(916) 782 2110 Fax (916) 786 7830

August 9, 1993

Mr. Terrence A. Fox Ultramar Inc. 525 West Third Street Hanford, California 93232-0466

ENVIRONMENTAL, INC.

Subject:

Monitoring Well Installation and 48-Hour Pumping Test Results Report

Former Beacon Station #546

29705 Mission Boulevard, Hayward, California

Dear Mr. Fox:

INTRODUCTION

Aegis Environmental Inc. (Aegis), has been authorized by Ultramar Inc. (Ultramar), to conduct an investigation of soil and groundwater conditions at the subject site, located at 29705 Mission Boulevard, Hayward, California (Figure 1). This letter report is based, in part, on information obtained by Aegis from Ultramar, and is subject to modification as newly acquired information may warrant.

The site is a former Beacon gasoline station that previously retailed regular-unleaded, regular-leaded, and premium-unleaded gasolines. Details of the site's former facilities, including underground storage tanks (UST) and on-site and off-site monitoring wells, are shown on Figure 2.

BACKGROUND

Previous site investigations include the following:

 In March 1987, five soil borings were drilled around the UST. Petroleum hydrocarbons were detected in soil and groundwater samples collected analyzed.

- In April 1988, three UST containing gasoline and one UST containing waste oil were removed.
- In June and July 1988, three monitoring wells (MW-1 through MW-3) were installed. Results indicated petroleum hydrocarbons were present in groundwater beneath the site.
- In June 1989 and February 1990, a total of five additional wells (MW-4 through MW-8) were installed. Petroleum hydrocarbons have been detected in all eight wells.
- Groundwater monitoring at the site began in July 1988 and continues to date.

SCOPE

The following work was performed at the site on January 4, and April 21 through 23, 1993, according to the Aegis standard operating procedures (SOP) included as Attachment 1:

- Drilled and installed one 2-inch-diameter monitoring well, MW-9, off-site.
- Collected five soil samples from the well borings for classification and possible laboratory analysis.
- Screened soil samples for total organic vapors using a photoionization detector (PID).
- Developed well MW-9 and collected a groundwater sample.
- Submitted the groundwater sample and selected soil samples to a statecertified laboratory for analysis.
- Performed a 48-hour pumping test in monitoring well MW-8.
- Collected a groundwater sample from well MW-8 at the conclusion of the test and submitted the sample to a state-certified laboratory for analysis.
- Evaluated the pumping test data and estimated aquifer transmissivity, storativity, hydraulic conductivity, and a capture zone radius.

SOIL BORINGS

On January 4, 1993 one soil boring was drilled by Woodward Drilling Company of Rio Vista, California at the location shown on Figure 2. The boring extended to a depth of 25 feet below surface. Soil samples were collected from the boring at 5-foot intervals beginning at 5 feet below surface.

Saturated soils were encountered at approximately 14 feet below surface. Soil descriptions, classifications, PID screening results and other pertinent information were recorded on the soil boring log included as Attachment 2.

MONITORING WELL INSTALLATION

On January 4, 1993 the soil boring was completed as groundwater monitoring well MW-9 using 2-inch-diameter, Schedule 40 PVC casing. The well is screened with 0.020-inch slotted casing from 10 feet below surface to the total depth 25 feet. Static water level in MW-9 was measured at 9.80 feet below surface (top of casing). Groundwater monitoring well construction details are included with the boring log as Attachment 2.

After installation, the well was developed according to the SOP included as Attachment 1. The well was bailed dry after removal of approximately 15 gallons of water, and allowed to partially recharge. Well development water was temporarily stored on site in a 55-gallon DOT-approved drum. Development water was transported by a licensed waste hauler to Ultramar's Hanford facility for recycling.

SOIL ANALYTICAL RESULTS

A total of two soil samples were selected and submitted for laboratory analysis. Soil samples were submitted to Resna Environmental Laboratories (Resna), of Fremont, California for analysis of total petroleum hydrocarbons (TPH), as gasoline, and benzene, toluene, ethyl benzene and total xylenes (BTEX) by EPA Methods 8015 and 8020, respectively. Table 1 summarizes results of soil sample laboratory analysis.

Laboratory analysis indicated TPH, as gasoline, concentrations of 10 parts per million (ppm) in soil sample S-0104-MW9-10.5' at 10.5 feet below surface and 1.7 ppm in sample S-0104-MW9-15.5' at 15.5 feet below surface. The certified laboratory report and chain-of-custody form are included as Attachment 3.

GROUNDWATER SAMPLING AND ANALYSIS

On January 4, 1993 a groundwater sample was collected from well MW-9 according to the SOP included as Attachment 1. The groundwater sample was submitted under chain of custody to Resna for analysis of TPH, as gasoline, and BTEX by EPA Methods 8015 and 602, respectively. Laboratory analysis indicated benzene at a concentration of 990.0 ppb. Laboratory results of sample analysis for groundwater from MW-9 are summarized in Table 1. The certified laboratory report and chain-of-custody form are included as Attachment 3.

AQUIFER TEST DATA AND ANALYSIS

Aquifer testing was conducted at the site for approximately 48 hours, from 9:00 AM on April 21, to 8:05 AM on April 23, 1993. Pumping was followed by a recovery period of approximately one hour. The testing consisted of pumping from well MW-8 at an average rate of 4.7 gallons per minute (gpm), ranging from 4.3 gpm to 8.3 gpm. Groundwater level changes were recorded simultaneously with a datalogger in wells MW-7 and MW-8, while groundwater levels in other wells were periodically monitored by hand, as shown on field data sheet included as Attachment 4. When the pump was shut off, MW-8 recovered to its static level within 10 minutes.

After the groundwater level stabilized, a groundwater sample was collected from well MW-8. The groundwater sample was submitted under chain of custody to Western Environmental Science & Technology, of Davis, California for analysis of TPH, as gasoline, and BTEX by EPA Methods 8015 and 602, respectively. Laboratory analysis indicated benzene at a concentration of 480.0 ppb. Laboratory results of sample analysis for groundwater from MW-8 are summarized in Table 1. The certified laboratory report and chain-of-custody form are included as Attachment 3.

Graphs showing depth to groundwater versus time during aquifer testing are included in Attachment 5. The data indicate a relatively stable and constant drawdown in well MW-8 within the first 70 minutes of pumping. Data from well MW-7 was analyzed using the Cooper-Jacob modification of the Theis equation applied by the AQTESOLVTM program from Geraghty & Miller, and indicates a typical Theis-curve response from the aquifer. Data from well MW-8 was not analyzed.

The data analysis yielded a transmissivity estimate of 0.7195 ft²/minute (1,036 ft²/day) and a storativity estimate of 0.001197. A line-fitting plot of the data is included in Attachment 5. Using the depth of well MW-8, 20 feet, as the approximate thickness of the water-bearing zone, a corresponding value for hydraulic conductivity of 52 ft/day was calculated. According to Freeze and Cherry (1979), 52 ft/day is a typical hydraulic conductivity for an aquifer consisting of silty sand. This assessment is inconsistent with boring logs which indicate silty clays throughout the boring of MW-9.

Using a transmissivity (T) of 1,036 ft²/day, a pumping rate (Q) of 5 gpm (962 ft³/day), and an hydraulic gradient (i) of 0.02 ft/ft toward the west (from February 1993 groundwater elevation data), the downgradient capture radius $r_{\rm dg} = Q/2\pi Ti = (962)/2(\pi)(1,036)(0.02) = 7.4$ feet. Similarly, the maximum capture zone width = Q/Ti = 962/(1,036)(0.02) = 46 feet.

RECOMMENDATIONS

It is recommended that copies of this letter report be submitted to the following agencies:

Mr. Hugh Murphy City of Hayward Fire Department 22300 Foothill Boulevard Hayward, California 94541

Mr. Scott Hugenberger California Regional Water Quality Control Board San Francisco Bay Region 2101 Webster Street, Suite 500 Oakland, California 94612

REMARKS/SIGNATURES

The interpretations contained in this letter report represent our professional opinions. These opinions are based on currently available information and were developed in accordance with currently accepted geologic, hydrogeologic, and engineering practices at this time and for this specific site. Other than this, no warranty is implied or intended.

This letter report has been prepared solely for the use of Ultramar Inc. Any reliance on this letter report by third parties shall be at such parties' sole risk. The work described herein was performed under the review and supervision of the professional geologist, registered with the State of California, whose signature appears below.

No. 5600 Exp. 6/30/95

Sincerely,

AEGIS ENVIRONMENTAL, INC.

