SUBSURFACE ENVIRONMENTAL CORP.

Tele: 510/215-6553 Fax: 510/234-7521

FAX TRANSMITTAL

ATTN: Juliet Shin

COMPANY: Alameda County Dept. of Enviro. Health

FAX: 510/589-4757

DATE: July 7, 1993

TIME: 4:00 pm

FROM: Roxanne Harris

RE: Val Strough Volkswagen Albany

Soils Report

No. of pages to follow: 🛊 🗲

SOILS SAMPLING REPORT

718 San Pablo Avenue Albany, CA 94706

PREPARED FOR:

Val Strough Volkswagen 718 San Pablo Avenue Albany, CA 94706

June 4, 1993

Prepared by:

Subsurface Environmental Corp. El Cerrito, CA

Hoxanne M. Harris General "A" Engineering License No. 618766 Hazardous Substances Removal & Remedial Actions OSHA Certified/EPA Certified

INTRODUCTION

The intent of this report is to provide information on the soil at 718 San Pablo Avenue, Albany, CA. The soils analysis was conducted as part of the removal of five underground storage tanks from the property.

TANK REMOYAL

On April 6, 1993, Subsurface Environmental removed five underground storage tanks, 1 - 550 gallon waste oil tank (formerly a gasoline tank), 2 - 300 gallon waste oil tanks and 2 - 300 gallon coolant tanks. All five tanks were corroded, had numerous holes, and were leaking. Prior to the removal of the tanks, Petroleum Recycling Corporation pumped approximately 450 gallons of product from the tanks. Mr. Kevin Tinsley of the Alameda County Department of Environmental Health witnessed the removal of the tanks.

SOIL SAMPLING

Immediately upon removal of the storage tanks, Floxanne Harris of Subsurface Environmental, performed the soil sampling. One soil sample was taken from beneath each tank at the fill end and one additional composite sample was taken from the stockpile of excavated material from the coolant tank at the request of Mr. Tinsley. (See attached map for exact location of sampling.)

All samples were taken in strict accordance with the State of California Regional Water Quality Control Board Tri-Regional Board Staff Recommendations for Preliminary Evaluation and Investigation of Underground Tank Sites.

SAMPLING METHODOLOGY

Samples were obtained from the tank excavations by using a backhoe to bring the native soil to the surface where a 2" diameter by 6" long brass tube was driven into the soil. A composite sample was taken from the stockpiled material by driving brass tubes into the material at four locations; north, east, south and west. Teffon was placed over both ends of the tubes and then covered with plastic end caps. The samples were tabeled and placed on ice in a portable cooler for transport to the laboratory. Sample information was entered on a Chain of Custody form as each sample was collected. After completion of the field work the samples were taken to McCampbell Analytical of Pacheco, CA, a State Certified Laboratory for testing.

ANAYTICAL RESULTS

All samples were analyzed for Total Volatile Hydrocarbons as Gasoline (EPA Method 8015), and Total Volatile Hydrocarbons as Benzene, Toluene, Ethylbenzene, and Xylenes (EPA Method 8020), Total Extractable Hydrocarbons as Diesel (EPA Method 8015), Oli & Grease (EPA 418.1), Chlorinated Hydrocarbons (EPA Method 8010), and LUFT Metals; Chromium, Cadmium, Nickel, Lead & Zinc (EPA 6010).

