

Applied GeoSystems

3315 Almaden Expressway, Suite 34, San Jose, CA 95118 (408) 264-7723

FREMONT

IRVINE

HOUSTON

BOSTON

SACRAMENTO

• CULVER CITY

SAN JOSE

SUPPLEMENTAL SUBSURFACE AND REMEDIAL INVESTIGATION

at
ARCO Station 2152
22141 Center Street
Castro Valley, California

7/9

AGS 69013-6

Report prepared for

ARCO Products Company P.O. Box 5811 San Mateo, California

by RESNA/Applied GeoSystems

Mike Hodges As Mechanical Engineer

Greg Barclay General Manager

Joan Tiernan
Registered Civil Engineer #044600

July 2, 1991

No. C 044600
Exp. 5-34-94

CIVIL

TABLE OF CONTENTS

INTRODU	CTION
SITE DESC	CRIPTION AND BACKGROUND
Gene	eral
Geol	ogy and Hydrogeology
PREVIOUS	SWORK
FIELD WO	RK
Drilli	ng
Soil S	Sampling and Description
Cons	truction of Vapor Wells
Vapo	r Extraction Test
Air S	ampling
LABORAT	ORY ANALYTICAL METHODS
	Samples
Air S	amples
	ORY AND FIELD RESULTS
	ratory Results of Soil Samples
Vapo	r Extraction Test Field Results
Air S	ample Analytical Results
CONCLUSI	ONS AND DISCUSSION
LIMITATIC	<u> </u>
REFERENC	CES
	PLATES
PLATE 1:	SITE VICINITY MAP
PLATE 2:	GENERALIZED SITE PLAN
PLATE 3:	UNIFIED SOIL CLASSIFICATION SYSTEM AND SYMBOL KEY
PLATE 4:	LOG OF BORING B-8/VW-3
PLATE 5:	LOG OF BORING B-8/VW-3
PLATE 6:	LOG OF BORING B-9/VW-4
PLATE 7:	LOG OF BORING B-9/VW-4
PLATE 8:	LOG OF BORING B-12
PLATE 9:	LOG OF BORING B-12
PLATE 10:	LOG OF BORING B-13/VW-5
PLATE 11:	LOG OF BORING B-13/VW-5
PLATE 12:	LOG OF BORING B-14
PLATE 13:	LOG OF BORING B-14
PLATE 14:	LOG OF BORING B-15
PLATE 15:	···
PLATE 16:	

TABLE OF CONTENTS (continued)

PLATES (continued)

PLATE 17:	LOG OF BORING B-18

PLATE 18: GEOLOGIC CROSS SECTION A-A'
PLATE 19: GEOLOGIC CROSS SECTION B-B'
PLATE 20: GEOLOGIC CROSS SECTION C-C'
PLATE 21: GEOLOGIC CROSS SECTION D-D'
PLATE 22: RADIUS OF INFLUENCE MAP

TABLES

TABLE 1: CUMULATIVE RESULTS OF LABORATORY ANALYSIS OF SOIL SAMPLES

TABLE 2: VAPOR EXTRACTION TEST FIELD MONITORING DATA TABLE 3: RESULTS OF LABORATORY ANALYSIS OF AIR SAMPLES

APPENDICES

APPENDIX A PREVIOUS WORK

APPENDIX B PERMIT

APPENDIX C FIELD PROTOCOL

APPENDIX D LABORATORY DATA SHEETS AND CHAIN OF CUSTODY RECORDS

Applied GeoSystems

3315 Almaden Expressway, Suite 34, San Jose, CA 95118 (408) 264-7723

FREMONT

IRVINE

HOUSTON

BOSTON

• SACRAMENTO

CULVER CITY

SAN JOSE

REPORT SUPPLEMENTAL SUBSURFACE AND REMEDIAL INVESTIGATION

at ARCO Station 2152 22141 Center Street Castro Valley, California

For ARCO Products Company

INTRODUCTION

At the request of ARCO Products Company (ARCO), RESNA/Applied GeoSystems (AGS) conducted a supplemental subsurface and remedial investigation to evaluate the extent of gasoline hydrocarbons in the soil near the former underground gasoline-storage tanks and product lines onsite at ARCO Station 2152, located at 22141 Center Street, Castro Valley, California, and to evaluate soil vapor extraction as a soil remediation alternative at the site. The work was performed to further assess soil quality after elevated concentrations of gasoline hydrocarbons were discovered in the soil beneath the former gasoline-storage tanks and product lines at the site in August and September 1989 (AGS, January 1990). The present investigation included drilling nine soil borings (B-8, B-9, and B-12 through B-18), constructing 4-inch diameter vadose zone monitoring wells (VW-3 through VW-5) in three of the borings, performing laboratory analyses on selected soil samples from the borings, and performing a vapor extraction test (VET) utilizing the vapor wells at the site. This report summarizes previous work performed by AGS at the site, and presents the results and conclusions of this investigation. This work represents the remaining portion of work previously outlined in the Work Plan (AGS, April 1990), and Addendum to Work Plan

(AGS, May 1990), which was not performed during the initial Environmental Subsurface Investigation (AGS, November 1990). The Work Plan and Addendum were previously approved by Alameda County Health Care Services Agency (ACHCSA) as stated in their letter dated May 31, 1990.

