1252 Quarry Lane P.O. Box 9019 Pleasanton, CA 94566 (510) 426-2600 Fax (510) 426-0106

March 9, 1994

HAZMAT 94 MAR 14 PH 2: 52

Ms. Juliett Shin Hazardous Materials Specialist ALAMEDA COUNTY HEALTH AGENCY 80 Swan Way, Room 200 Oakland, California 94621

Clayton Project No. 53966.00

Subject: Work Plan for Subsurface Investigation at Ballena Isle Marina located at 1150 Ballena Boulevard in Alameda, California

Dear Ms. Shin:

Clayton Environmental Consultants, Inc. on behalf of Ballena Isle Marina is pleased to present this work plan for subsurface investigation at Ballena Isle Marina facility located at 1150 Ballena Boulevard in Alameda, California.

If you have any questions please contact me or Mr. John Vargas at (510) 426-2676.

Sincerely,

Dariush Dastmalchi

Geologist

DD/dd

cc: Mr. Don Anderson, Ballena Isle Marina

1252 Quarry Lane P.O. Box 9019 Pleasanton, CA 94566 (510) 426-2600 Fax (510) 426-0106

Work Plan for Subsurface Investigation at Ballena Isle Marina 1150 Ballena Boulevard Alameda, California

> Clayton Project No. 53966.00 March 9, 1994

CONTENTS

Section	<u>on</u>	Pa:	<u>ge</u>
1.0	<u>INTRODUCTION</u>	• •	1
2.0	BACKGROUND		1
3.0	EXTENT AND NATURE OF SOIL AND GROUNDWATER CONTAMINATION		3
4.0	SCOPE OF WORK		4
4.1	TASK 1: HEALTH AND SAFETY PLAN	• •	4
4.2	TASK 2: DRILLING AND MONITORING WELL INSTALLATION PERMITS		4
4.3	TASK 3: IDENTIFICATION OF UNDERGROUND UTILITY	• •	7
	TRENCHES		4
4.4	TASK 4: TEMPORARY MONITORING WELL INSTALLATION		4
4.5	AND SAMPLING		4 5
4.6	TASK 5: SOIL SAWI LE COLLECTION TASK 6: LABORATORY ANALYSIS		5
4.7	TASK 7: DATA ANALYSIS AND REPORT PREPARATION		6
5.0	SCHEDULE		6
<u>Figure</u>	<u>es</u>		
1	Site Location and Topographic Map		
2	Former Underground Storage Tank Location		
<u>Appen</u>	<u>dices</u>		
Α	TAL REPORT		
В	ENSR REPORT		
C D	LAW/CRANDALL REPORT HYDROCARBON CONSULTANTS ANALYTICAL SUMMARY		
D	TIDROCARDON CONSULTANTS ANALITICAL SUMMART		

1.0 INTRODUCTION

Ballena Isle Marina retained Clayton Environmental Consultants, Inc. to prepare a work plan for the future activities planned for Ballena Isle Marina facility lactated at 1150 Ballena Boulevard in Alameda, California.

The subject facility is located on an artificial island in a commercial area of the City of Alameda (Figure 1). The site is currently used as a yacht harbor by Ballena Isle Marina.

An underground storage tank (UST) was located under the sidewalk, approximately 30 feet from the San Francisco Bay shoreline. A site diagram showing the tank location is included as Figure 2.

2.0 BACKGROUND

In September 1991 a 250-gallon waste oil UST was removed from the subject facility by the owner of the site. The soil around the tank appeared to be contaminated as a result of spillage and overfilling the tank. One soil sample was collected from the excavation pit and transported to Trace Analysis Laboratory (TAL). The soil sample was analyzed using the following methods:

- Department of Health Services (DHS) Method for total petroleum hydrocarbons as gasoline (TPH-G)
- DHS Method for total petroleum hydrocarbons as diesel (TPH-D).
- Environmental Protection Agency (EPA) Method 8020 for benzene, toluene, ethylbenzene and xylenes (BTEX)
- EPA Method 8010 for chlorinated hydrocarbons
- Standard Method (SM) 5520 for total oil and grease (TOG)
- EPA 7000 series Methods for cadmium, chromium, lead, nickel, and zinc

Analytical results of the soil sample collected from the excavation pit identified TPH-G, TPH-D and TOG above the analytical detection limits in the soil samples from the excavation pit. Analytical results for organic compounds are summarized in Table 1.

Table 1

Analytical Results for the Soil Sample Collected by TAL in September 1991

All Concentrations in Milligrams per Kilogram (mg/kg)

Sample	TPH-D	TPH-G	TOG	Toluene	Ethylbenzene	Xylenes
1	5,700	860	11,000	3.9	13	140

Chlorinated hydrocarbons and benzene were not detected in the soil sample. TAL analytical report is included in Appendix A.

Subsequently the excavation pit was over excavated to remove the contamination. According to ENSR Consulting and engineering report dated May 21, 1992 two soil samples were collected from the over-excavated tank pit (see Appendix B). One sample was collected from the north wall (SW-1) of the pit and the other sample was collected from the bottom of the pit (PB-1). The soil samples were analyzed for the following:

- TPH-G using EPA Method 8015
- TPH-D using EPA Method 8015
- BTEX using EPA Method 8020
- Volatile organic compounds (VOC) using EPA Method 8240
- TOG using SM 5520
- · cadmium, chromium, lead, nickel, and zinc

Analytical results of the soil samples collected by ENSR identified TPH-D and TOG in the soil samples from the excavation pit. Analytical results for organic compounds are summarized in Table 2.

Table 2

Analytical Results for the Soil Samples Collected by ENSR in May 1992

All Concentrations in Milligrams per Kilogram (mg/kg)

Sample	TPH-D	трн-с	TOG	Benzene	Toluene	Ethylbenzene	Xylenes
SW-1	2,200	91	5,300	ND*	ND	ND	1.9
PB-1	1,800	79	4,200	ND*	1	0.84	9.2

^{*} ND Not detected at or above the analytical detection limits

Further excavation of the contaminated soil was not possible because the excavation pit is bounded by a building foundation on the south and south west and utility vaults on the north.

In December 1992 Law/Crandall, Inc. drilled five soil borings and collected five soil samples (B-1 through B-5) from the surrounding area of the former waste oil UST. The soil samples were collected from approximately 10 feet below ground surface (bgs) and approximately 8 to 34 feet away from the excavation pit. In addition one grab water sample was collected from a boring located approximately 8 feet northwest of the pit.

The soil and grab water samples ware analyzed for the following:

- TPH-G using EPA Method 8015
- TPH-D using EPA Method 8015
- BTEX using EPA Method 8020

- VOC using EPA Method 8240
- Semivolatile organic compound (SVOC) using EPA Method 8270
- Polychlorinated biphenyls (PCB) and pesticides using EPA Method 8080
- TOG using SM 5520
- · Cadmium, chromium, lead, nickel, and zinc

TOG was detected in the soil samples ranging from 53 mg/kg in soil sample B-5 to 110 mg/kg in soil sample B-1. The grab water sample contained toluene concentration of 0.3 micrograms per liter (μ g/l). The other analytes in the soil and grab water samples were not detected at or above the analytical detection limits. The Law/Crandall report is included in Appendix C.

On October 2, 1993 Hydrocarbon Consultants collected a grab water sample from the excavation pit (OP1). The OP1 sample was analyzed for the following:

- TPH-G using EPA Method 8015
- TPH-D using EPA Method 8015
- BTEX using EPA Method 8020
- Semi volatile organic compound (SVOC) using EPA Method 8270
- PCB using EPA Method 8080
- TOG using SM 5520
- · Cadmium, chromium, lead, nickel, and zinc

Analytical results for the sample OP1 are summarized in Table 3.

Table 3

Analytical Results for the Grab Water Sample OP1 Collected by Hydrocarbon Consultants in September 1993

All Concentrations in µg/l

Sample	трн-р	TPH-G	TOG	Toluene	Ethylbenzene
OP1	9100	580	43,000	3.9	19

SVOCs, PCBs, and metals were not detected at concentration at or above the analytical detection limit. A copy of the analytical Data summary by Hydrocarbon Consultants is included in Appendix D.

3.0 EXTENT AND NATURE OF SOIL AND GROUNDWATER CONTAMINATION

Based on the analytical results collected to-date, the soil and groundwater inside the excavation pit has been impacted primarily by TPH-G, TPH-D, and TOG. According to the Law/Crandall report hydrocarbons on the east, west, and north sides of the former UST in the vicinity of boreholes B-2, B-3, an B-5. No soil sample has been collected from the south side of the excavation pit.

Based on analytical results, the groundwater collected from the excavation pit appears to be impacted by TPH-G, TPH-D, and TOG. However, the water sample collected

from hydropunch location HP-1 did not contain hydrocarbon concentrations at or above the analytical detection limits.

The following scope of work is developed to determine potential groundwater contamination in a direction closest to San Francisco Bay and extent of soil contamination on the south, east, and west side walls of the excavation pit. Based on the results of this investigation, recommendations for further work, if required, will be made.

4.0 SCOPE OF WORK

This work plan describes activities planned at the Ballena Isle Marina site to further investigate the extent of soil and possible groundwater contamination near the former UST. This work plan is based on a conversation between Ms. Juliet Shin, Hazardous Materials Specialist with Alameda County Health Care Services (ACHCS) and Mr. Dariush Dastmalchi, Clayton Project Geologist on February 17, 1994. The tasks required to perform this investigation are described in the following subsections.

4.1 TASK 1: HEALTH AND SAFETY PLAN

A health and safety plan will be prepared for the work outlined in this work plan in accordance with the requirements of Title 29 of the Code of Federal Regulations, Section 1910.120 (29 CFR 1910.120).

4.2 TASK 2: DRILLING AND MONITORING WELL INSTALLATION PERMITS

Before commencing the field activities Clayton will obtain the necessary permits from the Zone 7 Water Agency

4.3 TASK 3: IDENTIFICATION OF UNDERGROUND UTILITY TRENCHES

Clayton will contact Underground Service Alert (USA) to identify the utilities in the vicinity of the soil boring location. The identified utilities will be clearly marked on the ground. Clayton will not drill within 3 feet of a known utility line.

4.4 TASK 4: TEMPORARY MONITORING WELL INSTALLATION AND SAMPLING

To define the extent of soil and possible groundwater contamination, one temporary monitoring well (TW-1) will be installed near the former UST excavation pit. The monitoring well will be placed in the estimated downgradient side of the former tank location. This well will be installed to determine the extent of potential groundwater contamination. The proposed temporary monitoring well location is shown in Figure 2.

Boring TW-1 will be drilled using a specialized truck-mounted auger or hand auger. The borehole will extent approximately 5 feet below first encountered groundwater. The borehole will be converted into a temporary monitoring well using a 2 inch diameter schedule 40 polyvinyl chloride (PVC) casing.

To collect a representative sample of the groundwater, water within the well casing will be purged and water from the lithologic formation will be allowed to replace it. The water will be purged from the well by bailing at least three well volumes. Groundwater samples will be collected only after purging has been of sufficient duration for pH, temperature, and electrical conductivity to stabilize.

All samples will be collected in such a manner so as to minimize the volatilization of a sample due to agitation and/or transfer from bailer to sample container.

Water samples will be collected using clean disposable bailers. All equipment that contacts samples is thoroughly cleaned before arrival at the site. Water will be collected in clean laboratory-supplied containers, labeled, placed immediately into an ice chest pre-cooled to 4°C, and transported to the laboratory for analysis.

To document and trace samples from time of collection, a signed chain-of-custody record is filled out by the sampler and accompanies the samples through the laboratory analyses. The completed chain-of-custody is included with the analytical report from the laboratory.

After completion of groundwater sampling activities, the PVC casing will be removed from the well. The borehole will then be plugged with grout.

Drilling and sampling activities will be conducted in accordance under the supervision of a geologist registered in the State of California.

The soil cuttings and sampling spoils generated by the drilling process will be placed into individually labeled, Department of Transportation (DOT)-approved 55-gallon drums and left onsite until proper disposal can be determined based on laboratory analysis.

4.5 TASK 5: SOIL SAMPLE COLLECTION

A soil sample will be collected from south wall of the excavation pit at approximately 8 feet bgs. The soil sample will be collected from the excavation wall to determine the extent of contamination within the pit. Before collecting the soil sample, 4 to 6 inches of soil will be removed by hand or a mechanical device. The soil sample will then be collected using a 2.5-inch barrel hand sampler.

The soil sample will be collected in precleaned brass tube for laboratory analysis. The brass tube will be sealed with aluminum foil, plastic caps, and teflon tape, and immediately placed in an iced cooler for transport to a State Certified laboratory. Legal chain-of-custody procedures will be followed for handling of soil and water samples.

4.6 TASK 6: LABORATORY ANALYSIS

One soil sample and one water sample will be collected and transported to the state-certified laboratory.

The soil and groundwater samples will be analyzed using the following methods:

- EPA Method 8015 for TPH-D
- · EPA Method 8015 for TPH-G
- EPA Method 8020 for BTEX
- SM 5520 for TOG

4.7 TASK 7: DATA ANALYSIS AND REPORT PREPARATION

Upon completion of the laboratory analysis, a report will be prepared, summarizing the findings of the investigation. A discussion of the site investigation technique, soil and water sampling, analytical results, conclusions, and recommendations will be included in the report.

5.0 SCHEDULE

The work on this project can begin within 10 days after receipt of authorization to proceed from the ACHCS.

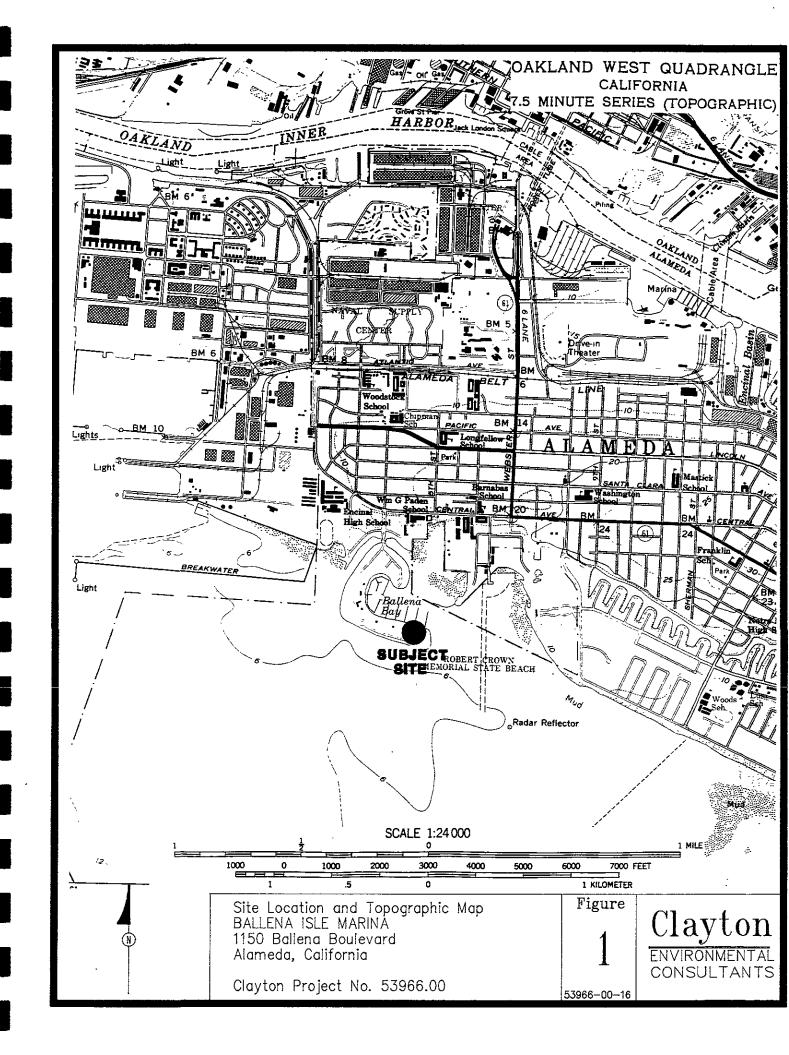
This work plan prepared by:

Dariush Dastmalchi

Geologist

This work plan reviewed by:

John F. Vargas, R.G


Supervisor, Geosciences & Remediation

Western Operations

March 9, 1994

FIGURES

Marina (Docks) Shoreline B-3 ⊕ W-1 ⊕ Embankment Utility Vaults B-2 B-1 HP-1 Asphalt Walkway B-5 **♦** PB-1 Large B-4 **♦** Storage Tree Area Former Waste Oil **UST** Excavation Asphalt Paved Maintenance Parking Lot Yard and Building **LEGEND** Proposed Groundwater Sample Collection Point Approximate Scale in Feet □ Proposed Soil Sample Collection Point Previous Sample Locations Figure Site Map Clayton BALLENA ISLE MARINA 1150 Ballena Boulevard ENVIRONMENTAL Alameda, California CONSULTANTS Clayton Project No. 53966.00

53966-00-17

APPENDIX A

TAL REPORT

3423 Investment Boulevard, #8 • Hayward, California 94545

Telephone (415) 783-6960 Facsimile (415) 783-1512

1353 LOG NUMBER:

09/27/91 DATE SAMPLED: 09/27/91 DATE RECEIVED:

DATE EXTRACTED: 10/08/91

DATE ANALYZED: 10/12/91 and 10/14/91

DATE REPORTED: 10/17/91

CUSTOMER:

Ballena Isle Marina

REQUESTER:

Jerry Green

PROJECT:

1100 Ballena Boulevard, Alameda, CA

Soil Sample Type: Method Blank Composite 2 and 3 Concen-Concen-Reporting Concen-Reporting Reporting Method and tration Limit Units tration Limit <u>tration</u> Limit Constituent: DHS Method: Total Petroleum Hydro-5,700,000 6,100 1,300,000 6,100 ND 1,000 carbons as Diesel ug/kg

QC Summary:

% Recovery: 94 and 98 0.6 and 3.5

% RPD:

Concentrations reported as ND were not detected at or above the reporting limit.

Samples 1 and Composite of 2 and 3 indicate compounds eluting later than diesel.

LOG NUMBER: DATE SAMPLED:

1353 09/27/91 09/27/91

DATE RECEIVED:
DATE EXTRACTED:

10/01/91 10/02/91 and 10/03/91

DATE ANALYZED: DATE REPORTED:

10/02/91

PAGE:

Two

		· · · · · · · · · · · · · · · · · · ·	Sample	Type:	Soil		
Method and Constituent:	<u>Units</u>	Concen- tration	I Reporting Limit	Composit Concen- tration	e 2 and 3 Reporting Limit	<u>Metho</u> Concen- <u>tration</u>	o <u>d Blank</u> Reporting <u>Limit</u>
DHS Method: Total Petroleum Hydro- carbons as Gasoline	ug/kg	860,000	2,400	7,400	500	ND	500
EPA Method 8020 for:							
Benzene	ug/kg	ND	180	ND	8.8	ND	5.0
Toluene	ug/kg	3,900	170	20	8.4	ND	5.0
Ethylbenzene	ug/kg	13,000	180	27	9.2	ND	5.0
Xylenes	ug/kg	140,000	440	140	22	ND	· 15

QC Summary:

% Recovery: 124 and 95 % RPD: 17 and 23

LOG NUMBER: 1353
DATE SAMPLED: 09/27/91
DATE RECEIVED: 09/27/91
DATE EXTRACTED: 10/01/91

DATE ANALYZED: 10/01/91
DATE REPORTED: 10/17/91

PAGE:

Three

			Sample	e Type:	Soil		
Method and Constituent:	<u>Units</u>	Concen- tration	l Reporting Limit		e 2 and 3 Reporting Limit		<u>d Blank</u> Reporting <u>Limit</u>
Standard Method 5520F Hydrocarbons:							
Oil and Grease	ua/ka	11,000,000	50,000	4.800.000	50,000	ND	50,000

OC Summary:

% Recovery: 61
% RPD: 4.2

LOG NUMBER: 1353
DATE SAMPLED: 09/27/91
DATE RECEIVED: 09/27/91
DATE EXTRACTED: 10/01/91

DATE ANALYZED: 10/05/91 DATE REPORTED: 10/17/91

PAGE: Four

Sample Type: Soil

			1		e 2 and 3		d Blank
Method and <u>Constituent</u>	<u>Units</u>	Concen- <u>tration</u>	Reporting <u>Limit</u>	Concen- <u>tration</u>	Reporting <u>Limit</u>	Concen- <u>tration</u>	Reporting <u>Limit</u>
EPA Method 8010:							
Benzyl Chloride	ug/kg	ND	6.8	ND	6.8	ND	6.8
Bis (2-Chloroethoxy) Methane	ug/kg	ND	6.8	ND	6.8	ND	6.8
Bis (2-Chloroisopropyl) Ether	ug/kg	ND	6.8	ND	6.8	ND	6.8
Bromobenzene	ug/kg	ND	6.8	ND	6.8	ND	6.8
Bromodichloromethane	ug/kg	ND	6.8	ND	6.8	ND	6.8
Bromoform	ug/kg	ND	6.8	ND	6.8	ND	6.8
Bromomethane	ug/kg	ND	6.8	ND	6.8	ND	6.8
Carbon Tetrachloride	ug/kg	ND	6.8	ND	6.8	ND	6.8
Chloracetaldehyde	ug/kg	ND	6.8	ND	6.8	ND	6.8
Chloral	ug/kg	ND	6.8	ND	6.8	ND	6.8
Chlorobenzene	ug/kg	ND	6.8	ND	6.8	ND	6.8
Chloroethane	ug/kg	ND	6.8	ND	6.8	ND	6.8
Chloroform	ug/kg	ND	6.8	ND	6.8	ND	6.8
1-Ch1orohexane	ug/kg	ND	6.8	ND	6.8	ND	6.8
2-Chloroethyl Vinyl Ether	ug/kg	ND	6.8	ND	6.8	ND	6.8

LOG NUMBER: 1353
DATE SAMPLED: 09/27/91
DATE RECEIVED: 09/27/91
DATE EXTRACTED: 10/01/91
DATE ANALYZED: 10/05/91
DATE REPORTED: 10/17/91
PAGE: Five

Sample Type: Soil

					· · · · · · · · · · · · · · · · · · ·		
			1		e 2 and 3		od Blank
Method and <u>Constituent</u>	Units	Concen- tration	Reporting <u>Limit</u>	Concen- tration	Reporting Limit	Concen- tration	Reporting _ Limit
		CI at IVII	<u> </u>	<u>LI aL IUII</u>	<u> </u>	<u>ti at juii</u>	
EPA Method 8010 (Continued	l):						
Chloromethane	ug/kg	ND	6.8	ND	6.8	ND	6.8
Chloromethyl Methyl Ether	ug/kg	ND	6.8	ND	6.8	ND	6.8
Chlorotoluene	ug/kg	ND	6.8	ND	6.8	ND	6.8
Dibromochloromethane	ug/kg	ND	6.8	ND	6.8	ND	6.8
Dibromomethane	ug/kg	ND	6.8	ND	6.8	ND	6.8
1,2-Dichlorobenzene	ug/kg	ND	6.8	ND	6.8	ND	6.8
1,3-Dichlorobenzene	ug/kg	ND	6.8	ND	6.8	ND	6.8
1,4-Dichlorobenzene	ug/kg	ND	6.8	ND	6.8	ND	6.8
Dichlorodifluoromethane	ug/kg	ND	6.8	ND	6.8	ND	6.8
1,1-Dichloroethane	ug/kg	ND	6.8	ND	6.8	ND	6.8
1,2-Dichloroethane	ug/kg	ND	6.8	ND	6.8	ND	6.8
1,1-Dichloroethylene	ug/kg	ND	6.8	ND	6.8	ND	6.8
Trans-1,2-Dichloro- ethylene	ug/kg	ND	6.8	ND	6.8	ND	6.8
Dichloromethane	ug/kg	ND	9.9	ND	9.9	ND	9.9
1,2-Dichloropropane	ug/kg	ND	6.8	ND	6.8	ND	6.8
1,3-Dichloropropylene	ug/kg	ND	6.8	ND	6.8	ND	6.8
1,1,2,2-Tetrachloro- ethane	ug/kg	ND	6.8	ND	6.8	ND	6.8

LOG NUMBER: 1353 DATE SAMPLED: 09/2 DATE RECEIVED: 09/2

09/27/91 09/27/91 10/08/91

DATE EXTRACTED: DATE ANALYZED:

10/08/91 10/09/91 and 10/10/91

DATE REPORTED:

10/17/91

PAGE:

Seven

	Sample Type: Soil					
Method and Constituent:	<u>Units</u>	Concen- tration	l Reporting Limit	Composit Concen- tration	e 2 and 3 Reporting Limit	
EPA Method 7130: Cadmium	ug/kg	ND	210	ND	210	
EPA Method 7190: Chromium	ug/kg	18,000	1,200	17,000	1,200	
EPA Method 7420: Lead	ug/kg	55,000	2,500	51,000	2,500	
EPA Method 7520: Nickel	ug/kg	14,000	2,500	14,000	2,500	
EPA Method 7950: Zinc	ug/kg	23,000	1,200	42,000	1,200	

LOG NUMBER: 1353 DATE SAMPLED: 09/27/91 09/27/91 DATE RECEIVED: DATE EXTRACTED: 10/08/91

DATE ANALYZED: DATE REPORTED:

10/17/91

10/09/91 and 10/10/91

PAGE:

Eight

		<u> </u>	<u>Sample</u>	Type:	Soil
Method and Constituent:	<u>Units</u>	<u>Metho</u> Concen- <u>tration</u>	d Blank Reporting Limit	OC Sum % Recovery	mary % _RPD
EPA Method 7130: Cadmium	ug/kg	ND	210	91	*
EPA Method 7190: Chromium	ug/kg	ND	1,200	78	7.8
EPA Method 7420: Lead	ug/kg	ND	2,500	91	13
EPA Method 7520: Nickel	ug/kg	ND	2,500	90	0.0
EPA Method 7950: Zinc	ug/kg	ND	1,200	81	6.3

Concentrations reported as ND were not detected at or above the reporting limit.

The RPD is not reportable since the sample prepared in duplicate was not detectable.

Quality Assurance/Quality Control Manager

LOG NUMBER: 1353
DATE SAMPLED: 09/27/91
DATE RECEIVED: 09/27/91
DATE EXTRACTED: 10/01/91
DATE ANALYZED: 10/05/91
DATE REPORTED: 10/17/91
PAGE: Six

ND

ND

ND

6.8

6.8

6.8

ND

ND

ND

6.8

6.8

6.8

Soil

Sample Type:

		1		Composite 2 and 3		Method_Blank	
Method and <u>Constituent</u>	<u>Units</u>	Concen- tration	Reporting Limit	Concen- tration	Reporting Limit	Concen- tration	Reporting Limit
EPA Method 8010 (Continue	d):						
1,1,1,2-Tetrachloro- ethane	ug/kg	ND	6.8	ND	6.8	ND	6.8
Tetrachloroethylene	ug/kg	ND	6.8	ND	6.8	ND	6.8
1,1,1-Trichloroethane	ug/kg	ND	6.8	ND	6.8	ND	6.8
1,1,2-Trichloroethane	ug/kg	ND	6.8	ND	6.8	ND	6.8
Trichloroethylene	ug/kg	ND	6.8	ND	6.8	ND	6.8

6.8

6.8

6.8

QC Summary:

% Recovery: 110

Trichlorofluoro-

Trichloropropane

Vinyl Chloride

methane

% RPD: 5.6

Concentrations reported as ND were not detected at or above the reporting limit.

ND

ND

ND

ug/kg

ug/kg

ug/kg

Site: <u>Ballena Isle Marina</u>

Address: 1100 Ballena Boulevard

Alameda, CA 94501

North
/|\

Maintenance
Yard

Excavation

Wharf

Parking Lot

Requester: <u>Jerry Green</u>

Customer: <u>Ballena Isle Marina</u>

Address: 1150 Ballena Blvd., Ste. 111

Date Sampled: <u>09/27/91</u>

Alameda, CA 94501 Log #: 1353

Site:	<u>Balle</u>	<u>na Isle</u>	Marina		
				_	

Address: <u>1100 Ballena Boulevard</u>

Alameda, CA 94501

North /|\ |

Bal	lena	B٦٠	vd.

Old Beau Rivage

Parking Lot

Stockpile 3 2

Requester: <u>Jerry Green</u>

Customer: <u>Ballena Isle Marina</u>

Address: 1150 Ballena Blvd., Ste. 111 Date Sampled: 09/27/91

<u>Alameda, CA 94501</u> Log #: <u>1353</u>

프 프로	='	1			•								
				CHAIN	OF CUSTOD	Y RI	CORU)					
Proj.No.	1100	ject Nam Ballen	a BIV=		No.		•		/.			// <u> </u>	
Samplers	1 /2	redo.	<u>C4</u>						/ ,	/ /		/ .	;
Sambler?	(Sign	ature)′.	•	•	of			/· /			/ /		:
		1-		474 L	0,			1/4	[:]	/. /-		<u>-</u>	-
Comple	John	15ang			-	ł			<i>\</i> /,		_	~	
Sample ID	Date	Time	SILE	Location	Con- tainers						.1	.353	١
1	9/27/91	10:57	1100	Rellew Blus	1-Lt.	// ×		× +		<u>y</u>			
2	9/27/91	11:10			12	メ	×				7	7	
3	9/27/1		V		1				大	7	_C	mp)	
·	+ / +								;				
									·				
			•	:							*·····		
					·						· · · · · · · · · · · · · · · · · · ·		
				•			_		_				
	:											*	-
			. 	-								•	,
Relinguis	shed by:	(s ignat	ure)	Date/Ti	me Recei	ved	by:	(s ign	atu	re)	,	Date/Ti	ne
Rel inquis	shed by:	(signat	ure)	Date/Ti	me Recei	ved	by:	(sign	atu	re) '		Date/Ti	ue.
Received	for Lab	oratory	by: (si	gnature)			1				<u></u> -	Date/Time	,
EMARKS Send	copy of	f reput	to con	ite dus	ivon	I	60		ء ح	Tr	ee		1
50 1-	oil Hea	•					,					•	
(智声, 《	n lee	Fqundir	ng Member	of the Associati	on of Californi	a Tos	ting La	boratori	ies			•	-

APPENDIX B

ENSR REPORT

May 21, 1992

ENSR Consulting and Engineering 1320 Harbor Bay Parkway Alameda, CA 94501 (510) 865-1888 (510) 748-6799 FAX

Mr. Ravi Arulanantham Alameda County Health Agency Division of Environmental Health 80 Swan Way, Room 200 Oakland, California 94621

Subject:

Soil excavation and sampling activities at the Ballena Isle Marina,

1150 Ballena Boulevard, Alameda, California.

Dear Mr. Arulanantham:

ENSR Consulting and Engineering collected soil samples during the excavation of contaminated soil from the former underground tank pit at the Ballena Isle Marina. As you will recall, a 250-gallon underground tank was excavated and removed from this site in 1991 by the owner. The tank was used to temporarily store waste oil from the engines of the boats that are docked at the marina. Soil around the tank was contaminated as a result of spillage from occasional overfilling.

Recent excavation of contaminated soil enlarged the pit, so that the pit currently measures 9.5 feet by 11.5 feet and is approximately 9 feet deep. During excavation of contaminated soil, soil staining appears to have extended beneath the maintenance building adjacent to the pit. The stained soil is at a depth of 5 feet. Further excavation of the stained soil was not possible without incurring possible damage to the foundation of the maintenance building. Groundwater was encountered at a depth of approximately 9.5 feet.

Two soil samples were collected from the pit. One soil sample (PB-1) was collected from the bottom of the pit (approximately 9 feet below grade), and the other soil sample (SW-1), was collected from the base of the sidewall on the north end of the pit. This soil sample was collected from a depth of 8.5 feet.

The soil samples were placed into laboratory-supplied glass jars using stainless steel hand trowels. The jars were placed on ice and transported to the laboratory under chain-of-custody protocol. The soil samples were analyzed by Curtis & Tompkins, Ltd., a California-State certified hazardous waste laboratory. Both soil samples were analyzed for the following:

TPH (gasoline)
TPH (diesel)
Total Oil & Grease
Volatile Organic Compounds
Metals:

EPA Method 8015 EPA Method 8015 EPA Method SMWW 5520 EPA Method 8240

Cadmium Chromium Lead Nickel Zinc

The excavated soil was stockpiled at the site by placing the soil on visquine sheeting which was then covered by visquine while awaiting the laboratory results.

The analytical results are summarized on Table 1. Oil & grease and diesel were detected at concentrations of 4,200 parts per million (ppm) and 1,800 ppm, respectively, in the sample from the bottom of the pit. Lower amounts of gasoline, xylene, toluene, and ethylbenzene were detected at 79 ppm, 9.2 ppm, 1 ppm, and 0.840 ppm, respectively. Low levels of chromium, nickel, zinc, and lead were detected in this soil sample.

In the soil sample from the base of the sidewall, oil & grease and diesel were detected at 3,500 ppm and 2,200 ppm, respectively. Lower levels of gasoline, and xylene were detected in this sample at 91 ppm, and 1.9 ppm, respectively.

Conclusions and Recommendations

Because contaminated soil remains in the ground, and because of the shallow depth of the groundwater at this location, it is likely that the groundwater has been impacted by the contaminants in the soil. However, it is ENSR's opinion that establishing a groundwater monitoring program involving the installation of one or more monitoring wells is not necessary at this site.

The Ballena Isle Marina is constructed on a narrow, man-made body of land which is bounded on three sides by seawater. The harbor is approximately 30 feet northeast of the contaminated area. San Francisco Bay is approximately 200 feet southwest of the contaminated area. Shallow groundwater in the marina area (including the contaminated area) is probably affected by saltwater intrusion and is therefore saltwater to brackish, at best. As a result, the groundwater has no beneficial uses. Any effects on aquatic wildlife resulting from contaminated groundwater entering San Francisco Bay waters would be neglible because: (1) the extent and scope of contamination is relatively small, and (2) the contaminated groundwater would be greatly diluted upon entering San Francisco Bay.

The close proximity of the contaminated area to San Francisco Bay and the harbor also means that groundwater flow is strongly influenced by the ebb and flow of the tides. Because the water level changes from high to low tide twice daily, groundwater flow direction in the vicinity of the contaminated area is likely to change over the course of a single day. For these reasons, ENSR believes that groundwater monitoring is not necessary.

Instead, it is our recommendation that the Ballena Isle Marina backfill the open pit with clean fill material, and that an impermeable cap in the form of concrete pavement be placed over the former pit and surrounding area. This barrier would prevent surface runoff and rainwater from infiltrating the soil, thereby preventing further mobilization of the contaminants downward into the water table.

We will call you within the week to seek your response to our recommendation. If you have any questions or comments, please give me a call at (510) 865-1888.

Sincerely,

ENSR Consulting and Engineering

Brian Ho

Project Geologist

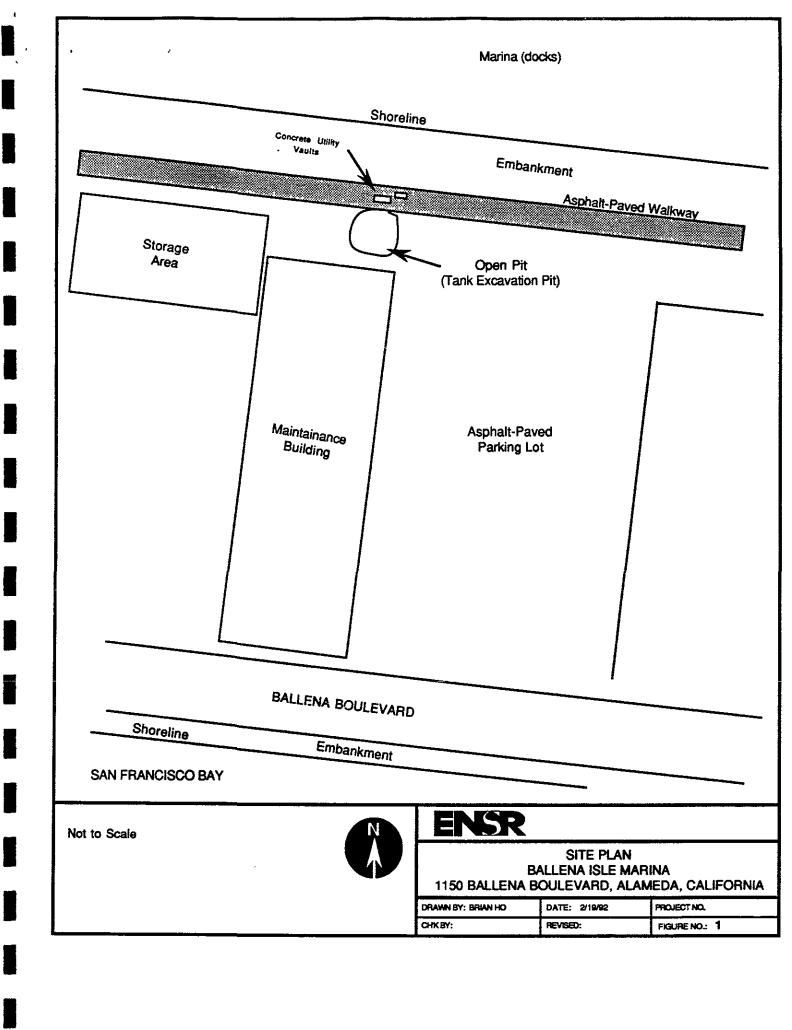
Brian

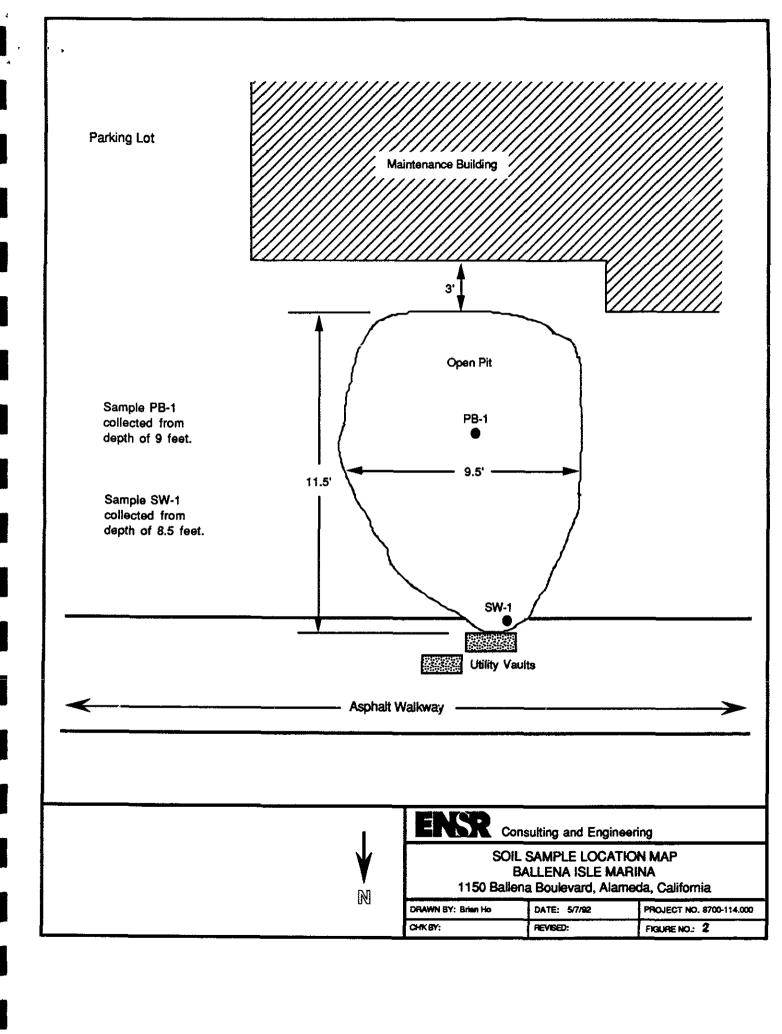
Paul Hilbelink, C.E.G.

