	Judy Peters
	Cynthia-
	Here is a copy
	of the Dames +
	Moore report for
	Oakland. Some
	of the tables.
	are missing and
	in some cases the
$-\parallel$	tables and the
	data do not
$-\parallel$	agree.
	Judy
$-\parallel$	
\dashv	
\dashv	
\parallel	
\parallel	
LL	<u> </u>

.

Warranie Express Warranie Sacount No. 2 Shipper Re	The state of the s		ORIGIN 3 PIECES	DESTINAT
-12311110 040	* 2 U U 7	IRBILL NON NEGOTIABLE		
4 SENT BY (COMPANY NAME)	5 RECIPIENT (COMPANY NAME)	2 (6 SERVICES	CHARGE
- A FE CECAS RATIONAL CAN	All was all		DOCUMENT EXPRESS DOCUMENT	
	Co Daniel		WORLDWIDE PACKAGE EXPRESS	
A PROPERTY OF THE RESERVE OF THE PROPERTY OF T	80 500		WORLDMAIL 1st CLASS 2nd CLASS 2nd CLASS	
CHICACH . IL	Onion		SATURDAY SERVICE	
6 1 00031 312 35°	13201 ACTIVE	415 22-432	PROOF OF DELIVERY	
DESCRIPTION OF		METHOD OF PAYMENT	(POD)	
		sumed to be sender unless otherwise specified BILL RECIPIENT 3rd Party	OTHER ONFORWARDING	
DIMENSIONS	DIMENSIONALICHARGED WEIGHT	CASH \$	EXPRESS CENTER/DROP BOX	
X X 8 COMPLETE FOR WORLDWIDE PACKAGE EXPRESS	CONTENNATIONAL DUTIABLE SHIPMENTS)	· 19年9年至 19年9年 19年	TOTAL	
	MMODITY/TARIFF CODE	IPLENT'S SIGNATURE	and the state of t	DATE /
	SHIPMENT LICENSED BY THE UNITED STATES FOR MATE DESTINATION SIGN CONTRARY TO U.S. LAW PROPUBLINED	PLEASE PRINT NAME	!	TIME .
		IVED IN 6000 ORDER EXCEPT AS NOTED INVE DO HEREBY AUTHORIZE DHIL TO EXECUTE ANY ADI TRIONAL DOCUMENTS NECESSARY FOR THE EXPORT O MERCHANDISE DESCRIBED HEREIN ON MY/OUR BEHAL! OHL DOES NOT CARRY CASH.	D- PICKED UP	BY DHL
IMPORT CHARGES		and the second s		
DUTY OTHER TOTAL	RECEIVER SHIPPER CHARGE	P PER'S SIGNAT ŪRE DATE ////	DATE	TIME

FINAL REPORT PHASE 1 ENVIRONMENTAL SITE INVESTIGATION AMERICAN NATIONAL CAN COMPANY Oakland, California

Dames & Moore 91 FEB 21 LINO: 05

February 1990 ob No. 17693-003-043

February 16, 1990

Derby, Cook, Quinby, & Tweedt 333 Market Street, 28th Floor San Francisco, CA 94105

Attention: Ms. Cynthia Tasker

Report
Phase I Environmental Site
Investigation
American National Can Facility
Oakland, California

Dear Ms. Tasker:

Dames & Moore is pleased to present this report presenting the findings of a Phase I Environmental Site Investigation conducted at the American National Can Company facility in Oakland, California.

Should you have any questions concerning the contents of this report, please contact us at (415) 896-5858.

Very truly yours,

DAMES & MOORE

David Klimberg Associate

Andrew A. Kopania Project Manager

DMK/AAK/tv Enclosure

FINAL REPORT PHASE 1 ENVIRONMENTAL SITE INVESTIGATION AMERICAN NATIONAL CAN COMPANY OAKLAND, CALIFORNIA

TABLE OF CONTENTS

Sect	tion	Page
1.0	INTRODUCTION. 1.1 BACKGROUND. 1.2 OBJECTIVES. 1.3 SCOPE OF WORK.	. 1
2.0	HYDROGEOLOGY AND GROUNDWATER QUALITY 2.1 HYDROGEOLOGY. 2.1.1 Regional Setting. 2.1.2 Site Specific Setting.	4
	2.2 GROUNDWATER QUALITY. 2.2.1 Monitoring Well Installation. 2.2.2 Groundwater Quality Sampling and Analysis. 2.2.3 Analytical Results.	6
3.0	SOIL SAMPLING AND ANALYSIS PROGRAM. 3.1 SOIL SAMPLING. 3.2 ANALYTICAL RESULTS. REFERENCES	^
	LIST OF TABLES	
	TABLE 1 - RESULTS OF WATER LEVEL MEASUREMENTS FROM OCTOBER 6, 1989	
	TABLE 2 - RESULTS OF METAL ANALYSES OF GROUNDWATER SAMPLES TABLE 3 - DETECTION OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER SAMPLES	3
	TABLE 4 - DETECTION OF SEMI-VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER SAMPLES	
	TABLE 5 - RESULTS OF TOTAL PETROLEUM HYDROCARBON ANALYSES OF GROUNDWATER	
	TABLE 6 - SUMMARY OF SOIL SAMPLING AND ANALYSIS PROGRAM TABLE 7 - RESULTS OF METAL ANALYSES OF SOIL SAMPLES TABLE 8 - DETECTION OF VOLATILE ORGANIC COMPOUNDS IN SOIL SAMPLES	
	TABLE 9 - DETECTION OF TOTAL PETROLEUM HYDROCARBONS AND PC IN SOIL SAMPLES	Bs

LIST OF FIGURES

- FIGURE 1 AMERICAN NATIONAL CAN COMPANY, OAKLAND FACILITY, SITE LOCATION
- FIGURE 2 PHASE I INVESTIGATION SITE MAP
- FIGURE 3 GROUNDWATER SURFACE CONTOUR MAP
- FIGURE 4 GROUNDWATER SURFACE PLOT

APPENDICES

- APPENDIX A FIELD PROCEDURES, BORING LOGS, FIELD RECORDS OF WATER SAMPLING
- APPENDIX B LABORATORY DATA REPORTS

1.0 INTRODUCTION

This report presents the results of a Phase I Environmental Site Investigation conducted by Dames & Moore at the American National Can Company, Oakland Facility, Oakland, California. This work has been performed in general accordance with the agreement between Dames & Moore and American National Can Company, dated July 11, 1989.

1.1 BACKGROUND

The property located at 3801 East 8th Street in Oakland, California (Figure 1) is owned by American National Can Company. The facility has been used for manufacturing steel cans since the early part of the century. American National Can ceased manufacturing operations at the Oakland plant in 1988.

Directly adjoining the American National Can Company property to the south is a closed waste oil recovery and recycling facility. It is currently referred to as the Ekotek-Lube site (Figure 2). This one-acre plant has been in existence since 1925 but has been inactive since 1982. This site is currently on the State of California "Superfund" list as a result of apparent uncontrolled releases of waste oils and solvents over the life of the facility. Intracoastal Oil Company, the current owner of the Ekoteck Lube site, has proposed to conduct a soil and groundwater contamination investigation at the site. However, this investigation has not yet been conducted, so information regarding the nature and extent of site contamination is not available at this time.

1.2 OBJECTIVES

Based on discussions with American National Can Company and review of the existing data, the primary objectives of this Phase I environmental site investigation are the following:

- Evaluate the potential for migration of contaminants from offsite sources onto the American National Can Company property, with particular emphasis on the adjacent Ekotek-Lube site; and,
- · Investigate on-site areas of potential environmental concern.

1.3 SCOPE OF WORK

The scope of this investigation, as described in our July 11, 1989 revised proposal, included the following tasks:

- Review of existing data, including prior environmental site investigations, pertaining to the American National Can Company, Oakland Facility, and the Ekotek-Lube site.
- Installation of five groundwater monitoring wells at the locations shown on Figure 2.
- Measurement of the static water level in each well to the nearest
 0.01 foot using an electric water level probe.
- Collection and chemical analysis of groundwater samples from the five new wells and one existing well.
- Collection and chemical analysis of selected soil samples from each of the five borings for the groundwater monitoring wells and at potential on-site source areas.
- Preparation of this report presenting the results of the field investigation.

The actual field program deviated from the proposed scope of our July 11, 1989 revised proposal in the following ways:

- Three soil samples from well GW-l and two from GW-2 were analyzed, instead of just one each. This was done because of the apparent high levels of contamination in the soil from these two borings adjacent to the Ekotek-Lube site. In addition, one sample from both borings was analyzed for Polychlorinated Biphenyls (PCBs).
- Three soil samples, instead of two, were drilled along the railroad drainage area to better characterize this locality.
- Only one boring, instead of three, was drilled adjacent to the underground gasoline storage tank. This was because:
 - The exact location of the tank was determined prior to conducting the soil boring program;
 - The existence of several buried utilities (water, sewer, telephone, fire, water) in the area of the tank; and
 - 3) The tank is located under the 37th Avenue sidewalk, and drilling through the public sidewalk or street was determined to be undesirable at this time.

All other work was performed as described in our Revised Proposal.

2.0 HYDROGEOLOGY AND GROUNDWATER QUALITY

2.1 HYDROGEOLOGY

2.1.1 Regional Setting

The American National Can Company, Oakland facility, is located on the flat coastal plain adjacent to San Leandro Bay (see Figure 1). This area forms a transition zone between fluvial deposits which were sourced from the east, the Merritt Sand, which is a beach deposit, and the Bay Mud, which underlies most of San Francisco Bay (Hickenbottom and Muir, 1988). The fluvial deposits and, possibly, the Bay Mud directly underlie the American National Can facility. The fluvial deposits consist of sandy and gravelly stream channels and silty to clayey units between channels. The Bay Mud consists of stiff marine clays and silts.

The regional hydraulic gradient is to the west and southwest in this area and averages five to ten feet per mile. The main aquifers in the area are in older alluvial deposits below a depth of 200 feet. Other shallow aquifers are present between 30 and 200 feet in the region. Water bearing units shallower than 30 feet are not considered to be important sources of groundwater in this area and may be susceptible to large seasonal water level fluctuations and complete de-watering during dry periods.

2.1.2 Site Specific Setting

Five groundwater monitoring wells, designated GW-1 through GW-5, were installed on the site. Well installation and development details are provided in Section 3.2 and Appendix A. In addition, a pre-existing well, GW-6, exists at the facility. The locations of these monitoring wells are shown on Figure 2.

The shallowest water-bearing unit encountered at the site was a clayey to sandy gravel. This deposit grades to a clayey sand in well GW-2 (see Appendix A, Plates A-1 through A-5) and appears to be absent in GW-4. It varies in depth from eight feet in GW-5 to 15 feet in GW-1. This unit is overlain by clays and silty clays. These units are most likely part of the fluvial deposits discussed in the previous section. The western part of the site appears to consist of finer grained deposits and an area of Bay Mud may also be present around the steam cleaning area (see boring logs for GW-4, SC-1, and SC-2 on Plates A4, A8, and A9).

The depth of water was measured in the five newly installed wells approximately four weeks after they were developed so that the water levels would have an adequate time to stabilize. Existing well GW-6 was also measured at the same time. A hydrocarbon liquid was found floating on groundwater in well GW-6. A gauging paste was used to determine the thickness of the liquid and depth to water. The results of the water level measurements are shown in Table 1. The maximum water table elevations occurs in well GW-5 and is 7.99 feet above mean sea level. The lowest water table elevation occurs in well GW-3 and is 1.45 feet above mean sea level. Water table elevations measured on October 6, 1989 were used to construct the water table elevation contour map and groundwater surface plot presented in Figure 3 and depicted in Figure 4, respectively. These data indicate that the direction of groundwater flow beneath the site is south toward Alameda Avenue and San Leandro Bay. It may be of some significance to note that the groundwater gradient is relatively steep on the northern half of the site, but becomes quite flat near Alameda Avenue. It is anticipated that the water table is at sea level 1,000 to 1,500 feet to the southwest at the San Leandro Bay tidal channel.

2.2 GROUNDWATER QUALITY

2.2.1 Monitoring Well Installation

Five soil borings were drilled by All-Terrain Drilling Company between August 21 and August 24, 1989, using hollow stem auger drilling equipment. These borings were completed as 4-inch diameter groundwater monitoring wells at the locations shown on Figure 2. wells were installed to facilitate the evaluation of groundwater quality in the first water-bearing zone beneath the site and to allow the evaluation of the hydraulic gradient in that zone. Wells GW-1 and GW-2 are located on the southern perimeter of the property near the former Ekotek-Lube waste oil recycling plant. Well GW-3 is located on the southern edge of the property near Alameda Avenue, in the area of the former solvent underground storage tank farm. Well GW-4 is also near Alameda Avenue in the vicinity of the former drum storage area. Well GW-5 is located on the upgradient side of the property in the front parking lot on the northern corner of the property. Following installation, all five wells were developed by pumping until relatively sediment-free water was produced. Well construction and installation details are presented in Appendix A of this report and on Plates Al through A5.

2.2.2 Groundwater Quality Sampling and Analysis

Groundwater samples were collected from the newly installed wells GW-1 through GW-5 on August 29, 1989. Samples were collected in laboratory provided containers, stored on ice, and shipped to ACCUIAB Environmental Services of Petaluma for chemical analysis. The samples were accompanied by a completed chain-of-custody form. Additionally, one duplicate sample and one trip blank were submitted for analysis. A water sample from GW-6 was not collected because of the presence of free floating product.

.

All groundwater samples were analyzed for volatile organic compounds, including MEK, MIBK, and xylenes (EPA Method 624), semi-volatile organic compounds (EPA Method 625), 17 CAM metals, (EPA 6010 and 7000 series), and TPH as gasoline and diesel (EPA Method 8015, modified). Groundwater sampling procedures are detailed in Appendix A.

2.2.3 Analytical Results

Analytical results for metals, volatile organic compounds, semi-volatile organic compounds and total petroleum hydrocarbons are summarized in Tables 2, 3, 4, and 5, respectively. Tables 3, 4, and 5 only show the results for compounds which were detected in at least one sample above the laboratory reporting limit. Appendix B contains the complete laboratory data reports. A duplicate sample from well GW-2 (designated GW-7 in Appendix B) was collected and analyzed for quality assurance/quality control purposes.

The measured concentrations of metals, volatile organics, and semi-volatile organics can be compared to California Applied Action Levels (AALs) for drinking water to evaluate the significance of observed concentration levels. However, because the shallowest water-bearing unit is not a source of drinking water, AALs may not be the regulatory standard which could be applied to the groundwater beneath the Oakland facility.

Well GW-5 is located at the upgradient edge of the site. Water quality parameters measured in this well likely represent the background chemistry of shallow groundwater in this area.

Copper was present in the sample from GW-5 at a concentration greater than the AAL. This may indicate that copper has a high background level in the groundwater. It is also important to note that the detection limit for copper is 2.5 times greater than the AAL. Chloroform was the only volatile organic compound detected in GW-5. The concentration is below the AAL, though, and it was not detected in any of the groundwater

4

samples from the other wells on-site. Semi-volatile organic compounds and petroleum hydrocarbons were not detected in the sample from GW-5.

Well GW-4 is located along the western downgradient edge of the site. Copper was the only metal present above the AAL in this well and the concentration is lower than the assumed background level measured in GW-5. Volatile organics, semi-volatile organics, and petroleum hydrocarbons were not detected in well GW-4.

Well GW-3 is downgradient from the central area of the facility and is located in the former underground tank farm area. Barium, cadmium, chromium, and copper were detected in the sample from this well at levels exceeding their respective AALs. Xylenes, the only volatile organic compounds detected in this well, are present at a concentration in excess of the AAL. Several semi-volatile organic compounds were detected in the groundwater sample at this location, including four polynuclear aromatic hydrocarbons (PNAs). PNA concentrations are all below their respective AALs, although, phenanthrene, was detected at a concentration just below its AAL (18 ppb versus 19 ppb). Total petroleum hydrocarbons as gasoline were measured at 39 ppm.

Wells GW-1 and GW-2 are located along the southeastern edge of the site, adjacent to Ekotek-Lube. The sample from GW-1 contained levels of arsenic, barium, cadmium, chromium, copper and nickel which exceed their respective AALs. In both the primary and duplicate samples collected from GW-2 only barium and copper were present above their AALs. Volatile organic compounds detected in GW-2 which exceed their AALs are benzene, 1,1-dichloroethane and vinyl chloride. Benzene, toluene, vinyl chloride, and xylenes exceed their respective AALs in the sample from GW-1. 2,4-dimethylphenol was detected in GW-1 at a concentration 50 times higher than the AAL. A higher level of 4-methylphenol was also present in GW-1; however, an AAL for this compound has not been established. Petroleum hydrocarbons were detected in groundwater samples collected from both wells GW-1 and GW-2. Petroleum hydrocarbons as diesel were reported in well GW-1 at a concentration of 40 ppm, and GW-2 at 11 ppm.

3.0 SOIL SAMPLING AND ANALYSIS PROGRAM

3.1 SOIL SAMPLING

In addition to monitoring wells, several soil borings were advanced for the purpose of collecting soil samples for chemical analysis. All boring locations are shown on Figure 2. Prior to drilling, an underground utility survey was conducted. During this survey, the location of an underground gasoline storage tank was identified under the sidewalk next to 37th Avenue. The location of the tank is depicted on Figure 2. The base of the tank was measured at 80 inches beneath the sidewalk. The filler neck to the tank is 38 inches long, implying the tank diameter is 42 inches. Thirty inches of liquid with a gasoline odor was measured in the tank. Boring GT-1 is located in the north parking lot adjacent to this tank.

Boring RT-1 is located along East 8th Street in the area of the former 4,000 gallon resin tank. This boring is drilled to evaluate whether previous closure and removal of the resin tank succeeded in eliminating or minimizing the impact of any potential leakage from the tank. Borings SC-1 and SC-2 were drilled to evaluate stained soil in the former steam-cleaning area.

In addition to these borings, surface soil samples from a maximum depth of 2.5 feet were collected from three other areas of potential concern:

- Samples RR-1 through RR-3 were collected along the railroad drainage area;
- Samples DS-1 through DS-3 were collected in the former drum storage area; and

. .

 Samples SP-1 through SP-5 were collected along the former solvent pipeline which runs between the lithography building and the former underground tank farm.

During advancement of boreholes GW-1 through GW-5, GT-1, and RT-1, relatively undisturbed soil samples were collected every 5 feet from near the surface to the maximum depth of each boring. At borings SC-1 and SC-2, samples were taken continuously from the surface to the total depth of the borings. Surface samples were taken from immediately below pavement, if present. Upon collection, soil samples were screened by the field geologist with either an Organic Vapor Monitor (OVM) or an Organic Vapor Analyzer (OVA) to investigate the presence of organic vapors. Soils collected from boring GW-1 exhibited OVA readings ranging from 12 to 70 ppm. Soils collected from GW-2 had OVM readings ranging from 21.6 to 71.6 ppm. One soil sample from GW-3 had an OVM reading of greater than 1,000 ppm. Organic vapors were not detected by field screening in borings GW-4, GW-5, and RT-1. Failure of the OVM in the field precluded screening samples from GT-1.