SITE DESCRIPTION AND BACKGROUND

General

ARCO Station 2152 is an operating service station located southwest of the intersection of Center Street and Grove Way in Castro Valley, California. The location of the site is shown on the Site Vicinity Map, Plate 1. The site is a relatively flat, asphalt- and concrete-covered lot at an elevation of approximately 217 feet above mean sea level. Local topography near the vicinity at the site slopes gently to the southwest. Residential areas are southeast and west-southwest of the site, and commercial developments are northwest across Grove Way and northeast across Center Street.

From data supplied by ARCO, one underground 12,000-gallon gasoline-storage tank (designated T1) and four underground 6,000-gallon gasoline-storage tanks (T2 through T5) previously existed at the site. Former tank T1 was installed in 1983 and stored unleaded supreme gasoline, tanks T2 through T4 were installed in 1976 and stored unleaded regular gasoline, and tank T5 was installed in 1976 and stored leaded regular gasoline. These tanks were removed, and three underground fiberglass 12,000-gallon gasoline-storage tanks were installed in the former tank pit at the site, in August 1989. The product dispenser lines and product line sump associated with the former tanks were replaced in October 1989. The

approximate locations of the former tanks, existing tanks, and other pertinent site facilities are shown on the Generalized Site Plan, Plate 2.

Geology and Hydrogeology

Regionally, the site is in the Castro Valley Basin with the Diablo Range to the east and the Hayward Fault to the west. The site lies within an area of unconsolidated Pleistocene alluvium consisting of a heterogenous mixture of poorly consolidated clay, silt, sand, and gravel derived from the Diablo Range (Helley, et. al., 1979). Earth materials encountered during our previous subsurface investigations at the site consisted of silty to sandy clay and clayey sand to sandy gravel. Ground water was encountered within clayey sand to sandy gravel at depths of approximately 52 to 58 feet. Hard dry claystone was encountered at depths of approximately 58 to 60 feet (AGS, November 1990). The direction of groundwater flow is toward the southwest based on ground-water monitoring data collected from the wells at the site between June 1990 and January 1991 (AGS, March 1991).

PREVIOUS WORK

Prior to the present investigation, AGS performed environmental investigations related to the removal of five underground gasoline-storage tanks and subsequent limited subsurface environmental investigations. The results of these investigations are presented in the reports listed in the reference section. Quarterly ground-water monitoring of four wells is also ongoing at the site. A brief summary of previous work and quarterly monitoring at the site is included in Appendix A.

FIELD WORK

Drilling

A well construction permit was acquired from the Alameda County Flood Control and Water Conservation District (ACFCWD - Zone 7) prior to drilling. A copy of the permit is included in Appendix B. Nine soil borings (B-8, B-9, and B-12 through B-18) were drilled on January 14 through 17, and February 21, 1991. A summary of the field methods and procedures employed by AGS is included in Appendix C. The work for this investigation was performed in accordance with the Site Safety Plan (AGS, March 1991).

Borings B-12 and B-14 were drilled northwest and northeast of the former tank pit to delineate the lateral extent of gasoline hydrocarbons in soil in these areas. Borings B-15 through B-18 were drilled in the area of and southwest of the former product lines to evaluate the extent of gasoline hydrocarbons in soil in these areas and in the downgradient direction of ground-water flow from these areas. Because elevated concentrations of gasoline hydrocarbons were detected in the subsurface soil beneath the former tank pit, borings B-8 and B-9 (VW-3 and VW-4) were drilled through polyvinyl chloride (PVC) conductor casing, which had been installed by others within the tank pit during tank replacement activities. In September 1989, B-8 and B-9 were installed to evaluate the lateral and vertical extent of gasoline hydrocarbons in soil in the tank pit and to provide for future vapor extraction.

Soil Sampling and Description

Soil samples were classified in accordance with the Unified Soil Classification System, Plate 3, and collected and described as indicated on the Logs of Borings, Plates 4 through 17. These soil samples were collected at maximum 5-foot intervals and at the bottoms of the borings.

The earth materials encountered during this investigation consisted primarily of silty to sandy clay and clayey sand to sandy gravel (see Logs of Borings and Geologic Cross Sections A-A' through D-D,' Plates 18 through 21). In general, silty to sandy clay with some interbeds of clayey sand to sandy gravel up to 20 feet thick was encountered beneath the surface asphalt and minor fill between depths of approximately 1-1/2 feet to 42 feet. In addition, the tank pit is backfilled with pea gravel to approximately 20 feet below grade. Clayey sand to sandy gravel was encountered between the depths of approximately 42 to 58 feet. Ground water was encountered within the clayey sand to sandy gravel at depths of approximately 52 to 56 feet. Hard, dry claystone bedrock was encountered beneath the clayey sand to sandy gravel to the bottom of the deepest boring.

One composite soil sample was collected from the stockpiled drill cuttings generated during the drilling of borings B-8, B-9, and B-12 through B-16 on January 29, 1991 and one composite sample was collected from the stockpiled drill cuttings generated during the drilling of borings B-17 and B-18 on April 11, 1991. The method used to obtain these samples is described in Appendix C.

