AGENCY DAVID J. KEARS, Agency Director

REMEDIAL ACTION COMPLETION CERTIFICATION

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION (LOP) 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

StID 3820- 2099 Grand Street, Alameda, CA (1-1000 gallon gasoline tank removed on May 24, 1988)

March 16, 1999

Mr. Kurt Bolton Harbor Master, Grand Marina 2099 Grand Marina Alameda, CA 94501

Dear Mr. Bolton:

This letter confirms the completion of site investigation and remedial action for the underground storage tank formerly located at the above-described location. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning the former underground storage tank are greatly appreciated.

Based on information in the above-referenced file and with the provision that the information provided to this agency was accurate and representative of site conditions, no further action related to the underground tank release is required.

This notice is issued pursuant to a regulation contained in Title 23, Section 2721(e) of the California Code of Regulations.

Please contact our office if you have any questions regarding this matter.

Sincerely,

Mee Ling Tung, Director

cc: Richard Pantages, Chief of Division of Environmental Protection

Chuck Headlee, RWQCB Dave Deaner, SWRCB

Steve McKinley, Alameda Fire Department

files-ec (grandmarina-2)

ALAMEDA COUNTY HEALTH CARE SERVICES

AGENCY

DAVID J. KEARS, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION (LOP) 1131 Harbor Bay Parkway. Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

StlD 3820

March 16, 1999

Mr. Kurt Bolton Harbor Master, Grand Marina 2099 Grand Marina Alameda, CA 94501

Re: Fuel Leak Site Case Closure for Grand Marina, 2099 Grand Ave, Alameda, CA

Dear Mr. Bolton:

This letter transmits the enclosed underground storage tank (UST) case closure letter in accordance with Chapter 6.75 (Article 4, Section 25299.37[h]). The State Water Resources Control Board adopted this letter on February 20, 1997. As of March 1, 1997, the Alameda County Environmental Protection Division is required to use this case closure letter for all UST leak sites. We are also transmitting to you the enclosed case closure summary. These documents confirm the completion of the investigation and cleanup of the reported release at the subject site. The subject fuel leak case is closed.

SITE INVESTIGATION AND CLEANUP SUMMARY

Please be advised that the following conditions exist at the site:

- up to 340ppm TPH as gasoline, 4,700ppm TPH as diesel, 12,000ppm oil and grease and 0.15ppm benzene exists in soil beneath the site;
- up to 770ppb TPHg and 300ppb benzene exists in groundwater beneath the site; and,
- a site safety plan must be prepared for construction workers in the event of excavation/trenching is proposed in the vicinity of residual soil and groundwater contamination.

If you have any questions, please contact me at (510) 567-6762.

eva chu

Hazardous Materials Specialist

enlosures:

1. Case Closure Letter

2. Case Closure Summary

c: Vivian Day, City of Alameda, Planning Dept., City Hall, Room 190 Alameda, CA 94501

files (grandmarina-3)

CALIFORNIA REGIONAL WATER

MAY 1 1 1998

CASE CLOSURE SUMMARY

Leaking Underground Fuel Storage Tank Program OL BOARD

I. AGENCY INFORMATION

Date: April 3, 1998

Agency name: Alameda County-HazMat

Address: 1131 Harbor Bay Pkwy

City/State/Zip: Alameda, CA 94502

(510) 567-6700 Phone:

Responsible staff person: Madhulla Logan Title:

Hazardous Materials Spec.

TI. CASE INFORMATION

Site facility name: Grand Marina

Site facility address: 2099 Grand Street, Alameda, CA - 94501

RB LUSTIS Case No: N/A

Local Case No./LOP Case No.:3820

URF filing date:

SWEEPS No: N/A

Responsible Parties:

Addresses:

Phone Numbers:

Norman Gentry

2099 Grand Marina,

Alameda, CA - 94501

865-1200

Tank <u>Size in</u> gal.:

Contents:

Closed in-place

or removed?:

Date:

No:

1

1000 gallon

gasoline

removed

5/24/88

III. RELEASE AND SITE CHARACTERIZATION INFORMATION

Cause and type of release: Overspill, gasoline

Site characterization complete? Yes

Date approved by oversight agency: March 5, 1998

Monitoring Wells installed? Yes Number: 5 (relating to the UST)

Yes Proper screened interval?

Highest GW depth below ground surface: 6ft \ Lowest depth: 0.4

Flow direction: predominantly north to north east

Most sensitive current use: next to Bay (approx 400 ft from UST)

Are drinking water wells affected? No Aquifer name:

Is surface water affected? No Nearest affected SW name:

Off-site beneficial use impacts (addresses/locations):

Report(s) on file? YES Where is report(s) filed? Alameda County 1131 Harbor Bay Pkwy Alameda, CA 94502

Treatment and Disposal of Affected Material:

<u>Material</u>	Amount (include units)	Action (Treatment or Disposal w/destination)	<u>Date</u>
Tank	1000 gallons	Disposed by H&H - LMC Corp, Richmond,CA	5/25/88

Maximum Documented Contaminant	Contaminant Co Soil Before	(ppm)	Before a Water (ppl Before ² Af	o)
TPH (Gas)	730	340	29000	770
TPH (Diesel)	N/A	4700	1200	
Benzene	0.3	0.15	4000	300
Toluene	0.3	0.87	11,000	15
Ethylbenzene	ND	1.0	500	7.6
Xylenes	0.7	5.8	2900	31
Oil & Grease Heavy metals	-	12000 -	ND NA	-

- 1. The before soil samples are those taken during tank removal at 4.5' bgs No confirmation samples were collected since no documentation of overexcavation
- 2. The before water samples are those taken from the MW-2 in 5/92
- 3. The after soil samples are max conc in borings, TP1 to TP9 installed 5/92 at 4.5'bgs
- 4. The results from the recent monitoring event (March 1996)

IV. CLOSURE

Does completed corrective action protect existing beneficial uses per the Regional Board Basin Plan?

Does completed corrective action protect potential beneficial uses per the Regional Board Basin Plan?

Does corrective action protect public health for current land use? YES Site management requirements: A site safety plan must be prepared for construction workers in the event excavation/trenching is proposed in the vicinity of residual soil and groundwater contamination.

Should corrective action be reviewed if land use changes? YES

Monitoring wells Decommissioned: No

Number Decommissioned: 0 Number Retained 5 with subject to UST but a total of 10 exists on site

List enforcement actions taken: N/A List enforcement actions rescinded: N/A

V. LOCAL AGENCY REPRESENTATIVE DATA

Name: Madhulla Logan Title: Haz Mat Specialist

Signature: Date:

Reviewed by

Name: Barney Chan Title: Haz Mat Specialist

Signature: Barrey Char Date: 4/8/98

Name: Thomas Peacosk Title: Supervisor

Signature: Date: 4-17-98

VI. RWQCB NOTIFICATION

Date Submitted to RB: RB Response:

RWQCB Staff Name: Chuck Headlee Title: AWRE 56

Signature: Chuck Budle Date: 5/4/98

VII. ADDITIONAL COMMENTS, DATA, ETC.

Subsequent to a removal of 1000 gallon gasoline underground storage tank in May 1988, two samples were collected from either ends of the tank and analyzed for gasoline and BTEX. The tank was observed to contain scaling and pitting, but no holes were found. A heavy dark sheen was observed floating on the water within the pit. Gasoline up to 730 ppm and benzene up to 0.3 ppm was detected in the samples. There is no documentation that overexcavation was done on site.

In May 1992, nine soil borings, Tp-1 to Tp-9 were advanced around the area of the former UST, and in the area between the tank pit and the above ground tank farm (that is being investigated concurrently further northwest of the site and the summary for which is given below). Gasoline up to 340 ppm, benzene up to 0.15 ppm, diesel up to 4100 ppm and oil and grease up to 12,000 ppm was identified in the samples. Out of the four monitoring wells installed on-site to delineate the extent of contamination in the groundwater from both the above ground tank farm and the UST, two wells, MW-2 and MW-3 were installed in the vicinity of the former UST. The groundwater samples collected from monitoring well, MW-2 contained the maximum concentrations of petroleum hydrocarbons; gasoline at 29000 ppb, benzene at 4000 ppb and diesel at 1200 ppb.

In October 1994, two additional borings were converted to monitoring wells, MW-5a and MW-6a. Soil samples collected from the borings contained up to 500 ppm of oil and grease and did not indicate the presence of gasoline or BTEX above the detection limits. Groundwater samples did not contain any gasoline, benzene or diesel above detection limits. However, up to 1 ppm of oil and grease was detected in monitoring well, Mw-6a.

Groundwater monitoring of wells, MW2, MW3, MW4, MW5a and MW6a was performed at quarterly intervals starting from November 1994. After three quarters, MW5a and MW3 were removed from the monitoring schedule based on the below detection concentrations observed in these wells. The rest of the wells were monitored up to March 1996 at quarterly intervals. Based on the results of the groundwater samples, the groundwater plume appears to be stable. A risk assessment was prepared for the site based on ASTM's Risk Based Corrective Action methodology (RBCA) based on a commercial use scenario. Based on the risk assessment, the petroleum hydrocarbons identified around the area of the former underground storage tank does not cause an unacceptable risk to public health.

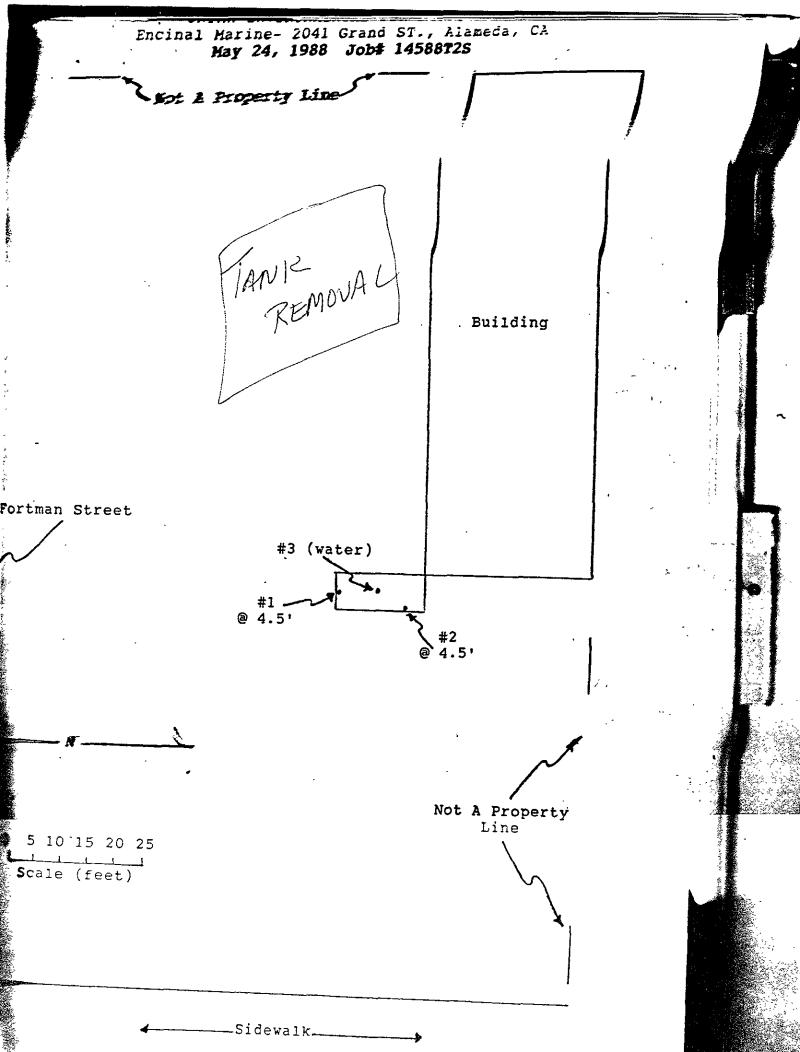
Summary of Previous Investigations Conducted in the Aboveground Tank Farm Area (Maps and Tables attached)

In April 1987 Harding and Lawson Associates conducted a soil and groundwater investigation in the vicinity of the former above ground storage tank area and significant concentrations of petroleum hydrocarbons, as diesel and oil were identified on site. Based on the results of the investigation, approximately 285 tons of petroleum hydrocarbon soil was removed to a maximum depth of five feet below ground surface.