Manager, Geological Sciences

and Kilbelink

Attachments




TABLE 1

Summary of Analytical Results of Soil Samples from Ballena Isle Marina

Sample No.	Diesei	Gasoline	Xylene	Toluene	Benzene	Ethylbenzene	Oil & Grease
SW-1	2,200 ppm	91 ppm	1.9 ppm	ND	ND	ND	3,500 ppm
PB-1	1,800 ppm	79 ppm	9.2 ppm	1 ppm	ND	0.840 ppm	4,200 ppm

Metals								
Sample No.	Cadmium	Chromium	Lead	Nickel	Zinc			
SW-1	0.41 ppm	16.2 ppm	13 ppm	13.3 ppm	13.7 ppm			
PB-1	ND	15.8 ppm	4.5 ppm	14.0 ppm	13.7 ppm			

APPENDIX C

LAW/CRANDALL REPORT

LAW/CRANDALL, INC.

geotechnical, environmental & construction materials consultants

Report of PHASE II ENVIRONMENTAL ASSESSMENT

Ballena Isle Marina 1150 Ballena Boulevard Alameda, California Control No. 1026 Great American Portfolio

prepared for

G.A.P. Portfolio Partners c/o Colony Advisors, Inc. 1999 Avenue of the Stars, Suite 1200 Los Angeles, California 90067

prepared by

LAW/CRANDALL, INC. Project No. 2123-20669-1

December 29, 1992

TABLE OF CONTENTS

		P	age	No.						
1.0	INTE	RODUCTION	· • • •	1						
2.0	PURPOSE, SCOPE AND REPORT FORMAT									
	2.1	Purpose								
	2.2	Scope of Work								
	2.3	Report Format		5						
3.0	FIEL	D ASSESSMENT PROCEDURES		5						
	3.1	Preparatory Activities		5						
	3:2	Soil Boring and Monitoring Well Locations		6						
	3.3	Soil Boring and Sampling Procedures		7						
	3.4	Construction and Sampling of Monitoring Wells		8						
	3.5	Analysis of Soil and Groundwater Samples		9						
4.0	FIELD	ASSESSMENT RESULTS		9						
	4.1.	Laboratory Analytical Results								
	4.2.	Groundwater Gradient								
5.0	REMED	DIAL AND REGULATORY REQUIREMENTS		11						
6.0	OPINIO	ON OF REMEDIAL COSTS		12						
	6.1	Existing USTs		13						
	6.2	Disposal of Stockpiled Soils		13						
	6.3	Additional Excavation of Waste Oil UST		13						
	6.4	Presence of O&G	• • •	14						
7.0	STAND	ARD OF CARE		14						

December 29, 1992

G.A.P. Portfolio Partners c/o Colony Advisors, Inc. 1999 Avenue of the Stars, Suite 1200 Los Angeles, California 90067

Subject:

Report of Phase II Environmental Site Assessment

Great American Portfolio

Control No. 1026 Oakland, California

Law/Crandall Project No. 2123-20669-1

Attention: Ms. Sand

Ms. Sandra Kossacoff

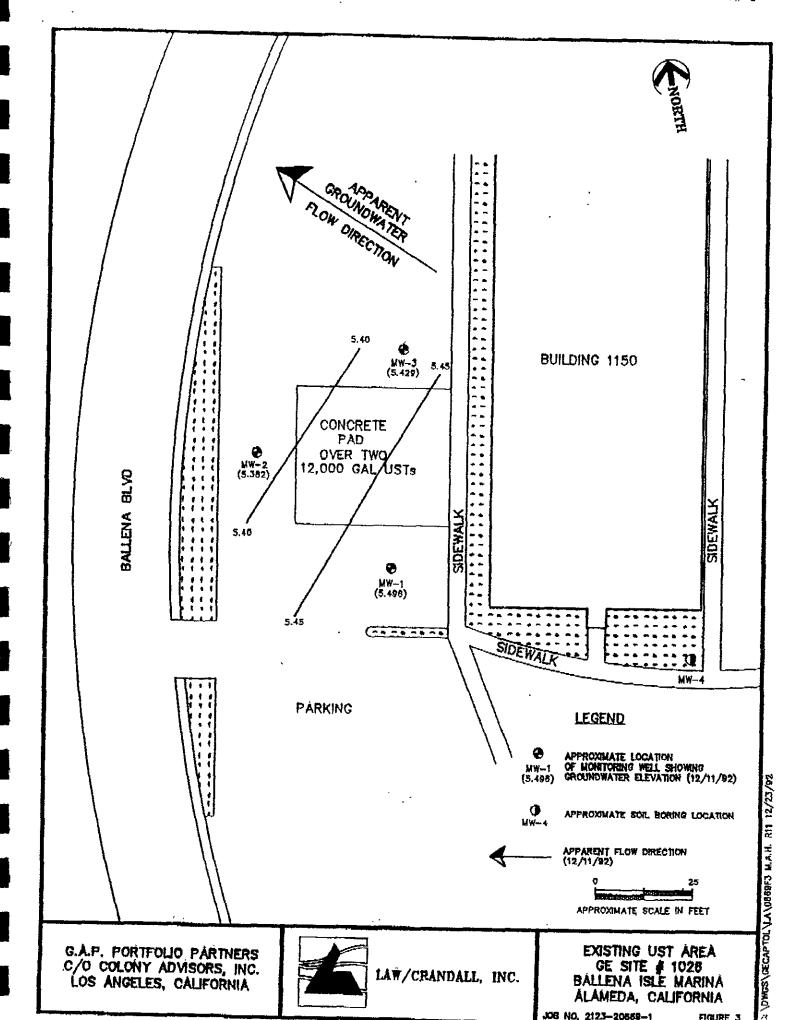
Law/Crandall, Inc. (LAW) is pleased to submit this report of our Phase II environmental site assessment for the subject property. The purpose of our services is described in our proposal and addendum dated October 5 and October 13, 1992 and in the scope of work contained in job order number 92-1026-3 under the Master Consulting Agreement between Colony Advisors, Inc. as agent to G.A.P. Portfolio Partners and Law Associates, Inc. (hereinafter "MCA").

This report is intended for the use of G.A.P. Portfolio Partners, Inc. Our services have been performed under mutually agreed upon terms and conditions. If third parties wish to rely on this report, such reliance shall be governed by paragraphs 9.6 and 3.3 of the MCA. Any third party not specifically mentioned herein shall not distribute this report except at its own sole and exclusive risk and without liability to LAW.

We appreciate the opportunity to be of service to you. Please call us at (415) 499-1422 if you have any questions or if we may be of further service.

Sincerely,

Law/Crandall, Inc.


Susan Gahry, P.E.

Senior Chemical Engineer

Gusan Sahry (KGR)

Mark I. Miller, C.E.G. 1540

Principal

1.0 INTRODUCTION

Colony Advisors, Inc. as agent to G.A.P. Portfolio Partners engaged Law/Crandall, Inc. (LAW) to perform a Phase II environmental site assessment for the Ballena Isle Marina in Alameda, California. This study was performed substantially as outlined in LAW's proposal and addendum dated October 5 and October 13, 1992, respectively.

The site occupies a 56-acre man-made peninsula and is located at 1150 Ballena Boulevard. The site is currently managed by Almar Limited (site operators). The site location is shown on Figure 1. The site contains 20 acres of water, a marina with 455 berths, several two-story office buildings, parking lots, and a restaurant. A fuel dock, hoist for pulling boats out of the water, service yard/maintenance shed, tennis court, and the concrete foundation for the former Beau Rivage Restaurant (destroyed by fire in 1990) are also located on the property. A site plan is included as Figure 2.

The Phase I Environmental Assessment Report was prepared by LAW on October 13, 1992. The report identified:

- The potential for soil/groundwater petroleum hydrocarbon contamination due to the current and former presence of underground storage tanks (USTs) at three separate locations on the property. These areas are identified as the existing USTs, former USTs, and waste oil UST.
- The potential for shallow soil contamination due to the presence of an abandoned above-ground diesel tank and the collection of waste oil in 55gallon drums.
- The potential for contamination, particularly heavy metals, due to the deposition of dredging materials onto a portion of the site.

Additional background on specific areas of environmental concern follows.

Existing USTs

Two 12,000-gallon USTs are located in the parking lot immediately west of Building 1150. These double-walled USTs were installed in 1990 following the October 1989 earthquake to replace damaged USTs which had been installed in 1987. Unleaded gasoline and diesel fuel are stored in the USTs.

During the 1989 earthquake, the existing tanks were displaced upward and the piping connections at the tank were broken. On July 2, 1990, the two single-wall underground fuel tanks were removed from the site by Subsurface Consultants. The tanks did not appear to be damaged or deteriorated. The gasoline and diesel tank were located on the northern and southern side of the tank pit, respectively. Six soil samples were collected at a depth of 5

feet below ground surface from the walls of the tank pit during UST replacement activities. The samples were analyzed for total volatile hydrocarbons (TVH), benzene, toluene, ethylbenzene, and xylenes (BTEX), and total extractable hydrocarbons as diesel (TEH). The soil sample collected from the east side wall of the former diesel tank near the piping connection (approximately 6 feet west of the sidewalk) contained 130 milligrams per kilogram (mg/kg or parts per million) of TEH. Contaminants were not detected in the five other soil samples.

One groundwater sample was collected from the tank pit before the tank pit was purged; another groundwater sample was collected after approximately two weeks. The initial groundwater sample contained 24 milligrams per liter (mg/l) of TVH, 0.87 mg/l of benzene, 0.52 mg/l of toluene, 4.2 mg/l of xylenes, and 0.0007 mg/l of TEH. The later groundwater sample contained 0.0007 mg/l of toluene. The remaining contaminants were reported to have volatilized from the water.

On May 15, 1992, the Alameda County Health Care Services Agency (County) requested that a workplan be prepared for a groundwater investigation. The site operators have not responded to the County's request. Ms. Juliet Shin, the County's case worker, has not sent the owners another letter requesting action since she is aware of the current investigation by LAW.

Former USTs

Four 4,000-gallon USTs for leaded gasoline and diesel fuel were removed in 1984 to allow construction of Building 1150. These tanks were located between the Whale's Tail restaurant and Building 1150; they are reported to have extended to what is now the southeast corner of Building 1150. Soil and/or groundwater sampling was not conducted when these tanks were removed.

Former Waste Oil Tank

A 250-gallon waste oil UST, formerly located just north of the maintenance building, was removed in July 1991 by the site operators. The excavation associated with the removal of this UST has not been backfilled and excavated soils are stored on-site. The tank pit is covered with planks and enclosed by a wooden fence. The soil has been placed on and covered with plastic in the parking lot for the former Beau Rivage restaurant.

On September 27, 1991, one soil sample was collected from the tank pit excavation and two samples were collected from the stockpiled soil in the former Beau Rivage Restaurant parking lot by Trace Analysis Laboratory, Inc. The stockpile soil samples were composited into one sample at the laboratory. The stockpile and tank pit soil samples contained the following concentrations of contaminants, respectively: oil & grease (O&G) at 4,800 mg/kg and 11,000 mg/kg; total petroleum hydrocarbons as diesel (TPH/D) at 1,300 mg/kg and 5,700 mg/kg; total petroleum hydrocarbons as gasoline (TPH/G) at 860 mg/kg and 7.4

mg/kg; xylenes at 3.9 mg/kg and 0.14 mg/kg; toluene at 0.02 mg/kg and 3.9 mg/kg; ethylbenzene at 0.027 mg/kg and 13 mg/kg; chromium (Cr) at 17 mg/kg and 18 mg/kg; lead (Pb) at 51 mg/kg and 55 mg/kg; nickel (Ni) at 14 mg/kg and 14 mg/kg; and zinc (Zn) at 42 mg/kg and 23 mg/kg. The samples were not analyzed for semi-volatile organics or PCBs; volatile organic compounds (VOCs) other than BTEX were not detected.

According to ENSR Consulting and Engineering's May 21, 1992 report to the County, the tank pit was additionally excavated in May 1992 to dimensions of 9.5 feet by 11.5 feet with an approximate depth of 9 feet. During the additional excavation, soil staining appeared to extend beneath the maintenance building adjacent to the pit. The stained soil was noted at a depth of approximately 5 feet. Further excavation of the stained soil was reported to not be possible without incurring possible damage to the foundation of the maintenance building. Groundwater was encountered at a depth of 9.5 feet.

Two soil samples were collected from the tank pit following the additional excavation by ENSR Consulting and Engineering. The soil samples contained the following concentrations of contaminants: O & G from 3,500 to 4,200 mg/kg; TPH/D ranging from 1,800 to 2,200 mg/kg; TPH/G ranging from 79 to 91 mg/kg; xylenes ranging from 1.9 to 9.2 mg/kg; toluene at 1 mg/kg; ethylbenzene at 0.84 mg/kg; Cadmium at 0.41 mg/kg; Cr ranging from 15.8 to 16.2 mg/kg; Pb ranging from 4.5 to 13 mg/kg; Ni ranging from 13.3 to 14 mg/kg; and Zn at 13.7 mg/kg. The samples were not analyzed for semi-volatile organics or PCBs; VOCs (other than BTEX) were not detected.

On July 2, 1992, the County requested that the tank pit be excavated down to groundwater and that a groundwater grab sample be collected and analyzed for TPH/G, TPH/G, O&G, VOCs, and Cd, Cr, Pb, Ni, and Zn. Also, the County requested that further attempts should be made to investigate the extent of and remediate soil contamination at the site. A workplan to address the investigation and remediation of the soil contamination was requested within 45 days of the receipt of the County's letter. On August 10, 1992, Ballena Isle Marina requested a 45 day extension to obtain bids and authorization from their parent company, Almar.

Abandoned Above-ground Diesel Tank

An abandoned 250-gallon above-ground diesel tank is also located on the property. The spigot from the tank is located directly above what appears to be a screened sump.

Drummed Waste Oil Storage Area

Waste oil is currently collected in several 55-gallon drums, enclosed by wooden planks, located in a wooden shack near the former Beau Rivage restaurant. The drums are hauled off-site by Waste Oil Disposal approximately every 2 to 3 months. Oil stains and sorbant-type material were noted on the floor in the vicinity of these drums.

On-Site Disposal of Dredge Tailings

The area west of the parking lot at the tip of the peninsula is periodically dug out and used to contain dredging spoils. The marina was last dredged in 1987; the facility is currently in the process of obtaining another permit from the San Francisco Bay Conservation and Development Commission to allow the dredging to be conducted again.

2.0 PURPOSE, SCOPE AND REPORT FORMAT

2.1 Purpose

The purpose of the Phase II Environmental Site Assessment was to assess the potential degree and extent of subsurface contamination in the areas identified with environmental concerns during LAW's Phase I environmental assessment. Such services were performed pursuant to the generally accepted national standards of care, skill, diligence and professional competence applicable to LAW.

2.2 Scope of Work

The scope of services included the following:

- Installation of three monitoring wells in the vicinity of the existing gasoline/diesel USTs to assess 1) the potential for soil and groundwater contamination and 2) the groundwater gradient to evaluate the direction in which contamination would be expected to move.
- Installation of one monitoring well in the vicinity of the former gasoline/diesel USTs to assess the potential for soil and groundwater contamination.
- Installation of five soil borings in the vicinity of the former waste oil UST to assess the extent of contamination and the potential limits of excavation needed to remediate soils in the area.
- Collection of a grab groundwater sample from the former waste oil UST area with a HydropunchTM sampling device to assess the degree to which groundwater has been impacted.
- Collection of shallow soil samples in the area of the abandoned aboveground diesel tank, dredging spoils, and waste oil collection area to assess the potential for soil contamination due to surface spills and/or use of inappropriate fill materials.

• Preparation of this report containing our findings and conclusions and an order of magnitude opinion of cost to remediate the site, if necessary.

Our scope of services did not include disposal of drums of soil and groundwater generated during drilling. A cost estimate for drum disposal will be submitted under separate cover; costs for drum disposal were included in our proposal as part of Phase III activities which were not authorized.

2.3 Report Format

Our report format has four major sections:

- Field Assessment Procedures
- Field Assessment Results
- Remedial and Regulatory Requirements
- Opinion of Remedial Costs

3.0 FIELD ASSESSMENT PROCEDURES

The field assessment commenced on December 1, 1992 and was completed on December 11, 1992.

3.1 Preparatory Activities

We prepared a site-specific Health and Safety Plan to address chemical contaminants potentially present at the site, as required by the Occupational Safety and Health Administration (29 CFR 1910.120). The Health and Safety Plan was used to acquaint LAW field personnel and our drilling subcontractor with chemical hazards potentially present at the site, and to insure that the proper safety equipment was available for use if potentially hazardous conditions were encountered.

We obtained monitoring well construction permit number 92611 from the Alameda County Flood Control and Water Conservation District (Water Resources Zone 7 Management) in Pleasanton, California on November 24, 1992. A copy of the well construction permit is included as Appendix A.

We notified Underground Service Alert, a public utility locating firm, on December 1, 1992. Under the direction of LAW, Cruz Brothers Subsurface Locators of Milpitas, California, screened proposed boring locations for subsurface obstructions on December 1, 1992.

3.2 Soil Boring and Monitoring Well Locations

898-1188 BARRY SCHLAUA

LAW's drilling subcontractor, Great Sierra Exploration, Inc. of Novato, California, drilled a total of eight borings on the site under the supervision of Andrew Muha, a LAW field hydrogeologist, on December 4 and December 7, 1992. Three of the borings were converted to groundwater monitoring wells. Grab groundwater samples were collected from two of the borings, MW-4 and HP-1, using a hand auger and HydropunchTM, respectively. LAW also hand augered four other soil borings (SB-5, SB-6, SB-7, and SB-8). Boring and/or monitoring well locations are shown on Figure 2. The rational for the locations and depth of borings are discussed below.

- Monitoring wells MW-1, MW-2, and MW-3 were installed in the vicinity of the existing USTs to a depth of 15 feet below ground surface. Well locations are also shown on Figure 3.
- Soil boring MW-4 was installed in the vicinity of the former USTs between the Whales Tail Restaurant and Building 1150; the location is shown on Figure 3. We had initially planned to install a monitoring well at this location. However, due to access restrictions and the presence of numerous underground utilities in the area, a drill rig could not be used. The boring was constructed using a hand auger to an approximate depth of 9 feet below ground surface. A clean, slotted PVC casing was placed into the boring and a bailer was lowered into the casing to collect a grab groundwater sample.
- Soil borings B-1, B-2, B-3, and B-4 were drilled near the former waste oil UST to depths of 15 feet below ground surface to assess the lateral extent of potential contamination. Boring B-1 was located approximately 8 feet west of the tank pit. Boring B-2 was located approximately 18 feet west of the tank pit. Boring B-3 was located approximately 12 feet north of the tank pit. Boring B-4 was located approximately 34 feet east of the tank pit (the presence of underground utilities prevented drilling at a location closer to the tank pit). Boring B-5 was located approximately 10 feet east of the tank pit; boring B-5 was hand augered to an approximate depth of 10 feet below ground surface. A large tree in the area prevented use of the drill rig. Boring locations are shown on Figure 4.

- HydropunchTM location HP-1 was located approximately 2 feet north of the former waste oil UST to a depth of 10 feet below ground surface (Figure 4).
- Soil boring SB-6 was hand augered near the abandoned above-ground diesel tank approximately 2 feet southwest of the sump to a depth of 5 feet below ground surface.
- Soil boring SB-7 was hand augered near the drums of waste oil. The boring
 was augered at an approximate 45 degree angle to a depth of approximately
 4 feet below ground surface. The barrels were stored on a concrete pad; the
 concrete coring equipment available on the drill rig could not access the area.
 The angled boring was used to get beneath the drums from an area which was
 not paved.
- Soil boring SB-8 was hand augered in the dredged tailings disposal area to a depth of 5 feet below ground surface.

3.3 Soil Boring and Sampling Procedures

The borings constructed by Great Sierra Exploration were advanced using a truck-mounted drill rig equipped with 8-inch diameter hollow stem augers, with the exception of MW-4. Boring MW-4 and those borings installed by LAW were advanced by hand using a 3.5-inch diameter stainless steel auger.

Soil samples were collected with a California modified split-spoon sampler or equivalent. Samples were retained in six-inch-long brass tubes. One tube from each sampling interval was capped with teflon liners, plastic end caps, wrapped with duct tape, sealed in a plastic bag and placed on ice in a thermally insulated cooler pending selection of samples for laboratory analysis. The remaining sample tubes were used in the soil classification and laboratory screening processes. Selected samples were shipped to a state-certified analytical laboratory with chain-of-custody documentation.

Soils encountered in the borings were classified according to the Unified Soil Classification System. Soil samples were collected at 5-foot intervals and significant lithologic changes. We screened soil samples in the field with a Foxboro flame-ionization Organic Vapor Analyzer (OVA). One sample from each boring showing visible evidence of potential contamination and/or the highest readings on the OVA was to be selected for analysis. If soil samples in a particular boring did not exhibit visible evidence of contamination or elevated OVA readings above the soil/groundwater interface, the deepest soil sample encountered in the boring prior to the soil/groundwater interface was to be analyzed. Using

this protocol, the samples selected for analysis were the deepest soil sample encountered prior to the soil/groundwater interface.

Downhole drilling equipment was steam cleaned prior to use and between borings. Soil sampling and hand auger equipment was washed in an Alconox soap solution after each use. All drill cuttings and wash water were placed into D.O.T.-approved, watertight 55-gallon drums and stored on site pending the receipt of laboratory analyses.

3.4 Construction and Sampling of Monitoring Wells

Three of the soil borings were converted to monitoring wells. The wells were necessary to evaluate groundwater conditions in the vicinity of the existing USTs. The wells were located on the north, south, and west sides of the existing USTs. We anticipated that groundwater would occur approximately 10 feet below ground surface, its flow would be influenced by tidal actions, and the gradient would be relatively flat.

The monitoring wells were constructed with 2-inch diameter, Schedule 40 PVC screen and riser sections. Great Sierra Exploration installed a sandpack around the 10-foot slotted PVC casing interval and a bentonite seal above the sandpack. The wells were sealed to the ground surface with bentonite chips. Boring logs and monitoring well construction details are presented in Appendix B. The wells were finished at the surface with flush-mounted, traffic-rated protective vaults.

On December 8, 1992, we used a KVA submersible pump to develop the monitoring wells. The wells were developed until the clarity of the discharge water stabilized. Purging continued until the field-measured parameters of pH, temperature and electrical conductivity stabilized with less than a 10 percent variance. Approximately 45 to 50 gallons of water (at least four well casing volumes) were removed from each well during the development process. Following development, we collected one set of groundwater samples from each well with a new disposable bailer after the water level in each well had recovered to approximately 80 percent of its initial level. The groundwater samples were poured into laboratory-supplied glass bottles, placed on ice in a thermally insulated container, and delivered along with a chain-of-custody form to a state-certified laboratory for analysis.

The well development purge water was placed into D.O.T.-approved, watertight 55-gallon drums and stored on-site pending receipt of laboratory analytical results. The development and purge water was subsequently moved to another location at the site at the request of the marina operators.

On December 11, 1992, we measured the water levels in the wells to within 0.01 foot using a Solinst water level meter. We also surveyed the top-of-casing elevation of each well and

referenced the elevation to a temporary benchmark located at the southwest corner of the concrete pad which overlaid the USTs.

3.5 Analysis of Soil and Groundwater Samples

Soil and groundwater samples were delivered to Superior Precision Analytical, Inc. in San Francisco, California for chemical analysis on a 5-day turnaround basis. With the exception of the dredged soil disposal area, the selected laboratory analyses addressed requirements contained in the Tri-Regional Board Staff Recommendations for Preliminary Evaluation and Investigation of Underground Tank Sites, California Regional Water Quality Control Board, San Francisco Bay Region, dated August 10, 1990 (Regional Board Guidelines). Analyses for the dredged soil disposal area were based on typical non-volatile contaminants found in dredge tailings.

Soil and groundwater samples collected near the former and existing USTs (MW-1 through MW-4) were analyzed for TPH/G, TPH/D, BTEX, and Pb.

Soil samples collected from the five soil borings near the former waste oil UST (B-1 through B-5) and the one soil sample near the waste oil drum storage area (SB-7) were analyzed for TPH/G, TPH/D, BTEX, VOCs, O&G, semi-volatile organics, pesticides and PCBs, and soluble Cd, Cr, Pb, Zn, and Ni. The grab groundwater sample collected near the former waste oil UST was analyzed for the same constituents except the metals were analyzed for total rather than soluble constituents.

The soil sample from boring SB-6 (near the abandoned above-ground diesel tank sump) was analyzed for TPH/D and BTEX.

The soil sample from boring SB-8 (the dredged soil disposal area) was analyzed for semi-volatile organics, O&G, and seventeen metals.

4.0 FIELD ASSESSMENT RESULTS

4.1. Laboratory Analytical Results

Results of the laboratory analyses of soil samples for the waste oil and existing UST areas are summarized on Table 4.1 and 4.2; groundwater analytical results for the existing UST area are summarized on Table 4.3. The complete laboratory report and chain-of-custody documents are presented in Appendix C. Laboratory analytical results are presented below by location.

Existing USTs

The soil samples collected from the three monitoring wells (MW-1 through MW-3) at a depth of 10 feet did not contain concentrations of TPH/G, TPH/D, BTEX, or total lead in excess of laboratory detection limits. The groundwater sample from well MW-1 contained 0.5 micrograms per liter (ug/l or ppb) of toluene and 0.6 ug/l of xylenes. The groundwater sample from well MW-3 contained TPH/G, toluene, and xylenes at concentrations of 52 ug/l, 0.5 ug/l, and 0.6 ug/l, respectively. TPH/G, toluene, and xylenes were not detected in the groundwater sample from well MW-2. TPH/D, benzene, ethylbenzene, and soluble or total lead were not detected in any of the soil or groundwater samples.

Former USTs

TPH/G, BTEX, TPH/D, and soluble or total lead were not detected in the soil or grab groundwater samples (MW-4) collected near the location of the former USTs.

Former Waste Oil Tank

The five soil samples (B-1 through B-5) collected at locations ranging from 8 to 34 feet away from the perimeter of the former waste oil UST excavation at depths of 10 feet contained total O&G concentrations ranging from 53 mg/kg in B-5 to 110 mg/kg in B-1. TPH/G, BTEX, TPH/D, VOCs, semi-volatile organics, pesticides, PCBs, and soluble metals (Zn, Cd, Cr, Pb, and Ni), were not detected.

The grab groundwater sample, HP-1, contained toluene at a concentration of 0.3 ug/l. TPH/G, benzene, ethylbenzene, xylenes, TPH/D, O&G, VOCs, semi-volatile organics, pesticides, PCBs, and soluble metals (Zn, Cd Cr, Pb, and Ni), were not detected.

Abandoned Above-ground Diesel Tank

The soil sample (SB-6) collected at a depth of 5 feet near the sump associated with the abandoned above-ground diesel tank did not contain concentrations of TPH/D or BTEX in excess of laboratory detection limits.

Drummed Waste Oil Storage Area

The soil sample (SB-7) collected beneath the drums of waste oil contained 83 mg/kg of O&G. TPH/G, BTEX, TPH/D, VOCs, semi-volatile organics, pesticides, PCBs and soluble metals (Zn, Cd Cr, Pb, and Ni), were not detected.

Dredge Tailings Disposal Area

The soil sample (SB-8) collected at a depth of 5 feet in the dredge tailings disposal area contained 130 mg/kg of total oil and grease. Antimony, arsenic, barium, chromium, copper, lead, mercury, nickel, vanadium, and zinc were detected at concentrations ranging from 0.19 to 80 mg/kg. Concentrations were well below California Administrative Code's Threshold Limit Concentration (TTLC) Values. Semi-volatile organic compounds were not detected.

Subsequent Analyses

Subsequent to the discovery of O&G in soil samples from other areas of the site, the soil samples from MW-1 through MW-4 were also analyzed for O&G. The samples did not contain O&G in excess of laboratory detection limits.

4.2. Groundwater Gradient

As shown on Figure 3, the groundwater gradient was calculated to be towards the northwest at 0.0025 feet per foot. As previously stated, the groundwater gradient is expected to fluctuate due to tidal influences. Groundwater level measurements and top of casing elevations are summarized on Table 4.4.

5.0 REMEDIAL AND REGULATORY REQUIREMENTS

Cleanup requirements or levels for soil and groundwater contamination have not been established for sites in the San Francisco Bay Area. Regional Board Guidelines require a soil/groundwater investigation should soil samples collected during the removal of underground storage tanks exceed 100 mg/kg of total petroleum hydrocarbons or O&G. The required soil/groundwater investigation typically includes the installation of monitoring wells for sites with a groundwater depth of less than 50 feet. The Regional Board does not consider 100 mg/kg to be a cleanup level; the guidelines state that "in many instances it may not be appropriate to leave soil in-place which is contaminated with total petroleum hydrocarbons or other compounds at any concentration".

On December 18, 1992, potential cleanup and regulatory requirements were discussed with the County's assigned case worker, Ms. Juliet Shin. Specific requirements are subject to the County's review of the well and sample locations, previous assessment results, current assessment results, and future assessment results. Likely regulatory requirements for the areas of concern are discussed below.

Existing USTs

Monthly water level measurements and gradient determinations could be required since the groundwater gradient is expected to fluctuate. Groundwater remediation will likely not be required since the current groundwater sampling results indicate relatively low levels (near reporting limits) and the absence of benzene. Rather, quarterly groundwater monitoring will likely be required for a minimum period of one year. If groundwater concentrations remain similar to the current result after one year, site closure (removal from the regulatory list) will likely be recommended by the County. Final closure decisions rest with the San Francisco Regional Water Quality Control Board, San Francisco Bay Region.

Former Waste Oil UST

Approximately 2 feet from the perimeter of the waste oil UST excavation, a grab groundwater sample contained only toluene at 0.3 ug/l. Soil samples at further distances from the excavation contained O&G concentrations ranging from 53 mg/kg to 110 mg/kg. Previous soil samples collected from the tank pit indicated relatively high levels of contamination (up to 11,000 mg/kg of O&G). Widespread contamination was not identified during the current assessment at distances of 8 to 34 feet beyond the tank pit's perimeter; the tank pit area adjacent to the maintenance building was not evaluated due to access limitations. These results suggest that remedial activities may not be required since the groundwater in the vicinity of the excavation does not appear to be adversely affected. The soil sample analytical results are surprising since the soil samples collected from the tank pit contained much higher concentrations of contaminants. Documentation substantiating that further excavation is limited due to the close proximity to the maintenance building and underground utilities may be required. Alternately, the County may require additional excavation to the extent feasible without undertaking unusual methods to protect utilities and/or nearby structures.

Presence of O&G

The source of the widespread O&G concentrations and the evidence that it has not adversely impacted the groundwater should be documented. Current indications are that the O&G is due to the use of dredged fill material to create the site and that it has not impacted the groundwater. A cost/benefit analysis may be required to document that the costs of remediating the O&G far exceed the associated benefits.

6.0 OPINION OF REMEDIAL COSTS

Based on the results of the field assessment and our preliminary evaluation of remedial and regulatory requirements, the following additional activities are required at the site to obtain

closure (removal from regulatory lists and oversight). For purposes of this report, these additional activities are considered to comprise remedial costs. An opinion of remedial cost is provided for each area of concern; a summary is provided on Table 6.1.

6.1 Existing USTs

The groundwater gradient would be measured monthly for a period of six consecutive months. The three wells would be monitored for TPH/G, TPH/D, and BTEX for four consecutive quarters. Quarterly reports would be submitted to the County documenting the results of the groundwater monitoring activities; the reports would include appropriate documentation such as groundwater gradient maps. Following a period of one year with no significant changes in the groundwater concentrations, a request for closure report would be submitted to the County. Our estimated order-of-magnitude opinion of cost to complete these activities is approximately \$ 25,000.

6.2 Disposal of Stockpiled Soils

The soils previously excavated from the tank pit would be appropriately disposed, the tank area would be backfilled, and a report would be submitted to the County documenting that additional excavation is not feasible and requesting closure. Assuming that the stockpiled soils would require disposal at a Class 1 (hazardous) landfill due to the elevated level of contaminants (greater than 1,000 ppm of O&G) identified by previous laboratory analysis, our estimated order-of-magnitude opinion of cost is approximately \$ 25,000.

6.3 Additional Excavation of Waste Oil UST

Should additional excavation be required by the County, the excavation limits would likely not extend more than 10 feet to the north, west and east. Approximately 100 cubic yards of soil would be excavated. Soil samples would need to be collected from each end of the excavation to verify the levels of contaminants that remain. Soil samples would need to be analyzed for contaminants previously identified in the area (O&G, TPH/D, TPH/G, and BTEX). The excavated soil would likely require disposal at a Class 1 facility due to the elevated level of contaminants previously identified in the immediate vicinity of the tank pit. A report would be submitted documenting the excavation, soil sample results, disposal of excavated soils, and requesting site closure. Our estimated order-of-magnitude opinion of cost to complete these activities is approximately \$ 50,000.

6.4 Presence of O&G

A cost/benefit report would be submitted to the County documenting that the clean-up costs associated with removing the O&G contamination far exceed the benefits. Our estimated order-of-magnitude opinion of cost to complete this report is approximately \$ 10,000.

The above opinion of costs assume that the owner is responsive to the County's requirements and/or requests. Failure to provide information to the County in a timely manner may result in enforcement actions, fines, and/or requests for additional information. Our estimated costs exclude costs associated with being non-responsive to the County's requirements and/or requests.

7.0 STANDARD OF CARE

The services performed that are the subject of this report were performed according to generally accepted national standards of care, skill, diligence and professional competence applicable to Law/Crandall, Inc. and are subject to the extent and limitations contained in the scope of work between Law Associates, Inc. and G.A.P. Portfolio Partners outlined in job order number 92-1026-3 issued under the Master Consulting Agreement. Furthermore, this assessment included a review of reports prepared by other consultants upon which Law/Crandall, Inc. reasonably relied upon without verifying the accuracy of the information contained therein.

