. The clay content of the clayey sands was not uniform in depth or between boreholes. Below the depth at which a locally derived fill was encountered (0.5 to 2 feet), the upper 15 feet of these clayey sands are dark yellowish brown at boreholes MW-2 and MW-3, and in MW-1 to the depth just above the water table. Below the capillary fringe, the clayey sands in borehole MW-1 had been gleyed as a consequence of the reducing conditions imposed by the presence of odoriferous concentrations of petroleum hydrocarbons. At the water table in MW-1 the clayey sand has lost the cohesiveness normally imparted by the clay content.

Below the water table the clayey sand encountered in the boreholes, comprises the upper portion of the Posey/Merritt Aquifer.

3.2 Soil Analytical Results

Soil samples were submitted to Chromalab, Inc. for analysis of TOG by Standard Method 5520 e & f, for TPH-D by U.S. EPA Method 3550/8015M, for TPH-G by U.S. EPA Method 5030/8015M, and for BTEX by U.S. EPA Method 8020. The laboratory report and Chain-of-Custody documentation is contained in Attachment C.

The soil sample analytical results for the MW-2 and MW-3 samples were all reported by the laboratory as not detected. The MW-1 sample was reported as containing:

	TOG	N.D.	•
NW - 1	TPH-D	8.4	mg/Kg
@6-6.5'doph	TPH-G	830	mg/Kg
(06-6.5 depth	Benzene	120	μg/Kg
f	Toluene	220	μg/Kg
	Ethylbenzene	1,100	$\mu g/Kg$
	Total Xylenes	1,400	μg/Kg

Note:

1.0 mg/Kg = 1,000 μ g/Kg; also 1 mg/Kg is about 1 part per million (1 ppm) and 1.0 μ g/Kg is about 1 part per billion (1 ppb).

3.3 Groundwater Flow Direction and Gradient

The regional shallow groundwater flow beneath Alameda, in the Posey/Merritt Aquifer, is semiradial toward the nearby waters of San Francisco Bay and the Oakland Inner Harbor. Local perturbations caused by recharge/discharge form/to cultural features results in a complex pattern of shallow groundwater flow directions.

Depth to water in each monitoring well was measured to \pm 0.01 feet using a Solinst Model 101 water level meter on July 11, 1995. The depth to water was converted to potentiometric surface elevation by subtracting the measured depths to water from the casing top elevation. This information is presented below.

WELL AND GROUNDWATER ELEVATIONS JULY 11, 1995

Well Number	Top of Casing Elevation (feet, msl)	Time of Depth measurement	Depth to Water (feet)	Groundwater Surface Elevation (feet, msl)
MW-1	14.71	06:27	5.44	9.27
MW-2	15.69	06:26	5.81	9.88
MW-3	14.71	06:23	5.41	9.30

The approximate groundwater flow direction for the triangle with a well at each apex is N 6.41° E at a gradient of 0.00491. Figure 3 is a potentiometric surface map showing well locations and groundwater surface contours as measured on July 11, 1995.

3.4 Groundwater Analytical Results

The groundwater surface at each monitoring well was checked for free product, observation of sheen, and odor. No free product or sheen was found. Groundwater from monitoring well MW-1 possessed a septic odor.

Groundwater samples were submitted to Chromalab, Inc. for analysis of TOG by Standard Method 5520 b & f; for TPH-D by U.S. EPA Method 3510/8015M; for TPH-G by U.S. EPA Method 5030/8015M and for BTEX by method 602/8020; for volatile halogenated organics by EPA Method 8010; and for Semivolatile (Base/Neutral Extractable) Compounds by EPA Method 3510/625. The laboratory report and Chain-of-Custody documentation is contained in Attachment F.

A comparison is made with maximum contaminant levels (MCLs) as listed in: Marshack, Jon B., D. Env., May, 1993, A Compilation of Water Quality Goals, California Regional Water Quality Control Board, Central Valley Region.

Groundwater samples from all three monitoring wells was reported as N.D. for TOG and TPH-Diesel.

The gasoline fuel constituent (TPH-G+BTEX) analyses were reported as N.D. for MW-2 and MW-3. The groundwater sample from MW-1 contained all five analytes. Fuel hydrocarbon constituents are summarized as follows, with all concentrations are expressed in micrograms per liter (μ g/L):

Well	TPH-D	TPH-G	Benzene	Toluene	Ethyl- benzene	Total Xylenes
MW-1	<50	6,300	16	3.0	28	88
MW-2	<50	<50 <0≈5	<0.5	<0.5	<0.5	<0.5
MW-3	<50	<50.4€35	<0.5	<0.5	<0.5	<0.5
Californ	ia*Prima na	ry MCL's na	1	na	680	1,750
US E.P.A	.*Primary na	MCL's	5	1,000	700	10,000

The only fuel hydrocarbon exceeding an identified published regulatory threshold is benzene in groundwater from monitoring well MW-1.

Volatile halocarbon compound analysis of groundwater samples identified three compounds: one from MW-1; two from MW-2; and none from MW-3. These are:

Compound	Well	Concentration	MCL
Chloroform	MW-1	$17 \mu g/L$	100
Trichloroethene Tetrachloroethene	MW-2 MW-2	2.6 μg/L 2.8 μg/L	5 5

None of the identified volatile halocarbon compounds are above their respective published regulatory thresholds. Chloroform is one of the trihalomethanes (THMs) produced as a byproduct of municipal water disinfection by chlorination. Chloroform is the most common THM formed in most natural waters.

Trichloroethene and tetrachloroethene were identified only in monitoring well MW-2, the furthest upgradient well. Consequently, these two compounds may have been derived from an offsite, upgradient source.

Semivolatile (Base/Neutral Extractable) Compounds were not identified in the groundwater samples from monitoring wells MW-2 and MW-3. Naphthalene (at a concentration of 190 μ g/L) and 2-Methylnaphthalene (at a concentration of 32 μ g/L) were identified in the groundwater sample from MW-1. A MCL has not been established for naphthalene and 2-Methylnaphthalene is not included in Marshack's list.

4.0 CONCLUSIONS AND RECOMMENDATIONS

The soil sample collected near the groundwater interface from the borehole for MW-1 was found to contain gasoline derived petroleum hydrocarbons at concentrations of concern (> 100 ppm). The other two boreholes did not contain detectable concentrations of petroleum hydrocarbons. MW-1 is downgradient, and immediately adjacent to the remedial excavation. The extent of the soil contamination remaining in the ground peripheral to the remedial excavation should be determined.

Groundwater samples from two of the monitoring wells (MW-2 and MW-3) were found not to contain detectable concentrations of petroleum hydrocarbons. The groundwater sample from MW-1 was found to contain benzene at a concentration above the MCL, as well as detectable concentrations of TPH-G and the other analyzed aromatic hydrocarbons (T, E, & X). The three monitoring wells should be monitored quarterly for fuel hydrocarbons (TPH-D and TPH-G + BTEX). There is no need to continue to monitor for TOG, especially in light of the high detection limit (1,000 μ g/L).

Three volatile halocarbon compounds were identified at typical urban groundwater background concentrations. One of these is derived from municipal water and two were in the upgradientmost monitoring well. There is no known reason to continue to monitor for the presence of volatile halocarbon compounds.

The two Semivolatile Compounds identified in the groundwater sample from monitoring well MW-1 appears to have been derived from the site in the vicinity of the floor hoist area. However, these two compounds were not present in the groundwater from monitoring well MW-1, during the initial monitoring, at a published level of concern. Any efforts to determine the extent of the soil contamination remaining in the ground should also concern itself

with these two Semivolatile Compounds. Any additional downgradient wells that are installed should also, at least initially, monitor Semivolatile Compounds. There is no apparent need to continue monitoring Semivolatile Compounds in monitoring wells MW-2 and MW-3.

5.0 PROFESSIONAL CERTIFICATION

CARY D. LOWE

Nr. 4550

ี ดีเปรียบสื่อ พระบริการเล

CHOLOGICT

This report on additional boreholes and monitoring wells at the property at 1628 Webster Street in Alameda, California has been prepared by H₂OGEOL A GroundWater Consultancy, by and under the professional supervision of the sole proprietor. The findings, recommendations, specifications, or professional opinions are presented after being investigated and prepared in accordance with generally accepted professional environmental hydrogeologic and groundwater monitoring practice. Incorporation of information developed and or reported by others does not necessarily mean that the undersigned accepts that information as valid. There is no other warranty, either expressed or implied.

This report was prepared by:

Gary D. Lowe, R.G., C.E.G., C.H.
Principal, Hydrogeologist
H.OGEOL A GroundWater Consultancy

9

GARY D. LOWE

Ma ter

CETTICED

nor ceason

SCALE: 1" = 50'

H20GEOL A GROUND WATER CONSULTANCY

MONITORING WELL AND BOREHOLE LOCATION MAP 1628 WEBSTER STREET ALAMEDA, CALIFORNIA FIGURE

2

MW-2 MONITORING WELL NAME/NUMBER

MONITORING WELL LOCATION

9.88 GROUNDWATER ELEVATION AT WELL

- 9.30 - POTENTIOMITRIC SURFACE CONTOUR AND CONTOUR ELEVATION

H2OGEOL!