On January 21 and January 22, 1992, the above ground storage tanks which were used to store petroleum hydrocarbons in the range of diesel and oil were removed by Zaccor Corporation. Subsequently, Zaccor installed twelve borings in the vicinity of the ASTs and the investigation revealed that the greatest diesel concentrations in the soils were present at depths of two feet beneath the AST farm floors and beneath the former pump house. Additional borings were augured outside the tank farm perimeter and significant concentrations of both diesel and oil and grease were identified. However, no gasoline or BTEX was identified in the soil samples. Four monitoring wells, MW1 to MW4 were also installed on site.

In October 1993, additional soil and groundwater investigation was performed by Secor to delineate the extent of contamination on site. Seventeen soil borings were advanced to depths ranging from five to thirteen feet and both soil and groundwater samples were collected. In the soil samples, diesel and gasoline were detected up to 800 ppm and 13 ppm respectively, but no benzene was detected. In the grab groundwater samples, diesel was found up to

450,000 ppb, however no gasoline or benzene was detected.


In October 1994, four additional monitoring wells, MW-5 through MW-8 were installed to delineate the extent of the groundwater plume. Based on the groundwater monitoring conducted until June 1996, and the concentrations of diesel found in the monitoring wells, the plume appears to be stable. Also, except for monitoring well, MW-2, BTEX have not been identified in any of the monitoring wells. The source of the BTEX observed in monitoring well MW-2, is the 1000-gallon underground storage tank located approximately 300 feet south of the AST which is discussed above.

In August 1996, a risk assessment was submitted to this Department, which was amended and re-submitted in October 1997. Based on the results of the risk assessment, the plume stability, and insignificant concentrations of gasoline and BTEX, the petroleum hydrocarbons identified around the area of the former above ground storage tank area does not cause an unacceptable risk to public health

Rationale for Closure

In summary, case closure is recommended for both the UST and the AST related contamination because:

- the tanks (both the UST and the AST) have been removed;
- the site has been adequately characterized;
- the dissolved plume does not appear to be migrating; the plume appears to be stable
- o no water wells, surface water, or other sensitive receptors are likely to be impacted due to plume stability (no increasing trends have been observed in the monitoring wells)
- the site presents no significant risk to human health or the environment.
- The site has experienced petroleum fuel releases from both the 1K gasoline tank and the seven aboveground tanks, sumps and piping. The release appears to be naturally attenuating and is recommended for closure as a low risk groundwater case. The elevated oil and grease and diesel found near the UST is likely a result of past usage of the site as a shipyard, lumberyard, warehousing, oil distribution and vegetable oil storage.

HAZCAT Mobile Organics Lab

733 Dartmouth Avenue San Carlos, CA 94070 • (415) 591-5820 Samples Result

- Tank Removal

- VST

h Environmental Services Inc. BOX 3833 sto,CA 95352

Date Sampled: 05-24-88
Date Received: 05-24-88
Date Reported: 05-25-88

Sample Number
----058091

Sample Description

14588T2S -Alameda

Grand St.-Encino Marina
2 SOIL

ANALYSIS

Detection Limit	Sample Results
PPm	PPm
1	730
0.1 :06	
	0.3
	0.3
	<i>}</i>
	Limit

Analysis was performed using EPA methods 5020 and 8015 with method 8020 used for BTX distinction.

ld G. Evans

Director

HAZCAT Mobile Organics Lab

733 Dartmouth Avenue San Carlos, CA 94070 • (415) 591-5820

Environmental Services Inc.

30X 3833

to, CA 95352

Date Sampled: 05-24-88 Date Received: 05-24-88

Date Reported: 05-25-88

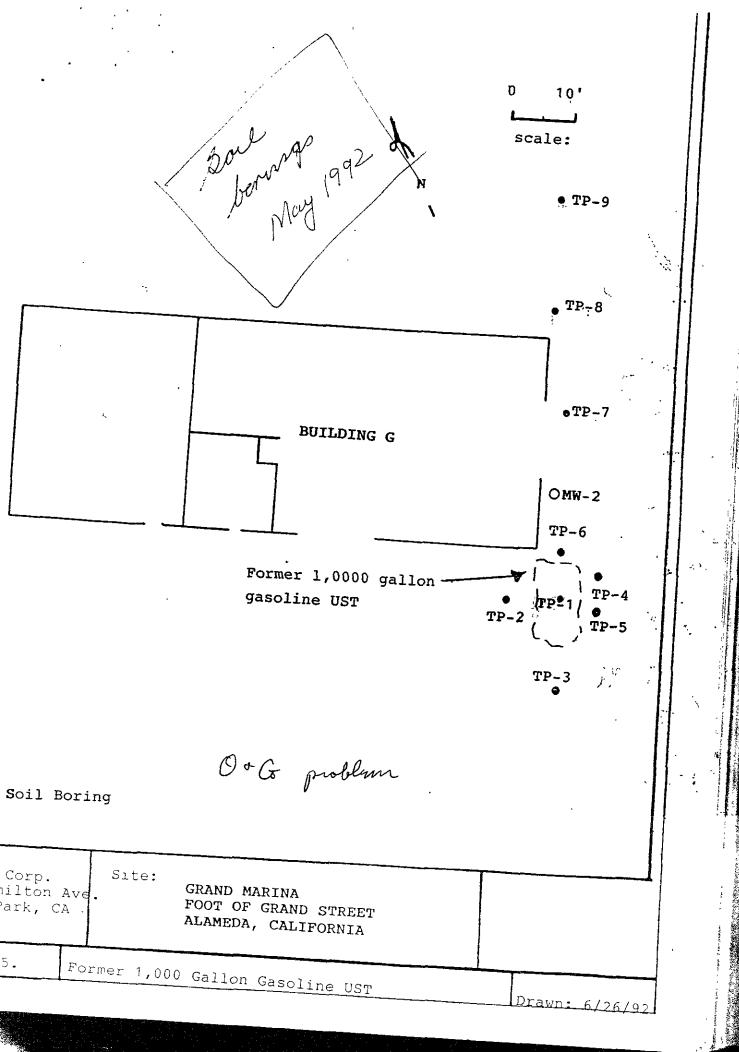
Sample Number

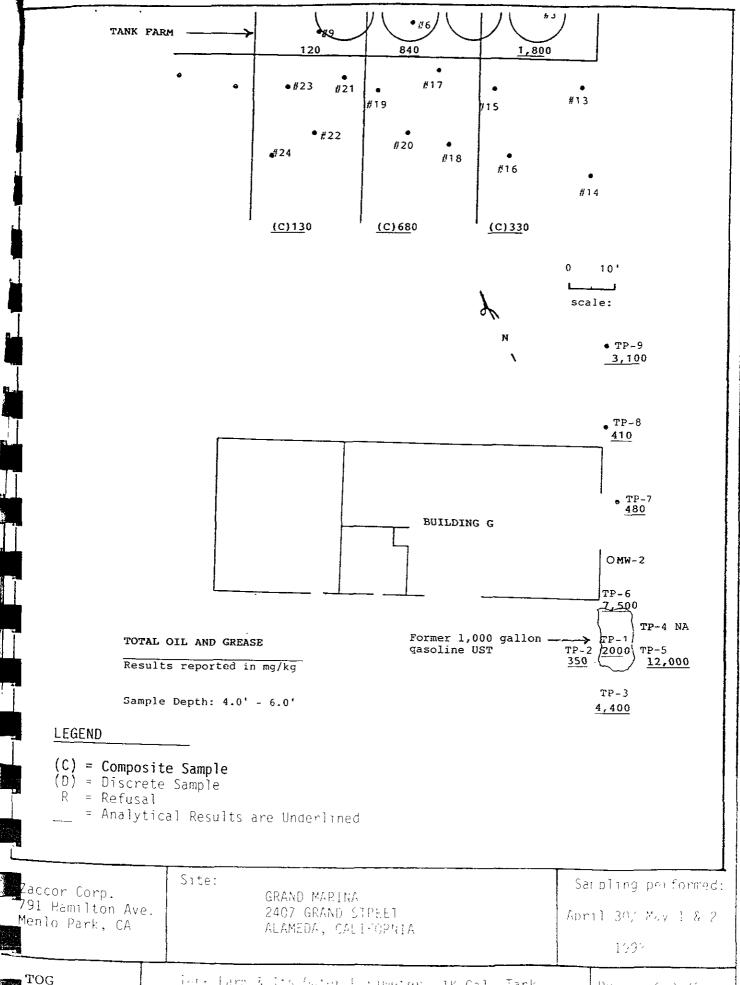
058090

Sample Description

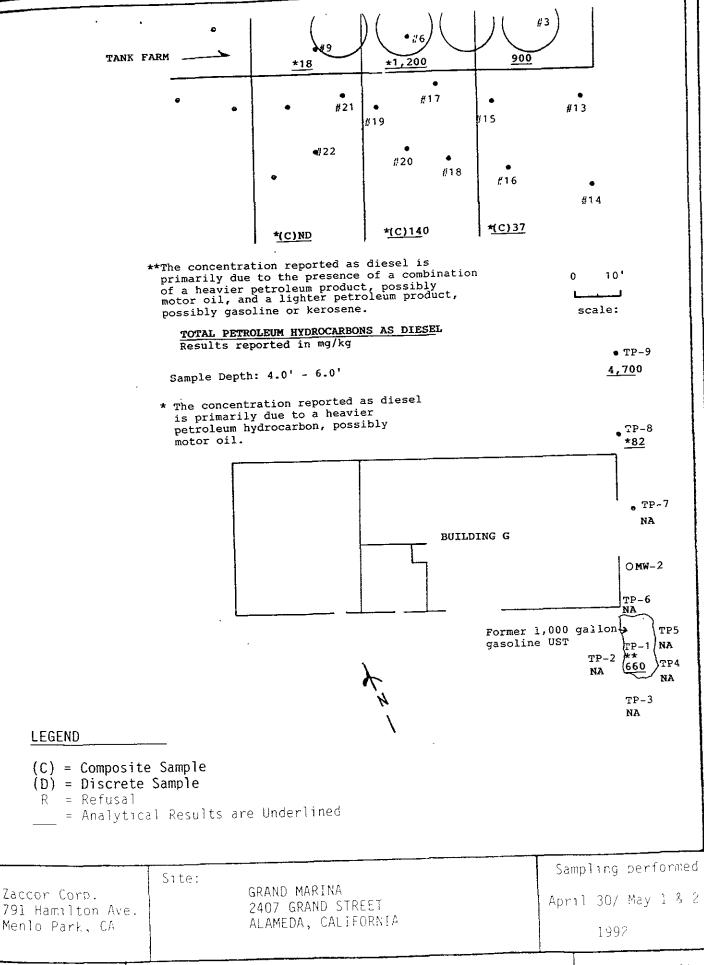
14588T2S -Alameda

Grand St.-Encino Marina


1 SOIL

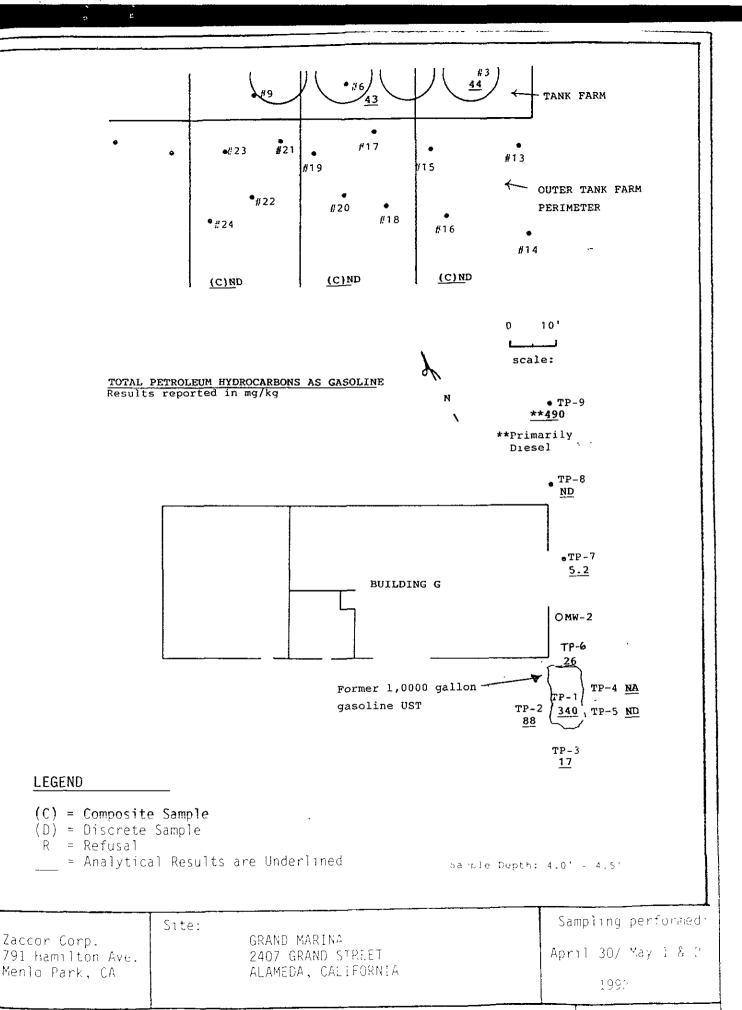

ANALYSIS

	Detection Limit	Sample Results	
	PPm	ppm	
Petroleum Hydrocarbons	1	<1.0	
3 Lee	0.1	<0.1	
T de	0.1	<0.1 ₁	
	0.1	<0.1	
E enzene	0.1	j <0.1]	


elysis was performed using EPA methods 5020 and 8015 with ...

