SOIL BORING, MONITORING WELL INSTALLATION AND GROUNDWATER MONITORING REPORT

Cavanaugh Motors Facility 1700 Park Street Alameda, California

November 18, 1994

Prepared for

Mr. Dave Cavanaugh
Cavanaugh Motors
1700 Park Street
Alameda, California 94501

Prepared by

TMC Environmental Inc. 13908 San Pablo Avenue, Suite 101 San Pablo, California 94806

Project No.: 101090

CERTIFICATION OF PROFESSIONAL SUPERVISION

Soil Boring, Monitoring Well Installation and Groundwater Monitoring Report Cavanaugh Motors Facility 1700 Park Street Alameda, California

TMC ENVIRONMENTAL, Inc. supervised the preparation of this Soil Boring, Monitoring Well Installation and Groundwater Monitoring Report, dated November 18, 1994, for the Cavanaugh Motors facility in the City of Alameda, Alameda County, California. Techniques and standards of care common to the consulting geologic profession in California, where used in the preparation of this report.

This document, signed and stamped with seal, follows section 7835 of the Geologist and Geophysicists Act, Business and Professionals Code, State of California and the requirements of the California Regional Water Quality Control Board, San Francisco Bay Region.

Michael Princevalle

Soil Scientist/Senior Project Manager

Tom Ghigliotto

lon Thighiatts

Project Manager

TMC Environmental, Inc. certifying professional:

Somsker

Mark T. Youngkin, Vice President

Certified Engineering Geologist No. EG-1380

License expires June 30, 1996.

Date: N/18/94

TABLE OF CONTENTS

SOIL BORING, MONITORING WELL INSTALLATION AND GROUNDWATER MONITORING REPORT 1700 PARK STREET, ALAMEDA, CALIFORNIA

TITLE PAGE CERTIFICATION OF PROFESSIONAL SUPERVISION TABLE OF CONTENTS

10	SUMMARY OF FINDINGS
2.0	GENERAL SITE INFORMATION 2 1 SITE LOCATION 2.2 RESPONSIBLE PARTY 2.3 CONSULTANT OF RECORD 2.4 LEAD IMPLEMENTING AGENCY 2.5 SITE CONDITION 2.6 GEOLOGY 2.7 ENVIRONMENTAL SITE WORK 2.7.1 PREVIOUS ENVIRONMENTAL SITE WORK 2.7.2 RECENT ENVIRONMENTAL WORK
3.0	GROUNDWATER SAMPLING
4.0	GROUNDWATER MEASUREMENTS 13
5.0	SOIL AND WATER SAMPLE DATA QUALITY 5.1 QUALITY OF GROUNDWATER SAMPLES 5.2 CHAIN OF CUSTODY DOCUMENTATION 5.3 PURGEABLE HALOCARBONS 17 5.4 TOTAL VOLATILE HYDROCARBONS WITH BTEX 5.5 EXTRACTABLE PETROLEUM HYDROCARBONS 18 5.6 HYDROCARBON OIL & GREASE 18
6.0	COMMENTS AND SCHEDULE OF ACTIVITIES 18
7 0	LIMITATIONS 19
	<u>TABLES</u>
TABLE TABLE TABLE	DIESEL, OIL & GREASE AND CHLOROBENZENE RESULTS FOR WATER SAMPLES GROUNDWATER MEASUREMENTS FROM MONITORING WELLS

TABLE OF CONTENTS.....continued

CHARTS

CHART I	MW1 QUARTERLY SAMPLING RESULTS FOR GASOLINE AND BENZENE
CHART 2	MWI QUARTERLY SAMPLING RESULTS FOR BTEX
CHART 3	MW-6 QUARTERLY SAMPLING RESULTS FOR DIESEL/KEROSENE
CHART 4	MW-5 AND MW-6 QUARTERLY SAMPLING RESULTS FOR CHLOROBENZENE

PLATES

PLATE 1	SITE VICINITY MAP
PLATE 2	SITE MAP

PLATE 3 GROUNDWATER GRADIENT MAP

<u>ATTACHMENTS</u>

ATTACHMENT 1, WELL PERMITS, LOGS OF BORINGS, WELL CONSTRUCTION DIAGRAM ATTACHMENT 2, LABORATORY REPORTS
ATTACHMENT 3, RECORD OF WATER SAMPLE COLLECTION

SOIL BORING, MONITORING WELL INSTALLATION AND GROUNDWATER MONITORING REPORT

1700 Park Street, Alameda, California

1.0 SUMMARY OF FINDINGS

In December 1989 and August 1990, two underground storage tanks (a gasoline tank and a waste oil tank) were removed from separate locations on the site. In April, 1990, and January 1991, approximately 120 cubic yards of accessible contaminated soils were excavated from the tank locations. Approximately 120 cubic yards of contaminated soils are being treated on site.

TMC ENVIRONMENTAL, Inc. (TMC) subsequently installed six groundwater monitoring wells at the site and are indicated in this report as MW-1, MW-2, MW-3, MW-4, MW-5, and MW-6. Groundwater monitoring well MW-1 is located within the gasoline tank excavation. Monitoring well MW-2 is located up-gradient from the former gasoline tank and is near the southern limits of the site. Monitoring well MW-4 is located in the western portion of the site, "cross-gradient" from the former gasoline tank. Groundwater monitoring well MW-6 is located within the limits of the former waste oil tank excavation inside the existing auto repair shop. Monitoring wells MW-3 and MW-5 are located in the down gradient direction from the former waste oil tank.

Due to the proximity of buildings, not all of the soil contamination was excavated from the former gasoline tank pit. In March, 1993, TMC installed a soil vapor extraction system in the vicinity of the former gasoline tank to remediate gasoline-contaminated soils (associated with the former gasoline tank) remaining at the site. To verify that the soil contamination was remediated, four soil borings were placed within the soil contaminant plume. This work was performed August 31, 1994. Sample results revealed that the soil vapor extraction system was effective in remediating soil contamination that remained in the vicinity of the former gasoline tank.

Per the request of the Alameda County Health Care Services Agency, Department of Environmental Health, Division of Hazardous Materials, TMC installed an additional groundwater monitoring well (August 25, 1994) down gradient from the former gasoline tank. This well was constructed similarly to the existing monitoring wells. This well is indicated as MW-7. Chemical analysis of soil samples recovered from this well revealed non-detectable levels of gasoline and BTEX

Subsequently, TMC recovered groundwater samples from the above-indicated wells. TMC performed this work September 15, 1994. All well samples were chemically analyzed for: total volatile hydrocarbons (TVH) as gasoline and benzene, toluene,

ethylbenzene, and total xylene (BTEX). Additionally, groundwater samples from wells MW-3, MW-5, and MW-6 were tested for diesel, petroleum oil and grease and purgeable halocarbons.

Samples from MW-1 continue to show the presence of gasoline and BTEX's. Well MW-7, located down gradient from the former tank and MW-1, had non-detectable levels of gasoline and BTEX's. Samples from wells, MW-2, MW-3, MW-4, MW-5 and MW-6 continue to have gasoline and BTEX levels below detection limits. The and MW-6 samples revealed detectable levels of Chlorobenzene, however, these levels are below MCL's of 100 ppb. Samples from MW-3 and MW-5 showed non-detectable Chlorobenzene levels. All three wells (MW-3, MW-5 and MW-6) had non-detectable Diesel and Petroleum Oil and Grease levels.

Groundwater gradient and direction was estimated by using water levels measurements from monitoring wells MW-2, MW-3 and MW-5. Recent groundwater data indicates groundwater flows in a northerly direction, with a gradient of 0.080 feet/foot.

2.0 GENERAL SITE INFORMATION

2.1 SITE LOCATION

The Cavanaugh Motors property, called "site" in this report, is at the following address and description (see Plate 1, Site Vicinity Map):

1700 Park Street, City of Alameda Alameda County, California Appraisers parcel number: APN 70-192-21-1 and 24 Lots 1, 2, 3, portion of 4, 7 Block E of Alameda Station Homestead Tract (Book 17 page 60)

The site is at the northeast corner of the intersection of Park Street and Buena Vista Avenue. The corner lot is approximately 150 feet by 200 feet in dimension.

2.2 RESPONSIBLE PARTY

The current property owner's are:

Lee and Dave Cavanaugh 1700 Park Street, Alameda, California 94501

Mr. Dave Cavanaugh is the owner contact, and can be reached at (510) 523-5246.

2.3 CONSULTANT OF RECORD

The consultant of record for this project is:

TMC Environmental Inc. (TMC) 13908 San Pablo Avenue, Suite 101 San Pablo, California 94806

The contacts for TMC are Mr. Tom Ghigliotto, or Mr. Michael Princevalle, Senior Project Manager. Mr. Ghigliotto and Mr. Princevalle can be reached at (510) 232-8366.

2.4 LEAD IMPLEMENTING AGENCY

The enforcing agency authorized by the Regional Water Quality Control Board (RWQCB) to oversee this site is:

Alameda County Health Care Services Agency Department of Environmental Health Division of Hazardous Materials 1131 Harbor Bay Parkway, Alameda, California 94501

The officer overseeing this case is: Ms. Juliet Shin. Ms. Shin at can be called at (510) 337-2864.

TMC followed the guidelines by the enforcing agency and the Bay Area Regional Water Quality Control Board (RWQCB) in preparing this report. The investigation, reclamation, and reporting guidelines applicable to leaking underground fuel tanks, available through these agencies, apply to this discharge. These guidelines are available from the Alameda County Health Care Services Agency.

2.5 SITE CONDITION

The site is presently being used as an automobile dealership and repair facility. The property is in a commercial and residential neighborhood. Current activities include: a new car showroom, sales offices, parts storage and distribution, outside car storage, and vehicle repair shop; see Plate 2, Site Plan. No underground storage facilities exist at site

Foot and vehicle traffic is heavy in this neighborhood and site. The site contains a large building with paved parking areas and driveways. Access to the dealership is from both Park Street that borders the property on the northwest and Buena Vista Avenue that borders the property on the southwest. A gasoline station and automobile dealers occur across Park Street to the north. A motor vehicle repair shop bounds the site on the northeast. Adjacent to the site on the south is a residential neighborhood.

Six groundwater monitoring wells exist at the site. These are indicated in this report and on Plate 2, Site Map, as MW-1 MW-2, MW-3, MW-4, MW-5, MW-6 and MW-7. These wells are constructed to monitor the shallow water bearing zone beneath the site. Additionally, four soil extraction wells exist on site, and are indicated as VW1, VW2, VW3 and VW4.

2.6 GEOLOGY

The site is approximately one half mile west of the Oakland Estuary and Inner Harbor Waterway. San Francisco Bay is about one mile west of the site. The Inner Harbor Waterway connects San Leandro Bay and San Francisco Bay. As suggested by U.S. Geological Survey geological publications, the site is on the Alameda Bay Plain that has an alluvial fan environment. The Merritt Sand Formation is the main stratigraphic unit in the upper aquifer. This unit usually has unconsolidated beach sand and near shore deposits. Borings on the site have encountered unconsolidated sands and clayey sands. Lenses of clayey sand occur in the sand. It appears that groundwater in the Merritt Sand Formation is unconfined. Groundwater is approximately eight feet below surface grade (BSG) at the site during most of the year, but may rise to within five feet BSG during winter rainfall.

2.7 ENVIRONMENTAL SITE WORK

2.7.1 PREVIOUS ENVIRONMENTAL SITE WORK

In December, 1989 and August, 1990, two underground storage tanks (one gasoline and one automotive waste oil) were removed from separate locations at the site; see Plate 2. Soil samples recovered during the tank removal activities revealed the presence of petroleum materials. The soils found to be contaminated, and accessible, were excavated and stockpiled on site. Approximately 120 cubic yards of contaminated soil were removed and stockpiled on site. Site conditions prevented the complete removal of contaminated soils associated with the gasoline tank.

Subsequent to the tank removals and soil excavation, TMC performed a subsurface soils and groundwater investigation at the site. As part of the investigation, six groundwater

monitoring wells MW-1, MW-2, MW-3, MW-4, MW-5 and MW-6. Detectable levels of gasoline were found in soils and groundwater in the vicinity of the former gasoline tank. Detectable levels of diesel/kerosene and dichlorobenzene were found in the vicinity of the former waste oil tank. Results of this investigation work and the subsequent quarterly monitoring indicate ground water contamination associated with the former tanks is localized.

During the subsurface investigation work, four vapor extraction wells (VW-1, VW-2, VW-3 and VW-4) were installed at the site. The purpose of the extraction wells was to reembodied the contaminated soils in the vicinity of the former gasoline tank. In February, 1993, TMC constructed a vapor extraction system. Initial pilot tests of the system revealed that elevated groundwater levels at the site (due to high rainfall) hampered the effectiveness of the system. The system was then shut off. Once the groundwater levels dropped, the system was again started; July 7, 1993. Its operation continued until soil - vapor readings declined and stabilized to approximately 40 ppm. The system was shut down January 24, 1994.

2.7.2 RECENT ENVIRONMENTAL WORK

On August 25, 1994, TMC drilled four soil borings in the vicinity of MW-1 and the former gasoline tank. These borings are indicated as VB-1, VB-2, VB-3, and VB-4. The purpose of this work was to verify that the soil vapor extraction system was effective in remediating soil contaminated soils associated with the former tank.

TMC additionally constructed a groundwater monitoring well approximately 10 feet down gradient from the former gasoline tank. This well is indicated as MW-7. This work was required by the Alameda County Health Care Services Agency (ACH).