3.2 ANALYTICAL RESULTS

Based on field screening, selected soil samples were chemically analyzed by ACCULAB Environmental Services of Petaluma, California. Sample locations, sample depths, and analyses performed are shown on Table 6. Tables 7 through 9 summarize the results of compounds which were detected above the reporting limit in at least one sample. Appendix B contains the complete laboratory data reports.

Soil samples collected from the five borings for the groundwater monitoring wells were analyzed for volatile organic compounds and petroleum hydrocarbons. Samples collected from wellbores GW-4 and GW-5 did not contain detectable levels of volatile organics or petroleum hydrocarbons. A sample collected from wellbore GW-3 at a depth of 9 feet contained ethyl benzene and xylenes at concentrations of 370 ppb and 390

ppb, respectively, but no detectable levels of petroleum hydrocarbons. GW-2 contained 9 ppb benzene and 4.7 ppb xylene in the sample collected from 5.25 feet deep, but no detections of volatile organics in the sample from 10.25 feet. A sample collected from wellbore GW-1 at 5.25 feet contained benzene, toluene, trichloroethylene, and xylenes at concentrations of 13 ppb, 13 ppb, 120 ppb, and 110 ppb, respectively. The sample from 10.25 feet from the same wellbore contained no detectable levels of these volatile compounds. The 15.25-foot sample from GW-1 contained 650 ppb of xylenes. Petroleum hydrocarbons were detected in all samples from GW-1 and GW-2 at levels ranging from 130 ppb to 1,560 ppm.

Samples collected from a depth of 5.25 feet in wellbores GW-1 and GW-2 were also analyzed for PCBs. Trace levels (<1 ppm) were detected in the samples analyzed from both borings (Table 9).

A sample collected from a depth of 10.25 feet from boring GT-1, located adjacent to the underground gasoline storage tank, was analyzed for volatile organics, total petroleum hydrocarbons as gasoline, and organic lead (a gasoline additive). Although samples from this boring had a slight hydrocarbon odor (Plate A-6), volatiles, petroleum hydrocarbons, and organic lead were not detected in the soil sample analyzed.

A single sample from boring RT-1, drilled at the site of the former resin tank, was analyzed for volatile organic compounds. Detectable concentrations of these compounds were not present in the sample.

Two samples from each of the two borings drilled in the steam-cleaning area were collected and analyzed for volatile organic compounds and total petroleum hydrocarbons. Toluene was present at less than 10 ppb in the deeper samples (3.75 feet deep) from both borings. Xylene was also detected at a concentration of 3.0 ppb in the 3.75-foot sample from boring SC-2. This sample also contained total petroleum hydrocarbons at a concentration of 3,200 ppm.

- E

Surface soil samples collected along the railroad drainage area were analyzed for CAM metals and volatile organic compounds. The metal concentrations were compared to the California Total Threshold Limit Concentration (CA TTLC). The TTLC values are used to evaluate whether a material could be classified as a hazardous. They form a useful basis for comparison, but may not be regulatory standards applied to soils at this site. All of the metals detected in soil samples from the railroad drainage area are present at concentrations well below their respective TTLCs. Volatile organic compounds were not detected in any of the samples analyzed.

Near surface (2.25 feet), soil samples from the former drum storage area were analyzed for CAM metals and volatile organic compounds. All of the metals detected in these samples were below their respective TTLCs. Volatile organics were not detected in the sample collected at location DS-1. Xylenes and ethylbenzene were detected at location DS-3 but at concentrations less than 20 ppb. Sample DS-2-1C had a moderate level of ethyl benzene (320 ppb) and a high level (4,300 ppb) of xylenes.

Five near surface (2.25 feet) soil samples collected along the length of the solvent pipeline were analyzed for volatile organic compounds. Sample location SP-1, closest to the former underground tank farm, contained ethylbenzene and xylenes at 180 and 86 ppb, respectively. Sample location SP-5, closest to the lithography building, had only a very low level of xylenes, (10 ppb). The other three sample locations (SP-2, SP-3, and SP-4) collected along the central portion of the pipeline were reported to contain up to 2,500 ppb of ethylbenzene and 5,100 ppb of xylenes.

REFERENCES

Hickenbottom, Kelvon and Kenneth Muir, 1988, Geohydrology and Groundwater Quality Overview of the East Bay Plain Area, Alameda County, California: Alameda County Flood Control and Water Conservation District, 205 (J) Report.

RESULTS OF WATER LEVEL MEASUREMENTS FROM OCTOBER 6, 1989

ELEV. (Top of Casing)	DEPTH TO WATER	WATER TABLE ELEVATION (1)
15.39	9.79	7.99
13.17	10.05	1.65
11.63	10.18	1.45
11.70	11.70 7	i
17.78	(-1.47
19.82		2.27
	13.17 11.63 11.70 17.78	15.39 9.79 13.17 10.05 11.63 10.18 11.70 11.70 7 17.78 13.12

⁽¹⁾ All elevations are reported as feet above mean sea level.

All depths are reported in feet. Source: October 6, 1989 reprot of Aqua Terra Technologies.

⁽²⁾ Floating product encountered at a depth of 14'11", measured thickness of 4'4". Assuming a specific gravity of 0.89, this is equivalent to 3.86' of water, thus the corrected depth to water is 15.39'.

TABLE 2 RESULTS OF METALS ANALYSES OF GROUNDWATER SAMPLES

HETAL	GW-1	GH-5	GW-2 (dup)	GW-3	GW-4	ALL 6		
Arsenic	0.0913	0.034	ND	0.017		GW-S	DET LIMIT	AAL
Selenium	0.008	ND	ND		0.016	ND	0.0050	0.074
Mercury	0.00104	0.00044	0.00025	ND	ND	ND	0.0050	0.01
Silver	ND	ND	1	ND	ND	NO	0.00010	0.002
Barium	1.16		ND	ND	ND	ND	0.010	
Beryllium		0.547	0.579	0.46	0.119	0.199	ľ	0.05
Cacimium	ND	ND	ND	ND	ND	ND	0.010	0.350
	0.0088	ND	MĐ	0.005	ND		0.010	HA
Cobalt	0.063	ND	ND	0.034	ND	ND	0.0050	0.005
Chromium	0.279	ND	ND	0.095		ND	0.020	NA
Copper	0.168	ND	0.018	0.056	0.035	0.029	0.020	0.051
olybdenum	0.038	0.026	ND		0.017	0.095	0.010	0.0043
ickel	0.558	ND	ND	ND	0.028	ND	0.020	NA
ead	ND	ND I		0.26	0.098	0.07	0.050	0.4
ntimony	ND	ND ND	ND	ND	ND	ND "	0.050	0.012
nallium	ND	· •	ND	ND	ND	ND	0.50	NA
endium		NO	NĐ	ND	ND	ND	0.20	
nc	0.214	ND	ND	0.077	0.029	ND	·	NA
	0.274	0.033	0.034	0.127	0.033	0.076	0.020	HA
= Not detec						0.076	0.010	NA .

NA = Not applicable.
AAL = California Applied Action Level.
Concentration of all samples µg/L.

TABLE 4 DETECTION OF SEMI-VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER SAMPLES

9000			GW-3	C() 4			
	ND	ND		GW-4	GW-5	DET LIMIT	***
ND	NU	1 1	7.0	ND	ND ND		AAL
ND		ND	5.3	ND		4.0	400
j	ND	ND	4.7	1	ND ND	4.0	19
ND	ND	5.0		ND	ND	4.0	40
ND	lin.	1 1	ND	מא	ND		19
ND I		18.0	ND	ND	į	4.0	130
1	ND	6.5	ND	1	ND	4.0	19
2600	ND	ND I	[D	ND	4.0	19
			ND	- ND	ND	30.0	17
	ND ND	ND ND ND ND ND ND ND ND ND	ND 18.0 ND ND 6.5	ND ND ND 5.3 ND ND ND 4.7 ND ND 5.0 ND	ND ND ND 5.3 ND ND ND 4.7 ND ND ND ND ND ND ND ND ND ND ND ND ND 2600 ND ND ND	ND ND<	ND ND ND ND 4.0 ND ND ND 4.0 ND 4.0 ND ND ND ND ND ND 4.0 ND ND ND ND ND ND 4.0 ND ND ND ND ND 4.0 2600 ND ND ND ND ND 4.0

AAL = California Applied Action Level.

Concentration of all samples µg/L.

TABLE 5 RESULTS OF TOTAL PETROLEUM HYDROCARBON ANALYSES OF GROUNDWATER

WELL	RESULT	AS DIESEL	AS GASOLINE		
	- ALSOL!	DETECTION LIMIT	RESULT		
GW-1	40.0	0.075		DETECTION LIMI	
GW-2	, ,	0.075	11.0	0.50	
A1 9	3.3	0.075	1.6	0.50	
GW-2 (dup)	9.1	0.075	2.4		
GW-3	0.3		2.1	0.50	
GW+4	1 3.3	0.075	39.0	.25	
um~4	ND ND	0.075	ND		
GW-5	ND	0.07		0.05	
		0.075	ND	0.05	

TABLE 8 SUMMARY OF SOIL SAMPLING AND ANALYSIS PROGRAM

SAMPLE NO.	DEPTH (IN FEET)	
Groundwater Monitoring Well Borings		ANALYSES PERFORMED
GW-1-2C	5.25	
GW-1-3C		TPH, VOLATILE ORGANICS, PO
GW-1-4C	10.25	TPH, VOLATILE ORGANICS
GW-2-2C	15.25	TOU YOUNTELE UNGANICS
GW-2-3C	5.25	TPH, VOLATILE ORGANICS
GW-3-1C	10.25	TPH, VOLATILE ORGANICS, PC
GH-4-2C	9.25	'F", VULATILE ORGANICS
GW-5-1C	5.25	IPH, VOLATILE ORGANICS
GW-5-2C	2.25	TPH, VOLATILE ORGANICS
d#-2-5C	5.25	: NA
Undergreen a co	3.23	TPH, VOLATILE ORGANICS
Underground Gasoline Storage Tank		, and a district
GT-1-2C		
GT-1-3C	5.25	114
· · ·	10.25	NA .
GT-1-4B		TPH AS GASOLINE, BTEX,
01-1-48	15.0	ORGANOLEAD
Former Panis Turn	12.0	NA
<u>Former Resin Tank</u>		
RT-1-1C		
	15.25	****
iteam Cleaning Area		VOLATILE ORGANICS
SC-1-1C		
SC-1-2C	2.25	TOU WOLATTIE AMARIA
SC-1-3C	3. <i>7</i> 5	TPH, VOLATILE ORGANICS
SC-2-1C	5.25	TPH, VOLATILE ORGANICS
\$C-2-2C	2.25	NA
SC-2-3C	3.75	TPH, VOLATILE ORGANICS
20 E 3C	5.25	IPH, VOLATILE ORGANICS
pilroad Drainage Area	• • • • • • • • • • • • • • • • • • • •	NA NA
-		
RD-1-1C RD-2-1C	1.75	
RD-3-1C	1.75	VOLATILE ORGANICS, CAM METALS
KU-3-1C	1.75	VOLATILE UNGANIES CAM METALA
Stance t	1.73	VOLATILE ORGANICS, CAN METALS
um Storage Area		The second section of the second seco
DS-1-1C		
DS-2-1C	2.25	Not sure.
DS-3-1C	2.25	VOLATILE ORGANICS, CAM METALS
ou a-16	2.25	TOLATILE UNGANIES CAN METALE
vent Pipeline Area	~~~~	VOLATILE ORGANICS, CAM METALS
1915 FIRELINE Area		meines
SP-1-1C		
SP-2-1C	2.25	1001 ATTI M. an - :
SP-3-1C	2.25	VOLATILE ORGANICS
SP-4-1C	2.25	VOLATILE ORGANICS
SP-5-1C	2.25	VOLATILE ORGANICS
ar-3* If	2.25	VOLATILE ORGANICS
		VOLATILE ORGANICS

NA = NOT ANALYZED

ENG

:3

TPH = TOTAL PETROLEUM HYDROCARBONS

BTEX = BENZENE, TOLUENE, ETHYL BENZENE, TOTAL XYLENE

TABLE Z. RESULTS OF METALS ANALYSES OF SOIL SAMPLES

Arsenic	10.0	7.82	RD-3-1C	DS-1-1C	DS-2-1C	DS-3-1C	CA 77	
Selenium	ND	ND	9.12	10.0	10.0	9.68	CA TYLC	DET LIMI
Hercury	0.076	ľ	, ND	ND	ND	ND ND	500	0.60
Silver	ND	0.10	0.34	0.14	0.20	1	100	0.60
Barium	176	ND	ND	ND	HD	0.25	20	0.040
Beryllium	0.24	121	111	813	412	ND ND	500	0.20
Cadmium		0.25	ND	0.31	ł	394	10000	0.20
Cobalt	2.34	2.51	2.18	3.29	0.35	0.34	75	0.20
Chromium	11.8	15.9	10.8	10.1	3.29	2.81	100	0.098
- 1	58.9	74.6	85.2	68.8	13.2	15.1	8000	0.40
opper	17.9	428	21.8	i	71.1	78.0	2500	0.40
olybder <u>um</u>	ND	ND	ND	31.5	126	36.7	2500	- 1
ickei	80.6	142	163	ND	NO	ND	3500	0.20
ad	7.5	ND	ND	108	110	143	2000	0.40
itimony	ND	ND	1	142	950	109	1000	0.99
allium	ND	ND	ND	ND	ND	ND	500	0.99
ndium	42.3	41.8	ND .	ND	NO	ND	Í	9.8
nc	34.7	212	36.2	39.3	40.1	41.2	700	4.0
<u>-</u>			38	136	484	1130	2400	0.40
= Not detect	ed. rnia Total Thresho all samples mg/kg						5000	0.20

TABLE 8
DETECTION OF VOLATILE ORGANIC COMPOUNDS IN SOIL SAMPLES

BORING	BENZENE	ETHYL BENZENE	TOLUENE		
GW-1-2C	13	ND		TRICHLOROETHEN	E XYLENES
GW-1-3C	ND	ND	13	120	110
GW-1-4C	ND		ND	ND	ИО
GW-2-2C	9.0	ND	ND	ND ND	650
GW-2-3C		ND	ND	ND	4.7
GW-3-10	ND	ND	ND	ND	ND
GW-4-2C	D	370	ND .	ND	390
1	ND	DIA	ND	NO	ND
GW-5-20	ND	ND	ND	ND	ND
RT-1-1C	ND	ND	ND	ND	
SC-1-1C	ND	ND	ND	ND	ND
SC-1-2C	DM	МО	6.4	ND	ND
SC-2-1C	ND	ND	ND	NO	ND
SC-2-2C	ND	ND	7.4		NO
GT-1-2C	ND	ND	ND	KD	3.0
RD-1-1C	ND	ND	110	ND	ND
RD-2-1C	ND	ND		ND	ND ND
RD-3-1C	NO	ND ·	ND	ND	ND
DS-1-1C	ND I		ND	ND	MD
DS-2-1C	ND	ND	ND	NO	ND
DS-3-10	ND	320	NĐ	ND	4300
SP-1-1C	[2.8	NO	D	19.0
SP-2-10	Ю	180	ND	ND	86
SP-3-1C	NO	1800	ND	ND	3500
	MD	560	ND	· ND	2800
SP-4-1C	ND	2500	ИD	ND	5100
SP-5-1C	NO	ND .	ND	ND	10.0
DET LIMIT	2.5	2.5	2.5	2.5	2.5
			·		

ND = Not detected.

Concentration of all samples µg/kg (ppb).

TABLE 9 DETECTION OF TOTAL PETROLEUM HYDROCARBONS AND PCBs IN SOIL SAMPLES

BORING	TOTAL PETROLEUM HYDROCARBONS (mg/kg)	DETECTION LIMIT (mg/kg)	PCBs (mg/kg)	CATTLC (mg/kg)	DETECTION LIMIT (mg/kg)
GW-1-2C	130	6	0.43 AROCHLOR 1242	50	0.029
GW-1-3C	138	6	ND	•	מֿא
GW-1-4C	464	6	ND	-	ND
GW-2-2C	289	6	0.38 AROCHLOR 1242	50	0.030
GM-5-3C	1,560	30	ND ND	-	ND
sc-2-2c	3,200	60	NA I	•	NA.

ND = NOT DETECTED

NA = NOT ANALYZED
CATTLC = CALIFORNIA TOTAL THRESHOLD LIMIT CONCENTRATION

Londie Geneluer may 1985

American National Can Co. Oakland Facility Site Location

October 18, 1989

Dames & Moore

Figure 4. Groundwater Surface Plot, view from Ekotek Lube site toward the northwest

APPENDIX A FIELD PROCEDURES

APPENDIX A FIELD PROCEDURES

A field exploration program consisting of installation and development of five monitoring wells, advancement of four soil borings, and collection of eleven sub-surface samples, followed by water quality sampling, was performed at the American National Can Company site between August 21 and August 29, 1989. All field operations were conducted by, or directly supervised by, a Dames & Moore geologist or engineer. The locations of the monitoring wells are shown on Plate 1 in the main body of this report. Logs of borings are presented in Plates A-1 through A-9. Soils were classified according to the Unified Soil Classification System, shown on Plate A-10.

Five monitoring well borings were drilled by All-Terrain Drilling and Pump Company of Roseville, California, using a tractor-mounted CME-450 drill rig. The borings were advanced with 12-inch 0.D. hollow stem augers and ranged in depth from 7.0 to 30.0 feet. Relatively undisturbed soil samples were collected at each boring using a Dames & Moore U-type sampler. Samples were collected every 5 feet beginning at or near the surface for all borings except SC-1 and SC-2, where sampling was continuous.

The sampler was driven with a 140-lb. hammer falling 30 inches. Soil samples were collected in clean 3-inch long stainless steel tubes. Between each sample depth, the sampler was cleaned in a dilute solution of trisodium phosphate and rinsed twice in deionized water. In addition, all drilling and sampling equipment was steam-cleaned between borings.

Upon retrieval from the borehole, the sampler was disassembled and the sample was first screened for organic vapors with an Organic Vapor Analyzer (OVA) or Organic Vapor Monitor (OVM). The samples were then visually logged and classified as to soil type, color, moisture content, and visible evidence of contamination. The exposed ends of each brass sample tube were then covered with 2 mil Teflon sheeting, fitted with plastic end caps, sealed with tape and labeled.

Three sample tubes were typically recovered from each interval sampled. One or two of the sample tubes were placed in an ice chest for shipment to the analytical laboratory. The remaining soil samples were sent to the Dames & moore soils laboratory in San Francisco. Procedures for selecting samples for chemical analysis are discussed in Section 4.1 of this report.