G. Evans

ions farm & its future for timeter, 1K Gal. Tank



TPHd

LEGEND

Tank farm & Its Outer Perameter, 1K Gal. Tank

Shawn 6/26/92

Tank Fare & Its Guter Permeter, 1K Gal. Tank

6.26/92

Drawi.

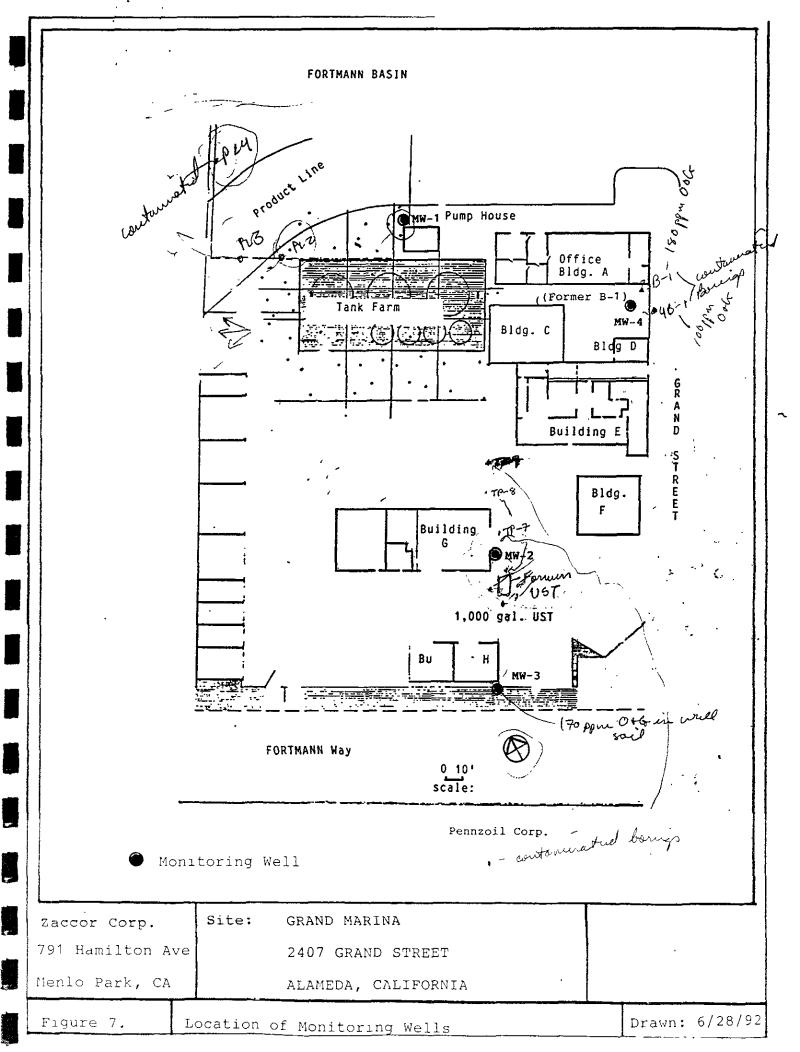
TABLE Va
SOIL SAMPLES/PREVIOUS 1,000 GALLON GASOLINE TANK

Matrix: Soi: Results are	l reported	in mg/kg	Depth: 4.0	- 4.5'	
Date Sample	1: 5/1/92	·		<u></u>	
Sample	ТРНа	_B	<u>_T</u>	E	_X
TP1	340	ND	0.87	1.0	2.1
TP2	88	ND	0.54	0.34	0.59
PP3	17	0.15	0.18	0.131	0.40
PP5	ND	ИD	ND	ND	ND
P6	26	ND	0.088	0.20	0.64
P7	5.2	ND	0.013	0.059	0.15
P8	ND	ND	ND	$\mathbf{ND}_{f}^{\mathrm{opt}}$	ND
P9	*490	ND	ND .	ND	5.8

^{*}The concentration reported as gasoline for sample TP-9 is primarily due to the presence of a heavier petroleum product, possibly diesel or kerosene.

TABLE Vb

SOIL SAMPLES/PREVIOUS 1,000 GALLON GASOLINE TANK


Matrix: Soil Depth: 4.0' - 4.5'

Results are reported in mg/kg

Date Sampled: 5/1/92

Sample	TPH as Diesel	Total Oil & Grease
TP-1	**660	2000
TP2	NA	∱ 350 ≇
TP3	NA	4400
TP5	NA .	12000
TP6	NA	7500
TP7	NA	480
TP8	*82	410
TP9	4700	3100

^{**}The concentration reported as diesel for sample #TP-1 is due to the presence of a combination of a heavier petroleum product, possibly motor oil, and a lighter petroleim product, possibly gasoline or kerosene.

Soul NWS

TABLE VIIIa

MONITORING WELL SOIL ANALYTICAL RESULTS

Date Sa	mpled: 5/4/92	·	Results rep	orted in	mg/kg	
Sample	Depth	ТРН-д	_В	<u>-T</u>	E	_ X
MW-1	4.0'-4.5'	ND	ND	ND	ND	ND
MM-1	10.0'-10.5'	NA	NA	NA	NA	NA.
MW-1	15.0'-15.5'	NA	NA	NA	NA	NA NA
MW-2	4.0'-4.5'	19.	0.24	0.62	0.050 [°]	0.26
MW-2	10.0'-10.5'	NA	NA	NA	NA .	NA
MM-5	16.0'-16.5'	NA	NA	NA `	NA	NA
MW-3	6.0'-6.5'	ND	ND	ND	ND	··· ND
MW-3	10.0'-10.5'	NA	NA	NA	NA	,NA
MW-4	10.0′-10.5′	NA	NA	NA	NA	NA
MW-4	15.0'-15.5'	NA	NA	NA	NA	NA

TABLE VIIID

MONITORING WELL SOIL ANALYTICAL RESULTS

-4(e Sampled: 5/4/92	Pogultar RESULTS			
		results rep	ported in mg/kg		
Sam	ple# Depth	TPH as Diesel	Total Oil & Grease		
MW-	1 4.0'-4.5'	970			
Adga	cent Tank Farm	370	2,400		
MW-1	10.0′-10.5′	NA	NA		
MW-1	15.0'-15.5'	NA	NA		
MW-2	4.0'-4.5'	150	57		
MW-2	10.0'-10.5'	NA	NA .		
MW-2	16.0'-16.5'	NA	NA /		
MW-3	6.0'-6.5'	ND	170		
MW-3	10.0'-10.5'	NA	NA		
MW-4	10.0'-10.5'	NA	NA.		
MW-4	15.0'-15.5'	АИ	NA .		

TABLE IX

TABLE IX	ONITORING WE ples: 5/4/92 are reported TPH-g		-	J.	retual	هيل
Date Sam Results	ples: 5/4/92 are reported	in ug/L, e	TER ANALYTIC	cal RESULT	rs mg/kg	
Sample	TPH-g	_B	_T	_E	X	
MW-1	ND	ND	0.8	ŇD	1.3	•
MW-2	29,000	4,000	11,000	500	2,900	·
MW-3	ND	ND	1.0	ND	ND	- V\$
MW-4	ND	ND	ND	ND	ND	
Sample#	TPH as	Diesel		Oil & Gre	ease	
MW-1	ND			ИD);	•
MW-2	1,200). ()		ND		· •• .
4W−3	120	•		ND	,	· ·
IW−4	150			ИD	,	

3.0 FIELD PROCEDURES

After receiving approval for the permit application from the Water Conservation and Flood Control District - Zone 7, borings MW-5a and MW-6a were drilled on October 28, 1994 using a B-53 mobile drill rig equipped with 8-inch outside diameter hollow-stem augers. Concurrent with drilling, subsurface soil samples were obtained with a Modified California Split Spoon Sampler equipped with three six-inch long brass/stainless steel liners. Borings MW-5a and MW-6a were drilled to a total depth of 12 feet bgs. Figure 2 - Site Plan, illustrates the new and existing monitoring well locations.

The sampler and brass liners were pre-cleaned prior to use and between sample drives by washing them with a trisodium phosphate (TSP) and potable water solution, a potable water rinse, and distilled water rinse.

Soil samples were collected every three feet, at any noted changes in lithology and at the approximate soil/groundwater interface. Subsurface soil samples were obtained by drilling to the approximate sampling location and driving the sampler eighteen inches into undisturbed material. Upon removal, each sample was labeled, and stored in an ice-filled cooler to be transported under chain of custody to Chromalab, Inc., a state certified laboratory.

3.1 Analytical Results - Soil

A minimum of one soil sample collected from each boring was submitted to Chromalab for analysis of TPH as gasoline with benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Test Method 8015/8020, TPH as diesel by EPA test method 8015-Modified and total oil and grease by EPA test method 5520 E & F. Results of the soil sample analyses are summarized below, in Table 1. Analytical results with chain-of-custody form are attached as Appendix A.

TABLE 1 - Sample Results - Soil

Sample No.	Depth (feet)	TPHg (ppm)	BTEX (ppm)	Oil & Grease (ppm)	TPH as diesel (ppm)
MW5a - 3.5	3.5	<1.0	< 0.005	500	<1.0
MW5a - 4.5	4.5	<1.0	< 0.005	79	<1.0 ^{/ /}
MW6a - 3	3	< 1.0	< 0.005	< 50	<1.0

Notes:

TPHg = Total Petroleum Hydrocarbons as gasoline

BTEX = Benzene, Toluene, Ethylbenzene, and Total Xylenes

TPH = Total Petroleum Hydrocarbons

ppm = parts per million

The soil cuttings and samples were logged by an ACC geologist during drilling operations. The soil cuttings are described in accordance with the Unified Soil Classification System. Lithologic logs of the borings and the Unified Soil Classification System are attached in Appendix B. Soil cuttings were placed in labeled drums pending laboratory analysis for determining appropriate disposal.

4.2 Analytical Results - Groundwater

Groundwater samples were collected from the monitoring wells on May 9, 1995. The groundwater samples collected were submitted to Chromalab for analysis of TPH as gasoline with BTEX.

Analysis results from the groundwater samples are illustrated in Table 3. Copies of the analytical results are attached in Appendix B.