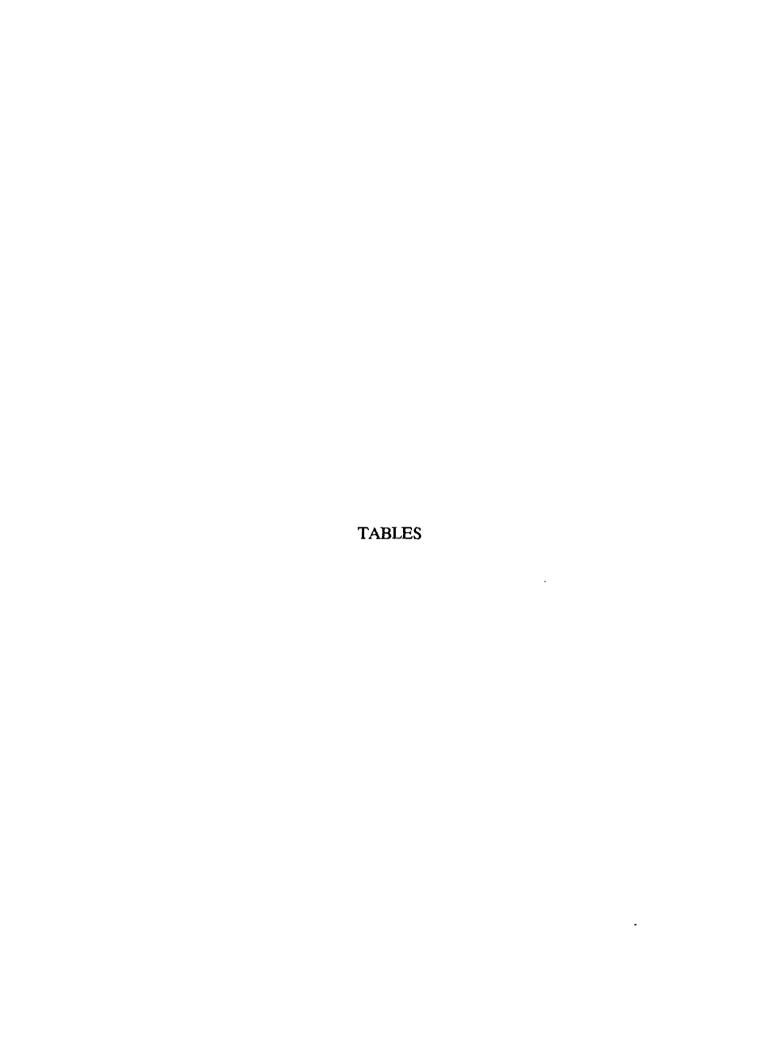


TABLE 4.1: SOIL SAMPLE RESULTS FOR WASTE OIL AREAS BALLENA ISLE MARINA, ALAMEDA, CA CONTROL NUMBER 1026, GREAT AMERICAN PORTFOLIO LAW/CRANDALL PROJECT NO. 2123-20669-1

Sample ID: Sample Depth, Feet: Sample Date:	B-1 10 12/7/92	B-2 10 12/7/92	B-3 10 12/7/92	B-4 10 12/7/92	B-7 5 12/7/92
TPH/G	ND<1	ND<1	ND<1	ND<1	ND<1
TPH/D	ND<10	ND<10	ND<10	ND<10	ND<10
VOCs	ND	ND	ND	ND	ND
BTEX					
Benzene	ND<0.003	ND<0.003	ND<0.003	ND<0.003	ND<0.003
Toluene	ND<0.003	ND<0.003	ND<0.003	ND<0.003	ND<0.003
Ethylbenzene	ND<0.003	ND<0.003	ND<0.003	ND<0.003	ND<0.003
Xylenes	ND<0.003	ND<0.003	ND<0.003	ND<0.003	ND<0.003
Semi-volatiles	ND	ND	ND	ND	ND
Pesticides and PCBs	ND	ND	ND	ND	ND
Metals					
Cadmium	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
Chromlum	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
Lead	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
Nickel	ND<1	ND<1	ND<1	ND<1	ND<1
Zinc	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5

All analytical results in mg/kg except lead.

TPH/D: Total Petroleum Hydrocarbons as Diesel by EPA Method Mod. 8015.

TPH/G: Total Petroleum Hydrocarbons as Gasoline by EPA Method 5030/Mod. 8015.

Pesticides/PCB: Polychlorinated biphenyls by EPA Method 8080.

VOC: Volatile Organics by EPA Method 8240.

BTEX: By EPA Method 8020.

Oil & Grease: By EPA Method 413.1 (5520 D & F).

Pesticides: By EPA Method 8080. Semi-Volatile: By EPA Method 8270.

Metals: By California Administrative Code Title 22 and SW0846 Method 6010; results in mg/l.

TABLE 4.2: SOIL SAMPLE RESULTS FOR UST AREAS BALLENA ISLE MARINA, ALAMEDA, CA CONTROL NUMBER 1026, GREAT AMERICAN PORTFOLIO LAW/CRANDALL PROJECT NO. 2123-20669-1

Sample ID: Sample Depth, Feet: Sample Date:	MW-1 5 1 <i>2/4/</i> 92	MW-2 5 12/4/92	MW-3 5 12/4/92	MW-4 5 12/4/92
TPH/G	ND<1	ND<1	ND<1	ND<1
TPH/D	ND<10	ND<10	ND<10	ND<10
Oil and Grease	ND<50	ND<50	ND<50	ND<50
BTEX				
Benzene	ND<0.003	ND<0.003	ND<0.003	ND<0.003
Toluene	ND<0.003	ND<0.003	ND<0.003	ND<0.003
Ethylbenzene	ND<0.003	ND<0.003	ND<0.003	ND<0.003
Xylenes	ND<0.003	ND<0.003	ND<0.003	ND<0.003
Lead	ND<0.5	ND<0.5	ND<0.5	ND<0.5

All analytical results in mg/kg except lead.

TPH/D: Total Petroleum Hydrocarbons as Diesel by EPA Method Mod. 8015.

TPH/G: Total Petroleum Hydrocarbons as Gasoline by EPA Method 5030/Mod. 8015.

BTEX: By EPA Method 8020.

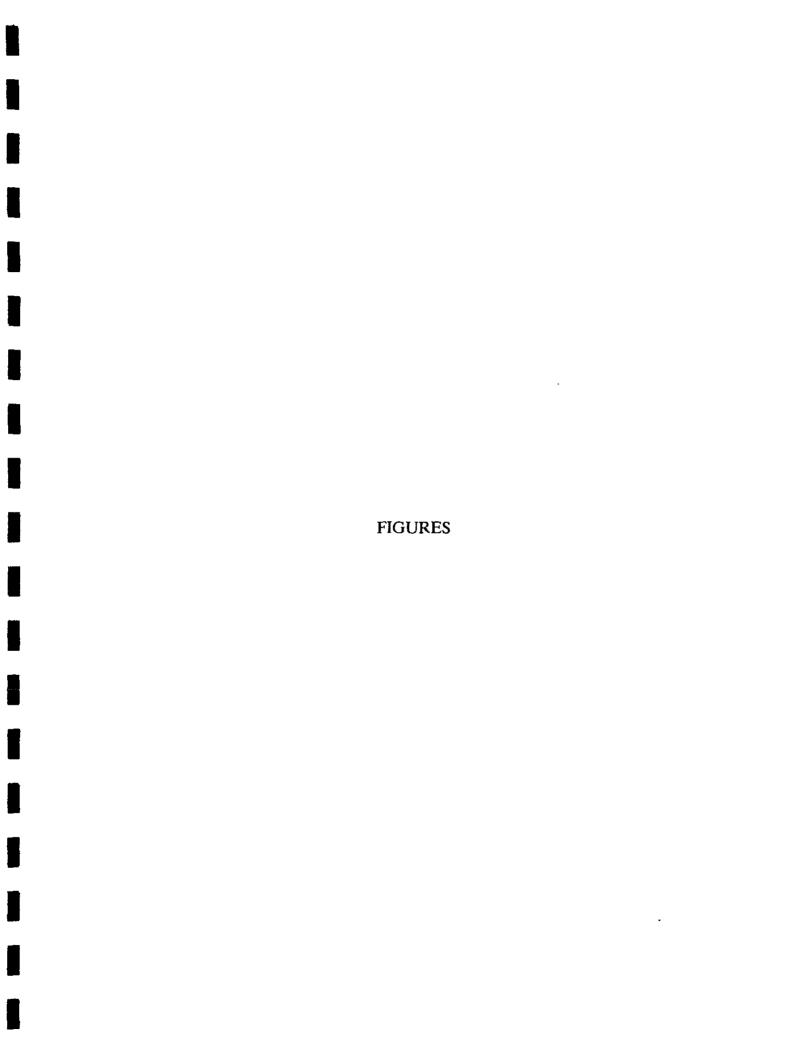
Lead: By California Administrative Code Title 22 and SW-846 Method 6010; results in mg/l.

Oil and Grease: By EPA Method 413.1(5520 D&F).

TABLE 4.3: GROUNDWATER SAMPLE RESULTS FOR UST AREAS BALLENA ISLE MARINA, ALAMEDA, CA CONTROL NUMBER 1026, GREAT AMERICAN PORTFOLIO LAW/CRANDALL PROJECT NO. 2123–20669–1

Sample ID: Sample Date:	MW-1 12/8/92	MW-2 12/8/92	MW-3 12/8/92	MW-4 12/4/92
TPH/G	ND<50	ND<50	52	ND<50
TPH/D	ND<50	ND<50	ND<50	ND<50
BTEX				
Benzene	ND<0.3	ND<0.003	ND<0.3	ND<0.003
Toluene	0.5	ND<0.003	0.5	ND<0.003
Ethylbenzene	ND<0.3	ND<0.003	ND<0.3	ND<0.003
Xylenes	0.6	ND<0.003	0.6	ND<0.003
Lead	ND<0.1	ND<0.1	ND<0.1	ND<0.1

All analytical results in mg/l.


TPH/D: Total Petroleum Hydrocarbons as Diesel by EPA Method Mod. 3550/8015. TPH/G: Total Petroleum Hydrocarbons as Gasoline by EPA Method 5030/Mod. 8015.

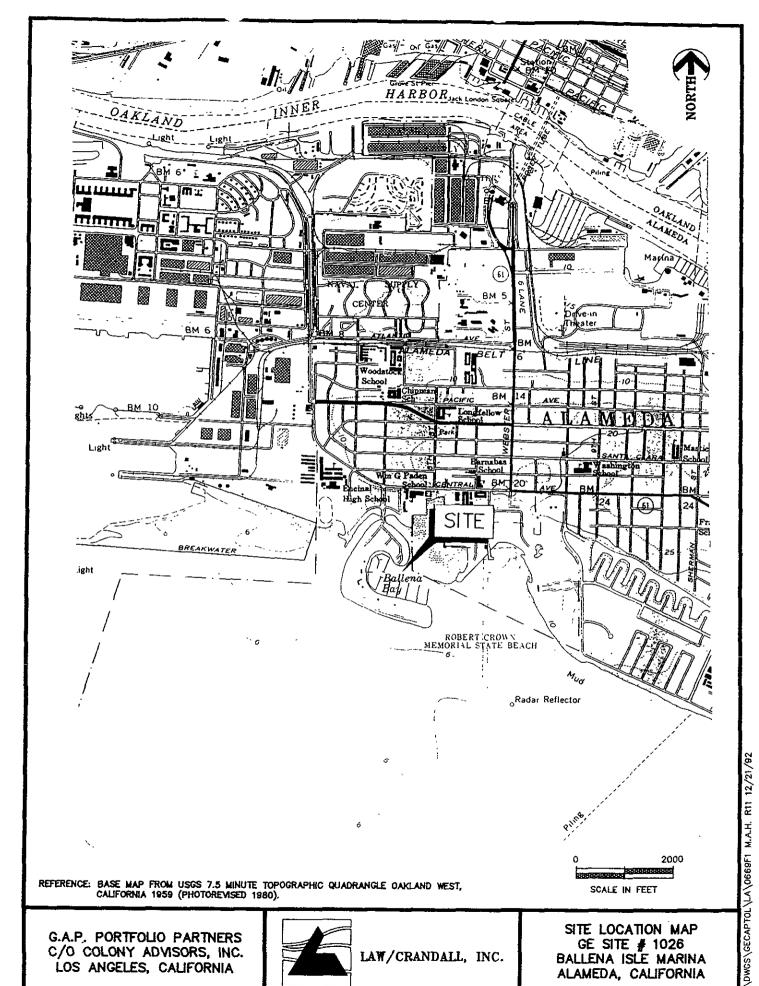
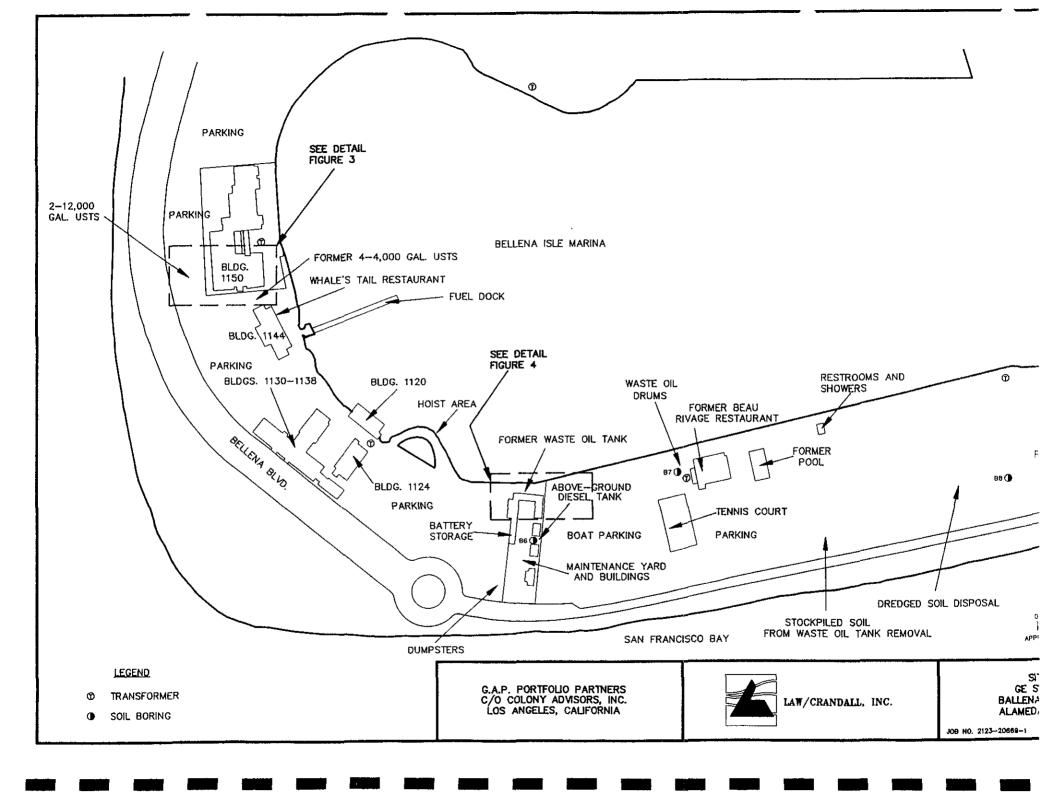
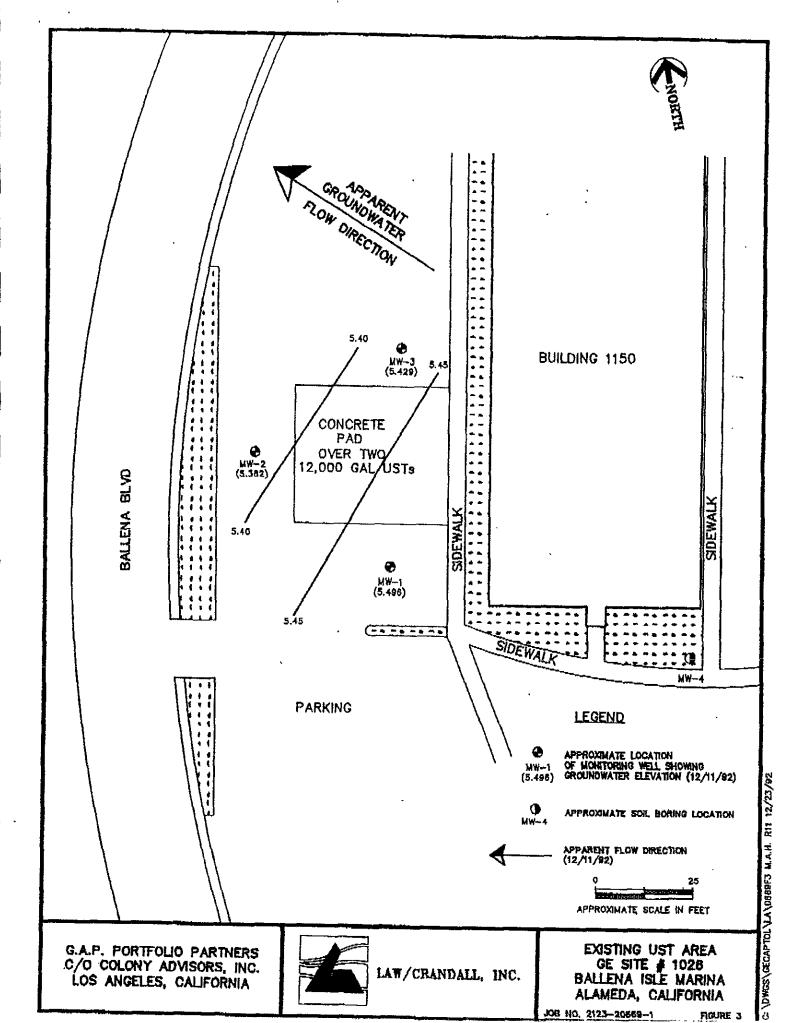
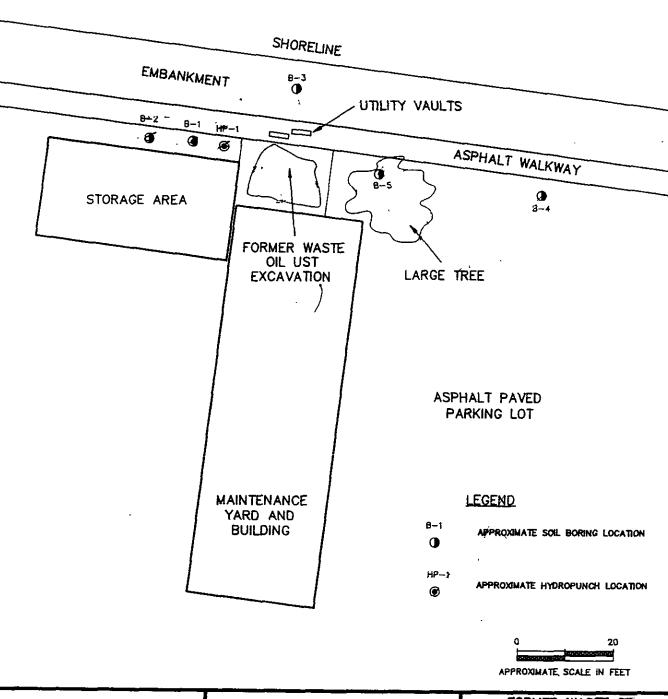

BTEX: By EPA Method 8020. Lead: By SW-846 Method 6010.

TABLE 4.4: GROUNDWATER ELEVATIONS
BALLENA ISLE MARINA, ALAMEDA, CA
CONTROL NUMBER 1026, GREAT AMERICAN PORTFOLIO
LAW/CRANDALL PROJECT NO. 2123–20669–1


MONITORING WELL	DEPTH TO WATER (FT)	TOP OF CASING ELEVATION (FT)	GROUNDWATER ELEVATION (FT)
MW-1	4.16	9.66	5.50
MW-2	4.68	10.06	5.38
MW-3	4.56	9.99	5.43


- 1) Top of casing elevations and groundwater elevations were calculated based on a temporary benchmark located at the southwest corner of the concrete pad which overlies the UST; the benchmark had an assumed elevation of 10 feet.
- 2) Groundwater levels were measured on 12/11/92.


JOB NO. 2123-20669-1 FIGURE 1

MARINA (DOCKS)

G.A.P. PORTFOLIO PARTNERS-C/O COLONY ADVISORS, INC. LOS ANGELES, CALIFORNIA

LAW/CRANDALL, INC.

FORMER WASTE OIL

UST AREA

GE SITE # 1026

BALLENA ISLE MARINA

ALAMEDA, CALIFORNIA

JOB NO. 2123-20669-1 FIGURE

\DWGS\GECAPTOL\LA\0668F4 M.A.H. R11 12/23/92

APPENDIX A SOIL BORING AND WELL CONSTRUCTION PERMIT

smit and Alemada County Ordinance No. 73-68.

Paul Renton.

ALAMEDA COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT

5897 PARKSIDE DRIVE

PLEASANTON, CALIFORNIA 94588

/ Wymat dong /

(416) 484-2600

to

AGENE PERM	AIT APPLICATION
CONTION OF PROJECT BALLENA ISLE MARIO'A 11.70 BALLENA BLUD. ALAMEDA, CA	PERMIT NUMBER 92611 LOCATION NUMBER
HENT Name GENERAL ELECTRIC CAPITAL CORP. Iddress 260 Land RIDGE ROPHONERIS 444 -1422 CL Ity STAMFORD CT ZIP C6927 - 9100	PERMIT CONDITIONS LAW CRANDALL Circled Permit Requirements Apply
PPLICANT Sma PAUL RURRAGE LAW CRANDALL IFK. durass yood Civic centre of hone (4:1) 419-1422 ITY LAM RAFACL, CA ZIP 74403 YPF Y PROJECT a natruation Geotechnical investigation General Contentiation Water Supply Contentiation X Monitoring X Hell Destruction ROPOSED WATER SUPPLY WELL USE mestic industrial Other Alcipal Irrigation ILLING HETHOD: A Rotary Air Rotary Auger X Die Other LLER'S LICENSE ND. C-57 G/0 487 LL PROJECTS Drill Hole Diameter 8 in. Maximum Cosing Disheater 2 in. Dapth 15 ft. Surface Seel Depth 3 tt. Number 4 TECHNICAL PROJECTS Number of Borings 6 Maximum Hole Diameter 8 in. Depth 15 ft.	A, GENERAL 1. A permit application should be submitted so as to errive at the Zone 7 office five days prior to proposed starting date. 2. Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources water Well Drillers Report or equivalent for well projects, or drilling logs and location sketch for geotechnical projects. 3. Permit is void it project not begun within 90 days of approval date. 8. WATER WELLS, INCLUDING PIEZOMETERS 1. Minimum surface set thickness is two inches of cement grout pieced by tremie. 2. Minimum seel depth is 50 feet for municipal and industrial walls or 20 feet for damsstic and irrigation wells unless a lesser depth is specially approved. Minimum seel depth for monitoring walls is the maximum depth practicable or 20 feet. 6. GEOTECHNICAL. Sackfill bors hale with compacted cuttings or heavy benianite and upper two feet with compacted material. In areas of known or suspected contemination, tramise coment grout shall be used in piece of compacted cuttings. 9. OATHODIC, Fill hole above anode zone with concrete pinced by tremis. E. WELL DESTRUCTION. See attached.
IMATED STARTING DATE 12/1/42 IV COMPLETION DATE 12/1/42 Greby agree to comply with all requirements of this	Approved Miller House Care 24 Key 12

APPENDIX B SOIL BORING AND MONITORING WELL CONSTRUCTION LOGS

MW-1 TEST BORING RECORD

DEPTH (FEET)	DESCRIPTION	шн	s	DIA	GRAM	MATERIALS	OVA READINGS
0.0	Asphalt 3 in., Gravel Base 3 in.	900000000000000000000000000000000000000				Locking vault and watertight well cap	
0.5	FILL-SAND (SP): tan - light grey; 90-95%					Grout Seal	<u> </u>
	fine sand; 5-10% silt; poorly graded;					Bentonite peliets]
	subangular; very loose; slightly moist; no					2" dia. PVC blank Schedule 40 casing	
	unusual odors or discoloration				1		1
1 1	NOTE: Sand becoming light - medium grey,		SA	1	=	= .	0
1 1	no unusual odors or discoloration.				≣(. :		[[
1 -			İ			w.	
-					≡ `	#3 filter sand]
			1				,
			1		≣ •	2" dia PVC slotted Schedule 40 casing	0
	NOTE: Soil is light-medium grey; 80% fine				=	2" dia. PVC slotted Schedule 40 casing (0.02 inch slots)	ľ
	sand; 20% shell fragments; very loose;				≣]		1
	very wet; no unusual odors or						
1	discoloration; fill					1	1
1					Ξ)]
15.0 -	Boring terminated at approximately 15	********	1	·····	<u> </u>	Threaded pointed endcap	0
1 1	feet, groundwater encountered at a depth	,	1	İ	ļ	•	1
1 -	of approximately 7 feet. Some sloughing of			ļ			
	sands, no unusual odors or discoloration.					1	
1 1	•	}	İ	i	١	[
		İ		l			
i j		l		Į.		ĺ	
						ĺ	
, [
1 1		\	•	•	İ		{
1 1		}	1	1]
1 4						1	
1 1		ţ	l	l	i	Į.	[
]]							[]
]			į			•	
j j		1	1	•	İ		}
							l i
1 1							
1 1		1	1	}]
1 4		{		1			[
		[1]
1 1				1	i	1	
]		}	[1	İ	1	
1 1		Ì					
1 1		[1			1
		·					L

REMARKS:

 Boring advanced using 8-inch hollow stem augers.

Groundwater encountered at depth of approximately 7 feet.

3) SA = Sample Analyzed

4) = Stabilized groundwater level

5) 🔝 = Drilling water level

DRILLED BY LOGGED BY CHECKED BY G. SIERRA ATM MIM BORING NUMBER DATE STARTED DATE COMPLETED JOB NUMBER MW-1 12/4/92 12/4/92 2123-20669-1

MW-2 TEST BORING RECORD

DEPTH (FEET)	DESCRIPTION	шн	s	DIAGRAM	MATERIALS	OVA READINGS
0.0 0.8	Asphalt 6 in., Gravel Base 3 in. FILL-SAND (SP): Tan-light grey; 90% fine grained sand; 10% silt; some silt tenses;				Locking vault and watertight well cap Grout seal Bentonite pellets	
	poorly graded; subangular; loose; moist; no unusual odors or discoloration NOTE: Becoming light - medium grey at 3 feet		SA		2" dia. PVC blank Schedule 40 casing	20
	NOTE: Sand is light-medium grey; 90% fine - medium sand; 5-10% silt; trace shell fragments; poorly graded; subangular; loose-very loose; wet; no unusual odors or discoloration, fill				2" dia. PVC slotted Schedule 40 casing (0.02 inch slots)	120
15.0	NOTE: Shell fragments make up 15% of soil Boring terminated at approximately 15 feet, groundwater encountered at a depth of approximately 7 feet. Some sloughing of sands, no unusual odors or discoloration.				Threaded pointed endcap	15
	sairus, no unusual odors di discoloration.					
-						

REMARKS:

1)Boring advanced using 8-inch hollow stem augers

.)Groundwater encountered at a depth of approximately 7 feet.

3)SA = Sample Analyzed

4) = Stabilized groundwater level

5)** = Drilling water level

DRILLED BY LOGGED BY CHECKED BY G. SIERRA ATM MIM BORING NUMBER DATE STARTED DATE COMPLETED JOB NUMBER MW-2 12/4/92 12/4/92 2123-20669-1

MW-3 TEST BORING RECORD

DEPTH (FEET)	DESCRIPTION	ШН	s	DIAG	RAM	MATERIALS	OVA READINGS
0.0	Asphalt 4 in., Gravel base 3 in.					Locking vault and watertight well cap	
0.6	FILL-SAND (SP) tan-light grey: 90% fine					Grout seal	
	sand; 10% silt; poorly graded;					Bentonite pellets	
1	subangular; loose; alightly moist; no			77777		2' dia. PVC blank Schedule 40 casing	
1 1	unusual odors or discoloration		SA	(A)	3%. 9 7	_	
7	NOTE: Sand becoming light - medium grey,					포	0
1 1	no unusual odors or discoloration			I		≢3 filter sand	ì
1				I ∂∃		팢	
1 1				l	,		
1	NOTE: Silt content is decreasing; trace			I≡			
1 1	shell fragments; no unusual odors or					2" dia. PVC slotted Schedule 40 casing (0.02 inch slots)	0
1 1	discoloration.				3	(0.02	Ì
		**************************************		I∷ E	j.m		
1 1					• • •	:	
] -							ŀ
15.0	Boring terminated at approximately 15			├ ────────		Threaded pointed endcap	0
1 1	feet, groundwater encountered at a depth	ŀ	1	•		,	
1 1	of approximately 7 feet. Some sloughing of		l				
1 1	sands. No unusual odors or discoloration.	}		•			
1 1							
1 1			ļ	l			
` - 1			1				
, -				ĺ			
1 1]				
1 1							
1 -		'		ļ			
1 1							
1 1				İ			
1 1							
1 1			ĺ	ĺ			
} -						•	
] - {				•			
1 1							
				Ì			
] -							
1 -			1	•			
1 4							
		ļ .		ţ			
]]				ļ			
		ļ	Ī				
<u>1</u>			<u> </u>				

REMARKS:

1)Boring advanced using 8-inch hollow stem augers.

)Groundwater encountered at a depth of approximately 7 feet.

3)SA = Sample Analyzed

4)= = Stabilized groundwater level

5)** = Drilling water level

DRILLED BY LOGGED BY CHECKED BY G. SIERRA ATM MIM BORING NUMBER DATE STARTED DATE COMPLETED JOB NUMBER MW-3 12/4/92 12/4/92 2123-20669-1

MW-4 TEST BORING RECORD

DEPTH (FEET)	DESCRIPTION	шн	s	DIAGRAM	MATERIALS	OVA READINGS
0.0	FILL-SAND (SP): light-medium grey; 90% fine sand; 10% shell fragments; poorly graded; subangular; very loose; wet; no unusual odors or discoloration				l Bentonite pellets	
-			SA	v		o
9.0	Hand augering terminated at approximately 9 feet. Groundwater encountered at a depth of approximately 7.3 feet. Some sloughing of sands, no unusual odors or				-	
	discoloration.					
					•	
1						
1						
			! :			
1				Ì		

REMARKS:

1)Boring advanced using 3.5-inch hand auger 2)Groundwater encountered at a depth of 7.3 feet

3)SA = Sample analyzed

4)** = Drilling water level

DRILLED BY LOGGED BY CHECKED BY G. SIERRA ATM MIM BORING NUMBER DATE STARTED DATE COMPLETED JOB NUMBER MW-4 12/4/92 12/4/92 2123-20669-1

B-1 TEST BORING RECORD

DEPTH (FEET)	DESCRIPTION	បាអ	s	DIAGRAM	MATERIALS	OVA READINGS
0.0	Asphalt 4 in., Gravel Base 3 in. FILL-SILTY SAND (SM): Tan-light grey; 70% fine sand; 10% slit; 20% shell fragments; poorly graded; subangular; very loose; moist; no unusual odors or discoloration NOTE: Color becoming light - medium grey				Neat Cement/Grout Seal	o
10.0	FILL-SAND (SP): light-medium grey; 90% fine sand; 10% shell fragments; poorly graded; subangular; very loose; wet; no unusual odors or discoloration		SA	₩.		0
15.0	Boring terminated at approximately 15 feet. Groundwater encountered at 10.6 feet. No unusual odors or discoloration.					0

REMARKS:

1)Boring advanced using 8-inch hollow stem

2)Groundwater encountered at a depth of 10.8

3)SA = Sample Analyzed

4)*= = Drilling water level

DRILLED BY LOGGED BY **CHECKED BY**

ATM MIM

G. SIERRA BORING NUMBER DATE STARTED DATE COMPLETED JOB NUMBER

B-1 12/7/92 12/7/92 2123-20669-1

B-2 TEST BORING RECORD

DEPTH (FEET)	DESCRIPTION	шн	s	DIAGRAM	MATERIALS	OVA READINGS
0.0	Asphalt 4 in., Gravel Base 3 in. FILL-SILTY SAND (SM): Tan-light grey; 70% fine sand; 10% silt; 20% shell fragments; poorly graded; subangular; very loose; moist; no unusual odors or discoloration NOTE: Color becoming light - medium grey				Neat Cement/Grout Seal	O
10.0			SA			0
	FILL-SAND (SP): light-medium grey; 90% fine sand; 10% shell fragments; poorly graded; subangular; very loose; wet; no unusual odors or discoloration			-		
15.0	Boring terminated at approximately 15 feet, Groundwater encountered at 10.6 feet. No unusual odors or discoloration.				•	0

REMARKS:

1)Boring advanced using 8-inch hollow stem augers.

Groundwater encountered at a depth of 10.8 feet.

3)SA = Sample Analyzed

4)' = Drilling water level

DRILLED BY LOGGED BY CHECKED BY G. SIERRA ATM MIM BORING NUMBER DATE STARTED DATE COMPLETED JOB NUMBER B-2 12/7/92 12/7/92 2123-20669-1

B-3 TEST BORING RECORD

DEPTH (FEET)	DESCRIPTION	LITH	s	DIAGRAM	MATERIALS	OVA READINGS
0.0	Asphalt 4 in., Gravel Base 3 in. FILL-SILTY SAND (SM): Tan-light grey; 70% fine sand; 10% silt; 20% shell tragments; poorly graded; subangular; very loose; moist; no unusual odors or discoloration NOTE: Color becoming light - medium grey				Neat Cement/Grout Seal	o
10.0	FILE-SAND (SP): light-medium grey; 90% fine sand; 10% shell fragments; poorly graded; subangular; very loose; wet; no unusual odors or discoloration		SA	¥		o
15.0	Boring terminated at approximately 15 feet. Groundwater encountered at 10.6 feet. No unusual odors or discoloration.				,	0
					,	

REMARKS:

1)Boring advanced using 8-Inch hollow stem

.)Groundwater encountered at a depth of 10.8

3)SA = Sample Analyzed

4)** = Drilling water level

DRILLED BY LOGGED BY CHECKED BY G. SIERRA ATM MIM BORING NUMBER DATE STARTED DATE COMPLETED JOB NUMBER B-3 12/7/92 12/7/92 2123-20669-1

B-4 TEST BORING RECORD

DEPTH (FEET)	DESCRIPTION	штн	s	DIAGRAM	MATERIALS	OVA READINGS
0.0	Asphait 4 in., Gravel Base 3 in. FILL-SILTY SAND (SM): Tan-light grey; 70% fine sand; 10% silt; 20% shell fragments; poorly graded; subangular; very loose; moist; no unusual odors or discoloration NOTE: Color becoming light - medium grey				Neat Cement/Grout Seal	o
10.0	FiLL-SAND (SP): light-medium grey; 90% fine sand; 10% shell fragments; poorly graded; subangular; very loose; wet; no unusual odors or discoloration		SA	÷		o
15.0	Boring terminated at approximately 15 feet. Groundwater encountered at 10.6 feet. No unusual odors or discoloration.					C

REMARKS:

1)Boring advanced using 8-inch hollow stem augers.

.)Groundwater encountered at a depth of 10.8 feet.

3)SA = Sample Analyzed

4)*= Drilling water level

DRILLED BY LOGGED BY CHECKED BY G. SIERRA ATM MIM

BORING NUMBER DATE STARTED DATE COMPLETED JOB NUMBER B-4 12/7/92 12/7/92 2123-20669-1

B-5 TEST BORING RECORD

DEPTH (FEET)	DESCRIPTION	LITH	s	DIAGRAM	MATERIALS	OVA READINGS
0.0	FILL-SILTY SAND (SM): Light-medium grey; 80% fine sand; 10% silt; 10% shell fragments and roots; poorly graded; subangular; very loose; no unusual stains or discoloration				Neat Cement/Grout Seal	
5.0	FILL-SAND (SP): Light-medium grey; 90% fine sand; 10% shell fragments; poorly graded; subangular; very loose; no unusual odors or discoloration		C.A.		·	o
9.0	Hand augering terminated at approximately 9 feet, no unusual odors or discoloration		SA			0
					•	

REMARKS:

1)Boring advanced using 3.5 inch hand auger due to presence of large tree

groundwater not encountered

3)SA = Sample Analyzed

DRILLED BY LOGGED BY CHECKED BY G.SIERRA ATM MIM BORING NUMBER DATE STARTED DATE COMPLETED JOB NUMBER B-5 12/7/92 12/7/92 2123-20669-1

B-6 TEST BORING RECORD

DEPTH (FEET)	DESCRIPTION	LITH	s	DIAGRAM	MATERIALS	OVA READINGS
0.0	Concrete 3 in., Gravel Base 3 in. FILL-SILTY SAND (SM): Tan-light grey; 80% fine sand; 10% silt; 10% shell fragments; poorly graded; subangular; very loose; moist; no unusual stains or discoloration		SA		Neat Cement/Grout Seal	
5.0	Hand augering terminated at approximately 5 feet					0
-					•	

REMARKS:

1)Boring advanced using 3.5 inch hand auger.

2)Groundwater not encountered

)SA = Sample analyzed

DRILLED BY LOGGED BY CHECKED BY L/C ATM MiM BORING NUMBER DATE STARTED DATE COMPLETED JOB NUMBER B-6 12/7/92 12/7/92 2123-20669-1

B-7 TEST BORING RECORD

DEPTH (FEET)	DESCRIPTION	LITH	s	DIAGRAM	MATERIALS	OVA READING
0.0	FILL-SAND (SP): Tan-light grey; 85% fine sand; 15% shell fragments and roots; poorly graded; subangular; very loose; moist; no unusual odors or discoloration		SA		Backfill	o
4.0	Boring terminated at 4.00 feet					
	NOTE: Applied having			į		ļ
]	NOTE: Angled boring					
1 1	·		ļ			<u> </u>
}						<u> </u>
]				-		
]]
{						
	,					<u> </u>
! 					}	
, -						
]				\		
-					`	
-						
		i i				ĺ
			<u> </u>			ļ
			Ī			
			<u> </u>			
REMARKS:	augering terminated at 4 feet			DRILLED BY	L/C BORING NUMBER ATM DATE STARTED	B-7 12/8/92

DATE STARTED DATE COMPLETED JOB NUMBER 12/8/92 12/8/92 2123-20669-1

LOGGED BY

CHECKED BY

ATM

MIM

1)Hand augering terminated at 4 feet
2)Groundwater not encountered
3)SA = Sample analyzed

B-8 TEST BORING RECORD

DEPTH (FEET)	DESCRIPTION	LITH	s	DIAGRAM	MATERIALS	OVA READINGS
0.0	CLAY (CL): Dark brown - dark grey brown; high plasticity fines; trace fine sand; moist; no unusual odors or discoloration		SA I		Backfill	
4.0	Hand augering terminated at 4 feet.		SAI	022218.033	-	0
					•	

REMARKS:

1)Hand augering terminated at 4 feet.