POTENTIOMETRIC SURFACE MAP JULY 11, 1995 1628 WEBSTER STREET ALAMEDA, CALIFORNIA **FIGURE**

3

P.O.Box 2165 • Livermore California 94551 • 510-373-9211

ATTACHMENT

PERMITS/FORMS

ZONE 7 WATER AGENCY DRILLING PERMIT APPLICATION/ PERMIT NO. 95336

AND

CALIFORNIA DEPARTMENT OF WATER RESOURCES FORM 188

> No. 193170 FOR MW-1 No. 193171 FOR MW-2

No. 193172 FOR MW-3

ALAMEDA COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT

5997 PARKSIDE DRIVE

PLEASANTON, CALIFORNIA 94588-5127 PHONE (510) 484-2600 FAX (510) 462-3914

1 June 1995

H20 Geol P.O. Box 2165 Livermore, CA 94551

Gentlemen:

Enclosed is drilling permit 95336 for a monitoring well construction project at 1628 Webster Street in Alameda for Mrs. Jean Ratto-Larkin\Jeff Larkin.

Please note that permit condition A-2 requires that a well construction report be submitted after completion of the work. The report should include drilling and completion logs, location sketch and permit number. Please submit the original of your completion report. We will forward your submittal to the California Department of Water Resources.

If you have any questions, please contact Wyman Hong at extension 235 or me at extension 233.

Very truly yours,

Craig A. Mayfield

Water Resources Engineer III

WH: mm Enc.

ZONE 7 WATER AGENCY

5997 PARKSIDE DRIVE

Date 05/16/95

PLEASANTON, CALIFORNIA 94588

VOICE (510) 484-2600 FAX (510) 462-3914

91992

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
DCATION OF PROJECT 1628 Webster Street. Planneda Calibornia	PERMIT NUMBER 95336 LOCATION NUMBER
LIENT Name Mus. Jean Rath - Lunism / Jeff / Address 16 Las Vega, R. Voice 254-3035 ity Orinda LA 94563 Zip APPLICANT	PERMIT CONDITIONS Circled Permit Requirements Apply
Address P. D. Box 2165 Voice 373 9222 Address P. D. Box 2165 Voice 373 9211 City Liverwise 1st Zip 94551 TYPE OF PROJECT Well Construction Geotechnical Investigation Cathodic Protection General Water Supply Contamination Monitoring (3) Well Destruction ROPOSED WATER SUPPLY WELL USE Domestic Industrial Other Junicipal Irrigation PRILLING METHOD: Mud Rotary Air Rotary Auger hollows James Able Other Augur Ager Mand DRILLER'S LICENSE NO. A hollows Grange and Augur Ager D	C. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout
ELL PROJECTS Drill Hole Diameter 6 in. Maximum Casing Diameter	b. CATHODIC. Fill hole above anode zone with concrete placed by tremie. E. WELL DESTRUCTION. See attached.
GEOTECHNICAL PROJECTS Number of Borings Maximum Hole Diameter in. Depth ft.	
STIMATED STARTING DATE 06/15/95 STIMATED COMPLETION DATE 06/15/95	Approved Wimmed - Hour Date 1 Jun 95
nereby agree to comply with all requirements of this permit and Alameda unty Ordinance No. 73-68.	Wyman Hong
PPLICANT'S A M	-

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

REMOVED

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

REMOVED

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

REMOVED

P.O.Box 2165 - Livermore California 94551 510-373-9211

ATTACHMENT E

BOREHOLE LITHOLOGIC LOGS

MW-1

MW-2

MW-3

	H20GEOL!
Α	GROUND WATER CONSULTANCY

		BOREHOLE LITHOLOGIC LOG	
H ₂ OG	FOT!		
A GROUND WATER C	CONSULTANCY	BOREHOLE No. MW-1 Sheet 1 of 1	
Project No.: Da	ate: 06/23/95 & 07/06/	/95 Drilling Co. ASE Drilling Drill Model Iwan Auger	
Client: Mrs. Jean Ratto La	ırkin	Drilling Method - Hand Operation Borehole Diameter 6.25-in	
Location: 1628 Webster St	reet	Ground Surface Elevation 15.0 Datum: ground surface	-
Alameda, Califor	rnia	Borehole MW-1 was completed as a monitoring well MW-1	
Logged by: GDL De	riller: RCV/GDL		
		Water Level 5.44	
1 00		Time 6:27	
Sampling Biowcounts Biowcounts PIDYFID HNu/CVA reading Depth test Sample	ठ ० ठ हे इंड	Date 7/11/95	
Samp Slower Part Hive Peading	Soil Sample Number Graphic Soil Soil Symbol USCS Soil	Field Soil Description	
			2
11111			2-inch PVC casing and screen.
		Dark yellowis brown 10YR 4/6 clayey sand	₹
			8 1
3	sc	Neat Cement Grout	Sign Sign
	Selection (1)		an
		Dark yellowis brown 10YR 4/6 mottled olive 5Y 5/4 clayey sand Bentonite Seal	S S
		Strong petroleum odor beginning at 5.1 - 5.2 feet	
		First Encountered Water at 6.35 Feet.	
7-		Dark bluish gray 5B 4/1 clayey sand.	
			
		Predominant color value lessening	
9-1-			
10-			
	sc sc	Bluish gray 58 5/1 mottled grayish green 5G 5/2 clayey sand.	illimitatilimi
11-1-		LONESTAR No. 3 Sand	
			
13			
╼╌┼╼╌┤ ├╸			
14-			
15		Strong petroleum odor continues to total depth.	
16	Total Depth 15.5	Total Well Depth = 15 05 Feet.	
	(below grade)	(below reference mark) Weil completed with 8-inch flush box.	-
17-1-		vvos controlled maj o inci nest box.	1
18-	 		
╼╍╈╌╍┵┤			
			
21			
	 		
22			
23	4		
24			

ठका रक्ष

-	
	H ₂ OGEOL
Δ	CROUND CONSULTANCY

BOREHOLE LITHOLOGIC LOG

	H_2	()(; F	C(X)	. []													٦
	11/		. A. A.		-4 B													
А	GROUN	D WATER	oo,	NSULTAI	NCY				BOREHOLE No.		MW-2		Sheet	1 of		1	-	
Project	Project No.: Date: 06/23/95 & 07/05-06/					7/05-06/	5	Drilling	Co. ASE Dr	iling		Drill Mo	odel	lwan A	luger			1
Client:	Mrs. Je	an Ratto	Lark	cin				Drilling	Method - Hand (Operatio	on	Boreho	le Diame	ter	6.25	i-in	_	
Locatio	n: 1628	Webster	Stre	et				Ground	Surface Elevatio	ก	16.0		Datum:	ground	l eurfa	Сө	_	
	Alam	veda, Ca	liforn	ıla				Borehol	e MW-2 was co	mpletec	das a mo	nitoring	well MV	V-2				-
Logged	by:	GDL	Dril	ler:	RCV/G	DL	,	<u> </u>		r								4
							Water t	.evel	5.81									╛
at	∢						Time		6:26									
Sampling Blowcounts	PIDVFID HNWOVA reading	£	휼	हूँ हूँ	Phic bo	χ <u>B</u>	Date		7/11/95	·					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			7
8 6 8	召表家	\$ P	Sa	S S S	Graphic Soil Symbol	USCS Soil Symbol			Fie	ld Soil	Description	on On						
				Ţ			Asphalt	0.15 fe	et, baserock 0.3	feet						\prod_{i}	2	L
	-	1	┿	 	-21	sc	Dark ve	llowish t	rown 10YR 4/4	clayey s	sand fill v	vith bric	k fragme	ents.		- 15°	호	
					- C.												₹ 2	
			-	 			ļ		<u>-</u>					······		-13	l g	
		3	L											Neat Co	ment Gr	rout :s	S.	
		<u> </u>															g ar	
	 	-		 										Ве	ntonite S	èeal	Ω	120.00
							Dark ye	liowish t	rown 10YR 4/4	ciayey s	sand.					\Box	2-inch PVC casing and screen	
 		-6	╁	 			<u> </u>		·····		First Enco	untered '	Water at 6	.36 Feet	. 7	₹ .		1
		7			in .													
	 -		\vdash	 		sc										{		
		b														コ		
 -		 -9	├-													-	screen openings = 0.02	
		-10-																
			\vdash	 			Cost Vo	llowish b	rown 10YR 4/4	clavay s	eend					-		
		 					Possible	0.5-1,0	inch well gradde	d sand	В.		LC	NESTAR	No 3 Se	and		
		-12-		<u> </u>												\exists		
		-13-	┝	 														
		-13-														コ		
 		-14-		 													<u> </u>	
		15														コ		
			-	 	1010	epth 15.6				<i></i>			Total We	Denth s	15.05 F4			3
		16-			(below								(belo	w refere	nce ma	rk)		i
-		-17	-	-	-							We	d completed	with 8-inc	th flush b	ΟX		
		18			1													
		ŀ			1													
		-19-			1											_		
		-20-		ļ	} '													
 		-21		 -	1											-		
		-21-			1													
		-22-	-	 	-		ļ											
		-23			1					· · · · · · · · · · · · · · · · · · ·								
				ļ	ļ							·		,				
		-24			1		L											
		O.E.		Ι΄	7	 										7		