TABLE 3 - Sample Results - Groundwater

Well	Date	TPHg	Benzene	Toluene	E.benzene	Xylenes	TPHd	O&G
No.	Sämpled	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW2	11/03/94	5400	510	670	65	320	<50	<50
	02/06/95	1900	360	230	20	100	NA	NA
	05/09/95	2200	550	350	28	120	NA	NA
MW3	11/03/94	<50	<0.5	<0.5	<0.5	<0.5	<50	<50
	02/06/95	NA	NA	NA	NA	NA	NA	NA
	05/09/95	NA	NA	NA	NA	NA	NA	NA
MW4	11/03/94	NA	NA	NA	NA	NA	NA	NA
	02/06/95	80	<0.5	<0.5	<0.5	<0.5	NA	NA
	05/09/95	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
MW5a	11/03/94	<50	<0.5	<0.5	<0.5	<0.5	<50	<1
	02/06/95	<50	<0.5	<0.5	<0.5	<0.5	NA	NA
	05/09/95	NA	NA	NA	NA	NA	NA	NA
MW6a	11/03/94 02/06/95 05/09/95	<50 <50 <50	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 2.5 <0.5	<50* <50** NA	NA NA

discontinues

of live 5/95

Notes: TPHg = Total Petroleum Hydrocarbons as gasoline

E.benzene = Ethylbenzene

TPHd = Total Petroleum Hydrocarbons as diesel

O&G = Total Oil and Grease

ug/L = micrograms per liter = parts per billion (ppb)

5.0 CONCLUSIONS

An aboveground tank farm and one underground storage tank were formerly located onsite. The tanks have since been removed. Subsurface investigations are being conducted by SEACOR in the vicinity of the former above ground tank farm. ACC has conducted further

^{*} unknown hydrocarbons found in the diesel range estimated to be 80 ug/L with a diesel standard.

^{**} unknown hydrocarbons found in the diesel range estimated to be 270 ug/L with a diesel standard.

TABLE 3 - GROUNDWATER SAMPLE ANALYTICAL RESULTS

Well	Date	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes
No.	Sampled	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW2	11/03/94	5,400	510	670	65	320
	02/06/95	1,900	360	230	20	100
	05/09/95	2,200	550	350	28	120
	08/22/95	2,100	290	120	11	37
	12/07/95	1,000	190	35	6.4	16
	03/07/96	770	300	150	7.6	31
MW4	11/03/94 02/06/95 05/09/95 08/22/95 12/07/95 03/07/96	 80 <50 <50 <50 <50	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5
MW6a	11/03/94	<50	<0.5	<0.5	<0.5	<0.5
	02/06/95	<50	<0.5	<0.5	<0.5	2.5
	05/09/95	<50	<0.5	<0.5	<0.5	<0.5
	08/22/95	<50	<0.5	<0.5	<0.5	<0.5
	12/07/95	<50	<0.5	<0.5	<0.5	<0.5
	03/07/96	<50	<0.5	<0.5	<0.5	<0.5

 $\mu g/L$ = micrograms per liter (approximately equivalent to parts per billion) Notes:

5.0 DISCUSSION

Result of MWB of MW5

secutive quarterly monitoring are we This report documents the sixth consecutive quarterly monitoring conducted on groundwater wells MW-2, MW-4, and MW-6a at the Grand Marina facility. Groundwater sample results indicate detectable concentrations of gasoline constituents within well MW-2. Below detectable concentrations of TPHg and BTEX were reported in wells MW-4 and MW-6a, consistent with previous sampling events. Results reported in the sample collected from well MW-2 indicate concentrations of petroleum hydrocarbons as gasoline have decreased 23% since the December 7, 1995, sampling event. Groundwater flow direction has fluctuated slightly; however, the flow direction varies throughout the site.

4.2 Regional Hydrogeology

The site is located within the Bay Plain. The Bay Plain is a geomorphic terrain which is the gently bayward sloping alluvial plain of Alameda County adjacent to the east shore of San Francisco Bay. The Bay Plain is situated on the eastern side of the San Francisco Bay depression. This depression is an irregular warpage of the earth's crust resulting principally from downward movement along northwest-trending faults at its edge (California Department of Water Resources, 1963).

The Alameda County Flood Control and Water Conservation District, <u>Geo-hydrology and Groundwater - Quality Overview</u>, 205 (j) Report, June 1988 describes the geological formation of Alameda as comprised principally the Merritt Sand of Quaternary age and Bay Mud. The report notes that Bay Mud is unconsolidated dark plastic clay and silty clay rich in organic material. Locally the Mud contains lenses of sandier material and beds of peat. The Mud has a low permeability and functions as a barrier to vertical movement of salt water from the San Francisco Bay.

4.3 Analytical Results - Groundwater

Groundwater samples were collected from the monitoring wells on November 3, 1994. The groundwater samples collected were submitted to Chromalab for analysis of TPH as gasoline with BTEX, TPH as diesel, and total oil and grease.

Analysis results from the groundwater samples are illustrated in Table 3. Copies of the analytical results are attached in Appendix C.

TABLE 3 - Sample Results - Groundwater

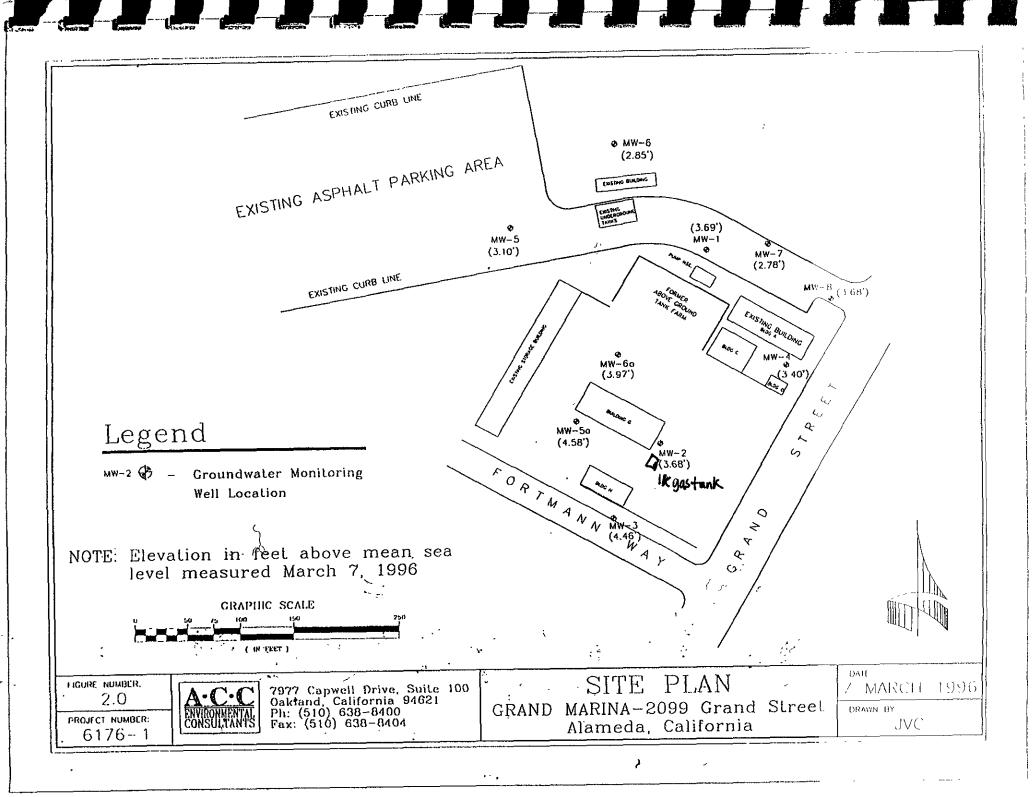
Well No.	Date. Sampled	TPHg (ppb)	Benzene (ppb)	Toluene (ppb)	E.benzene (ppb)	Xylenes (ppb)	TPHd (ppb)	O&G (ppm)
MW2	11/03/94	5,400	510	670	65	320	<50	.<1
MW3	11/03/94	<50	<0.5	<0.5	<0.5	<0.5	<50	<1
MW5a	11/03/94	<50	<0.5	<0.5	<0.5	<0.5	<50	· <1
MW6a	11/03/94	<50	<0.5	<0.5	<0.5	<0.5	<50*	1

Notes: TPHg = Total Petroleum Hydrocarbons as gasoline

E.benzene = Ethylbenzene

TPHd = Total Petroleum Hydrocarbons as diesel

O&G = Total Oil and Grease


ppb = parts per billion

ppm = parts per million

* unknown hydrocarbons found in the diesel range estimated to be 87 ppb with a diesel standard.

5.0 CONCLUSIONS

An above-ground tank farm and one underground storage tank were formerly located on-site. The tanks have since been removed. Subsurface investigations are being conducted by SEACOR in the vicinity of the former above ground tank farm. ACC has conducted further evaluation of the subsurface hydrocarbon impact in the area around a former gasoline storage UST excavation. During the investigation, fill material was observed in the borings extending from the surface to

Well No.	Sample Date	Well Elevation (MSL)	Groundwater Depth (feet bgs)	Groundwater Elevation (MSL)
MW-8	10/31/94 11/31/94 12/24/94 01/13/95 02/06/95 03/07/95 05/09/95 08/22/95 12/07/95 03/07/96	5.65	3.92 2.21 2.39 2.62 2.16 2.77 2.97 2.59 2.85 1.97	1.93 3.44 3.26 3.03 3.49 2.88 2.68 3.06 2.80 3.68

Notes:

All measurements in feet

3.2 Groundwater Gradient

The groundwater flow direction as determined from monitoring well data obtained on March 7, 1996, is illustrated on Figure 3. Based on groundwater elevation calculations, groundwater flow varies throughout the site and generally flows toward the north, northeast at an average gradient of 0.004 to 0.006 foot/foot. Table 2 summarizes current and previous gradients and approximate flow directions determined from water elevations.

TABLE 2 - GROUNDWATER GRADIENT AND FLOW DIRECTION

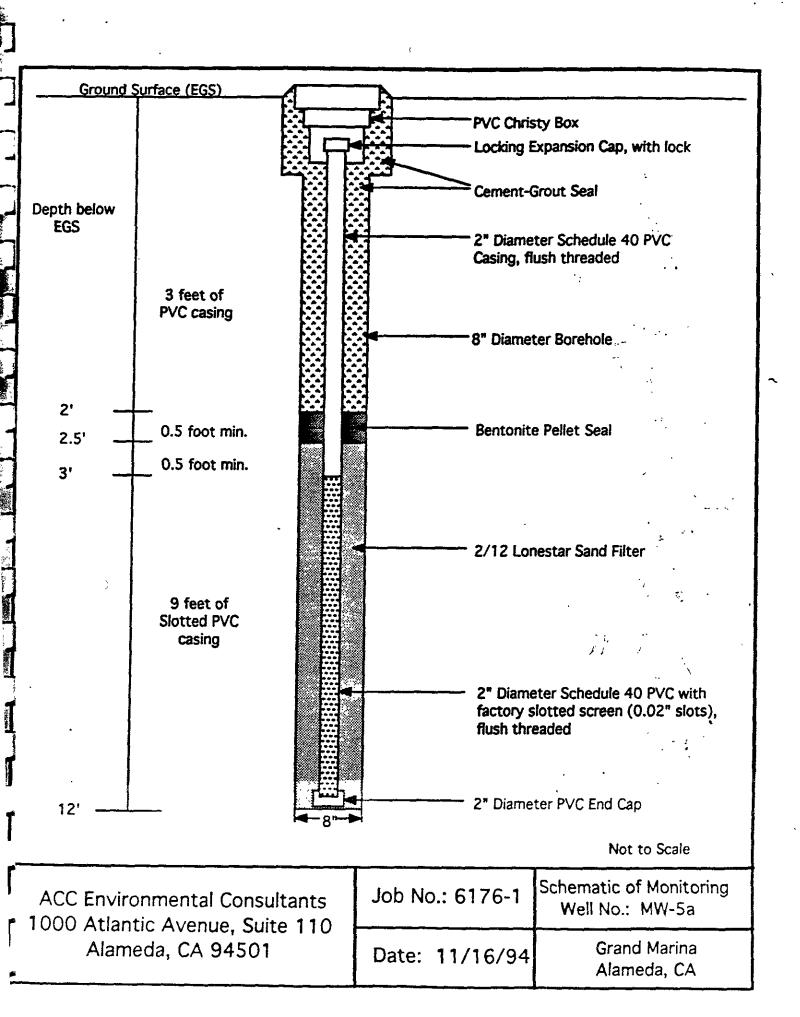
Date	Gradient	Direction
10/31/94	0.002-0.005	North - East*
11/30/94	0.002-0.008	North - Northeast*
12/29/94	0.004 - 0.01	Northeast*
01/13/95	0.007 - 0.016	North - East*
02/06/95	0.007 - 0.018	North - Northeast*
03/07/95	0.007 - 0.015	Northeast*
05/09/95	0 004 - 0.012	Northeast*
08/22/95	0.003 - 0.005	North*
12/07/95	0 009 - 0.01	North*
03/07/96	0.004 - 0 006	North - Northeast*