?)Groundwater not encountered

)SA = Sample analyzed

DRILLED BY L/C LOGGED BY ATM CHECKED BY MIM BORING NUMBER
DATE STARTED
DATE COMPLETED
JOB NUMBER

B-8 12/8/92 12/8/92 2123-20669-1

APPENDIX C

LABORATORY ANALYTICAL RESULTS
AND
CHAIN-OF-CUSTODY DOCUMENTATION

1555 Burke, Unit F • San Francisco, California 94124 • [415] 647-2081 / fax (415) 821-7123

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 55903

CLIENT: LAW/CRANDALL, INC.

CLIENT JOB NO.: 2123206630001

DATE RECEIVED: 12/18/92 DATE REPORTED: 12/23/92

ANALYSIS FOR TOTAL PETROLEUM OIL AND GREASE by Method 5520F (formerly 503E)

Concentration (mg/kg) ation Total Petroleum Oil & Grease
ND<50
ND<50
ND<50
ND<50

mg/kg - parts per million (ppm)

Minimum Detection Limit for oil & grease in Soil: 50mg/kg

QAQC Summary:

MS/MSD Average Recovery = 99%

Duplicate RPD = 6%

Richard Srna, Ph.D.

1555 Burke, Unit 1 • San Francisco, California 94124 • (415) 647-2081 / fax (415) 821 7123

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 55863

CLIENT: LAW/CRANDALL, INC.

CLIENT JOB NO.: 2123206630001

DATE RECEIVED: 12/04/92

DATE REPORTED: 12/15/92

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Method 5030 and 8015

Sample Identification	Concentration Gasoline Range								
MW1 @ 5'	ND<1 mg/kg 😜								
MW2 @ 5'	ND<1 mg/kg								
MW3 @ 5'	ND<1 mg/kg								
MW4 @ 5'	ND<1 mg/kg								
MW4	ND<50 ug/L								
	MW1 @ 5' MW2 @ 5' MW3 @ 5' MW4 @ 5'								

ug/L - parts per billion (ppb)
mg/kg - parts per million (ppm)

Method Detection Limit for Gasoline in Water: 50 ug/L Method Detection Limit for Gasoline in Soil : 1 mg/kg

QAQC Summary:

Daily Standard run at 2mg/L: %Diff Gasoline = <15 MS/MSD Recovery = 95%: Duplicate RPD = 1%

Richard Srna, Ph.D.

Labor

aboratory Manager

RECEIVED

DEC 16 1992

LAW ENVIRONMENTAL INC.

1555 Burke, Unit I • San Francisco California 94124 • [415] 647-2081 / fax [415] 821-7123

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 55863 DA'
CLIENT: LAW/CRANDALL, INC. DA'
CLIENT JOB NO.: 2123206630001 DA'

DATE RECEIVED: 12/04/92 DATE REPORTED: 12/15/92 DATE REVISED: 12/17/92

ANALYSIS FOR BENZENE, TOLUENE, ETHYL BENZENE & XYLENES by EPA SW-846 Methods 5030 and 8020

LAB			Concentra	ation Ethyl		
#	Sample Identification	Benzene	Toluene	Benzene	Xylenes	
						•
1	MW1 @ 5'	ND<.003	ND<.003	ND<.003	ND<.003	mg/kg
2	MW2 @ 5'	ND<.003	ND<.003	ND<.003	ND<.003	mg/kg
3	MW3 @ 5'	ND<.003	ND<.003	ND<.003	ND<.003	mg/kg
4	MW4 @ 5'	ND<.003	ND<.003	ND<.003	ND<.003	mg/kg
5	MW4	ND<0.3	ND<0.3	ND<0.3	ND<0.3	ug/L
ug/L	 parts per billion (ppb) 					

Method Detection Limit in Water: 0.3 ug/L Method Detection Limit in Soil: 0.003 mg/kg

g/kg - parts per million (ppm)

QAQC Summary:

Daily Standard run at 20ug/L: %Diff 8020 = <15% MS/MSD Average Recovery = 91%: Duplicate RPD = 4%

Richard Srna, Ph.D.

Laboratory Manager

1555 Burke, Unit 1 • San Francisco, California 94124 • (415) 647 2081 / fax (415) 821 7123

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 55863

CLIENT: LAW/CRANDALL DATE REPORTED: 12/15/92

CLIENT JOB NO.: 2123206630001

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Method 8015

LAB #	Sample Identification	Concentration (mg/) Diesel Range						
								
1	MW1 @ 5'	ND<10	mg/kg					
2	MW2 @ 5'	ND<10	mg/kg					
3	MW3 @ 5'	ND<10	mg/kg					
4	MW4 @ 5'	ND<10	mg/kg					
5	MW4	ND<50	${ m ug/L}$					

mg/kg - parts per million (ppm) ug/L - parts per billion (ppb)

Minimum Detection Limit for Diesel in Soil: 10mg/kg Minimum Detection Limit for Diesel in Water: 50ug/L

QAQC Summary:

Daily Standard run at 200mg/L: %DIFF Diesel = <15% MS/MSD Average Recovery = 88%: Duplicate RPD = 1%

Richard Srna, Ph.D.

DATE RECEIVED: 12/04/92

U: MANWEN (for)
Laboratory Director

825 Arnold Drive, Suite 114 • Martinez, California 94553 • (510) 229 1512 / fax (510) 229-1526

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 87362 CLIENT: LAW/CRANDALL

CLIENT JOB NO.: 2123206630001

DATE RECEIVED: 12/04/92

DATE REPORTED: 12/14/92

DATE SAMPLED: 12/04/92

ANALYSIS FOR STLC LEAD

by Calif. Admin. Code Title 22, Paragraph 66700 (WET)

and by EPA SW-846 Method 6010

LAB		Concentration (mg/L)
#	Sample Identification	Lead
	~	~
1	MW1 @5'	ND<0.5
2	MW2 @5'	ND<0.5
3	MW3 @5′	ND<0.5
4	MW4 @5'	ND < 0.5

mg/L = parts per million in extract

Method Detection Limit for Extractable Lead in Soil: 0.5 mg/L

QAQC Summary: MS/MSD Average Recovery : 92%

Duplicate RPD: 1%

Richard Srna, Ph.D.

H. Nelson for

RECEIVED

DEC 16 1992

LAW ENVIRONMENTAL INC.

825 Arnold Drive, Suite 114 • Martinez, California 94553 • (510) 229-1512 / fax (510) 229-1526

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 87362 CLIENT: Law/Crandall

CLIENT JOB NO.: 2123206630001

DATE RECEIVED:12/04/92 DATE REPORTED:12/14/92 DATE SAMPLED: 12/4/92

ANALYSIS FOR TOTAL LEAD by SW-846 Method 6010

LAB		Concentration $(mg/1)$
#	Sample Identification	Total Lead
		~ ~ ~ * *
5	MW4	ND<0.1

mg/l - parts per million (ppm)

Method Detection Limit for Lead in Water: 0.1 mg/L

MS/MSD Average Recovery : 92% QAQC Summary:

Duplicate RPD: 2%

Richard Srna, Ph.D. Velson for

	•		CHAI	N OF CUS	TODY RECO	RD		v				53	·		E	3CA Log	Number			
Client na	me LAW/	1CRAN	VOACC	INC			Project or PO# 2/23 ZOE6 Phone # 4/15 49	30001				7		Ar	nalyses	required		$\overline{}$,	
Address	400 C	ivie c	canten	Dr.	Suite 30	5	Phone # 415 49	99 1422									//	./		
City, Sta	le, Zip				Report attention	4N	BAHRY			6	ζ ^{οτ} /		8/	9Y/		//		/		
Sample	Date	Time	Type* See key	Sampled by	Arm			Number of	/	X /X	10 C)	/\ \\	No S	"/	/ /	/ /š		•		<u></u>
number	sampled	sampled	below		Sample	descripti	on	containers	18	<u> </u>	Y 6			_		\2 ³ 65	·/	Rema	rks	
<u></u>	12/4/92	10:00	50	MW	1 at 51	ct		1	X	X	X						5 day		ionan (<u>Z</u>
}	14/92	//:30	50	MWZ	at 57	'/		1.	X	X	X									
' } ——	12/4/92		50	MW	s at 5t	<u> </u>		/	X	X	×						-,, - <u>-</u> -,			
<u></u>	14/92	3:00	SO	NWY	1 at 5	ge		1	X	X	X									
	12/4/92	3:30	SW	MU	V 4			5	X	X		X			<u> </u>					
				ļ																
		·																		
<u>,</u>																				
		Signatur	е			Prır	nt Name					Сотра	ny				Da	ate	Timi	9
lelinquis	ned by		 						,						·					
·leceived	by			· · · · · · · · · · · · · · · · · · ·					·											
Relinquis	ned by																			
Received																				
Relinquisi	ned by Au	drew 7.	Mul	<u>a</u>	Andre	w 7	TOAQUIN	La	w/	1Cn	ani	ale					12/4	192	18:0	,
Received	by Laboratory	Cellia	Joag	years)	Ceci	lia	JOAQUIN	S	~De	Ric	,e	LA	B				12/4		1810	

B C ANALYTICAL

1255 Powell Street, Emeryville, CA 94608 (510) 428-2300

1 801 Western Aver

indale, CA 91201 (818) 247-5737

1 1200 Gene Autry . maheim, CA 92805 (714) 978-0113

lote:	Samples are discarded 30 days after results are reported unless other arrangements are made
	Hazardous samples will be returned to client or disposed of at client's expense.

Disposal arrangements:_

WW-Wastewater SU-Surface Water SO-Soil SL-Sludge PE-Petroleum OT-Other er AQ-Aqueous

NA-Nonaqueous GW-Gro

1555 Burke, Unit 1 • San Francisco, California 94124 • [415] 647-2081 / fax [415] 821 7123

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 55874

CLIENT: LAW/CRANDALL, INC.

CLIENT JOB NO.: 2123-20663-0001

DATE RECEIVED: 12/08/92

DATE REPORTED: 12/15/92

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Method 5030 and 8015

LAB # 	Sample Identification	Concentration Gasoline Range
1	SB 7	ND<1 mg/kg
3	MW 1	ND<50 ug/L
4	MW 2	ND<50 ug/L
5	MW 3	52 ug/L

ug/L - parts per billion (ppb)

Method Detection Limit for Gasoline in Soil: 1 mg/kg Method Detection Limit for Gasoline in Water: 50 ug/L

QAQC Summary:

Daily Standard run at 2mg/L: %Diff Gasoline = <15 MS/MSD Recovery = 94%: Duplicate RPD = 4%

Richard Srna, Ph.D.

Laboratory Manager

1555 Burke, Unit I • San Francisco, California 94124 • (415) 647-2081 / fax (415) 821-7123

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 55874

CLIENT: LAW/CRANDALL, INC.

CLIENT JOB NO.: 2123-20663-0001

DATE RECEIVED: 12/08/92

DATE REPORTED: 12/15/92

ANALYSIS FOR BENZENE, TOLUENE, ETHYL BENZENE & XYLENES by EPA SW-846 Methods 5030 and 8020

LAB				Concentr	ation Ethyl		
#	Sample	Identification	Benzene	Toluene	Benzene	Xylenes	
		•				₹~-	-
1	SB 7		ND<.003	ND<.003	ND<.003	ND<.003	mg/kg
3	MW 1		ND<0.3	0.5	ND<0.3	0.6	ug/L
4	MW 2		ND<0.3	ND<0.3	ND<0.3	ND<0.3	ug/L
5	MW 3		ND<0.3	0.5	ND<0.3	0.6	ug/L

ug/L - parts per billion (ppb) g/kg - parts per million (ppm)

Method Detection Limit in Soil: 0.003 mg/kg Method Detection Limit in Water: 0.3 ug/L

QAQC Summary:

Daily Standard run at 20ug/L: %Diff 8020 = <15% MS/MSD Average Recovery = 93%: Duplicate RPD = 5%

Richard Srna, Ph.D.

1555 Burke, Unit 1 • San Francisco, California 94124 • (415) 647-2081 / fax (415) 821-7123

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 55874

CLIENT: LAW/CRANDALL, INC.

CLIENT JOB NO.: 2123-20663-0001

DATE RECEIVED: 12/08/92

DATE REPORTED: 12/15/92

ANALYSIS FOR TOTAL PETROLEUM OIL AND GREASE by Method 5520F (formerly 503E)

LAB		Concentration (mg/kg)
#	Sample Identification	Total Petroleum Oil & Grease
1	SB 7	83
2	SB 8	130

mg/kg - parts per million (ppm)

Minimum Detection Limit for oil & grease in Soil: 50mg/kg

QAQC Summary:

MS/MSD Average Recovery = 98%

Duplicate RPD = 8%

Richard Srna, Ph.D.

1555 Burke, Unit I • San Francisco, California 94124 • [415] 647-2081 / fax [415] 821-7123

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 55874

DATE RECEIVED: 12/08/92

CLIENT: LAW/CRANDALL, INC.

DATE REPORTED: 12/16/92

CLIENT JOB NO.: 2123-20663-0001

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Method 8015

LAB # 	Sample Identification	Concentration Diesel Range
1	SB 7	ND<10 mg/kg
3	MW 1	ND < 50 ug/L
4	MW 2	ND<50 ug/L
5	MM 3	ND < 50 ug/L

mg/kg - parts per million (ppm) ug/L - parts per billion (ppb)

Minimum Detection Limit for Diesel in Water: 50ug/L Minimum Detection Limit for Diesel in Soil: 10mg/kg

QAQC Summary:

Daily Standard run at 200mg/L: %DIFF Diesel = <15% MS/MSD Average Recovery = 67%: Duplicate RPD = 9%

Richard Srna, Ph.D.

Laboratory Director

Certified Laboratories

1555 Burke, Unit 1 • San Francisco, California 94124 • [415] 647-2081 / fax [415] 821 / 123

CERTIFICATE OF ANALYSIS

LABORATORY NO. 55874-1 CLIENT: LAW/CRANDALL

DATE SAMPLED : 12/08/92 DATE ANALYZED: 12/11/92

DATE RECEIVED: 12/08/92 DATE REPORTED: 12/15/92

PROJECT NO. 2123-20663-0001

EPA SW-846 METHOD 8240 - VOLATILE ORGANICS by Gas Chromatography/ Mass Spectrometry

SAMPLE: SB7

Compound	\mathtt{MDL}	ug/kg	Compound	ΜDŢ	ug/kg
Chloromethane	50	ИD	Cis-1,3-Dichloropropene	15	ND
Bromomethane	50	ИD	Trichloroethene	15	ИD
Vinyl Chloride	50	ИD	Dibromochloromethane	15	ND
Chloroethane	50	ND	1,1,2-Trichloroethane	15	ND
Methylene Chloride	50	ND	Benzene	5	ND
Acetone	50	ИD	Trans-1,3-Dichloropropene	15	ND
arbon Disulfide	15	ND	2-Chloroethyl vinyl ether	15	ND
ichlorofluoromethane	15	ND	Bromoform	15	ND
1,1-Dichloroethene	15	ND	4-Methyl-2-Pentanone	50	ND
1,1-Dichloroethane	15	ND	2-Hexanone	50	ND
trans-1,2-Dichloroethene	15	ND	Tetrachloroethene	15	ND
Chloroform	15	ND	1,1,2,2-Tetrachloroethane	15	ND
1,2-Dichloroethane	5	ND	Toluene	15	ND
2-Butanone	100	ND	Chlorobenzene	15	ND
1,1,1-Trichloroethane	15	ND	Ethylbenzene	15	ND
Carbon Tetrachloride	15	ND	Styrene	15	ND
Vinyl Acetate	50	ND	Total Xylenes	15	ИD
Bromodichloromethane	15	ND	1,3-Dichlorobenzene	15	ND
1,2-Dichloropropane	15	ND	1,4-Dichlorobenzene		
cis-1,2-Dichloroethene	15	ND	1,2-Dichlorobenzene	15	ND
		212	TIT PICHTOLODGHISEHE	15	ND

ug/kg = parts per billion (ppb)

ND = ANALYTE NOT DETECTED ABOVE QUANTITATION LIMIT

QC DATA:

Surrogate Recoveries QC LIMITS soil 1,2-DCA-d4..... 105% 70-121 % Toluene-d8..... 104% 81-117 % Bromofluorobenzene..... 74-121 %

comments:

Richard Srna, Ph.D.

Section	CI	1a	in	0	f	Cı	IS	te	od	y	ä۱	, b - yd	A	na	lys	is	R	ec	uest pege_ot_				
Consultant	AW/ C	RA	NZ	AL	<u>ر</u>					_	Tu	irn: A	FOUNC	∳Time			Sei	neri	or Precision Analytical, Inc.				
Address <u>40</u>	00 ci	vic	<u> </u>	enx	en	<i>D.</i>	riv	ę	(circle one)							<u>-</u>							
	on Rai				7_	94	90		Same Day 72 Hrs									P.O. Box 1545 Martinez, California 94553					
Phone No. <u>4/5</u>							490	2	841	2	_	Hrs		48 Hk	· D		Martinez (510): 229-1512 Martinez 2 (510) 229-0166						
Project Manage	<u> کریک</u> ۲	AN		sh	ny	,		,		_		Norr	nał 5	Day	>			SanFrancisco (415) 647-2081					
Alternate Conta									.,,	_ [Sen	ple	*	AT	M	lha							
Project No.2/23	Project No.2/23 - 26663 - 600 / P.O. No									_	Reg	ulat	ory A	Agenc	y:								
Section II: Ana	lysis Re	que	вt																				
									ı					2 1			T	T	Sampling Remarks				
			Ì		ŀ	1		1 1	19	1		Pasticides		300	,		ya	2]				
	₹ .		×	9					12	<u>م</u>		.3		25			Ë	8	Bio-remediation				
,	A S	588) BIE	Diesel					Ľ	3		stie		3.1.				\$8.	Underground storage tank				
1	Soil A = Water		8015 - BTEX	1 .				12	Tota	- TPH by IR		4	0	18,0	Sempled	Sampled	ď	2	Monitoring:				
Laboratory Sample	* × ×	8015	20	ğ			17	₹		12		+	· K	1,3	, age	E S	8	Servativo	Recent Contemination				
Identification	Matrix	1 -	mod (mod 8015	9010	9240	CAM17	TCLP Metals:	Metals:	418	9 9 0	PCBs	28	1 %	Deta (e L	Mymber of Containers	\$					
1 <i>5B</i> 7		X	E	<u>i E</u>	80		0	=	Σ	4	6	A	?					T.	Unknown Compounds				
2 5B 8	5	6				┢		-	 	-	₩			To a	176 dise in	1 - 5 L		· 222	De (70				
3 MW/	1 W			- K	├	-		1.	\forall	╁					ples			120	Do not rum a/BIXE or Diesel				
4 MWZ	1 2		12			 	 	ļ.		-	+			Ap	Copr	7 to co	nta	18					
5 MW3	· W		X			 		 	X	1	 		· · · · · · · · · · · · · · · · · · ·	5	(F)		vaci						
6			1		:	ļ.			 ``		 			1 600	inent	्रिज्ञा	ານວະ	Spac					
7	i i	ř			-	7									ADERIC H	-	 						
8	<u> </u>	1		· -	ì	<u> </u>		,	 	1	 								6				
9	:	1	· ·		i	:				1	/			-									
10	 	,	,	i,	Ç										1	•							
11	ļ		:		į	ķ.																	
12		<u> </u>	<u></u>	<u> </u>	li:	<u> </u>	<u> </u>	ķ.		<u></u>				<u> </u>	1		<u>L</u>						
Relinquished by <u>(in</u> Organization <u>(aw)</u>	rganization (aw/Chan dall 12/8/92 8:30 Organization								-	•					Tim	Lab please initial the following:							
Relinquished by ——							_	Rece	povid	d by Date/Time Appropriate Containers													
Organization					<u> </u>				nizat				· A -		 		[;	Sampi VOAs	es Preserved AAO without Headspace Y				
Relinquished by ———	بي بي بي بي بي بي بي بي بي بي بي بي بي ب			_	Da	te/Ti	me	Rece	bevie	by (ولما	<u>la</u>	Jone	our.	Dat	ø/Tim			ents				
Organization	rganization Organizati						noi	ion Superior the 12/8/92 8:30 pm															

Section	Ch	ai	n	of	• C	us	to	dy	1 3	an	a Anah	ysi	s	R	eq	uest page_/_of_/		
	Precision 5 Burks Francisc	St. I	Jnit	1					- 1		n Around Time (circle one) Day 72 Hrs Irs S Day		O.	Su	•	P.O. Box 1545 tartinez, California 94553		
Contact:	P.O. Na. <u>55874</u>										48 Hrs 10 Day Work Subcontracted to: HTZ							
Section II: Anal	ysis Rec	jues	t															
Laboratory Sample Identification	R = Boil A = Air M = Water	MM17	Metals:	418.1	6270	nd PCB's)	5TLC 01,00,76	toral Lead			Client Semple Identification	Number of Containers	Preservative (yes or no)			Sampling Remarks Chevron Non-Chevron **Please Fax Results**		
1 55874-1	5						X						1/					
2 -2	5	X										/	N					
3 -3	w				<u> </u>	<u> </u>		X				_/_	1					
4 -4	1		ļ		<u> </u>		ļ	X	i	-		<u> </u>				`		
5 - 5	V			<u> </u>	ļ		<u></u>	X			-	/	V					
6					<u> </u>										 			
7		<u> </u>		<u> </u>					<u> </u>	<u> </u>			<u> </u>		_			
8			<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>		<u> </u>	ļ	<u> </u>	_			
9		<u> </u>		<u> </u>	 _	ļ	<u> </u>	<u> </u>		 		<u> </u>	 	-				
10		<u> </u>	<u> </u>		ļ	<u> </u>	 			 				<u> </u>	 -			
11		 	 	 	4-		-	ļ	ļ	 		 	-	-				
12		١, ,		<u> </u>		<u> </u>	-	<u> </u>	<u> </u>		<u></u>		<u></u>	<u>. </u>				
Relinquished by R. Drganization — Sur	President December Processes December Processes December 19/9/92 17/100 December December 19/9/92 17/100 December December 19/9/92 17/100 December December 19/9/92 17/100 December 19/9/92 19/9/92 17/100 December 19/9/92 17/100 December 19/9/92 17/100 December 19/9/92 17/100 December 19/9/92 17/100 December 19/9/92 19/9/92 17/100 December 19/9/92 19/9/92 17/100 December 19/9/92 17/100 December 19/9/92 17/100 December 19/9/92 17/100 December 19/9/92 17/100 December 19/9/92 19/9/92 17/100 December 19/9/92 17/100 December 19/9/92 17/100 December 19/9/92 17/100 December 19/9/92 17/100 December 19/9/92 19						ion				•/Tim		9	please initial the following: les Stored in los prists Containers				
Relinquished by Organization					ization Semples Preserved					les Preserved without Headspace								
Relinquished by Duts/Time Received Organization Organization					red by Dete/Time Consents					nertis								

Section	Ch	ai	n	of		ันร	E 0	dy	<u> </u>	-6	d Anal	/si	is	R	₽q	uest pero of
From: Supe	rior Precisio	ar Ar	raiyt	icat,	inc.	•			1	Tur	err Around Time	Š.		_		
· · · · · · · · · · · · · · · · · · ·	555 Bucke			-	· <u>- · · ·</u>				- (*)	(circle one). Superior Precision Analytica						
	ian Francisc				4	•				Seme Day 72 Hrs						P.O. Box 1545
Phone No. (4		_		_	·····	BT 824.	712	<u></u>	- 1		trs SDay	•			N	lartinez, California 94553
						21 22.	, , , , ,		- [465 1	tra 10 Day	<u> </u>				
	// 0/	TOOL	jeta i	LINE	67				- <u> </u> ;\	No	rk Subcontract	æd t	o :		Cin	YON
P.C. Na	55874								1							
Section It: A	nalysis Red	ues	t								· · · · · · · · · · · · · · · · · · ·		-			
Laborator Sample Identificatio	ω.≤	CAM17	Marisle:	410.1	9270	8080 (pest. and PCR's)					Client Sample Identification	Number of Contembra	Preservetive (yes or no)			Sampling Remarks Chevron Non-Chevron **Please Fax Results**
T55374-1	3		 		X	X						. 1	N			
2 -2	5				X							1	N		<u> </u>	
3	`														ļ	
4										<u> </u>	<u> </u>				<u> </u>	
5										<u> </u>			<u> </u>		ļ	
65				<u> </u>				ļ		<u> </u>	ļ	<u> </u>	ļ		 	
.7								·				ļ	<u> </u>		 	
8					<u> </u>					<u> </u>		<u> </u>	-		-	
9					<u> </u>					<u> </u>		<u> </u>	ـــ		↓	
10									_	 		<u> </u>	ļ		 	
11				<u> </u>	<u> </u>	<u> </u>			ļ	-			 		 -	
12		ــــــــــــــــــــــــــــــــــــــ	Д.	<u> </u>	 			<u> </u>	<u> </u>	ــــــــــــــــــــــــــــــــــــــ		-	-			
Relinquished by	R. Boo.	42			Con	7/42 Pm	Rec	eived	₩.			Dec	m/Tim	L.		please initial the following:
Organization	CUPERICK				**		T							Semples Stored in los		
Palinquished by -							1		Semples Preserved				les Preserved			
Organization					+		_		ved by Dece/Time Commence							
Relinquished by Dete/Time Receive Organization Organization																

825 Arnold Drive, Suite 114 • Martinez, California 94553 • [510] 229-1512 / fax [510] 229-1526

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 87386-1

CLIENT: Law/Crandall

CLIENT JOB NO.: 2123-20663-0001

DATE RECEIVED: 12/08/92

DATE REPORTED: 12/15/92

DATE SAMPLED: 12/08/92

Analysis For Soluble Cadmium, Chromium, Lead, Nickel, Zinc by Calif. Admin. code Title 22, Paragraph 66700 & EPA Method SW-846 6010

LAB			Concen	tration	(mg/L) 🗺	•	•
#	Sample I.D.	Cadmium	Chromium	Lead	Nickel	Zinc	
				*		- ~ -	
1	SB7	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<0.	5

mg/L = parts per million in extract

Method Detection Limit for Extractable Cadmium in Soil: 0.5 mg/L Method Detection Limit for Extractable Chromium in Soil: 0.5 mg/L Method Detection Limit for Extractable Lead in Soil: 0.5 mg/L Method Detection Limit for Extractable Nickel in Soil: 1.0 mg/L Method Detection Limit for Extractable Zinc in Soil: 0.5 mg/L

QAQC Summary: MS/MSD Average Recovery : 90%

Duplicate RPD: 3

Richard Srna, Ph.D.

Manager for Laboratory Manager

RECEIVED

DEC 17 1992

LAW ENVIRONMENTAL INC.

825 Arnold Drive, Suite 114 • Martinez, California 94553 • (510) 229 1512 / fax (510) 229 1526

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 87386 -2 CLIENT: Law/ Crandall

CLIENT JOB NO.: 2123-20663-0001

DATE RECEIVED:12/08/92 DATE REPORTED:12/15/92 CLIENT SAMPLE ID: SB8 DATE SAMPLED: 12/08/92

CAM 17 METALS

Methods: EPA SW 846 6000 & 7000 Series California Administrative Code Title 22

Compound		Results (mg/kg)	Detection Limit (mg/kg)
Antimony	(Sb)	5	5
Arsenic	(As)	3	0.01
Barium	(Ba)	36	5
Beryllium	(Be)	ND	0.5
Cadmium	(Cd)	ND	1
Chromium	(Cr)	50	5
Cobalt	(Co)	ND	. 10
Copper	(Cu)	40	10
Lead	(Pb)	20	5
Mercury	(Hg)	0.19	0.05
Molybdenum	(Mo)	ND	5
Nickel	(Ni)	50	10
Selenium	(Se)	ND	1
Silver	(Ag)	ND	5
Thallium	$(\mathtt{T}\bar{\mathtt{l}})$	ND	5
Vanadium	(V)	40	10
Zinc	(Zn)	80	20
Chromium Cobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium	(Cr) (Co) (Cu) (Pb) (Hg) (Mo) (Ni) (Se) (Ag) (T1) (V)	50 ND 40 20 0.19 ND 50 ND ND ND ND	10 5 0.05 5 10 1 5 5

mg/kg = parts per million (ppm)

QAQC Summary: Spike Recovery Range: 62-110%

Duplicate RPD = < 14

Richard Srna, Ph.D.-

Velsen fo

aboratory Manager

825 Arnold Drive, Suite 114 - Martinez, California 94553 - (510) 229-1512 / fax (510) 229-1526

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 87386

DATE RECEIVED:12/08/92 DATE REPORTED:12/15/92

CLIENT: Law/Crandall

CLIENT JOB NO.: 2123-20663-0001

ANALYSIS FOR TOTAL LEAD by SW-846 Method 6010

LAB # 	Sample Identification	Concentration(mg/L) Total Lead	* -
3	MW1	ND<0.1	
4	MW2	ND<0.1	
5	MW3	ND<0.1	

mg/L - parts per million (ppm)

Method Detection Limit for Lead in Water: 0.1 mg/L

QAQC Summary: MS/MSD Average Recovery : 92 %

Duplicate RPD : 2 %

Richard Srna, Ph.D.

Manager Manager

S	ect#		CI	na	in	0	f	Ct	15	ti	d	y	a .	1	A	na	ly	Si	5	R	ec	14	e	st		peg	3 0 of:	·
H	onsultan ddress_	40	AUT/ CON CO	wic	Ce	n/	en		uir 303				•	,	rcie ar	Time 101 72 H	د:		1	Su	peri	• •	۲.	CT. Box	1545	_	i, inc.	
P	Phone No. 415 499 1477 Fax No. 415 499 846 Project Manager Susan Cohrun Alternate Contact Andrew Muha										2	24 Fire 48 Fire Martinez I (510) 229-1512: Martinez Z (510) 229-016 Sanfrancisco (415) 647-2081								166								
ir .	Project Na.2/23 - 26 663 - 000 / P.O. No.												Sempler:AT_M/hz															
S	ection II	: Ane	lysis Re	que	st.																							
AND THE PROPERTY OF THE PROPER	Laborai Samp Identific	le	Maker Waker	mad 8015 - Gas	mad 8015 - BTEX	mad 8015 - Diesel	9010	\$24 0	GAM17	TGLP Metals:	Marals: Total Lead.	418.1 - TPH by IR	0.66	AGBA + Pasticides	0228	STU CA CAPATAN	Data Samolad		100 S S (100 S)	Number of Containers	Preservetive (yns or no)			Bio-rei Under Vonita Recen	mediat ground oring & Cont		age tar	ηk
17:	SB7	?.	¥ . . .	ľΧ	<u>:X</u>	X.	1	X	1	ş	į		X	×	X	X	17/0	3 1	Z() '		1/							
2	5B 8		15				*	<u> </u>	X	<u> </u>		1	X	-	X		erise i			,	; RE	3 Do	ni.	ru	- 9/E	TXE :	r Dies	اع
<u>(3)</u>	MWI			X	K	130	<u>.</u>	7	E .	! 	X	[: }	-	y .		J As	ir ch u ble	7 7 3	Cen	un i	B							
4 5	MWZ		I W				14		:	<u> </u>	☆	ļ.	i			<u> </u>	*			∕≎र्ध ,	2.5			<u> </u>		 .	-	
7 (0	mw.	<u>5</u>	1.		r×.		!	1	;	<u>; </u>		1				10 00		- 	107	יטסנ	နှာခင						+	
	. 4		1	ŧ	-		ŧ	1	Í	1	-	3 .	•			~0	102	```	-		:	F						
8	, ,		1 1	į.	1	R	}	1	, .	<u> </u>	1	į	;	:		! —					ì	-					.	
Ġ,	v.	*1	\$ 15 m	ì	Y	1	1	1	\$	i.	ŧ	ř	:			-	}				-	L_						_
10		.,	F 77	ž.	1 ′ ′ ′	1	3	1	:			i,	1	;					·			2					ř	
111			į.	1	\$;**	* "	ŧ k	<u>‡</u>	Ĭ.	<u> </u>	<u> </u>	i,	:			ļ		+	_			 						
Cry Red	plinquished by Achair Man Control Received 12/8/92 8 Congenization Control Received 12/8/92 8 Congenization Congenization Congenization Congenization Congenization						mizat sivedi	by.	I ²				-	te/T			geweg Seweg Seweg	les S pris les F	Score co C	id in k ontain arvad		jv.	wing:					
Re	linquished l	y		·m· r	. 1948	4,7	Dar	ta/Ti		Rec	eived Enizet	by (els Su	lu per	Jones	Let		00/T 8/92		ווי	COAB	with	out	Heede	Dace S	za —		

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 55874

CLIENT: LAW/CRANDALL, INC.

CLIENT PROJECT NO.: 2123206630001

DATE RECEIVED: 12/08/92

DATE REPORTED: 12/17/92

Following is a list of Cross referenced Lab Numbers and Sample I.D.'s for referring to the following reports.

Superior Lab Number	Subbed Lab Number	Customer Sample Identification						
		= = = = = = = = = = = = = = = = = = = =						
55874~ 1	9212151-01A	SB7						
55874~ 2	9212151-02A	SB8						

Subbed to: CLAYTON ENVIRONMENTAL CONSULTANTS DOHS#1196.

1252 Quarry Lane P.O. Box 9019 Pleasanton, CA 94566 (510) 426-2600 Fax (510) 426-0106

÷.

December 17, 1992

Mr. Rene Boongaling SUPERIOR ANALYTICAL LABORATORY 1555 Burke Street, Unit 1 San Francisco, CA 94124

> Client Ref. 55874 Clayton Project No. 92121.51

Dear Mr. Boongaling:

Attached is our analytical laboratory report for the samples received on December 10, 1992. A copy of the Chain-of-Custody form acknowledging receipt of these samples is attached.

Please note that any unused portion of the samples will be disposed of 30 days after the date of this report, unless you have requested otherwise.

We appreciate the opportunity to be of assistance to you. If you have any questions, please contact Suzanne Silvera, Client Services Supervisor, at (510) 426-2657.