ħ			
	H_2O	GEO	
	2001110	CONCUE	

BOREHOLE LITHOLOGIC LOG

<u> </u>	TT	Ω	YY	$r \wedge r$	-				DOMETIC			50.0					
	~							·· -						-			
	GROUN	U WATER	- co	NSUL IAI	NCY				BOREHOLE No.	-	MW-3	Shee	t 1 of	1			
Project	No.:		_Dat	e: 06/23	/95 & 07	7/05-06/9	9 6	Drilling	Co. ASE Dri	lling	Drill	Model	Iwan A	uger			
Client:	Mrs. Je	en Ratto	Lark	in				Drilling	Method <u>- Hand C</u>	peration	Bore	hole Diame	eter	6.25-in		J	
Locatio	n: 1628	Webster	Stre	et				Ground	Surface Elevatio	ก	15.1	Datum	ground	surface			
	Alam	eda, Ca	lifom	ia		_		Borehol	MW-3 was co	mpleted	as a monitori	ng well M	W-3				
Logged	bv:	GDL	Drill	ler:	RCV/GI	DL										1	Ì
1							Water L	evel.	5.41								
ık.	-						Time		6:23								
Sampling Blowcounts	PID/FID HINL/OVA reading	, €_	nple.	ape Beer	Graphic Soil Symbol	8- <u>\$</u>	Date		7/11/95								İ
	문물원	1 8.78	<u>8</u>	882	<i>පිහි</i> ණි ත	288	A == b = lá	0 1E 4			escription	,. <u></u>				 	_
 	 		 	-	E		Aspnant	U, 15 186	t, baserock 0.3	16er					3	;	
		1		1			Dark ye	llowish b	rown 10YR 4/4	clayey sa	and,					울	
		2	厂												3.	Š ∣	Į,
			 	<u> </u>			 		·····						m.gr.	ğ	
<u> </u>	 	 3	一	 					····				Neat Cer	ment Cirout	2	<u>s</u> .	
		<u>_4</u>	二													o ag	
ļ		-	⊬		. Miles	l	ļ						Don	tonite Seal		ğ	· Mar
		5	匚				Dark ye	lowish b	rown 10YR 4/4	mottled o	olive 5Y 5/4 (clayey san		MOTINE SEE	THE L		
 		-6-	 								First Encountere	d Water at (3.35 Feet.	abla		5	
		7-	F				Dark va	lowish b	rown 10YR 4/4	clavev sa	and						
		- 8-	二			sc			ying 10 to 40 pe								
		-9-	上													8	
			\vdash	<u> </u>											THE THE PERSON NAMED IN	Screen openings	
		-10-															
		-11										F	ONESTAR I	No. 3 Sand			
		-12-		<u> </u>							· · · · · · · · · · · · · · · · · · ·						
		-13-														8	
		-14-	二								······································					ᅙ	
		15	上														,
 			-		Total D	epth 16,6						Total W	el Depth = 1	15 05 Feet	_=		
		16	匸		(below								OW Telefo				
<u> </u>		-17-	_	ļ	-	ĺ			·····			Well complete	d with 8⊣nc	h fiush box			
		18-	匚		1												
		-19 -			1												
 			\vdash	<u> </u>	1												
		-20-			-	:											İ
 	<u> </u>	-21-	\vdash		1												,
		-22-]												
			<u> </u>		-												
		-23	T	<u> </u>	1												
		-24															
		25	\vdash	 	1												

P.O.Box 2165 - Livermore California 94551 - 510-373-9211

ATTACHMENT C

SOIL SAMPLE ANALYTICAL RESULTS CHROMALAB, INC. SUBMISSION # 9506333

Environmental Services (SDB)

July 6, 1995

Submission #: 9506333

H20 GEOL

Atten: Gary Lowe

Project: RATTO-LARKIN PROPERTY

Received: June 23, 1995

re: 3 samples for Diesel analysis.

Method: EPA 3550/8015M

Sampled: June 23, 1995

Matrix: SOIL

Extracted: July 3, 1995

Run: 7490-D Analyzed: July 4, 1995

Sn1 # C14	ent Sample	DIESEL ID (mq/Kg)	REPORTING LIMIT (mg/Kg)	BLANK RESULT (mg/Kg)	BLANK SPIKE RESULT (%)
93703 MW- 93704 MW- 93705 MW-	1 @ 6.1' 2 @ 6.0'	8.4 N.D. N.D.	1.0 1.0 1.0	N.D. N.D. N.D.	97 97 97

Dennis Mayugba Chemist

Organic Manager

CHROMALAB, INC.

July 6, 1995

Submission #: 9506333

H20 GEOL

Atten: Gary Lowe

Project: RATTO-LARKIN PROPERTY

Received: June 23, 1995

re: 3 samples for Gasoline and BTEX analysis.

Method: EPA 5030/8015M/8020

Sampled: June 23, 1995

Matrix: SOIL

Run: 7486-J Analyzed: July 5, 1995

Spl # Client Sample ID_	Gasoline	Benzene (vq/Kq)	Toluene (ug/Kg)	Ethyl Benzene (ug/Kg)	Total Xylenes (ug/Kg)
93703 MW-1 @ 6.1'	830	120	220	1100	1400
For above sample: G	AS DET.LIMIT:	=20mg/Kg,BTEX	DET.LIMIT-10	Dug/Kg	
93704 MW-2 @ 6.0'	N.D.	N.D.	N.D.	N.D.	N.D.
93705 MW-3 @ 5.5'	N.D.	N.D.	N.D.	N.D.	N.D.
Reporting Limits	1.0	5.0	5.0	5.0	5.0
Blank Result	N.D.	N.D.	N.D.	N.D.	N.D.
Blank Spike Result (%)	96	96	97`	100	100

Jack Kelly Chemist

Ali Khafrazi Organic Manager

GC

Environmental Services (SDB)

June 27, 1995

Submission #: 9506333

H20 GEOL

4780 \$16.3734222

Atten: Gary Lowe

Project: RATTO-LARKIN PROPERTY

Received: June 23, 1995

re: 3 samples for Oil and Grease analysis.

Sampled: June 23, 1995

Matrix: SOIL Run: 7332-C Extracted: June 26, 1995

Analyzed: June 26, 1995

Method: STANDARD METHODS 5520 E&F

IENT	SMPL_ID	OIL & GREASS (mq/Kg)	REPORTING LIMIT (mg/kg)	BLANK RESULT (mg/Kg)	RESULT (%)
	6.1	N.D.	50	N.D.	88
-2 @	6.0	n.D.	50	N.D.	88
-3 @	5.51	N.D.	50	N.D.	88

Carolyn House Extractions Supervisor

Ali Kharrazi Organic Manager

1628 Webster Str	PAGE 1 of 1					
LIVERMORE, CALIFORNIA 94551-2165 Retto-Lerkin Prope 1628 Webster Str						
1628 Webster Str	Sample Source: Retto-Larkin Property					
SAMPLERIS): Gary D. Lovée & Richard Voret Alameda. Californi	VBM #: 9506333 REP					
Control of the contro	IENT: HZOGEOL					
SAMPLER'S SIGNATURE: ANALY	Æ: 07/06/95 FF #:22604					
	:F #:22604 ·					
SAMPLE RECIEPT;	1 1 1 1					
TOTAL No. of CONTAINERS	1 1 1 1					
CHAIN OF CLISTOOT SEALS N	1 2					
CHINN OF CUSTOOY SEALS 14 CONTONUOUD Y CONFORMS TO RECORD 4 CONFORMS TO RECORD 4 CONFORMS TO RECORD 4 CONFORMS TO RECORD 4 CONFORMS TO RECORD 4 CONFORMS TO RECORD 5 CONFORMS TO RECORD 5 CONFORMS TO RECORD 5 CONFORMS TO RECORD 5 CONFORMS TO RECORD 5 CONFORMS TO RECORD 5 CONFORMS TO RECORD 5 CONFORMS TO RECORD 5 CONFORMS TO RECORD 5 CONFORMS TO RECORD 5 CONFORMS TO RECORD 5 CONFORMS TO RECORD 5 CONFORMS TO RECORD 5 CONFORMS TO RECORD 5 CONFORM 5 CONFORMS TO RECORD 5 CONFORM 5 CONFO	ULMAGER OF CONTAINERS					
\$ 8 +						
LAB NO.						
	و					
]]]					
	\frac{1}{2}					
CHANGE CRITICAL SEASON SEASON NO. 1 SEASON SEASON NO. 1 SEASON SEASON NO. 1 SEASON SEASON NO. 1 SEASON SEASON NO. 1 SEASON SEASON NO. 1 SEASON SEASON NO. 1 SEASO						
FAX RESULTS TO (610) 373-0222 F MATRIX LAB ID.						
MW-1 at (4.) Ft. 6/23/95 OB: 15 SOIL X X X						
<u></u>						
MW-3 at 5-5 Ft 6/23/98 0 : 25 SOIL X X X						
 						