Construction of Vapor Wells

Three vadose-zone wells (VW-3 through VW-5) were constructed in soil borings B-8, B-9, and B-13, respectively, for purposes of monitoring hydrocarbon vapors, to conduct a VET in order to determine the radius-of-influence for each vapor test well, and to determine the feasibility of a full scale vapor extraction system (VES). Wells VW-3 and VW-4 were constructed through 12-inch diameter PVC conductor casing previously installed within the tank pit during tank replacement activities at the site. The wells were completed with 4-inch-diameter PVC casing. Well casings were set in the wells to depths of approximately 32 to 39 feet. The screened casings for the monitoring wells consist of 4-inch-diameter machine-slotted PVC with 0.020-inch-wide slots set from the total depth of the well to approximately 24 to 28 feet below the ground surface. Solid PVC casing was set from the top of the screened casing to a few inches below the ground surface (see Plates 4 through 7, 10, and 11 for well construction details).

Vapor Extraction Test

AGS performed a VET onsite on February 15, 1991. The VET had two objectives: (1) to collect operational data to evaluate the efficiency and practicality of vapor extraction as a soil remediation alternative; and (2) to select the most appropriate off-gas treatment alternative, if the operational data suggest that vapor-extraction is recommended. The VET was performed in accordance with Bay Area Air Quality Management District (BAAQMD) guidelines.

The vapor-extraction equipment consisted primarily of: (1) six-cylinder internal combustion (I.C.) engine to treat off-gas emissions; (2) instrumentation for measuring air flow, air

velocity, air pressure, temperature, electrical current, and volatile organic compound (VOC) concentrations; and (3) PVC piping, fittings, and wellhead connections.

Five vapor-extraction wells installed onsite were used for the VET; two of the wells were existing (VW-1 and VW-2, installed in June 1990) and three were new (VW-3 through VW-5). The location of these wells is shown on Plate 2. Two tests were performed for a total of approximately six hours. The first test used well VW-5 as the extraction well, and wells VW-1, VW-2, VW-3 and VW-4 were the observation wells. In the second test, well MW-1 was used as the extraction well, and the observation wells were VW-2 through VW-5.

AGS first operated the vapor-extraction equipment on vapor-extraction well VW-5 for approximately two hours while monitoring the change in vacuum at wells VW-2, VW-3, VW-4, and VW-1. The distances between vapor-extraction well VW-5 and VW-2, VW-3, VW-4, and VW-1 are 29.0, 27.7, 48.5, and 61.9 feet respectively. Air flow rate, vacuum, VOC concentration, and temperature were monitored at the influent to the I.C. engine. Vacuum air flow rate from VW-5 was greater than 50 cubic feet per minute (cfm), and the extraction point vacuum ranged from 40-42 inches of water. One influent air sample was collected after system steady state was achieved about 15 minutes after startup and a second influent and an effluent sample were taken after two hours of operation. The effluent sample was taken to verify the destruction efficiency of the I.C. engine of both benzene and total petroleum hydrocarbons reported as gasoline (TPHg). After 120 minutes, this test run was completed; and then the vapor extraction equipment was relocated and operated on VW-1, VW-2, and VW-3 for 20 minutes each, and air samples taken for analysis.

AGS then operated the vapor-extraction equipment on vapor-extraction well VW-1 for approximately two hours while monitoring the change in vacuum at wells VW-2, VW-3,

VW-4, and VW-5. The distances between vapor-extraction well VW-1 and VW-2, VW-3, VW-4, and VW-5 are 61.3, 34.5, 17.7 and 61.9 feet respectively. Air flow rate, vacuum, pressure, VOC concentration, and temperature were monitored at the influent to the I.C. engine. Vacuum air flow rate at VW-1 was greater than 50 cfm, and the intake vacuum at VW-1 ranged from 42-48 inches of water. One influent air sample was collected after system stabilization, and a second influent sample were taken after two hours of operation.

Air Sampling

Air samples were collected through a 1/4-inch Teflon sample line connected to a stainless steel well head fitting and collected in Tedlar air sample bags. Teflon tubing was used to minimize sample loss through adsorption and the possibility of distorted results from sample lines contaminated by a previous test run. The samples were sealed in the bags and labeled with the sample number, date, time, and sampler's name. The samples were immediately placed on ice for transport to a State Certified analytical laboratory under Chain of Custody documentation.

LABORATORY ANALYTICAL METHODS

Soil Samples

Thirty-seven soil samples collected from borings B-8, B-9, and B-12 through B-18 were selected for laboratory analysis based on areas where the presence of gasoline hydrocarbons were suspected and at 5-foot intervals and/or changes in stratigraphic units as recommended by ACHCSA for definition of hydrocarbons in soil. The samples were submitted with Chain of Custody Records to the following State certified laboratories: Applied Analytical in

Fremont, California (Hazardous Waste Testing Laboratory Certification No. 1211); Anametrix, Inc., in San Jose, California (Certification No. 1234); and Sequoia Analytical in Redwood City, California (Certification No. 1210). The soil samples were analyzed for TPHg and the purgeable gasoline constituents benzene, toluene, ethylbenzene, and total xylenes (BTEX) by Environmental Protection Agency (EPA) Methods 5030/8015 and 5030/8020. In addition, five soil samples from borings B-17 and B-18 were analyzed for organic lead by the California LUFT method.

Two composite soil samples collected from the stockpiled cuttings at the site were analyzed for TPHg and BTEX by EPA Methods 5030/8015 and 5030/8020, and organic lead by the California LUFT method at Anametrix, Inc. and Mobile Chem Labs in Martinez, California (Certification No. 358).