The five shallow borings, GW-1 through GW-5, were completed as 4-inch diameter ground water monitoring wells using the following procedures:

- Following drilling and sampling, steam cleaned, flush threaded, capped, 4-inch diameter Schedule 40 PVC casing and well screen was installed in the boring through the hollow stem augers. The wells were completed with ten feet of 0.020-inch machine slotted screen and ten to fifteen feet of blank casing:
- o Filter pack sand was deposited in the annular space between the wall of the borehole and the casing to a height of one to two feet above the top of the slotted section;
- Bentonite pellets were deposited on top of the filter pack sand to form a one- to two-foot thick seal;
- A bentonite-cement mixture was poured into the remaining annular space from the top of the bentonite layer to ground surface. A locked steel casing was placed over the capped well and was completed slightly above grade with a traffic-rated Christy box.

Monitoring Well Development Procedures

Following the installation of the five monitoring wells, each well was developed. Well development was conducted on August 28, 1989, by a Dames & Moore geologist or engineer. Wells were developed by a combination of surging and pumping until the water became relatively sediment free or at least ten casing volumes were removed.

Ground Water Sampling Procedures

Ground water samples were collected from each of the five newly installed wells on August 29, 1989. Prior to sampling, each well was purged until the measured temperature, pH, and conductivity attained stable values to assure that fresh formation water was entering the well. Wells were purged until three to five casing volumes of water were removed or until the well dewatered.

All five wells were purged using a suction pump with dedicated hose. Ground water samples were collected using dedicated disposable polypropylene bailers.

The ground water samples collected were submitted to Acculab Laboratory, Petaluma, California, for chemical analysis. Upon collection, the samples were labeled and stored on ice for same day courier pick-up and delivery to the laboratory. Proper chain-of-custody records were maintained for each samples. Section 3.2.2 in the main body of this report discusses ground water sampling and analysis.

Equipment Cleaning Procedures

All drilling, soil sampling, and water sampling equipment was steam cleaned between drilling or sampling of each boring. The sampling equipment was also washed in a dilute TSP solution, rinsed in potable water, and then rinsed in distilled water. The waste wash and rinse water was then stored on-site in DOT-approved 55-gallon drums. Soil and fluid wastes generated during drilling and sampling activities were also stored on-site in 55-gallon drums until chemical analytical results are completed.

7

BORING GT-1 SAMPLING TYPE OF SAMPLER DATE DRILLED: 8/25/89 DEPTH IN FEET SAMPLING RESISTANCE SAMPLES **SYMBOLS** DESCRIPTION REDDISH BROWN GRAVELLY SAND [FILL] SW U 26 BLACK CLAY with garvel (moist) (stiff) CH MOTTLED GRAY & BROWN SILTY CLAY with some black, subangular gravel CH U 39 (moist) (very stiff) 5 MOTTLED BROWNISH YELLOW & GRAY CLAYEY SANDY SILT with gravel; ML U 55 slight hydrocarbon odor (moist) (very stiff) 10 SM BROWNISH YELLOW SILTY SAND with large angular cobbles up to 2 inches in U 50/4" diameter; noticable hydrocarbon odor (moist) (very dense) 15 NOTES: 1. Boring completed at a depth of 15.5 feet on 8/25/89. 2. Sampling resistance is measured in blows per foot required to drive the sampler 12 inches with a 140 lb. hammer falling 30 inches after sampler has been seated 6 inches. 3. Boring log indicates interpreted subsurface conditions only at the location and the 20 time the boring was drilled. 4. For an explanation of terms used see the Soils Classification Chart and Key to Test Data, Plate A-10. 25 30 35

17693-003-043

PLATE A-6

Dames & Moore

LOG OF BORING

LOG OF BORING

Dames & Moore

SAMPLING TYPE OF SAMPLER DEPTH IN FEET SAMPLING RESISTANCE U 31 U 30 41 5 U 99 10

15

20

25

30

35

BORING SC-2

DATE DRILLED: 8/25/89

SYMBOLS DESCRIPTION

OL

MOTTLED BROWN & DARK GRAY SILTY CLAY (wet) (stiff)

Grades with gravel, gray and black mottling

Grades black (very stiff) [BAY MUD]

Grades gray to brown with subangular gravel up to 5cm in diameter (hard)

NOTES:

- 1. Boring completed at a depth of 7.0 feet on 8/25/89.
- 2. Sampling resistance is measured in blows per foot required to drive the sampler 12 inches with a 140 lb. hammer falling 30 inches after sampler has been seated
- 3. Boring log indicates interpreted subsurface conditions only at the location and the
- 4. For an explanation of terms used see the Soils Classification Chart and Key to Test

LOG OF BORING

Dames & Moore

UNIFIED SOIL CLASSIFICATION CHART

	7				ŀ	
SYMBOL	LETTER	DESCRIPTION		MAJOR DIVIS	SIONS -	
0.0	GW	WELL-GRADED GRAVELS OR GRAVEL-SAND MIXTURES,	CLEAN		,	
	GP	POORLY-GRADED GRAVELS OR GRAVEL-SAND MIXTURES, LITTLE OR NO FINES	GRAVELS (LITTLE OR	GRAVELS MORE THAN HALF OF COARSE FRACTION IS LARGER THAN NO.4 SIEVE SIZE	USED AS EQUIVALENT TO THE 14" SIZE MAY BE USED AS EQUIVALENT TO THE NO.4 SIEVE SIZE COARSE-GRAINED SOILS MORE THAN HALF OF MATERIAL IS LARGER THAN NO.200 SIEVE SIZE D SIEVE IS ABOUT THE	
	GM	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES	NO FINES) GRAVELS	GRAVELS GRAVELS TE THAN HALI RSE FRACTIC GGEN THAN N SIEVE SIZE	SOILS SOILS FERIAL IS	
	GC	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES	(APPRECIABLE	MORE SOARSI	COARSE GRAINED SOILS COARSE GRAINED SOILS MORE THAN HALF OF MATERIAL IS LARGER THAN NO.200 SIEVE SIZE S ABOUT THE	
	sw	WELL-GRADED SAND OR GRAVELLY SANDS, LITTLE OR NO FINES	CLEAN	μ.σ	REAIN SRAIN ALF OF 1 NO.20	
	SP	POORLY-GRADED SANDS OR GRAVELLY SANDS. LITTLE OR NO FINES	SANDS (LITTLE OR NO FINES)	SANDS MORE THAN HALF OF COARSE FRACTION IS SMALLER THAN NO.4 SIEVE SIZE	S EQUIVALENT TO THE NEOLOGY THE NATIONAL THE NATIONAL THE NATIONAL AND SHOULD SHOULD SHOULD THE	O EYE
	SM	SILTY SANDS, SAND-SILT MIXTURES	SANDS	SANDS THAN HA SE FRACT ER THAN IEVE SIZE	COAI	E NAKE
	sc	CLAYEY SANDS, SAND-CLAY MIXTURES	(APPRECIABLE	MORE COARS SWALL SI	USED /	TOT
	ML	INORGANIC SILTS, VERY FINE SANDS, ROCK FLOUR. SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY	AMOUNT OF FINES)		BAB	/ISIBLE
	CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	SILTS &	CLAYS	LS RIAL IS FE SIZE S. STAN	THE NO.200 SIEVE SIZE THE NO.200 U.S. STANDARD SIEVE IS ABOUT SMALLEST PARTICLE VISIBLE TO THE NAKED
	OL	ORGANIC SILTS AND ORGANIC SILT-CLAYS OF LOW PLASTICITY	LIGOID LIMIL LE	SILTS & CLAYS LIQUID LIMIT LESS THAN 50		ST PAR
	МН	ORGANIC SILTS AND ORGANIC SILT-CLAYS OF LOW PLASTICITY			AINE!	MALLE
	СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS	SILTS &	CLAYS	FINE-GRAINED RE THAN HALF OF I	S
	ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS	LIQUID LIMIT GRI	EATER THAN 50	FINE-GRAINED SOILS MORE THAN HALF OF MATERIAL IS SMALLER THAN NO.200 SIEVE SIZE THE NO.200 U.S. STAN	
	PT	PEAT AND OTHER HIGHLY ORGANIC SOILS	HIGHL	Y ORGANIC S		-

TYPES OF SOIL SAMPLERS

U - DAMES & MOORE TYPE "U" SAMPLER

KEY TO SAMPLES

INDICATES UNDISTURBED SAMPLES
INDICATES DISTURBED SAMPLE
INDICATES NO RECOVERY IN SAMPLE

KEY TO TEST DATA

- LV LABORATORY VANE SHEAR TEST
- TV TORVANE (PERFORMED IN FIELD)
- PP POCKET PENETROMETER
- TXUU TRIAXIAL COMPRESSION-UNCONSOLIDATED UNDRAINED
- DSCU DIRECT SHEAR-CONSOLIDATED UNDRAINED
 - AL ATTERBERG LIMITS
- GSA GRAIN SIZE ANALYSES
 - C CONSOLIDATION TEST

SOIL CLASSIFICATION CHART AND KEY TO TEST DATA

Dames & Moore

Dames & Moore FIELD RECORD OF WATER SAMPLING

WELL NO. <u>FW-1</u>					JOB NI	UMBER 17	697.003 43				
DEPTH	OF WELL	24.	5		CLIEN	CLIENT American Can Co.					
CASING	TYPE/DI/	AMETER_	и" р	V C	LOCAT	ION Oak	lloud				
BOREHOLE DIAMETER 12" SAMPLED BY: DEO											
SCREEN	IED INTEI	RVAL_2				•	L 24.←TO 13				
REF. POINT ELEVATION DATUM											
PURGII	NG PRIC	R TO SA			-						
		D_ <i>Ra</i>									
	OW RATI			``		<u> </u>					
			, 3c	·			OLUME (Gallons)				
INITIAL V	YA164 LE	VEL	7.05		ONE CASING	VBOREHOLE V	OLUME (Gallons)				
DATE	TIME	TEMP	SPEC. COND.	рН	GALLONS REMOVED	EQUIVALENT CASING VOL.	COMMENTS (appearance of water, odor, etc.)				
8/29	800	-		_	15		Strong HC afor - wall de later	ed			
	120		200	1 00	,		Strong HC ador - walderater	(
	1300	18	305	6.89 7.07	(-		Strong HC odor				
		20.0	340	7.10	চ						
-		19.5	345	7.22	<u>S</u>						
		20. C	3~2	7 23	11		1. 101 1 D - 10-1				
<u> </u>	<u> </u>	<u></u>		<u> </u>			Well Dewatered ocain				
RECOR	D OF SA	MPLING	ì								
SAMPLIN	G METHO	Do die	koda	llo d	bailer		•				
DATE OF			_		1430	DEPTH OF SA	AMPLE				
SAMPLE I	NO.	CONTAI	NER TYP	ES	ANALYSIS						
					624 801		ТЕМР				
		1 x /g	+ MAR	Tic	meta	(5!)	SPEC.				
	·	1.24	lan	her	625 8	11 decell	COND				
·		· · · · · · · · · · · · · · · · · · ·		· · · · ·		-					
COMMEN	TS:	· ;									
	<u> </u>										

Dames & Moore FIELD RECORD OF WATER SAMPLING

WELL N	ю	-W-)		JOB N	NUMBER 17	493.07.3.043			
DEPTH	OF WELL	27				1 Americ				
CASING	TYPE/DI	AMETER	4"P	VC_		TION				
BOREH	OLE DIAM	ETER	12,	•	SAMP	SAMPLED BY: Dire Proude				
SCREEN	VED INTE	RVAL	1 _{2.5}	то_ <i>1</i> 6	.T SAND	PACK INTERVA	11 27 TO 147			
REF. PO						DA				
PURGII	NG PRIC	OR TO S	AMPLIN		•					
PURGIN	G METHO	D_ 72	ivila-	Durch	/)	;				
PUMP FL	OW RAT	E _~3	/ 1	1						
	VATER LE		1.46		ONE CASING	3/BOREHOLE V	OLUME (Gallons) $\mathcal G$			
							O LOWE (Galons)			
DATE	TIME	(*)	SPEC. COND.	рH	GALLONS REMOVED	EQUIVALENT CASING VOL.	COMMENTS (appearance of water, odor, etc.)			
8129	1110	20.0	225-	7.07	1		Strong Hr odor			
		18	270	6.93	9		slight all sheen			
		20.7	250	693	14		arey/cloar			
500	u ble	20.5	255	693	18		J			
	7									
	*									
			<u></u>							
RECORE	OF SA	MPLING	i							
AMPLING	3 METHO	D	skara	Ilo di	In Tan					
		81:	1_	TIME _ /		DEPTH OF SA	MPLE			
AMPLE N	10.	CONTAI	NER TYP	ES	ANALYSIS					
Gw-	$\widehat{\mathcal{L}}$	3×V/	4	"	624 SMT.		TEMP			
				j)	625 801	Sdecid !	SPEC.			
· • · · · · · · · · · · · · · · · · · ·		1 li	en Kla	the	metal	,	OND.			
	 _						Н			
DMMENT		i, I				*				
		10	No 2010	50 W	ion of Gi	1- ~ /	: 1/ /			

Dames & Moore FIELD RECORD OF WATER SAMPLING

	WELL NO. 6W-3					JOB NUMBER 17693.003 47			
DEPTH OF WEL	.L_ 19 ' '			CLIE	_ CLIENT Amorica in Con Co				
CASING TYPE/)IAMETER	4"5) <u>/C</u>	LOCA	LOCATION Dakland				
BOREHOLE DIA			•	CALL	CAMPIED THE TOTAL				
SCREENED INTE	ERVAL	19.5	TO 9	5 SAND	PACY INTERNA	AL 195 TO 7!			
REF. POINT	······································			ELEVATION	- YOU INTERN	TO 7:			
PURGING PRI	OR TO S	AMPLIN	IG	ELEVATION	DA	ATUM			
PURGING METHO		,		•					
PUMP FLOW RAT	_		Jung.	}					
INITIAL WATER LI		901		-					
		.10		_ ONE CASINO	B/BOREHOLE V	OLUME (Gallons) 6.5			
DATE TIME	TEMP	SPEC.	рH	GALLONS	EQUIVALENT	COMMENTS			
8124 1022		COND.		REMOVED	CASING VOL	(appearance of water, odor, etc.)			
010-11022	19.5	150	7.13			Brown no odor			
	21.0	168	7.05	13		Clearing			
Somple	21.0	160	7.03	19		V Clearing			
					· ·				
RECORD OF SA	MDI WO			<u></u>					
	$\overline{}$, (1)	,					
SAMPLING METHO	-	005ah	le Ra	lor		•			
DATE OF SAMPLE_	8/29	т	IME 10	40	DEPTH OF SAI	MPLE			
SAMPLE NO.	CONTAIN	ER TYPE	S	ANALYSIS					
GW-3	MA.		1.24 801		EMP				
	- Italia Linettia				// s	PEC.			
2.5 Lamber 62					Solvesof Charles	OND			
COMMENTS:					•				

В

Dames & Moore FIELD RECORD OF WATER SAMPLING

WELL NO.	W-4			JOB 1		'LING '69
DEPTH OF WEL	.L	22'		CLIEN	or Amore	0
CASING TYPE/	IAMETER	LI "	PVC	LOCA	TION	VI an Can Co.
BOREHOLE DIA	METER	/) "		CAMP	I SD DV	Clase
SCREENED INT	ERVAL Q	1. =	TO !/	SAMP	TED BA:	12 TO 9.5
REF. POINT						
	OD TO 6			ELEVATION	DA	TUM
PURGING PRI						
PURGING METH		(DEL)	PVC	Balen	· · · · · · · · · · · · · · · · · · ·	
PUMP FLOW RAT	·			_		
INITIAL WATER L	EVEL	10.20) (ONE CASING	BOREHOLE VI	OLUME (Gallons)
DATE TIME	TEMP	SPEC.	На	GALLONS	EQUIVALENT	COMMENTS
	(*)	COND.	p	REMOVED	CASING VOL	(appearance of water, odor, etc.)
2/39 1303	20.0	140	8.20	/		
 	19.8	130	8.39	4		
	20.7	120	7.84	10		
	20	130	8.19	14		
	201	128	4.20	17		
461/	dewa		@ 123			
RECORD OF SA	00 <u>d.s</u>	Scaro		laula.		
DATE OF SAMPLE	< , 4	189	ΓΙΜΈ <u>/</u>	340	DEPTH OF SAI	MPLE
SAMPLE NO.	CONTAI	NER TYPI	ES	ANALYSIS		
GW-L					<u></u>	EMP
					s	PEC.
					C	OND.
					pl	
COMMENTS:					•	

Dames & Moore FIELD RECORD OF WATER SAMPLING

N E

WELL N	WELL NO. GW-S					UMBER 176	93.002.42			
DEPTH (OF WELL_	17.5	' (from	to of			an Can.Co			
CASING	TYPE/DIA	METER_	4. D	VC.	LOCAT	LOCATION Oakland				
BOREHO	DLE DIAME	ETER/	2"		SAMPL	ED BY:	ave ORouck			
SCREEN	ED INTER	RVAL	7'	ro <u>17'</u>	SAND I	PACK INTERVA	<u>. 17.7</u> то 5			
REF. PO	INT			E	LEVATION	DA	тим			
PURGIN	NG PRIO	R TO SA			·					
PURGING	3 METHO	o Ra	nio F	umn		i.				
PUMP FL	OW RATE	0 <u>Ra</u> : 4-	5-90	sm 1						
		vel <u>9.</u>	\ '		ONE CASING	BOREHOLE VO	DLUME (Gallons) 5.3			
				I						
DATE	TIME	TEMP (*)	SPEC. COND.	рH	GALLONS REMOVED	EQUIVALENT CASING VOL	COMMENTS (appearance of water; oddr, etc.)			
8/29	905	·7.<	40	6.45	1					
		19.3	90	6.93	4		light brown nonda			
		4.0 20.0	110	6.90	1.2. 1.2.		- Clearing up			
		20.5	125	7.03	17					
Ş	enble	20.5	130	17.04	18					
	/									
			<u> </u>	<u> </u>						
RECORI	D OF SA	MPLING								
SAMPLING	G METHO	D 10	10000	lole be	ailer					
DATE OF	SAMPLE	8/29	189	TIME 9	145	DEPTH OF SA	AMPLE			
SAMPLE I	VO.	CONTAI	NER TYF	PES	ANALYSIS	•	ТЕМР			
Gwig 1x2.5 liter number					SPEC.					
3 × VOA							COND.			
			013510		motal		Н			
COMMENT	rs:					*				

APPENDIX B
LABORATORY DATA REPORTS

Dames & Moore
CHAIN OF CUSTODY RECORD

S.F. CA PROJECT NAME: American Can Co JOB NO. 17693. 503.043 LOCKTION: Oak bird Phone Contact B. Scarbnorth SAMPLERS: (Signature) NUMBER OF CONTAINERS Dames & Moore : (415)-896-5858 Lou R SINGLE SOIL SAMPLES SOIL OR REMARKS SAMPLE DATE WATER DEPTH BORING NO. (feet) NO. 1500 GW-3 1500 20 GW-4 8/23 1400 GW-2 1400 10:3 GW-2 8124 1200 191 8/24 1207) 19 4 8/24 (ZOD) 19" 8/23 200 1C 8123 1200 5 2132 /C 8/23 1207 8/24 1500 8/24 1100 23" SP-1 8/24 1100 IC SP-2 8/24 1100 5 1100 Relinquished by: (Signature) Date / Time Received by: (Signature) Relinquished by: (Signature) Date / Time Received by: (Signature) 8/24 18:25 Relinquished by: (Signature) Date / Time Received by: (Signature) Relinquished by: (Signature) Date / Time Received by: (Signature) Relinquished by: (Signature) Date / Tame Received by: (Signature) Date / Time Remarks