Verifying borings VB-1, VB-2, and VB-3, and well MW-7 were drilled by a state-licensed drilling contractor, using a mobile drill rig. These bores were drilled using hollow-stern auger. Due to limited access, TMC drilled and sampled VB-4 using hand augering and sampling equipment. TMC recovered two relatively undisturbed soil samples from each bore for chemical analysis. Samples were recovered from near the soil-groundwater interface; 5 ½ to 7 feet. Sample depths are presented in Attachment 1, Logs of Borings.

Soils encountered during the boring and sampling activities were primarily clayey sands or sandy clays, from surface grade down to approximately 7 to 7½ feet. Below these depths, moderately graded sand and sands with clay were encountered. Groundwater in the bores was found at approximately 7½ feet below grade. There was no evidence of staining or petroleum- like odors in the soils. Details of soils encountered are presented in Attachment 1. Upon completion of sampling the verification bores, the bores were back filled with neat cement.

where a site plan

Boring MW-7 was drilled down to 16 feet and completed into a groundwater monitoring well. Construction of this well is similar to the monitoring wells previously installed (MW-1 through MW-6 at the site). Well construction details are presented in Attachment 1. TMC developed this well after placement of the sand filter pack and prior to placement of the sanitary seal.

Results of the soil samples recovered from the verification bores (VB-1 through VB-4) and the groundwater monitoring well MW-7 are presented in Attachment 2, Laboratory Reports. The results revealed detectable levels of Ethyl Benzene in sample VB3-2 (7 - 7½ feet) of 12 parts per billion (ppb). All other soil samples had non-detectable levels of the target analytes.

Soil samples recovered from the bores were transported to a state-certified laboratory; AMER of Sunnyvale, California. The samples were analyzed for TPH Gasoline (TPH Gas; EPA 8015M), and Benzene, Toluene, Ethyl Benzene and Total Xylenes (BTEX; EPA 8020). TMC subsequently provided for surveying of MW-7. Mr. David Logan, a state-licensed surveyor, surveyed the well. This work was completed September 28, 1994.

3.0 GROUNDWATER SAMPLING

On May 26, 1994, TMC recovered groundwater samples from monitoring wells MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, and MW-7. Samples were chemically analyzed for the target chemicals: total volatile hydrocarbons (TVH) as gasoline, benzene, toluene, ethylbenzene, and total xylene (BTEX). Groundwater samples from wells MW-3, MW-5, and MW-6 were additionally tested for diesel, oil & grease and purgeable halocarbons. The following tables summarize the chemical compounds detected. Table 1, Gasoline Results for Groundwater Samples, lists the gasoline results for groundwater samples.

 TABLE 1
 GASOLINE RESULTS FOR GROUNDWATER SAMPLES

Date Sampled	Monitoring Well	TPH gas ug/L	Benzene ug/L	Toluene ug/L	Ethyl benzene ug/L	Xylenes ug/L			
June 1990 Groundwater Sampling									
6-08-90	90 MW-1 28000 6200 7000 630 61					6100			
6-08-90	MW-2	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5			
6-08-90	MW-3	ND<50	ND<0.5	ND<0.5	ND<0.5	0.9			
6-08-90	MW-4	ND<50	ND<0.5	ND<0.5	ND<0.5	0.9			
		December	1990 Groundwa	ter Sampling					
12-17-90	MW-1	7200	620	250	1200	1400			
12-17-90	MW-2	ND<50	1.1	ND<0.5	2.3	2.1			
12-17-90	MW-3	140	ND<0.5	1.3	1.3	9.1			
12-17-90	MW-4	ND<50	ND<0.5	ND<0.5	ND<0.5	0.9			
		July 19	91 Groundwater	Sampling					
7-29-91	MW-1	21000	890	1900	320	1700			
7-30-91	MW-2	ND<50	ND<0.5	ND<0.5	ND<0.5	0.9			
7-18-91	MW-3	ND<50	ND<0.5	ND<0.5	ND<0.5	0.9			
7-30-91	MW-4	ND<50	ND<0.5	ND<0.5	ND<0.5	0.9			
7-18-91	MW-5	ND<50	ND<0.5	ND<0.5	ND<0.5	0.9			
7-18-91	MW-6	ND<50	1.3	ND<0.5	ND<0.5	1.6			
		December	1991 Groundwa	ter Sampling					
12-4-91	MW-1	4300	3.2	1.3	88	630			
12-4-91	MW-2	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5			
12-4-91	MW-3	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5			
12-4-91	_MW-4	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5			
12-4-91	MW-5	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5			
12-4-91	MW-6	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5			

Date Sampled	Monitoring Well	TPH gas ug/L	Benzene ug/L	Toluene ug/L	Ethyl benzene ug/L	Xylenes ug/L
		April 19	92 Groundwater	Sampling		
4-30-92	MW-1	16000	910	2000	250	1400
4-29-92	MW-2	ND<50	ND<0.5_	ND<0.5	ND<0.5	ND<0.5
4-29-92	MW-3	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
4-29-92	MW-4	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
4-30-92	MW-5	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
4-30-92	MW-6	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
		July 19	92 Groundwater	Sampling	_** * * · · · · · · · · · · · · · · · ·	
7-28-92	MW-1	12000	1200	2300	340	1800
7-27-92	MW-2	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
7-27-92	MW-3	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
7-27-92	MW-4	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
7-27-92	MW-5	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
7-28-92	MW-6	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
		October	1992 Groundwate	er Sampling		
10-19-92	MW-1	5000	400	710	170	750
10-19-92	MW-2	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
10-19-92	MW-3	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
10-19-92	MW-4	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
10-19-92	MW-5	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
10-19-92	MW-6	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
		February	1993 Groundwa	ter Sampling		,
2-24-93	MW-1	8800	780	1200	230	1000
2-24-93	MW-2	ND<50	0.5	ND<0.5	ND<0.5	ND<0.5
2-24-93	MW-3	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
2-24-93	MW-4	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5

Monitoring Well	TPH gas ug/L	Benzene ug/L	Toluene ug/L	Ethyl benzene ug/L	Xylenes ug/L
MW-5	ND<50	ND<0.5	1.8	ND<0.5	ND<0.5
MW-6	ND<50	ND<0.5	6.8	ND<0.5	ND<0.5
	May 19	93 Groundwater	Sampling	,	
MW-1	24000	2500	4700	560	3100
MW-2	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-3	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-4	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-5	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-6	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	August I	993 Groundwate	r Sampling		
MW-1	13000	1200	2100	350	2000
MW-2	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-3	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-4	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-5	ND<50	ND<0.5	ND<0.5	0.8	ND<0.5
MW-6	ND<50	ND<0.5	ND<0.5	7.9	ND<0.5
	February	1994 Groundwal	er Sampling		
MW-1	7300	600	920	250	1,000
MW-2	ND<5 0	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-3	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-4	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-5	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-6	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	<u> Mav 19</u>	94 Groundwater	Sampling		
MW-1	15000	1200	2000	370	1500
MW-2	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	MW-5 MW-6 MW-1 MW-2 MW-3 MW-4 MW-5 MW-6 MW-1 MW-5 MW-6 MW-1 MW-5 MW-6 MW-1 MW-5 MW-6	Well ug/L MW-5 ND<50	Well ug/L ug/L MW-5 ND<50	Well ug/L ug/L ug/L MW-5 ND<50	Well ug/L ug/L benzene ug/L MW-5 ND<50

Date Sampled	Monitoring Well	TPH gas ug/L	Benzene ug/L	Toluene ug/L	Ethyl benzene ug/L	Xylenes ug/L
5-26-94	MW-3	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
5-26-94	MW-4	ND<50	ND<0.5	ND<0.5	ND<0.5_	ND<0.5
5-26-94	MW-5	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
5-26-94	MW-6	ND<50	ND<0.5	ND<0.5	ND<0.5_	ND<0.5
		September	· 1994 Groundwa	ter Sampling		
9-15-94	MW-1	4900	150	340	100	410
9-15-94	MW-2	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
9-15-94	MW-3	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
9-15-94	MW-4	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
9-15-94	MW-5	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5
9-15-94	MW-6	ND<50	ND<0.5	ND<0.5	ND<0.5	ND< <u>0.5</u>
9-15-94	MW-7	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5

ND- Not detected below reporting limits

Results of the samples show that MW-1 (located in the back fill of the former gasoline tank) continues to have detectable levels of gasoline and BTEX's. Chart 1, MW-1 Quarterly Sampling Results for Gasoline and Chart 2, MW-1 Quarterly Sampling Results for BTEX, show fluctuating Gasoline and BTEX concentrations. All other wells have non-detectable levels of Gasoline.

Table 2 presents results of laboratory analyses for extractable petroleum hydrocarbons (Diesel/Kerosene, Oil and Grease) and purgeable halocarbons (Chlorobenzene).

TABLE 2 DIESEL, OIL & GREASE AND CHLOROBENZENE RESULTS FOR WATER SAMPLES

Date Sampled	Monitoring Well	Diesel ug/L	Kerosene ug/L	Oil & Grease mg/L	Chlorobenzene ug/L			
	July 1991 Groundwater Sampling							
7-18-91	MW-3	NA	NA	ND<5	NA			
7-18-91	MW-5	NA	NA NA	ND<5	NA			

Date Sampled	Monitoring Well	Diesel ug/L	Kerosene ug/L	Oil & Grease mg/L	Chlorobenzene ug/L
7-18-91	MW-6	NA	NA	ND<5	NA
	Decembe	r 199 Groundwate	r Sampling		
12-4-91	MW-3	ND<50	ND<50	ND<5	ND<1.0
12-4-91	MW-5	ND<50	ND<50	ND<5	4.6
12-4-91	MW-6	1,400	ND<50	ND<5	33
		April 1992 Gro	undwater Samplin	8	
4-29-92	MW-3	ND<50	ND<50	ND<5	ND<1.0
4-29-92	MW-5	ND<50	ND<50	ND<5	3
4-29-92	MW-6	670	ND<50	ND<5	7
		July 1992 Gro	undwater Samplin	g	
7-28-92	MW-3	ND<50	ND<50	ND<5	ND<1.0
7-28-92	MW-5	ND<50	ND<50	ND<5	2
7-28-92	MW-6	1,700	ND<50	ND<5	17
		October 1992 G	roundwater <u>Sampl</u>	ing	
10-19-92	MW-3	ND<50	ND<50	ND<5	ND<1.0
10-19-92	MW-5	ND<50	ND<50	ND<5	2
10-19-92	MW-6	500	ND<50	ND<5	26
		February 1993 G	roundwater Samp	ling	
2-24-93	MW-3	ND<50	ND<50	ND<5	ND<1.0
2-24-93	MW-5	ND<50	ND<50	ND<5	1
2-24-93	MW-6	ND<50	170+	ND<5	66
		May 1993 Gro	undwater Samplin	8	
5-19-93	MW-3	ND<50	ND<50	ND<5	ND
	MW-5	ND<50	ND<50	ND<5	2
5-19-93		1			1

Date Sampled	Monitoring Well	Diesel ug/L	Kerosene ug/L	Oil & Grease mg/L	Chlorobenzen ug/L
8-11-93	MW-3	ND<50	ND<50_	ND<5	ND<1
8-11-93	MW-5	ND<50	ND<50_	ND<5	ND<1_
8-11-93	MW-6	80	*	7.0	10
		February 1994 G	roundwater Samp	ling	
2-2-94	MW-3	ND<50	ND<50	ND<05	ND<1
2-2-94	MW-5	ND<50	ND<50	ND<5	ND<1
2-2-94	MW-6	ND<50	220	ND<5	3
		May 1994 Gro	undwater Samplin	g	· · · · · · · · · · · · · · · · · · ·
5-24-94	MW-3	ND<50	N/A	ND<5	ND<0.4
5-24-94	MW-5	ND<50	N/A	ND<5	0.6
5-24-94	MW-6	ND<50	N/A	ND<5	5.5
		September 1994 (Groundwater Samp	ling	
9-15-94	MW-3	ND<50	N/A	ND<5	ND<0.4
9-15-94	MW-5	ND<50	N/A	ND<5	ND<0.4
9-15-94	MW-6	ND<50	N/A	ND<5	4.6

ND - NOT DETECTED BELOW REPORTING LIMITS

NA - NOT ANALYZED BY LABORATORY

Samples from well MW-6 (located in the pit back fill of a former waste oil tank) revealed non-detectable levels of Kerosene or Diesel; see Chart 3, MW-6 Quarterly Sampling Results for Diesel/Kerosene.

Samples from monitoring wells MW-3, MW-5 and MW-6 continue to show non-detectable levels of Oil and Grease. Diesel levels of MW-6 are now below detection limits, with wells MW-3, MW-5, and MW-6 continue to be below detection limits.

Chlorobenzene was reported in soil samples recovered during the waste oil tank removal. Previous groundwater sampling show detectable levels of Chlorobenzene in monitoring wells MW-5 and MW-6; with non-detectable levels in MW-3. In this latest sampling (September 15,

^{+ -} DOES NOT MATCH DIESEL STANDARD (POSSIBLE MOTOR OIL HYDROCARBONS)

^{• -} KEROSENE RANGE NOT REPORTED DUE TO OVERLAP OF HYDROCARBON RANGES

1994) results show the continuing presence of Chlorobenzene in these two wells; see Chart 4, MW-5 and MW-6 Quarterly Sampling Results for Chlorobenzene. The Chlorobenzene levels, however, are well below water Maximum Contaminant Levels (MCL's) of 100 parts per billion or 0.10 parts per million.