<u> </u>						
<u> </u>						
Please note special pricing						
per Gery Cook.						
/ 10-Day TAT						
RELINQUISHED BY:						
SIGNATURE SIGNATURE						
PRINTED NAME Gary D. LOWO 12:5 PRINTED NAME	THE					
	DATE					
COMPANY S/23/35 COMPANY	UNIE .					
RECEIVED BY: RECEIVED BY LABORATORY::						
BIGHATURE SIGNATURE (Ludy The	12:55					
SKINATURE SKINATURE Dudy Type PRINTED NAME PRINTED NAME Rudo Nyas	TIME					
PRINTED NAME	DATE					
QATE !						

P.O.Box 2165 - Livermore, California 94551 510-373-9211

ATTACHMENT D

WELL SURVEYOR'S REPORT RON ARCHER, CIVIL ENGINEER, INC.

RON ARCHER

CIVIL ENGINEER INC.

CONSULTING . PLANNING . DESIGN . SURVEYING

4133 Mohr Ave., Suite E • Pleasanton, CA 94566 (510) 462-9372

JULY 14, 1995

JOB NO 2305

ELEVATIONS OF EXISTING MONITORING WELLS LOCATED AT 1628 WEBSTER STREET, CITY OF ALAMEDA, ALAMEDA COUNTY, CALIFORNIA.

FOR: H2O GEOL

BENCHMARK: WEB-PAC-1947

THE TOP OF A FOUND U.S.G.S. BRASS DISK STAMPED WEB-PAC-1947, SET IN A STANDARD CITY MONUMENT CASING IN THE SIDEWALK AT THE NORTHWEST CORNER OF THE INTERSECTION OF PACIFIC AVENUE AND WEBSTER STREET, APPROXIMATELY 1 FOOT BELOW GROUND SURFACE. ELEVATION TAKEN AS 14.055 M.S.L. (N.G.V.D.)

MONITORING WELL DATA TABLE

WELL	TOP OF CASING	TOP OF BOX
DESIGNATION	ELEVATION	ELEVATION
	-	
MVV-1	14.71	14.98
MW-2	15.69	15.95
MW-3	14.71	15.09
INIVY-3	14./1	10.09
BH-2	15.53 (GROUND)	

P.O.Box 2165 Livermore, California 94551 - 510-373-9211

ATTACHMENT E

LOG OF WELL SAMPLING ACTIVITIES

LOG OF WELL SAMPLING ACTIVITIES

Well identific	ation; "	<u>Μω-ι</u> Ρπ	yect Name	<u> </u>	<u>3 Webs</u>	<u> </u>	ે.,મા	aneda Do	te: _7_//	<u> کنا/ی</u>			
Sampled by:	611	-		Weeth	er Conditions	:	Part	y cloudy	. 68-				
Well Location	·	·		Well C	tasing Diamet	er 2	<u>"</u>	Depth of Well Ca	using: 10	<u>5.05</u>			
Measuring P	Weesuring Point: Top of PVC Casing initial Depth to Water: 5.44 Final Depth to Water:												
Casing Volum	Casing Volume (1 vol./ 3 vol): 1.9 4.0 Well Borehole Volume:												
Purging Met	1	Centrifugat Pum Grundfoe Subm Centrifugat Pum ES-60 12v Subm	raible Puri vES-60 St	p pomersible		Sampling	Method	Peristaltic Pu Grundlos Sus Telion Bailer 4.5-Gro	oldisnemi	o o			
Purging Rate: See below Total Discharge: 8,0 Casing Volumes Purged: 5,2													
Comments:													
Weste Water Disposal: To June													
Starting Time													
Date	Time	Gal, Purged	pH	T deg. F	Diluted S.C.	Oit. F	nctor	\$.C. (µ5/cm)	Cok	<u>. </u>			
7/11/95	8:21	1.5	2.19	68.1		x	=	\$693	c2 4 10	Llu			
1.	8:25	4.0	6.92	68.0		x	-	681	1.				
. 10	5 27	5.0	6.96	68.4		×		662		١,			
	8:29	6.0	6.53	68.3		x		660	1 1	<u>"</u>			
14	8:31	7.0	6.55	68.3	L	x		665	1	11			
1,	8:33	9.0	6.96	68.1		×	-	659	11				
						x	*		<u> </u>				
L			L			x .	3						
			<u> </u>		<u></u>	×	-		<u> </u>				
			L		<u></u>	×	=		<u> </u>				
				<u> </u>	<u> </u>	×	=	<u></u>					
Sample l	dentifica	tion:		 -	Sample Time	r _8	:36	_					
							TURB	IDITY ANALYSIS	\$				
Finishing	Time;		-		Tir	ne Analyz	ed:	NTU	Vakue:				

LOG OF WELL SAMPLING ACTIVITIES

West Identification: 44-2 Project Name: 1628 Wester Conditions: 57 House da Date: 07/11/95 Sampled by: GIL Wester Conditions: 57/4721 bg											
Sampled by:	Gen	<u>-</u>		West	er Conditions	٠.	714765	_	- 60		
Well Location Well Casing Diameter: 214 Depth of Well Casing: 15.04											
Measuring Point: Top of PVC Casing Initial Depth to Water: 5.81 Final Depth to Water:											
Casing Volume (1 vol./ 3 vol): 1.45 / 4,43 Well Borehole Volume.											
Purging Method: Centritugal Pump/Pertstatilic Pump Grundice Submersible Pump Centritugal Pump/ES-60 Submersible ES-60 12v Submersible Pump ### Centritugal Pump/ES-60 Submersible #### Centritugal Pump/ES-60 Submersible ####################################											
Purging Rate	Purging Rate: See below Total Discharge: 7.0 Casing Volumes Purged: 4.7										
Comments:											
Waste Water	Dispos	at: <u>1</u> 3	form	1							
Starting Time Time Pump o											
Date	Time	Gal, Purged	ρΗ	T deg. F	Diluted S.C.		Dit. Factor		5.C (µS/cm)	Cole	
7/11/95	_		7.45	655					575	ye/. 6	
		5.0	7.34			×				C.I. yel	
		5.5		65.7		×			529	13	
		6.0		65.5		Ţ		Į		edi hisk	7
		6.5		65.8		×		_	532	41	7.1
		7.0		65.8		×		Ī	226		7
 	1.60	7.9.	7:44	# Z :O.		Ŷ		•	<u> </u>		_
			-			x					
				1	-	,		Ì			
 	$\vdash \vdash \vdash$		\vdash			-		Ī			
<u> </u>	$\vdash \vdash \vdash$				 	×		Ė	·		
Sample id	lentifica	tion: MU	-2_		Sample Time		7:3	٥		<u> </u>	
	TURBIDITY ANALYSIS										
Finishing	Terrier.				Ter		Unalyzet	_		/alue	

LOG OF WELL SAMPLING ACTIVITIES

		<u>146-3</u> P								se <u>7/11/85</u>	
Well Location: Well Casing Diameter: 2m Depth of Well Casing: 15.65											
Measuring Point: Top of PVC Casing Initial Depth to Water: 5.41 Final Depth to Water: 6.00 : 2.5											
Casing Volume (\$ vol./ 3 vol): 1.54/ 4.63 Well Borehole Volume.											
Purging Method: Centrifugal Pump/Peristatic Pump Grundfos Submersible Pump Grundfos Submersible Pump Grundfos Submersible Pump Grundfos Submersible Pump Teffon Bailer L4 4-0											
Purging Rate	e: <u>Se</u>	e below	Total Dis	charge;	7.5		Ca	tin	Volumes Purge	# 4.9	
Comments:											
Weste Wete	r Dispos	al: <u>1</u> >	dru	1							
Starting Time											
Time Pump	on: _Z	:45-									
Date	Time				Diluted S.C.		0€. Factor		S.C. (µS/cm)	Color	
7/11/95	7:46	1.5	7.07	66.5		×	F		707	40/145	
**	7:5d	40	7.11	66.6		×	<u> </u>		727	н	
<u> </u>	7:52	5.0	7.12	66.5-		×	lI		722	11	
_ ^	2:5	6.0	7.12	66.4		z			719	7	
	7:50	7.0	7.14	66.4		×			721	-	
- 11	7.38	7.5	7.11	66.3		x	1	•	717	£1	
<u> </u>						×					
						×		-			
						×		_			
						Ŷ					
						×		7			
	Sample Identification: Mw-3 Sample Time: 8:01 TURBIDITY ANALYSIS										
Finishing	Time; _				Tim	* ^	nejvzeg		NTU V	akue:	

P.O.Box 2165 - Livermore California 94551 - 510-373-9211

ATTACHMENT F

GROUNDWATER SAMPLE ANALYTICAL RESULTS CHROMALAB, INC. SUBMISSION # 9507091

Environmental Services (SDS)

July 25, 1995

H20 GEOL

Submission #: 9507091

Atten: Gary Lowe

Project: RATTO LARKIN

REPORTING INFORMATION

Sample(s) were received cold and in good condition on July 11, 1995. They were refrigerated on receipt, and analyzed on the date shown on the attached report. ChromaLab followed EPA or equivalent methods for all analyses reported.