Air Samples

Eight air samples were submitted under Chain of Custody to state-certified Superior Analytical Laboratory, Inc. in San Francisco, California (Certification Nos. 319 & 220). Air samples were analyzed for TPHg using Modified EPA SW-846 Methods 5030/8015, and for BTEX using EPA SW-846 Methods 5030/8020.

LABORATORY AND FIELD RESULTS

Laboratory Results of Soil Samples

Results of laboratory analysis of soil samples are summarized in Cumulative Results of Laboratory Analysis of Soil Samples, Table 1. Copies of laboratory reports and Chain-ofCustody documents for soil samples obtained during this investigation are included in Appendix D. The results are as follows:

- laboratory analysis of soil samples collected from borings B-8 and B-9, drilled through the conductor casing in the former tank pit, indicated nondetectable concentrations of TPHg (below method detection limit [mdl] of 1.0 parts per million [ppm]), with the exception of 680 ppm TPHg reported in a sample collected from a depth of 22 feet in boring B-9;
- o laboratory analysis of soil samples collected from borings B-12, B-13, and B-14, drilled north and northeast of the former tank pit, indicated nondetectable concentrations of TPHg at depths of approximately 15 to 45 feet;
- laboratory analysis of soil samples collected from borings B-15 through B-18, drilled at and downgradient (southwest) of the former product lines, indicated nondetectable concentrations of TPHg, with the exception of 1.7 ppm TPHg reported in a sample collected from a depth of 2 feet in boring B-16, and 50 ppm, 220 ppm, and 170 ppm from depths of 4, 8, and 15-1/2 feet in boring B-18. Laboratory analysis for organic lead of samples from borings B-17 and B-18 indicated nondetectable (mdl of 0.5 ppm) concentrations; and
- o the results of laboratory analyses of two stockpile composite samples indicated nondetectable concentrations of TPHg, BTEX, and organic lead.

The results of this and previous results of sampling for TPHg are summarized in the Geologic Cross Sections A-A' through D-D', in Plates 18 through 21. The locations of the geologic sections are shown on Plate 2.

Vapor Extraction Test Field Results

Field monitoring results taken during the VET are summarized in Table 2. Two VET test runs were conducted. The first test run utilized vapor well VW-5 as the extraction well, and

the four observation wells were VW-1, through VW-4. The second test run used well VW-1 as the extraction point and the four observation wells were VW-2 through VW-5.

Test Run 1

In the first test run, the distance between the extraction well (VW-5) and the observation wells was: 29 feet to VW-2, 27.7 feet to VW-3, 48.8 feet to VW-4, and 61.9 feet to VW-1. All wells were screened at approximately the same depth although subsurface geology differed in some wells: VW-1 at 24 to 40 feet in a gravelly sand and clayey gravel; VW-2 at 24 to 38 feet in a silty clay; VW-3 was screened at 24-39 feet in a silty clay; VW-4 at 24 to 32 feet in a gravelly and clayey sand; and VW-5 was screened at 27-38 feet below grade in a silty clay.

With the vapor-extraction equipment operating on vapor-extraction well VW-5, the highest change in vacuum was observed in vapor-extraction well VW-3 at 0.04 inches of water column at a distance of approximately 27.7 feet from VW-5, while VW-5 was undergoing a vacuum pressure of 40 to 42 inches of water column at a flow rate of over 50 cfm. None of the other observation wells (VW-2, VW-4, and VW-1) showed any vacuum impact. This may be due in part to the fact that they were farther from extraction well VW-5 than was VW-3, which showed good vacuum impact. In addition, VW-3 is located in the tank pit which is backfilled with pea gravel to a depth of 20 feet. Pea gravel is highly porous to air flow. Since silty clay has poor porosity for air flow it is possible that the vacuum impact observed between VW-5 and VW-3 is due to vertical air flow through the silty clay layer at VW-3 which is just below the pea gravel, followed by horizontal air flow through the pea gravel to well VW-5 at 27 feet away.

Test Run Two

After the first test run was completed, the vapor extraction equipment was relocated to VW-1, VW-2, and VW-3 for air sampling purposes; and then the equipment was set up for the second test run at the new extraction point VW-1. VW-1 is situated near the pea gravel backfill in the tank pit and is screened in a highly porous gravelly sand to sandy gravel soil. With the vapor-extraction equipment operating on vapor-extraction well VW-1. all observation wells except VW-2 showed vacuum impact. The highest change in vacuum was observed in vapor-extraction well VW-4 at 0.09 inches of water column at a distance of approximately 17.7 feet from VW-1 (as seen in Table 2), while VW-1 was undergoing a vacuum pressure of approximately 48 inches of water column at a flow rate of over 50 cfm. Once again, VW-2 showed no vacuum impact. VW-2 is screened in a silty clay and is located about 5 to 7 feet from the pea gravel backfill in the tank pit. Thus, it appears that horizontal flow in the silty clay layer, at least in the vicinity of VW-2, is restricted to less than about 7 to 10 feet. VW-3 is screened in silty clay but is located in the pea gravel and screened just below the pea gravel so good vertical flow to the gravel occurs. VW-4 is screened in gravel and is near the tank pit pea gravel so good horizontal air flow occurs. VW-5 is screened in silty clay but is only about 2 feet from the pea gravel in the tank pit which provides good horizontal air flow. Both VW-2 and VW-5 were about the same distance from the extraction point (approximately 61 feet), yet VW-2 showed no vacuum impact. This again suggests that air flow in the silty clay layer is less than 7 to 10 feet.