Tarry W. Braylook

Larry W. Braybrooks

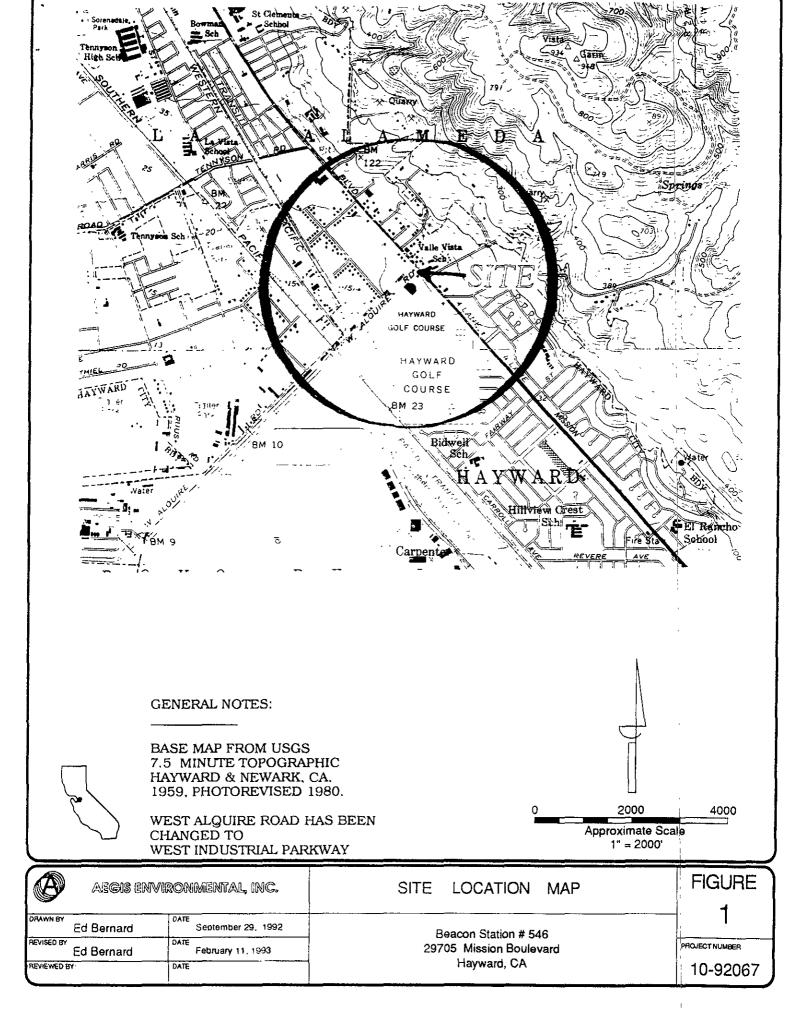
Project Geologist

Raul Graff

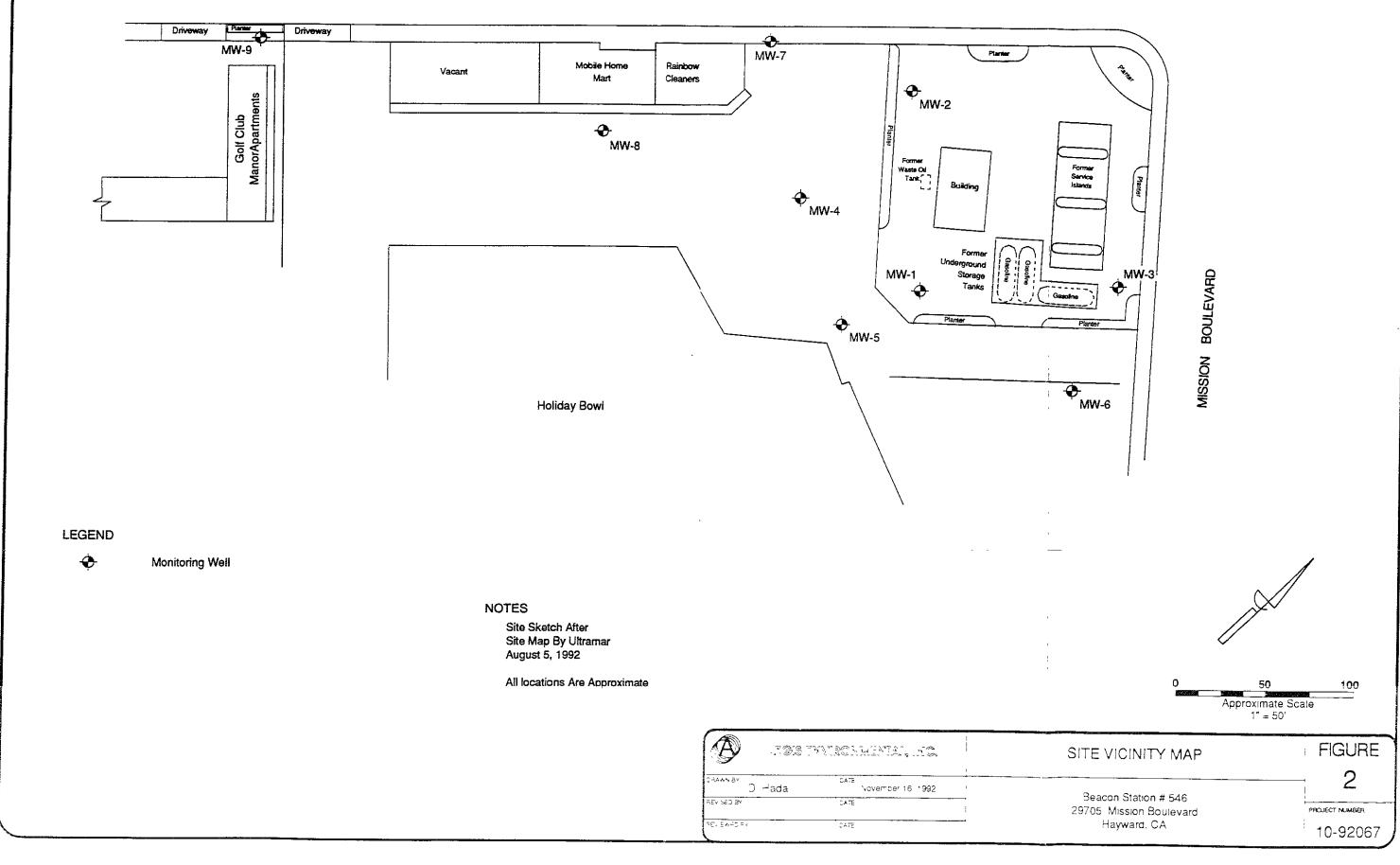
Registered Geologist

CRG No. 5600

LWB/sdh


Attachments

92-067A.RER


FIGURE 1 SITE LOCATION MAP
FIGURE 2
TABLE 1
ATTACHMENT 1 STANDARD OPERATING PROCEDURES
ATTACHMENT 2 MONITORING WELL CONSTRUCTION DETAILS AND BORING LOGS
ATTACHMENT 3 ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY FORMS: SOIL AND GROUNDWATER
ATTACHMENT 4 PUMPING TEST FIELD DATA
ATTACHMENT 5 PUMPING TEST DATA EVALUATION

ļ

FIGURES

WEST INDUSTRIAL PARKWAY

TABLES

TABLE 1

ANALYTICAL RESULTS: SOIL AND GROUNDWATER

Former Beacon Station #546 29705 Mission Boulevard, Hayward, California (All results in parts-per-million)

	Date	Sample	Total Petroleum Hydrocarbons		Aromatic Vola	tile Organics	
Sample ID	Sample ID Collected Depth (feet) Gasoli		Gasoline	Benzene	Toluene	Ethyl- benzene	Total Xylenes
<u>Soil</u>							
S-0104-MW9-10.5'	01/04/93	10.5	10	0.045	0.009	0.007	0.026
S-0104-MW9-15.5′	01/04/93	15.5	1.7	0.036	<0.005	0.011	0.012
Groundwater							
MW-9	01/04/93	NA	67.000	0.990	0.067	1.000	2.900
MW-8	04/23/93	NA	7.400	0.480	0.0082	0.550	0.510

NOTE: < = Below indicated laboratory detection limit.

NA = Not applicable

ATTACHMENT 1 STANDARD OPERATING PROCEDURES

AEGIS ENVIRONMENTAL, INC. STANDARD OPERATING PROCEDURES RE: SOIL BORING SAMPLING SOP-1

During drilling, soil samples for chemical analysis are collected in thin-walled brass tubes, of varying diameters and lengths (e.g., 4 or 6 inches long by 2 inches outside diameter). Three or four of the selected tubes, plus a spacer tube, are set in an 18-inch long split-barrel sampler of the appropriate inside-diameter.