No discrepancies were observed or difficulties encountered with the analysis.

Hydrocarbons in the kerosene range were observed in sample, MW-1.

Quality Assurance Manager

Eric Tam

Laboratory Director

CHROMALAB, INC.

Environmental Services (SDB)

July 20, 1995

Submission #: 9507091

H20 GEOL

Atten: Gary Lowe

Project: RATTO LARKIN Received: July 11, 1995

re: 3 samples for Oil and Grease analysis.

Method: STANDARD METHODS 5520 B&F

Sampled: July 11, 1995

Matrix: WATER Extracted: July 12, 1995

Run: 7592-C

Analyzed: July 12, 1995

REPORTING BLANK BLANK SPIKE OIL & GREASE LIMIT RESULT RESULT Spl # Client Sample ID 95417 MW-1 (mq/L) N.D. (mq/L)(mq/L) N.D. 1.0 95418 MW-2 N.D. N.D. 92 N.D. 95419 MW-3 1.0 N.D. 92

Extractions Supervisor

Ali Kharrazi Organic Manager

1220 Quarry Lane • Pleasanton, California 94566-4756 (510) 484-1919 • Facsknile (510) 484-1096 Federal ID #68-0140157

1220 Quarry Lane • Pleasanton, California 94566-4756 (510) 484-1919 • Facsimile (510) 484-1096 Federal ID #68-0140157

Environmental Services (SDB)

July 25, 1995

Submission #: 9507091

H20 GEOL

Atten: Gary Lowe

Project: RATTO LARKIN Received: July 11, 1995

re: 3 samples for Diesel analysis.

Method: EPA 3510/8015M

Sampled: July 11, 1995

Matrix: WATER

Extracted: July 12, 1995

Run: 7753-D Analyzed: July 13, 1995

a_1 #	0	DIESEL	REPORTING LIMIT	BLANK RESULT	BLANK SPIKE RESULT
Spl #_	Sample ID	(ug/L)	(uq/L)	(uq/L)	(%)
95417	MW-1	N.D.	50	N.D.	84
95418	MW-2	N.D.	50	N.D.	84
95419	MW-3	N.D.	50 -	N.D.	84

Dennis Mayuqba

Chemist

Ali Kharrazi

Organic Manager

CHROMALAB, INC.

Environmental Services (SDB)

July 20, 1995

Submission #: 9507091

H20 GEOL

Atten: Gary Lowe

Project: RATTO LARKIN Received: July 11, 1995

re: 3 samples for Gasoline and BTEX analysis.

Method: EPA 5030/8015M/602/8020

Sampled: July 11, 1995

Matrix: WATER

Run: 7612-2

Analyzed: July 13, 1995

Spl # Client Sample ID	Gasoline (mg/L)	Benzene (ug/L)	Toluene (ug/L)	Ethyl Benzene (ug/L)	Total Xylenes (ug/L)
95417 MW-1	6.3	16	3.0	28	88
95418 MW-2	N.D.	N.D.	N.D.	N.D.	N.D.
95419 MW-3	N.D.	N.D.	N.D.	N.D.	N.D.
Reporting Limits	0.05	0.5	0.5	0.5	0.5
Blank Result	N.D.	N.D.	N.D.	N.D.	N.D.
Blank Spike Result (%)	90	100	97	99	92

Jack Kelly Chemist

6705 \$16373 4222

Ali Kharrazi Organic Manager

Environmental Services (SDB)

July 25, 1995

Submission #: 9507091

H20 GEOL

Atten: Gary Lowe

Project: RATTO LARKIN Received: July 11, 1995

re: One sample for Volatile Halogenated Organics analysis.

Method: EPA 8010

SampleID: MW-1

Sample #: 95417 Matrix: WATER

Sampled: July 11, 1995 Run: 7754-0 Analyzed: July 24, 1995

		REPORTING	BLANK	BLANK SPIKE
	RESULT	LIMIT	RESULT	result
Analyte	(ug/L)	(ug/L)	(ug/L)	(%)
CHLOROMETHANE	N.D.	0.5	N.D.	
VINYL CHLORIDE	N.D.	0.5	N.D.	
BROMOMETHANE	N.D.	0.5555555555555555555555555555555555555	N.D.	
CHLOROETHANE	N.D. N.D.	0.5	N.D.	
TRICHLOROFLUOROMETHANE	N.D.	0.5	N.D.	
1,1-DICHLOROETHENE	N.D.	0.5	N.D.	86
METHYLENE CHLORIDE	N.D. N.D. N.D. N.D.	ŏ.5	N.D. N.D. N.D.	
TRANS-1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE	Ŋ.D.	0.5	N.D.	
CIS-1,2-DICHLOROETHENE	N.D.	0.5	N.D.	
1,1-DICHLOROETHANE	N.D.	0.5	N.D.	
CHLOROFORM	17	0.5	N.D.	
1,1,1-TRICHLOROETHANE	N.D.	0.5	N.D.	
CARBON TETRACHLORIDE	N.D. N.D.	0.5	N.D.	
1,2-DICHLOROETHANE	N.D.	0.5	N.D.	
TRICHLOROETHENE	Ŋ.D.	0.5	N.D.	115
1,2-DICHLOROPROPANE	N.D. N.D. N.D. N.D.	0.5 0.5 0.5 0.5	N.D.	· +-
BROMODICHLOROMETHANE	N.D.	0.5	N.D.	
2-CHLOROETHYLVINYL ETHER	N.D.	0.5	N.D.	
TRANS-1,3-DICHLOROPROPENE	N.D.	0.5	N.D.	
CIS-1,3-DICHLOROPROPENE	N.D.	0.5	N.D.	
1,1,2-TRICHLOROETHANE	N.D.	0.5	N.D.	
TETRACHLOROETHENE	N.D.	0.5 0.5 0.5 0.5	N.D.	
DIBROMOCHLOROMETHANE	N.D.	0.5	N.D.	
CHLOROBENZENE	N.D.	0.5	N.D.	108
BROMOFORM	N.D.	0.5	N.D.	
1,1,2,2-TETRACHLOROETHANE	N.D.	0.5	N.D.	
1,3-DICHLOROBENZENE	N.D.	0.5	N.D.	
1,4-DICHLOROBENZENE	N.D.		N.D.	
1,2-DICHLOROBENZENE	N.D.	0.5	N.D.	
TRICHLOROTRIFLUOROETHANE	N.D.	0.5	N.D.	

Oleg Nemtsov Chemist

Organic Manager

CHROMALAB, INC.

Environmental Services (SDB)

July 25, 1995

Submission #: 9507091

H20 GEOL

Atten: Gary Lowe

Project: RATTO LARKIN Received: July 11, 1995

re: One sample for Volatile Halogenated Organics analysis.