Thus, the pea gravel backfill in the tank pit, which is present to a depth of about 20 feet, greatly enhances subsurface air flow, resulting in a vacuum impact, across the pea gravel, of greater than 61 feet. During the VET, the vacuum impact at 40 to 48 inches of water

and an air flow rate greater than 50 cfm was determined to be less than 10 feet in the silty clay layer present at depths of about 0 to 40 feet below grade.

Air Sample Analytical Results

Table 3 also presents the results of analysis of air samples collected at the extraction wells VW-1 (after 5 minutes and after 2 hours) and VW-5 (after 15 minutes and after 2 hours) and also at the observation wells (after 20 minutes) (samples VW-1 through VW-3) at the top of the table; in addition one sample was taken of the treated off-gas from the I.C. engine exhaust (sample VW-5-eff). The results of laboratory analysis were reported by the laboratory in milligrams per cubic meter (mg/m³); the BTEX values were converted to parts per billion by volume (ppbv) using the respective molecular weight of each constituent; the TPHg values were converted to parts per million by volume (ppmv) using a molecular weight of 100. The results in Table 3 indicate that the highest TPHg concentration was detected at vapor well VW-3 at 3,400 ppmv after 20 minutes of equipment run time; while the lowest TPHg concentration was nondetectable in the I.C. engine treated off-gas and in well VW-1 after 5 minutes. BTEX concentrations ranged from nondetectable to 6,100 ppbv of xylene in well VW-5 after 15 minutes of system run time.