4.0 GROUNDWATER MEASUREMENTS

Once the wells were uncapped for sampling each was allowed to equilibrate with atmospheric pressure. The wells were periodically measured until two successive measurements of the water elevation in each well agreed within 0.01 of a foot. Groundwater levels were measured with an electronic sounder. Details of groundwater measuring are in Attachment 3, Records of Water Sample Collection. By measuring the water levels in three groundwater monitoring wells, MW-2, MW-3, and MW-4, TMC calculated the down gradient direction and horizontal gradient. Table 3 summarizes groundwater level data collected over the thirteen sampling episodes.

TABLE 3 GROUNDWATER MEASUREMENTS FROM MONITORING WELLS

Date	Well Label	Water Level	Casing Elevation (msl)	Water Elevation (msl)
6-20-90	MW2	-7.16	16.73	9.57
6-20-90	MW3	-7.37	15.89	8.52
6-20-90	MW4	-7.60	16.39	8.79
9-13-90	MW2	-8.78	16.73	7.95
9-13-90	MW3	-8.70	15.89	7.19
9-13-90	MW4	-8,80	16.39	7.59
12-17-90	MW2	-8.78	16.73	7.95
12-17-90	MW3	-8.42	15.89	7.47
12-17-90	MW4	-8.61	16.39	7.78
12-4-91	MW2	-7.99	16.73	8.74
12-4-91	MW3	-8.18	15.89	7.71
12-4-91	MW4	-8,26	16.39	8.13
4-29-92	MW2	-6.05	16.73	10.68
4-29-92	MW3	-6.73	15.89	9.16

Date	Well Label	Water Level	Casing Elevation (msl)	Water Elevation (msl)
4-29-92	MW4	-6.81	16.39	9.58
8-29-92	MW1_	-7.92	16.39	8.47
8-29-92	MW2	-7.82	16.73	8.91
8-29-92	MW3	-8.21	15.89	7.68
8-29-92	MW4	-8.14	16.39	8.25
8-29-92	MW5	-7.57	15.13	7.56
8-29-92	MW6	-8.00	15.98	7.98
10-19-92	MW1	-8.44	16.39	7.95
10-19-92	MW2	-8.37	16.73	8.36
10-19-92	MW3	-8.58	15.89	7.31
10-19-92	MW4	-8.53	16.39	7.86
10-19-92	MW5	-7.96	15.13	7.17
10-19-92	MW6	-8.44	15.98	7.54
2-24-93	MW1	-5.36	16.39	11.03
2-24-93	MW2	-5.42	16.73	11.31
2-24-93	MW3	-6.11	15.89	9.78
2-24-93	MW4	-6.30	16.39	10.09
2-24-93	MW5	-5.32	15.13	9.81
2-24-93	MW6	-5.40	15.98	10.58
5-19-93	MW-1	-6.35	16.39	10.04
5-19-93	MW-2	-6.35	16.73	10.38
5-19-93	MW-3	-7.14	15.89	8.75
5-19-93	MW-4	-7.09	16.39	9.30
5-19-93	MW-5	-6.38	15.13	8.77
5-19-93	MW-6	-6.57	15.98	9.41
8-11-93	MW-1	-8.06	16.39	8.33
8-11-93	MW-2	-8.09	16.73	8.64

Job No: 101090 / Soil Boring, Monitoring Well Installation and Groundwater Report / November 18, 1994

Date	Well Label	Water Level	Casing Elevation (msl)	Water Elevation (msl)	
8-11-93	MW-3	-8.45	15.89	7.44	
8-11-93	MW-4	-8.31	16.39	8.08	
8-11-93	MW-5	-7.68	15.13	7.45	
8-11-93	MW-6	-8.16	15.98	7.82	
2-2-94	MW-1	-7.43	16.39	8.96	
2-2-94	MW-2	-7.48	16.73	9.25	
2-2-94	MW-3	-7.69	15.89	8.20	
2-2-94	MW-4	-7.83	16.39	8.56	
2-2-94	MW-5	-6.98	15.13	8.15	
2-2-94	MW-6	-7.40	15.98	8.58	
5-26-94	MW-1	-6.95	16.39	9.44	
5-2 6-94	MW-2	-6.97	16.73	9.76	
5-26-94	MW-3	-7.39	15.89	8.50	
5-26-94	MW-4	-7.44	16.39	8.95	
5-26-94	MW-5	-6.72	15.13	8.41	
5-26-94	MW-6	-7.01	15.98	8.97	
9-15-94	MW-1	-8.04	16.34	8.30	
9-15-94	MW-2	-7.95	16.72	8.77	
9-15-94	MW-3	-8.28	15.89	7.61	
9-15-94	MW-4	-8.15	16.35	8.20	
9-15-94	MW-5	-7.68	15.13	7.45	
9-15-94	MW-6	-8.10	15.98	7.88	
9-15-94	MW-7	-8.13	16.31	8.18	

Table 4 summarizes the estimated groundwater down flow direction and horizontal gradient. **TMC** used a three point solution to estimate the direction and gradient. Ground water level data from MW-2, MW-3 and MW-4 were used in the estimate.

TABLE 4 GROUNDWATER GRADIENT AND DIRECTION

Measurement	Down Gradient Direction	Horizontal	Average Water Level feet above msl
Date	Down Grantin Direction	Gradient	
6-20-90	North 26 degrees West	0.009 ft/ft	9.0
9-13-90	North 2 degrees East	0.005 ft/ft	7.9
12-17-90	North 19 degrees East	0.003 ft/ft	8.1
12-4-91	North 12 degrees West	0.008 ft/ft	8.5
4-29-92	North 20 degrees West	0.012 ft/ft	9.8
8-29-92	North 5 degrees West	0.009 ft/ft	8.1
10-19-92	North 2 degrees East	0.007 ft/ft	7.7
2-24-93	North 31 degrees West	0.014 ft/ft	10.4
5-19-93	North 7 degrees West	0.014 ft/ft	9.4
8-11-93	North 4 degrees West	0.008 ft/ft	7.96
2-24-94	North 12 degrees West	0.008 ft/ft	8.69
5-26-94	North 10 degrees West	0.01 ft/ft	8.91
9-15-94	North 1.5 degrees West	0.008 ft/ft	8.19

Review of previous groundwater measurements indicate the down gradient direction and the horizontal gradient vary between groundwater sampling measurement episodes. The variation is relatively low for measurements of this type. The changing groundwater gradient indicates the shallow water is sensitive to seasonal changes in rainfall.

The most recent data indicate a North 1.5 degrees West flow direction at an average horizontal gradient of 0.008 ft/ft. The horizontal gradient is similar to the topographic slope of the lot. An average of the13 groundwater measurement episodes indicate a range of flow direction from N31°W to N20°E, and a range of horizontal gradient from 0.005 to 0.014 ft/ft. Plate 3, Groundwater Gradient Map, illustrates the most recent (September, 1994) horizontal gradient calculated across the site.

5.0 SOIL AND WATER SAMPLE DATA QUALITY

The quality assurance and quality control (QA/AC) review of the new sample data for this report indicates that the data is acceptable for the purpose and objectives of this project. TMC did not review data summarized from previous reports. The U.S. Environmental Protection Agency (EPA) Test Methods for Evaluating Solid Waste (SW-846) and the California Department of Health Services (DOHS) Leaking Underground Fuel Tank (LUFT) Manual were used to evaluate the sampling data since the SW-846 and LUFT methodologies were primarily used to analyze the samples. The samples were analyzed by AMER of Sunnyvale, California. The certified laboratory reports and chain-of-custody forms are presented in the attachments.

5.1 QUALITY OF GROUNDWATER SAMPLES

During sampling, all monitoring wells were purged of at least 3 bore volumes of water, in accordance with EPA protocol. At the end of purging, the well water was clear in all wells. The deionized water equipment blank for the sampling reported no detectable compounds.

5.2 CHAIN OF CUSTODY DOCUMENTATION

Complete chain-of-custody forms were maintained for all samples from the time of their collection until their submission to the laboratory. No errors in chain-of-custody protocol were noted.

5.3 PURGEABLE HALOCARBONS

Based on the QC data reviewed, the results of analyses for halogenated volatile organic hydrocarbons by EPA SW-846 Method 8010 appear reasonably representative Groundwater samples were analyzed within the EPA-specified maximum holding time. Surrogate spike recoveries were judged acceptable based on professional judgement. Matrix spike/matrix spike duplicate percent recoveries and relative percent differences (RPD's) were either within EPA-specified limits or were within limits set by professional judgment where no EPA limits exist.

5.4 TOTAL VOLATILE HYDROCARBONS WITH BTEX

Based on the QC data reviewed, total volatile hydrocarbons (TVH) as gasoline analysis by LUFT methods and benzene, toluene, ethylbenzene, and total xylenes (BTEX) analyses by EPA SW-846 Methods modified 5030/8020 appear reasonably representative. Samples were analyzed within the Regional Water Quality Control Board specified 7-day maximum holding time for water samples. Matrix spike/matrix spike duplicate percent recoveries and relative percent differences

Job No: 101090 / Soil Boring, Monitoring Well Installation and Groundwater Report / November 18, 1994

(RPD's) were either within EPA-specified limits or were within limits set by professional judgment where no EPA limits exist.

5.5 EXTRACTABLE PETROLEUM HYDROCARBONS

Based on the QC data review, extractable petroleum hydrocarbons (TEH) analysis by LUFT methods appear reasonably representative. Samples were analyzed within the Regional Water Quality Control Board specified 14 day maximum holding time for water samples. Matrix spike/matrix spike duplicate percent recoveries and relative percent differences (RPD's) were either within EPA-specified limits or were within limits set by professional judgment where no EPA limits exist.

5.6 HYDROCARBON OIL & GREASE

Based on the QC data reviewed, the results of analyses for hydrocarbon oil & grease by EPA method 5520 F analysis appear reasonably representative Groundwater samples were analyzed within the EPA-specified maximum holding time. Surrogate spike recoveries were judged acceptable based on professional judgement. Matrix spike/matrix spike duplicate percent recoveries and relative percent differences (RPD's) were either within EPA-specified limits or were within limits set by professional judgment where no EPA limits exist. No hydrocarbon oil & grease was detected in the method blanks.

6.0 COMMENTS AND SCHEDULE OF ACTIVITIES

Results from the verifying soil bore samples and MW-7 indicate that the gasoline contaminated soils (surrounding the former gasoline tank and excavation) were removed by the soil vapor extraction system. Groundwater samples from monitoring well MW-1 (placed in the former tank pit), however, continue to show detectable levels of gasoline and BTEX's. Groundwater samples from MW-7 (placed approximately 10 feet down gradient from MW-1) show non-detectable gasoline BTEX levels. TMC, therefore, believes that a pocket of gasoline contamination remains in capillary fringe in the vicinity of MW-1, and is not subject to vapor or groundwater extraction remediation. TMC proposes to excavate the contaminated materials surrounding MW-1, estimated to be 10 cubic yards. The contaminated soils will be stockpiled on the existing soil pile and treated.

TMC will destroy MW-1 (prior to excavation) and the existing soil vapor recovery wells. This work will be performed by a state-licensed drilling contractor and under the supervision os a state registered geologist or civil engineer.

Review of groundwater sampling episodes reveal little or no change in the levels of target analytes or groundwater gradient. TMC, therefore, proposes to sample and gauge the monitory wells on a semi-annual basis, and submit the samples for the chemical analysis of the target analytes.

7.0 LIMITATIONS

The procedures and opinions in this report agree with professional practice as provided in the guidelines of the California Regional Water Quality Control Board for addressing fuel leaks from underground tanks. This report is only part of the ongoing work required by the lead implementing agency at this site. The lab test results rely on limited data collected at the sampling location only. Budget constraints restrict the amount of testing allowed. The lab test results do not apply to the general site as a whole. Therefore, TMC Environmental Inc. cannot have complete knowledge of the underlying conditions. We provide the information in the resulting report to our client so he may make a more informed decision about site conditions. The professional opinion and judgement in the reports is subject to revisions in light of new information. We do not state or imply any guarantees or warranties that the subject property is or is not free of environmental impairment. Monitoring wells and soil venting wells are temporary sampling and remediation wells that eventually must be permitted and destroyed by a licensed driller at the clients expense.