Where possible, the split-barrel sampler is driven its entire length either hydraulically or using a 140-pound drop hammer. The sampler is extracted from the borehole and the brass tubes, containing the soil samples, are removed. Upon removal from the sampler, the selected brass tubes are either immediately trimmed and capped with aluminum foil or "Teflon" sheets and plastic caps or the samples are extruded from the tubes and sealed within other appropriate cleaned sample containers (e.g., glass jar). The samples are then hermetically sealed, labeled, and refrigerated for delivery, under strict chain-of-custody, to the analytical laboratory. These procedures minimize the potential for cross-contamination and volatilization of VOC prior to chemical analysis.

One soil sample collected at each sampling interval is analyzed in the field using either a portable photoionization detector (PID), flame ionization detector, organic vapor analyzer, catalytic gas detector, or an explosimeter. The purpose of this field analysis is to qualitatively determine the presence or absence of hydrocarbons, and the samples to be analyzed at the laboratory. The soil sample is sealed in either a brass tube, glass jar, or plastic bag to allow for some volatilization of VOC. The PID is then used to measure the concentrations of hydrocarbons within the containers's headspace. The data is recorded on both field notes and the boring logs at the depth corresponding to the sampling point.

Other soil samples are collected to document the soil and/or stratigraphic profile beneath the project site, and estimate the relative permeability of the subsurface materials. All drilling and sampling equipment are either steam cleaned or washed in solution and doubly rinsed in deionized water prior to use at each site and between boreholes to minimize the potential for cross-contamination.

In the event the soil samples cannot be submitted to the analytical laboratory on the same day they are collected (e.g., due to weekends or holidays), the samples are temporarily stored until the first opportunity for submittal either on ice in a cooler, such as when in the field, or in a refrigerator at Aegis' office.

AEGIS ENVIRONMENTAL, INC.
STANDARD OPERATING PROCEDURES
RE: SOIL CLASSIFICATION
SOP-3

Soil samples are classified according to the Unified Soil Classification System. Representative portions of the samples may be submitted under strict chain-of-custody to an analytical laboratory for further examination and verification of the infield classification, and analysis of soil mechanical and/or petrophysical properties. The soil types are indicated on logs of either excavations or borings together with depths corresponding to the sampling points, and other pertinent information.

AEGIS ENVIRONMENTAL, INC. STANDARD OPERATING PROCEDURES RE: SAMPLE IDENTIFICATION AND CHAIN-OF-CUSTODY PROCEDURES SOP-4

Sample identification and chain-of-custody procedures ensure sample integrity, and document sample possession from the time of collection to its ultimate disposal. Each sample container submitted for analysis is labeled to identify the job number, date, time of sample collection, a sample number unique to the sample, any in-field measurements made, sampling methodology, name(s) of on-site personnel and any other pertinent field observations also recorded on the field excavation or boring log.

Chain-of-custody forms are used to record possession of the sample from time of collection to its arrival at the laboratory. During shipment, the person with custody of the samples will relinquish them to the next person by signing the chain-of-custody form(s) and noting the date and time. The sample-control officer at the laboratory will verify sample integrity, correct preservation, confirm collection in the proper container(s), and ensure adequate volume for analysis.

If these conditions are met, the samples will be assigned unique laboratory log numbers for identification throughout analysis and reporting. The log numbers will be recorded on the chain-of-custody forms and in the legally-required log book maintained in the laboratory. The sample description, date received, client's name, and any other relevant information will also be recorded.

AEGIS ENVIRONMENTAL, INC. STANDARD OPERATING PROCEDURES

RE: LABORATORY ANALYTICAL QUALITY ASSURANCE AND CONTROL

SOP-5

In addition to routine instrument calibration, replicates, spikes, blanks, spiked blanks, and certified reference materials are routinely analyzed at method-specific frequencies to monitor precision and bias. Additional components of the laboratory Quality Assurance/Quality Control program include:

- 1. Participation in state and federal laboratory accreditation/certification programs;
- 2. Participation in both U.S. EPA Performance Evaluation studies (WS and WP studies) and inter-laboratory performance evaluation programs;
- 3. Standard operating procedures describing routine and periodic instrument maintenance;
- 4. "Out-of-Control"/Corrective Action documentation procedures; and,
- 5. Multi-level review of raw data and client reports.

AEGIS ENVIRONMENTAL, INC.
STANDARD OPERATING PROCEDURE
RE: HOLLOW-STEM AUGER MONITORING WELL INSTALLATION AND DEVELOPMENT
SOP-6

Boreholes for monitoring wells are drilled using a truck-mounted, hollow-stem auger drill rig. The borehole diameter will be a minimum of 4 inches larger than the outside-diameter of the casing when installing well screen. The hollow-stem auger provides minimal interruption of drilling while permitting soil sampling at desired intervals. Soil samples are collected by either hammering or hydraulically pushing a conventional split-barrel sampler containing pre-cleaned 2-inch-diameter brass tubes. A geologist or engineer from Aegis Environmental, Inc., continuously logs each borehole during drilling and constantly checks drill cuttings for indications of both the first occurrence of groundwater and volatile hydrocarbons using either a portable photoionization detector, flame ionization detector, or an explosimeter. The sampler is rinsed between samples and either steam-cleaned or washed with all other drilling equipment between borings to minimize the potential for cross-contamination.

Monitoring wells are cased with threaded, factory-perforated and blank Schedule 40 PVC. The perforated interval consists of slotted casing, generally with 0.020 inch wide by 1.5-inch long slots, with 42 slots per foot. A PVC cap may be secured to the bottom of the casing with stainless steel screws; no solvents or cements are used. Centering devices may be fastened to the casing to assure even distribution of filter material and grout within the borehole annulus. The well casing is thoroughly washed and/or steam-cleaned, or may be purchased as pre-cleaned, prior to installation.

After setting the casing inside the hollow-stem auger, sand or gravel filter material is poured into the annular space to fill from boring bottom to generally 1 foot above the perforated interval. A 1 to 2-foot thick bentonite plug is set above this filter material to prevent grout from infiltrating into the filter pack. Either neat cement, containing about 5 percent bentonite, or sand-cement grout is then tremmied into the annular space from the top of the bentonite plug to near surface. A traffic-rated vault is installed around each wellhead for wells located in parking lots or driveways, while steel "stovepipes" are usually set over wellheads in landscaped areas.

After installation, the wells are thoroughly developed to remove residual drilling materials from the wellbore, and to improve well performance by removing fine material from the filter pack that may pass into the well. Well development techniques used may include pumping, surging, bailing, swabbing, jetting, flushing, and air-lifting. All development water is collected either in drums or tanks for temporary storage, and properly disposed of depending on laboratory analytical results. To minimize the potential for cross-contamination between wells, all development equipment are either steam-cleaned or properly washed prior to use.

AEGIS ENVIRONMENTAL, INC. STANDARD OPERATING PROCEDURE RE:

GROUNDWATER PURGING AND SAMPLING

SOP-7

Prior to water sampling, each well is purged by evacuating a minimum of three wetted well-casing volumes of groundwater. When required, purging will continue until either the discharge water temperature, conductivity, or pH stabilize, a maximum of ten well-bore volumes of groundwater have been recovered, or the well is bailed dry. When practical, the groundwater sample should be collected when the water level in the well recovers to at least 80 percent of its static level.

The sampling equipment consists of either a "Teflon" bailer, PVC bailer, or stainless steel bladder pump with a "Teflon" bladder. If the sampling system is dedicated to the well, then the bailer is usually "Teflon," but the bladder pump is PVC with a polypropylene bladder. In general and depending on the intended laboratory analysis, 40-milliliter class. volatile organic analysis (VOA) vials, with "Teflon" septa, are used as sample containers.

The groundwater sample is decanted into each VOA vial in such a manner that there is no meniscus at the top of the vial. A cap is quickly secured to the top of the vial. The vial is then inverted and gently tapped to see if air bubbles are present. If none are present, the vial is labeled and refrigerated for delivery, under strict chain-of-custody, to the analytical laboratory. Label information should include a unique sample identification number, iob identification number, date, time, type of analysis requested, and the sampler's name.