Method: EPA 8010

SampleID: MW-2

Sample #: 95418 Matrix: WATER

Sampled: July 11, 1995 Run: 7754-0 Analyzed: July 24, 1995

	RESULT	REPORTING LIMIT	BLANK RESULT	BLANK SPIKE RESULT
Analyte	(uq/L)	(ug/L)	(ug/L)	(%)
CHLOROMETHANE	N.D.	0.5	N.D.	
VINYL CHLORIDE	N.D.	0.5	N.D.	
BROMOMETHANE	N.D.	0.5	N.D.	
CHLOROETHANE	N.D.	0.5	N.D.	
TRICHLOROFLUOROMETHANE	N.D.	0.5	N.D.	
1,1-DICHLOROETHENE	N.D.	0.5	N.D.	86
METHYLENE CHLORIDE	N.D.	0.5	N.D.	
TRANS-1, 2-DICHLOROETHENE	N.D.	0.5	N.D.	
CIS-1,2-DICHLOROETHENE	N.D.	0.5	N.D. N.D. N.D.	
1,1-DICHLOROETHANE	N.D.	0.5	N.D.	
CHLOROFORM	N.D.	0.5	N.D.	
1,1,1-TRICHLOROETHANE	N.D.	0.5	N.D.	
CARBON TETRACHLORIDE	N.D.	0.5	N.D.	
1,2-DICHLOROETHANE	N.D.	0.5	N.D.	
TRICHLOROETHENE	2.6	0.5	N.D.	115
1,2-DICHLOROPROPANE	N.D.	0.5	N.D.	
BROMODICHLOROMETHANE	N.D.	0.5	N.D. N.D.	
2-CHLOROETHYLVINYL ETHER	N.D.	0.5	N.D.	
TRANS-1, 3-DICHLOROPROPENE	N.D.	0.5	N.D.	
CIS-1, 3-DICHLOROPROPENE	N.D.	0.5	N.D.	
1,1,2-TRICHLOROETHANE	N.D.	ŏ.5	N.D.	
TETRACHLOROETHENE	2.8	0.5	N.D.	
DIBROMOCHLOROMETHANE	Ñ.D.	ŏ.š	N.D.	•-
CHLOROBENZENE	M D	0.5	N.D.	108
BROMOFORM	N.D. N.D.	0.5	N.D.	100
1,1,2,2-TETRACHLOROETHANE	N.D.	0.5	N.D.	
	N.D.			
1,3-DICHLOROBENZENE	N.D.	0.5	N.D. N.D.	
1,4-DICHLOROBENZENE	W.D.	0.5		
1,2-DICHLOROBENZENE	Ŋ.D.	0.5	N.D.	
TRICHLOROTRIFLUOROETHANE	N.D.	0.5	N.D.	

Oleg Nemtsov

Chemist

Organic Manager

N:OCREV719 OUEO 14:49:34

Environmental Services (SDS)

July 25, 1995

Submission #: 9507091

H20 GEOL

Atten: Gary Lowe

Project: RATTO LARKIN Received: July 11, 1995

re: One sample for Volatile Halogenated Organics analysis.

Method: EPA 8010

SampleID: MW-3

Sample #: 95419

Matrix: WATER

Sampled: July 11, 1995

Run: 7754-0 Analyzed: July 24, 1995

		reporting	BLANK	BLANK SPIKE
	RESULT	LIMIT	RESULT	RESULT
Analyte	(uq/L)	(ug/L)	(ug/L)	(%)
CHLOROMETHANE	N.D.	0.5	N.D.	
VINYL CHLORIDE	N.D.	0.5	N.D.	
BROMOMETHANE	N.D.	0.5	N.D.	
CHLOROETHANE	N.D.	0.5	N.D.	
TRICHLOROFLUOROMETHANE	N.D.	0.5	N.D.	
1,1-DICHLOROETHENE	N.D.	0.5	N.D.	86
METHYLENE CHLORIDE	N.D.	0.5	N.D.	
TRANS-1,2-DICHLOROETHENE	N.D.	0.5	N.D.	
CIS-1,2-DICHLOROETHENE	N.D.	0.5 0.5	N.D.	
1,1-DICHLOROETHANE	N.D.	0.5	N.D.	
CHLOROFORM	N.D.	0.5	N.D.	
1,1,1-TRICHLOROETHANE	N.D.	0.5	N.D.	+ -
CARBON TETRACHLORIDE	N.D.	0.5	N.D.	
1,2-DICHLOROETHANE	N.D.	0.5	N.D.	
TRICHLOROETHENE	N.D.	0.5	N.D.	115
1,2-DICHLOROPROPANE	N.D.	0.5	N.D.	
BROMODICHLOROMETHANE	N.D.	0.5	N.D.	
2-CHLOROETHYLVINYL ETHER	N.D.	0.5	N.D.	•
TRANS-1,3-DICHLOROPROPENE	N.D.	0.5	N.D.	
CIS-1,3-DICHLOROPROPENE	N.D.	0.5	N.D.	
1,1,2-TRICHLOROETHANE	N.D.	0.5	N.D.	
TETRACHLOROETHENE	N.D.	0.5	N.D.	
DIBROMOCHLOROMETHANE	N.D.	0.5	N.D.	
CHLOROBENZENE	N.D.	0.5	N.D.	108
BROMOFORM	N.D.	0.5	N.D.	
1,1,2,2-TETRACHLOROETHANE	N.D.	0.5	N.D.	
1.3-DICHLOROBENZENE	N.D.	0.5	N.D.	~ ~
1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE	N.D.	0.5	N.D.	
1,2-DICHLOROBENZENE	N.D.	0.5	N.D.	
TRICHLOROTRIFLUOROETHANE	N.D.	0.5	N.D.	~-
, // /				

Oleg' Nemtsov

Organic Manager

1220 Quarry Lane • Pleasanton, California 94566-4756 (510) 484-1919 • Facsimile (510) 484-1096 Federal ID #68-0140157

M-QCREV719 OLEG 14-49:34

CHROMALAB, INC.

Environmental Services (SDB)

July 20, 1995

Submission #: 9507091

H20 GEOL

Atten: Gary Lowe

Project: RATTO LARKIN Received: July 11, 1995

re: One sample for Semivolatile (Base/Neutral Extractable) Compounds

Method: EPA 3510/625

SampleID:

87/25 510-373-9222

Sample #: MW-1

Matrix: WATER Sampled: 95417 Extracted: July 17, 1995

July 11, 1995 Run: 7663-A Analyzed: July 19, 1995

Analyte	RESULT (ug/L)	REPORTING LIMIT (ug/L)	BLANK RESULT (uq/L)	BLANK SPIKE RESULT (%)
PHENOL	N.D.	2	N.D.	
BIS (2-CHLOROETHYL) ETHER	N.D.	Ž	N.Ď.	
2-CHLOROPHENOL	N.D. N.D. N.D.	2	N.D.	79
1,3-DICHLOROBENZENE	Nr.D.	2	N.D. N.D.	
1.4-DICHLOROBENZENE	N.D.	.2	N.D.	
BENZYL ALCOHOL	N.D. N.D. N.D.	2	N.D. N.D.	
1.2-DICHLOROBENZENE	N.D.	2	N.D.	
2-METHYLPHENOL	N.D. N.D. N.D. N.D.	2	N.D.	
BIS (2-CHLOROISOPROPYL) ETHER	N.D.	2	N.D.	
4-METHYLPHENOL	N.D.	2	N.D.	
N-NITROSO-DI-N-PROPYLAMINE	N.D.	2	N.D.	70
HEXACHLOROETHANE	N.D.	Ž	N.D.	
NITROBENZENE	N.D.	2	N.D.	
ISOPHORONE	N.D.	2	N.D.	
2-NITROPHENOL	N.D.	Ž	N.D.	
2,4-DIMETHYL PHENOL	N.D.	Ž	N.D.	
BIS (2-CHLOROETHOXY) METHANE	N.D. N.D. N.D.	2	N.D. N.D.	
2.4-DICHLOROPHENOL	N.D. N.D.	2	N.D.	
1,2,4-TRICHLOROBENZENE	N.D.	2	N.D.	69
NAPHTHALENE	190	2~	N.D.	
4-CHLOROANILINE	190 N.D. N.D. N.D.	2	N.D. N.D. N.D.	
HEXACHLOROBUTADIENE	N.D.	2	N.D.	
4-CHLORO-3-METHYLPHENOL	N.D.	4	N.D.	65
2-METHYLNAPHTHALENE	32	Ž	N.D.	
HEXACHLOROCYCLOPENTADIENE	N.D.	2	N.D.	
2,4,6-TRICHLOROPHENOL	N.D.	Ž	N.D.	
2,4,5-TRICHLOROPHENOL	N.D.	2	N.D. N.D.	
2-CHLORONAPHTHALENE	N.D. N.D. N.D. N.D.	ž	N.D.	
2-NITROANILINE	N.D.	2	N.D.	:
DIMETHYL PHTHALATE	N.D.	2	N.D.	
ACENAPHTHYLENB	N.D.	· 5	N.D.	
3-NITROANILINE	^ N.D.	2	N.D.	
ACENAPHTHENE	N.D.	72222222222222222222222222222222222222	N.D.	72
2.4-DINITROPHENOL	N.D.	. 6	N.D.	
4-NITROPHENOL	N.D.	Š	N.D.	
- DIBENZOFURAN	N.D.		N.D.	
2.4-DINITROTOLUENE	N.D.	<u>-</u>	N.D.	*-
-,		-		

Chemist

Environmental Services (SDB)

July 20, 1995

Submission #: 9507091

page 2

H20 GEOL

Atten: Gary Lowe

Project: RATTO LARKIN Received: July 11, 1995

> re: One sample for Semivolatile (Base/Neutral Extractable) Compounds analysis, continued.