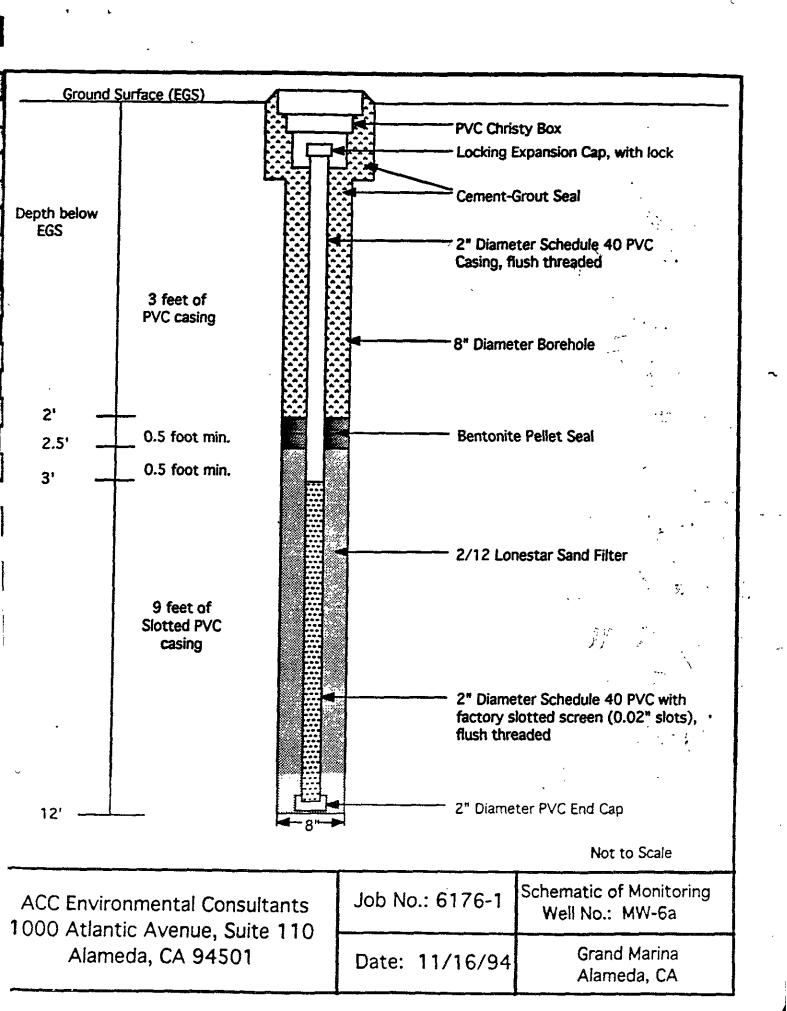
* Gradient varies throughout the site

,					<u></u>				
EN	V I RONM		L BORING LOGS CCHNICAL SERVICES PORATION			nd Stree	t	MW-	-2
<u> </u>		er Green	sfelder # 3011						
Dr i Mat	lling hod :	Augers	Sample Split Method : Spoon	Project	Man	ger: Ga	ry Z	accor	5/4/92
D E P T H	COLL	MPLE ECTED: SAMPLE#	Soil Description	uscs	L O G	BLOW COUNTS	!	ELL ONSTRU	
	-		Fine Sand (75%) & Clay (25%). Gray, moist, plastic.				Ca 0.	11 p 010"	Grout Bento- Pellets
5.	·		Gravel & Sand (30 & Trace Silt. Gra saturated, slight fuel odor	Y GM	0.00.00		2"	PVC	Lone-
_10		10-10.5	Clay, dark gray, plastic with gravel (5%). Slig ocor.	ht			11111111		C
-15 -		MW-2 16-16.5'	Decomposed wood with plastic Clay gray. Sewage like odor.	7,			TD	=15 ' '	1
-20		The state of the s	TD = 16.5'		-				
25 								The state of the s	
30									

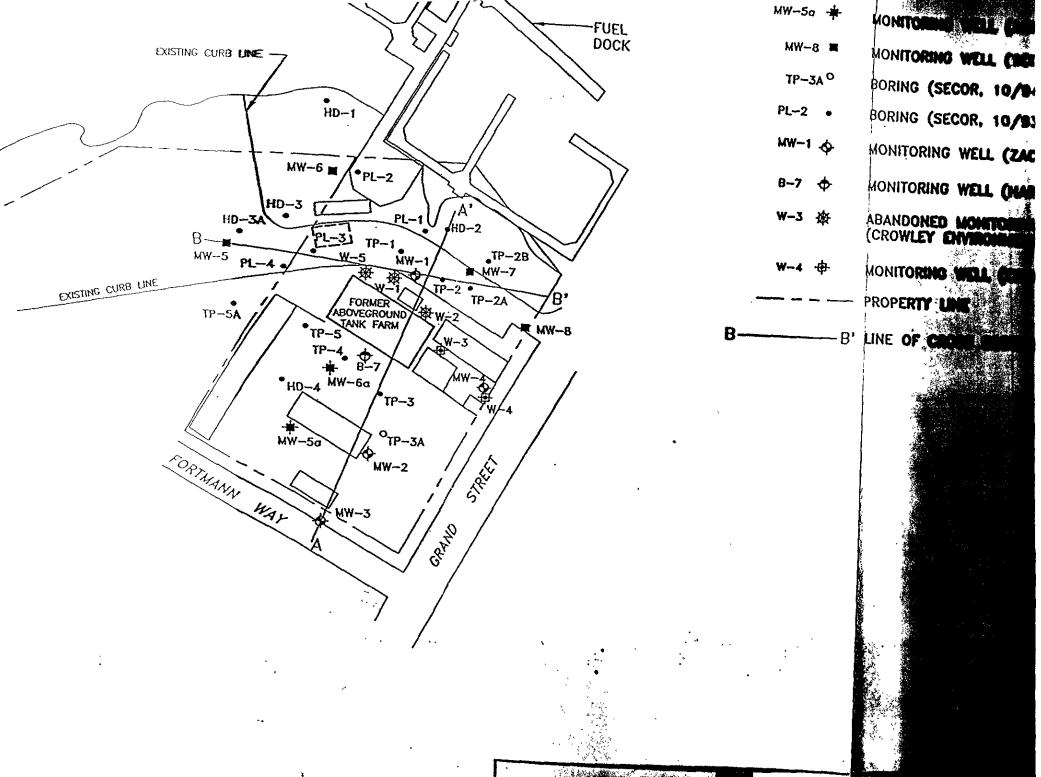
I

Soil T. SAMPLE# Description Sand & Gravel fill with some silt. Brown, dry. No. odor Soil O BLOW COUNTS COUNTS WELL CONSTRUCTION Well Cap Bento-								
AT: Grand Marina 2407 Grand Steet Alameda, CA Roger Greensfelder #3011 Ing : Augers Sample Split Method: Spoon Project Manager: Gary Zaccor 5/4/92 SAMPLE OLLECTED: Soil T. SAMPLE# Description USCS G COUNTS CONSTRUCTION Sand & Gravel fill with some silt. Brown, dry. No odor. Clay with thin lenses of fine Sand. Plastic, moist, mottled w/ black veins (carbon?). No odor. MW-3 Clay, dark gray, plastic, wet, loose, no odor. Clay (as above) with decayed wood. AT: Grand Marina 2407 Grand Steet Alameda, CA MW-3 MW-3 COUNTS WELL CONSTRUCTION Well Cap Well Cap Bento- Pellet 0.010": Star ' Jan ' Jan MW-3 Clay, dark gray, plastic, wet, loose, no odor. Clay (as above) with decayed wood.	NITORING WE	ELL BORING LOGS						
Roger Greensfelder #3011 Ing Sample Split Method: Spoon Project Manager: Gary Zaccor 5/4/92 SAMPLE DOLLECTED: Soil Description USCS G COUNTS CONSTRUCTION Sand & Gravel fill with some silt. Brown, dry. No odor. Clay with thin lenses of fine Sand. Plastic, moist, mottled w/ black veins (carbon?). No odor. MW-3 Clay, dark gray, plastic, wet, loose, no odor. MW-3 Clay (as above) With decayed wood.	RONMENTAL T	CECHNICAL SERVICES	AT: Gra	nd M	arina			
Roger Greensfelder #3011 Ing : Augers	ZACCOR COR	PORATION	240	7 Gr	and Stee	∍t		
SAMPLE SOIL SOIL Soil Description Sand & Gravel fill with some silt. Brown, dry. No odor. Clay with thin lenses of fine Sand. Plastic, moist, mottled w/ black veins (carbon?). No odor. MW-3 Clay, dark gray, plastic, wet, loose, no odor. Clay (as above) MW-3 Clay (as above) WELL CONSTRUCTION Well Cap Bento- Counts Co	Roger Gree	ensfelder #3011	Ala	meda	, CA	į	MW-	3
SAMPLE OLLECTED: Soil Description Sand & Gravel fill with some silt. Brown, dry. No odor. Clay with thin lenses of fine Sand. Plastic, moist, mottled w/ black veins (carbon?). No odor. MW-3 Clay, dark gray, plastic, wet, loose, no odor. Clay (as above) MW-3 Clay (as above) WELL CONSTRUCTION Well Cap Bento- O.01-0" Star 4 CI 1 1 MW-3 Clay (as above) with decayed wood.	ing : Augers	,				·		
T. SAMPLE# Description Sand & Gravel fill with some silt. Brown, dry. No odor. Clay with thin lenses of fine Sand. Plastic, moist, mottled w/ black veins (carbon?). No odor. MW-3 Clay, dark gray, plastic, wet, loose, no odor. MW-3 Clay (as above) with decayed wood. Clay (as above) with decayed wood.	SAMPLE	Spoon	rroject	Man	ager: G	ary Z	eccor	5/4/92
Sand & Gravel fill with some silt. Brown, dry. No odor. Clay with thin lenses of fine Sand. Plastic, moist, mottled w/ black veins (carbon?). No odor. Clay, dark gray, plastic, wet, loose, no odor. Clay (as above) with decayed wood. Clay (as above) with decayed wood.	OLLECTED:	Soil		ſ	BI OF	W	ELL	
Sand & Gravel fill with some silt. Brown, dry. No odor. Clay with thin lenses of fine Sand. Plastic, moist, mottled w/black veins (carbon?). No odor. Clay, dark gray, plastic, wet, loose, no odor. MW-3 Clay (as above) with decayed wood. Clay (as above) with decayed wood.	T. SAMPLE#	Description	uscs		ľ	1	•	CTION
	MW-3 6'-6.5' MW-3 10-10.5' MW-3	Sand & Gravel fill with some silt. Brown, dry. No odor. Clay with thin lenses of fine Sand. Plastic, moist, mottled w/black veins (carbon?). No odor. Clay, dark gray, plastic, wet, loose, no odor. Clay (as above) with decayed wood.	GP CI	80.00	2 3 4	We Ca 0. S10	11 p 010", ot	Grout Bento- Pellet Lone- Star


											
			LL BORING LOGS		-					•	
			ECHNICAL SERVICES PORATION	AT	Gr		Marina				
							rand St a, Cali		MV	7-4	
Met:	lling hod	: Augers	Sample Split Method : Spoon	Pr	ojec	t Man	ager: (Gary 2	accor	- · · · · ·	-
D E P T H	COL	AMPLE LECTED: SAMPLE#	Soil		uscs	L O	BLOW COUNTS	W	ELL .	5/4/92 CTION	
			Sand & Gravel fil Brown, dry, no od		GP	0.0.	<u> </u>	We	:11 ip	Grout Bento-	
-5'		`.	Clay, dark gray, plastic, moist. No odor.		CI	0.00		- sı	010" ot PVC	Pellet	S
_10 {		MW-4 10-10.5'	Clay, dark gray, plastic, wet				1		2 9 3	Lone- Star #3 Sand	
15	-	MW-4	No odor. Bits of decayed wood. TD = 16.5'		СН		2	TD	=15		
200	,	15-15.5							T .	, <u>*</u> , •	3.
20		• -	•								
5										2	
0											
And Andrews Control							ļ				


....