To

Dames & Moore
CHAIN OF CUSTODY RECORD

JOB NO. PROJECT NAME: American Can Co 17693.003 Of LOCATION ANALYSES)akland Phone Contact Bruce Scalar SAMPLERS: (Signature) NUMBER OF CONTAINERS Dames & Moore : (415) 896-5858 SINGLE SOIL SAMPLES SOIL OR WATER REMARKS SAMPLE DATE TIME DEPTH BORING NO. (feet) NO. 8/24 1100 10 SAC Relinquished by (Signature) Date/Time Received by: (Signature) Relinquished by: (Signature) Date / Time Received by: (Signature) 8/24 18:25 Helinquished by: (Signature) Date / Time Received by: (Signature) Relinquished by: (Signature) Date / Time Received by: (Signature) Relinquished by: (Signature) Date / Time Received by: (Signature) Date / Time Remarks

Dames & Moore
CHAIN OF CUSTODY RECORD

SAMPLERS: (Signature) DATE TIME SOIL CR WATER SOIL CR SOIL SAMPLES DEPTH BORING ([eet]) NO. 1/07) S X 2C S'3" GW-1 1500 S X 4C 15'3" GW-1 1500 S X 4C 15'3" GW-1 15'3" FW-1 15'3" SW-1 Date / Time Received by: (Signature) Nave Value Signature) Date / Time Received by: (Signature)	NUMBER OF CONTAINERS			ES /		MILE OF			Phone Contact Bruce Scart Dames & Moore: (415) 896-5858 REMARKS
DATE TIME SCIL CA WATER 8 SAMPLE SOIL SAMPLES DEPTH BORING (Teet) NO. 8/21/89 //CD S X 2C 5'3" GW-5 1/07) 5 X 2C 5'3" GW-1 1/500 5 X 3C 10'3" GW-1 1/500 5 X 4C 15'3" GW-1	NUMBER OF CONTAINERS								раптев в мооге : (415) 896 -5858
DATE TIME SCILCR WATER & SAMPLE DEPTH BORING (Teet) NO. 8/21/8/1/00 S X X C 2'3" GW-5 1/107) 5 X 2C 5'3" GW-1 1/500 S X 3C 10'3" GW-1 1/500 S X 4C 15'3" GW-1	NUMBER OF CONTAINERS							//	раптев в мооге : (415) 896 -5858
DATE TIME SOIL OR WATER \$\frac{1}{8} \frac{1}{8} \frac{1}{1} \frac{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}	NUMBER								BEMARKS
8/2V89 1/60 S X = -1C 2'3" GW-5 1/07) S X 2C 5'3" GW-5 4/21/89 1/500 S X 2C 5'3" GW-1 1/500 S X 4C 10'3" GW-1 1/500 S X 4C 15'3" GW-1 1/500 S	BWDW I				7/		///		BEULBYS
8/21/89 //60 S X = -1C 2'3" GW-5 1/07) S X 2C 5'3" GW-5 4/21/89 /500 S X 2C 5'3" GW-1 1500 S X 4C 10'3" GW-1 1500 S X 4C 15'3" GW-1 1500 S X 2C 5'3" GW-1 1500 S X 2C 5	20			} /					UEWALIA?
8/2/89 1/00 S X ===1C 2'3" GW-5 4/21/89 1500 S X 2C 5'3" GW-1 1500 S X 3C 10'3" GW-1 1500 S X 4C 15'3" GW-1 1500 S X 4C 15	1		T	4/			//		
		- 			<u>/_</u> ,	<u>/</u> /			,
	1	IX	-	<u> </u>			(#6)LD)	
1500 S X 3C 10'3" GW-1 1500 S X 4C 15'3"	1	\bot	区						
1500 S X 4C 15'3" GW-1 Inquished by: (Signature) Vave South, 8/22 450 PM	1 1	一区	X						•
Inquished by: (Signature) Vave County, 8/22 450 PM		IX	X						
Inquished by: (Signature) Vave Sourk, 8/22 450 PM	1	X	X		\neg	-		···	<u> </u>
Vave South, 8/22 450PM		1	/-						
Vave Stourk, 8/22 450PM		1			-				
Vave Stourk, 8/22 450PM		╂╾┤				-			
Vave Stourk, 8/22 450PM		-			_	_			'.
Vave Stourk, 8/22 450PM		<u> </u>							
Vave Stourk, 8/22 450PM					- 1	ł			
Vave Sounk, 8/22 450PM			\neg						
Vave Stourk, 8/22 450PM					7		 		
Vave Stourk, 8/22 450PM			\neg		_				
Vave Stourk, 8/22 450PM			-1	 -			-	**·	
Vave Stourk, 8/22 450PM					- -	- -			
Vare Kourk, 8/22 450PM		Relinq				_ <u> </u> _			
invisional has a control of the cont		Lenind	NISTREC	py: (2	gran	re)	Dat	Time	Received by: (Signature)
Date / Time Received by: (Signature)		Relinqu	uished	by: (5	ignatu	re)	Dan	/Time	Received by: (Signature)
	ł					-	1		i i i i i i i i i i i i i i i i i i i
inquished by: (Signature) Date / Time Received by: (Signature)		n	*	7-					
		Dam/	isne I	Her	narks				
	- 1	ŀ							

OB NO PROJECT NAME: American Can Co. 7693.003.43 LOCATION: Oakland Phone Contact Bruce Scarbrown SAMPLERS: (Signature) Dames & Moore : (415) 896-5858 have seus COMP. REMARKS SOIL OR SAMPLE DATE TIME WATER NO. 1/25 1100 X 5 10'3" GT-1 15'0" GT-1 8/25 HOLD 1000 20 7'9" SC-1 10 5'3" SC-1 6125 (TOLD) HOW 5 ac 39" SC-2 5 513" SC-2 HOLD linguished by: (Signature) Date / Time Received by: (Signature) Relinquished by: (Signature) Date / Time Received by: (Signature) 5/25/8 450 linquished by: (Signature) Date / Time Received by: (Signature) Relinquished by: (Signature) Date / Time Received by: (Signature) linquished by: (Signature) Date / Time Received by: (Signature) Date / Time Remarks

CHAIN OF CUSTODY RECORD

NO. PROJECT NAME: American Con Co. 93.003.43 LOGATION: Call land ANALYSES Phone Contact Bruce Scarbous Dames Moore : (415) 896-5858 NUMBER OF CONTAINERS PLERS: (Signatura) SOIL OR WATER OF WATER REMARKS SOIL SAMPLES SAMPLE ATE TIME DEPTH BORING NO. (feet) NO. 900 1C 50-1 10001 50-2 quished by (Signature) Date / Time Received by: (Signature) Relinquished by: (Signature) Received by: (Signature) Date / Time 8/28/8 1000 puished by: (Signature) Date / Time Received by: (Signature) Relinquished by: (Signature) Date / Time Received by: (Signature) quished by: (Signature) Date / Time Received by: (Signature) Date / Time Remarks

3700 Lakeville Highway, Petaluma, CA 94954 P.O. Box 808024, Petalume, CA 94975-8024 Telephone: (707) 763-8245 FAX: (707) 763-4065

Bruce Scarborough Dames & Moore 221 Main Street, Ste. 600 San Francisco, CA 94105

Client Code: DAME28 Survey # AM.CAN CO. Project/Release # 17693-003-043

LABORATORY RESULTS

Page 1

Date Collected: 08/22/89

Date Analyzed: 09/06/89

Laboratory Job No.: 893962 Date Received: 08/25/89

Date Reported: 09/13/89

TOTAL PETROLEUM HYDROCARBONS (EPA 418.1)

MATRIX: SOIL

7

LABNO	SMPLNO	COMPOUND	FOUND mg/kg	DET.LIM. mg/kg
			•	
49445	GW3-1C	TPH	ND	6
49446	GW4-2C	ТРН	ND .	6
49447	GW2-2C	ТРН	289	6
49448	GW2-3C	трн	1,560	30

ANALYST: JAN TOISTER

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEAS

3700 Lakeville Highway, Petaluma, CA 94954 P.O. Box 608024, Petaluma, CA 94975-8024 Telephone: (707) 763-8245 FAX: (707) 763-4065

LABORATORY RESULTS

Laboratory Job No.: 893962

Page 2

Date Collected: 08/22/89 Date Received: 08/25/89
Date Analyzed: 09/05/89 Date Reported: 09/13/89

ARSENIC IN WASTE BY AA-GF 7060) SELENIUM IN WASTE BY AA-G 7740) MERCURY (AA FLAMELESS EPA 7470)

MATRIX: SOIL , ACID DIGEST

LABNO SMPLNO	COMPOUND	FOUND mg/kg	CA TTLC	DET.LIM. mg/kg
49449 RD-1-1C	AS	10.0	500	0.60
	SE	ND	100	0.60
	HG	0.076	20	0.040
49450 RD-2-1C	AS	7.82	500	0.60
	SE	ND	100	0.60
	HG	0.10	20	0.040
49451 RD-3-1C	AS	9.12	500	0.60
	SE	ND	100	0.60
	HG	0.34	20	0.040
49452 DS-1-1C	AS	10.0	500	0.60
	SE	ND	100	0.60
	HG	0.14	20	0.040
49453 DS-2-1C	AS	10.0	500	0.60
	SE	ND	100	0.60
	HG	0.20	20	0.040

3700 Lakeville Highwey, Petakuma, CA 94954 P.O. Box 808024, Petakuma, CA 94975-8024 Telephone: (707) 763-8245 FAX: (707) 763-4065

LABORATORY RESULTS

Page 3

Laboratory Job No.: 893962

LABNO SMPLNO	COMPOUND	FOUND mg/kg	CA TTLC	DET.LIM. mg/kg
49454 DS-3-1C	AS	9.68	500	0.60
	SE	ND	100	0.60
	HG	0.25	20	0.040

ANALYST: PRECY ROBINSON

3700 Lakeville Highway, Petaluma, CA 94954 P.O. Box 808024, Petaluma, CA 94975-8024 Telephone: (707) 763-8245 FAX: (707) 763-4065

LABORATORY RESULTS

Page 4

Date Collected: 08/22/89

Date Analyzed: 08/29/89

Laboratory Job No.: 893962 Date Received: 08/25/89

Date Received: 08/25/89
Date Reported: 09/13/89

ASSAY: METAL SCAN BY ICP(EPA 6010)

ų,

u

IJ

u

LABNO SMPLNO-ID 	RESULTS		DET. LIM.
AG BA BE CD CO CR CU MO NI PB SB TL V ZN	ND 176 mg/kg 0.24 mg/kg 2.34 mg/kg 11.8 mg/kg 58.9 mg/kg 17.9 mg/kg ND 80.6 mg/kg 7.5 mg/kg ND ND ND 42.3 mg/kg 34.7 mg/kg	CA TTLC 500 10,000 75 100 8,000 2,500 2,500 3,500 2,000 1,000 500 700 2,400 5,000	0.20 mg/kg 0.20 mg/kg 0.20 mg/kg 0.098 mg/kg 0.39 mg/kg 0.39 mg/kg 0.39 mg/kg 0.98 mg/kg

3700 Lakeville Highwey, Petaluma, CA 94954 P.O. Box 808024, Petaluma, CA 94975-8024 Telephone: (707) 763-8245 FAX: (707) 763-4065

LABORATORY RESULTS

Page 5

LABNO SMPLNO-ID	RESULTS	:	DET. LIM.
49450 RD-2-1C SOIL		01 mm. c	
AG	ND	CA TTLC	_
BA	121 mg/kg	500	0.20 mg/kg
BE	0.25 mg/kg	10,000	0.20 mg/kg
CD	3, 3	75	0.20 mg/kg
co	J, J	100	0.099 mg/kg
CR		8,000	0.40 mg/kg
CÜ	3, 3	2,500	0.40 mg/kg
MO	428 mg/kg ND	2,500	0.20 mg/kg
NI		3,500	0.40 mg/kg
PB	142 mg/kg ND	2,000	0.99 mg/kg
SB	מא	1,000	0.99 mg/kg
TL	ND	500	9.9 mg/kg
v		700	4.0 mg/kg
ŽN		2,400	0.40 mg/kg
	212 mg/kg	5,000	0.20 mg/kg
49451 RD-3-1C SOIL		Ch mmt c	
AG	ND	CA TTLC	
BA	111 mg/kg	500	0.20 mg/kg
BE	ND Mg/kg	10,000	0.20 mg/kg
CD	2.18 mg/kg	75	0.20 mg/kg
co	10.8 mg/kg	100	0.099 mg/kg
CR	85.2 mg/kg	8,000	0.40 mg/kg
CÜ	21.8 mg/kg	2,500	0.40 mg/kg
MO	ND mg/kg	2,500	0.20 mg/kg
NI		3,500	0.40 mg/kg
PB	163 mg/kg ND	2,000	0.99 mg/kg
SB	ND	1,000	0.99 mg/kg
TL	ND	500	9.9 mg/kg
v		700	4.0 mg/kg
ZN		2,400	0.40 mg/kg
	37.7 mg/kg	5,000	0.20 mg/kg

3700 Lakaville Highway, Petatuma, CA 94954 P.O. Box 808024, Petatuma, CA 94975-8024 Telephone: (707) 763-8245 FAX: (707) 763-4065

LABORATORY RESULTS

Page 6

LABNO SMPLNO-ID	RESULTS	,	DET. LIM.
49452 DS-1-1C SOIL		CA TTLC	******
AG	ND	500	0.20 == //-
BA	813 mg/kg	10,000	0.20 mg/kg 0.20 mg/kg
BE	0.31 mg/kg	75	
CD	3.29 mg/kg	100	3, 3
CO	10.1 mg/kg	8,000	
CR	68.8 mg/kg	2,500	J, J
CU	31.5 mg/kg	2,500	
MO	ND	3,500	37 *** 3
NI	108 mg/kg	2,000	
PB	142 mg/kg	1,000	
SB	ND	500	J
TL	ND	700	9.8 mg/kg 3.9 mg/kg
V	39.3 mg/kg	2,400	0.39 mg/kg
ZN	136 mg/kg	5,000	0.20 mg/kg
49453 DS-2-1C SOIL		CA TTLC	
AG	ND	500	0 20 4
BA	412 mg/kg	10,000	0.20 mg/kg
BE	0.35 mg/kg	75	0.20 mg/kg
CD	3.29 mg/kg	100	0.20 mg/kg
co	13.2 mg/kg	8,000	0.099 mg/kg 0.40 mg/kg
CR	71.1 mg/kg	2,500	
CU	126 mg/kg	2,500	J
MO	ND	3,500	J. J
NI	110 mg/kg	2,000	37 - 3
_⊸ PB	950 mg/kg	1,000	
SB	ND	500	37 3
TL	ND	700	2. 3
Δ	40.1 mg/kg	2,400	
ZN	484 mg/kg	5,000	0.40 mg/kg 0.20 mg/kg

3700 Lakeville Highway, Petaluma, CA 94954 P.O. Box 808024, Petaluma, CA 94975-8024 Telephone: (707) 763-8245 FAX: (707) 783-4065

LABORATORY RESULTS

Page 7

Laboratory Job No.: 893962

LABNO	SMPLNO-ID	NO-ID RESULTS			DET. LIM.		
49454	DS-3-1C SOIL			CA TTLC			
	AG	ND		500	0.20	mg/kg	
	BA	394	mg/kg	10,000	0.20	mg/kg	
	BE	0.34	mg/kg	75	0.20	mg/kg	
	CD	2.81	mg/kg	100	0.100	mg/kg	
	CO	15.1	mg/kg	8,000	0.40	mg/kg	
	CR	78.0	mg/kg	2,500	0.40	mg/kg	
	CU	36.7	mg/kg	2,500	0.20	mg/kg	
	MO	ND		3,500	0.40	mg/kg	
	NI	143	mg/kg	2,000	1.00	mg/kg	
	PB	109	mg/kg	1,000	1.00	mg/kg	
	SB	ND		500	10.0	mg/kg	
	TL	ND		, 700	4.0	mg/kg	
	V	41.2	mg/kg	2,400	0.40	mg/kg	
	ZN	1,130	mg/kg	5,000	0.20	mg/kg	

ND=Not Detected

ANALYST: NANCY S.TESCHE

3700 Lakeville Highway, Petaluma, CA 94954 P.O. Box 808024, Petaluma, CA 94975-8024 Telephone: (707) 763-8245 FAX: (707) 763-4065

Page 8

LABORATORY RESULTS

Date Collected: 08/22/89 Date Extracted: 09/08/89 Date Analyzed: 09/08/89

Laboratory Job No.: 893962

Date Received: 08/25/89
Date Reported: 09/13/89

PURGEABLES BY GC/MS(EPA8240)

COMPOUNDS: LAI SMI di: PURGEABLES	?# GW-3-		GW-4-	DET. 2C LIM. 1 g/kg	•	DET. C LIM. l /kg
BENZENE BROMODICHLOROMETHANE	NI NI			2.5 2.5	9.0 ND	2.5
BROMOFORM	NI	250.0		2.5	ND	2.5
BROMOMETHANE	NI	250.0) ND	2.5	ND	2.5
CARBON TETRACHLORIDE	NI			2.5	ND	2.5
CHLOROBENZENE	, i NI			2.5	ND	2.5
CHLOROETHANE	NI			2.5	ND	2.5
2-CHLOROETHYLVINYL ETHER	NI			5.0	ND	5.0
CHLOROFORM	NI			2.5	ND	2.5
CHLOROMETHANE	NE			2.5	ND	2.5
DIBROMOCHLOROMETHANE 1,2-DICHLOROBENZENE	NI		- · ·	2.5	ND	2.5
1,3-DICHLOROBENZENE	NE			2.5	ND	2.5
1,4-DICHLOROBENZENE	NE			2.5	ND	2.5
1,1-DICHLOROBENZENE	NE			2.5	ND	2.5
1,1-DICHLOROETHANE 1,2-DICHLOROETHANE	NE			2.5	ND	2.5
1,1-DICHLOROETHENE	NE NE			2.5	ND	2.5
TRANS-1,2-DICHLOROETHENE	NE			2.5	ND	2.5
1,2-DICHLOROPROPANE	ND			2.5	ND	2.5
CIS-1,3-DICHLOROPROPENE	ND ND			2.5	ND	2.5
TRANS-1,3-DICHLOROPROPENE				2.5	ND	2.5
ETHYL BENZENE	370			2.5	ND	2.5
METHYLENE CHLORIDE	ND			2.5	ND	2.5
1,1,2,2-TETRACHLOROETHANE				2.5 2.5	ND	2.5
TETRACHLOROETHENE	ND			2.5	ND	2.5
TOLUENE	ND			2.5	ND	2.5
1,1,1-TRICHLOROETHANE	ND		ND	2.5	ND ND	2.5 2.5
1,1,2-TRICHLOROETHANE	ND			2.5	ND ND	2.5