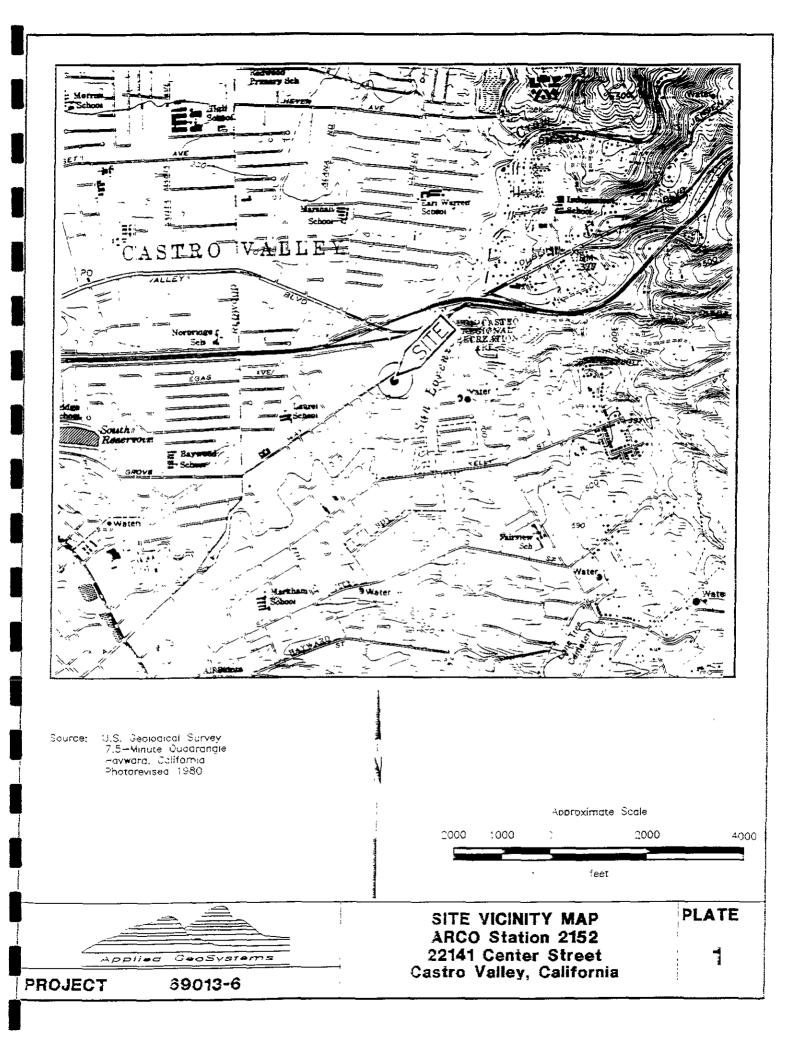
CONCLUSIONS AND DISCUSSION

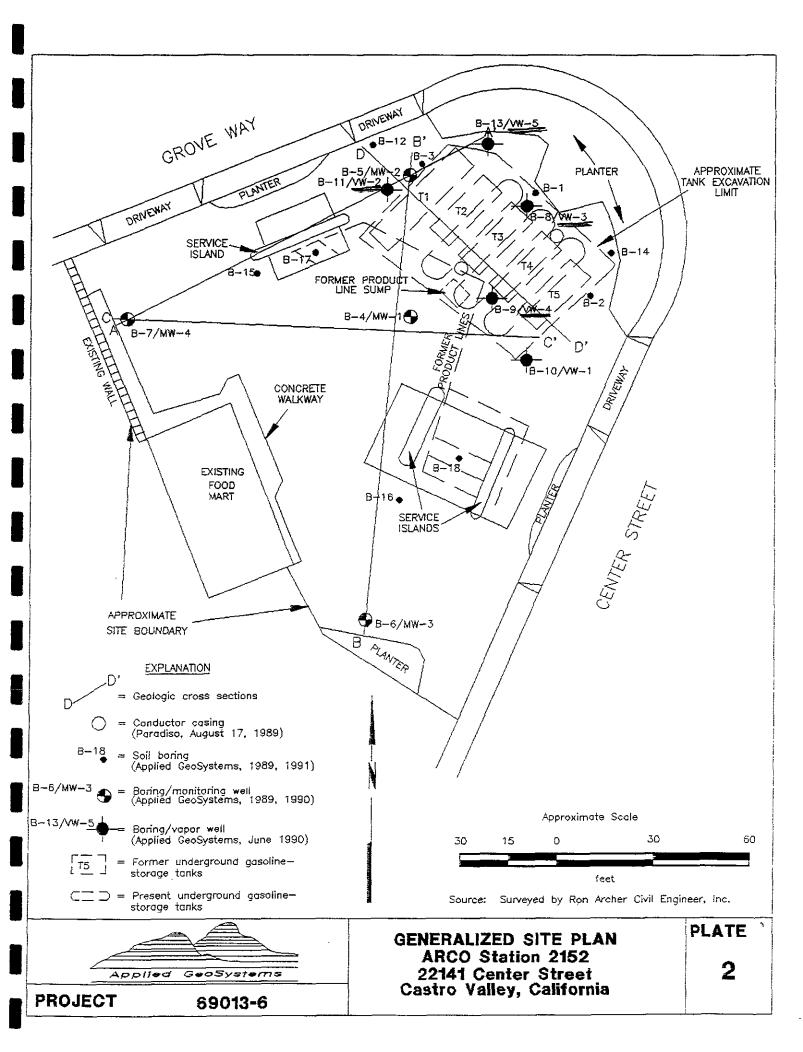
Based on the results of this supplemental subsurface and remedial investigation, the conclusions are as follows:

o Elevated concentrations of gasoline hydrocarbons previously reported beneath the former gasoline-storage tanks and product line sump appear to be limited laterally to the tank pit area and have been delineated onsite.

- The lateral and vertical extents of gasoline hydrocarbons beneath the former product lines and downgradient of the former product lines nearest Grove Way (northern portion of the site) have been delineated, as suggested by nondetectable concentrations of TPHg and BTEX (with the exception of 0.007 total xylenes) reported in the samples from borings B-15 and B-17. The lateral extent of gasoline hydrocarbons in soil downgradient of the former product lines along Center Street has been delineated, based on nondetectable concentrations of TPHg and BTEX in samples from boring B-16; however, the vertical extent of gasoline hydrocarbons in soil beneath these product lines is not delineated based on reported concentrations of TPHg (50, 220, and 170 ppm) at 4, 8, and 15-1/2 feet, respectively, in boring B-18.
- The vacuum impact across the 20 foot deep pea gravel backfill in the tank pit was determined to be greater than 61 feet at a VET vacuum of 40 to 48 inches of water and an extraction point flow rate greater than 50 cfm. The pea gravel exhibits very high porosity to air flow and impacted VET test results.
- The vacuum impact in the silty clay (native soil) below the tank pit backfill was determined to be less than 10 feet at the same vacuum and air flow rates above.
- o Well VW-2 showed no measurable vacuum impact in either test run primarily because it is screened in silty clay and is not sufficiently close to the pea gravel backfill to be impacted at the vacuums and air flow rates tested.
- o It is important to realize that it is not practical to induce a significant vacuum or an extraction flow rate over an area that includes clean soil. Ideally, a well designed and placed vapor-extraction system should only affect the area of concern. The change in vacuum observed at the vapor-extraction monitoring wells were produced with vapor-extraction flow rates and extraction pressures that are less than an operational vapor-extraction system. This suggests that the use of vapor extraction at this site is a practical and efficient choice as a soil remediation alternative. Three existing 4-inch diameter vapor-extraction wells (VW-3, VW-4, and VW-5); and one 2-inch vapor extraction well (VW-2), can be used in a vapor-extraction system to affect areas of concern. It is estimated that an extraction rate of approximately 100 cfm and 100 inches of water column vacuum from each vapor-extraction well will create a capture radius of influence of approximately 20 feet from most wells (Plate 22), based on a four-month operation period for the vapor-extraction system.
- The use of a vapor extraction system (VES) at this site is a feasible method of soil remediation.

- The estimated effective radius of influence of the wells is approximately 20 feet, with the exception of VW-2, which is likely less than 10 feet.
- o It is estimated that the VES will need to operate at <u>least four months</u> before extracted vapor concentrations are nondetectable.

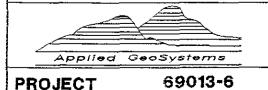

LIMITATIONS


This report was prepared in accordance with generally accepted standards of environmental geological practice in California at the time this investigation was performed. This investigation was conducted solely for the purpose of evaluating gasoline hydrocarbon-impacted soil and ground water at this ARCO site. No soil engineering or geotechnical recommendations are implied or should be inferred. Evaluation of the conditions at the site for the purpose of this investigation is made from a limited number of observation points. Subsurface conditions may vary away from the data points available. Additional work, including further subsurface investigation, can reduce the inherent uncertainties associated with this type of investigation.