CHART 1
MW1 QUARTERLY SAMPLING RESULTS FOR GASOLINE

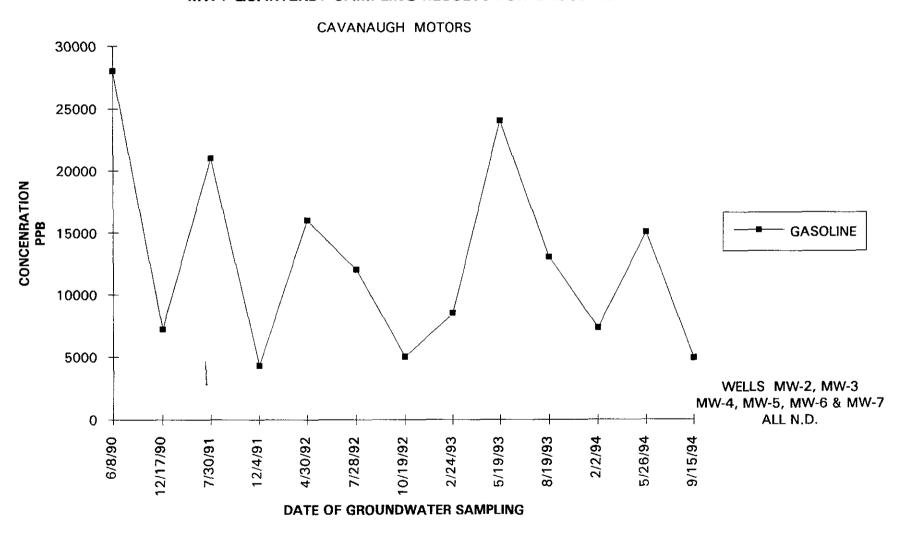


CHART 2 MW1 QUARTERLY SAMPLING RESULTS FOR BTEX

CAVANAUGH MOTORS

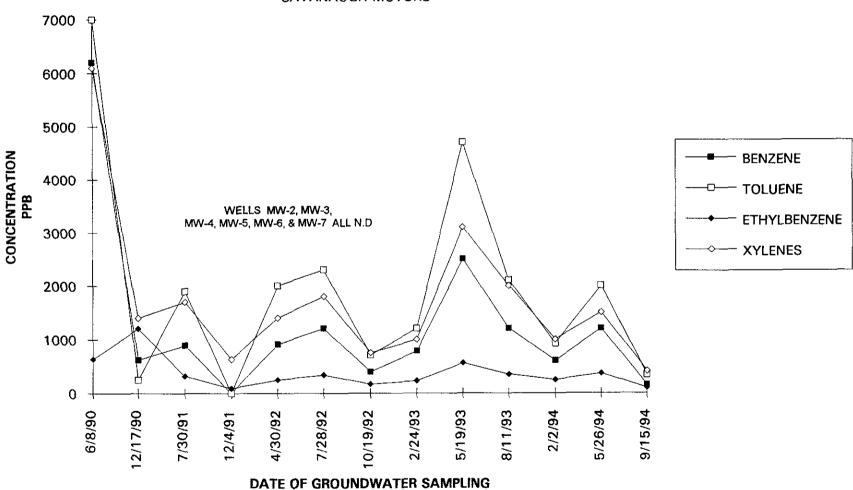


CHART 3
MW-6 QUARTERLY SAMPLING RESULTS FOR DIESEL

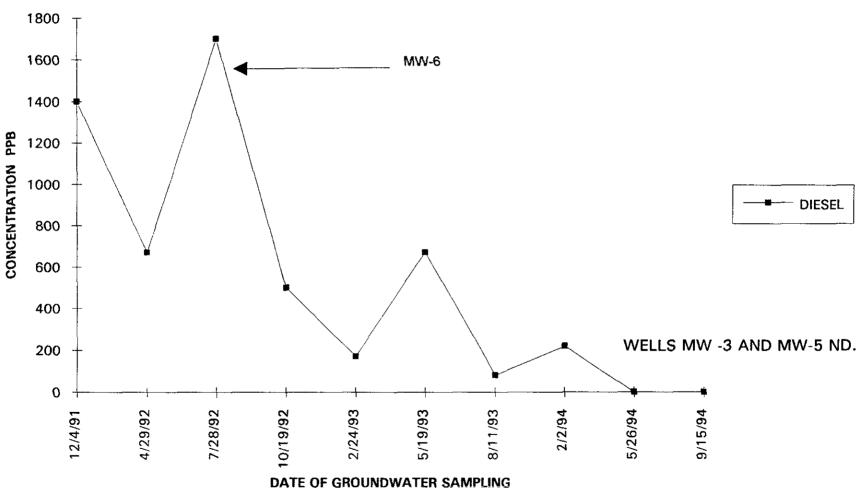
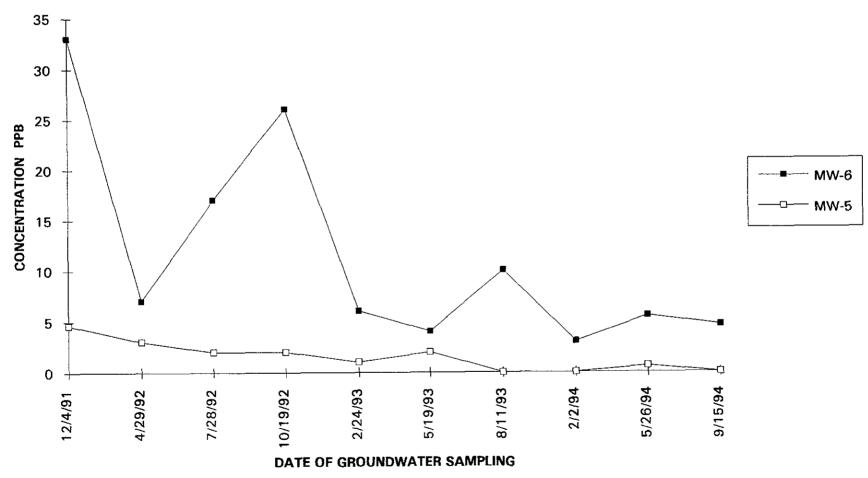
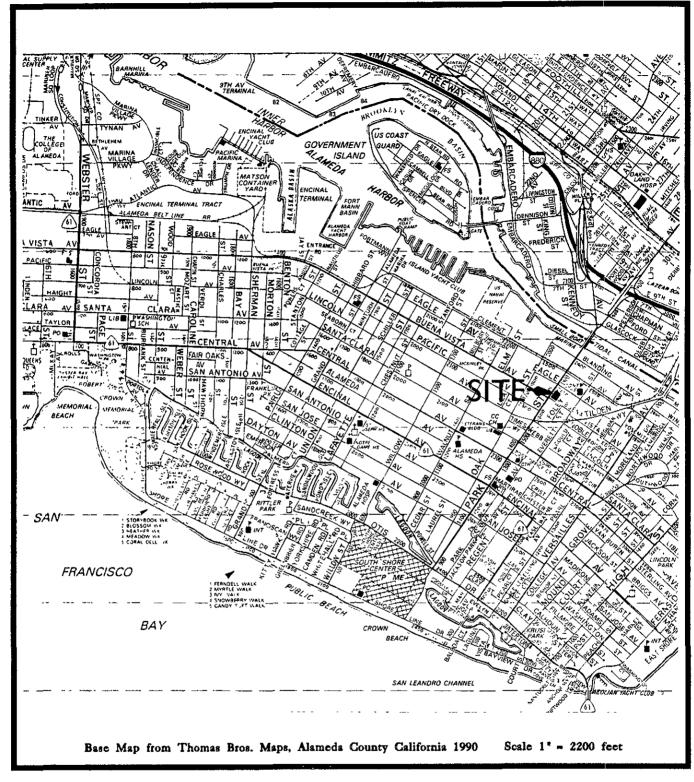
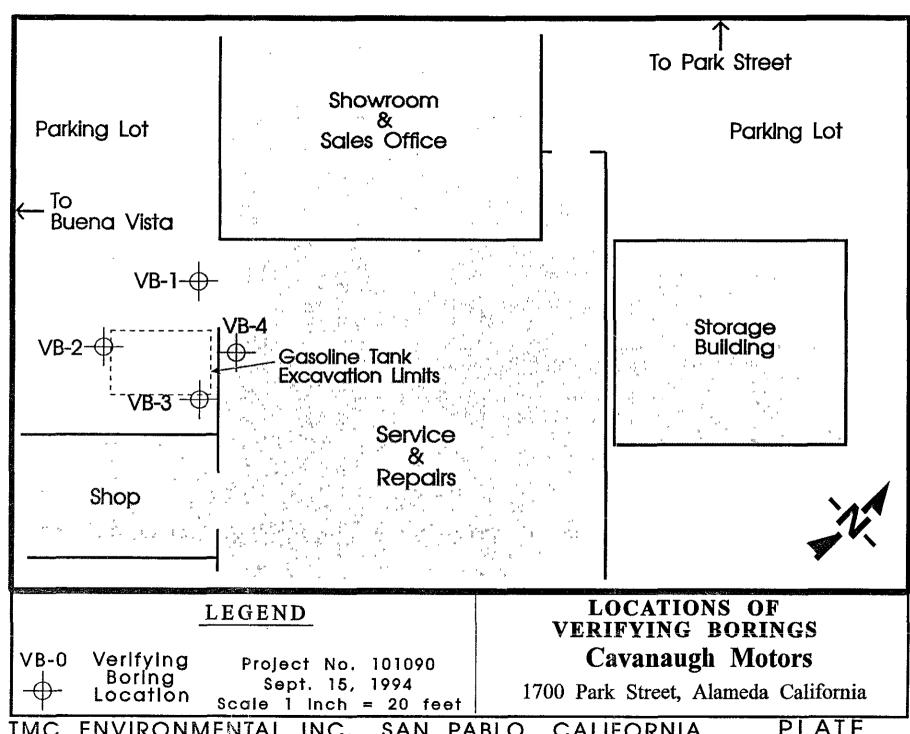




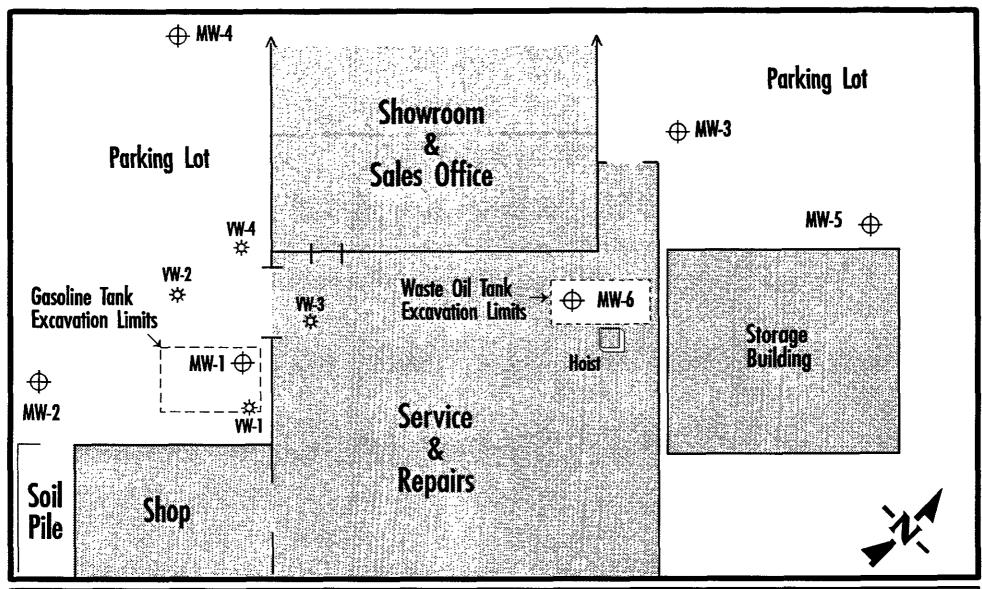
CHART 4
MW-5 AND MW-6 QUARTERLY SAMPLING
RESULTS FOR CHLOROBENZENE

CAVANAUGH MOTORS

SITE VICINITY MAP

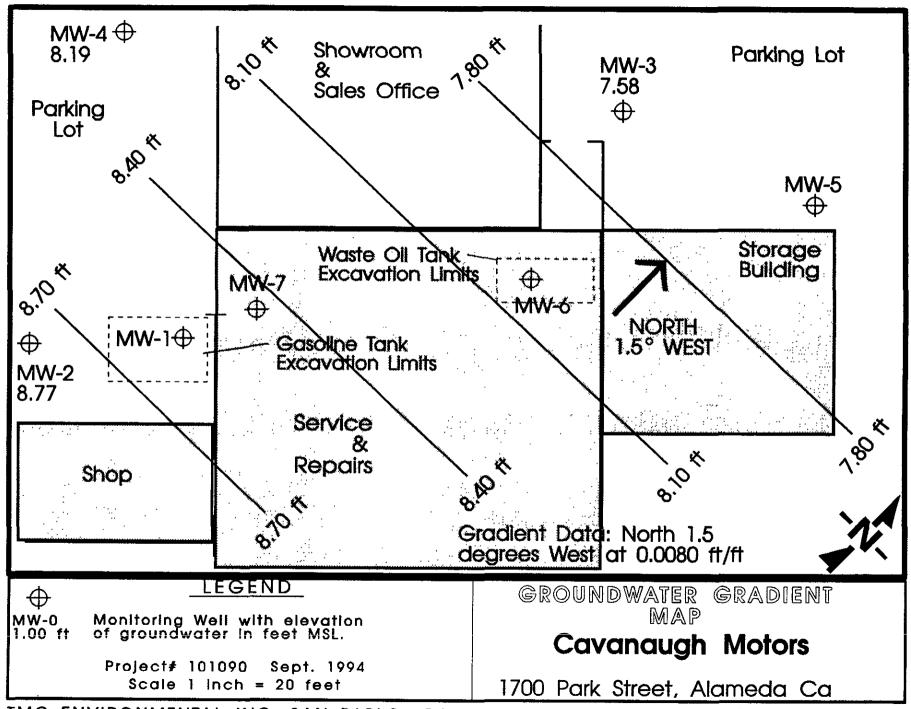

Cavanaugh Motors

1700 Park Street Alameda, California


May 1992

Project No. 109001

PLATE


INC. PABLO, CALIFORNIA SAN

Project No. 101090 July, 1994 Scale 1 inch = 20 feet SITE PLAN

Cavanaugh Motors
1700 Park Street, Alameda California

CAVANAUGH - 101090 SCALE 1" = 20" GROUNDWATER WORKSHEET 9/15/94 AVER TO THE PROPERT # 0.0080 115°W GRND 4:0:+7.61" MSL 7.744 msl 7.902 MSL ,8.060'MSL A:,005是 10- .0079 Ft | Ft + 8.214" MSL 8.376 MSL 8. 534 MSL CRUD 4:0: 45 \$7.06. 12.006 ty 8.612 msl. MN-2 6840 H, 0 548.7 BOMSL