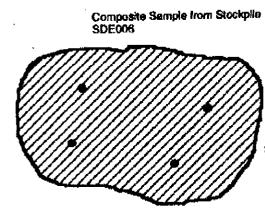
SUMMARY OF ANALYTICAL RESULTS

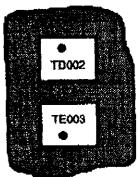
	Tank "A"	Tank "B"	Tank "C"	Tank "D"	Tank E*	Stockpile
escription	Waste Oil	Waste OlVGa		Coolant	Coolant	Tank "D" & "E
ontents	300 Gallon	550 Gallon	300 Galion	300 Gallen	300 Gal Cools	N/A
ank Size		N. Driveway		inside Bidg.	inside Bldg.	Inside Bldg.
		6.5'	8'	8.5	8.5'	N/A
iample Depth	9-	6.3		.,217.,		Taggangagener g v - upgagenegen Drief of Bod on 1 best bed
		4 80 80	7100	430	1	370
rPHg	ND	490	1900	1900	ND	1900
[PHd	ND	1400	ND	0.19	0.012	ND
Senzene	ND	0.27		1.2	0.005	1.4
Oluene	ND	3.3	20	0.63	ND	0.59
Ethylbenzene	T	2.3	25	1.2	0.019	1.6
Kylenes	ND ND	14	130	24000	230	31000
Dil & Gresse	25	4700	9900	24000	200	
<u>CI HC:</u>	ļ				NED	21 ug/kg
Tetrachicroethen	ND NO	250 ug/kg	ND	ND		ND
1.1.1 Trishlorothan	ND NO	as natka	ND	ND_	ND	
Cadmium	0.2	0.3	0.4	0.3	0.3	0.5
Chromium	60	49	47	54	64	39
Nickel	86	95	67	7.5	120	48
Lead	3	4	7	7	6	14
Zinc	28	26	780	40	37	52
				+		
	į.			···		
TPHo = Tota	Petroleum H	vdrocarbons as	Gasoline	1		
		ydrocarbons as ydrocarbons as				
TPHO = Tota	l Petroleum H	ydrocarbons es	Olese!			
TPHO = Tota	l Petroleum H		Olese!			
TPHO = Tota	l Petroleum H orinated Hydrox	ydrocarbons es carbon Compou	Olesel nds	in mg/kg		
TPHO = Tota CI HC = Chi	l Petroleum H orinated Hydrox hits unless oti	ydrocarbons es	Olesel nds	in mg/kg		
TPHO = Tota C1 HC = Chil Detection lim ND = Non De	I Petroleum H orinated Hydroc hits unless oti	ydrocarbons es carbon Compou erwise stated	nds are reported			
TPHO = Tota C1 HC = Chil Detection lim ND = Non De	I Petroleum H orinated Hydroc hits unless oti	ydrocarbons es carbon Compou	nds are reported			
TPHO = Tota C1 HC = Chil Detection lim ND = Non De	I Petroleum H orinated Hydroc hits unless oti	ydrocarbons es carbon Compou erwise stated	nds are reported			
TPHO = Tota C1 HC = Chil Detection lim ND = Non De	I Petroleum H orinated Hydroc hits unless oti	ydrocarbons es carbon Compou erwise stated	nds are reported			
TPHO = Tota CI HC = Chil Detection lim ND = Non De	I Petroleum H orinated Hydroc hits unless oti	ydrocarbons es carbon Compou erwise stated	nds are reported			
TPHO = Tota CI HC = Chil Detection lim ND = Non De	I Petroleum H orinated Hydroc hits unless oti	ydrocarbons es carbon Compou erwise stated	nds are reported			
TPHO = Tota CI HC = Chil Detection lim ND = Non De	I Petroleum H orinated Hydroc hits unless oti	ydrocarbons es carbon Compou erwise stated	nds are reported			
TPHO = Tota CI HC = Chil Detection lim ND = Non De	I Petroleum H orinated Hydroc hits unless oti	ydrocarbons es carbon Compou erwise stated	nds are reported			
TPHO = Tota CI HC = Chil Detection lim ND = Non De	I Petroleum H orinated Hydroc hits unless oti	ydrocarbons es carbon Compou erwise stated	nds are reported			
TPHO = Tota C1 HC = Chil Detection lim ND = Non De	I Petroleum H orinated Hydroc hits unless oti	ydrocarbons es carbon Compou erwise stated	nds are reported			
TPHO = Tota CI HC = Chil Detection lim ND = Non De	I Petroleum H orinated Hydroc hits unless oti	ydrocarbons es carbon Compou erwise stated	nds are reported			
TPHO = Tota CI HC = Chil Detection lim ND = Non De	I Petroleum H orinated Hydroc hits unless oti	ydrocarbons es carbon Compou erwise stated	nds are reported			

REPORTAGE

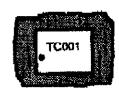
A copy of this report, the certified analytical reports and the Chain of Custody forms will be provided by Subsurface Environmental to the following agencies:

Water Quality Control Board San Francisco Bay Region 2101 Webster Street Oakland, CA 94612

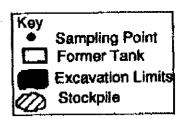

Alameda County Department of Environmental Health 80 Swan Way, Suite 200 Oakland, CA 94621


Tank "B" 550 Gallon Gasoline/Waste Oil

Tank "A" 300 Gallon Waste Oil



Stockpile of Material from Tanks "D" & "E"



Tank "D" 300 Gallon Coolant

Tank "E" 300 GallonCoolant

Tank "C" 300 Gallon Waste Oil

N not to scale

Subsurface Environmental Corporation Project #93127

Val Strough Volkswagen 718 San Pablo Avenue Albany, CA 94706 Tank Removal Soil Sampling