REFERENCES

- Applied GeoSystems. May 26, 1989. <u>Limited Environmental Site Assessment, 22141 Center Street, Castro Valley, California</u>, AGS Report 69013-1.
- Applied GeoSystems. January 18, 1990. <u>Limited Subsurface Environmental Investigation Related to Underground Tank Removal, 22141 Center Street, Castro Valley, California</u>: AGS Report 69013-2.
- Applied GeoSystems. March 20, 1990. <u>Site Safety Plan, 22141 Center Street, Castro Valley, California</u>: AGS 69013-7S.
- Applied GeoSystems. April 1, 1990. Work Plan Initial Subsurface Investigation at ARCO Station No. 2152, 22141 Center Street, Castro Valley, California: AGS 69013-3W.
- Applied GeoSystems. May 8, 1990. <u>Site Safety Plan, 22141 Center Street, Castro Valley, California</u>: AGS 69013-3S.
- Applied GeoSystems. May 14, 1990. Addendum to Work Plan Initial Subsurface

 Investigation at ARCO Station No. 2152, 22141 Center Street, Castro Valley,
 California: AGS 69013-3WA.
- Applied GeoSystems. November 13, 1990. <u>Environmental Subsurface Investigation, 22141</u>
 <u>Center Street, Castro Valley, California</u>: AGS Report 69013-4.
- Applied GeoSystems. March 24, 1991. <u>Letter Report Quarterly Ground-Water Monitoring, First Quarter 1991, 22141 Center Street, Castro Valley, California</u>: AGS Report 69013-5.
- Helley, E.S., K.R. Lajoie, W.E. Spangle, and M.L. Blair, M.L. 1979. Flatland deposits of the San Francisco Bay region, California. U.S. Geological Survey Professional Paper 943.
- Hickenbottom, K. and Muir, K. 1988. Geohydrology And Groundwater-Quality Overview
 Of The East Bay Plain Area, Alameda County, California 205 (j) Report. Alameda
 County Flood Control and Water Conservation District, California.


UNIFIED SOIL CLASSIFICATION SYSTEM

MAJOR E	MAJOR DIVISION		DESCRIPTION	RIPTION MAJOR DIVISION		LTR	DESCRIPTION
		GW Well—graded Gravels or Gravel—Sand mixtures, little or no fines.				ML	Inorganic Silts and very fine sands, rock flour, Silty or Clayey fine Sands, or Clayey Silts with slight
	GRAVEL	GP	Poorly-graded Gravels or		SILTS		plasticity.
	AND GRAVELLY	5	Gravel-Sand mixtures, little or no fines.	FINE— GRAINED SOILS	AND CLAYS LL<50	CL	Inorganic Clays of low to medium plasticity, Gravelly
	SOILS	GM	Silty Gravels, Gravel—Sand— Silt mixtures.				Clays, Sandy Clays, Silty Clays, Lean Clays.
COARSE-		G	Clayey Gravel, Gravel—Sand—Clay mixtures.			OL	Organic Silts and Organic Silt-Clays of low plasticity.
GRAINED SOILS	SAND	SW	Well-graded Sand or Gravelly Sands, little or no fines.			мн	Inorganic Silts, micaceous or diatomaceous fine Sandy or Silty Soils, Elastic Silts.
	AND SANDY SOILS	SP	Poorly-graded Sands or Gravelly Sands, little or no fines.		AND CLAYS LL>50	СН	Inorganic Clays of high plasticity, fat Clays.
	30,23	SM	Silty Sands, Sand-Silt mixtures.			ОН	Organic Clays of medium to high plasticity, organic Silts.
		SC	Clayey Sands, Sand-Clay mixtures.	HIGHLY ORGANIC SOILS		PT	Peat and other highly Organic Soils.

T	Depth through which sampler is driven		Sand pack
Ť	Relatively undisturbed		Bentonite
	sample	$\triangle A$	Neat cement
	No sample recovered		Caved native soil
<u>▼</u>	Static water level observed in well/boring		Blank PVC
<u></u>	Initial water level observed in boring		Machine-slotted PVC
S-10	Sample number	P.I.D.	Photoionization detector

BLOWS REPRESENT THE NUMBER OF BLOWS OF A 14D-POUND HAMMER FALLING 30 INCHES TO DRIVE THE SAMPLER THROUGH EACH 6 INCHES OF AN 18-INCH PENETRATION.

DASHED LINES SEPARATING UNITS ON THE LOG REPRESENT APPROXIMATE BOUNDARIES ONLY. ACTUAL BOUNDARIES MAY BE GRADUAL LOGS REPRESENT SUBSURFACE CONDITIONS AT THE BORING LOCATION AT THE TIME OF DRILLING ONLY.