Soil color described using Munsell soil color charts	Blows/foot	HNu (ppm)	SAMPLE #	Sample Int.	Depth (feet)	Equ Log PRO	ipment ged By JECT:	gg Drilling, B-53 Rig Hollow Stem Auger M. Kaltreider Grand Marina 10/28/94
(Gley 3)	12	0	MW5a-1.5		0 2		Dark g (5-7%	rey gravelly sand with gravel) with trace clay, med. very moist (interperted at Fill).
	4	0	MW5a-3.5 MW5a-4 MW5a-4.5		_4 -			k clayey sand (SC) to sandy clay , soft, very plastic, very moist et.
					_ € -		dark g	clay (CH) with mottling of grey material, slightly stiff to very plastic, very moist with
	4	0		Z	— 8 -		altern lenses	ating horizons of peat and sand i, few shell fragments.
	2	0	MW5a-12	Z	- 10 <i>-</i>			nd marsh deposits encountered, erted as Bay Mud Formation ial.
					— 14 —			OTTOM OF BORING @ 12 FEET pleted as monitoring well MW-5a
·			٠		16			
					<u> </u>			
		,			—20 —			
• (- 22 -		<u>.</u>	
					- 24 - - 26 -		•	
					- ₂₈ -			
	1	<u> </u>						
ACC ENVIRONMENT 1000 ATLANTIC A	VEU	NUE	, SUITE 110	ж	OB NO: 9	4-617	'6-1	Boring MW-5a Grand Marina 2009 Grand Street
ALAMEDA,	<u></u>	J4:	JV I	(DATE: 10	/28/9	94	Alameda, California


Soil color described using Munsell soil color charts	Blows/foot	HNu (ppm)	SAMPLE #	Sample Int.	Depth (feet)		Loge PRO Star	pment: ged By: JECT: t Date:	gg Drilling, B-53 Rig Hollow Stem Auger M. Kaltreider Grand Marina 10/28/94
(Gley 3)				L	_5 .		800	(5-7%	rey gravelly sand with gravel) with trace clay, med. very moist (interperted at Fill).
	4	0	MW6a-3	1	¥ 4 -				÷
	2	0	MW6a-5		Y			Black	clay (CH) with mottling of
					- 6 -			dark g	rey material, slightly stiff to very plastic, very moist with
	2	0			- 8 ·				ating horizons of peat and sand , few shell fragments.
	-				10	1			nd marsh deposits encountered,
	2	0	MW6a-12		<u> </u>			Mater	erted as Bay Mud Formation ial.
					12				OTTOM OF BORING @ 12 FEET pleted as monitoring well MW-6a
,					- 14	1			· .
			٠		 16	-			
					— 18	-			₹.
					— 20	-			
`			~		22	-			· · · · · · · · · · · · · · · · · · ·
	.]				- 24	-			
9					— 26	1			,
					— 28	-			,
ACC ENVIRONMENT 1000 ATLANTIC A				J	OB NO:	94	4-617	'6-1	Boring MW-6a Grand Marina
ALAMEDA,	CA	94	501		DATE: 1	0,	/28/9)4	2009 Grand Street Alameda, California

}

ABOVE GROUND STORAGE TANK RELATED INFORMATION

SECOR

Took 4-4.

Accults of Soll Sampling and Audyses Grand Street and Fortmann Way Property

Alameda, California

			***************************************		(1.1		O(1414-141-141-141-141-141-141-141-141-14				-		Chemical										
				IPIL as Diese		Tota	I Oil and G	rease	l	Benzene			Toluene		1	Ethylbenzen	Ċ		lotal Xylen			Benzo(a)pyre	
Sample	Depth of	Sample	Detection	Reported	Statistical	Detection	Reported	Statistical	Detection	Reported	Statistical	Detection	Reported	Statistical	Detection	Reported	Statistical	Detection	Reported	Statistical	Detection	Reported	Statistical
1dentification	Sample	Date	Limit	Value	Value	Limit	Value	Value	Limit	Value	Value	Limit	Value	Value	Limit	Value	Value	Limit	Value	Value	Limit	Value	Value
Identification		Dan	(mg/kg) 1	(mg/k g)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	(fcet)		(телке)	(mg/n 5/	(11.67.67	((6767	(66)	(881	(· · · · · · ·	<u>, , , , , , , , , , , , , , , , , , , </u>										
							1300	1300	0,005	ND 2	0.0025	0 005	ND	0 0025	0 005	ND	0,0025	0,005	0 13	0.13		7.70E-05	7.70E-05
1	0 - 0 5	4/10/92	100	1100	1100	30	15000	15000	0.005	ND	0.0025	0.005	0.55	0.55	0 005	0.88	0.88	0,005	3.0	3		1,47E-03	1.47E-03
3	0 0 5	4/30/92	1000	21000	21000 3500	30 30	2800	2800	0.005	ND	0.0025	0.005	ND	0.0025	0 005	ND	0.0025	0,005	סא	0.0025		2.45E-04	2.45E-04
<u> </u>	0 - 0 5	4/30/92	100	3500 960	960	30	2100	2100	0.005	ND	0.0025	0.005	ND	0.0025	0 005	0.13	0.13	0 005	0,54	0,54]	6.72E-05	6,72E-05
7	0 - 0 5	4/30/92	10	44	55	30	320	320	0.005	ND	0.0025	0.005	ND	0.0025	0.005	ND	0 0025	0,005	0.010	0.01		3.85E-06	3 85E-06
9	0 05	4/30/92 4/30/92	500	12000	12000	30	4000	4000	0.005	ND	0.0025	0.005	ND	0,0025	0.005	ND	0,0025	0,005	ND	0 0025		8 40E-04	8 40E-04
11	0.05			-		30	1100	1100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA
12	0 - 0.5	4/30/92	NA,	NΑ	NA	30	1100	1100	11/	11/4	IVA.	1	,	1.7.	1		****] '					
		4/30/92	50	250	250	30	1100	1100	0 005	ND	0.0025	0.005	ND	0.0025	0 005	ND	0.0025	0.005	ND	0,0025		1.75E-05	1.75E-05
13, 14, 16	0-05	4/30/92	10	160	160	30	470	470	0.005	ND	0.0025	0.005	ND	0,0025	0 005	ND	0 0025	0.005	0 086	0.086	1	1 12E-05	1.12E-05
15	0-05	4/30/92	50	230	230	30	680	680	0.005	ND	0,0025	0.005	ND	0.0025	0 005	ND	0 0025	0 005	0 009	0,009		1 61E-05	1,61E-05
17 - 20 21 - 24	0-05	4/30/92	10	180	180	30	1500	1500	0,005	ND	0.0025	0.005	ND	0.0025	0 005	ND	0 0025	0 005	0.013	0.013		1.26E-05	1.26E-05
25 - 28	0.05	4/30/92	50	1300	1300	30	2300	2300	0 005	ND	0 0025	0.005	ND	0.0025	0.00\$	ND	0.0025	0,005	ND	0 0025		9 10E-05	9.10E-05
29, 30, 32A	0.03	4/30/92	50	1100	1100	30	690	690	0 005	ND '	0,0025	0.005	ND	0,0025	0 005	ND	0.0025	0 005	ND	0.0025		7.70E-05	7 70E-05
17, 50, 527	0 00		1						1									l			(
ļ,	65-70	4/30/92	10	99	99	30	220	220	0 005	ND	0.0025	0,005	ND	0 0025	0 005	ND	0,0025	0,005	ND	0 0025	••	6.93E-06	6.93E-06
2	55-60	4/30/92	10	36	36	30	130	130	0,005	ND	0.0025	0.005	ND	0.0025	0 005	ND	0,0025	0 005	ND	0.0025	•-	2,52E-06	2 52E-06
3	55 60	4/)0/92	10	900	900	30	1800	1800	0.005	ND	0 0025	0.005	ND	0.0025	0.005	0, 8	0.1	0,005	ND	0 0025	l ••	6.30E-05	6 30E-05
4	40 45	4/30/92	50	490	490	30	1900	1900	0.005	ND	0.0025	0.005	ND	0.0025	0 005	ND	0,0025	0 005	1,2	1.2	\	3.43E-05	3 43E-05
5	55-60	4/30/92	10	40	40	30	200	200	0 005	0.024	0.024	0.003	0.14	0 14	0.005	0.075	0.075	0,005	0.23	0 23	••	2.80E-06	2,80E-06
6	55-60	4/30/92	50	1200	1200	30	840	840	0.005	ND	0.0025	0 005	ND	0.0025	0,005	ND	0,0025	0 005	0.085	0.085	•••	8.40E-05	8 40E-05
7	55 60	4/30/92	10	19	19	30	190	190	0,005	0.006	0,006	0,005	ND	0.0025	0 005	ND	0,0025	0 005	0,009	0,009		1.33E-06	1.33E-06
8	65-70	4/30/92	10	19	19	30	120	120	0 005	ND	0 0025	0 005	ND	0.0025	0,005	ND	0,0025	0,005	ND	0,0025		1 33E-06 1,26E-06	1,33E-06 1,26E-06
9	55 60	4/30/92	10	18	18	30	120	120	0 005	ND	0.0025	0,005	ND	0 0025	0 005	ND	0.0025	0,005	0 010	0.01) ··	6,79E-06	6.79E-06
10	55-60	4/30/92	10	97	97	30	200	200	0.005	ND	0.0025	0 005	ND	0.0025	0,005	ND	0.0025	0,005	ND	0.0025	7.000.03		0.79E-00 3.50E-07
11	4-45	4/30/92	10	ND	5	30	90	90	0.005	ND	0,0025	0.005	ND	0.0025	0 005	ND	0.0025	0.005	ND	0.0025	7.00E-07 7.00E-07	סא סא	3.50E-07
12	65-70	4/30/92	10	ND	5	30	100	100	0.005	ND	0.0025	0.005	ND	0.0025	0 005	ND	0.0025	0.005	ND	0.0025	1	3.78E-04	3.78E-04
PL-2	40-45	4/30/92	200	5400	5400	30	10000	10000	0 005	ND	0 0025	0 005	ND	0.0025	0.005	DN DN	0.0025 0.0025	0.005	ND ND	0.0025	::	2 17E-06	2.17E-06
PL-3	40-41	4/30/92	10	31	31	30	560	560	0.005	ND	0.0025	0,005	ND	0.0025	0.005	0.22	0.0025	0.005	0,60	0.0023] ::	7,70E-04	7.70E-04
PL-4	45-50	4/30/92	200	11000	11000	30	11000	11000	0.005	ND	0 0025	0.005	ND	0.0025	0.003	0.22	0,22	0.003	0.00	0.0	1	7,701,00	1.102 01
Í					_	1			1	\$1.5	NA	AN	NA	NA	NA.	NA	NA	NA.	NA	NA	7.00E-07	ИD	3 50E-07
32∧	0 - 0 5	4/30/92	10	ND	5	30	57	57	NA.	na Na	NA.	NA.	NA.	NA.	NA.	NA.	NA	NA	NA	NA		3 43E-06	3,43E-06
33A, 35A 36A	0 - 0 5	4/30/92	10	49	49	30	310	310	NA NA		NA NA	NA NA	NA NA	NA.	NA.	NA.	NA	NA	NA	NA		4 41E-06	4,41E-06
37A - 40A	0 - 0 5	4/30/92	10	63	63	30	220	220	NA 0,005	NA ND	0.0025	0,005	ND	0.0025	0.005	ND	0.0025	0 005	ΝD	0.0025	NA	NA	NA
32A	0 0 5	5/2/92	NA NA	NA	NA NA	NA NA	NA NA	NA NA	0.005	ND ND	0.0025	0.003	מא	0.0025	0.005	ND	0.0025	0.005	ØИ	0.0025	NA	NA	NA
33A, 35A 36A	0 0 5	5/2/92	NA NA	NA	NA NA	NA NA	NA NA	NA NA	0,005	ND	0.0025	0.005	ND	0.0025	0,005	ND	0.0025	0.005	ND	0.0025	NA	NA	NA
37A - 40A	0 - 0 5	5/2/92	NA 10	NA OR	NA os	NA 30	850	850	0.005	ND	0.0025	0.005	0.014	0.014	0.005	ND	0.0025	0.005	0,014	0.014	••	6.86E-06	6 86E-06
41A + 44A	0 - 0 5	5/2/92	10	98	98 240	30	980	980	0.003	Dא	0,0025	0.005	0.005	0.005	0.005	0.013	0.013	0.005	0 040	0,04		1.68E-05	1.68E-05
45A, 47A, 48A	0-05	5/2/92	10	240	7900	30	8600	8600	0.005	ND	0,0025	0.005	ND	0,0025	0.005	ND	0.0025	0.005	ND	0,0025	١	5 53E-04	5.53E-04
49A, 50A	0 - 0 5	5/2/92	200	7900	1300	1 ,0	0000	9000	1 0.003	115	4,4444	1			1								
	0.01	5/5/92	50	110	110	30	400	400	NA.	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA		7 70E-06	7.70E-06
51A, 52A	0-05	5/3/92 5/2/92	10	28	28	30	40	40	0 005	ND	0 0025	0 005	ND	0.0025	0.005	ND	0.0025	0 005	ND	0.0025		1.96E-06	1.96E-06
51B, 52B	40-45	5/2/92 5/2/92	10	24	24	30	87 ~	-	0 005	ND	0.0025	0 005	ND	0.0025	0 005	ND	0,0025	0 005	ИD	0.0025		1 68E-06	1 68E-06
51B	40-45	312192	10	24	47	1 ~~		٠,٠	1	,		1			1			1			1		
32B	40.45	5/2/92	10	ND	5	30	110	110	0.005	ND	0.0025	0.005	ND	0 0025	0.005	ND	0.0025	0 005	ИD	0.0025	7.00E-07	ND	3 SOE-07
32B 33B	40-45	5/2/92	200	550	550	30	\$500	5500	0,005	ND	0 0025	0 005	ДN	0.0025	0.005	ND	0.0025	0 005	ΝD	0.0025	••	3,85E-05	3.85E-05
33B, 35B, 36B	40-45	5/2/92	200	460	460	30	2000	2000	0.005	ND	0,0025	0,005	ND	0.0025	0.005	ND	0.0025	0 005	ΔN	0,0025		3 22E-05	1.22E-05
	40-45	5/2/92	200	910	910	30	2700	2700	0 005	ND	0.0025	0.005	ND	0.0025	0.005	ND	0.0025	0.005	ND	0.0025	•••	6,37E-05	6 37E-05
37B - 40B 41B - 44B	40-45	5/2/92	200	590	590	30	630	630	0,005	ND	0 0025	0,005	ND	0.0025	0.005	ND	0.0025	0.005	ND	0.0025	••	4.13E-05	4.135-05
418 - 448	40 41	5/2/92	10	200	200	30	3500	3500	0 005	ND	0 0025	0 005	180.0	0.081	0.005	0.66	0.66	0.005	1.9	1.9	••	1.40E-05	1.40E-05
45B, 48B	40 45	5/2/92	10	110	110	30	1200	1200	0,005	ND	0.0025	0,005	ND	0 0025	0.005	0.23	0.23	0.005	0 30	0,3	••	7.70E-06	7.70E-06
45B, 48B 49B	40-45	5/2/92	1000	16000	. 16000	30	1300	1300	0.005	ND	0,0025	0.005	1,2	1,2	0.005	0.74	0.74	0 005	1.9	1.9	••	1.12E-03	1 12E-03
	40-45	5/2/92	10	11000	11000	10	4500	4500	0.005	ND	0.0025	0,005	ND	0.0025	0,005	ND	0.0025	0 005	11	1.1	••	7.70E-04	7 70E-04
49B, 50B	40-45	5/2/92	10	11000	11000	1 20	7,00		0.007		2.0023												