3700 Lakeville Highwey, Petakuma, CA 94954 P.O. Box 808024, Petakuma, CA 94975-8024 Telephone: (707) 783-8245 FAX: (707) 783-4065

Page 9

LABORATORY RESULTS

COMPOUNDS:	LAB# SMP# dil.	49445 GW-3-1C 100		49446 GW-4-20	DET.	49447 GW-2-20	
PURGEABLES		ug/1	kg 	ug/	'kg	ug/	-
TRICHLOROETHENE TRICHLOROFLUOROMETHA VINYL CHLORIDE XYLENES ACETONE 2-BUTANONE CARBON DISULFIDE 2-HEXANONE 4-METHYL-2-PENTANONE STYRENE VINYL ACETATE		ND ND 390 ND ND ND ND ND ND ND ND ND	250.0 250.0 500.0 250.0 500.0 500.0 500.0 500.0 500.0	ND	2.5 2.5 5.0 2.5 50.0 5.0 5.0 5.0	ND ND ND A.7 ND	2.5 2.5 5.0 2.5 50.0 5.0 5.0 5.0
SURROGATE RECOVERIES	-QC						
1,2-DICHLOROETHANE-D TOLUENE-D8 4-BROMOFLUOROBENZENE		115% 109% 93%		109% 110% 101%		84% 107% 48%	

3700 Lakaville Highway, Petaluma, CA 94954 P.O. Box 808024, Petaluma, CA 94975-8024 Telephone: (707) 763-8245 FAX: (707) 763-4065

LABORATORY RESULTS

Page 10

COMPOUNDS: PURGEABLES	LAB# SMP# dil.	49448 GW-2-30 100 ug/	1		DET. C LIM. 1 /kg	RD-2-1	DET. C LIM. l /kg
BENZENE BROMODICHLOROMETHANE		ND ND	250.0 250.0	ND ND	2.5	ND	2.5
BROMOFORM		ND	250.0	ND	2.5	ND ND	2.5
BROMOMETHANE		ND	250.0	ND	2.5	ND	2.5 2.5
CARBON TETRACHLORIDE CHLOROBENZENE		ND	250.0	ND	2.5	ND	2.5
CHLOROSENZENS		ND	250.0	ND	2.5	ND	2.5
2-CHLOROETHYLVINYL ET	tt DD	ND	250.0	מא	2.5	ND	2.5
CHLOROFORM	nek	ND	500.0	ND	5.0	ND	5.0
CHLOROMETHANE		ND	250.0	ND	2.5	ND	2.5
DIBROMOCHLOROMETHANE		ND ND	250.0	ND	2.5	ND	2.5
1,2-DICHLOROBENZENE		ND	250.0 250.0	ND	2.5	ND	2.5
1,3-DICHLOROBENZENE		ND	250.0	ND	2.5	ND	2.5
1,4-DICHLOROBENZENE		ND	250.0	ND ND	2.5	ND	2.5
1,1-DICHLOROETHANE		ND	250.0	ND	2.5	ND	2.5
1,2-DICHLOROETHANE		ND	250.0	ND	2.5 2.5	ND	2.5
1,1-DICHLOROETHENE		ND	250.0	ND	2.5	ND	2.5
TRANS-1, 2-DICHLOROETHE	ENE	ND	250.0	ND	2.5	ND ND	2.5
1,2-DICHLOROPROPANE		ND	250.0	ND	2.5	ND	2.5
CIS-1,3-DICHLOROPROPEN	IE	ND	250.0	ND	2.5	ND	2.5
TRANS-1,3-DICHLOROPROF	PENE	ND	250.0	ND	2.5	ND	2.5 2.5
ETHYL BENZENE		ND	250.0	ND	2.5	ND	2.5
METHYLENE CHLORIDE		ND	250.0	ND	2.5	ND	2.5
1,1,2,2-TETRACHLOROETH TETRACHLOROETHENE	ANE	ND	250.0	ND	2.5	ND	2.5
TOLUENE		ND	250.0	ND	2.5	ND	2.5
1,1,1-TRICHLOROETHANE		ND	250.0	ND	2.5	ND	2.5
1,1,2-TRICHLOROETHANE		ND	250.0	ND	2.5	ND	2.5
TRICHLOROETHENE		ND	250.0	ND	2.5	ND	2.5
TRICHLOROFLUOROMETHANE		ND	250.0	ND	2.5	ND	2.5
VINYL CHLORIDE		ND	250.0	ND	2.5	ND	2.5
XYLENES		ND	500.0	ND	5.0	ND	5.0
ACETONE		ND	250.0	ND	2.5	ND	2.5
		ND	5000.0	ND	50.0	ND	50.0

3700 Lakeville Highway, Petalume, CA 94954 P.O. Box 808024, Petalume, CA 94975-8024 Telephone: (707) 783-8245 FAX: (707) 783-4065

LABORATORY RESULTS

Page 11

COMPOUNDS: PURGEABLES	LAB# SMP# dil.	49448 DET. GW-2-3C LIM. 100 ug/kg		49449 DET. RD-1-1C LIM. 1 ug/kg		49450 DET. RD-2-1C LIM. 1 ug/kg	
2-BUTANONE CARBON DISULFIDE 2-HEXANONE 4-METHYL-2-PENTANONE STYRENE VINYL ACETATE		ND ND ND ND ND	500.0 500.0 500.0 500.0 500.0	ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0	ND ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0
SURROGATE RECOVERIES-(OC .						
1,2-DICHLOROETHANE-D4 TOLUENE-D8 4-BROMOFLUOROBENZENE		116% 110% 82%		133% 102% 111%		128% 106% 112%	

3700 Lakeville Highway, Petaluma, CA 94954 P.O. Box 808024, Petaluma, CA 94975-8024 Telephone: (707) 783-8245 FAX: (707) 783-4085

Page 12

LABORATORY RESULTS

Conplyinds:							
- 2403;	LAB#	49451	DET.	49452	DET.	49453	DET.
Dina	SMP#	RD-3-10		DS-1-10		DS-2-10	LIM.
PURCHABLES	dil.		1	נ	L	100	
BEUNKIIK		ug,	/kg	ug/	/kg	ug/	
BROMOUTE		ND	~~~~				
BROMODICHLOROMETHANE BROMOPORM		ND ND	2.5 2.5	ND	2.5	ND	250.0
BRONOMETHANE		ND	2.5	ND	2.5	ND	250.0
		ND	2.5	ND	2.5	ND	250.0
CARBON TETRACHLORIDE CHLOROBENZENE		ND	2.5	ND	2.5	ND	250.0
CHLOROUME		ND	2.5	ND	2.5	ND	250.0
- Willia 107/1200		ND	2.5	ND ND	2.5	ND	250.0
CHLOROPORM ETE	IER	ND	5.0	ND	2.5	ND	250.0
CHLOROMAN		ND	2.5	ND	5.0 2.5	ИĎ	500.0
		ND	2.5	ND	2.5	ND	250.0
DIBROMOCHLOROMETHANE 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE		ND	2.5	ND	2.5	ND	250.0
1,3-DICHAROBENZENE		ND	2.5	ND	2.5	ND ND	250.0
1,4-DICHLOROBENZENE 1,1-DICHLOROBENZENE		ND	2.5	ND	2.5	ND	250.0 250.0
1,1-DICHLOROBENZENE 1,2-DICHLOROETHANE		ND	2.5	ND	2.5	ND	250.0
1,2-DICHLOROETHANE 1,1-DICHLOROETHANE		ND	2.5	ND	2.5	ND	250.0
1,1-DICHLOROETHANE TRANS-1,2-DICHENE		ND	2.5	ND	2.5	ND	250.0
TRANS-1,2-DICHLOROETHE 1,2-DICHLOROETHE		ND	2.5	ND	2.5	ND	250.0
1,2-DICHLOROETHE CIS-1,3-DICHLOROPANE	NE	ND	2.5	ND	2.5	ND	250.0
CIS-1, 3-DICHLOROPROPEN TRANS-1, 3-DICHLOROPROPEN		ND	2.5	ND	2.5	ND	250.0
TRANS-1,3-DICHLOROPROPEN ETHYL UKNZENE	E 	ND	2.5	ND	2.5	ND	250.0
ETHYL DENZENE	ENE	ND	2.5	ND	2.5	ND	250.0
		ND	2.5	ND	2.5	320	250.0
1,1,2,2-TETRACHLOROETH	N N E	ND	2.5	ND	2.5	ND	250.0
TETRACHLOROETH TOLUENE	ME	ND	2.5	ND	2.5	ND	250.0
1.1.1-00		ND ND	2.5	ND	2.5	ND	250.0
1,1,1-TRICHLOROETHANE		ND ND	2.5	ND	2.5	ND	250.0
TRICHTONSTITUTOROUTHANE		ND	2.5 2.5	ND	2.5	ND	250.0
TRICHTODO		ND	2.5	ND	2.5	ND	250.0
VINYL CHLORIDE		ND	2.5	ND	2.5	ND	250.0
AYLENEO		ND	5.0	ND ND	2.5	ND	250.0
ACETONE		ND	2.5	ND ND	5.0	ND	500.0
**14		ND	50.0	ND	2.5	4300	250.0
		-1-5	50.0	NO	50.0	ND	5000.0

3700 Lakaville Highway, Petakuma, CA 94954 P.O. Box 808024, Petakuma, CA 94975-8024 Telephone: (707) 763-8245 FAX: (707) 763-4065

LABORATORY RESULTS

Page 13

COMPOUNDS:	LAB# SMP# dil.	49451 DET. RD-3-1C LIM. 1 ug/kg		49452 DET. DS-1-1C LIM. 1 ug/kg		49453 DET. DS-2-1C LIM. 100 ug/kg	
2-BUTANONE CARBON DISULFIDE 2-HEXANONE 4-METHYL-2-PENTANONE STYRENE VINYL ACETATE		ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0	ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0	ND ND ND ND ND	500.0 500.0 500.0 500.0 500.0
SURROGATE RECOVERIES-Q	 C						
1,2-DICHLOROETHANE-D4 TOLUENE-D8 4-BROMOFLUOROBENZENE		131% 105% 112%		81% 106% 89%		113% 111% 124%	

3700 Lakeville Highwey, Petaluma, CA 94954 P.O. Box 808024, Petaluma, CA 94975-8024 Telephone: (707) 753-8245 FAX: (707) 783-4065

Page 14

LABORATORY RESULTS

Laboratory Job No.: 893962

COMPOUNDS:	LAB# SMP# dil.	49454 DS-3-1C		49455 RT-1-1C 1	LIM.	49456 SP-1-1C 5	
PURGEABLES		ug/!	kg	ug/!	kg	ug/I	kg
BENZENE		ND	2.5	ND	2.5	ND	12.5
BROMODICHLOROMETHANE		ND	2.5	ND	2.5	ND	12.5
BROMOFORM		ND	2.5	ND	2.5	ND	12.5
BROMOMETHANE		ND	2.5	ND	2.5	ND	12.5
CARBON TETRACHLORIDE		ND	2.5	ND	2.5	ND	12.5
CHLOROBENZENE		ND	2.5	ND	2.5	ND	12.5
CHLOROETHANE		ND	2.5	ND	2.5	ND	12.5
2-CHLOROETHYLVINYL ET	HER	ND	5.0	ND	5.0	ND	25.0
CHLOROFORM		ND	2.5	ND	2.5	ND	12.5
CHLOROMETHANE		ND	2.5	ОИ	2.5	ND	12.5
DIBROMOCHLOROMETHANE		ND	2.5	ND	2.5	ND	12.5
1,2-DICHLOROBENZENE		ND	2.5	ND	2.5	ND	12.5
1,3-DICHLOROBENZENE		ND	2.5	ND	2.5	ND	12.5
1,4-DICHLOROBENZENE		ND	2.5	ND	2.5	ND	12.5
1,1-DICHLOROETHANE		ND	2.5	ND	2.5	ND	12.5
1,2-DICHLOROETHANE		ND	2.5	ND	2.5	ND	12.5
1,1-DICHLOROETHENE		ND	2.5	ND	2.5	ND	12.5
TRANS-1,2-DICHLOROETH	ENE	ND	2.5	ND	2.5	ND	12.5
1,2-DICHLOROPROPANE		ND	2.5	ND	2.5	ND	12.5
CIS-1,3-DICHLOROPROPE		ND	2.5	ND	2.5	ND	12.5
TRANS-1,3-DICHLOROPRO	PENE	ND	2.5	ND	2.5	ND	12.5
ETHYL BENZENE		2.8	2.5	מא	2.5	180	12.5
METHYLENE CHLORIDE		ND	2.5	ND	2.5	ND	12.5
1,1,2,2-TETRACHLOROET	HANE	ND	2.5	ND	2.5	ND	12.5
TETRACHLOROETHENE		ND	2.5	ND	2.5	ND	12.5
TOLUENE		ND	2.5	ND	2.5	ND	12.5
1,1,1-TRICHLOROETHANE		ND	2.5	ND	2.5	ND	12.5
1,1,2-TRICHLOROETHANE		ND	2.5	ND	2.5	ND	12.5
TRICHLOROETHENE	-	ND	2.5	ND	2.5	ND	12.5
TRICHLOROFLUOROMETHANI	<u>다</u>	ND	2.5	ND	2.5	ND	12.5
VINYL CHLORIDE		ND	5.0	ND	5.0	ND	25.0
XYLENES		19	2.5	ND	2.5	86	12.5
ACETONE		ND	50.0	ND	50.0	ND 2	250.0

17

3700 Lakaville Highway, Petaluma, CA 94954 P.O. Box 808024, Petaluma, CA 94975-8024 Telephone: (707) 763-8245 FAX: (707) 763-4065

LABORATORY RESULTS

Page 15

COMPOUNDS:	LAB# SMP# dil.			49455 DET. RT-1-1C LIM. 1 ug/kg		49456 DET. SP-1-1C LIM. 5 ug/kg	
2-BUTANONE CARBON DISULFIDE 2-HEXANONE 4-METHYL-2-PENTANONE STYRENE VINYL ACETATE		ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0	ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0 5.0	ND ND ND ND ND ND	25.0 25.0 25.0 25.0 25.0 25.0
SURROGATE RECOVERIES	-QC						
1,2-DICHLOROETHANE-D TOLUENE-D8 4-BROMOFLUOROBENZENE	4	134% 94% 69%		132% 102% 95%		92% 105% 100%	

3700 Lakeville Highwey, Petaluma, CA 94954 P.O. Box 808024, Petaluma, CA 94975-8024 Telephone: (707) 763-8245 FAX: (707) 783-4085

Page 16

COMPOUNDS:	LAB# SMP#	49457 SP-2-1C	LIM.		LIM.		
PURGEABLES	dil.	100		100		100	
		ug/	кg	ug/	'kg	ug/	kg
BENZENE		ND	250.0	ND	250.0	ND	250.0
BROMODICHLOROMETHANE		ND	250.0	ND	250.0	ND	250.0
BROMOFORM		ND	250.0	ND	250.0	ND	250.0
BROMOMETHANE		ND	250.0	ND	250.0	ND	250.0
CARBON TETRACHLORIDE		ND	250.0	ND	250.0	ND	250.0
CHLOROBENZENE		ND	250.0	ND	250.0	ND	250.0
CHLOROETHANE		ND	250.0	ND	250.0	ND	250.0
2-CHLOROETHYLVINYL ET	HER	ND	500.0	ND	500.0	ND	500.0
CHLOROFORM		ND	250.0	ND	250.0	ND	250.0
CHLOROMETHANE		ND	250.0	ND	250.0	ND	250.0
DIBROMOCHLOROMETHANE		ND	250.0	ND	250.0	ND	250.0
1,2-DICHLOROBENZENE		ND	250.0	ND	250.0	ND	250.0
1,3-DICHLOROBENZENE		ND	250.0	ND	250.0	ND	250.0
1,4-DICHLOROBENZENE		ND	250.0	ND	250.0	ND	250.0
1,1-DICHLOROETHANE		ND	250.0	ND	250.0	ND	250.0
1,2-DICHLOROETHANE		ND	250.0	ND	250.0	ND	250.0
1,1-DICHLOROETHENE		ND	250.0	ND	250.0	ND	250.0
TRANS-1,2-DICHLOROETH	ENE	ND	250.0	ND	250.0	ND	250.0
1,2-DICHLOROPROPANE		ND	250.0	ND	250.0	ND	250.0
CIS-1,3-DICHLOROPROPE		ND	250.0	ND	250.0	ND	250.0
TRANS-1,3-DICHLOROPRO	PENE	ND	250.0	ND	250.0	ND	250.0
ETHYL BENZENE		1800	250.0		250.0	2500	250.0
METHYLENE CHLORIDE		ND	250.0	ND	250.0	ND	250.0
1,1,2,2-TETRACHLOROET	HANE	ND	250.0	ND	250.0	ND	250.0
TETRACHLOROETHENE		ND	250.0	ND	250.0	ND	250.0
TOLUENE		ND	250.0	ND	250.0	ND	250.0
1,1,1-TRICHLOROETHANE		ND	250.0	ND	250.0	ND	250.0
1,1,2-TRICHLOROETHANE		ND	250.0	ND	250.0	ND	250.0
TRICHLOROETHENE		ND	25 0. 0	ND	250.0	ND	250.0
TRICHLOROFLUOROMETHAN	E	ND	250.0	ND	250.0	ND	250.0
VINYL CHLORIDE		ND	500.0	ND	500.0	ND	500.0
XYLENES		3500	250.0	2800	250.0	5100	250.0
ACETONE		ND	5000.0	ND .	5000.0	ND	5000.0

3700 Lakeville Highwey, Petaluma, CA 94954 P.O. Box 808024, Petaluma, CA 94975-8024 Telephone: (707) 763-8245 FAX: (707) 763-4065

LABORATORY RESULTS

Page 17

COMPOUNDS: PURGEABLES	LAB# SMP# dil.	49457 SP-2-1C 100 ug/k	DET. LIM.	49458 SP-3-1C 100 ug/k	DET. LIM.	49459 SP-4-1C 100 ug/k	DET. LIM.
2-BUTANONE CARBON DISULFIDE 2-HEXANONE 4-METHYL-2-PENTANONE STYRENE VINYL ACETATE		ND ND ND ND ND ND	500.0 500.0 500.0 500.0 500.0 500.0	ND ND ND ND ND ND	500.0 500.0 500.0 500.0 500.0 500.0	ND ND ND ND ND ND	500.0 500.0 500.0 500.0 500.0 500.0
SURROGATE RECOVERIES-	QC						
1,2-DICHLOROETHANE-D4 TOLUENE-D8 4-BROMOFLUOROBENZENE		124% 109% 76%		98% 118% 111%		105% 115% 110%	

LABORATORY RESULTS

Page 18

COMPOUNDS:	LAB# SMP# dil.	49460 SP-5-1	DET. C LIM.
PURGEABLES			/kg
BENZENE		ND	2.5
BROMODICHLOROMETHAN	2	ND	2.5
BROMOFORM		ND	2.5
BROMOMETHANE		ND	2.5
CARBON TETRACHLORIDE	E	ND	2.5
CHLOROBENZENE	-	ND	2.5
CHLOROETHANE		ND	2.5
2-CHLOROETHYLVINYL E	THER	ND	5.0
CHLOROFORM		ND	2.5
CHLOROMETHANE		ND	2.5
DIBROMOCHLOROMETHANE		ND	2.5
1,2-DICHLOROBENZENE		ND	2.5
1,3-DICHLOROBENZENE		ND	2.5
1,4-DICHLOROBENZENE		ND	2.5
1,1-DICHLOROETHANE		ND	2.5
1,2-DICHLOROETHANE		ND	2.5
1,1-DICHLOROETHENE		ND	2.5
TRANS-1,2-DICHLOROET	HENE	ND	2.5
1,2-DICHLOROPROPANE		ND	2.5
CIS-1,3-DICHLOROPROP		ND	2.5
TRANS-1,3-DICHLOROPR	OPENE	ND	2.5
ETHYL BENZENE		ND	2.5
METHYLENE CHLORIDE		ND	2.5
1,1,2,2-TETRACHLOROE	THANE	ND	2.5
TETRACHLOROETHENE		ND	2.5
TOLUENE		ND	2.5
1,1,1-TRICHLOROETHAN	E	ND	2.5
1,1,2-TRICHLOROETHAN	E	ND	2.5
TRICHLOROETHENE		ND	2.5
TRICHLOROFLUOROMETHA	NE	ND	2.5
VINYL CHLORIDE		ND	5.0
XYLENES		10	2.5
ACETONE		ND	50.0

LABORATORY RESULTS

Page 19

Laboratory Job No.: 893962

COMPOUNDS:	LAB# SMP# dil.	49460 SP-5-1C	DET.
PURGEABLES	411.	ug/	kg
2-BUTANONE CARBON DISULFIDE 2-HEXANONE 4-METHYL-2-PENTANONE STYRENE VINYL ACETATE		ND ND ND ND ND ND	5.0 5.0 5.0 5.0 5.0
SURROGATE RECOVERIES-	QC		
1,2-DICHLOROETHANE-D4 TOLUENE-D8 4-BROMOFLUOROBENZENE		130% 99% 88%	

ND: NOT DETECTED.