For quality control purposes, a duplicate water sample is collected from each well, |This sample is put on hold at the laboratory. When required, a trip blank is prepared at the laboratory and placed in the transport cooler. It is labeled similar to the well samples, remains in the cooler during transport, and is analyzed by the laboratory along with the aroundwater samples. In addition, a field blank may be prepared in the field when sampling equipment is not dedicated. The field blank is prepared after a pump or bailer has been either steam cleaned or properly washed, prior to use in the next well, and is analyzed along with the other samples. The field blank analysis demonstrates the effectiveness of the in-field cleaning procedures to prevent cross-contamination.

To minimize the potential for cross-contamination between wells, all well development and water sampling equipment not dedicated to a well is either steam cleaned or properly washed between use. As a second precautionary measure, wells are sampled in order of least to highest concentrations as established by available previous analytical data.

In the event the water samples cannot be submitted to the analytical laboratory on the same day they are collected (e.g., due to weekends or holidays), the samples are temporarily stored until the first opportunity for submittal either on ice in a cooler, such as when in the field, or in a refrigerator at Aegis' office.

AEGIS ENVIRONMENTAL, INC. STANDARD OPERATING PROCEDURE

RE: MEASURING LIQUID LEVELS USING WATER LEVEL OR INTERFACE PROBE SOP-12

Field equipment used for liquid-level gauging typically includes the measuring probe (water-level or interface) and product bailer(s). The field kit also includes cleaning supplies (buckets, TSP, spray bottles, and deionized water) to be used in cleaning the equipment between wells.

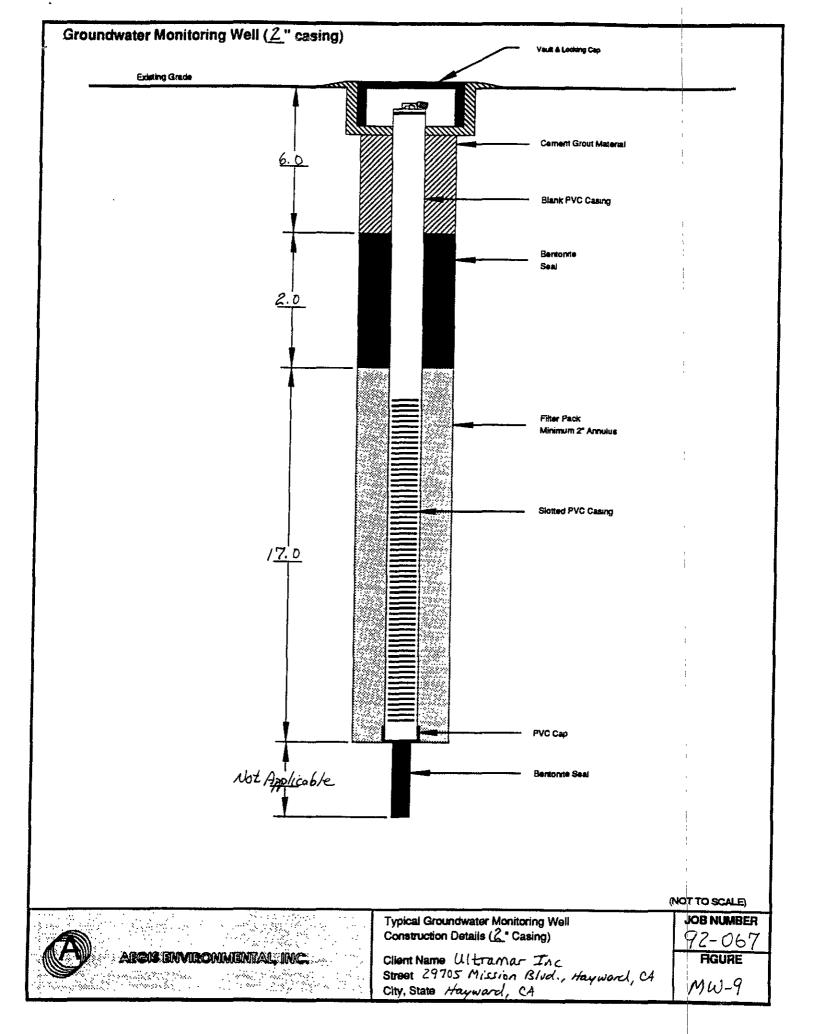
Prior to measurement, the probe tip is lowered into the well until it touches bottom. Using the previously established top-of-casing or top-of-box (i.e., wellhead vault) point, the probe cord (or halyard) is marked and a measuring tape (graduated in hundredths of a foot) is used to determine the distance between the probe end and the marking on the cord. This measurement is then recorded on the liquid-level data sheet as the "Measured Total Depth" of the well.

When necessary in using the interface probe to measure liquid levels, the probe is first electrically grounded to either the metal stove pipe or another metal object nearby. When no ground is available, reproducible measurements can be obtained by clipping the ground lead to the handle of the interface probe case.

The probe tip is then lowered into the well and submerged in the groundwater. An oscillating (beeping) tone indicates the probe is in water. The probe is slowly raised until either the oscillating tone ceases or becomes a steady tone. In either case, this is the depth-to-water (DTW) indicator and the DTW measurement is made accordingly. The steady tone indicates floating hydrocarbons. In this case, the probe is slowly raised until the steady tone ceases. This is the depth-to-product (DTP) indicator and the DTP measurement is made accordingly.

The process of lowering and raising the probe must be repeated several times to ensure accurate measurements. The DTW and DTP measurements are recorded on the liquid-level data sheet. When floating product is indicated by the probe's response, a product bailer is lowered partially through the product-water interface to confirm the product on the water surface, and as further indication of product thickness, particularly in cases where the product layer is quite thin. This measurement is recorded on the data sheet as "product thickness."

In order to avoid cross-contamination of wells during the liquid-level measurement process, wells are measured in the order of "clean" to "dirty" (where such information is available). In addition, all measurement equipment is cleaned with TSP or similar solution and thoroughly rinsed with deionized water before use, between measurements in respective wells, and at the completion of the day's use.


ATTACHMENT 2

MONITORING WELL CONSTRUCTION DETAILS AND BORING LOG

FIELD	BORI	NG/MONIT	FORING	WELL	LOG
-------	------	----------	--------	------	-----

1										Boring	#	MW# 9	Sheet 1 Of 2	?				
		ASC	3 (2		IO N	Mani	al inc	■ 23 · · · · · · · · · · · · · · · · · ·		— <u> </u>		me: Beacon Station	···					
										7		1705 Mission Blud, Hayu						
										Logged By: J. Giorgi Pro. Mgr: J. Giorgi Edited By:								
												ntractor: Woodward		994				
										Drill Rig	j Ty	pe/Method: Mobile	B-57 / HSA					
										Drillers	Na	me: Erik Forsst	trom					
												Dia./Drill Bit Type	Total Depth: 25	·				
										814	inc	hes/Clay Bit						
										Hamme	er V	t: 140 165	Drop: 30 inches					
										Start Ti			Date: /-4-93					
										Comple	tio	Time: /3:00	Date: /- 4-93					
Sk	etch	Map C	Xf S	ite A	rea \	Vith B	oring Lo	cation	5	Backfille			Date:					
	ion						3		C	Pepth			1st Water					
<u>¥</u>	Sample Condition	De		Recovered (in.	iller iller	Blow Count (6 in.)	PID/OVA (ppmv)			<u> </u>		Boring Depth in Feet Casing Depth in Feet						
je ~	ပိ	g Ty	Ë	erec	Lis F	ğ	\ \\	_0	91	Surfa	ļ	Water Depth in Feet						
Sampler Type Length	dime	Casing Type & Size	Driven (in.)	900	200	Blow ((6 in.)	00	Sample	کو 900	Feet (Below Surface)	SSS	Time						
Si	Š	ଠ ଅ	٥	٦	¥	<u>a e</u>		S C	ř T		3	Date						
			 		<u> </u>			 	1	0		concrete (sidew	14\ 0.1 CU	A= -/				
	-			-						1		0-1.0	air) and till mat	ET IQI				
GS									†		12		, brownish black,	mist				
									1	2		no product odor	-	7.77-0,				
										_								
										_3								
							ļ	_	ļ	_								
								-	}	4_								
							<u></u>	├	ł	5								
CMSS	E		6	6		7			1		cı	Same as above	(SAA) and hore	1				
- 122	E		6	6		17				6			(<u>=://:/ </u>					
	E		6	Ь		29	0]									
								<u> </u>		_ 7								
								·		_		······································						
										8								
								 	1	9								
									1	_ =								
								-	t	10		<u></u>						
CMSS	E		6	6		5	50				CL	SAA except, ligh	ht olive gray to	some				
	Œ		6	6		Ь				11		SAA except, light bluish gray and brown, slight pro	moderate yellowis	sh				
	E		6	Ь		15		1.1		4		brown, slight pro	duct odor					
										12								