Sincerely,

Ronald H. Peters, CIH

Director, Laboratory Services

Western Operations

RHP/caa

Attachments

Page 2 of 20

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55874 Clayton Project No. 92121.51

Sample Identification: 55874-1 Date Sampled: 12/08/92
Lab Number: 9212151-01A Date Received: 12/10/92
Sample Matrix/Media: SOIL Date Extracted: 12/14/92
Extraction Method: EPA 3550 Date Analyzed: 12/15/92

Analytical Method: EPA 8080

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Organochlorine Pesticides			
alpha-BHC	319-84-6	ND	0.003
gamma-BHC (Lindane)	58-89-9	ND	0.003
beta-BHC	319-85-7	ND	0.003
Heptachlor	76-44-8	ND	0.003
delta-BHC	319-86-8	ND	0.003
Aldrin	309-00-2	ND	0.003
Heptachlor epoxide	1024-57-3	ND	0.003
Endosulfan I	959-98-8	ND	0.003
4,4'-DDE	72-55-9	ND	0.003
Dieldrin	60-57-1	ND	0.003
Endrin	72-20-8	ND	0.003
4,4'-DDD	72-54-8	ND	0.003
Endosulfan II	33212-65-9	ND	0.003
4,4'-DDT	50-29-3	ND	0.003
Endrin aldehyde	7421-93-4	ND	0.003
Endosulfan sulfate	1031-07-8	ND	0.003
Methoxychlor	72-43-5	ND	0.02
Chlordane	57-74-9	ND	0.02
Toxaphene	8001-35-2	ND	0.2
Polychlorinated Biphenyls	(PCB's)		
Aroclor 1016	12674-11-2	ND	0.03

Page 3 of 20

Results of Analysis

for

Superior Analytical Laboratory

Client Reference: 55874 Clayton Project No. 92121.51

Sample Identification: Lab Number: Sample Matrix/Media: Extraction Method:	55874-1 9212151-01A SOIL EPA 3550	Date Date	Sampled: Received: Extracted: Analyzed:	12/14/92
Analytical Method:	EPA 8080	Date	Anaiy zeu.	12/13/32

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Polychlorinated Biphenyls	(PCB's) (continue	<u>(5)</u>	
Aroclor 1221	1104-28-2	ND	0.03
Aroclor 1232	11141-16-5	ND	0.03
Aroclor 1242	53469-21-9	ND	0.03
Aroclor 1248	12672-29-6	ND	0.03
Aroclor 1254	11097-69-1	ND	0.03
Aroclor 1260	11096-82-5	ND	0.03
			QC Limits (%)
Surrogates		Recovery (%)	LCL UCL
Tetrachloro-m-xylene	877-09-8	82	24 - 150
Dibutylchlorendate	1770-80-5	87	20 - 150

Page 4 of 20

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55874 Clayton Project No. 92121.51

Sample Identification: METHOD BLANK Date Sampled: -Lab Number: 9212151-03A Date Received: --

Sample Matrix/Media: SOIL Date Extracted: 12/14/92 Extraction Method: EPA 3550 Date Analyzed: 12/15/92

Analytical Method: EPA 8080

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Organochlorine Pesticides			
alpha-BHC	319-84-6	ND	0.003
gamma-BHC (Lindane)	58-89-9	ND	0.003
beta-BHC	319-85-7	ND	0.003
Heptachlor	76-44-8	ИD	0.003
delta-BHC	319-86-8	ИD	0.003
Aldrin	309-00-2	ND	0.003
Heptachlor epoxide	1024-57-3	ND	0.003
Endosulfan I	959-98-8	ND	0.003
4,4'-DDE	72-55-9	ND ·	0.003
Dieldrin	60-57-1	ND	0.003
Endrin	72-20-8	ND	0.003
4,4'-DDD	72-54-8	ND	0.003
Endosulfan II	33212-65-9	ND	0.003
4,4'-DDT	50-29-3	ИD	0.003
Endrin aldehyde	7421-93-4	ND	0.003
Endosulfan sulfate	1031-07-8	ND	0.003
Methoxychlor	72-43-5	ND	0.02
Chlordane	57-74-9	ND	0.02
Toxaphene	8001-35-2	ND	0.2
Polychlorinated Biphenyls	(PCB's)		
Aroclor 1016	12674-11-2	ND	0.03

Page 5 of 20

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55874 Clayton Project No. 92121.51

Sample Identification: METHOD BLANK Date Sampled: -Lab Number: 9212151-03A Date Received: --

Sample Matrix/Media: SOIL Date Extracted: 12/14/92 Extraction Method: EPA 3550 Date Analyzed: 12/15/92

Analytical Method: EPA 8080

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Polychlorinated Biphenyls	(PCB's) (continue	ed)	
Aroclor 1221	1104-28-2	ND	0.03
Aroclor 1232	11141-16-5	ND	0.03
Aroclor 1242	53469-21-9	ND	0.03
Aroclor 1248	12672-29-6	ND	0.03
Aroclor 1254	11097-69-1	ND	0.03
Aroclor 1260	11096-82-5	ND	0.03
			QC Limits (%)
Surrogates		Recovery (%)	LCL UCL
Tetrachloro-m-xylene	877-09-8	82	24 - 150
Dibutylchlorendate	1770-80-5	90	20 - 150

Page 6 of 20

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55874 Clayton Project No. 92121.51

Date Sampled: 12/08/92 Sample Identification: 55874-1 9212151-01A Date Received: 12/10/92 Lab Number: Date Extracted: 12/14/92 Sample Matrix/Media: SOIL EPA 3550 Date Analyzed: 12/15/92 Extraction Method: Analytical Method: EPA 8270

Limit of Concentration Detection CAS # (mg/kg) 🛫 (mg/kg) -Analyte Acid Extractables 0.2 Phenol 108-95-2 ND 0.2 95-57-8 ND 2-chlorophenol 0.2 95-48-7 ND 2-methyl phenol 0.2 4-methyl phenol 106-44-5 ND 88-75-5 ND 0.2 2-nitrophenol 0.2 2,4-dimethylphenol 105-67-9 ND 0.2 2,4-dichlorophenol 120-83-2 ND59-50-7 0.2 ND 4-chloro-3-methylphenol 0.2 2,4,5-trichlorophenol 95-95-4 ND 0.2 88-06-2 2,4,6-trichlorophenol ND 1 51-28-5 ND 2,4-dinitrophenol 100-02-7 ND 1 4-nitrophenol 1 2-methyl-4,6-dinitrophenol 534-52-1 ND 1 Pentachlorophenol 87-86-5 ND Base/Neutral Extractables 0.2 ND Bis(2-chloroethyl)ether 111-44-4 0.2 1,3-dichlorobenzene 541-73-7 ND 0.2 1,4-dichlorobenzene 106-46-7 ND 0.4 100-51-6 ND Benzyl alcohol 0.2 ND 1,2-dichlorobenzene 95-50-1 0.2 Bis-(2-chloroisopropyl)ether 108-60-1 ND

Page 7 of 20

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55874 Clayton Project No. 92121.51

Sample Identification: 55874-1 Date Sampled: 12/08/92 Lab Number: 9212151-01A Date Received: 12/10/92 Date Extracted: 12/14/92 Sample Matrix/Media: SOIL Date Analyzed: 12/15/92 EPA 3550 Extraction Method: EPA 8270 Analytical Method:

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Base/Neutral Extractables (con	tinued)		
N-nitrosodi-n-propylamine	621-64-7	ND	0.2
Hexachloroethane	67-72-1	ИD	0.2
Nitrobenzene	98-95-3	ND	0.2
Isophorone	78-59-1	ND	0.2
Benzoic acid	65-85-0	ND	0.8
Bis-(2-chloroethoxy)methane	111-91-1	ND	0.2
1,2,4-trichlorobenzene	120-82-1	ND	0.2
Naphthalene	91-20-3	ND	0.2
Hexachlorobutadiene	87-68-3	ND	0.2
2-chloronaphthalene	91-58-7	ND	0.2
2-methyl naphthalene	91-57-6	ND	0.2
4-chloroaniline	106-47-8	ND	1
2-nitroaniline	88-74-4	ND	1
3-nitroaniline	99-09-2	ND	1
4-nitroaniline	100-01-6	ND	1
Hexachlorocyclopentadiene	77-47-4	ND	2
Dimethyl phthalate	131-11-3	ND	0.2
Acenaphthylene	208-96-8	ND	0.2
Acenaphthene	83-32-9	ND	0.2
Dibenzofuran	132-64-9	ND	0.2

Page 8 of 20

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55874 Clayton Project No. 92121.51

Sample Identification: 55874-1 Date Sampled: 12/08/92
Lab Number: 9212151-01A Date Received: 12/10/92
Sample Matrix/Media: SOIL Date Extracted: 12/14/92
Extraction Method: EPA 3550 Date Analyzed: 12/15/92

Analytical Method: EPA 8270

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Base/Neutral Extractables (com	ntinued)		
2,4-dinitrotoluene	121-14-2	ND	0.2
2,6-dinitrotoluene	606-20-2	ND	0.2
Diethyl phthalate	84-66-2	ND	0.2
4-chlorophenylphenylether	7005-72-3	ND	0.2
Fluorene	86-73-7	ND	0.2
N-nitrosodiphenylamine	86-30-6	ND	0.2
4-bromophenylphenylether	101-55-3	ND	0.2
Hexachlorobenzene	118-74-1	ND	0.2
Phenanthrene	85-01-8	ND .	0.2
Anthracene	120-12-7	ND	0.2
Di-n-butylphthalate	84-74-2	ND	0.2
Fluoranthene	206-44-2	ND	0.2
Benzidine	92-87-5	ND	5
Pyrene	129-00-0	ND	0.2
Benzylbutylphthalate	85-68-7	ИD	0.2
3,3'-dichlorobenzidine	91-94-1	ND	5
Benzo(a)anthracene	56-55-3	ND	0.2
Bis-(2-ethylhexyl)phthalate	117-81-7	ИD	2
Chrysene	218-01-9	ND	0.2
Di-n-octylphthalate	117-84-0	ND	0.2

Page 11 of 20

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55874 Clayton Project No. 92121.51

Sample Identification: 55874-2 Date Sampled: 12/08/92 Date Received: 12/10/92 9212151-02A Lab Number: Date Extracted: 12/14/92 SOIL Sample Matrix/Media: Date Analyzed: 12/15/92 Extraction Method: EPA 3550

EPA 8270 Analytical Method:

Analyte .	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Base/Neutral Extractables (con	tinued)		
N-nitrosodi-n-propylamine	621-64-7	ND	0.2
Hexachloroethane	67-72-1	ИD	0.2
Nitrobenzene	98-95-3	ND	0.2
Isophorone	78-59-1	ND	0.2
Benzoic acid	65-85-0	ND	0.8
Bis-(2-chloroethoxy)methane	111-91-1	ИD	0.2
1,2,4-trichlorobenzene	120-82-1	ND	0.2
Naphthalene	91-20-3	ND	0.2
Hexachlorobutadiene	87-68-3	ND	0.2
2-chloronaphthalene	91-58-7	ND	0.2
2-methyl naphthalene	91-57-6	ND	0.2
4-chloroaniline	106-47-8	ND	1
2-nitroaniline	88-74-4	ND	1
3-nitroaniline	99-09-2	ND	1 1 2
4-nitroaniline	100-01-6	ND	1
Hexachlorocyclopentadiene	77-47-4	ND	2
Dimethyl phthalate	131-11-3	ND	0.2
Acenaphthylene	208-96-8	ND	0.2
Acenaphthene	83-32-9	ND	0.2
Dibenzofuran	132-64-9	ND	0.2

Not detected at or above limit of detection ND Information not available or not applicable Results are reported on a wet weight basis, as received

Page 10 of 20

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55874 Clayton Project No. 92121.51

Sample Identification: 55874-2 Date Sampled: 12/08/92 Lab Number: 9212151-02A Date Received: 12/10/92 Sample Matrix/Media: Date Extracted: 12/14/92 SOIL Extraction Method: EPA 3550 Date Analyzed: 12/15/92 Analytical Method: EPA 8270

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Acid Extractables			,
Phenol	108-95-2	ND	0.2
2-chlorophenol	95 - 57-8	ND	0.2
2-methyl phenol	95-48-7	ND	0.2
4-methyl phenol	106-44-5	ND	0.2
2-nitrophenol	88-75-5	ND	0.2
2,4-dimethylphenol	105-67-9	ND	0.2
2,4-dichlorophenol	120-83-2	ND	0.2
4-chloro-3-methylphenol	59- 50-7	ND	0.2
2,4,5-trichlorophenol	95-95-4	ND ·	0.2
2,4,6-trichlorophenol	88-06-2	ND	0.2
2,4-dinitrophenol	51-28-5	ND	1
4-nitrophenol	100-02-7	ND	1
2-methyl-4,6-dinitrophenol	534-52-1	ND	1 1
Pentachlorophenol	87-86-5	ND	1
Base/Neutral Extractables			
Bis(2-chloroethyl)ether	111-44-4	ND	0.2
1,3-dichlorobenzene	541-73-7	ND	0.2
1,4-dichlorobenzene	106-46-7	ND	0.2
Benzyl alcohol	100-51-6	ND	0.4
1,2-dichlorobenzene	95-50-1	ND	0.2
Bis-(2-chloroisopropyl)ether	108-60-1	ND	0.2

ND Not detected at or above limit of detection
-- Information not available or not applicable
Results are reported on a wet weight basis, as received

Page 9 of 20

Results of Analysis

for

Superior Analytical Laboratory

Client Reference: 55874 Clayton Project No. 92121.51

Sample Identification:	55874-1	Date	Sampled:	12/08/92
Lab Number:	9212151-01A	Date	Received:	12/10/92
Sample Matrix/Media:	SOIL	Date	Extracted:	12/14/92
Extraction Method:	EPA 3550	Date	Analyzed:	12/15/92
Analytical Method:	EPA 8270		_	

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Base/Neutral Extractables	(continued)		
Benzo(b)fluoranthene	205-99-2	ND	0.2
Benzo(k)fluoranthene	207-08-9	ND	0.2
Benzo(a)pyrene	50-32-8	ND	0.2
Indeno(1,2,3-cd)pyrene	193-39-5	ND	0.2
Dibenzo(a,h)anthracene	53-70-3	ND	0.2
Benzo(ghi)perylene	191-24-2	ND	0.2
			QC Limits (%)
Surrogates		Recovery (%)	LCL UCL
2-Fluorophenol	367-12-4	55	25 - 121
Phenol-d6	13127-88-3	67	24 - 113
Nitrobenzene-d5	4165-60-0	69	23 - 120
2-Fluorobiphenyl	321-60-8	79	30 - 115
2,4,6-Tribromophenol	118-79-6	71	19 - 122
Terphenyl-d14	98904-43-9	71	18 - 137

ND Not detected at or above limit of detection -- Information not available or not applicable Results are reported on a wet weight basis, as received

Page 12 of 20

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55874 Clayton Project No. 92121.51

Sample Identification: 55874-2

Lab Number: 9212151-02A

Sample Matrix/Media: SOIL

Extraction Method: EPA 3550

Date Sampled: 12/08/92

Date Received: 12/10/92

Date Extracted: 12/14/92

Date Analyzed: 12/15/92

Analytical Method: EPA 8270

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg).
Base/Neutral Extractables (cor	ntinued)		
2,4-dinitrotoluene	121-14-2	ND	0.2
2,6-dinitrotoluene	606-20-2	ND	0.2
Diethyl phthalate	84-66-2	ND	0.2
4-chlorophenylphenylether	7005-72-3	ND	0.2
Fluorene	86-73-7	ND	0.2
N-nitrosodiphenylamine	86-30-6	ND	0.2
4-bromophenylphenylether	101-55-3	ND	0.2
Hexachlorobenzene	118-74-1	ND	0.2
Phenanthrene	85-01-8	ND	0.2
Anthracene	120-12-7	ND	0.2
Di-n-butylphthalate	84-74-2	, ND	0.2
Fluoranthene	206-44-2	ND	0.2
Benzidine	92-87-5	ND	5
Pyrene	129-00-0	ND	0.2
Benzylbutylphthalate	85-68-7	ND	0.2
3,3'-dichlorobenzidine	91-94-1	ND	5
Benzo(a)anthracene	56-55-3	ND	0.2
Bis-(2-ethylhexyl)phthalate	117-81-7	ND	2
Chrysene	218-01-9	ND	0.2
Di-n-octylphthalate	117-84-0	ND	0.2

Page 13 of 20

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55874 Clayton Project No. 92121.51

Sample Identification: 55874-2 Date Sampled: 12/08/92 Date Received: 12/10/92 Lab Number: 9212151-02A Sample Matrix/Media: Date Extracted: 12/14/92 SOIL EPA 3550 Date Analyzed: 12/15/92 Extraction Method: EPA 8270 Analytical Method:

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Base/Neutral Extractables (continued)		
Benzo(b)fluoranthene	205-99-2	ND	0.2
Benzo(k)fluoranthene	207-08-9	\mathbf{N} D	0.2
Benzo(a)pyrene	50-32-8	ND	0.2
Indeno(1,2,3-cd)pyrene	193-39-5	ND	0.2
Dibenzo(a,h)anthracene	53-70-3	ND	0.2
Benzo(ghi)perylene	191-24-2	ND	0.2
			QC Limits (%)
Surrogates		Recovery (%)	_ LCL UCL
2-Fluorophenol	367-12-4	61	25 - 121
Phenol-d6	13127-88-3	72	24 - 113
Nitrobenzene-d5	4165-60-0	71	23 - 120
2-Fluorobiphenyl	321-60-8	82	30 - 115
2,4,6-Tribromophenol	118-79-6	62	19 - 122
Terphenyl-d14	98904-43-9	70	18 - 137

ND Not detected at or above limit of detection -- Information not available or not applicable Results are reported on a wet weight basis, as received

Page 14 of 20

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55874 Clayton Project No. 92121.51

Sample Identification: METHOD BLANK Date Sampled: -Lab Number: 9212151-03A Date Received: --

Sample Matrix/Media: SOIL Date Extracted: 12/14/92 Extraction Method: EPA 3550 Date Analyzed: 12/15/92

Analytical Method: EPA 8270

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Acid Extractables			
Phenol	108-95-2	ND	0.2
2-chlorophenol	95-57-8	ND	0.2
2-methyl phenol	95-48-7	ND	0.2
4-methyl phenol	106-44-5	ND	0.2
2-nitrophenol	88-75-5	ND	0.2
2,4-dimethylphenol	105-67-9	ND	0.2
2,4-dichlorophenol	120-83-2	ND	0.2
4-chloro-3-methylphenol	59-50-7	ND	0.2
2,4,5-trichlorophenol	95-95-4	ND	0.2
2,4,6-trichlorophenol	88-06-2	ND	0.2
2,4-dinitrophenol	51-28-5	ND	1
4-nitrophenol	100-02-7	ND	1
2-methyl-4,6-dinitrophenol	534-52-1	ND	1
Pentachlorophenol .	87-86-5	ND	1
Base/Neutral Extractables			
Bis(2-chloroethyl)ether	111-44-4	ND	0.2
1,3-dichlorobenzene	541-73-7	ND	0.2
1,4-dichlorobenzene	106-46-7	ND	0.2
Benzyl alcohol	100-51-6	ND	0.4
1,2-dichlorobenzene	95-50-1	ND	0.2
Bis-(2-chloroisopropyl)ether	108-60-1	ND	0.2

ND Not detected at or above limit of detection -- Information not available or not applicable Results are reported on a wet weight basis, as received

Page 15 of 20

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55874 Clayton Project No. 92121.51

Sample Identification: METHOD BLANK

Date Sampled:

Lab Number:

9212151-03A

Date Received:

Date Extracted: 12/14/92

Sample Matrix/Media: Extraction Method:

SOIL EPA 3550

Date Analyzed: 12/15/92

Analytical Method:

EPA 8270

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Base/Neutral Extractables (con	tinued)		
N-nitrosodi-n-propylamine	621-64-7	ND	0.2
Hexachloroethane	67-72-1	ND	0.2
Nitrobenzene	98-95-3	ND	0.2
Isophorone	78-59-1	ND	0.2
Benzoic acid	65-85-0	ND	0.8
Bis-(2-chloroethoxy)methane	111-91-1	ND	0.2
1,2,4-trichlorobenzene	120-82-1	ND	0.2
Naphthalene	91-20-3	ND	0.2
Hexachlorobutadiene	87-68-3	ND	0.2
2-chloronaphthalene	91-58-7	ND	0.2
2-methyl naphthalene	91-57-6	ND	0.2
4-chloroaniline	106-47-8	ND	1
2-nitroaniline	88-74-4	NĎ	1
3-nitroaniline	99-09-2	ND	1
4-nitroaniline	100-01-6	ND	1 1 1 2
Hexachlorocyclopentadiene	77-47-4	ND	2
Dimethyl phthalate	131-11-3	ND	0.2
Acenaphthylene	208-96-8	ND	0.2
Acenaphthene	83-32-9	ND	0.2
Dibenzofuran	132-64-9	ND	0.2

Not detected at or above limit of detection ND Information not available or not applicable Results are reported on a wet weight basis, as received

Page 16 of 20

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55874 Clayton Project No. 92121.51

Sample Identification: METHOD BLANK Date Sampled: -Lab Number: 9212151-03A Date Received: --

Sample Matrix/Media: SOIL Date Extracted: 12/14/92 Extraction Method: EPA 3550 Date Analyzed: 12/15/92

Analytical Method: EPA 8270

nalyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
ase/Neutral Extractables (cor	ntinued)		
2,4-dinitrotoluene	121-14-2	ND	0.2
2,6-dinitrotoluene	606-20-2	ND	0.2
Diethyl phthalate	84-66-2	ND	0.2
4-chlorophenylphenylether	7005-72-3	ND	0.2
Fluorene	86-73-7	ND	0.2
N-nitrosodiphenylamine	86-30-6	ND	0.2
4-bromophenylphenylether	101-55-3	ND	0.2
Hexachlorobenzene	118-74-1	ND	0.2
Phenanthrene	85-01-8	ND	0.2
Anthracene	120-12-7	ND	0.2
Di-n-butylphthalate	84-74-2	ND	0.2
Fluoranthene	206-44-2	ND	0.2
Benzidine	92-87-5	ND	5
Pyrene	129-00-0	ND	0.2
Benzylbutylphthalate	85-68-7	ND	0.2
3,3'-dichlorobenzidine	91-94-1	ND	5
Benzo(a)anthracene	56-55-3	ND	0.2
Bis-(2-ethylhexyl)phthalate	117-81-7	ND '	2
Chrysene	218-01-9	ИD	0.2
Di-n-octylphthalate	117-84-0	ND	0.2

ND Not detected at or above limit of detection
-- Information not available or not applicable
Results are reported on a wet weight basis, as received

Page 17 of 20

Results of Analysis

for

Superior Analytical Laboratory

Client Reference: 55874 Clayton Project No. 92121.51

Sample Identification: METHOD BLANK

Date Sampled:

Lab Number:

9212151-03A

Date Received:

Sample Matrix/Media:

SOIL

Date Extracted: 12/14/92

Extraction Method:

EPA 3550

Date Analyzed: 12/15/92

Analytical Method:

EPA 8270

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Base/Neutral Extractables (continued)		
Benzo(b)fluoranthene	205-99-2	ND	0.2
Benzo(k)fluoranthene	207-08-9	ND	0.2
Benzo(a)pyrene	50~32-8	ND	0.2
Indeno(1,2,3-cd)pyrene	193-39-5	ND	0.2
Dibenzo(a,h)anthracene	53-70-3	ND	0.2
Benzo(ghi)perylene	191-24-2	ND	0.2
			QC Limits (%)
Surrogates		Recovery (%)	LCL UCL
2-Fluorophenol	367-12-4	58	25 - 121
Phenol-d6	13127-88-3	72	24 - 113
Nitrobenzene-d5	4165-60-0	80	23 - 120
2-Fluorobiphenyl	321-60-8	91	30 - 115
2,4,6-Tribromophenol	118-79-6	59	19 - 122
Terphenyl-d14	98904-43-9	74	18 - 137

ND Not detected at or above limit of detection Information not available or not applicable Results are reported on a wet weight basis, as received

Quality Assurance nesults Summary for Clayton Project No. 92121.51

Clayton Lab Number: Ext./Prep. Method: Date: 9212151-01A EPA3550 12/14/92

Analyst: Std. Source: Sample Matrix/Media: CON G921201-04W SOIL Analytical Method: Instrument ID:

trument ID: 02933
a: 12/15/92
a: 20:29
tyst: LC
ts: MG/KG

EPA8080

Date: Time: Analyst: Units:

Analyte	Sample Result	Spike Level	Matrix Splke Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
4, 4'-DDT	ND	0. 0400	0, 0320	80	0, 0330	83	81	32	120	3. 1	50
ALDRIN	ND	0. 0400	0.0330	83	0, 0340	85	84	34	132	3. 0	
DIELDRIN	ND	0.0400	0.0320	80	0. 0320	80	80	31	134	0. 0	38
ENDRIN	ND	0. 0400	0.0350	88	0. 0350	88	88	. 42	139	0. 0	45
GAMMA-BHC (LINDANE)	ND	0.0400	0.0330	83	0. 0340	85	84	46	127	3. 0	50
HEPTACHLOR	ND	0.0400	0. 0400	100	0. 0400	100	100	35	130	0. 0	31

Quality Assurance Results Summary for Clayton Project No. 92121.51

Clayton Lab Number: Ext./Prep. Method: Date:

9212109·MB EPA3550 12/14/92

Analyst:

CON M921202-01W

Std. Source: Sample Matrix/Media:

SOIL

Analytical Method: Instrument ID: Date:

EPA8270 05138 12/15/92 11:19

Time: Analyst: Units:

AC MG/KG

Analyte	Sample Result	Spike Level	Matrix Splka Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
1, 2, 4-Trichlorobenzene	ND	3. 33	2.03	61	2.10	63	62	38	107	3, 4	23
1,4-Dichiorobenzene	ND	3. 33	2, 06	62	1. 97	59	61	28	104	4. 5	27
2, 4-Dinitrotoluene	ND	3. 33	1.99	60	1. 86	56	58	28	89	6. 8	47
2-Chlorophenol	ND	3. 33	2.36	71	2. 33	70	70	25	102	1. 3	50
4-Chloro-m-cresol	ND	3. 33	2.47	74	2. 53	76	75	26	103	2.4	33
4-Nitrophenol	ND .	3. 33	2.43	73	2. 16	65	69	11	114	12	50
Acenaphthene	ND	3, 33	2.70	81	2. 40	72	77	31	137	12	19
N-Nitrosodipropylamine	ND	3, 33	1.80	54	1. 83	55	55	41	126	1. 7	38
Pentachlorophenol	ND	3. 33	2.19	66	2. 76	83	74	17	109	23	47
Phenol	ND	3. 33	1.74	52	1. 66	50	51	26	90	4. 7	35
Pyrene	ND	3. 33	2.45	74	2. 36	71	72	35	142	3. 7	36

Quality Assurance Results Summary for Clayton Project No. 92121.51

Clayton Lab Number: Ext. /Prep. Method;

9212109-06A EPA3550 12/14/92

Date: Analyst: Std. Source:

Sample Matrix/Media:

M921202-01W SOIL

CON

Analytical Method: Instrument ID: Date: Time:

EPA8270 05138 12/15/92 16:03 AC MG/KG

Analyst: Units:

MS MSD Average Matrix Recovery Matrix Spike Recovery Recovery LCL UCL RPD UCL Analyte Sample Result Spike Level Spike Result (%) Duplicate Result (% R) (% R) (%) (%RPD) (%) (% R) 1, 2, 4-Trichlorobenzene ND 3, 33 2.80 84 3, 07 92 88 38 107 9.2 23 1.4 Dichlorobenzene ND 3.33 2.96 89 2.96 89 89 28 104 0.0 27 2,4-Dinitrotoluene ND 3. 33 1.52 46 1.68 50 48 28 89 10 47 2-Chlorophenol ND 3. 33 2.78 83 2.79 84 84 25 102 0.4 50 4-Chloro-m-cresol ND 3.33 70 2.76 2.33 83 76 26 103 17 33 * 4-Nitrophenol ND 3.33 0.170 5 6 6* 0.200 11 114 16 50 Acenaphthene 3.40 3.33 5.94 76 6.11 81 79 31 137 2.8 19 N-Nitrosodipropylamine ND 3.33 2.20 66 2.50 75 71 126 13 41 38 * Pentachlorophenol ND 3. 33 0.00010 0 0.00010 0 0* 17 109 0.0 47 Phenol ND 3.33 2.35 71 2.54 76 73 26 35 90 7.8 Pyrene 2.30 3. 33 5.22 88 5. 63 100 94 35 142 7.6 36

⁴⁻Nitrophenol and Pentachlorophenol spike result out of control limits due to matrix interferences

Section I	Ch	ai	n	of	•	lus	to	dy	ſċ		d Anal	ys	is	R	eq	uest pege / of /		
Fram: Superior	Precision 5 Burke				, Inc.	•			-	Turn Around Time (circle one)					Superior Precision Analytical, Inc.			
Phone No. [415		<u>81</u> [ах	No.	(41	5) 821	.712	3	2	Same Day 72 Hrs 24 Hrs 5 Day 48 Hrs 10 Day				P.O. Box 1545 Martinez, California 94553				
Contact: Re. 756	NE F. 574	70°	su 14	LIN	<u>67</u>				- V	Vai	rk Subcontract	ed t	: -		Cu	HOIV		
Section II: Anal	ysis Rec	ues	t							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_							
9212151 Laboratory Sample Identification	S = Soil A = Air In W = Water	EAM17	Metals:	418.1	8270	8080 (pest. and PCB's)					Client Sample Identification	Number of Containers	Proservative (yes or no)			Sampling Remarks Chevron Non-Chevron **Please Fax Results**		
1 553 74-1	5				X	X						7	N	-		THE RESULTS TO 125		
2 -2	5				メ							1	M			SUPERIOR.		
3	1														•	INVOICE SUPERCOR V		
4													<u> </u>					
5														<u> </u>				
6				<u> </u>	<u> </u>									<u> </u>				
7									L	_		<u> </u>			 			
8		<u> </u>		ļ	<u> </u>	ļ		ļ			ļ	ļ		 	-	Recid al 125ml Agnot		
9		ļ	↓_	<u> </u>	 			<u> </u>		_			-	├		Jana Cond OK		
10		<u> </u>	<u> </u>	-									-					
11		┼—	┼		-			V P/	1. 7.	 	LAYTON COL	RIL	1 -	111	UKS	>142/10/92 Afterword		
[· Boon	<i>\$</i> 2	<u></u>	<u> </u>	Det	7/42 PM	Rec Org	eived enizat	by =	14	zeu B Bullick	12/10/	626	120	Lab Semp	please initial the following:		
Relinquished by ———————————————————————————————————			Dece/Time Received by Organization						ion	n			Semples Preserved					
Relinquished by					Der	te/Time	1	eived aniza	•			Dat	a/Tin	10	Comm	nents 97		

Section :	Cl	ıa	in	0	F (Ci	S	to	d	,	ál.) 	Ą	na	1	/S	S	R	eq	uest ,
Address 4 Phone No. 415 Project Manag	000 Ci Sen Ros 499142	vic Fae	Ce No	~H	en: 1 '	949	30	ζ .	7414		Semi 241	frie Ga	de com	1 721 48 F	les Tre	1 1 6			ري ن ب عدا (5 /	Precision Analytical, Inc. Pro. Box 1545 Wartinez, California 94553 10;2294512 Martinez 2 (510) 229-0166 Saffrancisco (415) 647-2081
Albernate Cont										. [•				** (A)
Project No.2/2:	3 ~20 663-0	100/	P.0	. No	<u></u>								xy A							
Section II: An	alvsis Re	OUID	st					-	, 							ι,	,	, y <u>r</u>	55.5	· 等于在10条件的 1000000000000000000000000000000000000
9212151 Laboratory Sample Identification	Water Water	mod 8015 - Bas	med 8016 - BTEX	mod 8018 - Clesso	Boto	8240	GAM17	TOLP Mapsie	Meses Total Leas	418.1.TPH by IR	Dad	17th + Peshulos	8270	WINTER PATURE		Daga Sumphed	Time Sempled	Ngriber of Gonzalners	Preservable (yes of no)	Sampling Remarks Bio-remediation Underground storage tank Moniparing Recent Contamination Vinlmown Compounds
1 SB7	13	X	ヌ	X.		X					又	X	> (×	7	70	1:70		A	
2 5BB.	. 5			1		1	X	}	,		X	- (X	P	le	se in	ial:		: K B	Do not run a/BTXE or Dies
3 MW/	W	X	X	X				,]	X		,	1	(oles !				
4 MWZ	W	X	X	X	. 4				X	:				A	P	100			·	
5 MW3	W	X	X	X	, }	1		!	X		į		1	1	2			vac		
8	` `		}	, ,	1	<u>.</u>			ì		j	}		II Ci	<u>-</u>	ກຂ່ານເ	,	JUGE	spac	
7	4)	<u> </u>	Î.	1		,						1								
3	; ,	1	Ē.,	:	2			#	,											
9	1	1				: 1		H				1				}				
10	{ { : •	1	1	;	,							1			1	1	<u> </u>	<u> </u>		a ware .
17	1	1	1:, `	1	<u> </u>	i l	<u></u>				<u> </u>		•		_				<u> </u>	į.
12		Ad a	0-			#\			1		<u> </u>	t		<u> </u>		Det			<u> </u>	
Relinquished by Organization Relinquished by Organization	1/Chan di	æl			12/8	42 7	20.00	Dry Rece Dry	ivizat ivad mizat	ty ty						1 .	/ Tire	-	Semp Appro Semp	pilease initial the following: les Stored in foe priete Containers les Presursed without Headspace
Relinquished by					D.	to/Ti		6		· 1	Su	de) Jone	Lo	کا	Dep.	Tim	.	Comm	nente

٠,

1555 Burke, Unit I • San Francisco, California 94124 • (415) 647-2081 / fax (415) 821-7123

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 55864

CLIENT: LAW/CRANDALL, INC.

CLIENT JOB NO.: 2123206630001

DATE RECEIVED: 12/07/92

DATE REPORTED: 12/15/92

ANALYSIS FOR TOTAL PETROLEUM OIL AND GREASE by Method 5520F (formerly 503E)

LAB # 	Sample Identification	Concentration (mg/L) Total Petroleum Oil & Grease
1	HP1	ND<5

mg/L - parts per million (ppm)

Minimum Detection Limit for oil & grease in Water: 5mg/L

QAQC Summary: MS/MSD Average Recovery = 81% Duplicate RPD = 2%

Richard Srna, Ph.D.

1555 Burke, Unit I • San Francisco, California 94124 • [415] 647-2081 / fax (415) 821-7123

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 55864

CLIENT: LAW/CRANDALL, INC.

CLIENT JOB NO.: 2123206630001

DATE RECEIVED: 12/07/92

DATE REPORTED: 12/15/92

ANALYSIS FOR BENZENE, TOLUENE, ETHYL BENZENE & XYLENES by EPA SW-846 Methods 5030 and 8020

LAB # 	Sample Identification	Benzene		Ethyl Benzene	•
1	HP1	ND<0.3	0.3	ND<0.3	ND<0.3

ug/L - parts per billion (ppb)

Method Detection Limit in Water: 0.3 ug/L

QAQC Summary:

Daily Standard run at 20ug/L: %Diff 8020 = <15% MS/MSD Average Recovery = 94%: Duplicate RPD = 4%

Richard Srna, Ph.D.

1555 Burke, Unit 1 • San Francisco, California 94124 • (415) 647-2081 / fax (415) 821-7123

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 55864 CLIENT: LAW/CRANDALL, INC.

CLIENT JOB NO.: 2123206630001

DATE RECEIVED: 12/07/92

DATE REPORTED: 12/15/92

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Method 5030 and 8015

LAB # 	Sample Identification	Concentration (ug/L) Gasoline Range
1	HP1	ND<50

ug/L - parts per billion (ppb)

Method Detection Limit for Gasoline in Water: 50 ug/L

QAQC Summary:

Daily Standard run at 2mg/L: %Diff Gasoline = <15 MS/MSD Recovery = 93%: Duplicate RPD = 5%

Richard Srna, Ph.D.

Laboratory Manager

1555 Burke, Unit I • San Francisco, California 94124 • (415) 647-2081 / fax (415) 821-7123

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 55864

CLIENT: LAW/CRANDALL, INC.

CLIENT JOB NO.: 2123206630001

DATE RECEIVED: 12/07/92

DATE REPORTED: 12/16/92

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Method 8015

LAB # 	Sample Identification	Concentration (ug/L) Diesel Range			
1	HP1	ND<50			

ug/L - parts per billion (ppb)

Minimum Detection Limit for Diesel in Water: 50ug/L

QAQC Summary:

Daily Standard run at 200mg/L: %DIFF Diesel = <15% MS/MSD Average Recovery = 67%: Duplicate RPD = 9%

Richard Srna, Ph.D.

Laboratory Ditector

1555 Burke, Unit 1 • San Francisco, California 94124 • (415) 647-2081 / fax (415) 821-7123

CERTIFICATE OF ANALYSIS

LABORATORY NO. 55864-1 CLIENT: LAW/CRANDALL, INC. DATE SAMPLED: 12/07/92.

DATE RECEIVED: 12/07/92 DATE REPORTED: 12/15/92 PROJECT NO. 2123-20663-0001

DATE ANALYZED: 12/11/92

EPA SW-846 METHOD 8240 - VOLATILE ORGANICS by Gas Chromatography/ Mass Spectrometry

SAMPLE: HP1

ŀ	Compound	MDL	ug/L	Compound	MDL	ug/L
•					3 =	
ŧ	Chloromethane	10	ND	Cis-1,3-Dichloropropene	3 =	ND
ı	Bromomethane	10	ND	Trichloroethene	3	ИD
•	Vinyl Chloride	10	ND	Dibromochloromethane	3	ND
	Chloroethane	10	ND	1,1,2-Trichloroethane	3	ND
ì	Methylene Chloride	10	ND	Benzene	1	ND
	Acetone	10	ND	Trans-1,3-Dichloropropene	3	ND
•	Carbon Disulfide	3	ND	2-Chloroethyl vinyl ether	3	ND
r	-ichlorofluoromethane	3	ND	Bromoform	3	ND
	1-Dichloroethene	3	ND	4-Methyl-2-Pentanone	10	ND
ľ	1,1-Dichloroethane	3	ND	2-Hexanone	10	ND
	trans-1,2-Dichloroethene	3	ND	Tetrachloroethene	3	ИD
	Chloroform	3	ND	1,1,2,2-Tetrachloroethane	3	ND
	1,2-Dichloroethane	1	ND	Toluene	3	ND
	2-Butanone	20	ND	Chlorobenzene	3	ND
ī	1,1,1-Trichloroethane	3	ND	Ethylbenzene	3	ND
	Carbon Tetrachloride	3	ND	Styrene	3	ND
k		10	ND	Total Xylenes	3	ND
	Vinyl Acetate	2	ND	1,3-Dichlorobenzene	3	ND
Ì	Bromodichloromethane	2		1,4-Dichlorobenzene	3	ND
İ	1,2-Dichloropropane	ے	ND		3	ND
•	cis-1,2-Dichloroethene	3	ND	1,2-Dichlorobenzene		ND

ug/L = parts per billion (ppb) ND = ANALYTE NOT DETECTED ABOVE QUANTITATION LIMIT QC DATA:

Surrogate Recoveries		QC LIMITS
•		water
1,2-DCA-d4	97%	76-114 %
Toluene-d8	106%	88-110 %
Bromofluorobenzene	100%	86-115 %

comments:

Richard Srna, Ph.D.

Orny AN ropular Laboratory Director

1555 Burke, Unit 1 • San Francisco, California 94124 • (415) 647-2081 / fax (415) 821-7123

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 55864

CLIENT: LAW/CRANDALL, INC.

CLIENT PROJECT NO.: 2123206630001

DATE RECEIVED: 12/07/92

DATE REPORTED: 12/15/92

Following is a list of Cross referenced Lab Numbers and Sample I.D.'s for referring to the following reports.

Superior Lab Number

Subbed Lab Number

Customer Sample Identification

55864- 1

9212101-01A

HP1

ubbed to: CLAYTON ENVIRONMENTAL CONSULTANTS DOHS#1196.

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 87364 CLIENT: Law/Crandall

CLIENT JOB NO.: 2123-20663-0001

DATE RECEIVED:12/07/92
DATE REPORTED:12/12/92

DATE SAMPLED :

ANALYSIS FOR TOTAL NICKEL by SW-846 METHOD 6010

LAB # 	Sample Identification	Concentration(mg/L) Total Nickel	. .
1	HP1	ND<0.1	

mg/L - parts per million (ppm)

Method Detection Limit for Nickel in Water: 0.1 mg/L

QAQC Summary: MS/MSD Average Recovery: 85%

Duplicate RPD : 2%

Richard Srna, Ph.D.