10/15/97 2:00 PM

Grand Street and Fortmann Way Property Alameda, California

		,,, ,	RCGT Salama						######################################				Chemical					نساننا يهيد					
		ſ		l Pli na D iese	1	Tota	l Oil and C	rease		Benzene			Toluene		1	Sthylbenzen	e		Cotal Xylene			Benzo(s)pyrer	
Sample	Depth of	Sample	Detection	Reported	Statistical	Detection	Reported	Statistical	Detection	Reported	Statistical	Detection	Reported	Statistical	Detection	Reported	Statistical	Detection	Reported	Statistical	Detection	Reported	Statistical
Identification	Sample	Date	Lamit	Value	Value	Limit	Value	Value	Limit	Value	Value	Limit	Value	Value	Limit	Value	Value	Limit	Value	Value	Limit	Yalue	Value
	(feet)		(mg/kg) 1	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
							4000	0000	2 200	ND	0.0025	0.005	0,87	0,87	0.005	1.0		0.005	2.1	2.1		4.62E-05	4.62E-05
TP-I	40-45	5/1/92	50	660	660	30	2000	2000	0,005	ND	0.0025	0.005 0.005	0.54	0.67	0.003	0,34	0,34	0,005	0.59	0.59	NA.	NA.	NA
TP-2	40-45	5/1/92	NA	NΛ	NA	30	350	350	0.005			1		0.18	t .	0.131	0,131	0.005	0.40	0.4	NA NA	NA.	NA NA
TP-3	40-45	5/1/92	NA	NA	NA	30	4400	4400	0 005	0.15	0.15	0.005	0.18		0,005	ND		0.005	ND	0,0025	NA NA	NA.	NA NA
TP-5	40-45	5/1/92	ΝΛ	NA	NA	30	12000	12000	0.005	ND	0.0025	0.005	ND	0.0025	0.005		0.0025		0.64	0.64	NA.	NA AK	NA.
TP-6	40-45	5/1/92	ΝΛ	NA	NA	30	7500	7500	0.005	ND	0.0025	0.005	0.088	880.0	0 005	0.20	0.2	0.005	0.15		1	NA NA	NA NA
TP-3	40-45	5/1/92	144	NA	NA	30	480	480	0 005	ND	0.0025	0.005	0.013	0 013	0 005	0.059	0.059	0.005	0.13	0.15	NA	NA	NA
TP-8	40-45	5/1/92	10	82	82	30	410	410	0.005	ND	0.0025	0.005	ND	0 0025	0.005	ND	0.0025	0.005	ND	0,0025		5.74E-06	5.74E-06
TP-9	40-45	5/1/92	100	4700	4700	30	3100	3100	0.005	ND	0.0025	0.005	ND	0 0025	0.005	ND	0.0025	0.003	5.8	5,8	ì ··	3.29E-04	3.29E-04
PL-12	40-45	5/1/92	10	21	21	30	37	37	0.005	ND	0.0025	0.005	ND	0.0025	0.005	ND	0.0025	0,005	ΝD	0,0025	٠٠	1.47E-06	1.47E-06
25 - 28	40-45	5/1/92	10	ND	5	30	310	310	0.005	ND	0,0025	0,005	ND	0.0025	0.005	ND	0.0025	0.005	ИD	0,0025	7,00E-07	ИD	3.50E-07
29, 30, 32B	40-45	5/1/92	10	13	13	30	43	43	0.005	ND	0.0025	0.005	ND	0.0025	0.005	ND	0,0025	0,005	ND	0.0025	٠٠ ا	9.10E-07	9.10E-07
38-1	40-45	5/2/92	10	МD	5	30	180	180	NA.	NA	NA	NA	NA	NA	NA	. NA	NA	NA.	NA	NA	7.00E-07	ND	3.50E-07
MW-1	40-45	5/4/92	200	970	970	30	2400	2400	0.005	ND	0.0025	0.005	ND	0.0025	0.005	ND	0.0025	0.005	סא	0,0025		6,79E-05	6.79E-05
MW-2	40-45	5/4/92	20	150	150	30	57	57	0 005	0 24	0,24	0.005	0.62	0 62	0,005	0.050	0,050	0,005	0.26	0.26	\	1.05E-05	1.05E-05
MW-3	60-65	5/4/92	10	ND	5	30	170	170	0.005	ND	0.0025	0,005	ND	0.0025	0.005	ND	0.0025	0.005	ND	0,0025	7,00E-07	ND	3.50E-07
TP3A-2		Oct-94		1.400	1,400		••		0.0025	ND	0.00125	0,0025	ND	0.00125	0,0025	ND	0.00125	0,0025	ND	0.00125	l	9.80E-05	9.80E-05
		Oct-94	İ	23	23		••	••	0.0025	ND	0.00125	0.0025	ND	0.00125	0.0025	מא	0.00125	0.0025	ND	0.00125	l	1.61E-06	
MW-5-2 5		Oct-94	1	27	27	::	••		0.0025	ND	0.00125	0.0025	ND	0.00125	0.0025	ND	0.00125	0.0025	ND	0.00125	1	1.89E-06	1.89E-06
MW-5 5		Oct-94	1 000	ND	0.5		•••		0.0025	ND	0.00125	0.0025	ND	0.00125	0.0025	ND	0.00125	0.0025	ND	0.00125	7.00E-08	ND	1,50E-08
MW-5A-6		Oct-94	1 000	28	•••		••		0,0025	ИD	0.00125	0.0025	סא	0.00125	0.0025	ND	0.00125	0.0025	ND	0.00125	,,,,,,	1.96E-06	
MS-6-2 5		Oct-94		240	240	1	••		0.0025	ND	0.00125	0.0025	ND	0 00125	0.0025	ND	0.00125		15	15		1.68E-05	1.68E-05
MW-7 2 MW-8-3 5		Oct-94		97	97	i			0.005	ND	0.0025		0.0057	0 0057	0.005	0.01	0.01		0.084	0.084		6.79E-06	

Footnotes

1 mg/Lg = milligrams per kilogram

2 ND = not detected above the method detection limit. Consistent with USIPA (1989) guidelines, half of the method detection limit was used to represent a non-detect value, if the chemical was detected at least once.

References

USEPA 1989 Rick Assessment Quidance for Superfund Human Health Evaluation Manual Part A, Interim Final July.