			A			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	MANA		MC				Boring # MW# 9 Sheet 2 Of 2
- ANY 15	Ş					Such R	2	. x . e e e e	1	Depti	m,,75°.23°	1	Project Name: Beacon Station #546
Sampler Type Length	Sample Condition	Casing Type & Size	Driven (in.)	Recovered (in.)	Annulus Filler	Blow Count (6 in.)	PID/OVA (ppmv)	Samole	Recovery		Feet (Below Surface)	SOSI	Address: 29705 Mission Blvd, Hayword, CA Job# 92-067
_											13		
											14		
										7			First water at 14.5 feet below grade
CMSS	E		Ь	6		6	50	-	9		15	سارم	SAA except more sitt less plute come
0.13	E		6	6		14					16		SAA except more sitt, less olive gray, more moderate yellowish brown, and no bluish green
	E		S	Ø		16			1 4				no bluish green
-								-	-	•	17		
											18		
								-	_				
								-	-	-	19		
											20		
CHSS			6	<i>b</i>		<u>5</u>	5	-	<i>y</i>			<u>CL</u>	SAA except dark yellowish orange to moderate brown, no product odor
	P		6	2		13			-	-	21		Modera Le Drown, no Product odor
											22		
			_					-	-		23		
			-	-				-		-	23		· · · · · · · · · · · · · · · · · · ·
											24		
	\dashv		1	-				-	-		25		Total Depth = 25 feet below grade
CMSS	E		6	6		9	Ō			-			SAA
	E	_	6	6		12		7 (10)			25		
	P		6	1		13		-	-		27	_	
										-			
			_						4	_	28		
	-		1	-				-	-		29		
										-			
											30		

ATTACHMENT 3

ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY-FORMS: SOIL AND GROUNDWATER

Environmental Laboratories:

JAN 2 1 1993

Ansid CF AIG

ANALYSIS REPORT

1020lab.frm

Attention: Mr. John Giorgi

Aegis

Date Sampled: Date Received: 01-04-93 01-06-93

BTEX Analyzed:

01-06-93

1050 Melody Lane, Ste 160 Roseville, CA 95678

TPHg Analyzed:

01-06-93

Project:

90-067, Station 546

TPHd Analyzed:

NR

Hayward

Matrix:

Soil

Ethyl. Total

Detection Limit:	Benzene ppm 0.005	Toluene <u>ppm</u> 0.005	benzene ppm 0.005	Xylenes ppm 0.005	TPHg <u>ppm</u> 1.0	TPHd ppm 10
SAMPLE Laboratory Identificat	ion					
S-0104-MW9-10.5' S1301028	0.045	0.009	0.007	0,026	10	NR
S-0104-MW9-15.5' S1301029	0.036	ND	0.011	0.012	1.7	NR

ppm = parts per million = mg/kg = milligrams per kilogram.

ND = Not detected. Compound(s) may be present at concentrations below the detection limit.

NR = Analysis not requested.

ANALYTICAL PROCEDURES

BTEX-- Benzene, toluene, ethylbenzene, and total xylene isomers (BTEX) are measured by extraction using EPA Method 5030 followed by analysis using EPA Method 8020/602, which utilizes a gas chromatograph (GC) equipped with a photoionization detector (PID) and a flame-ionization detector (FID) in series.

TPHg-Total petroleum hydrocarbons as gasoline (low-to-medium boiling points) are measured by extraction using EPA Method 5030, followed by analysis using modified EPA Method 8015, which utilizes a GC equipped with an FID.

TPHd-Total petroleum hydrocarbons as diesel (high boiling points) are measured by extraction using EPA Method 3550 for soils and EPA Method 3510 for water, followed by modified EPA Method 8015 with direct sample injection into a GC equipped with an FID.

Laboratory Representative

January 7.,1993

Date Reported

1020lab.frm

NR

<u>ANALYSIS REPORT</u>

Attention:	Mr. J	ohn Giorgi		Dat	e Sampled:	01-04-93	3
	Aegis	5		Dat	e Received:	01-06-93	}
	1050	Melody Lan	e. Ste 160	BT	EX Analyzed:	01-06-93	3
		ville, ČA 95	•	TPI	Hg Analyzed:	01-06-93	3
Project:		7, Station 54		TPI	Hd Analyzed:	NR	i
j	Hayw	•		Mai	•	Soil	1
		_	"	Ethyl-	Total		,
		Benzene	Toluene	benzene	Xylenes	TPHg	TPHd
		<u>ppm</u>	<u>ppm</u>	<u>ppm</u>	ppm	<u>ppm</u>	<u>ppm</u> 10
Detection I	_imit:	0.005	0.005	0.005	0.005	1.0	10
SAMPLE Laboratory Id	entificati	on					,

0.012

0.040

2,2

0.006

ppm = parts per million = mg/kg = milligrams per kilogram.

ND = Not detected. Compound(s) may be present at concentrations below the detection limit.

NR = Analysis not requested.

S-0104-SP1(COMPOSITE) ND

S1301030

ANALYTICAL PROCEDURES

BTEX— Benzene, toluene, ethylbenzene, and total xylene isomers (BTEX) are measured by extraction using EPA Method 5030 followed by analysis using EPA Method 8020/602, which utilizes a gas chromatograph (GC) equipped with a photoionization detector (PID) and a flame-ionization detector (FID) in series.

TPHg-Total petroleum hydrocarbons as gasoline (low-to-medium boiling points) are measured by extraction using EPA Method 5030, followed by analysis using modified EPA Method 8015, which utilizes a GC equipped with an FID.

TPHd-Total petroleum hydrocarbons as diesel (high boiling points) are measured by extraction using EPA Method 3550 for soils and EPA Method 3510 for water, followed by modified EPA Method 8015 with direct sample injection into a GC equipped with an FID.

Laboratory Representative

January 7, 1993

Date Reported

ANALYSIS REPORT

Attention: Project:	Aegis 1050 Rose	Sheila Richg s Environme Melody Ln., ville, CA 95	ntal , Ste 160 678	Date Sampled: 01-04-93 Date Received: 01-06-93 BTEX Analyzed: 01-06-93 TPHg Analyzed: 01-06-93								
r roject.).0L, Project on #546, Ha			Hd Analyzed: trix:	NR Water						
		Benzene ppb 0.5	Toluene ppb 0.5	Ethyl- benzene <u>ppb</u> 0.5	Total Xylenes <u>ppb</u> 0.5	TPHg <u>ppb</u> 50	TPHd ppb 50					
SAMPLE Laboratory Ide	ntificati	on					<u>'</u>					
MW-9 W1301031		990	67	1000	2900	67000	NR					

ppb = parts per billion = μ g/L = micrograms per liter.

ND = Not detected. Compound(s) may be present at concentrations below the detection limit.

NR = Analysis not requested.

ANALYTICAL PROCEDURES

BTEX— Benzene, toluene, ethylbenzene, and total xylene isomers (BTEX) are measured by extraction using EPA Method 5030 followed by analysis using EPA Method 8020/602, which utilizes a gas chromatograph (GC) equipped with a photoionization detector (PID) and a flame-ionization detector (FID) in series.

TPHg-Total petroleum hydrocarbons as gasoline (low-to-medium boiling points) are measured by extraction using EPA Method 5030, followed by analysis using modified EPA Method 8015, which utilizes a GC equipped with an FID.

TPHd-Total petroleum hydrocarbons as diesel (high boiling points) are measured by extraction using EPA Method 3550 for soils and EPA Method 3510 for water, followed by modified EPA Method 8015 with direct sample injection into a GC equipped with an FID.