•

Melson for

825 Arnold Drive, Suite 114 • Martinez, California 94553 • [510] 229-1512 / fax [510] 229-1526

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 87364 CLIENT: Law/Crandall

DATE RECEIVED:12/07/92 DATE REPORTED:12/12/92

CLIENT JOB NO.: 2123-20663-0001

ANALYSIS FOR CADMIUM, CHROMIUM, LEAD & ZINC by EPA SW-846 Method 6010

LAB		Cor	Concentration(mg/L)					
#	Sample Identification	Cadmium	Chromium	Lęąd	Zinc			
1	HP1	ND<0.05	ND<0.05	ND<0.1	ND<0.05			

mg/L - parts per million (ppm)

Method Detection Limit for Cadmium in Water: 0.05 mg/L Method Detection Limit for Chromium in Water: 0.05 mg/L

Method Detection Limit for Lead in Water: 0.1 mg/L Method Detection Limit for Zinc in Water: 0.05 mg/L

QAQC Summary: MS/MSD Average Recovery: 92%

Duplicate RPD : 2%

Richard Srna, Ph.D.

Certified Laboratories

		,	-1 4 1	N OF CUST	ODY RECORD						550	364	ļ	R	CA Log N	umber			
di.		. ch		 		Project or PO# 2123 - Zoco	53-000/				7		An		equired	_	$\overline{/}$		
	100	Civic	Cente	n Da.	Suite 305	Phone # 499	1422		,	/s\	/ ,	0.00	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	رطلن.	13/				
y, Sta	le Zip San Ra	Facl,	CA 94	1903	Report attention Susaw Go	my			/x				7°	N/V					
.ab	Date	Time	Type* See key	Sampled by	ATM		Number		مايد.	4 10 10 10 10 10 10 10 10 10 10 10 10 10	Apro		\"\"\	/(عن/		\$,
mber	sampled	sampled	below		Sample descript	ion	containers	1		\\ K ²	hr 60	10	8 \ S	<u>//o`</u>	\x ^{\(\delta\)}		Remark	ks	
	12/7/92	3:30	6W	HPI	•		3	X								5 Day	Tunn	inount	2
·	12/7/92		6W	HPI			1		X										
	12/7/92	1	6W	HPI			ı			X									
···	12/7/92		6W	HPI	······································		1				X								
	12/7/92		6W	HPI			3		*			X						12	
	12/7/92	ţ	6W	HP	/		1						X						
	147/52		6W	HPI	ne en en en en en en en en en en en en e		/							X	-		7	,	
	7.7.72				····				_		Pi	10570	HAHI Citie	ed in	09.11				
											1 1 8	iomai	iate d	SHIPS IN	(48)		 	********	
							:				15	mpie	3 Pres	COVOC STATES	d tulki. Odnaca				
											16	SH ME	Mist	iui ise	ะเดลเกม	0.		•	
								 			1	Con.n	enta	-					
		Signatur	<u> </u>		Pr	int Name		<u></u>	<u> </u>	<u> </u>	Cómpa	ny		الاستور		DE	ite	Tim	θ
ehnqui	shed by			ha	Andrew 7	Muha	La	w/	Cra		[1					12/5	192	513	ン ン
eceive	shed by A	uc \$7	wata		Andraw 7	TH ATS		450		1			T		·		192		
	shed by							······					··· •						
eceive	ed by	•				, ,					46								
elinqu	shed by									•									
eceive	ed by Laborator	y Mul	Mali	u	KIEHUE		<	PA							- 	14	7/96	8;w	ρ
							<i></i>										*		

C ANALYTICAL

1255 Powell Street, Emeryville, CA 94608 (510) 428-2300 801 Western Avenue, Glendale, CA 91201 (818) 247-5737 Note: Samples are discarded 30 days after results are reported unless other arrangements are made Hazardous samples will be returned to client or disposed of at client's expense.

Disposal arrangements ____

*KEY: WW—Wastewater SU—Surface Water SO—Soil SL—Sludge PE—Petroleum OT—Other NA—Nonaqueous GW—Groundwater AQ—Aqueous

1252 Quarry Lane P.O. Box 9019 Pleasanton, CA 94566 (510) 426-2600 Fax (510) 426-0106

December 15, 1992

Mr. Rich Kiehle SUPERIOR ANALYTICAL LABORATORY 1555 Burke Street, Unit 1 San Francisco, CA 94124

=

Client Ref. 55864 Clayton Project No. 92121.01

Dear Mr. Kiehle:

Attached is our analytical laboratory report for the samples received on December 8, 1992. A copy of the Chain-of-Custody form acknowledging receipt of these samples is attached.

Please note that any unused portion of the samples will be disposed of 30 days after the date of this report, unless you have requested otherwise.

We appreciate the opportunity to be of assistance to you. If you have any questions, please contact Suzanne Silvera, Client Services Supervisor, at (510) 426-2657.

Sincerety,

Ronald H. Peters, CIH

Director, Laboratory Services

Western Operations

RHP/caa Attachments

Clayton ENVIRONMENTAL CONSULTANTS

Page 2 of 15

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55864 Clayton Project No. 92121.01

Date Sampled: 12/07/92 Sample Identification: 55864-1 Date Received: 12/08/92 9212101-01A Lab Number: Date Extracted: 12/10/92 Sample Matrix/Media: WATER Date Analyzed: 12/12/92 Extraction Method: EPA 3510 EPA 8270 Analytical Method:

Limit of Detection Concentration CAS # (ug/L) •-- (ug/L) Analyte Acid Extractables 5 108-95-2 ND Phenol 5 ND 95-57-8 2-chlorophenol 5 ND 2-methyl phenol 95-48-7 5 ND 106-44-5 4-methyl phenol 5 ND 88-75-5 2-nitrophenol 5 ND 105-67-9 2,4-dimethylphenol 5 ND 2,4-dichlorophenol 120-83-2 5 59-50-7 ND 4-chloro-3-methylphenol 5 ND 2,4,5-trichlorophenol 95-95-4 5 2,4,6-trichlorophenol 88-06-2 ND 20 ND 2,4-dinitrophenol 51-28-5 ND 20 100-02-7 4-nitrophenol 20 ND 534-52-1 2-methyl-4,6-dinitrophenol 20 87-86-5 ND Pentachlorophenol Base/Neutral Extractables 5 ND Bis(2-chloroethyl)ether 111-44-4 5 ND 1,3-dichlorobenzene 541-73-7 5 1,4-dichlorobenzene 106-46-7 ND 10 100-51-6 ND Benzyl alcohol 5 1,2-dichlorobenzene ND 95-50-1 5 ND Bis-(2-chloroisopropyl)ether 108-60-1

ND Not detected at or above limit of detection -- Information not available or not applicable

^{*} Note: Tentative results reported for acid extractables due to low acid surrogate recoveries.

Page 3 of 15

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55864 Clayton Project No. 92121.01

Sample Identification: 55864-1 Date Sampled: 12/07/92
Lab Number: 9212101-01A Date Received: 12/08/92
Sample Matrix/Media: WATER Date Extracted: 12/10/92
Extraction Method: EPA 3510 Date Analyzed: 12/12/92

Analytical Method: EPA 8270

Analyte	CAS #	Concentration (ug/L)	Limit of Detection (ug/L)
Base/Neutral Extractables (con-	tinued)		
N-nitrosodi-n-propylamine	621-64-7	ND	5
Hexachloroethane	67-72-1	ND	5
Nitrobenzene	98-95-3	ND	5
Isophorone	78-59-1	ND	5
Benzoic acid	65-85-Ò	ND	20
Bis-(2-chloroethoxy)methane	111-91-1	ND	5
1,2,4-trichlorobenzene	120-82-1	ND	5
Naphthalene	91-20-3	ND	5
Hexachlorobutadiene	87-68-3	ND	5 5
2-chloronaphthalene	91-58-7	ND	5
2-methyl naphthalene	91-57-6	ND	5
4-chloroaniline	106-47-8	ND	20
2-nitroaniline	88-74-4	ND	20
3-nitroaniline	99-09-2	ND	20
4-nitroaniline	100-01-6	ND	20
Hexachlorocyclopentadiene	77-47-4	ND	⁻ 5
Dimethyl phthalate	131-11-3	ND	10
Acenaphthylene	208-96-8	ND	5
Acenaphthene	83-32-9	ND	5
Dibenzofuran	132-64-9	ND	5

ND Not detected at or above limit of detection -- Information not available or not applicable

^{*} Note: Tentative results reported for acid extractables due to low acid surrogate recoveries.

Page 4 of 15

Results of Analysis

for

Superior Analytical Laboratory

Client Reference: 55864 Clayton Project No. 92121.01

Sample Identification: 55864-1 Date Sampled: 12/07/92
Lab Number: 9212101-01A Date Received: 12/08/92
Sample Matrix/Media: WATER Date Extracted: 12/10/92
Extraction Method: EPA 3510 Date Analyzed: 12/12/92

EPA 8270

Analytical Method:

Limit of Concentration Detection __ (ug/L) CAS # (ug/L) Analyte Base/Neutral Extractables (continued) 5 ND 121-14-2 2,4-dinitrotoluene 5 ND 2,6-dinitrotoluene 606-20-2 5 ND 84-66-2 Diethyl phthalate 5 7005-72-3 ND 4-chlorophenylphenylether 5 Fluorene 86-73-7 ND 5 ND N-nitrosodiphenylamine 86-30-6 5 101-55-3 ND 4-bromophenylphenylether 5 ND 118-74-1 Hexachlorobenzene 5 85-01-8 ND Phenanthrene 5 ND Anthracene 120-12-7 5 Di-n-butylphthalate 84-74-2 ND 5 ND 206-44-2 Fluoranthene 30 Benzidine 92-87-5 ND 5 ND Pyrene 129-00-0 5 85-68-7 ND Benzylbutylphthalate 40 ND 3,3'-dichlorobenzidine 91-94-1 5 ND Benzo(a)anthracene 56-55-3 10 117-81-7 ND Bis-(2-ethylhexyl)phthalate 5 Chrysene 218-01-9 ND 5 117-84-0 ND Di-n-octylphthalate

ND Not detected at or above limit of detection -- Information not available or not applicable

^{*} Note: Tentative results reported for acid extractables due to low acid surrogate recoveries.

Page 5 of 15

Results of Analysis

for

Superior Analytical Laboratory

Client Reference: 55864 Clayton Project No. 92121.01

12/07/92 Sample Identification: 55864-1 Date Sampled: Date Received: 12/08/92 9212101-01A Lab Number: Date Extracted: 12/10/92 Sample Matrix/Media: WATER Date Analyzed: 12/12/92 EPA 3510 Extraction Method: Analytical Method: EPA 8270

Analyte	CAS #	Concentration (ug/L)	Limit of Detection (ug/L)
Base/Neutral Extractables	(continued)		
Benzo(b)fluoranthene	205-99-2	ND	5
Benzo(k)fluoranthene	207-08-9	ND	5
Benzo(a)pyrene	50-32-8	ND	5
Indeno(1,2,3-cd)pyrene	193-39-5	ND	5
Dibenzo(a,h)anthracene	53-70-3	ND	5
Benzo(ghi)perylene	191-24-2	ND	5
			QC Limits (%)
Surrogates		Recovery (%)	LCL UCL
2-Fluorophenol	367-12-4	2*	21 - 100
Phenol-d6	13127-88-3	0*	10 - 94
Nitrobenzene-d5	4165-60-0	85	35 - 114
2-Fluorobiphenyl	321-60-8	92	43 - 116
2,4,6-Tribromophenol	118-79-6	27	10 - 123
Terphenyl-d14		83	33 - 141

ND Not detected at or above limit of detection -- Information not available or not applicable

^{*} Note: Tentative results reported for acid extractables due to low acid surrogate recoveries.

Page 6 of 15

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55864 Clayton Project No. 92121.01

Sample Identification: METHOD BLANK Date Sampled: -Lab Number: 9212101-02A Date Received: --

Sample Matrix/Media: WATER Date Extracted: 12/10/92 Extraction Method: EPA 3510 Date Analyzed: 12/12/92 Analytical Method: EPA 8270

Analyte	CAS #	Concentration (ug/L)	Limit of Detection (ug/L)
Acid Extractables		-	
Phenol	108-95-2	ND	5
2-chlorophenol	95-57-8	ND	5
2-methyl phenol	95-48-7	ND	5
4-methyl phenol	106-44-5	ND	5 5
2-nitrophenol	88-75-5	ND	
2,4-dimethylphenol	105-67-9	ИД	5 ,
2,4-dichlorophenol	120-83-2	ND	5 5 5 5
4-chloro-3-methylphenol	59-50-7	ND	5
2,4,5-trichlorophenol	95-95-4	ND	5
2,4,6-trichlorophenol	88-06-2	ND	
2,4-dinitrophenol	51-28-5	ND	20
4-nitrophenol	100-02-7	ND	20
2-methyl-4,6-dinitrophenol	534-52-1	ND	20
Pentachlorophenol	87-86-5	ND	20
Base/Neutral Extractables			
Bis(2-chloroethyl)ether	111-44-4	ND	5
1,3-dichlorobenzene	541-73-7	ND	5 5 5
1,4-dichlorobenzene	106-46-7	ND	
Benzyl alcohol	100-51-6	ND	10
1,2-dichlorobenzene	95-50-1	ND	5
Bis-(2-chloroisopropyl)ether	108-60-1	ND	5
· · · · · · · · · · · · · · · · · · ·			

ND Not detected at or above limit of detection -- Information not available or not applicable

Page 7 of 15

12/12/92

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55864 Clayton Project No. 92121.01

Sample Identification: METHOD BLANK Date Sampled: Date Received: Lab Number: 9212101-02A

Date Extracted: 12/10/92 Sample Matrix/Media: WATER EPA 3510 Date Analyzed: Extraction Method: EPA 8270 Analytical Method:

Analyte	CAS #	Concentration (ug/L)	Limit of Detection (ug/L)
Base/Neutral Extractables (con	tinued)		
N-nitrosodi-n-propylamine	621-64-7	ND	5
Hexachloroethane	67-72-1	ND	5
Nitrobenzene	98-95-3	ND	5 5
Isophorone	78-59-1	ND	
Benzoic acid	65-85-0	ND	20
Bis-(2-chloroethoxy)methane	111-91-1	ND	5
1,2,4-trichlorobenzene	120-82-1	ND	5 5 5 5
Naphthalene	91-20-3	ND	5
Hexachlorobutadiene	87-68-3	ND	5
2-chloronaphthalene	91-58-7	ND	5
2-methyl naphthalene	91-57-6	ND	5
4-chloroaniline	106-47-8	ND	20
2-nitroaniline	88-74-4	ND	20
3-nitroaniline	99-09-2	ND	20
4-nitroaniline	100-01-6	ND	20
Hexachlorocyclopentadiene	77-47-4	ND	5
Dimethyl phthalate	131-11-3	ND	10
Acenaphthylene	208-96-8	ND	5 5
Acenaphthene	83-32-9	ND	5
Dibenzofuran	132-64-9	ND	5

Not detected at or above limit of detection ND Information not available or not applicable

Page 8 of 15

10

5

5

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55864 Clayton Project No. 92121.01

Sample Identification: METHOD BLANK Date Sampled: -Lab Number: 9212101-02A Date Received: --

EPA 8270

Sample Matrix/Media: WATER Date Extracted: 12/10/92 Extraction Method: EPA 3510 Date Analyzed: 12/12/92

Limit of Detection Concentration __ (ug/L) CAS # (ug/L) Analyte Base/Neutral Extractables (continued) 5 ND 121-14-2 2,4-dinitrotoluene 5 606-20-2 ND 2,6-dinitrotoluene 5 84-66-2 ND Diethyl phthalate 5 7005-72-3 ND 4-chlorophenylphenylether 5 ND 86-73-7 Fluorene 5 86-30-6 ND N-nitrosodiphenylamine 5 101-55-3 ND 4-bromophenylphenylether 5 Hexachlorobenzene 118-74-1 ND 5 ND Phenanthrene 85-01-8 5 120-12-7 ND Anthracene 5 84-74-2 ND Di-n-butylphthalate 5 ND 206-44-2 Fluoranthene 30 Benzidine 92-87-5 ND 5 ND Pyrene 129-00-0 5 ND 85-68-7 Benzylbutylphthalate 40 ND 3,3'-dichlorobenzidine 91-94-1 5 56-55-3 ND Benzo(a)anthracene

117-81-7

218-01-9

117-84-0

ND

ND

ND

ND Not detected at or above limit of detection -- Information not available or not applicable

Bis-(2-ethylhexyl)phthalate

Di-n-octylphthalate

Chrysene

Analytical Method:

Page 9 of 15

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55864 Clayton Project No. 92121.01

Sample Identification: METHOD BLANK Date Sampled: -Lab Number: 9212101-02A Date Received: --

Sample Matrix/Media: WATER Date Extracted: 12/10/92 Extraction Method: EPA 3510 Date Analyzed: 12/12/92

Analytical Method: EPA 8270

Limit of Potention Potention

Analyte	CAS #	Concentration (ug/L)	Detection (ug/L)
Base/Neutral Extractables	(continued)		
Benzo(b)fluoranthene	205-99-2	ND	5
Benzo(k)fluoranthene	207-08-9	ND	5
Benzo(a)pyrene	50-32-8	ND	5 5 5
Indeno(1,2,3-cd)pyrene	193-39-5	ND	
Dibenzo(a,h)anthracene	53-70-3	ND	5
Benzo(ghi)perylene	191-24-2	ND	5
			QC Limits (%)
Surrogates		Recovery (%)	LCL UCL
2-Fluorophenol	367-12-4	55	21 - 100
Phenol-d6	13127-88-3	45	10 - 94
Nitrobenzene-d5	4165-60-0	81	35 - 114
2-Fluorobiphenyl	321-60-8	79	43 - 116
2,4,6-Tribromophenol	118-79-6	92	10 - 123
Terphenyl-d14		88	33 - 141

ND Not detected at or above limit of detection -- Information not available or not applicable

Page 10 of 15

Results of Analysis

for

Superior Analytical Laboratory

Client Reference: 55864 Clayton Project No. 92121.01

Date Sampled: 12/07/92 Sample Identification: 55864-1 Date Received: 12/08/92 Lab Number: 9212101-01B Date Extracted: 12/08/92 Sample Matrix/Media: WATER 12/09/92 EPA 3510 Date Analyzed: Extraction Method: EPA 8080 Analytical Method:

Analyte	CAS #	Concentration (ug/L)	Limit of Detection
Organochlorine Pesticides			
alpha-BHC	319-84-6	ND	0.01
gamma-BHC (Lindane)	58-89-9	ND	0.01
beta-BHC	319-85-7	ND	0.01
Heptachlor	76-44-8	ND	0.01
delta-BHC	319-86-8	ND	0.01
Aldrin	309-00-2	ND	0.01
Heptachlor epoxide	1024-57-3	ND	0.01
Endosulfan I	959-98-8	ND	0.01
4,4'-DDE	72-55-9	NĎ	0.01
Dieldrin	60-57-1	ND	0.01
Endrin	72-20-8	ND	0.01
4,4'-DDD	72-54-8	ND	0.01
Endosulfan II	33212-65-9	ND	0.01
4,4'-DDT	50-29-3	ND	0.01
Endrin aldehyde	7421-93-4	ND	0.01
Endosulfan sulfate	1031-07-8	ND	0.01
Methoxychlor	72-43-5	ND	0.05
Chlordane	57-74-9	ND	0.05
Toxaphene	8001-35-2	ND	1
Polychlorinated Biphenyls	(PCB's)		
Aroclor 1016	12674-11-2	ND	0.5

ND Not detected at or above limit of detection -- Information not available or not applicable

Page 11 of 15

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55864 Clayton Project No. 92121.01

Sample Identification: Lab Number: Sample Matrix/Media: Extraction Method:	9212101-01B WATER EPA 3510	Date Date	Sampled: Received: Extracted: Analyzed:	12/08/92 12/08/92
Analytical Method:	EPA 8080		-	

Analyte	CAS #	Concentration (ug/L)	Limit of Detection (ug/L)
Polychlorinated Biphenyls	(PCB's) (continue	<u>ed)</u>	
Aroclor 1221	1104-28-2	ND	0.5
Aroclor 1232	11141-16-5	ND	0.5
Aroclor 1242	53469-21-9	ND	0.5
Aroclor 1248	12672-29-6	ND	0.5
Aroclor 1254	11097-69-1	ND	0.5
Aroclor 1260	11096-82-5	ND	0.5
			QC Limits (%)
Surrogates	•	Recovery (%)	TCT ACT
Tetrachloro-m-xylene	877-09-8	79	24 - 150
Dibutylchlorendate	1770-80-5	59	24 - 154

ND Not detected at or above limit of detection -- Information not available or not applicable

Page 12 of 15

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55864 Clayton Project No. 92121.01

Sample Identification: METHOD BLANK Date Sampled: -Lab Number: 9212101-02A Date Received: --

Sample Matrix/Media: WATER Date Extracted: 12/08/92 Extraction Method: EPA 3510 Date Analyzed: 12/09/92 Analytical Method: EPA 8080

Limit of Concentration Detection CAS # Analyte (ug/L) • (ug/L) Organochlorine Pesticides 0.01 alpha-BHC 319-84-6 ND gamma-BHC (Lindane) 58-89-9 ND 0.01 0.01 319-85-7 ND beta-BHC 0.01 ND Heptachlor 76-44-8 0.01 319-86-8 ND delta-BHC 0.01 Aldrin 309-00-2 ND Heptachlor epoxide 1024-57-3 ND 0.01 0.01 959-98-8 ND Endosulfan I 0.01 4,4'-DDE 72-55-9 ND 0.01 Dieldrin 60-57-1 ND 0.01 Endrin 72-20-8 ND 4,4'-DDD 72-54-8 ND 0.01 0.01 33212-65-9 ND Endosulfan II 0.01 4,4'-DDT 50-29-3 ND 0.01 7421-93-4 ND Endrin aldehyde 0.01 Endosulfan sulfate 1031-07-8 ND 0.05 72-43-5 ND Methoxychlor 57-74-9 ND 0.05 Chlordane 1 8001-35-2 ND Toxaphene Polychlorinated Biphenyls (PCB's) 0.5 12674-11-2 ND Aroclor 1016

ND Not detected at or above limit of detection -- Information not available or not applicable

Page 13 of 15

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55864 Clayton Project No. 92121.01

Sample Identification: METHOD BLANK

Lab Number:

Sample Matrix/Media:

Extraction Method: Analytical Method: 9212101-02A

WATER EPA 3510 EPA 8080 Date Sampled: Date Received:

Date Extracted: 12/08/92

Date Analyzed: 12/09/92

Analyte	CAS #	Concentration (ug/L)	Limit of Detection - (ug/L)
Polychlorinated Biphenyls	(PCB's) (continue	eđ)	
Aroclor 1221	1104-28-2	ND	0.5
Aroclor 1232	11141-16-5	ИD	0.5
Aroclor 1242	53469-21-9	ND	0.5
Aroclor 1248	12672-29-6	ND	0.5
Aroclor 1254	11097-69-1	ND	0.5
Aroclor 1260	11096-82-5	ND	0.5
			QC Limits (%)
<u>Surrogates</u>		Recovery (%)	LCL UCL
Tetrachloro-m-xylene	877-09-8	70	24 - 150
Dibutylchlorendate	1770-80-5	95	24 - 154

Not detected at or above limit of detection ND Information not available or not applicable

Quality Assurance Results Summary for Clayton Project No. 92121.01

Clayton Lab Number: Ext./Prep. Method: Date: 9212121-MB EPA3510 12/10/92

Analyst: Std. Source:

CON M921202-01W

Sample Matrix/Media:

WATER

Analytical Method: Instrument ID: EPA625_8270 05138 12/12/92

Date: Time: Analyst: 2/12/92 16: 05 AC

Analys Units: AC UG/L

Analyte	Sample Result	Spike Level	Matrix Spike Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
1, 2, 4-Trichlorobenzene	ND	100	61.0	61	60.0	60	61	39	98	1. 7	28
1, 4-Dichtorobenzene	ND	100	56. 0	5 6	59. 0	59	58	36	97	5. 2	28
2, 4-Dinitrotoluene	ND	100	59. 0	59	62.0	62	61	24	96	5.0	38
2-Chlorophenol	ND	100	69. 0	69	68. 0	68	69	27	123	1.5	40
4-Chloro-m-cresol	ND	100	69.0	69	69. 0	69	69	23	97	0. 0	42
4-Nitrophenol	ND	100	26.0	26	35.0	35	31	10	80	30	50
Acenaphthene	ND	100	77.0	77	85.0	85	81	46	118	9. 9	31
N-Nitrosodipropy!amine	ND	100	65.0	65	68.0	68	67	41	116	4. 5	38
Pentachlorophenol	ND	100	52.0	52	67. 0	67	60	9	103	25	50
Pheno I	ND	100	35.0	35	37.0	37	36	12	89	5.6	42
Pyrene	ND	100	74.0	74	72.0	72	73	26	127	2. 7	31

Quality Assurance mesults Summary for · Clayton Project No. 92121.01

Clayton Lab Number: Ext./Prep. Mathod: Date:

9212028-MB EPA3510 12/09/92

Analyst: Std. Source: GAU G921201-04W

Sample Matrix/Media:

WATER

Analytical Method: Instrument 10:

EPA8080 02933

Date: Time:

12/09/92 21:07 LC UG/L

Analyst: Un | t s:

MS MSD Average LCL UCL RPD UCL Matrix Recovery Matrix Spike Recovery Recovery Spike Result (%) Duplicate Result (%) (% R) (% R) (% R) (%) (%RPD) Sample Result Spike Level Analyte 21 ND 65 0.160 80 73 40 140 30 0, 200 0.130 4, 4' - DDT 90 0.190 95 93 40 120 5.4 30 0.180 ALDRIN ND 0.200 75 0.160 80 78 52 126 6.5 30 DIELDRIN ND 0.200 0.150 56 ND 0.200 0.160 80 0.170 85 121 6.1 30 ENDRIN 80 0.170 85 56 123 6.1 30 GAMMA-BHC (LINDANE) ND 0.200 0.160 83 0.190 95 0.180 90 93 40 131 5.4 30 ND 0.200 HEPTACLOR

12101	·	·····								•							
Section I	Ch	ai	n	0	f	Zus	to	d	y i	4 [nd Anal	ys	is	R	ec	uest paged_	
From: Superior	r Precisi	on A	naly	tical	, Inc					Tu	rn Around: Time						
155	1555 Burke St. Unit I								-	(circle one):			:	S 2	peri	or Precision Analytical, inc.	
Sen	Francisc	egi. C	A 9	212	4				K		Day 72 Hrs					P.O. Box 1545	
Phone No. (415						51 821	-719	131	B 1						Martinez, California 94553		
<u> </u>	5586		5				, ,			48	Hrs 1U Day						
P.O. No.	KK	7	2		,				- \	No	rk Subcontract	ted t	: :	0	ry	toin	
Section II: Ana	ysis Red	pesur	t.														
Laboratory Sample Identification	S * Soil A * Air A Water	CAM17	Marals:	418.1	8270	8080 (pset: and PCR's)					Client Semple Identification	Number of Contemers	Preservative (yes or no)			Sampling Remarks Chevron Non-Chevron **Please Fax Results**	
17 5586 4-1	water				X	X					HPI)					
2																	
3																	
4								<u> </u>				:	<u> </u>		<u> </u>		
5												1	<u> </u>				
6																	
7																	
8		,										1					
9		·														-	
10				†		<u> </u>									T -		
11				·				1									
12						ľ						ig					
Relinquished by K. Organization	ho 1c		火 万	<u> </u>	1	o/Time	1.5	eived iniza	-	10	Nexxalor 10.E.C.		70-1:0	^~ 5		please initial the following:	
Relinquished by Deta/Time Received by Organization Organization			by .	Dete/Time Appropriets Contains Semples Preserved		opriete Containers											
Relinquished by ——— Organization ————					Der	be/Time	Rec	eviec enize	by .			Dec	■/Tim	•		mente Rocal 2 12	

1555 Burke, Unit I • San Francisco, California 94124 • (415) 647-2081 / fax (415) 821-7123

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 55866

DATE RECEIVED: 12/07/92

CLIENT: LAW/CRANDALL, INC.

DATE REPORTED: 12/15/92

CLIENT JOB NO.: 2123206630001

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Method 8015

LAB # 	Sample Identification	Concentration (mg/kg) Diesel Range	₹ `•
1	SB605!	ND<10	

mg/kg - parts per million (ppm)

Minimum Detection Limit for Diesel in Soil: 10mg/kg

QAQC Summary:

Daily Standard run at 200mg/L: %DIFF Diesel = <15% MS/MSD Average Recovery = 88%: Duplicate RPD = 1%

Richard Srna, Ph.D.

Laboratory Director

1555 Burke, Unit I • San Francisco, California 94124 • (415) 647-2081 / fax (415) 821-7123

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 55866

CLIENT: LAW/CRANDALL, INC.

CLIENT JOB NO.: 2123206630001

DATE RECEIVED: 12/07/92

DATE REPORTED:12/15/92

concentration (ma/ka)

ANALYSIS FOR BENZENE, TOLUENE, ETHYL BENZENE & XYLENES by EPA SW-846 Methods 5030 and 8020

LAB #	Sample Identification		Ethyl Toluene Benzene	<i>.</i> .
1	SB6@5 '	ND<.003	ND<.003 ND<.003	ND<.003

iq/kq - parts per million (ppm)

Method Detection Limit in Soil: 0.003 mg/kg

QAQC Summary:

Daily Standard run at 20 ug/L: RPD = <15%

MS/MSD Average Recovery = 89%: Duplicate RPD = 1%

Richard Srna, Ph.D.

RECEIVED

DEC 16 1992

LAW ENVIRONMENTAL INC.

CHAIN OF CUSTODY RECORD

BCA Log Number

Client nai	me / A cu	1/10	41001			Project or PO#		T		\overline{Z}		Α	nalyses	required	1		
Address	4000	Civic	Cent	Cen Dr	Report attention	2123-2060 Phone # 5 415-499	-1422 -1422		/			$\overline{/}$		/		7	
City, State	J Raza	iec, G	4 9490	3	Report attention	GAHRES				10/	/ /						
Lab	<u>.</u> .		Туре	Sampled by			Number] /	(D)	,*\ <u>`</u>	/ /	/ ,	/ /			•	
Sample number	Date sampled	Time sampled	See key below	· · · · · · · · · · · · · · · · · · ·	Sample descrip		of containers	/ 9		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				/z ² 0		Remar	ks
	12/7/92	4:15	50	513	°6 at 5		/	+	У						50 an		aoud
-		,															······································
			1. 艾克尔斯斯特 1.														
								ļ				<u></u>		707-12		-	
												Sa	noles	ilial: Store	divies		
		!	,									Ар	ropri	ate co	nisinare.	***	
	,		,									Sa	npies	DIE#	igrationec		
											 	Co	n mer	18:	A STATE OF	-	
								}				₩	ļ				0
								<u> </u>			· <u>`</u>						
				<u> </u>				ļ				<u> </u>					
===														C. C. C. C. C. C. C. C. C. C. C. C. C. C			
-		Signature				rint Name				Com	oany					ole .	Time
Relinquis	hed by	volvan	T. Mu	la	Andrew T.	Muha		-au	1 C	anda	ee			s .	12/7	7/92	5:30 5:30
Aeceived	by War	eg Sta	utrai	×738	ANDROWT.	4A'ts		AER	ر د / د	deu U	ert				12/7	192	5:30
Relinquis)															
Received	by					<u> </u>											
Relinquis	hed by					· · · · · · · · · · · · · · · · · · ·		<u>.</u>		······································	. ,						
Received	by Laboratory	pl		libel	KIEHLE					· · · · · · · · · · · · · · · · · · ·					14/	er	8,000
B C AN	ALYTICAL	L			Note: Samples are dis-	carded 30 days after res	ults are reported u	nless of	er arran	nements are	made	*KF	Y: WI	N—Was	tewater SII	Surface W	aler SOSoil

- ☐ 1255 Powell Street, Fmeryville, CA 94608 (510) 428-2300 🗆 801 Western Aver ndale, CA 91201 (818) 247-5737
- ☐ 1200 Gene Autry V. , Anaheim, CA 92805 (714) 978-0113
- Hazardous samples will be returned to client or disposed of at client's expense.

Disposal arrangements: ____

SL—Sludge PE—Petroleum 11 -Other

NA-Nonaqueous GW-Gro

∍r AQ--Aqueous

1555 Burke, Unit I • San Francisco, California 94124 • (415) 647-2081 / fax (415) 821-7123

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 55865

CLIENT: LAW/CRANDALL, INC.

DATE RECEIVED: 12/07/92

DATE REPORTED: 12/15/92

CLIENT JOB NO.: 2123206630001

ANALYSIS FOR TOTAL PETROLEUM OIL AND GREASE by Method 5520F (formerly 503E)

LAB		Concentration (mg/kg)					
#	Sample Identification	Total Petroleum Oil & Grease					
1	B1@10'	110					
2	B2@10'	60					
3	B3@10'	100					
4	B4@10 '	80					
5	B5@10'	53					

mg/kg - parts per million (ppm)

Minimum Detection Limit for oil & grease in Soil: 50mg/kg

QAQC Summary:

MS/MSD Average Recovery = 98%

Duplicate RPD = 8%

Richard Srna, Ph.D.

Laboratory Director

1555 Burke, Unit I • San Francisco, California 94124 • (415) 647-2081 / fax (415) 821-7123

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 55865

CLIENT: LAW/CRANDALL, INC.

DATE RECEIVED: 12/07/92
DATE REPORTED: 12/15/92

CLIENT JOB NO.: 2123206630001

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Method 5030 and 8015

Sample Identification	Concentration (mg/kg) Gasoline Range
B1@10'	ND<1
B2@10'	ND<1
B3@10 *	ND<1
B4@10'	ND<1
B5@10'	ND<1
	B1010' B2010' B3010' B4010'

mg/kg - parts per million (ppm)

Method Detection Limit for Gasoline in Soil: 1 mg/kg

QAQC Summary:

Daily Standard run at 2mg/L: %Diff Gasoline = <15 MS/MSD Recovery = 96%: Duplicate RPD = 2%

Richard Srna, Ph.D.

Laboratory Manager

1555 Burke, Unit 1 • San Francisco, California 94124 • (415) 647-2081 / fax (415) 821-7123

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 55865

CLIENT: LAW/CRANDALL, INC.

DATE RECEIVED: 12/07/92
DATE REPORTED: 12/15/92

CLIENT JOB NO.: 2123206630001

ANALYSIS FOR BENZENE, TOLUENE, ETHYL BENZENE & XYLENES by EPA SW-846 Methods 5030 and 8020

T 3 D			Concentration(mg/kg)					
LAB #	Sample Identification	Benzene	Toluene	Ethyl Benzene	Xylenes			
1	B1@10'	ND<.003	ND<.003	ND<.003	ND<.003			
2	B2@10'	ND<.003	ND<.003	ND<.003	ND<.003			
3	B3@10'	ND<.003	ND<.003	ND<.003	ND<.003			
4	B4@10'	ND<.003	ND<.003	ND<.003	ND<.003			
5	B5@10'	ND<.003	ND<.003	ND<.003	ND<.003			

mg/kg - parts per million (ppm)

Method Detection Limit in Soil: 0.003 mg/kg

QAQC Summary:

Daily Standard run at 20ug/L: %Diff 8020 = <15% MS/MSD Average Recovery = 91%: Duplicate RPD = 1%

Richard Srna, Ph.D.

Laboratory Manager

1555 Burke, Unit 1 * San Francisco, California 94124 * [415] 647-2081 / fax [415] 821-7123

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 55865

DATE RECEIVED: 12/07/92

CLIENT: LAW/CRANDALL, INC.

DATE REPORTED: 12/16/92

CLIENT JOB NO.: 2123206630001

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Method 8015

Diesel Range	Ē.,
ND<10	
ND<10	
ND<10	
ND<10	
ND<10	
	ND<10 ND<10 ND<10 ND<10 ND<10

mg/kg - parts per million (ppm)

Minimum Detection Limit for Diesel in Soil: 10mg/kg

QAQC Summary:

Daily Standard run at 200mg/L: %DIFF Diesel = <15% MS/MSD Average Recovery = 88%: Duplicate RPD = 1%

Richard Srna, Ph.D.

Laboratory Director

1555 Burke, Unit I • San Francisco, California 94124 • [415] 647-2081 / fax [415] 821-7123

CERTIFICATE OF ANALYSIS

LABORATORY NO. 55865-1 CLIENT: LAW/CRANDALL, INC. DATE SAMPLED: 12/07/92 DATE ANALYZED: 12/11/92

DATE RECEIVED: 12/07/92 DATE REPORTED: 12/15/92 PROJECT NO. 2123206630001

EPA SW-846 METHOD 8240 - VOLATILE ORGANICS

by Gas Chromatography/ Mass Spectrometry

SAMPLE: B1 @ 10'

Compound	MDL	ug/kg	Compound	МĎГ	ug/kg
at 1	50	ND	Cis-1,3-Dichloropropene	15	ND
Chloromethane	50	ND	Trichloroethene	15	ND
Bromomethane			Dibromochloromethane	15	ND
Vinyl Chloride	50	ND	1,1,2-Trichloroethane	15	ND
Chloroethane	50	ND	Benzene	5	ND
Methylene Chloride	50	ND	Trans-1,3-Dichloropropene	15	ND
Acetone	50	ND		15	ND
arbon Disulfide	15	ND	2-Chloroethyl vinyl ether		ND
cichlorofluoromethane	15	ND	Bromoform	15	ND
1,1-Dichloroethene	15	ND	4-Methyl-2-Pentanone	50	
1,1-Dichloroethane	15	ND	2-Hexanone	50	ND
trans-1,2-Dichloroethene	15	ND	Tetrachloroethene	15	ND
Chloroform	15	ND	1,1,2,2-Tetrachloroethane		ND
1,2-Dichloroethane	5	ND	Toluene	15	ND
2-Butanone	100	ND	Chlorobenzene	15	ND
1,1,1-Trichloroethane	15	ND	Ethylbenzene	15	ND
Carbon Tetrachloride	15	ND	Styrene	15	ND
Vinyl Acetate	50	ND	Total Xylenes	15	ND
Bromodichloromethane	15	ND	1,3-Dichlorobenzene	15	ND
1,2-Dichloropropane	15	ND	1,4-Dichlorobenzene	15	ND
cis-1,2-Dichloroethene	15	ND	1,2-Dichlorobenzene	15	ND

ug/kg = parts per billion (ppb) ND = ANALYTE NOT DETECTED ABOVE QUANTITATION LIMIT QC DATA: OC LIMITS

Surrogate Recoveries		QC LIMITS
		soil
1,2-DCA-d4	100%	70-121 %
Toluene-d8	94%	81-117 %
Bromofluorobenzene	110%	74-121 %

comments:

Richard Srna, Ph.D.

