

August 5, 1991

REF: 157-473,217

Mr. Ralph P. Hill Hill Lumber 1259 Brighton Ave. Albany, California 94706 (415) 525-1000

RE: Site Investigation

Dear Mr. Hill:

Certified Environmental Consulting Inc. (CEC) is pleased to report the results of our investigation of the two underground gasoline tanks on your property. CEC performed this investigation because SEMCO found evidence of soil contamination when removing the tanks.

SEMCO's soil samples showed heavy gasoline contamination (3,700 ppm) at the east end of the excavation in the sidewalk where the large gas tank was located. On July 11, 1991, CEC collected a groundwater sample from the same site to determine whether groundwater had become contaminated by the leaky gas tank. The water sample contained 2924 ppb of gasoline and 59 ppb of benzene. CEC also collected two soil samples eight feet east of the tank site to determine the limits of gasoline leakage. However, none of the soil samples collected below the sidewalk contained detectable amounts of gasoline or benzene, toluene, ethyl benzene, or xylene (BTEX). This suggests that groundwater has been contaminated below the sidewalk but that soil contamination is localized around the tank site. The results of SEMCO's and CEC's sampling are summarized in Table 1.

Samples collected by SEMCO below the smaller tank in the yard were moderately contaminated with gasoline (210 ppm), toluene (660 ppb), benzene (1500 ppb), and xylene (17,000 ppb). CEC collected a soil sample in the parking lot about eight feet east of the smaller tank location to determine whether gasoline had migrated away from the tank. This soil sample did not contain detectable amounts of gasoline or BTEX, suggesting that contamination around the tank site in the yard is also limited and could be removed by overexcavation.

Mr. Ralph Hill REF: 157-473.217

Page 2

In summary it appears that soil contamination is limited to a small area around each tank. The contaminated soil should be removed because the groundwater is high and the Regional Water Quality Control Board (RWQCB) will not otherwise approve a tank closure. The groundwater below the tank site in the sidewalk also has some contamination. The RWQCB normally requires the installation of at least one monitoring well whenever any groundwater contamination is found.

Please let us know if we can assist you in this work.

Very truly yours,

Stanley L. Klemetson, Ph.D., P.E.

Stan Munt

Vice President

Thomas Suggs

Staff Hydrogeologist

Chom Syps

SLK/sm

cc: Terry Hamilton, SEMCO

Page 3 of 3 Order 11161

Sample Number	Customer Label	TPH-G (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethyl Benzene (ug/L)	Xylenes (ug/L)	
L1	211512 (water)	2924.8	59.3	479.2	LDL	408.1	
Detection L	imits:	50.0	0.5	0.5	0.5	0.5	
Sample Number	Customer Label	TPH-G (mg/Kg)	Benzen (mg/Kg		Ethyl Benzene (mg/Kg)	Xylenes (mg/Kg)	
L2	211514 (soil)	LDL	LÐL	LDL	LDL	LDL	
L3	211515 "	LDL	LDL	LDL	LDL	LDL	
L4	211516 "	LDL	LDL	LDL	LDL	LDL	
Detection Li	imits:	1.0	0.005	0.005	0.005	0.005	

LDL indicates the samples are less than detection limits.

CARTER ANALYTICAL LABORATORY

Warren Belisle

Lab Supervisor

Dan Turgebn

Sales Manager

SUPERIOR ANALYTICAL LABORATORY, INC.

1555 BURKE, UNIT I - SAN FHANDISCO, CA 94124 - PHONE (415) 647-2081 -

DHS #1332

ANALYSIS CERTIFICATE OF

LABORATORY NO.: 53473

DATE RECEIVED: 04/17/91 DATE REPORTED: 04/25/91

CLIENT: SEMOO

CLIENT JOB NO .: RALPH HILL.

ANALYSIS FOR BENZENE, TOLUENE, ETHYL BENZENE & XYLENES by EPA SW-846 Methods 5030 and 8020

		•	concentr	ation(ug/ ethy:	KG)
LAB #	Sample Identification	Benzeme	Toluene	Benzene	Xylenes
1 2 3 4 5	#1-500G #2-500 #3-500C5 #4-1KG #5-1KG S #6-1KG W	ND<300 ND<300 ND<300 ND<300	2400 660 680 33 94000 52	7100 1500 1100 14 63000 58	17000 3600 3500 120 410000 420

ug/kg - parts per billion (ppp)

Minimum Detection Limit in Soil: 3.0ug/kg

QAQC Summary:

Daily Standard run at Zoug/L: % Diff 8020 = <15% MS/MSD Average Recovery = 84% : Duplicate RPD = <7%

SUPERIOR ANALYTICAL LABORATORY, INC.