Laboratory Representative

January 11, 1993

Date Reported

RESNA ENVIRONMENTAL LABORATORY IS CERTIFIED BY THE STATE OF CALIFORNIA DEPARTMENT OF HEALTH SERVICES AS A HAZARDOUS WASTE TESTING LABORATORY (Certification No. 1211)

42501 Albrae Street • Fremont, CA 94538 • Phone: (510) 623-0775 • (800) 247-5223 • FAX: (510) 651-8754

Ultramar inc. CHAIN OF CUSTODY REPORT

BEACON

Beacon Station No.	Sampler (Print	Name)								Date 7	Form N	0. /	
546	John	Gi	این س		 	A١	IALY	SES	-	1-8-75	of	[/	
Project No.	Sampler (Sign		$+ \parallel$,			1!	<i>c</i> -	· <u>.</u>			
Project No.				,			J. 14 37			g / .	$Z_{i} = 0$	* *	
Project Location	Affiliation '	7 645 (Hiry				7			aine	4 4		
Hoyword, H	Affiliation Pegis Environmental				X	TPH (diesel)	i hal			No. of Containers	·	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
Sample No./Identification	Date	Ī	me	Lab No.	BTEX Tel (ᇤ	11/1			O Z Y XI	プバテ RKS		
S-0104-MW-7-10.5	1-41				X					1		·	
5-0164-MW-9-17.5)				X	XI I				1		· <u></u> -	
3-0104 -271					M		X		1	3 1 /	7	1	
MW-3	1	14.	00		χ)					2 Yand Jay	1		
									\prod			arese	
										- Z of the sent out a	est o	Par	
												7	
Relinquished by: (Signature/Affiliation)	Date	Time	Receiv	ed by: (Signatur	e/Affi	liatio	n)	 _ 	<u> </u>		Date	Time	
John Heriza	1/3	1.	/										
Relinquished by: (Signature/Affiliation)	Date	Time	Receiv	ed by: (Signatur	e/Affi	liatio	n)		-	•	Date	Time	
Relinquished by: (Signature/Affiliation)	Date	Time	Receiv	ed by: (Signatur	e/Affi	liatio	n)				Date	Time	
Report To:			Bill to:	ULTRAMAR 525 West Ti								- *	
				Hanford, CA	9323	30	ι						
				Attention:									

May 3, 1993 Sample Log 6304 92-067

RECEIVED MAY 1 3 1993 Ans'd FA

Clark Owen
Aegis Environmental Consultants, Inc.
1050 Melody Lane, Suite 160
Roseville, CA 95678

Subject: Analytical Results for 1 Water Sample

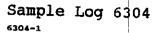
Identified as: Project # 92-067 (Beacon 546)

Received: 04/23/93

Dear Mr. Owen:

Analysis of the sample(s) referenced above has been completed. This report is written to confirm results communicated on May 3, 1993 and describes procedures used to analyze the samples.

Sample(s) were received in 40-milliliter glass vials sealed with TFE lined septae and plastic screw-caps. Each sample was transported and received under documented chain of custody and stored at 4 degrees C until analysis was performed.


Sample(s) were analyzed using the following method(s):

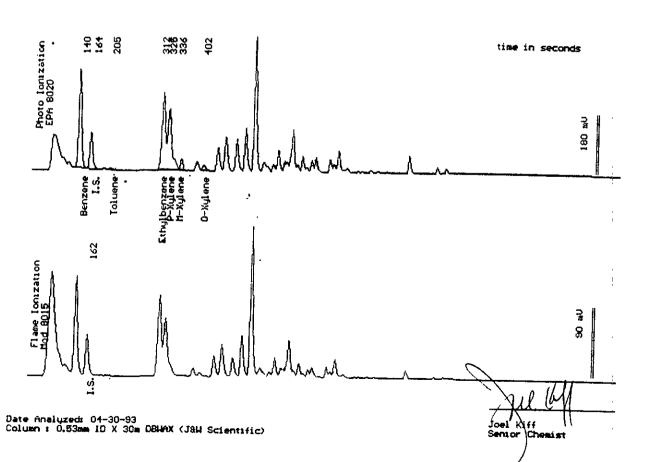
"BTEX" (EPA Method 602/Purge-and-Trap)
"TPH as Gasoline" (Modified EPA Method 8015/Purge-and-Trap)

Please refer to the following table(s) for summarized analytical results and contact us at 916-757-4650 if you have questions regarding procedures or results. The chain-of-custody document is enclosed.

Approved by:

Senior Chemist

Sample: MW-8


From : Project # 92-067 (Beacon 546)

Sampled: 04/23/93

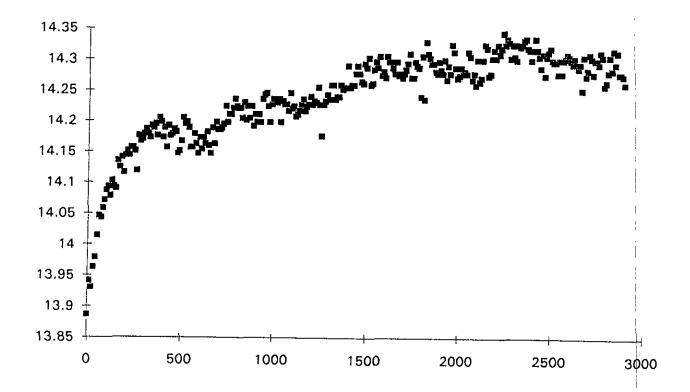
Dilution: 1:10 QC Batch: 4002e

Matrix : Water

Parameter	(MDL) ug/L	Measured Value ug/L
Benzene Toluene Ethylbenzene Total Xylenes	(5.0) (5.0) (5.0) (5.0)	480 8.2 550 510
TPH as Gasoline	(500)	7400

Ultramar inc.CHAIN OF CUSTODY REPORT

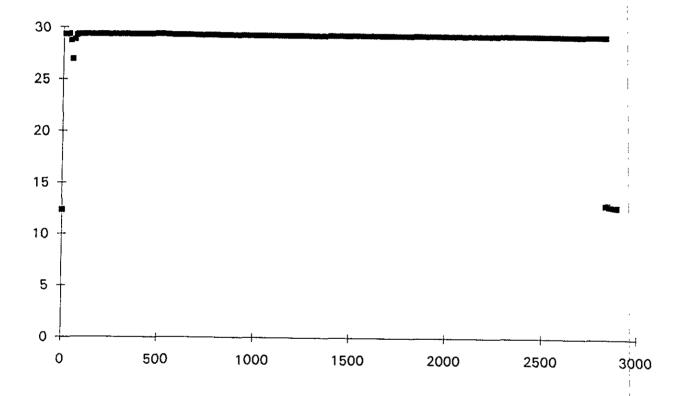
West Analytical

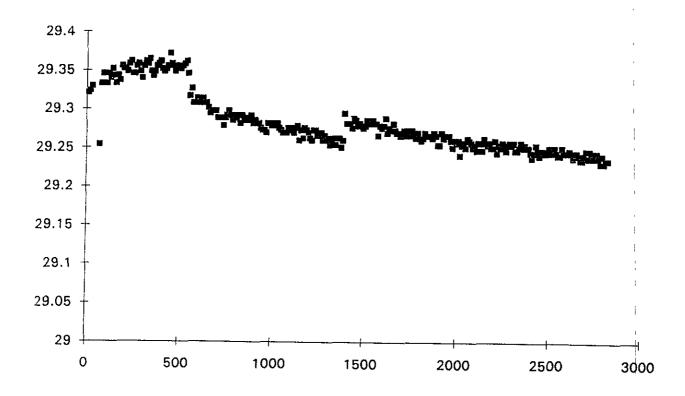

Beacon Station No.	Sampler (Print	Name)		 					Data	<u>.</u>	
546	TOTT	Wendt Mille		<u> </u>	Al	NALY	SES		4-23-93	Form No ∫ of	o.
Project No.	Sampler (Signa	iture)		-							
92-067		Mille	rdt					ပ္			
	Affiliation	116000		- 1	() ()			aine			
Mission Blud Hayward	Azis	<u>.</u>		BTEX	r PH (gasoll) FPH (diesel)			of Containers			
Sample No./Identification	Date	Time	Lab No.	BTE)	眶			No. o	REMAR	iks	
MW-8	4-23-93	8Am		X	X			3			
		•									
				\prod		—					
								1			
			- · · · · · · · · · · · · · · · · · · ·	H	+						
				++	+-	-				 ,	
				ightarrow	+			\perp			
Relinquished by: (Signature/Affiliation)		Time Receive	ed by: (Signature	L e/Affi	liatio	on)				Date	Time
All Werdt Agis	4-23-43	3.50 al	Thos	1		,				1 1	3:50
Relinquished by: (Signature/Affiliation)	Date	Time Receive	ed by: (Signature	e/Affi	liatio	n)	1	- {	<u>) </u>	Date	Time
CO/ROSS	1/23	4.0601	1			_		Ì			
Relinguished by: (Signature/Affiliation)	Date	Time Receive	d by: Signature	e/Affi	liatio	n) 8	/		1	Date	Time
D		- 1	tita l						1	Abstr	16:0
Report To: Clark Cwen		Bill to:	ULTRAMAR	NC			t		<u> </u>	<u></u>	
1050 Melody Ln. #160			525 West Th	ird S	tree	t					
Roseville Cai 95678	•		525 West Th Hanford, CA Attention:		Te	114	Fo	· <u>×</u>			
WHITE: Return to Client with Report	YELLOW: Labor	atory Copy	PINK: Origina					· · · · · ·		32 80	03 1/90