Laboratory Director

1555 Burke, Unit I • San Francisco, California 94124 • (415) 647-2081 / fax (415) 821-7123

CERTIFICATE OF ANALYSIS

LABORATORY NO. 55865-2 CLIENT: LAW/CRANDALL, INC. DATE SAMPLED: 12/07/92 DATE ANALYZED: 12/11/92 DATE RECEIVED: 12/07/92 DATE REPORTED: 12/15/92 PROJECT NO. 2123206630001

EPA SW-846 METHOD 8240 - VOLATILE ORGANICS by Gas Chromatography/ Mass Spectrometry

SAMPLE: B2 @ 10'

Compound	MDL	ug/kg	Compound	MDT	ug/kg
			Cis-1,3-Dichloropropene	15	ND
Chloromethane	50	ND		15	ND
Bromomethane	50	ND	Trichloroethene		ND
Vinyl Chloride	50	ND	Dibromochloromethane	15	
Chloroethane	50	ND	1,1,2-Trichloroethane	15	ND
Methylene Chloride	50	ND	Benzene	5	ND
Acetone	50	ND	Trans-1,3-Dichloropropene	15	ND
Arbon Disulfide	15	ND	2-Chloroethyl vinyl ether	15	ND
cichlorofluoromethane	15	ND	Bromoform	15	ND
1,1-Dichloroethene	15	ND	4-Methyl-2-Pentanone	50	ND
1,1-Dichloroethane	15	ND	2-Hexanone	50	ND
trans-1,2-Dichloroethene		ND	Tetrachloroethene	15	ND
Chloroform	15	ND	1,1,2,2-Tetrachloroethane	15	ND
1,2-Dichloroethane	5	ND	Toluene	15	ND
2-Butanone	100	ND	Chlorobenzene	15	ND
1,1,1-Trichloroethane	15	ND	Ethylbenzene	15	ND
	15	ND	Styrene	15	ND
Carbon Tetrachloride			Total Xylenes	15	ND
Vinyl Acetate	50	ND		15	ND
Bromodichloromethane	15	ND	1,3-Dichlorobenzene	15	ND
1,2-Dichloropropane	15	ND	1,4-Dichlorobenzene		ND
cis-1,2-Dichloroethene	15	ND	1,2-Dichlorobenzene	15	ND

ug/kg = parts per billion (ppb)
ND = ANALYTE NOT DETECTED ABOVE QUANTITATION LIMIT
QC DATA:

Surrogate Recoveries		QC LIMITS
		soil
1,2-DCA-d4	86%	70-121 %
Toluene-d8	112%	81-117 %
Bromofluorobenzene	86%	74-121 %

comments:

Richard Srna, Ph.D.

Amp A Nuventary Laboratory Director

1555 Burke, Unit I • San Francisco, California 94124 • (415) 647-2081 / fax (415) 821-7123

CERTIFICATE OF ANALYSIS

LABORATORY NO. 55865-3
CLIENT: LAW/CRANDALL, INC.
DATE SAMPLED: 12/07/92

DATE RECEIVED: 12/07/92 DATE REPORTED: 12/15/92 PROJECT NO. 2123206630001

DATE ANALYZED: 12/11/92

EPA SW-846 METHOD 8240 - VOLATILE ORGANICS by Gas Chromatography/ Mass Spectrometry

SAMPLE: B3 @ 10'

Compound		ug/kg	Compound	MDL	ug/kg

Chloromethane	50	ND	Cis-1,3-Dichloropropene	15	ND
Bromomethane	50	ND	Trichloroethene	15	ND
Vinyl Chloride	50	ND	Dibromochloromethane	15	ND
Chloroethane	50	ND	1,1,2-Trichloroethane	15	ND
Methylene Chloride	50	ND	Benzene	5	ND
Acetone	50	ND	Trans-1,3-Dichloropropene	15	ND
arbon Disulfide	15	ND	2-Chloroethyl vinyl ether	15	ND
richlorofluoromethane	15	ND	Bromoform	15	ИD
1,1-Dichloroethene	15	ND	4-Methyl-2-Pentanone	50	ND
1,1-Dichloroethane	15	ND	2-Hexanone	50	ND
1,1-Diction of the sections		ND	Tetrachloroethene	15	ND
trans-1,2-Dichloroethene	15	ND	1,1,2,2-Tetrachloroethane		ND
Chloroform			Toluene	15	ND
1,2-Dichloroethane	5	ND		15	ND
2-Butanone	100	ND	Chlorobenzene	15	ND
1,1,1-Trichloroethane	15	ND	Ethylbenzene		ND
Carbon Tetrachloride	15	ND	Styrene	15	
Vinyl Acetate	50	ND	Total Xylenes	15	ND
Bromodichloromethane	15	ND	1,3-Dichlorobenzene	15	ND
1,2-Dichloropropane	15	ND	1,4-Dichlorobenzene	15	ND
cis-1,2-Dichloroethene	15	ND	1,2-Dichlorobenzene	15	ИD

ug/kg = parts per billion (ppb)
ND = ANALYTE NOT DETECTED ABOVE QUANTITATION LIMIT
OC DATA:

Surrogate Recoveries	OC PIWITS			
		soil		
1.2-DCA-d4	99%	70-121 %		
Toluene-d8	104%	81 - 117 %		
Bromofluorobenzene	96%	74-121 %		

comments:

Richard Srna, Ph.D.

Laboratory Director

1555 Burke, Unit I • San Francisco, California 94124 • (415) 647-2081 / fax (415) 821-7123

CERTIFICATE OF ANALYSIS

LABORATORY NO. 55865-4
CLIENT: LAW/CRANDALL, INC.
DATE SAMPLED: 12/07/92
DATE ANALYZED: 12/14/92

DATE RECEIVED: 12/07/92 DATE REPORTED: 12/15/92 PROJECT NO. 2123206630001

EPA SW-846 METHOD 8240 - VOLATILE ORGANICS by Gas Chromatography/ Mass Spectrometry

SAMPLE: B4 @ 10'

Compound	MDL	ug/kg	Compound	MDL	ug/kg
Chloromethane	50	ND	Cis-1,3-Dichloropropene	15	ND
Bromomethane	50	ND	Trichloroethene	15	ND
Vinyl Chloride	5 0	ND	Dibromochloromethane	15	ND
Chloroethane	50	ND	1,1,2-Trichloroethane	15	ND
Methylene Chloride	50	ND	Benzene	5	ND
Acetone	50	ND	Trans-1,3-Dichloropropene	15	ND
`arbon Disulfide	15	ND	2-Chloroethyl vinyl ether	15	ND
ichlorofluoromethane	15	ND	Bromoform	15	ND
1,1-Dichloroethene	15	ND	4-Methyl-2-Pentanone	50	ND
1,1-Dichloroethane	15	ND	2-Hexanone	50	ND
trans-1,2-Dichloroethene		ND	Tetrachloroethene	15	ND
Chloroform	15	ND	1,1,2,2-Tetrachloroethane		ND
	5	ND	Toluene	15	ND
1,2-Dichloroethane	100	ND	Chlorobenzene	15	ND
2-Butanone	15	ND	Ethylbenzene	15	ND
1,1,1-Trichloroethane			_	15	ND
Carbon Tetrachloride	15	ND	Styrene	15	ND
Vinyl Acetate	50	ND	Total Xylenes	15	ND
Bromodichloromethane	15	ND	1,3-Dichlorobenzene		ND
1,2-Dichloropropane	15	ND	1,4-Dichlorobenzene	15	
cis-1,2-Dichloroethene	15	ND	1,2-Dichlorobenzene	15	ND

ug/kg = parts per billion (ppb)
ND = ANALYTE NOT DETECTED ABOVE QUANTITATION LIMIT
OC DATA:

Surrogate Recoveries	QC LIMITS soil			
1,2-DCA-d4	97%	70-121 %		
Toluene-d8	103%	81-117 %		
Bromofluorobenzene	100%	74-121 %		

comments:

Richard Srna, Ph.D.

Laboratory Director

1555 Burke, Unit I • San Francisco, California 94124 • (415) 647-2081 / fax (415) 821-7123

CERTIFICATE OF ANALYSIS

LABORATORY NO. 55865-5

CLIENT: LAW/CRANDALL, INC.

DATE RECEIVED: 12/07/92

DATE REPORTED: 12/15/92

PROJECT NO. 2123206630001

DATE ANALYZED: 12/14/92

EPA SW-846 METHOD 8240 - VOLATILE ORGANICS by Gas Chromatography/ Mass Spectrometry

SAMPLE: B5 @ 10'

Compound	MDL	ug/kg	Compound	MDL	ug/kg
	50	ND	Cis-1,3-Dichloropropene	15	ND
Chloromethane	50	ND	Trichloroethene	15	ND
Bromomethane	50	ND	Dibromochloromethane	15	ND
Vinyl Chloride		ND	1,1,2-Trichloroethane	15	ND
Chloroethane	50	ND	Benzene	5	ND
Methylene Chloride	50		Trans-1,3-Dichloropropene	15	ND
Acetone	50	ND	2-Chloroethyl vinyl ether	15	ND
arbon Disulfide	15	ND	Bromoform	15	ND
richlorofluoromethane	15	ND	4-Methyl-2-Pentanone	50	ND
1,1-Dichloroethene	15	ND	-	50	ND
1,1-Dichloroethane	15	ND	2-Hexanone	15	ND
trans-1,2-Dichloroethene	15	ND	Tetrachloroethene		ND
Chloroform	15	ND	1,1,2,2-Tetrachloroethane	15	ND
1,2-Dichloroethane	5	ND	Toluene	15	ND
2-Butanone	100	ND	Chlorobenzene	15	ND
1,1,1-Trichloroethane	15	ND	Ethylbenzene		ND
Carbon Tetrachloride	15	ND	Styrene	15	
Vinyl Acetate	50	ND	Total Xylenes	15	ND
Bromodichloromethane	15	ND	1,3-Dichlorobenzene	15	ND
1,2-Dichloropropane	15	ND	1,4-Dichlorobenzene	15	ND
cis-1,2-Dichloroethene	15	ND	1,2-Dichlorobenzene	15	ND

ug/kg = parts per billion (ppb)
ND = ANALYTE NOT DETECTED ABOVE QUANTITATION LIMIT
QC DATA:

;	QC LIMITS soil
99% 104% 104%	70-121 % 81-117 % 74-121 %
	99% 104%

comments:

Richard Srna, Ph.D.

Chun H Nwo (n for)
Laboratory Director

55065

BCA Log Number _____

Client name LAW / CRANDACL INC. Project or PO# 2/23-20663-600/								7				required		/	7						
Address	4000 C	ivic Ce	enten a	Drive.	Suite	305	Phone #							1	60%			<i>y</i> '/ /	/ /		
City, Stat	e, Zip.	Faec,	C4 9	74903	Report atte	ntion	hac	499 /	722				//	Marie	QUB)	/ .y/	901/				
Lab Sample	Date	Time	Type* See key	Sampled by	ATM				Number of	/	XXXXX	HHID IS	Johnste	ORPRICES	Service Constitution of the constitution of th	(4)	10/20 20/20		/ 		
number	sampled	sampled	below		Sar	nple descripti	on		containers	/ <	X /	بي کري	<u>`</u> \ Q0		N K	<i>y</i> / (*/ x800	\$ /	Rema	arks	
	12/1/92	1-11/12	50	BI	at 10	·			/	X	X	X	X	X	X	X		5 de	, Tumo	rund	,
	12/7/92	10:30	50	BZ	at 10				/	X	X	\boldsymbol{x}	X	X	X	X					
	12/7/92	11:00	50	133	at 10				/	X	X	X	X	X	X	X					
	12/7/92	11:45	50	840	2+10				/	X	X	X	X	X	X	X					
	12/7/92	12:30	50	85 as	- 10			····	/	X	X	X	X	X	X	X	·				
						···	,							Fw.r	7107 (700)		4 799704				
						·····									esse	ișitia	4	ica. Iora			
		·		<u> </u>									-	∧ A	obtob Bidikie	iate (onial eu/jii	loo-		-	
 	i												**************************************	S	mple	s pre	Sivo.	spaco,			
														C	n me	nts:	TIBE	ahaco.	San San San San San San San San San San	+1	
							ŧ							-		PARTIE.					
			<u></u>																		
		Signature				Prin	nt Name						Compar	īy`^		- 100, 10, 10, 10, 10, 10, 10, 10, 10, 10	al agricult		Date:		Time
Retinquis	hed by Qn	drew,	T. MU	ba	DN	Lrew 7	· mi	la	La	w /	Cap	1~ >	<u>ه د ب</u>					12	17/92	رسى	30
Received	hed by and	ucy St	auti	·		ue St			40	ERO	/ 0	FL						/2	11/92	5.	<u>x</u>
Relinquis	hed by	1	· · · · · · · · · · · · · · · · · ·			······································															
Received	l by	•	·							.,											
Relinquis	hed by		Α																		
Received	by Laboratory	Mh	yw		KI	EHLE												12	17/4	اِن ا	ار ا

B C ANALYTICAL

- 17) 1255 Powell Street, Emeryville, CA 94608 (510) 428-2300
- □ 801 Western Avenue, Glendale, CA 91201 (818) 247-5737
- 1 1200 Gene Autry Way, Anaheim, CA 92805 (714) 978-0113
- Note: Samples are discarded 30 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client's expense. ;

Disposal arrangements:

*KEY: WW--Wastewater SU--Surface Water SO--Soil SL--Sludge PE--Petroleum OT--Other NA--Nonaqueous GW--Groundwater AQ--Aqueous

1252 Quarry Lane P.O. Box 9019 Pleasanton, CA 94566 (510) 426-2600 Fax (510) 426-0106

December 15, 1992

Rich Kiehle SUPERIOR ANALYTICAL LABORATORY 1555 Burke Street, Unit 1 San Francisco, CA 94124

> Client Ref. 55865 Clayton Project No. 92120.97

Dear Mr. Kiehle:

Attached is our analytical laboratory report for the samples received on December 8, 1992. A copy of the Chain-of-Custody form acknowledging receipt of these samples is attached.

Please note that any unused portion of the samples will be disposed of 30 days after the date of this report, unless you have requested otherwise.

We appreciate the opportunity to be of assistance to you. If you have any questions, please contact Suzanne Silvera, Client Services Supervisor, at (510) 426-2657.

Sincerely,

Ronald H. Peters, CIH

Director, Laboratory Services

Western Operations

RHP/caa Attachments

of 39 Page 2

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

12/07/92 Date Sampled: Sample Identification: 55865-1 Date Received: 12/08/92 9212097-01A Lab Number: Date Extracted: 12/09/92 Sample Matrix/Media: SOIL EPA 3550 Date Analyzed: 12/12/92 Extraction Method: EPA 8270

Analytical Method:

Limit of Concentration Detection = (mg/kg) CAS # (mg/kg) Analyte Acid Extractables 0.2 ND 108-95-2 Phenol 0.2 2-chlorophenol 95-57-8 ND 0.2 95-48-7 ND 2-methyl phenol 0.2 ND 106-44-5 4-methyl phenol 0.2 ND 88-75-5 2-nitrophenol 0.2 ND 105-67-9 2,4-dimethylphenol 0.2 ND 2,4-dichlorophenol 120-83-2 0.2 59-50-7 ND 4-chloro-3-methylphenol 0.2 ND 2,4,5-trichlorophenol 95-95-4 0.2 88-06-2 ND 2,4,6-trichlorophenol 51-28-5 1 ND 2,4-dinitrophenol 1 100-02-7 ND 4-nitrophenol 1 ND 534-52-1 2-methyl-4,6-dinitrophenol 1 87-86-5 ND Pentachlorophenol Base/Neutral Extractables 0.2 ND 111-44-4 Bis(2-chloroethyl)ether 0.2 ND 541-73-7 1,3-dichlorobenzene 0.2 ND 1,4-dichlorobenzene 106-46-7 0.4 100-51-6 ND Benzyl alcohol 0.2 1,2-dichlorobenzene 95-50-1 ND 0.2 ND 108-60-1 Bis-(2-chloroisopropyl)ether

Not detected at or above limit of detection ND Information not available or not applicable Results are reported on a wet weight basis, as received

Page 3 of 39

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Date Sampled: 12/07/92 Sample Identification: 55865-1 12/08/92 Date Received: 9212097-01A Lab Number: Date Extracted: 12/09/92 SOIL Sample Matrix/Media: Date Analyzed: 12/12/92 EPA 3550 Extraction Method: Analytical Method: EPA 8270

Limit of Detection Concentration =~ (mg/kg) (mg/kg) CAS # Analyte Base/Neutral Extractables (continued) 0.2 ND N-nitrosodi-n-propylamine 621-64-7 0.2 67-72-1 ND Hexachloroethane 0.2 98-95-3 ND Nitrobenzene 0.2 78-59-1 ND Isophorone 0.8 ND 65-85-0 Benzoic acid 0.2 111-91-1 ND Bis-(2-chloroethoxy)methane 0.2 ND 120-82-1 1,2,4-trichlorobenzene 0.2 91 - 20 - 3ND Naphthalene 0.2 ND 87-68-3 Hexachlorobutadiene 0.2 91-58-7 ND 2-chloronaphthalene 0.2 91-57-6 ND 2-methyl naphthalene 1 106-47-8 ND 4-chloroaniline 88-74-4 ND 1 2-nitroaniline 1 ND 99-09-2 3-nitroaniline 1 ND 100-01-6 4-nitroaniline 2 Hexachlorocyclopentadiene 77-47-4 ND 0.2 131-11-3 ND Dimethyl phthalate 0.2 ND 208-96-8 Acenaphthylene 0.2 ND 83-32-9 Acenaphthene 0.2 132-64-9 ND Dibenzofuran

ND Not detected at or above limit of detection
-- Information not available or not applicable
Results are reported on a wet weight basis, as received

Page 4 of 39

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Sample Identification: 55865-1 Date Sampled: 12/07/92
Lab Number: 9212097-01A Date Received: 12/08/92
Sample Matrix/Media: SOIL Date Extracted: 12/09/92
Extraction Method: EPA 3550 Date Analyzed: 12/12/92

Analytical Method: EPA 8270

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection e (mg/kg)
Base/Neutral Extractables (cor	tinued)		
2,4-dinitrotoluene	121-14-2	ND	0.2
2,6-dinitrotoluene	606-20-2	ND	0.2
Diethyl phthalate	84-66-2	ND	0.2
4-chlorophenylphenylether	7005-72-3	ND	0.2
Fluorene	86-73-7	ND	0.2
N-nitrosodiphenylamine	86-30-6	ND	0.2
4-bromophenylphenylether	101-55-3	ND	0.2
Hexachlorobenzene	118-74-1	ND	0.2
Phenanthrene	85-01-8	ND	0.2
Anthracene	120-12-7	ND	0.2
Di-n-butylphthalate	84-74-2	ND	0.2
Fluoranthene	206-44-2	ND	0.2
Benzidine	92-87-5	ND	5
Pyrene	129-00-0	ND	0.2
Benzylbutylphthalate	85-68-7	ND	0.2
3,3'-dichlorobenzidine	91-94-1	ND	5
Benzo(a)anthracene	56-55-3	ND	0.2
Bis-(2-ethylhexyl)phthalate	117-81-7	ND	2
Chrysene	218-01-9	ND	0.2
Di-n-octylphthalate	117-84-0	ND	0.2

ND Not detected at or above limit of detection -- Information not available or not applicable Results are reported on a wet weight basis, as received

Page 5 of 39

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Sample Identification: 55865-1 Date Sampled: 12/07/92 12/08/92 Date Received: 9212097-01A Lab Number: Date Extracted: 12/09/92 Sample Matrix/Media: SOIL 12/12/92 Date Analyzed: Extraction Method: EPA 3550 EPA 8270 Analytical Method:

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection [(mg/kg)
Base/Neutral Extractables (continued)		
Benzo(b)fluoranthene	205-99-2	ND	0.2
Benzo(k)fluoranthene	207-08-9	ND	0.2
Benzo(a)pyrene	50-32-8	ND	0.2
Indeno(1,2,3-cd)pyrene	193-39-5	ND	0.2
Dibenzo(a,h)anthracene	53-70-3	ND	0.2
Benzo(ghi)perylene	191-24-2	ND	0.2
			QC Limits (%)
Surrogates		Recovery (%)	LCL UCL
2-Fluorophenol	367-12-4	62	25 - 121
Phenol-d6	13127-88-3	77	24 - 113
Nitrobenzene-d5	4165-60-0	77	23 - 120
2-Fluorobiphenyl	321-60-8	95	30 - 115
2,4,6-Tribromophenol	118-79-6	78	19 - 122
Terphenyl-d14	98904-43-9	77	18 - 137

ND Not detected at or above limit of detection -- Information not available or not applicable Results are reported on a wet weight basis, as received

Page 6 of 39

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Date Sampled: 12/07/92 Sample Identification: 55865-2 12/08/92 Date Received: Lab Number: 9212097-02A Date Extracted: 12/09/92 Sample Matrix/Media: SOIL Extraction Method: EPA 3550 Date Analyzed: 12/12/92 EPA 8270 Analytical Method:

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection [(mg/kg)
Acid Extractables			
Phenol	108-95-2	ND	0.2
2-chlorophenol	95-57-8	ND	0.2
2-methyl phenol	95-48-7	ND	0.2
4-methyl phenol	106-44-5	ND	0.2
2-nitrophenol	88-75-5	ND	0.2
	105-67-9	ND	0.2
2,4-dichlorophenol	120-83-2	ND	0.2
4-chloro-3-methylphenol	59-50-7	ND	0.2
2,4,5-trichlorophenol	95-95-4	ND	0.2
2,4,6-trichlorophenol	88-06-2	ND	0.2
2,4-dinitrophenol	51-28-5	ND	1
4-nitrophenol	100-02-7	ND	1
2-methyl-4,6-dinitrophenol	534-52-1	ND	1
Pentachlorophenol	87-86-5	ND	1
Base/Neutral Extractables			
Bis(2-chloroethyl)ether	111-44-4	ND	0.2
1,3-dichlorobenzene	541-73-7	ND	0.2
1,4-dichlorobenzene	106-46-7	ND	0.2
Benzyl alcohol	100-51-6	ND	0.4
1,2-dichlorobenzene	95-50-1	ND	0.2
Bis-(2-chloroisopropyl)ether	108-60-1	ND	0.2

ND Not detected at or above limit of detection
-- Information not available or not applicable
Results are reported on a wet weight basis, as received

Page 7 of 39

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Sample Identification: 55865-2 Date Sampled: 12/07/92 Date Received: Lab Number: 9212097-02A 12/08/92 Date Extracted: 12/09/92 Sample Matrix/Media: SOIL EPA 3550 Date Analyzed: 12/12/92 Extraction Method: Analytical Method: EPA 8270

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Base/Neutral Extractables (con	tinued)		
N-nitrosodi-n-propylamine	621-64-7	ND	0.2
Hexachloroethane	67-72-1	ND	0.2
Nitrobenzene	98-95-3	ND	0.2
Isophorone	78-59-1	ND	0.2
Benzoic acid	65-85-0	ND	0.8
Bis-(2-chloroethoxy)methane	111-91-1	ND	0.2
1,2,4-trichlorobenzene	120-82-1	ND	0.2
Naphthalene	91-20-3	ND	0.2
Hexachlorobutadiene	87-68-3	ND	0.2
2-chloronaphthalene	91-58-7	ND	0.2
2-methyl naphthalene	91-57-6	ND	0.2
4-chloroaniline	106-47-8	ND	1
2-nitroaniline	88-74-4	ND	1
3-nitroaniline	99-09-2	ND	1
4-nitroaniline	100-01-6	ND	1
Hexachlorocyclopentadiene	77-47-4	ND	2
Dimethyl phthalate	131-11-3	ND	0.2
Acenaphthylene	208-96-8	ND	0.2
Acenaphthene	83-32-9	ND	0.2
Dibenzofuran	132-64-9	ND	0.2

ND Not detected at or above limit of detection -- Information not available or not applicable Results are reported on a wet weight basis, as received

Page 8 of 39

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

12/07/92 Date Sampled: Sample Identification: 55865-2 Date Received: 12/08/92 9212097-02A Lab Number: Date Extracted: 12/09/92 Sample Matrix/Media: SOIL Date Analyzed: Extraction Method: EPA 3550 12/12/92 EPA 8270 Analytical Method:

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Base/Neutral Extractables (con	tinued)		
2,4-dinitrotoluene	121-14-2	ND	0.2
2,6-dinitrotoluene	606-20-2	ND	0.2
Diethyl phthalate	84-66-2	ND	0.2
4-chlorophenylphenylether	7005-72-3	ND	0.2
Fluorene	86-73-7	ND	0.2
N-nitrosodiphenylamine	86-30-6	ND	0.2
4-bromophenylphenylether	101-55-3	ND	0.2
Hexachlorobenzene	118-74-1	ND	0.2
Phenanthrene	85-01-8	ИD	0.2
Anthracene	120-12-7	ND	0.2
Di-n-butylphthalate	84-74-2	ND	0.2
Fluoranthene	206-44-2	ND	0.2
Benzidine	92-87-5	ND	5
Pyrene	129-00-0	ND	0.2
Benzylbutylphthalate	85-68-7	ND	0.2
3,3'-dichlorobenzidine	91-94-1	ND	5
Benzo(a)anthracene	56-55-3	ND	0.2
Bis-(2-ethylhexyl)phthalate	117-81-7	ND	2
Chrysene	218-01-9	ND	0.2
Di-n-octylphthalate	117-84-0	ND	0.2

ND Not detected at or above limit of detection -- Information not available or not applicable Results are reported on a wet weight basis, as received

Page 9 of 39

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Date Sampled: 12/07/92 Sample Identification: 55865-2 Date Received: 12/08/92 Lab Number: 9212097-02A Date Extracted: 12/09/92 Sample Matrix/Media: SOIL Date Analyzed: 12/12/92 EPA 3550 Extraction Method: Analytical Method: EPA 8270

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Base/Neutral Extractables (continued)		
Benzo(b)fluoranthene	205-99-2	ND	0.2
Benzo(k) fluoranthene	207-08-9	ND	0.2
Benzo(a) pyrene	50-32-8	ND	0.2
Indeno(1,2,3-cd)pyrene	193-39-5	ND	0.2
Dibenzo(a,h)anthracene	53-70-3	ND	0.2
Benzo(ghi)perylene	191-24-2	ND	0.2
			QC Limits (%)
Surrogates		Recovery (%)	LCL UCL
2-Fluorophenol	367-12-4	73	25 - 121
Phenol-d6	13127-88-3	87	24 - 113
Nitrobenzene-d5	4165-60-0	84	23 - 120
2-Fluorobiphenyl	321-60-8	92	30 - 115
2,4,6-Tribromophenol	118-79-6	85	19 - 122
Terphenyl-d14	98904-43-9	86	18 - 137

ND Not detected at or above limit of detection -- Information not available or not applicable Results are reported on a wet weight basis, as received

Page 10 of 39

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Date Sampled: 12/07/92 Sample Identification: 55865-3 Date Received: 12/08/92 9212097-03A Lab Number: Date Extracted: 12/09/92 Sample Matrix/Media: SOIL Extraction Method: Date Analyzed: 12/12/92 EPA 3550 Analytical Method: EPA 8270

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection [(mg/kg)
Acid Extractables			
Phenol	108-95-2	ND	0.2
2-chlorophenol	95-57-8	ND	0.2
2-methyl phenol	95-48-7	ND	0.2
4-methyl phenol	106-44-5	ND	0.2
2-nitrophenol	88-75-5	ND	0.2
2,4-dimethylphenol	105-67-9	ND	0.2
2,4-dichlorophenol	120-83-2	ND	0.2
4-chloro-3-methylphenol	59-50-7	ND	0.2
2,4,5-trichlorophenol	95-95-4		0.2
2,4,6-trichlorophenol	88-06-2	ND	0.2
2,4-dinitrophenol	51-28-5	ND	1
4-nitrophenol	100-02-7	ND	1
2-methyl-4,6-dinitrophenol	534-52-1	ND	1 1 1
Pentachlorophenol	87-86-5	ND	1
Base/Neutral Extractables			
Bis(2-chloroethyl)ether	111-44-4	ND	0.2
1,3-dichlorobenzene	541-73-7	ND	0.2
1,4-dichlorobenzene	106-46-7	ND	0.2
Benzyl alcohol	100-51-6	ND	0.4
1,2-dichlorobenzene	95-50-1	ND	0.2
Bis-(2-chloroisopropyl)ether	108-60-1	ND	0.2
* * * *			

ND Not detected at or above limit of detection
-- Information not available or not applicable
Results are reported on a wet weight basis, as received

Page 11 of 39

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

12/07/92 Date Sampled: Sample Identification: 55865-3 Date Received: 12/08/92 9212097-03A Lab Number: Date Extracted: 12/09/92 Sample Matrix/Media: SOIL Date Analyzed: Extraction Method: EPA 3550 12/12/92 EPA 8270 Analytical Method:

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection e (mg/kg)
Base/Neutral Extractables (con	tinued)		
N-nitrosodi-n-propylamine	621-64-7	ND	0.2
Hexachloroethane	67-72-1	ND	0.2
Nitrobenzene	98-95-3	ND	0.2
Isophorone	78-59-1	ND	0.2
Benzoic acid	65-85-0	ND	0.8
Bis-(2-chloroethoxy)methane	111-91-1	ND	0.2
1,2,4-trichlorobenzene	120-82-1	ND	0.2
Naphthalene	91-20-3	ND	0.2
Hexachlorobutadiene	87-68-3	ND	0.2
2-chloronaphthalene	91-58-7	ND	0.2
2-methyl naphthalene	91-57-6	ND	0.2
4-chloroaniline	106-47-8	ND	1
2-nitroaniline	88-74-4	ND	1
3-nitroaniline	99-09-2	ND	1
4-nitroaniline	100-01-6	ND	1 1 2
Hexachlorocyclopentadiene	77-47-4	ND	
Dimethyl phthalate	131-11-3	ND	0.2
Acenaphthylene	208-96-8	ND	0.2
Acenaphthene	83-32-9	ND	0.2
Dibenzofuran	132-64-9	ND	0.2

ND Not detected at or above limit of detection
-- Information not available or not applicable
Results are reported on a wet weight basis, as received

Page 12 of 39

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

12/07/92 Sample Identification: 55865-3 Date Sampled: Date Received: 12/08/92 9212097-03A Lab Number: Date Extracted: 12/09/92 SOIL Sample Matrix/Media: Date Analyzed: 12/12/92 Extraction Method: EPA 3550 Analytical Method: EPA 8270

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection [(mg/kg)
Base/Neutral Extractables (cor	itinued)		
2,4-dinitrotoluene	121-14-2	ND	0.2
2,6-dinitrotoluene	606-20-2	ND	0.2
Diethyl phthalate	84-66-2	ND	0.2
4-chlorophenylphenylether	7005-72-3	ND	0.2
Fluorene	86-73-7	ND	0.2
N-nitrosodiphenylamine	86-30-6	ND	0.2
4-bromophenylphenylether	101-55-3	ND	0.2
Hexachlorobenzene	118-74-1	ND	0.2
Phenanthrene	85-01-8	ND	0.2
Anthracene	120-12-7	ND	0.2
Di-n-butylphthalate	84-74-2	ND	0.2
Fluoranthene	206-44-2	ИD	0.2
Benzidine	92-87-5	ND	5
Pyrene	129-00-0	ND	0.2
Benzylbutylphthalate	85-68-7	ND	0.2
3,3'-dichlorobenzidine	91-94-1	ND	5
Benzo(a)anthracene	56-55-3	ND	0.2
Bis-(2-ethylhexyl)phthalate	117-81-7	ND	2
Chrysene	218-01-9	ND	0.2
Di-n-octylphthalate	117-84-0	ND	0.2

ND Not detected at or above limit of detection
-- Information not available or not applicable
Results are reported on a wet weight basis, as received

Page 13 of 39

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Sample Matrix/Media: Extraction Method:	9212097-03A SOIL EPA 3550	Date Date	Sampled: Received: Extracted: Analyzed:	12/08/92 12/09/92
Analytical Method:	EPA 8270		_	

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection e (mg/kg)
Base/Neutral Extractables (continued)		
Benzo(b)fluoranthene	205-99-2	ND	0.2
Benzo(k)fluoranthene	207-08-9	ND	0.2
Benzo(a)pyrene	50-32-8	ND	0.2
Indeno(1,2,3-cd)pyrene	193-39-5	ND	0.2
Dibenzo(a,h)anthracene	53-70-3	ND	0.2
Benzo(ghi)perylene	191-24-2	ND	0.2
			QC Limits (%)
Surrogates		Recovery (%)	LCL UCL
2-Fluorophenol	367-12-4	67	25 - 121
Phenol-d6	13127-88-3	73	24 - 113
Nitrobenzene-d5	4165-60-0	84	23 - 120
2-Fluorobiphenyl	321-60-8	91	30 - 115
2,4,6-Tribromophenol	118-79-6	87	19 - 122
Terphenyl-d14	98904-43-9	78	18 - 137

ND Not detected at or above limit of detection -- Information not available or not applicable Results are reported on a wet weight basis, as received

Page 14 of 39

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Sample Identification: 55865-4 Date Sampled: 12/07/92 Date Received: 12/08/92 Lab Number: 9212097-04A Date Extracted: 12/09/92 Sample Matrix/Media: SOIL **EPA** 3550 Date Analyzed: Extraction Method: 12/12/92 Analytical Method: EPA 8270

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection E (mg/kg)
Acid Extractables			
Phenol	108-95-2	ND	0.2
2-chlorophenol	95-57-8	ND	0.2
2-methyl phenol	95-48-7	ND	0.2
4-methyl phenol	106-44-5	ND	0.2
2-nitrophenol	88-75-5	ND	0.2
2,4-dimethylphenol	105-67-9	ND	0.2
2,4-dichlorophenol	120-83-2	ND	0.2
4-chloro-3-methylphenol	59-50-7	ND	0.2
2,4,5-trichlorophenol	95-95-4	ND	0.2
2,4,6-trichlorophenol	88-06-2	ND	0.2
2,4-dinitrophenol	51-28-5	ND	1 1 1
4-nitrophenol	100-02-7	ND	1
2-methyl-4,6-dinitrophenol	534-52-1	ND	1
Pentachlorophenol	87-86-5	ND	1
Base/Neutral Extractables			
Bis(2-chloroethyl)ether	111-44-4	ND	0.2
1,3-dichlorobenzene	541-73-7	ND	0.2
1,4-dichlorobenzene	106-46-7	.ND	0.2
Benzyl alcohol	100-51-6	ND	0.4
1,2-dichlorobenzene	95-50-1	ND	0.2
Bis-(2-chloroisopropyl)ether	108-60-1	ND	0.2

ND Not detected at or above limit of detection
-- Information not available or not applicable
Results are reported on a wet weight basis, as received

Page 15 of 39

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Date Sampled: 12/07/92 Sample Identification: 55865-4 9212097-04A Date Received: 12/08/92 Lab Number: Date Extracted: 12/09/92 Sample Matrix/Media: SOIL EPA 3550 Extraction Method: Date Analyzed: 12/12/92 **EPA 8270** Analytical Method:

Limit of Concentration Detection = (mg/kg) CAS # (mg/kg) Analyte Base/Neutral Extractables (continued) 0.2 ND N-nitrosodi-n-propylamine 621-64-7 0.2 Hexachloroethane 67-72-1 ND 0.2 98-95-3 ND Nitrobenzene ND 0.2 78-59-1 Isophorone 0.8 ND 65-85-0 Benzoic acid ND 0.2 111-91-1 Bis-(2-chloroethoxy)methane 0.2 ND 1,2,4-trichlorobenzene 120-82-1 0.2 91-20-3 ND Naphthalene 0.2 Hexachlorobutadiene 87-68-3 ND 0.2 ND 2-chloronaphthalene 91-58-7 0.2 91-57-6 ND 2-methyl naphthalene 1 ND 4-chloroaniline 106-47-8 1 2-nitroaniline 88-74-4 ND 1 ND 3-nitroaniline 99-09-2 ND 1 100-01-6 4-nitroaniline 2 ND 77-47-4 Hexachlorocyclopentadiene 0.2 ND Dimethyl phthalate 131-11-3 0.2 Acenaphthylene 208-96-8 ND 0.2 ND 83-32-9 Acenaphthene 0.2 ND 132-64-9 Dibenzofuran

ND Not detected at or above limit of detection
-- Information not available or not applicable
Results are reported on a wet weight basis, as received

Page 16 of 39

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55865

Clayton Project No. 92120.97

Date Sampled: 12/07/92 Sample Identification: 55865-4 12/08/92 Date Received: Lab Number: 9212097-04A Date Extracted: 12/09/92 Sample Matrix/Media: SOIL Extraction Method: Date Analyzed: 12/12/92 EPA 3550 **EPA 8270**