> at. The second of the control of the

ATTACHMENT 1 LOGS OF BORINGS

4623914 P.02

ALAMEDA COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT

6997 PARKSIDE DRIVE | | PLEASANTON, GALIFORNIA 84566 | |

(415) 484-2600

121989

GROUNDWATER PROTECTION ORDINANCE PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
CATION OF PROJECT CAVANAUCH MOTERS	PERMIT NUMBER 94486
700 PARK STREET	LOCATION NUMBER
HAMERA CA 94501	
HENT WAR DAVE CRUANAVAL Idrass Kame Phone	PERMIT CONDITIONS
ZIP ZIP	Circled Permit Requirements Apply
PLICANT THE TYPE CAN SAN RODIN AUG STATE Idress Phone 510-232-8366 Ty SAN PAGE TO THE OF PROJECT III Construction Geotechnical Investigation Cathodia Protection Geomeral Water Supply Contamination Wonltoring Well Destruction IOPOSED WATER SUPPLY WELL USE MENTIC Industrial Other INILIANS METHODI INICIANS METHODI INICIANS METHODI INICIANS LICENSE NO. C-57 582696 THE PROJECTS Drill Hole Diemeters 11 In. Maximum Casing Diameter Tim. Depth 15 11. Surface Seal Depth II ft. Number I OTECHNICAL PROJECTS Number of Borings Hole Diameter In. Depth ft. TIMATED STARTING DATE TIMATED STARTING DATE TIMATED STARTING DATE TIMATED COMPLETION DATE TIMATED STARTING DATE TIMATED COMPLETION DATE	A. GENERAL 1. A permit application should be submitted so as arrive at the Zone 7 office five days prior proposed starting date.
hereby agree to comply with all requirements of this imit and Alameda County Ordinance No. 73-68. PLICANT'S Orn Wester Date 8-24-94	Approved Wyman Jong Date 24 Aug 9

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

REMOVED

SUBSURFACE LOG OF BORING NUMBER **VB**-1 PROJECT NAME: PROJECT #: 101090 SHEET **OF** Cavanaugh Motors DATE:08-25-1994 LOCATION: 1700 Park Street, Alameda, California DRILLER: Solls Exploration Services LICENSE #: C57582696 SAMPLE METHOD: Split spoon; 2" x 18"; 140# @ 30" DRILL METHOD: CME 55 8" Hollow Stem Auger AGENCY: Alameda County Zone 7 INSPECTOR: N/A BORING DIA: ~8" **AGENCY PERMIT NO.: 94486** TOTAL DEPTH: 7' LOGGER: Michael Princevalle

** NOTICE - CONDITIONS APPLY TO THIS LOG - SEE EXPLANATION OF LIMITATIOINS **

SAMPLE NUMBER	SAMPLE DEPTH	% REC	BLOWS /FT	VAPOR PPM	MODE	DEPTH FEET	USCS	DESCRIPTION	STAIN/ OTHER
								Surface: Concrete 0 - 3"	
									
						2.5			
VB1-1	5 - 5 1/2'	80	12	2.5		5		Sandy CLAY; Brown with red-orange mottles; Very firm; Moist.	No
		1							
VB1-2	6 1/2 - 7'	80	14	3		_{7.5} 		SAND; moderately graded, with fingers of clayey sand; Brown with red-orange and grey mottles; Firm; Very moist.	No
						<u> </u>			
						10			
						_			
						_			
					:				
						<u> </u>			
					· '	<u> </u>			
1									

THIS LOG OF SUBSUFACE CONDITIONS APPLIES TO THE SPECIFIC LOCATION AND DATE INDICATED. THIS LOG IS NOT WARRENTED TO REPRESENT CONDITIONS AT OTHER LOCATIONS OR OTHER DATES.

SUBSURFACE ENVIRONMENTAL LOG OF BORING NUMBER VB-2

PROJECT NAME: Cavanaugh Motors	PROJECT NUMBER:	101090 SHEET 1 OF 1
LOCATION: 1700 Park Street, Alamed	a, California DA	ATE: 8-25-94
DRILLER: Soils Exploration Svcs.	DRILL METHOD: CME 55 8" Holl	ow Stem Auger
LICENSE #: C57582696	SAMPLE METHOD: Split spoon,	2" x 18"; 140# @ 30"
AGENCY: Alameda County Zone 7	INSPECTOR: N/A	BORING DIA.: 8"
	ROVED: Michael Princevalle	TOTAL DEPTH: 7 1/2'

**	NOTICE ·	- CO	DITION	IS APP	LY TO	THIS LO)G - 8	EE EXPLANATION OF LIMITATIONS **	4:1CH.H.H	
SAMPLE LABEL	SAMPLE DEPTH	REC	BLOWS /FT	VAPOR PPM	MODE	DEPTH FEET	SOIL TYPE	DESCRIPTION	ST	AIN/ HER
	T		1			Γ°		Surface: Concrete 0 - 4"		
_										
-						2.5			_	
:										
-			!							
VB2-1	5-5½'		12	2		5		Sandy CLAY; Brown with red- orange mottles; Very firm; Mois	t.	No
_	Į					_			-=	
VB2-2	61/5-71		12	2	į	7 -		Medium-grain SAND, with some		No
- VB2-2	0.2-1		12	2		7.5		fines; Brown with red-orange	٦	NO
								mottles; Friable; Very Moist.		
			Ì							
_		1		ļ	1	10			+	
!		ŀ							٦	
L						_	ļ		4	
-						-			4	
			ı							
									1	
_									-	
-						-			\dashv	

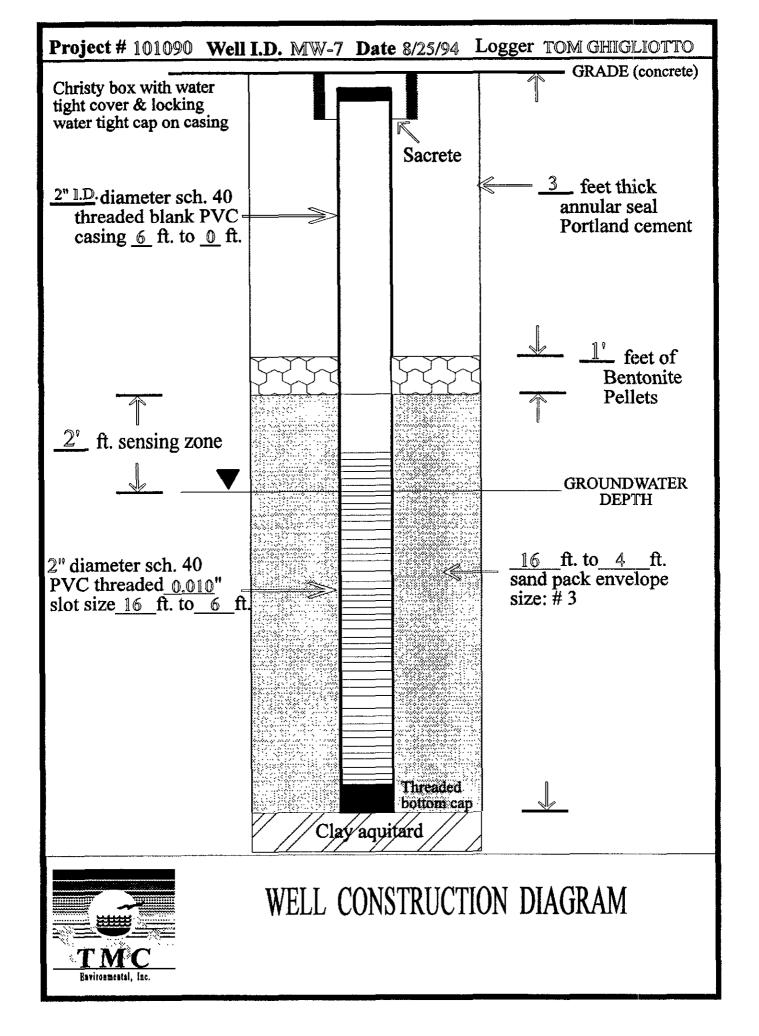
	OUDOUTH NOL 1			- 1 T	V/3-3		
PROJECT NAME: Cavanaugh Moto	rs		PROJECT	#: 101090	SHEET 1 OF 1		
LOCATION: 1700 Park Street, Alameda,	California		-	DATE	08-25-1994		
DRILLER: Soils Exploration Services		LICENSE #: C57582696					
DRILL METHOD: CME 55 8" Hollow St	tem Auger	SAMPLE METHO	DD: Split spo	on; 2" x 18";	140# @ 30"		
AGENCY: Alameda County Zone 7		INSPECTOR: N			BORING DIA: ~8"		
LOGGER: Michael Princevalle	ERMIT NO.: 9448	6	TOTAL	DEPTH: 7½'			

** NOTICE - CONDITIONS APPLY TO THIS LOG - SEE EXPLANATION OF LIMITATIOINS **

SAMPLE NUMBER	SAMPLE DEPTH	% REC	BLOWS /FT	VAPOR PPM	MODE	DEPTH FEET	USCS	DESCRIPTION	STAIN/ OTHER
WOUNDER						_		Surface: Concrete 0 - 3"	
						2.5			
VB3-1	5 - 5 1/2'	75	12	2		5		SAND, medium-grain, moderately graded; Brown with red-orange mottles; Moist; Loose.	No
						<u> </u>			
VB3-2	7 - 7 1/2'	80	12	2.5		7.5		Clayey, medium-grain SAND; Gray-brown; with few, faint red-orange mottles; Very moist; Firm.	No
						10			
						<u> </u>			
						<u> </u>			
						_			
				!	i i				
1			1			f	1		L

THIS LOG OF SUBSUFACE CONDITIONS APPLIES TO THE SPECIFIC LOCATION AND DATE INDICATED. THIS LOG IS NOT WARRENTED TO REPRESENT CONDITIONS AT OTHER LOCATIONS OR OTHER DATES.

SUBSURFACE ENVIRONMENTAL LOG OF BORING NUMBER VB-4


BOBBORROD BRITING	MIZENTINE BOO OF BOXES	
PROJECT NAME: Cavanaugh Motors	PROJECT NUMBER	*: 101090 SHEET 1 OF 1
LOCATION: 1700 Park Street, Alamed	a, California	DATE: 8-25-94
DRILLER: TMC Environmental, Inc.	DRILL METHOD: Hand Auger	
LICENSE #: C57582696	SAMPLE METHOD: Hand-driven	split spoon 2" x 6"
AGENCY: Alameda County Zone 7	INSPECTOR: N/A	BORING DIA.: 4"
LOGGER: Michael Princevalle APP	ROVED: Michael Princevalle	TOTAL DEPTH: 7½'

**			NDITIO		Y TO	THIS LO	x - s	EE EXPLANATION OF LIMITATIONS **		
SAMPLE LABEL	SAMPLE DEPTH	REC	BLOWS /FT	VAPOR PPM	MODE	DEPTH FEET	SOIL TYPE	DESCRIPTION	81 01	TAIN/ THER
				Ī		r °		Surface: Concrete 0 - 8"		
-									-	
	1					2.5		SAND; Brown; Moist; Loose.	\dashv	No
_									-	
VB4-	5 3/ 6'	'4- 1	00	3.5		5		SAND; Brown; Moist; Loose.		No
-							: :			
_ VB4-2	2 7-7	ś' 1	00	2		7.5		Clayey SAND: Brown, gray-brown; Very moist; Friable.		No
									_	
-				-		10			_	
- ,										
-										
									-	
-						_			-	
					} 				_	
]	_	<u></u>

SUBSURFACE ENVIRONMENTAL LOG OF BORING NUMBER MW-7

PROJECT NAME: Cavanaugh Motors	PROJECT NUMBER:	: 101090 SHEET 1 OF 1
LOCATION: 1700 Park Street, Alameda,	California	DATE: 8-25-94
	DRILL METHOD: CME 55; 8" Ho	ollow Stem Auger
LICENSE #: C57582696	SAMPLE METHOD: Split spoon	; 2" x 18'; 140# @ 30"
AGENCY: Alameda County Zone 7	INSPECTOR: N/A	BORING DIA.: 8"
LOGGER: Michael Princevalle APPR	OVED:Michael Princevalle	TOTAL DEPTH: 16'