ATTACHMENT 4 PUMPING TEST FIELD DATA

19705 M. 55104 DIVa. Mayund
Flow Programs 9208: 4-Stort Depth to mader Run 29' 92-067
9:06Am 0 12.23
9.26 Am 4.7 18.35
57 9:35 Am 4.8 18.92
4-21-92
R:35 Am 10 12.33 13.90 18.45 21.89 19.54 18.98 18.64 17.65 Begin teste 9 Am
9:0 Am 18.5 2264 Strong oder
9.08 Am 15.8 29.70 13.91 17.66 in mw 4
9:16 Am 5.5 30.55
9:27 Am 5.1 29.75 13.95 18.45 71.89 19.53 18.98 18.63 17.69
9.49 Am 27.25 14.01 18.46 21.89 19.54 18.97 18.66 17:73
10:04 Am 5.0 29.15
10:18 Am 5.0 29.60 14.05 18.46 21.89 19.54 18.97 18.66 17.75
10:45 Am 5.0 30.40 14.07 18.46 21.89 19.54 18.97 18.66 17.77
12:15 pm 5.0 30.45 14.15 18.49 21.88 19.57 18.97 18.71 17.83
- 1:00 pm 4.8 3030 14.16 18.50 21.89 19 57 18 97 18 72 1735
2:00pm 4.8 30.40 14.2018.52 21.90 19.59 18.98 18.75 17.88
3.00 pm 4.7 30.40 14.21 18.53 21.90 19.60 18.98 18.75 17.89
4:00 pm 4.7 30.35 14.23 18.54 21.90 19.60 18.98 18.75 17.90
5:00 pm 4.6 30.40 14:2318.5421.89 19.60 1898 18.76 17.90
1 20 30 14 1 20 30 14 24 8 T 21 80 2 1 20 2
6200 pm 4.6 30.3014.248.55 21.89 19.61 18.98 18.76 17.91
7:50 pm 4.6 50.4014.241855 21.89 19.61 18.98 18.77 17.92
8:00 pm 4.60 30.40 H.25 18.56 21.89 19.62 1898 18.77 17.93
11:00 pm 4.6 30.40 14.28185321.90 19.63 18.99 17.95
2:00 Am 4.6 3040 14.31 1860 21.92 19.65 19.00 18.8 1 17.97
1.50 Am 17.5 30.50 H.33 18.63 21.94 19.68 19.07 1884 17.99
8:00 pm 4.4 30.40 14.34 1864 21.95 19.69 19.04 18.35 18.00
10:30 Am 4.4 30.40 14.36 18.65 21.96 19.71 19.05 18.87 18.02
stopped collecter a: Te
1 1 mw - 4 mw - 5 1 mw - 5

1, 29,105 Mission Dire, (Righard vare. 9-00 Depth to waster Flow 1220 | mw-7 mw-2 mw-3 mw-1 mw-9 mw- 1 mw- 1 mw-Time 4-22-93 4.3 Commen 30.40 14.37 18.66 21.97 19.71 8.20 " 14.37 18.66 21.97 19.71 8.20 2100 pm 4.3 3:00 pm 4.4 14.38 18.66 21.96 19.718.19 4:copm 4.4 14.37 18.66 21.96 19.71 8.18 1 5.00 pm 43 14.37 18.66 21.96 19.71 8.18 7:00 pm 14.3 143718.662197 R.71 8.18 7:50 pm 14.3 143618.66/219619.71/8.19 4 4.3 11 7:30 Am 14.37 8.66 21.97 19.72 8.19 18:05 Am 4-23-93 pumple


ATTACHMENT 5 PUMPING TEST DATA EVALUATION



	290.000 14.170	780.000 14.221
653000		
SE2000		
Environmental Logger 04/23 15:36		800.000 14.224
04/23 15:36	320.000 14.179	810.000 14.221
11-i-4-02-007 T - 4	330.000 14.173	820.000 14.221
Unit# 92-067 Test 1	340.000 14.192	830.000 14.205
INDIT OF TOO	350.000 14.189	840.000 14.230
INPUT 2: Level (F) TOC	360.000 14.195	850.000 14.201
	370.000 14.176	860.000 14.224
Reference 13.900	380.000 14.205	870.000 14.205
SG 1.000	390.000 14.198	880.000 14.224
Linearity 0.000	400.000 14.173	890.000 14.192
Scale factor 10.065	410.000 14.189	900.000 14.211
Offset 0.024	420.000 14.157	910.000 14.198
Delay mSEC 50.000	430.000 14.192	920.000 14.211
	440.000 14.176	930.000 14.198
Step 0 04/21 09:56:33	450.000 14.179	940.000 14.236
	460.000 14.186	950.000 14.243
Elapsed Time INPUT 2	470.000 14.182	960.000 14.246
	480.000 14.147	970.000 14.224
0.0000 13.887	490.000 14.151	980.000 14.198
10.0000 13.941	500.000 14.167	990.000 14.227
20.0000 13.931	510.000 14.205	1000.00 14.236
30.0000 13.963	520.000 14.195	1010.00 14.236
40.0000 13.979	530.000 14.198	1020.00 14.230
50.0000 14.014	540.000 14.189	1030.00 14.236
60.0000 14.046	550.000 14.157	1040.00 14.198
70.0000 14.043	560.000 14.157	1050.00 14.233
80.0000 14.058	570.000 14.179 i	1060.00 14.227
90.0000 14.071	580.000 14.163	1070.00 14.227
100.000 14.087	590.000 14.147	1080.00 14.217
110.000 14.093	600.000 14.173	1090.00 14.246
120.000 14.078	610.000 14.154	1100.00 14.221
130.000 14.103	620.000 14.173	1110.00 14.224
140.000 14.093	630.000 14.163	1120.00 14.208
150.000 14.090	640.000 14.182	1130.00 14.211
160.000 14.135	650.000 14.160	1140.00 14.217
170.000 14.125	660.000 14.147	1150.00 14.227
180.000 14.141	670.000 14.189	1160.00 14.236
190.000 14.116	680.000 14.163	1170.00 14.217
200.000 14.144	690.000 14.198	1180.00 14.224
210.000 14.151	700.000 14.186	1190.00 14.227
220.000 14.144	710.000 14.186	1200.00 14.240
230.000 14.157	720.000 14.189	1210.00 14.227
240.000 14.157	730.000 14.195	1220.00 14.233
250.000 14.151	740.000 14.224	1230.00 14.230
260.000 14.119	750.000 14.198	1240.00 14.255
270.000 14.176	760.000 14.211	1250.00 14.227
280.000 14.167	770.000 14.211	1260.00 14.176
200,000 [4,107]	17.211	14.170

1270.00 14.227	1760.00 14.297	2250.00 14.325
1280.00 14.233	1770.00 14.290	2260.00 14.335
1290.00 14.243	1780.00 14.287	2270.00 14.329
1300.00 14.236	1790.00 14.240	2280.00 14.303
1310.00 14.259	1800.00 14.306	2290.00 14.325
1320.00 14.259	1810.00 14.236	2300.00 14.306
1330.00 14.236	1820.00 14.329	2310.00 14.300
1340.00 14.240	1830.00 14.310	2320.00 14.325
1350.00 14.240	1840.00 14.303	2330.00 14.322
1360.00 14.259	1850.00 14.294	2340.00 14.325
1370.00 14.252	1860.00 14.294	2350.00 14.332
1380.00 14.255	1870.00 14.281	2360.00 14.335
1390.00 14.255	1880.00 14.278	2370.00 14.319
1400.00 14.290	1890.00 14.297	2380.00 14.316
1410.00 14.255	1900.00 14.284	2390.00 14.300
1420.00 14.259	1910.00 14.278	2400.00 14.316
1430.00 14.259	1920.00 14.300	2410.00 14.335
1440.00 14.278	1930.00 14.268	2420.00 14.316
1450.00 14.278	1940.00 14.290	2430.00 14.316
1460.00 14.278	1950.00 14.278	
1470.00 14.265	1960.00 14.325	
1480.00 14.262	}	
1490.00 14.294		
1500.00 14.287	l	
1510.00 14.303	1990.00 14.271	2480.00 14.313
1520.00 14.259	2000.00 14.275	2490.00 14.319
	2010.00 14.287	2500.00 14.300
<u> </u>	2020.00 14.278	2510.00 14.297
1540.00 14.284	2030.00 14.281	2520.00 14.297
1550.00 14.297 1 1560.00 14.287	2040.00 14.278	2530.00 14.278
	2050.00 14.313	2540.00 14.300
	2060.00 14.306	2550.00 14.278
1580.00 14.275	2070.00 14.268	2560.00 14.300
1590.00 14.281	2080.00 14.278	2570.00 14.303
1600.00 14.271	2090.00 14.259	2580.00 14.310
1610.00 14.306	2100.00 14.300	2590.00 14.306
1620.00 14.297	2110.00 14.265	2600.00 14.300
1630.00 14.297	2120.00 14.271	2610.00 14.294
1640.00 14.287	2130.00 14.300	2620.00 14.303
1650.00 14.278	2140.00 14.325	2630.00 14.294
1660.00 14.297	2150.00 14.319	2640.00 14.287
1670.00 14.275	2160.00 14.275	2650.00 14.294
1680.00 14.278	2170.00 14.278	2660.00 14.252
1690.00 14.271	2180.00 14.303	2670.00 14.306
1700.00 14.278	2190.00 14.316	2680.00 14.275
1710.00 14.284	2200.00 14.303	2690.00 14.284
1720.00 14.294	2210.00 14.325	2700.00 14.310
1730.00 14.310	2220.00 14.310	2710.00 14.303
1740.00 14.271	2230.00 14.319	2720.00 14.278
1750.00 14.271	2240.00 14.344	2730.00 14.300
		· · · · · · · · · · · · · · · · · · ·