ANALYST: PAUL MILLS

Bruce Scarborough Dames & Moore 221 Main Street, Ste. 600 San Francisco, CA 94105 Client Code: DAME28
Survey # AM.GAS CO.

Page 1

LABORATORY RESULTS

Laboratory Job No.: 893904

Date Received: 08/23/89 Date Reported: 09/11/89

TOTAL PETROLEUM HYDROCARBONS(EPA 418.1)

Date Analyzed: 09/06/89

MATRIX: SOIL

LABNO	SMPLNO	COMPOUND	FOUND mg/kg	DET.LIM. mg/kg
			`	,
48890	GW5-2C	трн	ND	6
48891	GW1-2C	TPH	130	6
48892	GW1-3C	ТРН	138	6
48893	GW1-4C	ТРН	464	6

ANALYST: JAN TOISTER

Page 2

LABORATORY RESULTS

Laboratory Job No.: 893904 Date Received: 08/23/89 Date Extracted: 09/04/89 Date Analyzed: 09/05/89 Date Reported: 09/11/89

PURGEABLES BY GC/MS(EPA8240)

COMPOUNDS:	LAB# SMP#	48890 GW5-2C	DET. LIM.	48891 CW1-2C	DET.	48892	DET.
	dil.		LIM.	GW1-2C	LIM.	GW1-3C 100	LIM.
PURGEABLES		ug,			/kg	ug/!	kg
BENZENE		ND	2.5	13	12.5	ND	250.0
BROMODICHLOROMETHANE		ND	2.5	ND	12.5	ND	250.0
BROMOFORM		ND	2.5	ND	12.5	ND	250.0
BROMOMETHANE		ND	2.5	ND	12.5	ND	250.0
CARBON TETRACHLORIDE		ND	2.5	ND	12.5	ND	250.0
CHLOROBENZENE		ND	2.5	ND	12.5	ND	250.0
CHLOROETHANE		ND	2.5	ND	12.5	ND	250.0
2-CHLOROETHYLVINYL E	THER	ND	5.0	ND	25.0	ND	500.0
CHLOROFORM		ND	2.5	ND	12.5	ND	250.0
CHLOROMETHANE		ND	2.5	ND	12.5	ND	250.0
DIBROMOCHLOROMETHANE		ND	2.5	ND	12.5	ND	250.0
1,2-DICHLOROBENZENE		ND	2.5	ND	12.5	ND	250.0
1,3-DICHLOROBENZENE		ND	2.5	ND	12.5	ND	250.0
1,4-DICHLOROBENZENE		ND	2.5	ND	12.5	ND	250.0
1,1-DICHLOROETHANE		ND	2.5	ND	12.5	ND	250.0
1,2-DICHLOROETHANE		ИD	2.5	ND	12.5	ND	250.0
1,1-DICHLOROETHENE		ND	2.5	ND	12.5	ND	250.0
TRANS-1,2-DICHLOROET	HENE	ND	2.5	ND	12.5	ND	250.0
1,2-DICHLOROPROPANE		ND	2.5	ND	12.5	ND	250.0
CIS-1,3-DICHLOROPROP		ND	2.5	ND	12.5	ND	250.0
TRANS-1,3-DICHLOROPRO	OPENE	ND	2.5	ND	12.5	ND	250.0
ETHYL BENZENE		ND	2.5	ND	12.5	ND	250.0
METHYLENE CHLORIDE		ND	2.5	ND	12.5	ND	250.0
1,1,2,2-TETRACHLOROE	THANE	ND	2.5	ND	12.5	ND	250.0
TETRACHLOROETHENE		ND	2.5	ND	12.5	ND	250.0
TOLUENE		ND	2.5	13	12.5	ND	250.0
1,1,1-TRICHLOROETHAN		ND	2.5	ND	12.5	ND	250.0
1,1,2-TRICHLOROETHAN	E	ND	2.5	ND	12.5	ND	250.0

LABORATORY RESULTS

Page 3

COMPOUNDS:	LAB# SMP# dil.		DET. LIM. l /kg		DET. LIM. 5 /kg	48892 GW1-3C 100 ug/	DET. LIM.) /kg
TRICHLOROETHENE TRICHLOROFLUOROMETHA VINYL CHLORIDE XYLENES ACETONE 2-BUTANONE CARBON DISULFIDE 2-HEXANONE 4-METHYL-2-PENTANONE STYRENE VINYL ACETATE		ND ND ND ND ND ND ND ND ND	2.5 2.5 5.0 2.5 50.0 5.0 5.0 5.0 5.0	120 ND 110 ND ND ND ND ND ND ND	12.5 12.5 25.0 12.5 250.0 25.0 25.0 25.0 25.0 25.0	ND ND ND ND ND ND ND ND ND	250.0 250.0 500.0 250.0 500.0 500.0 500.0 500.0 500.0
SURROGATE RECOVERIES	-QC						
1,2-DICHLOROETHANE-DITOLUENE-D8 4-BROMOFLUOROBENZENE	4	128% 102% 106%		128% 108% 67%		127% 104% 84%	

LABORATORY RESULTS

Page 4

COMPOUNDS:	LAB# SMP# dil.	48893 GW1-4C 100 ug/	
BENZENE		ND	250 0
BROMODICHLOROMETHANE		ND ND	250.0
BROMOFORM		ND ND	250.0 250.0
BROMOMETHANE		ND	250.0
CARBON TETRACHLORIDE		ND	250.0
CHLOROBENZENE		ND	250.0
CHLOROETHANE		ND	250.0
2-CHLOROETHYLVINYL ET	HER	ND	500.0
CHLOROFORM		ND	250.0
CHLOROMETHANE		ND	250.0
DIBROMOCHLOROMETHANE		ND	250.0
1,2-DICHLOROBENZENE		ND	250.0
1,3-DICHLOROBENZENE		ND	250.0
1,4-DICHLOROBENZENE		ND	250.0
1,1-DICHLOROETHANE		ND	250.0
1,2-DICHLOROETHANE		ND	250.0
1,1-DICHLOROETHENE		ND	250.0
TRANS-1,2-DICHLOROETH	ENE	ND	250.0
1,2-DICHLOROPROPANE		ND	250.0
CIS-1,3-DICHLOROPROPE		ND	250.0
TRANS-1,3-DICHLOROPRO	PENE	ND	250.0
ETHYL BENZENE		ND	250.0
METHYLENE CHLORIDE		ND	250.0
1,1,2,2-TETRACHLOROET	HANE	ND	250.0
TETRACHLOROETHENE		ND	250.0
TOLUENE		ND	250.0
1,1,1-TRICHLOROETHANE		ND	250.0
1,1,2-TRICHLOROETHANE		ND	250.0
TRICHLOROETHENE		ND	250.0
TRICHLOROFLUOROMETHAN	E	ND	250.0
VINYL CHLORIDE		ND	500.0
XYLENES		650	250.0
ACETONE		ND	5000.0

Page 5

LABORATORY RESULTS

Laboratory Job No.: 893904

COMPOUNDS: PURGEABLES	LAB# SMP# dil.	48893 GW1-4C 100 ug/k	DET. LIM.
2-BUTANONE CARBON DISULFIDE 2-HEXANONE 4-METHYL-2-PENTANONE STYRENE VINYL ACETATE	***************************************	ND ND ND ND ND ND	500.0 500.0 500.0 500.0 500.0
SURROGATE RECOVERIES-(QC		
1,2-DICHLOROETHANE-D4 TOLUENE-D8 4-BROMOFLUOROBENZENE		123% 99% 57%	

ND: NOT DETECTED.

NOTE: THE 3RD SURROGATE RECOVERIES ARE LOW DUE TO THE HIGH AMOUNTS OF HYDROCARBONS PRESENT IN THE SAMPLES.

ANALYST: PAUL MILLS

Bruce Scarborough
Dames & Moore
221 Main Street, Ste. 600
San Francisco, CA 94105

Client Code: DAME28
Survey # AM.CAN CO.
Project/Release # 17693-003-043

LABORATORY RESULTS

Page 1

Date Extracted: 09/06/89
Date Analyzed: 09/08/89
Date Analyzed: 09/08/89
Date Reported: 09/11/89

ASSAY: PCBS IN SOIL/WASTE (GC/ECD EPA 8080) MATRIX: SOIL

LABNO SMPLNO-ID	RESULTS	DET.LIM	
50545 GW1-2C ARO42 ARO54 ARO60	0.43 ug/gm ND ND	0.029 ug/gm 0.029 ug/gm 0.029 ug/gm	
50546 GW2-2C ARO42 ARO54 ARO60	0.38 ug/gm ND ND	0.030 ug/gm 0.030 ug/gm 0.030 ug/gm	

ND=Not Detected
RESULTS FOR AROCHLORS WERE QUANTITATED AROCHLORS 1242,1254,AND 1260.
ANALYST:MARSHA MANIX

Bruce Scarborough Dames & Moore 221 Main Street, Ste. 600 San Francisco, CA 94105

Client Code: DAME28

Survey # Am. CAN CO. Project/Release # 17693-003-43

LABORATORY RESULTS

Page 1

Laboratory Job No.: 893966

Date Received: 08/25/89 Date Reported: 09/13/89

TOTAL PETROLEUM HYDROCARBONS (EPA 418.1)

Date Analyzed: 09/06/89

MATRIX: SOIL

LABNO SMPLNO	COMPOUND	FOUND mg/kg	DET.LIM. mg/kg
49495 SC1-2C	TPH	3,200	60
49497 SC2-2C	TPH	ND	6
111171100			

ANALYST: JAN TOISTER

Page 2

LABORATORY RESULTS

Laboratory Job No.: 893966

Date Received: 08/25/89 Date Reported: 09/13/89

ORGANIC LEAD(AA-GRAPHITE FURNACE, SDH METHOD, LUFT MANUAL, 1988)

MATRIX: SOIL , XYLENE EXTRACT

Date Analyzed: 09/07/89

LABNO SMPLNO	COMPOUND	FOUND mg/kg	DET.LIM. mg/kg
49493 GT1-3C	PB	ND	0.010

ANALYST: PRECY ROBINSON

Page 3

LABORATORY RESULTS

Laboratory Job No.: 893966

Date Received: 08/25/89 Date Reported: 09/13/89

PURGEABLES BY GC/MS(EPA8240)

Date Analyzed: 09/08/89

	ND ND	2.5	ND	
BENZENE		4.5		2.5
BROMODICHLOROMETHANE		2.5	ND	
BROMOFORM	ND		ND	
BROMOMETHANE	ND		ND	
CARBON TETRACHLORIDE	ND		ND	
CHLOROBENZENE	ND		ND	
CHLOROETHANE	ND	2.5	ND	2.5
2-CHLOROETHYLVINYL ETHER	ND		ND	5.0
CHLOROFORM	ND	2.5	ND	
CHLOROMETHANE	ND	2.5	ND	2.5
DIBROMOCHLOROMETHANE	ND	2.5	ND	2.5
1,2-DICHLOROBENZENE	ND	2.5	ND	2.5
1,3-DICHLOROBENZENE	ND	2.5	ND	2.5
1,4-DICHLOROBENZENE	ND	2.5	ND	2.5
1,1-DICHLOROETHANE	ND	2.5	ND	2.5
1,2-DICHLOROETHANE	ND		ND	2.5
1,1-DICHLOROETHENE	ND		ND	2.5
TRANS-1,2-DICHLOROETHENE	ND		ND.	2.5
1,2-DICHLOROPROPANE	ND		ND	2.5
CIS-1,3-DICHLOROPROPENE	ND		ND	2.5
TRANS-1,3-DICHLOROPROPENE	ND	2.5	ND	2.5
ETHYL BENZENE	ND	2.5	ND	2.5
METHYLENE CHLORIDE	ND	2.5	ND	2.5
1,1,2,2-TETRACHLOROETHANE	ND	2.5	ND	
TETRACHLOROETHENE	ND	2.5	ND	
TOLUENE	6.4		7.4	2.5
1,1,1-TRICHLOROETHANE	ND		ND	2.5
1,1,2-TRICHLOROETHANE	ND	2.5	ND	2.5
TRICHLOROETHENE	ИD	2.5	ND	2.5

LABORATORY RESULTS

Page 4

Laboratory Job No.: 893966

COMPOUNDS: PURGEABLES	LAB# SMP#	49495 SC1-2C ug,	DET. LIM. /kg	49497 SC2-2C ug/	DET. LIM. /kg
TRICHLOROFLUOROMETHANI VINYL CHLORIDE XYLENES ACETONE 2-BUTANONE CARBON DISULFIDE 2-HEXANONE 4-METHYL-2-PENTANONE STYRENE VINYL ACETATE	E	ND ND ND ND ND ND ND ND	2.5 5.0 2.5 50.0 5.0 5.0 5.0 5.0	ND ND 3.0 ND	2.5 5.0 2.5 50.0 5.0 5.0 5.0 5.0
SURROGATE RECOVERIES-C)C		t		·
1,2-DICHLOROETHANE-D4 TOLUENE-D8 4-BROMOFLUOROBENZENE		82% 113% 112%		97% 111% 100%	

ND: NOT DETECTED.

ANALYST: PAUL MILLS

LABORATORY RESULTS Page 5

Date Extracted: 08/29/89

Date Analyzed: 08/29/89

Laboratory Job No.: 893966 Date Received: 08/25/89 Date Reported: 09/13/89

ASSAY: TPH/GASOLINE/BTEX (EPA 5020/8015/8020

MATRIX: SOIL

LABNO SMPLNO-ID

49493 GT1-3C GASOLINE

RESULTS

DET.LIM

ND

1.0 mg/kg

ANALYST: ROBERT REMLINGER

LABORATORY RESULTS

Page 6

Laboratory Job No.: 893966

Date Received: 08/25/89 Date Reported: 09/13/89

ASSAY: TPH/GASOLINE/BTEX (EPA 5020/8015/8020)