10/15/97 1:00 PM

^{1 ... -} not evaluable

⁴ NA 4 not analyzed

Results of Groundwater Sampling and Analyses Grand Street and Fortmann Way Property Alameda, California

v-

				· · · · · · · · · · · · · · · · · · ·	y 9								Chemicals							·-· · · · · · · · · · · · · · · · · · ·		
					,			77-4	-1 00 C			Benzene	Citetilicais		Toluene			Ethylbenze	ne		otal Xylene	
			H as Gasol			TPH as Dies			al Oil and G	Statistical	Detection	Reported	Statistical	Detection		Statistical	Detection	Reported	Statistical	Detection	Reported	Statistical
Sample	Sample	Detection	Reported		Detection	Reported	Statistical	Detection	Reported	Value	Limit	Value	Value	Limit	Value	Value	Limit	Value	Value	Limit	Value	Value
Identification	Date	Lamit	Value	Value	Limit	Value	Value	Limit	Value	1			(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(eg/L)	(ug/L)
		(mg/L) 1	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L) ¹	(ug/L)	(116/15)	(182)	1-6-7	(-8)			1 2			
					1			٠.	ND	2,5	0,5	ND	0,25	0.5	0.8	0,8	0.5	ND	0.25	0.5	1.3	1.3
MW-I	05/12/92	0.05	ND ³	0.025	0 05	ND	0.025	5.0	ND		1	0.5	0.5		1.1	1.1	0.05	ND	0.025		1.4	1.4
MW-1	11/01/94		0.08	0.08	1	04	0.4	5.0	ND	2.5	0,5	ND	0.3	0.5	ND	0,25	0.5	ND	0,25	0.5	ND	0,25
MW-I	02/06/95	0.05	ND	0 025		1.3	1.3	5.0	ND	2.5	•		0.23	NS	NS	-,	NS	NS		NS	NS	
MW-I	05/09/95	NS '	NS		NS	NS		NS	NS		NS	NS					1	ND	0.25	0.5	ND	0.25
MW-I	08/22/95	0.05	ND	0.025		1.1	1. l	5,0	ND	2.5	0.5	ND	0.25	0,5	ND	0 25 0.25	0.5 0.5	ND	0.25	0.5	ND	0.25
MW-1	11/08/95	0.05	ND	0.025		0 33	0.33	NA	NA		0.5	ND	0.25	0.5	ND ND	0.25	0.5	ND	0,25	0.5	ND	0.25
MW-I	02/28/96	NS	NS		NS	NS		NS	NS		0.5	ND	0 25	0.5	ND	0.25	0.5	ND	0.25	0.5	ND	0.25
MW-I	06/24/96	50	ND	25	NS	NS		NS	NS		0.5	ND	0,25	0.5	ND	0.23	""			1		
				-	1			١		25	0.5	4000	4000	0.5	11000	11000	0.5	500	500	0.5	2900	2900
MW-2	05/12/92	0.05	29	29	0,25	1,2	1 2	5.0	ND NS	25	0.5	510	510		670	670		65	65	-	320	320
MW-2	11/01/94	N54	NS Y	4	NS	NS		NS NS	NS NS		\	360	360		230	230		20	20	-	100	100
MW-2	02/01/95	NS	NS /	.9	NS NS	NS NS		NS NS	NS NS			550	550		350	350		28	28		120	120
MW-2	05/01/95	NS	NS ±)	NS NS	NS NS		NS	NS	•		290	290		120	120	••	11	11	-	37	37
MW-2	08/01/95	NS.	14.5		NS	NS		NS	NS			190	190		35	35		6.4	6.4	"	16	16
MW-2	12/01/95	NS	NS /	.0		11	1.1	NS	NS		NS	NS		NS	NS		NS	NS		145	NS	
MW-2	02/28/96	NS	NS.	7.7	· •		1.1	''-									1			1		
		0.00		0.024	0.05	0.12	0,12	5.0	ND	2,5	0.5	ND	0 25	0.5	1	1	0.5	ND	0.25	0.5	ND	0,25
MW-3	05/12/92	0 05	ND	0 025	1 003	V.12	V.12	1	•					l			ļ					0.15
	04/10/00	0.05	ND	0 025	0.05	0.15	0.15	5,0	ND	2.5	0.5	ND	0.25	0.5	ND	0.25	0.5	ND	0.25	0.5	ND	0.25 0.25
MW-4	05/12/92	0 05	ND	0 025		0.24	0 24	5,0	ND	2.5	0.5	ND	0.25	0.5	ND	0.25	0.5	ND	0,25	0.5 0.5	ND DN	0.25
MW-4	11/01/94 02/01/95	NS.	NS	0 025	NS	NS		NS	NS		0.5	ND	0.25	0.5	ND	0.25	0.5	DN DN	0,25 0,25	0.5	ND	0.25
MW-4 MW-4	05/09/95	0.05	ND	0 025	0.05	ND	0.025	5	ND	2,5	0,5	ND	0,25	0.5	ND	0.25	0,5 0.5	ND ND	0.25	0.5	ND	0.25
MW-4	08/22/95	0.05	ND	0 025		0.41	0.41	5	ND	2.5	0.5	ND	0,25	0.5	ND	0,25 0,25	0.5	ND	0.23	0.5	ND	0.25
MW-4	11/08/95	0.05	ND	0.025	*	0 46	0,46	NA.	NA		0.5	ND	0.25	0.5	ND ND	0.25	0.5	ND	0.25	0.5	ND	0.25
MW-4	02/28/96	NS	NS		NS	NS		NS	NS		0.5	ND	0.25	05	ND	0.25	0.5	ND	0,25	0,5	ND	0.25
MW-4	06/24/96	50	ND	25	NS	NS		NS	NS		0.5	ND	0 25	, ,,	ND	0.23	"."	1.0	5,25			
1								١.		• •	2.4	ND	0.25	0.5	ND	0 25	0,5	ND	0.25	0.5	ND	0.25
MW-5	11/01/94	0.05	ND	0.025		0.560	0.560	3	ND	2.5	0.5 0.5	ND	0,25	0.5	ND	0.25	0.5	ND	0.25	0.5	ND	0 25
MW-5	02/06/95		1.0	1.0		0,460	0.460	5	ND ND	2.5 2.5	0.5	ND	0,25	0.5	ND	0.25	0.5	ND	0.25	0.5	ND	0.25
MW-5	05/09/95	0.05	ND	0 025	0.05	ND	0.025	5	ND	2.5	0.5	ND	0.25	0.5	ND	0.25	0.5	ND	0.25	0.5	ND	0.25
MW-5	08/22/95	0.05	ND	0 025		0.910 0.260	0,910 0,260	NA.	NA AM	2.5	0.5	ND	0,25	0.5	ND	0,25	0,5	מא	0.25	0.5	ND	0 25
MW-5	11/08/95	0 05	ND	0 025	NS NS	0,260 NS	0,200	NS	NS		0.5	מא	0 25	0.5	ND	0.25	0.5	ND	0.25	0.5	ND	0.25
MW-5	02/28/96	NS	NS	26	NS	NS		NS	NS		0.5	ND	0.25	0.5	ND	0,25	0.5	ND	0 25	0,5	ND	0.25
MW-5	06/24/96	50	ND	25	"	110		'	*		1						1			0.5	ND	ó,25
		0.05	ИD	0 025	٠	0.5	0.5	5.0	ND	2,5	0.5	ND	0.25	0.5	ND	0,25	0.5	ND	0.25	0.5	DM	0,25
MW-6	11/01/94 02/06/95		ND	0 025		0,57	0.57	5.0	ND	2.5	0.5	ND	0,25	0.5	ND	0.25	0.5	ND ND	0.25 0.25	0.5	ND	0,25
MW-6	05/09/93		ND	0 025	0.05	ND	0.025	5.0	ND	2 5	0.5	ND	0,25	0.5	ND	0,25	0.5	טא סא	0.25	0.5	ND	0.25
MW-6 MW-6	08/22/95		ΝD	0 025		0.79	0.79	5.0	ND	2,5	0.5	ND	0.25	0.5	ND	0.25	0.5 0.5	ND	0.25	0.5	ND	0.25
MW-6	11/08/95		ND	0 025		0.33	0 33	NA.	NA		0.5	ND	0.25	0.5	ND DN	0.25 0.25	0.5	ND	0.25	0.5	ND	0.25
MW-6	02/28/96	1	NS		NS	NS		NS	NS		0.5	ND	0 25	0,5	ND	0.23	0.5	ND	0.25	0.5	ND	0,25
MW-6	06/24/96		ND	25	NS	NS	٠ 	NS	NS		0.5	ND	0 25	0.3	HU	0.23	"	,,,,				
	'				1		•-,,	L			0.5	ND	0 25	0.5	ND	0,25	0.5	ND	0,25	0.5	ND	0.25
MW-6a	11/01/94	i NS	NS		NS	N\$		NS	NS		0.5	ND DN	0.25	0.5	ND	0.25	05	ND	0,25		2.5	2.5
MW-61	02/01/95		NS		NS	NS		NS NS	NS NS		0.5	ND	0.25	0.5	ND	0.25	0.5	ND	0 25	0.5	ИD	0.25
MW-61	05/01/95		NS		NS	NS	•	. NS	. NS		0.5	ND	0.25	0.5	· ND	0,25	0.5	ND	0,25	0,5	ND	0.25
MW-6a	08/01/9		28		NS	NS NS		NS NS	NS NS		0.5			0.5	· ND	0.25	0.5	ND	0.25	0.5	ИD	0.25
MW-6a	12/01/9	5 NS	NS		. NS	พร		('**	113		1	:	i. 0 25	1						{		
Į.					'												<u> </u>					

2:00 PM 10/15/97

and the state of t

Results of Groundwater Sampling and Analyses

Grand Street and Fortmann Way Property Alameda, California

													Chemicals									
	· ·												Chenneus		Toluene			Ethylbenzer	ie .	T	otal Xylene	
	ŀ	T	'R as Gasol	ine	<u> </u>	TPH as Diesel	Statistical	Tot Detection	al Oil and G Reported	rease Statistical	Detection	Benzene Reported	Statistical	Detection	Reported	Statistical	Detection	Reported	Statistical	Detection Limit	Reported Value	Statistical Value
Sample Identification	Sample Date	Detection Limit	Reported Value	Statistical Value	Detection Limit	Reported Value	Value	Limit	Value	Value	Limit	Value	Value	Limit	Value (ug/L)	Value (ug/L)	Umit (ug/L)	Value (ug/L)	Value (ug/L)	(ug/L)	(ug/L)	(ug/L)
10entilication	Date	(mg/L) 1	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L) 2	(ug/L)	(ug/L)	(ug/L)					0 25	0,5	ND	0,25
MW-7	11/01/94	0.05	ND	0 025		0.97	0.97	5.0	ND ND	2.5 2,5	0.5	ND ND	0,25 0,25	05	ND ND	0.25 0.25	0.5 0.5	ND UN	0,25	0.5	ND	0.25 0.25
MW-7 MW-7	02/06/95 05/09/95	0.05	MD GM	0 025 0 025	0.05	13 ND	1.3 0 025	5.0 5.0	ND	2,5	0.5	ND DN	0.25 0.25	0.5	DN DN	0,25 0,25	0.5	ND GN	0,25 0,25	0.5	ND	0.25
MW-7	08/22/95	0.05	ИD	0 025 0 025		2 2 0.7	2,2 0,7	5,0 NA	ND NA	2.5	0,5	ND	0.25 0.25	0.5	ND ND	0.25 0,25	0.5 0.5	ND MD	0,25 0,25	0.5 0.5	ND ON	0.25 0.25
MW-7 MW-7	02/28/96	NS	NS ND	25	NS NS	ns Ns		NS NS	NS NS		0.5	ND ND	0.25	0.5	ND	0,25	0,5	ND	0,25	0.5	ND	0.25
MW-7	06/24/96	50				1.0	1.0	5.0	ND	2.5	0,5	ND	0.25	0.5	ND	0.25	0.5	ND	0,25	0.5	ND	0 25 0.25
MW-8 MW-8	11/01/94 02/06/95	0.05	ND ND	0 025 0 025		0.93 (0 47) 7	0.7	50	ND	2,5	0.5	ND ND	0,25 0,25	0.5 0.5	ДИ ДИ	0,25 0.25	0,5	ND DN	0,23 0 25	0.5	ND ND	0.25
MW-8 MW-8	05/09/95 08/22/95	0 05	ON ON	0 025 0 025	0,05	<0.05 (<0.05) 1.5	1.5	5.0 5.0	ND ND	2,5 2,5	0.5	ND ND	0.25 0.25	0.5 0.5	ND ND	0.25 0.25	0.5 0.5	ND ND	0.25 0.25	0.5	DN DN	0,25 0,25
MW-8	11/08/95	0 05 NS	ND NS	0 025	NS	0.57 NS	0,57	NA NS	NA NS	•	0.5	ND	0.25 0.25	0.5 0.5	ND ND	0,25 0,25	0.5	ND ND	0 25 0.25	0,5 0,5	ND OM	0.25 0.25
MW-8 MW-8	02/28/96 06/24/96	i	ND	25	NS	NS		NS	NS		05	ND	0 25	0.3	110					<u> </u>		

Footnotes

mg/L = milligrams per liter

pight = nucrograms per inco.

ND = not detected above the method detection limit. Consistent with USEPA (1989) guidelines, half of the method detection limit was used to represent a non-detect value, if the chemical was detected at least once.

ND = not detected above the method detection limit.

oldelieve ton = - . *

1 NS = not sampled/well inaccessible

* • Hydrocarbons found in the diesel range do not resemble the diesel fing erprint

(0.47) Duplicate sample result

References

USEPA 1989 Risk Assessment Guldance for Superfund. Human Health Evaluation Manual Part A. Interim Final. July