Method: EPA 3510/625

SampleID:

Sample #: MW-1

Sampled: 95417 July 11, 1995

Matrix: WATER Run: 7663-A

Extracted: July 17, 1995 Analyzed: July 19, 1995

		REPORTING	BLANK	BLANK SPIKE
	RESULT	LIMIT	RESULT	RESULT
Analyte	(ug/L)	(uq/L)	(ug/L)	(%)
2,6-DINITROTOLUENE	N.D.		N.D.	
DIETHYL PHTHALATE	N.D.	2	N.D.	
4-CHLOROPHENYLPHENYLETHER	N.D.	2	N.D.	
FLUORENE	N.D.	2	N.D.	
4-NITROANILINE	N.D.	2	N.D.	••
4,6-DINITRO-2-METHYLPHENOL	N.D.	5	N.D.	
N-NITROSODI-N-PHENYLAMINE	N.D.	2	N.D.	
4-BROMOPHENYLPHENYLETHER	N.D.	Ž	N.D.	
HEXACHLOROBENZENE	N.D.	2	N.D.	
PENTACHLOROPHENOL	N.D.	5	N.D.	67
PHENANTHRENE	N.D.	2	N.D.	
ANTHRACENE	N.D.	2	N.D.	
DI-N-BUTYL PHTHALATE FLUORANTHENE	Ŋ.D.	2	N.D. N.D.	
PYRENE	Ŋ.D.	2	N.D.	
BUTYL BENZYL PHTHALATE	N.D.	2	N.D.	83
3,3'-DICHLOROBENZIDINE	N.D.	4	й.Б.	
BÉNZO (A) ANTHRACENE	N.D.	4	N.D.	
BIS (2-ETHYLHEXYL) PHTHALATE	N.D.	2	N.D.	
CHRYSENE	Ŋ.D.	2	N.D.	~-
DI-N-OCTYLPHTHALATE	N.D.	4	N.D.	
BENZO (B) FLUORANTHENE	N.D.	2	N.D.	
BENZO (K) FLUORANTHENE	N.D.	2	Ŋ.D.	
BENZO (A) PYRENE	N.D. N.D.	4	N.D.	
INDENO (1, 2, 3-CD) PYRENE		4	й.р.	
DIBENZO (A, H) ANTHRACENE	N.D. N.D.	4	N.D.	
BENZO (GHI) PERYLENE	N.D.	4	N.D.	
BENZOIC ACID	N.D.	222222222222222222222222222222222222222	N.D. N.D.	*-
	14 . 17 .	4	м. и.	*-

Chemist

Organic Manager

1220 Quarry Lane • Pleasanton, California 94568-4756 (510) 484-1919 • Facsimile (510) 484-1096 Federal ID #68-0140157

NOCKEYTIS YT 18-21-02

CHROMALAB, INC.

Environmental Services (SDB)

July 20, 1995

Submission #: 9507091

H20 GEOL

Atten: Gary Lowe

Project: RATTO LARKIN Received: July 11, 1995

re: One sample for Semivolatile (Base/Neutral Extractable) Compounds

analysis. Method: EPA 3510/625

SampleID:

Sample #: MW-2

Sampled: 95418 July 11, 1995 Matrix: WATER Run: 7663-A Extracted: July 17, 1995 Analyzed: July 19, 1995

	RESULT	REPORTING LIMIT	Blank Result	BLANK SPIKE RESULT
Apalyte	(ug/L)	(yq/L)	(uq/L)	(%)
PHENOL	N.D.	2	N.D.	+-
BIS (2-CHLOROETHYL) ETHER	N.D.	2	N.D.	
2-CHLOROPHENOL	N.D.	2	N.D.	79
1,3-DICHLOROBENZENE	N.D. N.D.	2	N.D. N.D. N.D.	
1,4-DICHLOROBENZENE	N.D.	2	Ŋ.D.	
BENZYL ALCOHOL	N.D.	2	N.D.	
1,2-DICHLOROBENZENE	N.D.	2	N.D.	
2-METHYLPHENOL	N.D.	2	N.D.	
BIS (2-CHLOROISOPROPYL) ETHER	N.D.	2	N.D.	
4-METHYLPHENOL	N.D.	2	N.D. N.D. N.D. N.D.	- -
N-NITROSO-DI-N-PROPYLAMINE	N.D.	2	N.D.	70
HEXACHLOROETHANE	N.D.	2	N.D.	
NITROBENZENE	N.D.	2	N.D.	-
ISOPHORONE	N.D.	2	N.D.	+-
2-NITROPHENOL	N.D.	2	N.D. N.D. N.D.	
2,4-DIMETHYL PHENOL	N.D.	2	N.D.	
BIS (2-CHLOROETHOXY) METHANE	N.D.	2	N.D.	
2,4-DICHLOROPHENOL 1,2,4-TRICHLOROBENZENE	N.D.	2	N.D.	
1,2,4-TRICHLOROBENZENE	N.D.	2	N.D.	69
NAPHTHALENE	N.D.	2	N.D.	
4-CHLOROANILINE	N.Đ.	2	N.D. N.D.	
HEXACHLOROBUTADIENE	N.D.	2	N.D.	
4-CHLORO-3-METHYLPHENOL	N.D.	4	N.D.	65
2-METHYLNAPHTHALENE	N.D.	2	N.D.	
HEXACHLOROCYCLOPENTADIENE	N.D.	2	N.D.	
2,4,6-TRICHLOROPHENOL	N.D.	2	N.D.	
2,4,5-TRICHLOROPHENOL	N.D.	2	N.D. N.D. N.D.	
2-CHLORONAPHTHALENE	N.D.	2	N.D. N.D. N.D. N.D.	
2-NITROANILINE	N.D.	2	N.D.	
DIMETHYL PHTHALATE	N.D.	2	N.D.	
ACENAPHTHYLENE	N.D.	2	N.D.	
3-NITROANILINE	N.D.	2	N.D.	
ACENAPHTHENE	N.D.	2	N.D.	72
2,4-DINITROPHENOL	N.D.	222222222222222222222222222222222222222	N.D.	
4-NITROPHENOL	N.D.	5	N.D.	
DIBENZOFURAN	N.D.	2	N.D.	
2.4-DINITROTOLUENE	N.D.	2	N.D.	
•				

Environmental Services (SDB)

July 20, 1995

Submission #: 9507091

page 2

H20 GEOL

Atten: Gary Lowe

Project: RATTO LARKIN Received: July 11, 1995

re: One sample for Semivolatile (Base/Neutral Extractable) Compounds

analysis, continued.

Method: EPA 3510/625

SampleID:

Sample #: MW-2

Sampled: 95418 July 11, 1995 Matrix: WATER

Run: 7663-A

Extracted: July 17, 1995 Analyzed: July 19, 1995

		REPORTING	BLANK	BLANK SPIKE
	result	LIMIT	RESULT	RESULT
Analyte	(ug/L)	(ug/L)	(uq/L)	(%)
2,6-DINITROTOLUENE	N.D.		N.D.	
DIETHYL PHTHALATE	N.D.	2	N.D.	
4 - CHLOROPHENYLPHENYLETHER	N.D.	2	N.D.	
FLUORENE	N.D.	2	N.D.	
4-NITROANILINE	N.D.	2	N.D.	
4,6-DINITRO-2-METHYLPHENOL	N.D.	5	N.D.	+-
N-NITROSODI-N-PHENYLAMINE	N.D.	2	N.D.	
4-BROMOPHENYLPHENYLETHER	N.D.	2	N.D.	
HEXACHLOROBENZENE	N.D.	2	N.D.	
PENTACHLOROPHENOL	N.D.	5	N.D.	67
PHENANTHRENE	N.D.	2	N.D.	
ANTHRACENE	N.D.	2	N.D.	
DI-N-BUTYL PHTHALATE	N.D.	2	N.D.	
fluoranthene	N.D.	2	N.D.	
PYRENE	N.D.	2	N.D.	` 83
BUTYL BENZYL PHTHALATE	N.D.	2	N.D.	
3,3'-DICHLOROBENZIDINE	N.D.	4	N.D.	
BÉNZO (A) ANTHRACENE	N.D.	2	N.D.	
BIS (2-ETHYLHEXYL) PHTHALATE	N.D.	2	N.D.	
CHRYSENE	N.D.	2	N.D.	
DI-N-OCTYLPHTHALATE	N.D.	2	N.D.	
BENZO (B) FLUORANTHENE	N.D.	2	N.D.	
BENZO (K) FLUORANTHENE	N.D.	2	N.D.	
BENZO (A) PYRENE	N.D.	2	N.D.	
INDENO(1,2,3-CD) PYRENE	N.D.	2	N.D.	
DIBENZO (À, H) ANTHRACENE	N.D.	2	N.D.	
BENZO (GHI) PERYLENE	N.D.	222252225222222222222222222222222222222	N.D.	
BENZOIC ACID	N.D.	2	N.D.	