Analytical Method:

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection [(mg/kg)
Base/Neutral Extractables (con	tinued)		
2,4-dinitrotoluene	121-14-2	ND	0.2
2,6-dinitrotoluene	606-20-2	ND	0.2
Diethyl phthalate	84-66-2	ND	0.2
4-chlorophenylphenylether	7005-72-3	ND	0.2
Fluorene	86-73-7	ND	0.2
N-nitrosodiphenylamine	86-30-6	ND	0.2
4-bromophenylphenylether	101-55-3	ND	0.2
Hexachlorobenzene	118-74-1	ND	0.2
Phenanthrene	85-01-8	ND	0.2
Anthracene	120-12-7	ND	0.2
Di-n-butylphthalate	84-74-2	ND	0.2
Fluoranthene	206-44-2	ND	0.2
Benzidine	92-87-5	ND	5
Pyrene	129-00-0	ND	0.2
Benzylbutylphthalate	85-68-7	ND	0.2
3,3'-dichlorobenzidine	91-94-1	ND	5
Benzo(a) anthracene	56-55-3	ND	0.2
Bis-(2-ethylhexyl)phthalate	117-81-7	ND	2
Chrysene	218-01-9	ND	0.2
Di-n-octylphthalate	117-84-0	ND	0.2

Not detected at or above limit of detection ND Information not available or not applicable Results are reported on a wet weight basis, as received

Page 17 of 39

Results of Analysis

for

Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

12/07/92 Date Sampled: Sample Identification: 55865-4 Date Received: 12/08/92 9212097-04A Lab Number: Date Extracted: 12/09/92 Sample Matrix/Media: SOIL Date Analyzed: 12/12/92 Extraction Method: EPA 3550 EPA 8270 Analytical Method:

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Base/Neutral Extractables	(continued)		
Benzo(b)fluoranthene	205-99-2	ND	0.2
Benzo(k)fluoranthene	207-08-9	ND	0.2
Benzo(a)pyrene	50-32-8	NĐ	0.2
Indeno(1,2,3-cd)pyrene	193-39-5	ND	0.2
Dibenzo(a,h)anthracene	53-70-3	ND	0.2
Benzo(ghi)perylene	191-24-2	ND	0.2
			QC Limits (%)
Surrogates		Recovery (%)	LCL UCL
2-Fluorophenol	367-12-4	64	25 - 121
Phenol-d6	13127-88-3	72	24 - 113
Nitrobenzene-d5	4165-60-0	86	23 - 120
2-Fluorobiphenyl	321-60-8	91	30 - 115
2,4,6-Tribromophenol	118-79-6	82	19 - 122
Terphenyl-d14	98904-43-9	79	18 - 137

ND Not detected at or above limit of detection
-- Information not available or not applicable
Results are reported on a wet weight basis, as received

Page 18 of 39

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Date Sampled: 12/07/92 Sample Identification: 55865-5 Date Received: 12/08/92 9212097-05A Lab Number: Sample Matrix/Media: SOIL Date Extracted: 12/09/92 Date Analyzed: 12/12/92 Extraction Method: EPA 3550 EPA 8270 Analytical Method:

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection [mg/kg]
Acid Extractables			
Phenol	108-95-2	ND	0.2
2-chlorophenol	95-57-8	ND	0.2
2-methyl phenol	95-48-7	ИД	0.2
4-methyl phenol	106-44-5	ND	0.2
2-nitrophenol	88-75-5	ND	0.2
2,4-dimethylphenol	105-67-9	ND	0.2
2,4-dichlorophenol	120-83-2	ND	0.2
4-chloro-3-methylphenol	59-50-7	ND	0.2
2,4,5-trichlorophenol	95-95-4	ND	0.2
2,4,6-trichlorophenol	88-06-2	ND	0.2
2,4-dinitrophenol	51-28-5	ND	1
4-nitrophenol	100-02-7	ND	1
2-methyl-4,6-dinitrophenol	534-52-1	ND	1 1 1
Pentachlorophenol	87-86-5	ND	1
Base/Neutral Extractables			
Bis(2-chloroethyl)ether	111-44-4	ND	0.2
1,3-dichlorobenzene	541-73-7	ND	0.2
1,4-dichlorobenzene	106-46-7	ND	0.2
Benzyl alcohol	100-51-6	ND	0.4
1,2-dichlorobenzene	95-50-1	ND	0.2
Bis-(2-chloroisopropyl)ether	108-60-1	ND	0.2

ND Not detected at or above limit of detection -- Information not available or not applicable Results are reported on a wet weight basis, as received

Page 19 of 39

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Date Sampled: Sample Identification: 55865-5 12/07/92 Date Received: Lab Number: 9212097-05A 12/08/92 Date Extracted: 12/09/92 Sample Matrix/Media: SOIL EPA 3550 Extraction Method: Date Analyzed: 12/12/92 Analytical Method: EPA 8270

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Base/Neutral Extractables (con	tinued)		
N-nitrosodi-n-propylamine	621-64-7	ND	0.2
Hexachloroethane	67-72-1	ND	0.2
Nitrobenzene	98-95-3	ND	0.2
Isophorone	78-59-1	ND	0.2
Benzoic acid	65-85-0	ND	0.8
Bis-(2-chloroethoxy)methane	111-91-1	ND	0.2
1,2,4-trichlorobenzene	120-82-1	ND	0.2
Naphthalene	91-20-3	ND	0.2
Hexachlorobutadiene	87-68-3	ND	0.2
2-chloronaphthalene	91-58-7	ND	0.2
2-methyl naphthalene	91-57-6	ND	0.2
4-chloroaniline	106-47-8	ND	1
2-nitroaniline	88-74-4	ND	1
3-nitroaniline	99-09-2	ND	1
4-nitroaniline	100-01-6	ND	1 1 2
Hexachlorocyclopentadiene	77-47-4	ИД	
Dimethyl phthalate	131-11-3	ND	0.2
Acenaphthylene	208-96-8	ND	0.2
Acenaphthene	83-32-9	ND	0.2
Dibenzofuran	132-64-9	ND	0.2

ND Not detected at or above limit of detection
-- Information not available or not applicable
Results are reported on a wet weight basis, as received

Page 20 of 39

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Date Sampled: 12/07/92 Sample Identification: 55865-5 Date Received: 12/08/92 9212097-05A Lab Number: Date Extracted: 12/09/92 SOIL Sample Matrix/Media: 12/12/92 Date Analyzed: EPA 3550 Extraction Method: EPA 8270 Analytical Method:

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Base/Neutral Extractables (con	tinued)		
2,4-dinitrotoluene	121-14-2	ND	0.2
2,6-dinitrotoluene	606-20-2	ИD	0.2
Diethyl phthalate	84-66-2	ND	0.2
4-chlorophenylphenylether	7005-72-3	ND	0.2
Fluorene	86-73-7	ND	0.2
N-nitrosodiphenylamine	86-30-6	ND	0.2
4-bromophenylphenylether	101-55-3	ND	0.2
Hexachlorobenzene	118-74-1	ND	0.2
Phenanthrene	85-01-8	ND	0.2
Anthracene	120-12-7	ND	0.2
Di-n-butylphthalate	84-74-2	ND	0.2
Fluoranthene	206-44-2	ND	0.2
Benzidine	92-87-5	ND	5
Pyrene	129-00-0	ND	0.2
Benzylbutylphthalate	85-68-7	ND	0.2
3,3'-dichlorobenzidine	91-94-1	ND	5
Benzo(a)anthracene	56-55-3	ИD	0.2
Bis-(2-ethylhexyl)phthalate	117-81-7	ND	2
Chrysene	218-01-9	ND	0.2
Di-n-octylphthalate	117-84-0	ND	0.2

ND Not detected at or above limit of detection
-- Information not available or not applicable
Results are reported on a wet weight basis, as received

Page 21 of 39

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Sample Identification: Lab Number: Sample Matrix/Media: Extraction Method:	55865-5 9212097-05A SOIL EPA 3550	Date Sampled: Date Received: Date Extracted Date Analyzed:	12/08/92 : 12/09/92
Extraction Method: Analytical Method:	EPA 3550 EPA 8270	Date Analyzed:	12/12/92

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Base/Neutral Extractables (continued)		
Benzo(b)fluoranthene	205-99-2	ND	0.2
Benzo(k)fluoranthene	207-08-9	ND	0.2
Benzo(a)pyrene	50-32-8	ND	0.2
Indeno(1,2,3-cd)pyrene	193-39-5	ND	0.2
Dibenzo(a,h)anthracene	53-70-3	ND	0.2
Benzo(ghi)perylene	191-24-2	ND	0.2
	-		QC Limits (%)
Surrogates		Recovery (%)	LCL UCL
2-Fluorophenol	367-12-4	63	25 - 121
Phenol-d6	13127-88-3	75	24 - 113
Nitrobenzene-d5	4165-60-0	80	23 - 120
2-Fluorobiphenyl	321-60-8	99	30 - 115
2,4,6-Tribromophenol	118-79-6	81	19 - 122
Terphenyl-d14	98904-43-9	80	18 - 137

ND Not detected at or above limit of detection -- Information not available or not applicable Results are reported on a wet weight basis, as received

Page 22 of 39

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Date Sampled: Sample Identification: METHOD BLANK 9212097-06A Lab Number:

Sample Matrix/Media: SOIL

Extraction Method: EPA 3550 Analytical Method: EPA 8270 Analytical Method:

Date Received:

Date Extracted: 12/09/92 Date Analyzed: 12/12/92

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection [wg/kg]
Acid Extractables			
Phenol	108-95-2	ND	0.2
2-chlorophenol	95-57-8	ND	0.2
2-methyl phenol	95-48-7	ND	0.2
4-methyl phenol	106-44-5	ND	0.2
2-nitrophenol	88-75-5	ND	0.2
2,4-dimethylphenol	105-67-9	ND	0.2
2,4-dichlorophenol	120-83-2	ND	0.2
4-chloro-3-methylphenol	59-50-7	ND	0.2
2,4,5-trichlorophenol	95-95-4	ND	0.2
2,4,6-trichlorophenol	88-06-2	ND	0.2
2,4-dinitrophenol	51-28-5	ND	1
4-nitrophenol	100-02-7	ND	1
2-methyl-4,6-dinitrophenol	534-52-1	ND	1 1 1
Pentachlorophenol	87-86-5	ND	1
Base/Neutral Extractables			
Bis(2-chloroethyl)ether	111-44-4	ND	0.2
1,3-dichlorobenzene	541-73-7	ND	0.2
1,4-dichlorobenzene	106-46-7	ND	0.2
Benzyl alcohol	100-51-6	ND	0.4
1,2-dichlorobenzene	95-50-1	ND	0.2
Bis-(2-chloroisopropyl)ether	108-60-1	ND	0.2

Not detected at or above limit of detection ND Information not available or not applicable Results are reported on a wet weight basis, as received

Page 23 of 39

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Sample Identification: METHOD BLANK

Date Sampled:

Lab Number:

9212097-06A

Date Received:

Sample Matrix/Media:

SOIL

Date Extracted: 12/09/92

Extraction Method: Analytical Method:

EPA 3550 EPA 8270 Date Analyzed: 12/12/92

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection [(mg/kg)
Base/Neutral Extractables (con	tinued)		
N-nitrosodi-n-propylamine	621-64-7	ND	0.2
Hexachloroethane	67-72-1	ND	0.2
Nitrobenzene	98-95-3	ND	0.2
Isophorone	78-59-1	ND	0.2
Benzoic acid	65-85-0	ND	0.8
Bis-(2-chloroethoxy)methane	111-91-1	ND	0.2
1,2,4-trichlorobenzene	120-82-1	ND	0.2
Naphthalene	91-20-3	ND	0.2
Hexachlorobutadiene	87-68-3	ND	0.2
2-chloronaphthalene	91-58-7	ND	0.2
2-methyl naphthalene	91-57-6	ND	0.2
4-chloroaniline	106-47-8	ND	1
2-nitroaniline	88-74-4	ND	1
3-nitroaniline	99-09-2	ND	1
4-nitroaniline	100-01-6	ND	1 1 2
Hexachlorocyclopentadiene	77-47-4	ND	
Dimethyl phthalate	131-11-3	ND	0.2
Acenaphthylene	208-96-8	ND	0.2
Acenaphthene	83-32-9	ND	0.2
Dibenzofuran	132-64-9	ND .	0.2

Not detected at or above limit of detection ND Information not available or not applicable Results are reported on a wet weight basis, as received

Page 24 of 39

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Sample Identification: METHOD BLANK Date Sampled: -Lab Number: 9212097-06A Date Received: --

Sample Matrix/Media: SOIL Date Extracted: 12/09/92 Extraction Method: EPA 3550 Date Analyzed: 12/12/92 Analytical Method: EPA 8270

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Base/Neutral Extractables (cor	ntinued)		
2,4-dinitrotoluene	121-14-2	ND	0.2
2,6-dinitrotoluene	606-20-2	ND	0.2
Diethyl phthalate	84-66-2	ИD	0.2
4-chlorophenylphenylether	7005-72-3	ND	0.2
Fluorene	86-73-7	ND	0.2
N-nitrosodiphenylamine	86-30-6	ND	0.2
4-bromophenylphenylether	101-55-3	ND	0.2
Hexachlorobenzene	118-74-1	ND	0.2
Phenanthrene	85-01-8	ND	0.2
Anthracene	120-12-7	ND	0.2
Di-n-butylphthalate	84-74-2	ND	0.2
Fluoranthene	206-44-2	ND	0.2
Benzidine	92-87-5	ND	5
Pyrene	129-00-0	ND	0.2
Benzylbutylphthalate	85-68-7	ND	0.2
3,3'-dichlorobenzidine	91-94-1	ND	5
Benzo(a)anthracene	56-55-3	ND	0.2
Bis-(2-ethylhexyl)phthalate	117-81-7	ND	2
Chrysene	218-01-9	ND	0.2
Di-n-octylphthalate	117-84-0	ND	0.2

ND Not detected at or above limit of detection -- Information not available or not applicable Results are reported on a wet weight basis, as received

Page 25 of 39

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Sample Identification: METHOD BLANK Date Sampled: -Lab Number: 9212097-06A Date Received: --

Sample Matrix/Media: SOIL Date Extracted: 12/09/92 Extraction Method: EPA 3550 Date Analyzed: 12/12/92

Analytical Method: EPA 8270

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection e (mg/kg)
Base/Neutral Extractables	(continued)		
Benzo(b)fluoranthene	205-99-2	ND	0.2
Benzo(k)fluoranthene	207-08-9	ND	0.2
Benzo(a)pyrene	50-32-8	ND	0.2
Indeno(1,2,3-cd)pyrene	193-39-5	ND	0.2
Dibenzo(a,h)anthracene	53-70-3	ND	0.2
Benzo(ghi)perylene	191-24-2	ND	0.2
	-		QC Limits (%)
Surrogates		Recovery (%)	LCL UCL
2-Fluorophenol	367-12-4	70	25 - 121
Phenol-d6	13127-88-3	80	24 - 113
Nitrobenzene-d5	4165-60-0	88	23 - 120
2-Fluorobiphenyl	321-60-8	96	30 - 115
2,4,6-Tribromophenol	118-79-6	83	19 - 122
Terphenyl-d14	98904-43-9	80	18 - 137

Page 26 of 39

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Sample Identification: 55865-1 Date Sampled: 12/07/92
Lab Number: 9212097-01A Date Received: 12/08/92
Sample Matrix/Media: SOIL Date Extracted: 12/10/92
Extraction Method: EPA 3550 Date Analyzed: 12/10/92

Analytical Method: EPA 8080

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Organochlorine Pesticides			
alpha-BHC	319-84-6	ND	0.003
gamma-BHC (Lindane)	58-89-9	ND	0.003
beta-BHC	319-85-7	ND	0.003
Heptachlor	76-44-8	ND	0.003
delta-BHC	319-86-8	ND	0.003
Aldrin	309-00-2	ND	0.003
Heptachlor epoxide	1024-57-3	ND	0.003
Endosulfan I	959-98-8	ND	0.003
4,4'-DDE	72-55-9	ND	0.003
Dieldrin	60-57-1	ND	0.003
Endrin	72-20-8	ND	0.003
4,4'-DDD	72-54-8	ND	0.003
Endosulfan II	33212-65-9	ND	0.003
4,4'-DDT	50-29-3	ND	0.003
Endrin aldehyde	7421-93-4	ND	0.003
Endosulfan sulfate	1031-07-8	ND	0.003
Methoxychlor	72-43-5	ND	0.02
Chlordane	57-74-9	ND	0.02
Toxaphene	8001-35-2	ND	0.2
Polychlorinated Biphenyls	(PCB's)		
Aroclor 1016	12674-11-2	ND	0.03

ND Not detected at or above limit of detection
-- Information not available or not applicable
Results are reported on a wet weight basis, as received

Date Sampled:

Recovery (%)

92

95

Page 27 of 39

12/07/92

OC Limits (%)

24 - 150

20 - 150

UCL

LCL

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Lab Number: Sample Matrix/Media: Extraction Method: Analytical Method:	9212097-01A SOIL EPA 3550 EPA 8080	Date Received Date Extracte Date Analyzed	ed: 12/10/92
Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
4			
Polychlorinated Bipher	yls (PCB's) (continue	ed)	
	ayls (PCB's) (continue	ed)	0.03
Polychlorinated Bipher	•		0.03 0.03
Polychlorinated Bipher Aroclor 1221 Aroclor 1232	1104-28-2	ND	
Polychlorinated Bipher Aroclor 1221 Aroclor 1232 Aroclor 1242	1104-28-2 11141-16-5	ND ND	0.03
Polychlorinated Bipher Aroclor 1221 Aroclor 1232	1104-28-2 11141-16-5 53469-21-9	ND ND ND	0.03 0.03

877-09-8

1770-80-5

Not detected at or above limit of detection ND Information not available or not applicable Results are reported on a wet weight basis, as received

Sample Identification: 55865-1

Surrogates

Tetrachloro-m-xylene

Dibutylchlorendate

Page 28 of 39

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Sample Identification: 55865-2

Lab Number: 9212097-02A

Sample Matrix/Media: SOIL

Extraction Method: EPA 3550

Date Sampled: 12/07/92

Date Received: 12/08/92

Date Extracted: 12/10/92

Analytical Method: EPA 8080

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection E (mg/kg)
Organochlorine Pesticides			
alpha-BHC .	319-84-6	ND	0.003
gamma-BHC (Lindane)	58-89-9	ND	0.003
beta-BHC	319-85-7	ND	0.003
Heptachlor	76-44-8	ND	0.003
delta-BHC	319-86-8	ND	0.003
Aldrin	309-00-2	NĎ	0.003
Heptachlor epoxide	1024-57-3	ND	0.003
Endosulfan I	959 - 98-8	ND	0.003
4,4'-DDE	72-55-9	ND	0.003
Dieldrin	60-57-1	ND	0.003
Endrin	72-20-8	ND	0.003
4,4'-DDD	72-54-8	ND	0.003
Endosulfan II	33212-65-9	ND	0.003
4,4'-DDT	50-29-3	ND	0.003
Endrin aldehyde	7421-93-4	ND	0.003
Endosulfan sulfate	1031-07-8	ND	0.003
Methoxychlor	72-43-5	ND	0.02
Chlordane	57-74-9	ND	0.02
Toxaphene	8001-35-2	ND .	0.2
Polychlorinated Biphenyls	(PCB's)		
Aroclor 1016	12674-11-2	ND	0.03

Page 29 of 39

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Sample Identification: 55865-2

Lab Number: 9212097-02A

Sample Matrix/Media: SOIL

Extraction Method: EPA 3550

Analytical Method: EPA 8080

Date Sampled: 12/07/92

Date Received: 12/08/92

Date Extracted: 12/10/92

Date Analyzed: 12/10/92

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Polychlorinated Biphenyls	(PCB's) (continue	ed)	
Aroclor 1221	1104-28-2	ND	0.03
Aroclor 1232	11141-16-5	ND	0.03
Aroclor 1242	53469-21-9	ND	0.03
Aroclor 1248	12672-29-6	ND	0.03
Aroclor 1254	11097-69-1	ND	0.03
Aroclor 1260	11096-82-5	ND	0.03
	u u		QC Limits (%)
Surrogates		Recovery (%)	LCL UCL
Tetrachloro-m-xylene	877-09-8	94	24 - 150
Dibutylchlorendate	1770-80-5	96	20 - 150

Page 30 of 39

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Sample Identification: 55865-3

Lab Number: 9212097-03A

Sample Matrix/Media: SOIL

Extraction Method: EPA 3550

Date Sampled: 12/07/92

Date Received: 12/08/92

Date Extracted: 12/10/92

Analytical Method: EPA 8080

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Organochlorine Pesticides			
alpha-BHC	319-84-6	ND	0.003
gamma-BHC (Lindane)	58-89-9	ND	0.003
beta-BHC	319-85-7	ND	0.003
Heptachlor	76-44-8	ND	0.003
delta-BHC	319-86-8	ND	0.003
Aldrin	309-00-2	ND	0.003
Heptachlor epoxide	1024-57-3	ND	0.003
Endosulfan I	959-98-8	ND	0.003
4,4'-DDE	72-55-9	ND	0.003
Dieldrin	60-57-1	ND	0.003
Endrin	72-20-8	ND	0.003
4,4'-DDD	72-54-8	ND	0.003
Endosulfan II	33212-65-9	ND	0.003
4,4'-DDT	50-29-3	ND	0.003
Endrin aldehyde	7421-93-4	ND	0.003
Endosulfan sulfate	1031-07-8	ND	0.003
Methoxychlor	72-43-5	ND	0.02
Chlordane	57-74-9	ND	0.02
Toxaphene	8001-35-2	ND	0.2
Polychlorinated Biphenyls	(PCB's)		
Aroclor 1016	12674-11-2	ND	0.03

Page 31 of 39

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Sample Identification:			Sampled: Received:	
Lab Number: Sample Matrix/Media:	9212097-03A SOIL		Extracted:	
Extraction Method:	EPA 3550	Date	Analyzed:	12/10/92
Analytical Method:	EPA 8080			

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection g (mg/kg)
Polychlorinated Biphenyls	(PCB's) (continue	ed)	
Aroclor 1221	1104-28-2	ND	0.03
Aroclor 1232	11141-16-5	ND	0.03
Aroclor 1242	53469-21-9	ND	0.03
Aroclor 1248	12672-29-6	ND	0.03
Aroclor 1254	11097-69-1	ND	0.03
Aroclor 1260	11096-82-5	ND	0.03
			QC Limits (%)
Surrogates		Recovery (%)	LCL UCL
Tetrachloro-m-xylene	877-09-8	88	24 - 150
Dibutylchlorendate	1770-80-5	93	20 - 150

Page 32 of 39

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Sample Identification: 55865-4 Date Sampled: 12/07/92
Lab Number: 9212097-04A Date Received: 12/08/92
Sample Matrix/Media: SOIL Date Extracted: 12/10/92
Extraction Method: EPA 3550 Date Analyzed: 12/10/92

Analytical Method: EPA 8080

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection [(mg/kg)
Organochlorine Pesticides			
alpha-BHC	319-84-6	ND	0.003
gamma-BHC (Lindane)	58-89-9	ND	0.003
beta-BHC	319-85-7	ND	0.003
Heptachlor	76-44-8	ND	0.003
delta-BHC	319-86-8	ND	0.003
Aldrin	309-00-2	ND	0.003
Heptachlor epoxide	1024-57-3	ND	0.003
Endosulfan I	959-98-8	ND	0.003
4,4'-DDE	72-55-9	ND	0.003
Dieldrin	60-57-1	ND	0.003
Endrin	72-20-8	ND	0.003
4,4'-DDD	72-54-8	ND	0.003
Endosulfan II	33212-65-9	ND	0.003
4,4'-DDT	50-29-3	ND	0.003
Endrin aldehyde	7421-93-4	ИD	0.003
Endosulfan sulfate	1031-07-8	ND	0.003
Methoxychlor	72-43-5	ND	0.02
Chlordane	57-74-9	ND	0.02
Toxaphene	8001-35-2	ND	0.2
Polychlorinated Biphenyls	(PCB's)		
Aroclor 1016	12674-11-2	ND	0.03

ND Not detected at or above limit of detection
-- Information not available or not applicable
Results are reported on a wet weight basis, as received

Page 33 of 39

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Polychlorinated Biphenyls	(PCB's) (continue	ed)	
Aroclor 1221	1104-28-2	ND	0.03
Aroclor 1232	11141-16-5	ND	0.03
Aroclor 1242	53469-21-9	ND	0.03
Aroclor 1248	12672-29-6	ND	0.03
Aroclor 1254	11097-69-1	ND	0.03
Aroclor 1260	11096-82-5	ND	0.03
	-		QC Limits (%)
Surrogates		Recovery (%)	LCL UCL
Tetrachloro-m-xylene	877-09-8	82	24 - 150
Dibutylchlorendate	1770-80-5	88	20 - 150

ND Not detected at or above limit of detection -- Information not available or not applicable Results are reported on a wet weight basis, as received

Page 34 of 39

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Sample Identification: 55865-5

Lab Number: 9212097-05A

Sample Matrix/Media: SOIL

Extraction Method: EPA 3550

Date Sampled: 12/07/92

Date Received: 12/08/92

Date Extracted: 12/10/92

EPA 8080

Analytical Method:

Limit of Concentration Detection ლ… (mg/kg) CAS # (mq/kg) Analyte Organochlorine Pesticides 0.003 ND 319-84-6 alpha-BHC 0.003 ND 58-89-9 gamma-BHC (Lindane) 0.003 ND 319-85-7 beta-BHC 0.003 76-44-8 ND Heptachlor 0.003 delta-BHC 319-86-8 ND 0.003 ND 309-00-2 Aldrin 0.003 1024-57-3 ND Heptachlor epoxide 0.003 ND 959-98-8 Endosulfan I 0.003 ND 4,4'-DDE 72-55-9 0.003 60-57-1 ND Dieldrin 0.003 72-20-8 ND Endrin 0.003 ND 72-54-8 4,4'-DDD 0.003 33212-65-9 ND Endosulfan II 0.003 ND 4,4'-DDT 50-29-3 0.003 ND 7421-93-4 Endrin aldehyde 0.003 ND 1031-07-8 Endosulfan sulfate 0.02 72-43-5 ND Methoxychlor 0.02 ND 57-74-9 Chlordane 0.2 ND 8001-35-2 Toxaphene Polychlorinated Biphenyls (PCB's) 0.03 ND 12674-11-2 Aroclor 1016

ND Not detected at or above limit of detection
-- Information not available or not applicable
Results are reported on a wet weight basis, as received

Page 35 of 39

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Date Sampled: 12/07/92 Sample Identification: 55865-5 Date Received: 12/08/92 9212097-05A Lab Number: Date Extracted: 12/10/92 Sample Matrix/Media: SOIL Date Analyzed: 12/10/92 Extraction Method: EPA 3550 Analytical Method: EPA 8080

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Polychlorinated Biphenyls	(PCB's) (continue	ed)	
Aroclor 1221	1104-28-2	ND	0.03
Aroclor 1232	11141-16-5	ND	0.03
Aroclor 1242	53469-21-9	ND	0.03
Aroclor 1248	12672-29-6	ND	0.03
Aroclor 1254	11097-69-1	ND	0.03
Aroclor 1260	11096-82-5	ND	0.03
	_		QC Limits (%)
<u>Surrogates</u>		Recovery (%)	LCL UCL
Tetrachloro-m-xylene	877-09-8	90	24 - 150
Dibutylchlorendate	1770-80-5	99	20 - 150

Page 36 of 39

Results of Analysis for

Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Sample Identification: METHOD BLANK Date Sampled: -Lab Number: 9212097-06A Date Received: --

Sample Matrix/Media: SOIL Date Extracted: 12/10/92 Extraction Method: EPA 3550 Date Analyzed: 12/10/92

Analytical Method: EPA 8080

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection (mg/kg)
Organochlorine Pesticides			
alpha-BHC	319-84-6	ND	0.003
gamma-BHC (Lindane)	58-89-9	ND	0.003
beta-BHC	319-85-7	ND	0.003
Heptachlor	76-44-8	ND	0.003
delta-BHC	319-86-8	ND	0.003
Aldrin	309-00-2	ND	0.003
Heptachlor epoxide	1024-57-3	ND	0.003
Endosulfan I	959-98-8	ND	0.003
4,4'-DDE	72-55-9	ND	0.003
Dieldrin	60-57-1	ND	0.003
Endrin	72-20-8	ND	0.003
4,4'-DDD	72-54-8	ND	0.003
Endosulfan II	33212-65-9	ND	0.003
4,4'-DDT	50-29-3	ND	0.003
Endrin aldehyde	7421-93-4	ND	0.003
Endosulfan sulfate	1031-07-8	ND	0.003
Methoxychlor	72-43-5	ND	0.02
Chlordane	57-74-9	ND	0.02
Toxaphene	8001-35-2	ND	0.2
Polychlorinated Biphenyls	(PCB's)		
Aroclor 1016	12674-11-2	ND	0.03

Page 37 of 39

Results of Analysis for Superior Analytical Laboratory

Client Reference: 55865 Clayton Project No. 92120.97

Sample Identification: METHOD BLANK Date Sampled: -Lab Number: 9212097-06A Date Received: --

Sample Matrix/Media: SOIL Date Extracted: 12/10/92 Extraction Method: EPA 3550 Date Analyzed: 12/10/92

Analytical Method: EPA 8080

Analyte	CAS #	Concentration (mg/kg)	Limit of Detection ~ (mg/kg)
Polychlorinated Biphenyls	(PCB's) (continue	d)	
Aroclor 1221	1104-28-2	ND	0.03
Aroclor 1232	11141-16-5	ND	0.03
Aroclor 1242	53469-21-9	ND	0.03
Aroclor 1248	12672-29-6	ND	0.03
Aroclor 1254	11097-69-1	ND	0.03
Aroclor 1260	11096-82-5	ND	0.03
	·		QC Limits (%)
Surrogates		Recovery (%)	LCL UCL
Tetrachloro-m-xylene	877-09-8	87	24 - 150
Dibutylchlorendate	1770-80-5	87	20 - 150

Quality Assurance Results Summary for Clayton Project No. 92120.97

Clayton Lab Number: Ext./Prep. Method: Date: Analyst: 9212114-01B EPA3550 12/09/92 SCB

Std. Source: Sample Matrix/Media: M921202-01W SOIL Clayton Project No. 92120,97

Analytical Method: Instrument ID: Date: Time: Analyst: Units: EPA8270 05138 12/12/92 23:37 AC MG/KG

Analyte	Sample Result	Spike Level	Matrix Spike Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
1, 2, 4-Trichlorobenzene	ND	3. 33	2.05	62	1. 90	57	59	38	107	7.6	23
1, 4-Dichiarobenzene	ND	3. 33	1. 70	51	2.00	60	56	28	104	16	27
2, 4.Dinitrotoluene	ND	3. 33	1.60	48	1. 80	54	51	28	89	12	47
2-Chlorophenol	ND	3, 33	1, 90	57	2.20	66	62	25	102	15	50
4-Chloro-m-cresol	ND	3, 33	2. 10	63	2. 30	69	66	26	103	9. 1	33
4-Nitrophenoi	ND	3. 33	2. 10	63	2. 00	60	62	11	114	4. 9	50
Acenaphthene	ND	3. 33	2. 20	66	2. 30	69	68	31	137	4.4	19
N-Nitrosodipropylamine	ND	3, 33	1.80	54	2. 10	63	59	41	126	15	38
Pentachiorophenoi	ND	3. 33	2.10	63	2. 50	75	69	17	109	17	47
Phenol	ND	3, 33	1.80	54	2. 10	63	59	26	90	15	35
Pyrene	ND	3. 33	2. 90	87	2. 50	75	81	35	142	15	36

Page 39 of 39

Quality Assurance Results Summary íor Clayton Project No. 92120, 97

Clayton Lab Number: Ext./Prep. Method: Date:

9212097-03A EPA3550 12/10/92 STF

Analyst: Std. Source: Sample Matrix/Media:

G921201-04W

SOIL

Analytical Method: Instrument ID: Date: Time:

EPA8080 02933 12/11/92 03:13 LC

Analyst: Units:

MG/KG

Analyte	Sample Result	Spike Levei	Matrix Spike Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
4,4'-DDT	ND	0. 0400	0.0270	68	0. 0280	70	69	32	120	3. 6	50
ALDRIN	ND	0. 0400	0,0320	80	0.0320	80	80	34	132	0, 0	43
DIELDRIN	ND	0. 0400	0.0300	75	0. 0300	75	75	31	134	0, 0	38
ENDRIN	ND	0. 0400	0.0330	83	0, 0330	83	83	42	139	0. 0	45
GAMMA-BHC (LINDANE)	ND	0. 0400	0.0320	80	0, 0350	88	84	46	127	9, 0	50
HEPTACHLOR	ND	0.0400	0.0380	95	0.0380	95	95	35	130	0. 0	31

		والمساوي			م بسجم م				-							
Section	Ch	ai	n	0	FC	lus	to	d	1 3	35	ıd Anal	ys	S	R	eq	uest pege_of_
Fram: Superior	- Precisio	nt A	raly	ical	, Inc	•			-	Tu	rrr Araund Time					
	5 Burke	سيسي						-	-		(circle one)		():	Su	perio	r Precision Analytical, inc.
!	Francisc				<u></u>						Day 72 Hrs					P.O. Box 1545
						53 004	740		- H		Hrs 5 Day	Per	(es.	er	N	fartinez, California 94553
Phone No. (415		<u> </u>	'UK	IAÒ	141	3) OE 1	-/ 16		- [48	Hrs 10:Day					
	KK_					· · · · · ·			- 1	No	rk Subcontrac	ted t	o:	ر ک	4/0.	
P.O. No	726T							- وسور	į							
Section II: Anal	ysis Red	ues	t													
Laboratory Sample Identification	Xi Water	UM17	Metals:	418.1	8270	8080 (pest. and PCR's)		•			Client Sample Identification	Number of Containers	Preservative (yes or no)			Sampling Remarks Chevron Non-Chevron **Please Fax Results**
T 57865 -1	5-11				Y	X					10 10	,				
2 - 2	٤				1	4					120 10/	<u> </u>				
3					14	K		<u> </u>			03010/	<u> </u>			ļ	
4 -1					1+	7					120 N	<u> </u>				
5 1	٦	<u> </u>	<u> </u>	<u> </u>	14	4		<u> </u>		 	150 0					
6		<u> </u>	<u> </u>		<u> </u>				<u> </u>	<u> </u>					-	
7				1_)						 	
8				<u> </u>				<u> </u>	ļ	<u> </u>		Ĺ				
9			<u> </u>		<u> </u>				<u> </u>	<u> </u>		<u> </u>	ļ		 	
10		L				<u> </u>			<u> </u>	<u> </u>	<u> </u>		-		-	
11							ļ	ļ	 	ـــ		 	 			
12		<u> </u>			ţ.	<u> </u>	\			<u>. </u>	1 10 41 11	64	<u></u> _	١		<u> </u>
Refinquished by Organization	he the	رور	17/0	<u>eu</u>	3. — -	P.		eived anist		fs.	versale.		72/:2			please initial the following:
						be/Time	+	eived					e/Tim		Appro	priete Containers
Relinquished by	······································							eniza	-							lee Preserved
Organization					T ₂	te/Time		eived				Det	a/Tim			nerice Rec 5 5452T
Relinquished by —— Organization ———							1	enize	•			1				
												_				

APPENDIX D

HYDROCARBON CONSULTANTS ANALYTICAL SUMMARY

Table 2

Groundwater Analytical Data Summary-Petroleum Hydrocarbon Constituents
1150 Ballena Blvd., Alameda, California

Well No.	Date Sampled	TPH/d ⁴ (µg/L) ⁶	TPH/g ⁶ (µg/L) ²	(hg/L) _d	T^c $(\mu g/L)^d$	Ε ^c (μg/L) ^g	Xc (44/F)2	SVOCs ^d (µg/L) ^g	TOG ^e (μg/L) ^o	PCBs ^f (µg/L) ^q
								5.7.1	NIA	NA
MW1	09/02/93	98	<50 ^h	<0.5	≺0.5	<0.5	<0.5	NA	NA	
MW2	09/02/93	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA
MW3	09/02/93	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA
OP!	/ 09/02/93	9,100	580	<0,5	<0.5	19	0.5	ND	43,000	<0.5

Sample

- a. TPH/d = total petroleum hydrocarbons as diesel
- b. TPH/g = total petroleum hydrocarbons as gasoline
- c. B = benzene; T = toluene; E = ethylbenzene; x = total xylenes
- d. SVOCs = semi volatile organic compounds
- e. TOG = total oil and grease
- f. PCBs = polychlorinated biphenols
- μg/L = micrograms per liter, equal to parts per billion (ppb)
- <50 = less than method detection limit of 50 µg/L
- NA = analysis not requested
- j. ND = no analytes detected above respective method detection limits (see analytical test reports for individual analyte detection limits)

TO

Table 3

Groundwater Analytical Data Summary-Metals
1150 Ballena Bivd., Alameda, California

Well Cadmium No. (#g/L) ^a		Chromium (#g/L)*	Lead (#g/L)*	Nickel (#g/L)*	Zinc (µg/L)²	
MW1	NA ^b	NA	NA	NA	NA	
MW2	NA	NA	NA	NA		
MW3	NA	NA	NA	NA.	NA NA	
OP1	<1°	_50-	20		NA .	
		60	ZU .	140	100	

μg/L = micrograms per liter, equal to parts per billion (ppb)

NA = analysis not requested

grat g.w. sample

71-213/HD/TB-3

<1 = less than the method detection limit of $1 \mu g/L$.