1555 BURKE, UNIT I . SAN FRANCISCO, CA 94124 . PHONE (415) 647-2081

DH\$ #1332

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 53473

CLIENT: SEMOO

CLIENT JOB NO .: RALPH HILL

DATE RECEIVED: 04/17/91

DATE REPORTED: 04/25/91

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Method 8015

# 	Sample Identification	Concentration (mg/Kg) Diesel Range
1 2 3 4 5	#1-500G #2-500 #3-500CS #4-1KG #5-1KG 5 #6-1KG %	230 ND<10 16 ND<10 190 ND<10
		, . ·

Minimum Detection Limit for Gasoline and Diesel in Soil: 10mg/kg

QAQC Summary:

Daily Standard run at 200mg/L: % Diff Gasoline <15 % MS/MSD Average Recovery = 83%: Duplicate RPD = 1 %

Richard Sonal An.D

Laboratory Director

10 11011420162

SUPERIOR ANALYTICAL LABORATORY, INC.

1555 BURKE, UNIT I · SAN FRANCISCO, CA 94124 · PHONE (415) 647-2081

DHS #1332

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 53473

CLIENT: SEMOO

CLIENT JOB NO .: RALPH HILL

DATE RECEIVED: 04/17/91

DATE REPORTED: 04/25/91

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Method 5030 and 8015

LAB #	Sample Identification	Concentration (mg/Kg) Gasoline Range
34 11	and the second and the second	الهجير الهجيد المحا الهجيد الهجيد
1	#1-5006	890
2	#2-500	210
3	#3-500CS	230
4	#4-1KG	2
5	#5-1KG 5	3700
٤	#6-1KG \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	• 9 .

mg/kg - parts per million (ppm) Minimum Detection Limit for Gasoline in Soil: 1mg/kg

QAQC Summary:

Daily Standard run at 2mg/L: % Diff Gasoline = <15 % MS/MSD Average Recovery =80 %: Duplicate RPD = 6%

Richard Sitts Ph.D

Laboratory Oi ector

JAMES C. BATEMAN PETROLEUM SERVICES, INC.

431 W. Hatch Rd. Modesto, Calli. 95351 General & Engineering Contractors (800) 593-9293 FAX (239) 524-0503

SEMCO

JAMES C. BATEMAN PETROLEUM SERVICES, INC.

1741 Leslie St. San Mateo, Calif. 94402 General & Engineering Contractors (415) 572-8033 FAX (415) 572-9734

CHAIN OF CUSTODY RECORD

	•	,				CHAIN	OF CUST	YDC	REC	ORD	<u>.</u>					,
	T HAME:				Hill Kun		Number	Analyst.	To Aller	13/3/3	/ /,	/	//	/		REMARKS
Station Number	Date	Time		eck.	Station Loca	tion	of Con- tainers									
1-5000	7/4	2145			#1-500-6-	w-71	#1	V	V					_		
2-500		2155		V	#2-500 Bot.	6xc.86		4		,			_	_		
3-500C	777	3:00	4	}	#3-500 Com	p. 500 ils	2	~							<u></u>	
4-116	1/12	3:05	e		4-41KG C		3	2								
13-1K	1//4	3:05	_		#5-1KG E		1	1								
16-1K	a 4/12	3:20		V	16-1KG-1	ω - H'		1	0	ļ	<u> </u>	-		 		
		<u> </u>	_			<u></u>	<u> </u>		-	-	-	-			·	
	-						<u> </u>	-	-	-		╁		-		
	· · ·	-	_				7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	+	╂-	╬	-	十	 	<u> </u>		
Compan	uished hu y or Ap	ca A ency:	Caps	re):	Date / Time Rec	cetyed by (sign	pature):	ļ		ished or A			iture)	: Da	te / Time	Received by (signature): Company or Agency:
Religiouished by (signature): Date, Time Received Company or Agency: The Company of Agency:				ceived by sig	nature):	287						Da	ite / Time	Received by (signature): Company or Agency:		
Relin	quished ny or A	by(sig			Date / Time Re			/: Da	te	/ Time	2	Rema	rks/S	ինքք	ing Informat	tion