Date Extracted: 08/29/89

Date Analyzed: 08/29/89

MATRIX: SOIL

RESULTS	DET.LIM
~~~~~	
ND	0.040 mg/kg
	ND ND ND

ANALYST: ROBERT REMLINGER



Bruce Scarborough Dames & Moore 221 Main Street, Ste. 600 San Francisco, CA 94105

Date Analyzed: 09/06/89

Client Code: DAME28

Survey # AM.CAN CO.

Project/Release # 17693-003-43

LABORATORY RESULTS

Page 1

Laboratory Job No.: 894003

Date Received: 08/29/89 Date Reported: 09/13/89

TOTAL PETROLEUM HYDROCARBONS (EPA 418.1)

MATRIX: SOIL

LABNO SMPLNO	COMPOUND	FOUND mg/kg	DET.LIM. mg/kg
49668 SC-1-1C	TPH	ND	6
49669 SC-2-1C	TPH	ND	6
ANALYST: JAN TOISTER			



Page 2

### LABORATORY RESULTS

Laboratory Job No.: 894003

Date Received: 08/29/89 Date Reported: 09/13/89

Date Analyzed: 09/08/89

PURGEABLES BY GC/MS(EPA8240)

COMPOUNDS:	LAB#	49668	DET.	49669	DET.	
	SMP#	SC-1-1C	LIM.	SC-2-1C	LIM.	
PURGEABLES		ug,	/kg 	ug,	ug/kg	
BENZENE		ND	2.5	ND		
BROMODICHLOROMETHAN	E	ND	2.5	ND	2.5	
BROMOFORM		ND		ND		
BROMOMETHANE		ND	2.5	ND		
CARBON TETRACHLORID	2	ND	2.5	ND		
CHLOROBENZENE		ND	2.5		2.5	
CHLOROETHANE		ND			2.5	
2-CHLOROETHYLVINYL	ETHER	ND				
CHLOROFORM		ND	2.5	ND		
CHLOROMETHANE		ND		ND		
DIBROMOCHLOROMETHAN		ND		ND		
1,2-DICHLOROBENZENE		ND		ND		
1,3-DICHLOROBENZENE		ND	2.5	ND	2.5 2.5	
1,4-DICHLOROBENZENE		ND	2.5	ND		
1,1-DICHLOROETHANE		ND	2.5	ND ND		
1,2-DICHLOROETHANE		מא		ND ND		
1,1-DICHLOROETHENE		ND		ИD		
TRANS-1,2-DICHLOROE	THENE	ИD		ИD		
1,2-DICHLOROPROPANE		ND	2.5	ND	2.5	
CIS-1,3-DICHLOROPRO	PENE	ND	2.5 2.5	ND ND		
TRANS-1,3-DICHLOROP	ROPENE	ND	2.5	ND	2.5	
ETHYL BENZENE		ND	2.5	ND ND	2.5	
METHYLENE CHLORIDE		ND ND		ND	2.5	
1,1,2,2-TETRACHLORO	ETHANE	ND ND		ND		
TETRACHLOROETHENE		ND	2.5	ND		
TOLUENE		ND ND	2.5	ND		
1,1,1-TRICHLOROETHA	NE NE	ND	2.5	ND	2.5	
1,1,2-TRICHLOROETHA	ME	ND	2.5	ND	2.5	
TRICHLOROETHENE		ND	2			



Page 3

## LABORATORY RESULTS

Laboratory Job No.: 894003

COMPOUNDS:	LAB# SMP#	49668 SC-1-1C	DET. LIM.	49669 SC-2-1C	DET. LIM.
PURGEABLES	<b>"</b>	ug/	/kg	ug/	/kg
TRICHLOROFLUOROMETH VINYL CHLORIDE XYLENES ACETONE 2-BUTANONE CARBON DISULFIDE 2-HEXANONE 4-METHYL-2-PENTANON STYRENE VINYL ACETATE		ND ND ND ND ND ND ND ND	2.5 5.0 2.5 50.0 5.0 5.0 5.0 5.0	ND ND ND ND ND ND ND ND	2.5 5.0 2.5 50.0 5.0 5.0 5.0 5.0
SURROGATE RECOVERIE	:S-QC			-	
1,2-DICHLOROETHANE- TOLUENE-D8 4-BROMOFLUOROBENZEM		92% 123% 129%		94% 115% 103%	

ND: NOT DETECTED.

ANALYST: PAUL MILLS



Bruce Scarbrough Dames & Moore 221 Main Street, Ste. 600 San Francisco, CA 94105

Client Code: DAME28

Survey #

Project/Release # 17693-003-43

LABORATORY RESULTS

Page 1

Date Collected: 08/29/89 Date Analyzed: 09/15/89 Laboratory Job No.: 894044
Date Received: 08/31/89
Date Reported: 10/03/89

ARSENIC BY AA/GF(EPA 7060) SELENIUM(AA/GF ASSAY EPA 7740) MERCURY (AA FLAMELESS EPA 7470)

MATRIX: WATER, ACID DIGEST

LABNO SMPLNO	COMPOUND	FOUND mg/L	DET.LIM. mg/L
49942 GW-5	AS	0.016	0.0050
	SE	0.0080	0.0050
	HG	0.00025	0.00010
49943 GW-3	AS	0.017	0.0050
	SE	ND	0.0050
	HG	0.00044	0.00010
49944 GW-2	AS	0.034	0.0050
	SE	ND	0.0050
	HG	ND	0.00010
49945 GW-7	AS	ND	0.0050
	SE	ND	0.0050
	HG	ND	0.00010
49946 GW-4	AS	ND	0.0050
	SE	ND	0.0050
	HG	ND	0.00010



LABORATORY

RESULTS

Page 2

Laboratory Job No.: 894044

LABNO SMPLNO	COMPOUND	FOUND mg/L	DET.LIM. mg/L
49947 GW-1	AS SE HG	0.0913 ND 0.00104	0.0050 0.0050 0.0050 0.00010

ANALYST: PRECY ROBINSON



### LABORATORY RESULTS

Page 3

Laboratory Job No.: 894044

Date Received: 08/31/89 Date Reported: 10/03/89

ASSAY: METAL SCAN BY ICP(EPA 6010)

Date Collected: 08/29/89 Date Analyzed: 09/01/89

LABNO SMPLNO-ID	RESULTS	DET. LIM.
49942 GW-5 WATER AG BA BE CD CO CR CU MO NI PB SB TL V	ND 0.199 mg/L ND ND ND 0.029 mg/L 0.095 mg/L ND 0.070 mg/L ND ND ND	0.010 mg/L 0.010 mg/L 0.010 mg/L 0.0050 mg/L 0.020 mg/L 0.020 mg/L 0.010 mg/L 0.050 mg/L 0.050 mg/L 0.50 mg/L 0.20 mg/L
ZN	0.076 mg/L	0.010 mg/L



## LABORATORY RESULTS

Page 4

LABNO	SMPLNO-ID	RESULTS	DET.	LIM.
49943	GW-3 WATER			
	AG	ND		
	BA		0.010	mg/L
	BE	0.460 mg/L ND	0.010	mg/L
	CD		0.010	mg/L
	CO	0.0050 mg/L	0.0050	
	CR	0.034 mg/L	0.020	mg/L
	CU	0.095 mg/L	0.020	mg/L
	MO	0.056 mg/L	0.010	mg/L
	NI	ND	0.020	mg/L
		0.26 mg/L	0.050	mg/L
	PB	ND	0.050	mg/L
	SB	ND	0.50	mg/L
	TL	ND	0.20	mg/L
	Δ.	0.077 mg/L	0.020	mg/L
	ZN	0.127 mg/L	0.010	mg/L
49944	GW-2 WATER		•	
	'AG	ND	0.010	,_
	BA	0.547 mg/L	0.010	mg/L
	BE	ND Mg/ L	0.010	mg/L
	CD	ND	0.010	mg/L
	CO	ND	0.0050	mg/L
	CR	ND	0.020	mg/L
	CU	ND	0.020	mg/L
	MO		0.010	mg/L
	NI	0.026 mg/L ND	0.020	mg/L
	PB		0.050	mg/L
	SB	ND	0.050	mg/L
	TL	ND	0.50	mg/L
	V.	ND ND	0.20	mg/L
	ZN	ND	0.020	mg/L
	411	0.033 mg/L	0.010	mg/L



## LABORATORY RESULTS

Page 5

LABNO	SMPLNO-ID	RESULTS	DET. LIM.
49945	GW-7 WATER		
	AG	ND	0.010 mg/L
	BA	0.579 mg/L	0.010 mg/L
	BE	ND	0.010 mg/L
	CD	ND	0.0050 mg/L
	CO	ND	0.020 mg/L
	CR	ND	0.020 mg/L
	CU	0.018 mg/L	0.010 mg/L
	MO	ND	0.020 mg/L
	NI	ND	0.050 mg/L
	PB	ND	0.050 mg/L
	SB	ND	0.50 mg/L
	TL	ND	0.20 mg/L
	V	ND .	0.020 mg/L
	ZN	0.034 mg/L	0.010 mg/L
49946	GW-4 WATER		
	AG	ND	0.010 mg/L
	BA	0.119 mg/L	
	BE	ND	
	ÇD	ND	
	CO	ND	
	CR	0.035 mg/L	0.020 mg/L 0.020 mg/L
	CU	0.017 mg/L	0.010 mg/L
	MO	0.028 mg/L	0.020 mg/L
	NI	0.098 mg/L	
	PB	ND 3, -	
	SB	ND	0.050 mg/L 0.50 mg/L
	TL	ND	0.20 mg/L
	V	0.029 mg/L	
	ZN	0.033 mg/L	0.020 mg/L 0.010 mg/L



## LABORATORY RESULTS

Page 6

Laboratory Job No.: 894044

LABNO	SMPLNO-ID	RESULTS	DET. LIM.
49947	GW-1 WATER AG BA BE	ND 1.16 mg/L ND	0.010 mg/L 0.010 mg/L 0.010 mg/L
	CD CO CR CU MO NI PB	0.0088 mg/L 0.063 mg/L 0.279 mg/L 0.168 mg/L 0.038 mg/L 0.558 mg/L	0.0050 mg/L 0.020 mg/L 0.020 mg/L 0.010 mg/L 0.020 mg/L 0.050 mg/L
	SB TL V ZN	ND ND ND 0.214 mg/L 0.274 mg/L	0.050 mg/L 0.50 mg/L 0.20 mg/L 0.020 mg/L 0.010 mg/L

ND=Not Detected

ANALYST: NANCY S.TESCHE



Page 7

### LABORATORY RESULTS

Date Collected: 08/29/89 Date Extracted: 09/05/89 Laboratory Job No.: 894044 Date Received: 08/31/89 Date Analyzed: 10/02/89 Date Reported: 10/03/89

## SEMIVOLATILES BY GC/MS(EPA 8270) WASTEWATER AND LIQUID WASTE

COMPOUNDS:	LAB# SMP# dil.	49942 GW-5	DET. LIM. 1	49943 GW-3		49944 GW-2	DET. LIM. 1
BNA		u	ıg/L	บ	ıg/L	υ	ıg/L
4-CHLORO-3-METHYLPHENO	)L	ND	4.0	ND	4.0	ND	4.0
2-CHLOROPHENOL		ND	4.0	ND	4.0	ND	4.0
2,4-DICHLOROPHENOL		ND	4.0	ND		ND	4.0
2,4-DIMETHYLPHENOL		ND	4.0	7.0	4.0	ND	4.0
2,4-DINITROPHENOL		ND		ND		ND	20.0
2-METHYL-4,6-DINITROPE	IENOL	ND	20.0	ND	20.0	ND	20.0
2-NITROPHENOL		ND	4.0	ND	4.0	ND	4.0
4-NITROPHENOL		ND	20.0	ND		ND	20.0
PENTACHLOROPHENOL		ND	20.0	ND	20.0	ND	20.0
PHENOL		ND	4.0	ND	4.0	ND	4.0
2,4,6-TRICHLOROPHENOL		ND	4.0	ND	4.0	ND	4.0
ACENAPHTHENE		ND	4.0	5.3	4.0	ND	4.0
ACENAPHTHYLENE		ND	4.0	ND	4.0	ND	4.0
ANTHRACENE		ND	4.0	4.7	4.0	ND	4.0
BENZO(a)ANTHRACENE		ND	4.0	ND	4.0	ND	4.0
BENZO (b) FLUORANTHENE		ND	4.0	ND	4.0	ND	4.0
BENZO(k) FLUORANTHENE		ND	4.0	ND	4.0	ND	4.0
BENZO(a) PYRENE		ND	4.0	ND	4.0	ND	4.0
BENZO(g,h,i)PERYLENE		ND	4.0	ND	4.0	ND	4.0
BENZIDINE		ND	20.0	ND	20.0	ND	20.0
BIS(2-CHLOROETHYL)ETHE		ND	4.0	ND	4.0	ND	4.0
BIS(2-CHLOROETHOXY)MET		ND	4.0	ИD	4.0	ND	4.0
BIS(2-ETHYLHEXYL)PHTHA		ND	4.0	ИD	4.0	ND	4.0
BIS(2-CHLOROISOPROPYL)		ND	4.0	ND	4.0	ND	4.0
4-BROMOPHENYL PHENYL E	THER	ND	4.0	ND	4.0	ND	4.0
BUTYL BENZYL PHTHALATE	}	ND	4.0	ND	4.0	ND	4.0
2-CHLORONAPHTHALENE		ND	4.0	ND	4.0	ND	4.0
4-CHLOROPHENYL PHENYL	ETHER	ND	4.0	ND	4.0	ND	4.0



## LABORATORY RESULTS

Page 8

CHRYSENE	COMPOUNDS:	LAB# SMP# dil.	49942 GW-5			DET. LIM.	49944 GW-2	LIM.
DIBENZO(a, h) ANTHRACENE	BNA		1		ι		ι	l ug/L
DIENZO(a, h) ANTHRACENE   ND   4.0   ND   4.0   ND   4.0			ND	4.0	מא	4.0	ND.	4.0
DI-R-BUTY   PHTHALATE		E	ND					
1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,5-DICHLOROBENZENE 1,5-DI								
1,4-DICHLOROBENZENE ND 4.0 ND 4.0 ND 4.0  3,3'-DICHLOROBENZIDINE ND 10.0 ND 10.0 ND 10.0  DIETHYL PHTHALATE ND 4.0 ND 4.0 ND 4.0  2,4-DINITROTOLUENE ND 4.0 ND 4.0 ND 4.0  1,2,4-DINITROTOLUENE ND 4.0 ND 4.0 ND 4.0  PLUORANTHENE ND 4.0 ND 4.0 ND 4.0 ND 4.0  FLUORENE ND 4.0 ND 4.0 ND 4.0 ND 4.0  FLUORENE ND 4.0 ND 4.0 ND 4.0 ND 4.0  HEXACHLOROBENZENE ND 4.0 ND 4.0 ND 4.0  HEXACHLOROBENTADIENE ND 4.0 ND 4.0 ND 4.0  HEXACHLOROCYCLOPENTADIENE ND 20.0 ND 20.0  INDEMO(1,2,3-c,d)PYRENE ND 4.0 ND 4.0 ND 4.0  NAPHTHALENE ND 4.0 ND 4.0 ND 4.0  NAPHTHALENE ND 4.0 ND 4.0 ND 4.0  NAPHTHALENE ND 4.0 ND 4.0 ND 4.0  N-NITROSODIMETHYLAMINE ND 4.0 ND 4.0 ND 4.0  ND 4.0 ND 4.0 ND 4.0	1,2-DICHLOROBENZENE				ND			
3,3'-DICHLOROBEMZIDINE ND 10.0 ND 10.0 ND 10.0 DIETHYL PHTHALATE ND 4.0 ND 4.0 ND 4.0 ND 4.0 DIMETHYL PHTHALATE ND 4.0 ND	1,3-DICHLOROBENZENE				ND	4.0		
ND   10.0   ND   10.0   ND   10.0   ND   10.0		•			ND	4.0		
DIMETHYL PHTHALATE ND 4.0 ND 4.0 ND 4.0 2,4-DINITROTOLUENE ND 4.0		i				10.0	ND	
2,4-DINITROTOLUENE ND 4.0 ND 4.0 ND 4.0 2,6-DINITROTOLUENE ND 4.0 ND 4.0 ND 4.0 101000000000000000000000000000000000							ND	4.0
2,6-DINITROTOLUENE DIOCTYL PHTHALATE ND 4.0							ND	4.0
DIOCTYL PHTHALATE   ND   4.0   ND   4.0   ND   4.0	2.6-DINITROTOLUENE						ND	4.0
FLUCRANTHENE ND 4.0 ND 4.0 ND 4.0 FLUCRENE ND 4.0 ND 4.0 ND 4.0 FLUCRENE ND 4.0 ND 4.0 ND 4.0 HEXACHLOROBENZENE ND 4.0 ND 4.0 ND 4.0 HEXACHLOROGUTADIENE ND 4.0 ND 4.0 ND 4.0 HEXACHLOROCYCLOPENTADIENE ND 4.0 ND 4.0 ND 4.0 INDENO(1,2,3-c,d)FYRENE ND 4.0 ND 4.0 ND 4.0 INDENO(1,2,3-c,d)FYRENE ND 4.0 ND 4.0 ND 4.0 NAPHTHALENE ND 4.0 ND 4.0 ND 4.0 NITROBENZENE ND 4.0 ND 4.0 ND 4.0 NITROSODIMETHYLAMINE ND 4.0 ND 4.0 ND 4.0 N-NITROSODIMETHYLAMINE ND 4.0 ND 4.0 ND 4.0 N-NITROSODIPHENYLAMINE ND 4.0 ND 4.0 ND 4.0 PHENANTHRENE ND 4.0 ND 4.0 ND 4.0 PHENANTHRENE ND 4.0 ND 4.0 ND 4.0 PYRENE ND 4.0 ND 4.0 ND 4.0 FYRENE ND 4.0 ND 4.0 ND 4.0 FYRENE ND 4.0 ND 4.0 ND 4.0 I,2,4-TRICHLOROBENZENE ND 4.0 ND 4.0 ND 4.0 ANILINE ND 4.0 ND 4.0 ND 4.0 BENZUL ALCOHOL ND 4.0 ND 4.0 ND 4.0 BENZYL ALCOHOL ND 4.0 ND 4.0 ND 4.0 BENZYL ALCOHOL ND 4.0 ND 4.0 ND 4.0 DIBENZOFURAN ND 4.0 ND 4.0 ND 4.0 ND 4.0 DIBENZOF							ND	4.0
ND   4.0   ND   4.0   ND   4.0   ND   4.0								4.0
HEXACHLOROBENZENE						_		
HEXACHLOROBUTADIENE								
HEXACHLOROETHANE								
HEXACHLOROCYCLOPENTADIENE   ND 20.0   ND 20.0   ND 20.0   INDENO(1,2,3-c,d)PYRENE   ND 4.0								
INDENO(1,2,3-c,d) PYRENE ND 4.0 ND 4.0 ND 4.0 ISOPHORONE ND 4.0 N		ENE						
ISOPHORONE	INDENO(1,2,3-c,d)PYREN	E						
NAPHTHALENE NITROBENZENE NITROSODIMETHYLAMINE NITRO	ISOPHORONE	-						
NITROBENZENE ND 4.0 ND 4.0 ND 4.0 N-NITROSODIMETHYLAMINE ND 4.0 ND 4.0 ND 4.0 N-NITROSODI-n-PROPYLAMINE ND 4.0 ND 4.0 ND 4.0 N-NITROSODIPHENYLAMINE ND 4.0 ND 4.0 ND 4.0 PHENANTHRENE ND 4.0 ND 4.0 ND 4.0 PYRENE ND 4.0 6.5 4.0 ND 4.0 ND 4.0 ANILINE ND 4.0 ND 4.0 ND 4.0 ND 4.0 BENZOIC ACID BENZOIC ACID BENZYL ALCOHOL ND 4.0 ND 4.0 ND 4.0 BENZYL ALCOHOL ND 4.0	NAPHTHALENE							
N-NITROSODIMETHYLAMINE ND 4.0	NITROBENZENE							
N-NITROSODI-n-PROPYLAMINE ND 4.0	N-NITROSODIMETHYLAMINE							
N-NITROSODIPHENYLAMINE PHENANTHRENE ND 4.0 N	N-NITROSODI-n-PROPYLAM	INE						
PHENANTHRENE         ND         4.0         18         4.0         ND         4.0           PYRENE         ND         4.0         6.5         4.0         ND         4.0           1,2,4-TRICHLOROBENZENE         ND         4.0         ND         4.0         ND         4.0           ANILINE         ND         4.0         ND         4.0         ND         4.0           BENZOIC ACID         ND         4.0         ND         4.0         ND         4.0           BENZYL ALCOHOL         ND         4.0         ND         4.0         ND         4.0           4-CHLOROANALINE         ND         4.0         ND         4.0         ND         4.0           DIBENZOFURAN         ND         4.0         ND         4.0         ND         4.0           2-METHYL-NAPHTHALENE         ND         4.0         ND         4.0         ND         4.0           2-METHYL-PHENOL         ND         20.0         ND         20.0         ND         20.0           4-METHYL-PHENOL         ND         20.0         ND         20.0         ND         20.0           2-NITROANILINE         ND         4.0         ND         4.0		_						