* *	NOTICE .	- CONI	OITION	S APPI	Y TO	THIS LO	og – s	EE EXPLANATION OF LIMITATIONS **	. , .,
	SAMPLE DEPTH	REC I	BLOWS /FT	VAPOR PPM	MODE	DEPTH FEET	SOIL TYPE	DESCRIPTION	STAIN/ OTHER
	T		T^-			_ °		Surface: Contrete 0 - 5"	
<u> </u>						_		-	_
						2.5	,	_	
_								-	-
MW7-1	5-5½'	80	14	2		5		Clayey medium-grain SAND; Brown, with many red-orange mottles; firm	
-								•	
MW7-2	6½-7'	80		2		7.5		Same; Less % Clay; Very moist	No
_								-	
	- 10-11	≨ ' 80	32			10		SAND, well graded; Brown; Friable.	No
-						12.5			-
_	- 13½-15	80	30					SAND; moderately graded, finer the above; Brown, with red-orange striations; Friable; Wet.	an
-			:			15	1	Bottom of hole @ 16'.	
-									_
_						17.5		Well Construction: Sch. 40 PVC; 2" I.D. Slot: 6-16; 0.010" Slot Size, Blank; 0-6; 10	
		<u> </u>	<u> </u>	<u></u>	<u> </u>	<u></u>	<u></u>	Size, Blank; 0-6'. Sand: 2% sacks #3 Lonestar; 4-16' Bentonite: 3-4 Portland Cement Grout: 0-3'.	<u>. </u>

ATTACHMENT 2 LABORATORY REPORTS

ANALYSIS REPORT (ELAP Certificate No. 1909) **EPA METHOD 8020**

CLIENT:

TMC Environmental, Inc. 13908 San Pablo Ave., Suite #101

San Pablo, CA 94806

MATRIX: WATER

PROJECT MANAGER: Tom Ghigliotto

PROJECT: 1700 Park St., #101090

DATE SAMPLED: 09-15-94

DATE RECEIVED: 09-16-94 DATE REPORTED: 09-27-94

AMER ID: E513

Client I.D.	AMER I.D.	Benzene	Toluene	Ethyl Benzene	Total Xylene	DF
MW-2	E4091617	ND	ND	ND	ND	1
MW-4	·E4091618	ND	ND	ND	ND	1
MW-3	E4091619	ND	ND	ND	ND	1
MW-5	E4091620	ND	ND	ND	ND	1
MW-6	E4091621	ND	ND	ND	ND	1
MW-7	E4091622	ND	ND	ND	ND	1
MW-1	E4091623	150	340	100	410	1
Units		ug/l	ug/l	ug/l	ug/l	
Detection	Limits (DL)	0.5ug/l	0.5ug/l	0.5ug/l	0.5ug/l	+

ND Not Detected. All analytes recorded as ND were found to be under the limit of detection. Sample Detection Limit is equal to the Method Detection Limit X the Dilution Factor.

Reviewed By

ANALYSIS REPORT (ELAP Certificate No. 1909) **EPA METHOD 8015M**

CLIENT:

TMC Environmental, Inc.

13908 San Pablo Ave., Suite #101

San Pablo, CA 94806

MATRIX: WATER

PROJECT MANAGER: Tom Ghigliotto

PROJECT: 1700 Park St., #101090

DATE SAMPLED: 09-15-94 DATE RECEIVED: 09-16-94 DATE REPORTED: 09-27-94

AMER ID: E513

Client	AMER	8015M/	DF
I.D.	I.D.	TPH-GASOLINE	
	E4091617	ND	1
MW-4	E4091618	ND	1
MW-3	E4091619	ND	1
MW-5	E4091620	ND	1
MW-6	E4091621	ND	1
MW-7	E4091622	ND	1
MW-1	E4091623	4900	1
Units		ug/l	
Detection Li	mits (DL)	50ug/l	

ND Not Detected. All analytes recorded as ND were found to be under the limit of detection. Sample Detection Limit is equal to the Method Detection Limit X the Dilution Factor.

Reviewed By

Lei Chen, Laboratory Manager

ei ch

AMER

Advanced Materials Engineering Research, Inc.

ANALYSIS REPORT (ELAP Certificate No. 1909) **EPA METHOD 8015M**

CLIENT:

TMC Environmental, Inc. 13908 San Pablo Ave., Suite #101

San Pablo, CA 94806

MATRIX: WATER

PROJECT MANAGER: Tom Ghigliotto

PROJECT: 1700 Park St., #101090

DATE SAMPLED: 09-15-94 DATE RECEIVED: 09-16-94 DATE REPORTED: 09-27-94

AMER ID: E513

Client 1.D.	AMER I.D.	8015M/ TPH-DIESEL	DF	
MW-3	E4091619	ND	1	
MW-5 .	E4091620	ND	1	
MW-6	E4091621	ND	1	
Units		ug/l		
Detection Li	mits (DL)	50ug/l	,	

ND Not Detected. All analytes recorded as ND were found to be under the limit of detection.

Reviewed By

AMER

Advanced Materials Engineering Research, Inc.

ANALYSIS REPORT (ELAP Certificate No. 1909) EPA METHODS 5520F (TOG)

CLIENT:

TMC Environmental, Inc.

13908 San Pablo Ave., Suite #101

San Pablo, CA 94806

MATRIX: WATER

PROJECT MANAGER: Tom Ghigliotto

PROJECT: 1700 Park St., #101090

DATE SAMPLED: 09-15-94 DATE RECEIVED: 09-16-94 DATE REPORTED: 09-27-94

AMER ID: E513

Client	AMER	5520F	DF
I.D.	I.D.	TOG	
MW-3	E4091619	ND	1
MW-5	E4091620	ND	1
MW-6	E4091621	ND	1
Units	,	mg/l	
Detection Li	mits (DL)	5.0mg/l	

Reported by:

ANALYSIS REPORT (ELAP Certificate No. 1909) **EPA METHODS 601**

Client: TMC Environmental Date Sampled: 09-15-94 Proj. Manager: Tom Ghigliotto Date Received: 09-16-94 Date Reported: 09-27-94 Matrix: WATER **Sample Name: MW-3, E4091619** Lab. Report #: E513

PROJECT: 1700 Park Street, #101090

1666, #101020				
RESULTS	MDL	ANALYTES	RESULTS	MDL
ug/l	ug/l		ug/l	ug/l
ND	0.8	trans-1,2-Dichloroethene	ND	0.4
ND	0.8	1,2-Dichloropropane	ND	0.4
ND	1.2	cis-1,3-Dichloropropene	ND	0.8
ND	0.4	trans-1,3-Dichloropropene	ND	0.8
ND	0.4	Methylene Chloride	ND	2.0
ND	0.5	1,1,2,2-Tetrachloroethane	ND	0.4
ND	0.4	tetrachloroethene	ND	0.4
ND	0.4	1,1,1-Trichloroethane	ND	0.4
ND	1.2	1,1,2-Trichloroethane	ND	0.5
ND	0.8	Trichloroethene	ND	0.4
ND	0.8	Trichlorofluoromethane	ND	0.8
ND	0.4	Vinyl Chloride	ND	0.5
ND	0.4			
ND	1.2	Benzene	NR	0.5
ND	0.4	Toluene	NR	0.5
ND	0.8	Ethyl benzene	NR	0.5
ND	0.4	Total Xylene	NRNR	0.5
	RESULTS ug/l ND ND ND ND ND ND ND ND ND N	RESULTS MDL ug/l ug/l ND 0.8 ND 0.8 ND 1.2 ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.4 ND 0.8 ND 0.8 ND 0.4 ND 0.8	RESULTS ug/l ug/l ND 0.8 trans-1,2-Dichloroethene ND 0.8 1,2-Dichloropropane ND 1.2 cis-1,3-Dichloropropene ND 0.4 trans-1,3-Dichloropropene ND 0.4 Methylene Chloride ND 0.5 1,1,2,2-Tetrachloroethane ND 0.4 tetrachloroethene ND 0.4 1,1,1-Trichloroethane ND 1,2 1,1,2-Trichloroethane ND 0.8 Trichloroethene ND 0.8 Trichlorofluoromethane ND 0.4 Vinyl Chloride ND 0.4 ND 0.4 Toluene ND 0.8 Ethyl benzene	RESULTS MDL ug/l ANALYTES RESULTS ug/l ND 0.8 trans-1,2-Dichloroethene ND ND 0.8 1,2-Dichloropropane ND ND 1.2 cis-1,3-Dichloropropene ND ND 0.4 trans-1,3-Dichloropropene ND ND 0.4 Methylene Chloride ND ND 0.5 1,1,2,2-Tetrachloroethane ND ND 0.4 tetrachloroethene ND ND 0.4 tetrachloroethane ND ND 0.4 1,1,1-Trichloroethane ND ND 0.8 Trichloroethene ND ND 0.8 Trichloroethene ND ND 0.4 Vinyl Chloride ND ND 0.4 Vinyl Chloride ND ND 0.4 Toluene NR ND 0.4 Toluene NR ND 0.8 Ethyl benzene NR

NOTES

Reported by: ei el

Indicates extra compound requested by the client

NR-Analysis not requested COC-Chain of Custody

ND- Analytes not detected at, or above the stated detection limit

ppb- ug/l for waters, ug/kg for soils DL- Detection Limit Factor

SDL. Sample Detection Limit - Multiply DL by the DL Factor to obtain the detection limit for a specific analyte

Sample Detection Limit is equal to the Method Detection Limit X the Dilution Factor

PROCEDURES:

This analysis was performed in using EPA Method 8010, EPA Method 8020, and EPA Method 5030

California Department of Health Services ELAP Certificate #1909

ANALYSIS REPORT (ELAP Certificate No. 1909) **EPA METHODS 601**

Client: TMC Environmental Date Sampled: 09-15-94 Date Received: 09-16-94 Proj. Manager: Tom Ghigliotto Matrix: WATER Date Reported: 09-27-94 Sample Name: MW-5, E4091620 Lab. Report #: E513

PROJECT: 1700 Park Street, #101090

ANALYTES	RESULTS	MDL	ANALYTES	RESULTS	MDL
	ug/l	ug/l		ug/l	ug/l
Bromodichloromethane	ND	0.8	trans-1,2-Dichloroethene	ND	0.4
Bromoform	ND	0.8_	1,2-Dichloropropane	ND	0.4
Bromomethane	ND	1.2	cis-1,3-Dichloropropene	ND	0.8
Carbon tetrachloride	ND	0.4	trans-1,3-Dichloropropene	ND	0.8
Chlorobenzene	ND	0.4	Methylene Chloride	ND	2.0
Chloroethane	ND	0.5	1,1,2,2-Tetrachloroethane	ND	0.4
2-Chloroethylvinyl ether	ND	0.4	tetrachloroethene	ND	0.4
Chloroform	ND	0.4	1,1,1-Trichloroethane	ND	0.4
Chloromethane	ND	1.2_	1,1,2-Trichloroethane	ND	0,5
Dibromochloromethane	ND	0.8	Trichloroethene	ND	0.4
1,2-Dichlorobenzene	ND	0.8_	Trichlorofluoromethane	ND	0.8
1,3-Dichlorobenzene	ND	0.4	Vinyl Chloride	ND	0.5
1,4-Dichlorobenzene	ND	0.4_			
Dichlorobenzene	ND	1.2	Benzene	NR	0,5
1,1-Dichloroethane	ND	0.4	Toluene	NR	0.5
1,2-Dichloroethane	ND	0.8	Ethyl benzene	NR	0.5
1,1-Dichloroethene	ND	0.4	Total Xylene	NR	0.5

Reported by: ei ce-

[•] Indicates extra compound requested by the client

NR-Analysis not requested

COC-Chain of Custody

ND- Analytes not detected at, or above the stated detection limit

ppb- ug/l for waters, ug/kg for soils DL- Detection Limit Factor

SDL. Sample Detection Limit - Multiply DL by the DL Factor to obtain the detection limit for a specific analyte

MDL- Method Detection Limit

Sample Detection Limit is equal to the Method Detection Limit X the Dilution Factor PROCEDURES:

This analysis was performed in using EPA Method 8010, EPA Method 8020, and EPA Method 5030

CERTIFICATION:

California Department of Health Services ELAP Certificate #1909

ANALYSIS REPORT (ELAP Certificate No. 1909) **EPA METHODS 601**

Client: TMC Environmental Date Sampled: 09-15-94 Proj. Manager: Tom Ghigliotto Date Received: 09-16-94 Matrix: WATER Date Reported: 09-27-94 Sample Name: MW-6, E4091621 Lab. Report #: E513

PROJECT: 1700 Park Street, #101090

ANALYTES	RESULTS	MDL	ANALYTES	RESULTS	MDL
	ug/l	ug/l		ug/l	ug/l
Bromodichloromethane	ND	0.8	trans-1,2-Dichloroethene	ND	0.4
Bromoform	ND	0.8	1,2-Dichloropropane	ND	0.4
Bromomethane	ND	1.2	cis-1,3-Dichloropropene	ND	0.8
Carbon tetrachloride	ND	0.4	trans-1,3-Dichloropropene	ND	0.8
Chlorobenzene	4.6	0.4	Methylene Chloride	ND	2.0
Chloroethane	ND	0.5	1,1,2,2-Tetrachloroethane	ND	0.4
2-Chloroethylvinyl ether	ND	0.4	tetrachloroethene	ND	0.4
Chloroform	ND	0.4	1,1,1-Trichloroethane	ND	0.4
Chloromethane	ND	1.2	1,1,2-Trichloroethane	ND	0.5
Dibromochloromethane	ND	0.8	Trichloroethene	ND	0.4
1,2-Dichlorobenzene	ND	0.8	Trichlorofluoromethane	<u>ND</u>	0.8
1,3-Dichlorobenzene	ND	0.4	Vinyl Chloride	ND	0.5
1,4-Dichlorobenzene	ND	0.4			
Dichlorobenzene	ND	1.2	Benzene	NR NR	0.5
1,1-Dichloroethane	ND	0.4	Toluene	NR	0.5
1.2-Dichloroethane	ND	0.8	Ethyl benzene	NR	0.5
1.1-Dichloroethene	ND	0.4	Total Xylene	NR	0.5