2740.00	14.300	
2750.00	14.294	
2760.00	14.313	
2770.00	14.306	
2780.00	14.259	
2790.00	14.265	
2800.00	14.281	
2810.00	14.306	
2820.00	14.284	
2830.00	14.316	
2840.00	14.294	
2850.00	14.313	
2860.00	14.278	
2870.00	14.278	
2880.00	14.275	
2890.00	14.262	

	290.000 29.349	780.000 29.292
SE2000	300.000 29.340	790.000 29.286
Environmental Logger	310.000 29.356	800.000 29.292
04/23 15:33	320.000 29.362	810.000 29.289
	330.000 29.359	820.000 29.292
Unit# 92-067 Test 1	340.000 29.365	830.000 29.282
	350.000 29.349	840.000 29.292
INPUT 1: Level (F) TOC	360.000 29.343	850.000 29.286
	370.000 29.349	860.000 29.289
Reference 12.330	380.000 29.356	870.000 29.286
SG 1.000	390.000 29.359	880.000 29.289
Linearity 0.000	400.000 29.362	890.000 29.292
Scale factor 10.079	410.000 29.352	900.000 29.282
Offset 0.001	420.000 29.349	910.000 29.286
Delay mSEC 50.000	430.000 29.352	920.000 29.282
	440.000 29.356	930.000 29.282
Step 0 04/21 09:56:33	450.000 29.372	940.000 29.276
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	460.000 29.359	950.000 29.273
Elapsed Time INPUT 1	470.000 29.356	960.000 29.273
	480.000 29.349	970.000 29.270
0.0000 12.330	490.000 29.356	980.000 29.282
10.0000 29.321	500.000 29.352	990.000 29.282
20.0000 29.324	510.000 29.352	1000.00 29.279
30.0000 29.330		
40.0000 28.706		
50.0000 26.901	530.000 29.359	l
	540.000 29.362	
	550.000 29.346	1040.00 29.276
70.0000 29.254 80.0000 29.333	560.000 29.317	1050.00 29.273
	570.000 29.327	1060.00 29.270
90.0000 29.346	580.000 29.308	1070.00 29.270
100.000 29.346	590.000 29.308	1080.00 29.270
110.000 29.333	600.000 29.314	1090.00 29.276
120.000 29.346	610.000 29.308	1100.00 29.276
130.000 29.340	620.000 29.311	1110.00 29.273
140.000 29.352	630.000 29.314	1120.00 29.270
150.000 29.343	640.000 29.308	1130.00 29.276
160.000 29.333	650.000 29.308	1140.00 29.279
170.000 29.343	660.000 29.302	1150.00 29.260
180.000 29.337	670.000 29.295	1160.00 29.273
190.000 29.356	680.000 29.298	1170.00 29.263
200.000 29.352	690.000 29.298	1180.00 29.276
210.000 29.352	700.000 29.298	1190.00 29.273
220.000 29.349	710.000 29.289	1200.00 29.270
230.000 29.359	720.000 29.289	1210.00 29.263
240.000 29.362	730.000 29.289	1220.00 29.260
250.000 29.346	740.000 29.279	1230.00 29.273
260.000 29.346	750.000 29.289	1240.00 29.273
270.000 29.356	760.000 29.292	1250.00 29.266
280.000 29.359	770.000 29.298	1260.00 29.266
	J	

1270.00 29.270	1760.00 29.273	2250.00 29.257
1280.00 29.260	1770.00 29.266	2260.00 29.251
1290.00 29.266	1780.00 29.263	2270.00 29.247
1300.00 29.260	1790.00 29.270	2280.00 29.254
1310.00 29.263	1800.00 29.263	2290.00 29.257
1320.00 29.254	1810.00 29.260	2300.00 29.254
1330.00 29.260	1820.00 29.263	2310.00 29.257
1340.00 29.263	1830.00 29.270	2320.00 29.247
1350.00 29.254	1840.00 29.266	2330.00 29.247
1360.00 29.263	1850.00 29.266	2340.00 29.251
1370.00 29.263	1860.00 29.266	2350.00 29.257
1380.00 29.251	1870.00 29.263	2360.00 29.251
1390.00 29.260	1880.00 29.270	2370.00 29.254
1400.00 29.295	1890.00 29.266	2380.00 29.251
1410.00 29.282	1900.00 29.254	2390.00 29.251
1420.00 29.282	1910.00 29.254	2400.00 29.244
1430.00 29.282	1920.00 29.270	2410.00 29.238
1440.00 29.276	1930.00 29.263	2420.00 29.244
1450.00 29.289	1940.00 29.266	2430.00 29.254
1460.00 29.286	1950.00 29.266	2440.00 29.247
1470.00 29.279	1960.00 29.266	2450.00 29.241
1480.00 29.282	1970.00 29.260	2460.00 29.247
1490.00 29.279	1980.00 29.251	2470.00 29.247
1500.00 29.276	1990.00 29.260	2480.00 29.244
1510.00 29.279	2000.00 29.257	2490.00 29.247
1520.00 29.286	2010.00 29.260	2500.00 29.251
1530.00 29.286	2020.00 29.241	2510.00 29.244
1540.00 29.282	2030.00 29.254	2520.00 29.247
1550.00 29.286	2040.00 29.257	2530.00 29.251
1560.00 29.282	2050.00 29.251	2540.00 29.244
1570.00 29.282	2060.00 29.263	2550.00 29.241
1580.00 29.266	2070.00 29.260	2560.00 29.241
1590.00 29.279	2080.00 29.257	2570.00 29.251
1600.00 29.276	2090.00 29.251	2580.00 29.244
1610.00 29.279	2100.00 29.254	2590.00 29.244
1620.00 29.289	2110.00 29.247	2600.00 29.244
1630.00 29.270	2120.00 29.257	2610.00 29.247
1640.00 29.276	2130.00 29.257	2620.00 29.244
1650.00 29.273	2140.00 29.247	2630.00 29.238
1660.00 29.282	2150.00 29.263	2640.00 29.241
1670.00 29.273	2160.00 29.257	2650.00 29.244
1680.00 29.270	2170.00 29.254	2660.00 29.241
1690.00 29.270	2180.00 29.257	2670.00 29.235
1700.00 29.266	2190.00 29.251	2680.00 29.235
1710.00 29.270	2200.00 29.251	2690.00 29.241
1720.00 29.273	2210.00 29.260	2700.00 29.247
1730.00 29.266	2220.00 29.244	2710.00 29.238
1740.00 29.273	2230.00 29.254	2720.00 29.247
1750.00 29.266	2240.00 29.251	2730.00 29.244
	· · · · · · · · · · · · · · · · · · ·	

2740.00	29.238	
2750.00	29.241	
2760.00	29.244	
2770.00	29.238	
2780.00	29.231	
2790.00	29.241	
2800.00	29.231	
2810.00	29.235	
2820.00	29.235	
2830.00	12.906	
2840.00	12.934	
2850.00	12.855	
2860.00	12.813	
2870.00	12.778	
2880.00	12.753	
2890.00	12.724	