PYRENE 1,2,4-TRICHLOROBENZENE ND 4.0 ND 4.0 ND 4.0 ANILINE BENZOIC ACID BENZYL ALCOHOL 4-CHLOROANALINE DIBENZOFURAN 2-METHYL-NAPHTHALENE ND 4.0								
1,2,4-TRICHLOROBENZENE								
ANILINE BENZOIC ACID BENZYL ALCOHOL 4-CHLOROANALINE DIBENZOFURAN 2-METHYL-NAPHTHALENE ND 4.0								
BENZOIC ACID         ND         20.0         ND         20.0         ND         20.0           BENZYL ALCOHOL         ND         4.0         ND         4.0         ND         20.0           4-CHLOROANALINE         ND         4.0         ND         4.0         ND         4.0           DIBENZOFURAN         ND         4.0         ND         4.0         ND         4.0           2-METHYL-NAPHTHALENE         ND         4.0         ND         4.0         ND         4.0           2-METHYL-PHENOL         ND         20.0         ND         20.0         ND         20.0           4-METHYL-PHENOL         ND         20.0         5.0         20.0         ND         20.0           2-NITROANILINE         ND         4.0         ND         4.0         ND         4.0           3-NITROANILINE         ND         4.0         ND         4.0         ND         4.0								
BENZYL ALCOHOL       ND 4.0       ND 4.0       ND 4.0         4-CHLOROANALINE       ND 4.0       ND 4.0       ND 4.0         DIBENZOFURAN       ND 4.0       ND 4.0       ND 4.0         2-METHYL-NAPHTHALENE       ND 4.0       ND 4.0       ND 4.0         2-METHYL-PHENOL       ND 20.0       ND 20.0       ND 20.0         4-METHYL-PHENOL       ND 20.0       5.0 20.0       ND 20.0         2-NITROANILINE       ND 4.0       ND 4.0       ND 4.0         3-NITROANILINE       ND 4.0       ND 4.0       ND 4.0								
4-CHLOROANALINE       ND 4.0       ND 4.0       ND 4.0         DIBENZOFURAN       ND 4.0       ND 4.0       ND 4.0         2-METHYL-NAPHTHALENE       ND 4.0       ND 4.0       ND 4.0         2-METHYL-PHENOL       ND 20.0       ND 20.0       ND 20.0         4-METHYL-PHENOL       ND 20.0       5.0 20.0       ND 20.0         2-NITROANILINE       ND 4.0       ND 4.0       ND 4.0       ND 4.0								
DIBENZOFURAN   ND 4.0 ND 4.0 ND 4.0 ND 4.0   ND 4.0 ND 4.0 ND 4.0 ND 4.0 ND 4.0 ND 4.0 ND 4.0 ND 4.0 ND 4.0 ND 4.0 ND 4.0 ND 20.0 ND 4.0								
2-METHYL-NAPHTHALENE 2-METHYL-PHENOL ND 20.0			ND					
2-METHYL-PHENOL ND 20.0 ND 20.0 ND 20.0 4-METHYL-PHENOL ND 20.0 5.0 20.0 ND 20.0 2-NITROANILINE ND 4.0 ND 4.0 ND 4.0 ND 4.0								
4-METHYL-PHENOL ND 20.0 5.0 20.0 ND 20.0 20.0 ND 20.0 ND 20.0 ND 20.0 ND 4.0 ND			ND					
2-NITROANILINE ND 4.0 ND 4.0 ND 4.0								
3-NITROANIGINE			ND					
	3-NITROANILINE		ND					



# LABORATORY RESULTS

Page 9

COMPOUNDS: LAE SMF dil BNA	°# GW−5	DET. LIM. 1 1g/L	49943 GW-3	DET. LIM. 1 g/L	49944 GW-2 u	DET. LIM. 1 g/L
4-NITROANILINE 2,4,5-TRICHLOROPHENOL	ND ND	20.0	ND ND	20.0	ND ND	20.0
SURROGATE RECOVERIES (PERCE	NT)					
PHENOL-D5 2-FLUOROPHENOL NITROBENZENE-D5 2-FLUOROBIPHENYL 2,4,6-TRIBROMOPHENOL TERPHENYL-D14	42 42 42 60 58 38 43	-	53 31 63 67 45	-	39 29 43 54 39 38	



Page 10

## LABORATORY RESULTŚ

COMPOUNDS:	LAB# SMP# dil.	49945 GW-7		49946 GW-4	DET. LIM.	49947 GW-1	DET.
BNA	~~.	u	g/L	u	ig/L	10	:0 :g/L
4-CHLORO-3-METHYLPHENOL		~					
2-CHLOROPHENOL	•	ND	4.0	ND	4.0	ND	400.0
2,4-DICHLOROPHENOL		ND ND	4.0	ND	4.0	ND	400.0
2,4-DIMETHYLPHENOL		ND	4.0	ND	4.0	ND	400.0
2,4-DINITROPHENOL		ND	20.0	ND	4.0	9000	400.0
2-METHYL-4,6-DINITROPHE	NOT.	ND	20.0	ND ND	20.0	ND	2000.0
2-NITROPHENOL		ND	4.0	ND ND	20.0	ND	2000.0
4-NITROPHENOL		ND	20.0	ND	4.0	ND	400.0
PENTACHLOROPHENOL		ND	20.0	ND	20.0	ND	2000.0
PHENOL		ND	4.0	ND	4.0	. ND	2000.0
2,4,6-TRICHLOROPHENOL		ND	4.0	ND	4.0	ND ND	400.0
ACENAPHTHENE		ND	4.0	ND	4.0	ND	400.0 400.0
ACENAPHTHYLENE		ND	4.0	ND	4.0	ND	400.0
ANTHRACENE		ND	4.0	ND	4.0	ND	400.0
BENZO(a)ANTHRACENE		ND	4.0	ND	4.0	ND	400.0
BENZO(b) FLUORANTHENE		ND	4.0	ND	4.0	ND	400.0
BENZO ( k ) FLUORANTHENE		ND	4.0	ND	4.0	ND	400.0
BENZO(a)PYRENE		ND	4.0	ND	4.0	ND	400.0
BENZO(g,h,i)PERYLENE		ND	4.0	ND	4.0	ND	400.0
BENZIDINE		ND	20.0	ND	20.0	ND	2000.0
BIS (2-CHLOROETHYL) ETHER		ND	4.0	ND	4.0	ND	400.0
BIS (2-CHLOROETHOXY) METH	ANE	ND	4.0	ND	4.0	ND	400.0
BIS(2-ETHYLHEXYL)PHTHAL	ATE	ND	4.0	ND	4.0	ND	400.0
BIS(2-CHLOROISOPROPYL)E	THER	ND	4.0	ND	4.0	ND	400.0
4-BROMOPHENYL PHENYL ETI	HER	ND	4.0	ND	4.0	ND	400.0
BUTYL BENZYL PHTHALATE		ND	4.0	ND	4.0	ND	400.0
2-CHLORONAPHTHALENE		ND	4.0	ND	4.0	ND	400.0
4-CHLOROPHENYL PHENYL ET	THER	ND	4.0	ND	4.0	ND	400.0
CHRYSENE		ND	4.0	ND	4.0	ND	400.0
DIBENZO(a,h)ANTHRACENE		ND	4.0	ND	4.0	ND	400.0
DI-n-BUTYL PHTHALATE		ND	4.0	ND	4.0	ND	400.0
1,2-DICHLOROBENZENE		5.0	4.0	ND	4.0	ND	400.0
1,3-DICHLOROBENZENE		ND	4.0	ND	4.0	ND	400.0



# LABORATORY RESULTS

Page 11

COMPOUNDS:	LAB# SMP# dil.	49945 GW-7		49946 GW-4			DET. LIM. 00 1g/L
1,4-DICHLOROBENZENE		ND	4.0	ND	4.0	ND	400.0
3,3'-DICHLOROBENZIDINE		ND	10.0	ND		ND	1000.0
DIETHYL PHTHALATE		ND	4.0	ND		ND	400.0
DIMETHYL PHTHALATE		ND	4.0	ND		ND	400.0
2,4-DINITROTOLUENE		ND	4.0	ND		ND	400.0
2,6-DINITROTOLUENE DIOCTYL PHTHALATE		ND	4.0	ND		ND	400.0
FLUORANTHENE		ND	4.0	ND		ND	400.0
FLUORENE		ND	4.0	ND		ND	400.0
HEXACHLOROBENZENE		ND	4.0	ND		ND	400.0
HEXACHLOROBUTADIENE		ND	4.C	ND	4.0	ND	400.0
HEXACHLOROETHANE		ND	4.0	. ND	4.0	ND	400.0
HEXACHLOROCYCLOPENTADIEN		ND	4.0	ND	4.0	ND	400.0
INDENO(1,2,3-c,d)PYRENE	(E)	ND	20.0	ND	20.0	ND	2000.0
ISOPHORONE		ND	4.0	ND	4.0	ND	400.0
NAPHTHALENE		ND	4.0	ND	4.0	ND	400.0
NITROBENZENE		ND	4.0	ND	4.0	ND	400.0
N-NITROSODIMETHYLAMINE		ND	4.0	ND	4.0	ND	400.0
N-NITROSODI-n-PROPYLAMIN	Er.	ND	4.0	ND	4.0	ND	400.0
N-NITROSODIPHENYLAMINE	E.	ND	4.0	ND	4.0	ND	400.0
PHENANTHRENE		ND	4.0	ND	4.0	ND	400.0
PYRENE		ND	4.0	ND	4.0	ND	400.0
1,2,4-TRICHLOROBENZENE		ND	4.0	ND	4.0	ND	400.0
ANILINE		ND	4.0	ND	4.0	ND	400.0
BENZOIC ACID		ND ND	4.0	ND	4.0	ND	400.0
BENZYL ALCOHOL		ND	20.0	ND	20.0	ND	2000.0
4-CHLOROANALINE		ND	4.0	ND	4.0	ND	400.0
DIBENZOFURAN		ND	4.0	ND	4.0	ND	400.0
2-METHYL-NAPHTHALENE		ND	4.0	ND	4.0	ND	400.0
2-METHYL-PHENOL		אם מא	20.0	ND	4.0	ND	400.0
4-METHYL-PHENOL		ND	20.0	ND	20.0	ND	2000.0
2-NITROANILINE		ND	4.0	ND	20.0	2600	2000.0
3-NITROANILINE		ND	4.0	ND	4.0	ND	400.0
4-NITROANILINE		ND	20.0	ND	4.0	ND	400.0
2,4,5-TRICHLOROPHENOL		ND	4.0	ND	20.0	ND	2000.0
		ND.	7.V	ND	4.0	ND	400.0



LABORATORY RESULTS

Page 12

Laboratory Job No.: 894044

COMPOUNDS:	LAB# SMP#	49945 GW-7	DET. LIM.	49946 GW-4	DET.	49947 GW-1	DET. LIM.
BNA	dil.	บ	I lg/L	ប	l ıg/L	100 ug	/L
SURROGATE RECOVERIES	(PERCENT)						
PHENOL-D5		66	_	50	_	DO	-
2-FLUOROPHENOL NITROBENZENE-D5		55 65		43 60		DO DO	
2-FLUOROBIPHENYL 2,4,6-TRIBROMOPHENOL		68 60		53 58		DO DO	
TERPHENYL-D14		39		65		DO	

ND = NOT DETECTED

DO = THERE WERE NO SURROGATE RECOVERIES DUE TO THE DILUTION.

ANALYST: CAROLYN STUDENY



## LABORATORY RESULTS

Page 13

Date Collected: 08/29/89

Date Analyzed: 09/12/89

Laboratory Job No.: 894044

Date Received: 08/31/89 Date Reported: 10/03/89

PURGEABLES BY GC/MS(EPA8240) WASTEWATER OR LIQUID WASTE

	LAB# SMP# dil.		DET. LIM. 1 g/L	49943 GW-3 100	DET. LIM.	49944 GW-2 1(	DET. LIM.
BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE 2-CHLOROETHYLVINYL ETHE CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE THYL BENZENE METHYLENE CHLORIDE 1,1,2,2-TETRACHLOROETHANE TOLUENE 1,1,1-TRICHLOROETHANE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE	E NE	ND N	0.555555555555555555555555555555555555	ND N	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	19 ND	5.000000000000000000000000000000000000



LABORATORY RESULTS

Page 14

COMPOUNDS: PURGEABLES	LAB# SMP# dil.		DET. LIM. 1 g/L	49943 GW-3 10 u	DET. LIM. 0 g/L	49944 GW-2 1 u	DET. LIM. 0 g/L
TRICHLOROETHENE TRICHLOROFLUOROMETHA VINYL CHLORIDE XYLENES ACETONE 2-BUTANONE CARBON DISULFIDE 2-HEXANONE 4-METHYL-2-PENTANONE STYRENE VINYL ACETATE		ND N	0.5 0.5 1.0 0.5 10.0 1.0 1.0	ND ND 8000 ND	50.0 50.0 100.0 50.0 100.0 100.0 100.0 100.0 100.0	ND ND 280 7.8 ND	5.0 5.0 10.0 5.0 100.0 10.0 10.0 10.0 10
SURROGATE RECOVERIES	-QC						
1,2-DICHLOROETHANE-D TOLUENE-D8 4-BROMOFLUOROBENZENE		95% 92% 100%		105% 90% 92%		91% 99% 77%	



LABORATORY RESULTS

Page 15

COMPOUNDS:	LAB# SMP# dil.	49945 GW-7		49946 GW-4		GW-1	
BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE 2-CHLOROETHYLVINYL ETE CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,2-DICHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE TRANS-1,2-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE THYL BENZENE METHYLENE CHLORIDE 1,1,2-TETRACHLOROETHANE TOLUENE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROFLUOROMETHANE TRICHLOROFLUOROMETHANE VINYL CHLORIDE XYLENES ACETONE	ne E Ene	59 ND	5.0 5.0 5.0 5.0 5.0		0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	380 ND	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0



# LABORATORY RESULTS

Page 16

COMPOUNDS: PURGEABLES	LAB# SMP# dil.	49945 GW-7 10 uç	DET. LIM. ) J/L	49946 GW-4	DET. LIM. 1 g/L	49947 GW-1 100 ug	DET. LIM.
2-BUTANONE CARBON DISULFIDE 2-HEXANONE 4-METHYL-2-PENTANONE STYRENE VINYL ACETATE		ND ND ND ND ND ND	10.0 10.0 10.0 10.0 10.0	ND ND ND ND ND ND	1.0 1.0 1.0 1.0 1.0	ND ND ND ND ND ND	100.0 100.0 100.0 100.0 100.0
SURROGATE RECOVERIES-	2C						
1,2-DICHLOROETHANE-D4 TOLUENE-D8 4-BROMOFLUOROBENZENE		110% 104% 93%		98% 92% 96%		124% 90% 85%	



LABORATORY RESULTS

Page 17

COMPOUNDS:	LAB# SMP# dil.	49948 GW-BLK	DET.
PURGEABLES			ug/L
BENZENE	<del>-</del>	ND	 0.5
BROMODICHLOROMETHANE		ND	
BROMOFORM		ND	
BROMOMETHANE		ND	~ ~ ~
CARBON TETRACHLORIDE		ND	
CHLOROBENZENE		ND	
CHLOROETHANE		ND	0.5
2-CHLOROETHYLVINYL ETH	IER	ND	5.0
CHLOROFORM		ND	0.5
CHLOROMETHANE		ND	
DIBROMOCHLOROMETHANE	- ,	ND	
1,2-DICHLOROBENZENE		ND	
1,3-DICHLOROBENZENE		ND	0.5
1,4-DICHLOROBENZENE 1,1-DICHLOROETHANE		ND	0.5
1.2-DICHLOROETHANE		ND	0.5
1,2-DICHLOROETHANE 1,1-DICHLOROETHENE		ND	0.5
TRANS-1 2-DIGHT ORDER		ND	
TRANS-1,2-DICHLOROETHE 1,2-DICHLOROPROPANE	NE	ND	
CIS-1,3-DICHLOROPROPEN	_	ND	
TRANS-1, 3-DICHLOROPROPEN	E Extend	ND	
ETHYL BENZENE	ENE	ND	0.5
METHYLENE CHLORIDE		ИD	0.5
1,1,2,2-TETRACHLOROETH		ND	0.5
TETRACHLOROETHENE	ANE	ND	0.5
TOLUENE		ND	0.5
1,1,1-TRICHLOROETHANE		0.7	0.5
1,1,2-TRICHLOROETHANE		ND	0.5
TRICHLOROETHENE		ND	
TRICHLOROFLUOROMETHANE		ND	
VINYL CHLORIDE			0.5
XYLENES		ND	1.0
ACETONE		ND	0.5
		ND	10.0



LABORATORY RESULTS

Page 18

Laboratory Job No.: 894044

COMPOUNDS:	LAB# SMP# dil.	49948 GW-BLK	DET. LIM. 1
PURGEABLES		u	g/L
2-BUTANONE CARBON DISULFIDE 2-HEXANONE 4-METHYL-2-PENTANONE STYRENE VINYL ACETATE		ND ND ND ND ND	1.0 1.0 1.0 1.0 1.0
SURROGATE RECOVERIES	-QC		
1,2-DICHLOROETHANE-D TOLUENE-D8 4-BROMOFLUOROBENZENE		110% 98% 96%	

ND: NOT DETECTED.

ANALYST: PAUL MILLS



LABORATORY RESULTS

Page 19

Date Collected: 08/29/89 Date Extracted: 09/12/89 Date Analyzed: 09/12/89

Date Received: 08/31/89
Date Reported: 10/03/89

ASSAY: TPH/GASOLINE (EPA 5030/8015)

MATRIX: LIQUID

LABNO SMPLNO-ID	RESULTS	DET.LIM
49942 GW-5		
GASOLINE	ND	0.05 mg/L
49943 GW-3		
GASOLINE	39 mg/L	0.25 mg/L
49944 GW-2		
GASOLINE	1.6 mg/L	0.50 mg/L
49945 GW-7		
GASOLINE	2.1 mg/L	0.50 mg/L
49946 GW-4		
GASOLINE	ND	0.05 mg/L
49947 GW-1		
GASOLINE	ll mg/L	0.50 mg/L
ANALYST: ROBERT REMLIN	GER	



Page 20

### LABORATORY RESULTS

Date Collected: 08/29/89 Date Extracted: 09/12/89 Date Analyzed: 09/12/89

Laboratory Job No.: 894044

Date Received: 08/31/89

Date Reported: 10/03/89

ASSAY: TPH/DIESEL (EPA 3510/8015)

MATRIX: WATER

LABNO SMPLNO-ID	RESULTS	DET.LIM		
49942 GW-5 DIESEL	ND	0.075 mg/L		
49943 GW-3 DIESEL	0.3 mg/L	0.075 mg/L		
49944 GW-2 DIESEL	3.3 mg/L	0.075 mg/L		
49945 GW-7 DIESEL	9.1 mg/L	0.075 mg/L		
49946 GW-4 DIESEL	ND	0.075 mg/L		
49947 GW-1 DIESEL	40 mg/L	0.075 mg/L		

ANALYST: ROBERT REMLINGER



### JOSEPH S. BESCA

Senior Remediation Specialist

518/458-1313 FAX 518/458-2472



## **DUNN GEOSCIENCE CORPORATION**

12 METRO PARK ROAD • ALBANY, NEW YORK 12205 Buffalo NY, Harrisburg PA, Laconia NH, Atlanta GA, Chicago IL & Parsippany NJ