NOTES

SDL- Sample Detection Limit - Multiply DL by the DL Factor to obtain the detection limit for a specific analyte

Reported by:

^{*} Indicates extra compound requested by the client

NR-Analysis not requested

COC-Chain of Custody

ND- Analytes not detected at, or above the stated detection limit

ppb- ug/l for waters, ug/kg for soils DL- Detection Limit Factor

MDL- Method Detection Limit

Sample Detection Limit is equal to the Method Detection Limit X the Dilution Factor

This analysis was performed in using EPA Method 8010, EPA Method 8020, and EPA Method 5030 CERTIFICATION: California Department of Health Services ELAP Certificate #1909

EPA M. 8015/8020 TEST QA/QC TABLE

AMER WORKORDER: E513

AMER I.D. Number: E4091609-SP & E4091619-MSP

TEM, Project: #101090

Ext/Prep. Method:

EPA 5030, EPA 3510, DHS TPH

Date:

09-20-94

Analyst:

RL

Analytical Method:

EPA M. 8015/8020

Analysis date:

09-20-94

Analyst: Matrix: RL Water

Unit:

ug/l

Analyte	Sample Result	Spike Level	Matrix Spike Result	Ms Recovery %	Matrix Spike Dul. Result	MSD Recovery %	Average Recovery %R	LCL %R	UCL %R	RPD %	UCL %RPD
Benzene	0.00	20.00	16.89	84	15.21	76	80	76	127	10	11
Toluene	0.00	20.00	17.23	86	16.33	82	84	76	125	5	13
Chlorobenzene	.0.00	20.00	16.72	84	15.71	79	81	75	130	6	13
TPH-Gasoline	0.00	500.00	408.60	82	416.90	83	83	70	130	2	30
TPH - Diesel	0.00	1000.00	951.00	77	967.00	64	71	70	125	18	30

Notes:

Spike Level-Level of Concentration Added to the Sample

MS Result- Matrix Spike Result

MS %R- Matrix Spike Percent Recovery

MSD Result- Matrix Spike Duplicate Result

MSD %R- Matrix Spike Dublicate Percent Recovery

LCL- Lower Criteria Level

UCL- Upper Criteria Level

RPD- Relative Percent Difference

TMC Environmental, Inc.
13908 San Pablo Ave.
Sulte 101
San Pablo, California
(510) 232-8366

CHAIN OF CUSTODY RECORD ANALYSIS REQUEST FORM FOR ENVIRONMENTAL SAMPLING

JOB #	JOB ADDRESS:	SAMPLER: DOW CHUNG
101090	1700 Park Street Alameda, CA	Tom Ghigliotto - JEFF GERLEN
LABORATORY NAME	• •	

LAB ID NO.	SAMPLE LABEL	SOIL	WATER	DATE	TIME	TVH-GAS	TEH-DIESEL	BTEX-8020	FULL SCAN	EPA 8010	EPA 8240	EPA 8270	OIL & GREASE	
G	EQB-2		X	9/15/14	1142			НОІ	LD				į	600
	MW-2		X	9/15/94	1158	X		Х						3 14
	MW-4		X	1/15/94	1230	x		X		١				3 00
	MW-3		X	9/15/94	1323	X	X	X		X			Х	180 UM 2 Cit
	MW-5		X	9/15/14	1400	х	X	X		X			X	2 45
	MW-6		X	1/15/94	1548	х	X	X		X			X	6000 2000
	MW-7		X	9/15/94	1630	Х		Х		!				3 2004
	MW-1		X	9/15/94	1245	Х		X						3.00A

Special Instructions:

Helinquisned by:		Recieved By:
(Print Name) DONALD CHUNG	Date: 9//6/	(Print Name) Jennifer Awarez
(Signature) Auch Chry	Time: 8: 554	(Signature) January Olvary
(Print Name) Jennifer Alvery	Date: 9/14/91	(Print Name) States Lopez
(Signature) Jennific alvares		m (Signature)
(Print Name)	Date: 9/16/9	4 (Print Name) Lei Cheu
(Signature)	Time: /2 /50	(Signature)
(Print Name)	Date:	(Print Name)
(Signature)	Time:	(Signature)

LABORATORY NOTES: ____ DAYS TURNAROUND TIME FOR ANALYSIS RESULTS
PLEASE INCLUDE SAMPLE CONDITION REPORT WITH RESULTS

PLEASE FAX A COPY OF THE ANALYTICAL RESULTS TO THE FOLLOWING:
TMC ENVIRONMENTAL, INC. AT (510) 232-5133

ANALYSIS REPORT (ELAP Certificate No. 1909) EPA METHOD 8020

CLIENT:

TMC Environmental, Inc. 13908 San Pablo Avenue, Suite 101

San Pablo, CA 94806

MATRIX: SOIL

PROJECT MANAGER: Tom Ghigliotto

PROJECT: Cavanaugh, #101090

DATE SAMPLED: 08-25-94

DATE RECEIVED: 08-26-94 DATE REPORTED: 09-06-94

AMER ID: E413

Client I.D.	AMER I.D.	Benzene	Toluene	Ethyl Benzene	Total Xylene	DF
MW7-1	E4082621	ND	ND	ND	ND	1
MW7-2	E4082622	ND	ND	ND	ND	1
VB1-1	E4082623	ND	ND	ND	ND	1
VB1-2	E4082624	ND	ND	ND	ND	1
VB2-1	E4082625	ND	ND	ND	ND	1
VB2-2	E4082626	ND	ND	ND	ND	1
VB3-1	E4082627	ND	ND	ND	ND	1
VB3-2	E4082628	ND	ND	12	ND	1
VB4-1	E4082629	ND	ND	ND	ND	1
VB4-2	E4082630	ND	ND	ND	ND	1
Units		ug/kg	ug/kg	ug/kg	ug/kg	
Detection	Limits (DL)	5.0ug/kg	5.0ug/kg	5.0ug/kg	5.0ug/kg	

ND Not Detected. All analytes recorded as ND were found to be under the limit of detection. Sample Detection Limit is equal to the Method Detection Limit X the Dilution Factor.

Reviewed By

Kayvan Kimyai, Senior Chemist

ANALYSIS REPORT (ELAP Certificate No. 1909) EPA METHOD 8015M

CLIENT:

TMC Environmental, Inc.

13908 San Pablo Avenue, Suite 101 San Pablo, CA 94806

MATRIX: SOIL

PROJECT MANAGER: Tom Ghigliotto

PROJECT: Cavanaugh, #101090

DATE SAMPLED: 08-25-94

DATE RECEIVED: 08-26-94 DATE REPORTED: 09-06-94

AMER ID:E413

Client	AMER	8015M/	DF
I.D.	I.D.	TPH-GASOLINE	
MW7-1	E4082621	ND	1
MW7-2	E4082622	ND	1
VB1-1	E4082623	ND	1
VB1-2	E4082624	ND	1
VB2-1	E4082625	ND	1
VB2-2	E4082626	ND	1
VB3-1	E4082627	ND	1
VB3-2	E4082628	ND	1
VB4-1	E4082629	ND	1
VB4-2	E4082630	ND	1

Detection Limits (DL)

1.0 mg/kg

ND Not Detected. All analytes recorded as ND were found to be under the limit of detection.

Reviewed By

Kayvan Kimyai, Senior Chemist

EPA M. 8015/8020 TEST QA/QC TABLE

AMER WORKORDER: E413

AMER I.D. Number: E4082501-MSP TMC Environmental, Project: #101-14.1

Ext/Prep. Method:

EPA 5030, DHS TPH

Date:

08-31-94

Analyst:

RL

Analytical Method:

EPA M. 8015/8020

Analysis date:

08-31-94

Analyst:

RL

Matrix:

Soil

Unit:

mg/kg

Analyte	Sample Result	Spike Level	Matrix Spike Result	Ms Recovery %	Matrix Spike Dul. Result	MSD Recovery %	Average Recovery %R	LCL %R	UCL %R	RPD %	UCL %RPD
Benzene	0.00	0.050	0.045	90	0.046	92	91	66	142	2	21
	0.00	0.050	0.045	92	0.046	90	91	59	139	2	21
Toluene										2	
Chlorobenzene	0.00	0.050	0.045	90	0.046	92	91	60	133	2	21
TPH -g	0.00	1.250	0.887	71	0.763	61	66	60	130	15	30

Notes:

Spike Level- Level of Concentration Added to the Sample

MS Result- Matrix Spike Result

MS %R- Matrix Spike Percent Recovery

MSD Result- Matrix Spike Duplicate Result

MSD %R- Matrix Spike Dublicate Percent Recovery

LCL- Lower Criteria Level

UCL- Upper Criteria Level

RPD- Relative Percent Difference

TMC ENVIRONMENTAL, INC.

(415) 232-8366 / FAX 232-5133

CHIANN OF CUSTODY RECORD MERCHANI SYCUICE IRREMINITESCHE PROVENI

		202 0000	,				213832	111111111111111111111111111111111111111	ט פאועב	THE COLOR	CODII I	I METALO			
TMC	Project	No. 1010	90 1	Project	Name: CAUANAUgh PI	oject C	ontact:	Tom	6h	Sliot	<u>ro</u>	Samp	ler: Tom Ghigliotto	Page	/d/
Bavicoamental, Inc.	Project	Address: 7	00	PAR	zk Street, A	(AW	red	a	CA	1			Turnaround Time	<u> </u>	
LAB ID NO.	DATE	TIME	SOIL	WATER	SAMPLE LABEL	TVH-GAS BTEX	TEH-DIESEL	втех	ORGANIC LEAD		000000000000000000000000000000000000000	***************************************		EMARKS NAL ANA	
	8/25/94	9:50A	X		MW7-1.	X									
	8/27/94	10:05	X		mw7-2	X									
	8/25/94	1250	X	<u></u>	VB1-1.	X									
	8/25/91	1255	X	_	VB1-2	X				j Jak					
	3/25/99	1:38	X		VB2-1	X									
	8/25/94	1:45	X		NB2-5	X							,		
	8/25/94	2:42	X		VB3-1	X					,				,
	8/25/94	2:10	Χ		VB3-2	×		:							-
	425/94	3:10	X	:	VB4-1	×								$\overline{}$	
	8/25/94	pagaooneraseeras	X	*************	VB4-Z	X							***************************************		·
Relinquished by Signature:		V/A . e //	-		Time: Y 🕬	Signati	\	Nid	CHA LA	M. Pr. umcial	oL			Date: 8	1:00
Relinquished by Signature;	Print name	Michael Rain	ewalle	·	Time: 12: 35	Signati	110.	\leq	nemie:	5.A-4	V705	C-0 f		Date: 3/, Time:/2	-35
1						Signati		<u>< 1</u>	イラ	<i>y</i>			8/24/14 Time:	2 00	P-
By signature the Received by La					ples in good condition with	approp	riate	contai	ners, i				ct custody seals. tion Number:	•	
Received by La	boratory per	sonnel, Print	Name	: Kn	yvan Kimers		_	s	ignatu	re: 7	-74	Date: 2	7/26/97 / Time:	2:00	p~

ATTACHMENT 3 RECORD OF WATER SAMPLE COLLECTION

KL			/I						/II/OI1
WELL LABE	L: MV	/1	DATE CO	LLECTED:	9/15/94	JOB N	UMBER:	101090	
JOB NAMI	: CA	VANAUG	н мото	RS	SAMPLER	RS NAME: 1	OM GH	IIGLIOTTO,	
LOCATION	l: 1700	PARK ST	REET ALA	MEDA, CA	\				
WELL HEAD	CONE		PED X LO		DRY WATER	DEBRIS	REPLACE	CAP REP	LACE LOCK
TIME MEAS	SURED	1030	- Cassings	1101]	·		
DEPTH IN F		8.04′		8.04′					
			WE	LL PU	RGING	METH	HOD		
TOTAL DEF	TH OF V	VELL: 14.:	27'	DEPTH TO	WATER: 8.0	4'	DIAME	TER OF WE	Ц: 4'
					IX VOLUME I FOR 4" CASII			. –	GALLONS
PURGE ME	THOD:	SUBMER	SABLE PL	JMP	0	VA-FID VAI	POR REA	ADING, ppr	n: 0
			WELL	PURG	SING PA	4RAM	ETER	2S	
GALLONS	TIME		APERATUI		NDUCTIVITY X 1000	рН			SUAL. BIDITY
0	1205		75.0		0.97	7.0	ю	BLA	CK
. 4	1209		75.1		0.96	6.9	2	BLA	CK
* 8	1213		74.3		1.01	6.9	ю		AR W/ CK SPECKS
* 12	1217		74.1		0.96	6.9	יו	CLE/ BLA(AR W/ CK SPECKS
* 16	1227		74.3		0.97	6.9	4	CLE	AR
* ¹⁸ 20	1231		73.9		0.97	6.9	2	CLE	AR
SAMPLING NEW DISPO				E TURBIDIT		TIME C	OLLECT	ED: 124	5
PURGE WA	TER DES	CIPTION	X SHEEN	X ODOR		EAR IER (describe)		- WELL DEW 5 MINUTE R	

OTHER (describe)