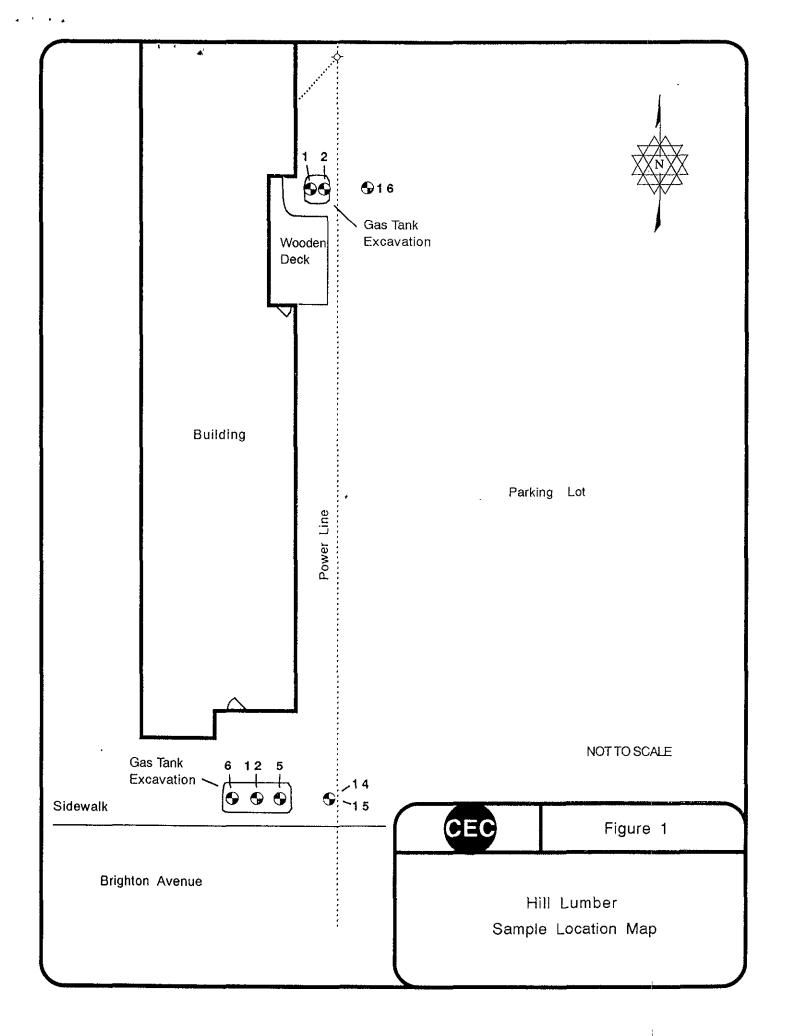


Table 1. Analytical Results

Sample No.	Date Sampled	Matrix	Depth (ft.)	TPH-D (ppm)	TPH-G (ppm)	Benzene (ppb)	Toluene (ppb)	Ethyl Benzene (ppb)	Xylene (ppb)	
1	4/17/91	soil	(7.0)	230	890	LDL	2400	7100	17000	
2	4/17/91	soil	8.5	LDL	210	LDL	660	1500	3600	
5	4/17/91	soil	10.0	190	3700	LDL	680	1100	3500	<
6	4/17/91	soil	TINO	LDL	9	LDL	33	14	120	
Detection	n limits			10	1	3	3	3	3	
14	7/11/91	soil	9.5	NT	LDL	LDL	LDL	LDL	LDL	
15	7/11/91	soil	10.0	NT	LDL	LDL	LDL	LDL	LDL	
16	7/11/91	soil	11.6	NT	LDL	LDL	LDL	LDL	LDL	
Detection	n Limits				1	5	5	5	5	
12	7/11/91	water	9.7	NT	2924	59	479	LDL	408	_
Detectio	n Limits			 .	0.05	0.5	0.5	0.5	0.5	i

ppm: parts per million ppb: parts per billion NT: not tested

LDL: less than detection limits