Chemist

Organic Manager

1220 Quarry Lane • Pleasanton, California 94568-4758 (510) 484-1919 • Facsimile (510) 484-1096 Federal ID #68-0140157

H:QCREY719 YT 11:21:42

CHROMALAB, INC.

Environmental Services (SDB)

July 20, 1995

Submission #: 9507091

H20 GBOL

Atten: Gary Lowe

Project: RATTO LARKIN Received: July 11, 1995

re: One sample for Semivolatile (Base/Neutral Extractable) Compounds

analysis.

Method: EPA 3510/625

SampleID:

Sample #: MW-3

Sampled: 95419 Matrix: WATER Extracted: July 17, 1995

July 11, 1995 Run: 7663-A Analyzed: July 19, 1995

	result	REPORTING LIMIT	blank Result	BLANK SPIKE RESULT
Analyte	(ug/L)	(uq/L)	(ug/L)	(%)
PHENOL	N.D. N.D. N.D.		N.D.	
BIS (2-CHLOROETHYL) ETHER	N.D.	2	N.D.	**
2-CHLOROPHENOL	N.D.	2	N.D.	79
1.3-DICHLOROBENZENE	מוצר	Ž	N.D.	
1,4-DICHLOROBENZENE	N.D.	2	N.D.	
BENZYL ALCOHOL	N.D. N.D. N.D. N.D.	2	N.D. N.D.	
1,2-DICHLOROBENZENE	N.D.	Ž	N.D.	
2-METHYLPHENOL	N.D.	2	N.D.	
BIS (2-CHLOROISOPROPYL) ETHER	N.D.	2	N.D.	
4-METHYLPHENOL	N.D.	2	N.D.	
N-NITROSO-DI-N-PROPYLAMINE	N.D. N.D. N.D. N.D.	$\vec{2}$	N.D. N.D.	70
HEXACHLOROETHANE	N.D.	2	N.D.	
NITROBENZENE	N.D.	Ž	N.D.	
ISOPHORONE	N.D.	ž	N.D.	
2-NITROPHENOL	N.D. N.D. N.D.	2	N.D. N.D.	
2.4-DIMETHYL PHENOL	N.D.	2	N.D.	
BIS (2-CHLOROETHOXY) METHANE	N.D.	2	N.D.	
2,4-DICHLOROPHENOL	N.D.	$\bar{2}$	N.D.	
1,2,4-TRICHLOROBENZENE	N.D.	ž	N.D.	69
NAPHTHALENE	N.D. N.D.	2	N.D.	
4-CHLOROANILINE	N.D.	- 2	N.D.	
HEXACHLOROBUTADIENE	N.D.	2	N.D.	
4-CHLORO-3-METHYLPHENOL	N.D.	4	N.D.	65
2-METHYLNAPHTHALENE	N.D.	Ž	N.D.	
HEXACHLOROCYCLOPENTADIENE	N.D. N.D. N.D.	2	N.D. N.D.	
2,4,6-TRICHLOROPHENOL	N.D.	$\bar{\mathbf{z}}$	N.D.	
2,4,5-TRICHLOROPHENOL	N.D.	2	N.D.	
2-CHLORONAPHTHALENE	N.D. N.D. N.D.	ž	N.D.	
2-NITROANILINE	N.D.	ž	N.D. N.D.	
DIMETHYL PHTHALATE	N.D.	ž	N.D.	
ACENAPHTHYLENE	N.D.	2	N.D.	
3-NITROANILINE	N.D.	ž	N.D.	
ACENAPHTHENE	N.D.	ž	N.D.	72
2,4-DINITROPHENOL	N.D. N.D.	ĕ	N.D.	
4-NITROPHENOL	N.D.	Š	N.D.	
DIBENZOFURAN	N.D.	. 2	N.D.	
2.4-DINITROTOLUENE	N.D.	222222222222222222222222222222222222222	N.D.	
TA PINITINATANAMIN	74 * 94. 4	•	11.2.	

1220 Quarry Lane • Pleasanton, California 94566-4756 (510) 484-1919 • Facsimile (510) 484-1096 Federal ID #68-0140157

TIME

DATE

07/11/95

HONATURE

Levin

hroma la si

CHROMALAB, INC.

Environmental Services (SDB)

July 20, 1995

Submission #: 9507091

page 2

H20 GEOL

Atten: Gary Lowe

Project: RATTO LARKIN Received: July 11, 1995

re: One sample for Semivolatile (Base/Neutral Extractable) Compounds

analysis, continued.

Method: EPA 3510/625

SampleID:

Sample #: MW-3

Sampled: 95419 July 11, 1995 Matrix: WATER Run: 7663-A

Extracted: July 17, 1995 Analyzed: July 19, 1995

		REPORTING	BLANK	BLANK SPIKE
	result	LIMIT	RESULT	RESULT
Analyte	(ug/L)	(ug/L)	(ug/L)	(%)
2,6-DINITROTOLUENE	N.D.		N.D.	
DIETHYL PHTHALATE	N.D.	2	N.D.	
4-CHLOROPHENYLPHENYLETHER	N.D.	2	N.D.	
FLUORENE	N.D.	2	N.D.	
4-NITROANILINE	N.D.	2	N.D.	
4,6-DINITRO-2-METHYLPHENOL	N.D.	5	N.D.	
N-NITROSODI-N-PHENYLAMINE	N.D.	2	N.D.	
4-BROMOPHENYLPHENYLETHER	N.D.	2	N.D.	••
HEXACHLOROBENZENE PENTACHLOROPHENOL	N.D.	2	N.D.	**
	N.D.	5	N.D.	67
PHENANTHRENE ANTHRACENE	N.D.	2	N.D.	
DI-N-BUTYL PHTHALATE	N.D.	2	N.D.	**
	И.D.	2	N.D.	
FLUORANTHENE PYRENE	N.D.	2	N.D.	7.7
	N.D.	2	N.D.	83
BUTYL BENZYL PHTHALATE	N.D.	2	N.D.	
3,3'-DICHLOROBENZIDINE	Ŋ.D.	4	N.D.	
BENZO (A) ANTHRACENE	N.D.	2	N.D.	~~
BIS (2-ETHYLHEXYL) PHTHALATE	N.D.	2	N.D.	
CHRYSENE	N.D.	2	N.D.	
DI-N-OCTYLPHTHALATE	N.D.	2	N.D.	
BENZO (B) FLUORANTHENE	N.D.	2	N.D.	
BENZO (K) PLUORANTHENE BENZO (A) PYRENE	N.D.	2	N.D.	
INDENO(1 2 2 CD) SUBGRE	N.D.	2	N.D.	
INDENO (1,2,3-CD) PYRENE DIBENZO (A, H) ANTHRACENE	N.D.	2	N.D.	
PROTOCOLL DEDUCTOR	N.D.	222252225222222222222222222222222222222	N.D.	
BENZO (GHI) PERYLENE BENZOIC ACID	й.D.	2 2	N.D.	
DEMACTIC ACTD	N.D.	2	N.D.	

Chemist

Organic Manager

1220 Quarry Lane • Pleasanton, California 94568-4756 (510) 484-1919 • Facsimile (510) 484-1096 Federal ID #68-0140157

H-OCREV719 YT 11:21:42

NEF 8-22013- 23077 --STODY H20GEOL A GROUNDWATER CONSULTANCY PAGE 1 of DATE: 07/11/95 P.O. BOX 2185 Sample Source: LIVERMORE, CALIFORNIA 94551-2165 Ratto-Lerkin Property 1628 Webster Street Gary D. Lewe & Richard Vorst Alemeda, California SAMPLER'S SIGNATURE: ANALYTE SAMPLE RÉCIEPT: TOTAL No. of CONTAINERS CHAIN OF CUSTODY SEALS LAB NO. (EPA 5030/80 fotal patrolaum Hydr (EPA 3550/8015) Fotal Oil and (EPA 8010) BTEX AX RESULTS TO (510) 373-9222 SAMPLE ID. MATRIX LAS ID. DATE MW-1 7/11/95 08:34 WATER X × X MW-2 7/11/95 07:30 WATER X X X X х х MW-3 7/11/95 OB:01 WATER X X X X Please note special pricing per Gery Cook. 10-day TAT RELINQUISHED BY: RELINQUISHED BY: SKINATUR KINATURE 15:47 Gary D. Lowe PRINTED NAME H₂OGEOL DATE DATE 07/11/95 COMPANY RECEIVED BY: RECEIVED BY LABORATORY::

S#8# #: 9507091 #EP: 6C CLIENT: HZOGEOL ME: 07/25/95

P.O.Box 2165 Livermore, California, 94551

510-373-9211