WELL LABE	L: MV	/2	DATE COLLECTED: 9/1				15/94 JOB N			IUMBER: 101090							
JOB NAME	: CA	VANAU	SH MO	TORS		S	AMPL	ERS I	NAME:	DON	ALD C	HUNG	& JEI	F GERKIN			
LOCATION	1700	PARK S	TREET A	LAME	DA, CA	4											
WELL HEAD	COND		PPED X	_	CED X C	DRY	WATER	· 📄	DEBRIS [REP	LACE CA	P RE	PLACE	LOCK			
TIME MEASURED 1030				11	10												
DEPTH IN F		7,95		7.	7.95												
WELL PURGING METHOD TOTAL DEPTH OF WELL: 14.55' DEPTH TO WATER: 7,95' DIAMETER OF WELL: 4'																	
TOTAL DEP	TH OF V	VELL: 14	1.55′	D	EPTH TO	O WA	JER: 7	.95′		DIA	METER	OF WE	ELL: •	4'			
PURGE VOLUME= TOTAL DEPTH- WATER DEPTH X VOLUME FACTOR X 3 VOLUMES = 12.87 GALLONS VOLUME FACTOR = 0.17 FOR 2" CASING; 0.65 FOR 4" CASING; 1.47 FOR 6" CASING																	
PURGE ME	THOD:	HOND	A PUMI	>				OVA	-FID VA	POR	POR READING, ppm: 0						
			WEI	L F	PURG	SIN	IG F	PAI	RAN	1ET	ERS						
GALLONS	ONS TIME TEMPERATUR degrees F					CTIVITY 00	, 	рН		VISUAL TURBIDITY							
0	1120		78.	4			.43		6.60	·		C	CLEAR				
4	1128		75.	<u></u>			.39		7.03				CLEAR				
8	1129		75.	2		0	.42		6.96				CLEAR				
12	1132		75.	1		0	.35		6.97			C	LEAF	{			
13	1133		74.	5		0	.35		7.02				CLEAR				
	_																
SAMPLING				1PLE T	URBIDIT	Y (NI	ΓU):		J		ECTED	;					
NEW DISPO	,		v: SH	EEN	03.2 ODOR [SIL		CLEAR	115 01		escribe)						
			XN	SHEEN	NO X	ODOR		····-					. ,				

WELL LABE	L: MW	' 3	DATE	COLL	ECTED:	9/15/94		JOB NUMBER: 101090							
JOB NAME	: CA	ANAU	SH MO	TORS)	SAME	PLERS	NAME	: DON	IALD C	HUNG (& JEFF (SERKIN		
LOCATION	1700	PARK S	TREET A	LAM	EDA, CA	· · · · · · · · · · · · · · · · · · ·									
WELL HEAD	COND		PPED X		KED X D	RY WA	TER _	DEBRIS	XRE	PLACE CA	P REI	PLACE LO	CK		
TIME MEAS	SURED [104	3		·										
DEPTH IN F		8.28							· · · · · · · · · · · · · · · · · · ·						
	WELL PURGING METHOD TOTAL DEPTH OF WELL: 14.52' DEPTH TO WATER: 8,28' DIAMETER OF WELL: 4'														
TOTAL DEP	TH OF W	ÆLL: 14	1.52′		DEPTH TO	WATER:	8.28	•	DI	AMETER	OF WE	Ш: 4"			
PURGE VO VOLUME F												2.17 G	ALLONS		
PURGE METHOD: HONDA PUMP OVA-FID VAPOR READING, ppm: 0															
WELL PURGING PARAMETERS															
GALLONS	GALLONS TIME TEMPERATURE CON degrees F							þł	-			ISUAL RBIDITY			
0	1304		79.	0		0.47		6.65			CLEAR				
4	1305		75.	1			6.0	51		CLEAR					
8	1307		73.	0		0.42		6.62			CLEAR				
12	1318		7 Ω.	0		0.41		6.8	84		SL. C BRC	OMN CLOUD	<i>(</i> ,		
13	1319		72.	.3		0.42		6.	71		SL. CLOUDY, BROWN				
			·			·									
			· · · · ·												
SAMPLING NEW DISPO				VPLE	TURBIDIT 12.6	Y (NTU):		3	E COL 323	ECTED	•				
PURGE WA	· · · · · · · · · · · · · · · · · · ·		N: S	IEEN [ODOR	SILTY	CLE			lescribe)					

NAME OF A DE			DATE		ECTED.	0/15/04	7 I V I	I IOD NI	II ADI		101000				
WELL LABE		V4	DAIE	COLL	.EC1ED;	9/15/94	·	JOB N			101090				
JOB NAME	CA	VANAU	SH MC	TORS	3	SAMI	PLERS	NAME: [DON.	ALD C	HUNG	& JEFF	GERKIN		
LOCATION	: 1700	PARK S	TREET A	\LAM	EDA, CA	\									
WELL HEAD	CONE		PPED \(\) HER (cless	_	KED D	ORY X WA	TER	DEBRIS	REPL	ACE CA	IP RE	PLACE L	OCK		
TIME MEAS	URED	1039													
DEPTH IN F		8.15													
			٧	VEL	L PU	RGIN	IG	METH	10	D					
TOTAL DEP	TH OF V	VELL: 14	1.55′	נ	DEPTH TO	WATER:	8.15	•	DIA	METER	OF WE	ELL: 4	L: 4'		
PURGE VO												2.48	GALLONS		
PURGE ME	THOD:	HOND	A PUM	Р			OV	A-FID VAF	POR	READI	NG, pp	m: C)		
<u> </u>			WE	LL F	PURG	SING	PA	RAM	ET	ERS					
GALLONS	TIME	TE	MPER/ degre			NDUCTIVI X 1000	ΤΥ	рН	VISUAL TURBIDITY						
0	1216	ļ	77	.9		0.54		7.15	7.15		CLEAR				
4	1219		76	.0		0.46		6.93			<u>C</u>	LEAR			
8	1221		74	.6		0.42		6.40			С	LEAR			
12	1223		74	.6		0.41		6.88			С	LEAR			
13	1224		74	.2		0.40		6.92		CLEAR					
SAMPLING NEW DISPO				MPLE	TURBIDIT 4.6	Y (NTU):		TIME C		ECTED	1				
PURGE WA	TER DES	CIPTION	v. —	HEEN [SILTY [CLEA	AR OTH	IER (de	escribe)					

WELL LABE	L: MW	15	DATE	COLL	ECTED:	9/	15/94	_	JOB	NUM	BER;	10)1090)		
JOB NAME	INAME: CAVANAUGH MOTORS SAMPLERS NAME: DONALD CHUNG & JEFF GEI CATION: 1700 PARK STREET ALAMEDA, CA L HEAD COND; X CAPPED X LOCKED X DRY WATER DEBRIS REPLACE CAP REPLACE LOCK OTHER (clescribe) E MEASURED OTH IN FEET SURE TO 0.01') AL DEPTH OF WELL: 19.18' DEPTH TO WATER: 7.68' DIAMETER OF WELL: 2' POR VOLUME = TOTAL DEPTH- WATER DEPTH X VOLUME FACTOR X 3 VOLUMES = 5.87 GAL LUME FACTOR = 0.17 FOR 2' CASING; 0.65 FOR 4' CASING; 1.47 FOR 6' CASING FIGE METHOD: HONDA PUMP OVA-FID VAPOR READING, ppm: 0 WELL PURGING PARAMETERS LONS TIME TEMPERATURE degrees F CONDUCTIVITY X 1000 1341 84.3 0.52 6.60 SL. CLOUDY 1346 74.5 0.47 6.58 CLOUDY, BROW 4 1347 72.8 0.48 6.58 CLOUDY, BROW									FF GERKII						
LOCATION	1700	PARK S	TREET A	\LAM	EDA, CA	4	<u> </u>				<u> </u>					
WELL HEAD	COND		_		KED X	ORY	WATER		DEBRIS	RE	PLACE	CAP [RE	PLACE	ELOCK	
TIME MEAS	URED	104	3											<u> </u>		
DEPTH IN F		7.68														
			V	VEL	L PU	IR	GING	<u> </u>	MET	HC	D					
TOTAL DEP	TH OF W	VELL: 19	2.18′		DEPTH TO	NC	/ATER: 7.0	58 ′		DI	AME	ER C	F WE	ELL:	2'	
														87	GALLO	
PURGE METHOD: HONDA PUMP OVA-FID VAPOR READING, ppm:												m :	0			
			WE	LL F	PURG)	NG P	Αl	RAN	ΛEΊ	ER	S				
GALLONS									рН							
0	1341		84	.3			0.52		6.60			SL. CLOUDY				
2	1346		74	.5			0.47	L	6.5	8			CLOU	DY,	BROWN	
4	1347		72	.8			0.48		6.5	8			CLOL	JDY,	BROWN	
5	1350		73	.0			0.47 6.56				CLOUDY, LT. BROWN					
													•			
SAMPLING NEW DISPO			R		TURBIDI >200					COL 100	LECT	ED:				
PURGE WA	TER DES	CIPTIO	N. ===	HEEN [IO SHEE	ODOR N X NO	L		LEAF	≀ (OTHER (describ) (0)				

					**	•		***								
WELL LABE	L: MV	/6	DATE	COLL	CTED:	9/1	15/94		,	IOB NU	JMBI	ER:	1010	90		
JOB NAME	: CA	VANAU	∋H MO	TORS			SAM	PLERS	NA	ME: C	ON	ALD (CHUNG	- & J	EFF G	SERKIN
LOCATION	l: 1700	PARK S	TREET A	LAME	DA, CA	`										
WELL HEAD	COND		PPED X		CED X D	RY [WA.	TER	DE	BRIS [REPL	ACE C	AP [REPLA	CE LOC	CK
TIME MEAS		105	3													
DEPTH IN F (MEASURE TO		8.10														
	WELL PURGING METHOD TOTAL DEPTH OF WELL: 19.05' DEPTH TO WATER: 8,10' DIAMETER OF WELL: 2'															
TOTAL DEP	TH OF V) W	ATER:	8.10	,		DIA	METE	R OF V	VELL:	2"					
PURGE VO VOLUME F														5.58	G,	ALLON
PURGE METHOD: HONDA PUMP OVA-FID VAPOR READING, ppm: 0																
			WE	LL F	PURG) \	١G	PA	ιR.	AM	ETI	ERS	3			
GALLONS	ALLONS TIME TEMPERATUI degrees f									рH		VISUAL TURBIDITY				
0	1533		79.	.0		2.38				6.91			SL.	L. CLOUDY		
1.5	1534		73.	.2			2.18			6.99			CLC	UDY	, BRC	NWC
3.0	1535		71.	.4			2.18			7.00			CLC	YQU	, BRC	NWC
4.5	1536		70.	.5			1.92		 	6.98		V	ERY CL	OUD.	Y, BR	NWO
6.0	1542		70.	2			1.88			6.98		V	ERY CL	OUD.	Y, BR	ROWN
											-					
														., _	· · · · · · · · · · · · · · · · · · ·	
										_						
SAMPLING NEW DISPO				MPLE 1	TURBIDIT 32.6	Y (N	NTU):		1	TIME C 1548		ECTE	D:			
PURGE WA			N: S	HEEN OSHEEN	ODOR (SILTY [PR	CLEA	AR [escribe)			

WELL LABE	L: MW	7	DATE	COLL	ECTED:	9/	/15/94		JOB N	UMB	ER: 101	0 90				
JOB NAME	: CAV	ANAU	SH MC	TORS	•		SAMPL	ERS	NAME: I	DON	ALD CHUN	IG &	JEFF	GERKI	N	
LOCATION	l: 1700	PARK S	TREET /	ALAME	DA, C	Ā	-•									
WELL HEAD	COND:		APPED E		KED X	DRY	WATE	R _	DEBRIS	REPI	ACE CAP	REPL	ACE L	OCK		
TIME MEAS	SURED [105	3		·	T_										
DEPTH IN F (MEASURE TO		8.13														
WELL PURGING METHOD TOTAL DEPTH OF WELL: 15.21' DEPTH TO WATER: 8,13' DIAMETER OF WELL: 2"																
TOTAL DEP	TH OF W	5.21′	OW	VATER: 8	3.13'		DIA	METER OF	WEL	L: 2	·					
PURGE VOLUME= TOTAL DEPTH- WATER DEPTH X VOLUME FACTOR X 3 VOLUMES = 3.60 GALLON VOLUME FACTOR = 0.17 FOR 2" CASING; 0.65 FOR 4" CASING; 1.47 FOR 6" CASING														NS		
PURGE ME	THOD:	HOND	A PUM	IP				OVA-FID VAPOR READING, ppm: 0								
			WE	LL F	PURC	ЭII	NG I	PA	RAM	ET	ERS					
GALLONS	TIME	ATURE OS F					рН		VISUAL TURBIDITY							
0	1607		78	.6		0.76			7.16		VERY CLOUDY, DARK BROWN					
.]	1610		78	.5		0.84			7.06		VERY CLOUDY, DARK BROWN					
2	1611		_75	.7		·	0.76		7.05		VERY CLOUDY, DARK BROWN					
3	1612		74	.4		<u></u>	0.74		7.04		D/	RY C ARK E	BRO\	WN		
4	1613		74	.1			0.69		7.10	<u></u>	VERY DARK					
				·					······································							
														_	!	
SAMPLING NEW DISPO				MPLE 1	URBIDI 20.1	TY (NTU):		TIME C		ECTED:					
PURGE WA	TER DESC	CIPTIOI	V. '⊑	HEEN [ODOR			CLEA	R OTH	IER (de	escribe)					