UNIFIED SOIL CLASSIFICATION SYSTEM PLATE
AND SYMBOL KEY
ARCO Station 2152
22141 Center Street
Castro Valley, California

Depth of boring:	41-1/2 feet Diameter of	boring: 10 i	nches Date drille	d: <u>1-14-91</u>
Well depth:	39 feet Material type:	Sch 40 PV0	Casing diame	iter: <u>- inches</u>
Screen interval:	24 to 39 feet	Slot size:	0.020	-ınch
Drilling Compan	y: <u>Exploration GeoServices</u>	Driller:	Mike and John	
Method Used:	Hollow—Stem Auger		Field Geologist:	Steve Bittman
Sigr	nature of Registered Profes	ssional <u>:</u>		
	Registration No.: <u>CE 044</u>	1600 State:	CA	

Depth	Sampl No.	e	Blows	P.I.D.	USCS Code	Description	We Con	
- 0 -						Pea gravel to 19—1/2 feet.	7	1
2 -							1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 1 2 1
4 -			į				7777	
<u> </u> 5 -						NOTE: 12—inch diameter Schedule 80		
10-			!			PVC conductor casing from surface to depth of 14 feet installed during previous tank removal operations; well installed through conductor casing		
12-						on d ate drilled.	1 0 0 0	1 1 2 2 1
16							2 to 10 to 1	41,13
18-						Bottom of tank pit backfill.	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 1
Lond	S-20 L	 1 1	0	3	СН	Silty clay, brown, damp, high plasticity, very stiff.	- [▽]	
		1	0 19 21	J		(Section continues downward)	7	

	LOG OF BORING B-8/VW-3	PLATE
Applied GeoSystems	ARCO Station 2152 22141 Center Street	4
PROJECT: 69013-6	Castro Valley, California	1

epth	Sample No.	e	BLOWS	P.I.D.	USCS Code	Description	Wel
22					СН	Silty clay, brown, damp, high plasticity, very stiff	
24 - 26 -	S-25		10 19 21	4	ML/ CL	Silty clay with stringers of fine sand, brown, damp, medium plasticity, hard.	, , , , , , , , , , , , , , , , , , ,
28−							
32 —	S-33		10 29 35	140		Very stiff; noticeable product odor.	
34 – 36 –			35	:			
38− 10−	S-39		11 15 16 10	13	CL	Sandy clay, brown, damp, medium plasticity, very stiff noticeable product odor.	
 2 – [S-41		3 5	0		Total Depth = $41-1/2$ feet.	
4-			14 E.S. de				
18-	 		7 10 10 10 10 10 10 10 10 10 10 10 10 10	3 99 99 99 99 99 99 99 99 99 99 99 99 99			
	<u> </u>						<u> </u>

i

		LOG OF BORING B-8/VW-3	PLATE
Applied 0	GeoSystems	ARCO Station 2152 22141 Center Street	5
PROJECT 6	9013-6	Castro Valley, California	

	33-1/2 feet Diameter of			
Well depth:	32 feet Material type:	Sch 40 PVC	Casing diame	eter: 4 inches
Screen interval:	24 to 32 feet	Slot size: _	0.020	-inch
Drilling Compar	y: <u>Exploration GeoServices</u>	Driller:	Mike and John	
Method Used:	Hollow—Stem Auger		Field Geologist:	Steve Bittman
Sig	nature of Registered Profes	ssional:		
	Registration No.: <u>CE 044</u>	600 State:	CA	

: ::

Depth	Sample No.	Blows	P.I.D.	USCS Code	Description		ell nst.
- 0 -					Pea gravel to 21 feet.	7 0	
- 2 -						\[\frac{\range }{\range } \]	19411
4 -						A A A A A A A A A A A A A A A A A A A	9 4 1 1 1 2
- 6 -						2 4 4 4	2 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
8						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 2 2 2
10-				7777	NOTE: 12-inch diameter Schedule 80	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
12-					PVC conductor casing from surface to depth of 14 feet installed during previous tank removal operations; well installed through conductor casing	20,00	1 4 1
14					on date drilled.	2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.0
16-						4444	1111
18						7777	1 1 1 1
20 -						7 V	411
					(Section continues downward)	77	<u> </u>

		LOG OF BORING B-9/VW-4	PLATE
Applied	GeoSystems	ARCO Station 2152 22141 Center Street	5
PROJECT:	69013-6	Castro Valley, California	1

Depth	Sample No.	BLOWS	P.I.D.	USCS Code	Description	Well Const.
					Pea gravel to 21 feet.	
-55-	S-22	9 27 39	700	SC	Clayey sand, fine—grained, brown, damp, very dense; noticeable product odor.	
-24 –	i i					
-26-	S-26	28 31 42	81			
-28-	5-29	15 30 40	85		Gravelly sand, gray, damp, very dense; noticeable product odor.	
-30 —	S-31	16	5	CL	Silty clay, brown, damp, law plasticity, hard; noticeable product odor.	
-32 –	s-33	13 21 30	0			1.001
-34 -			,		Total Depth = 33-1/2 feet.	-
-36					·	
-38-						
- 40 -						
-42						
44 —				A STATE OF THE STA		
46-						
48_						
50 –			-			

Applied	GeoSystems							
PROJECT	69013-6							

LOG OF BORING B-9/VW-4

ARCO Station 2152
22141 Center Street
Castro Valley, California

PLATE

-	$\frac{47-1/2 \text{ feet}}{N/A}$ Diameter of N/A Material type:	~ 		·
Screen interval:	N/A	Slot size:	N	/A
Drilling Company	: <u>Exploration GeoServices</u>	Driller:	Mike and John	
Method Used:	Hollow—Stem Auger		Field Geologist:	Steve Bittman
Sign				
	Registration No.:	State:		

Depth	Sample No.		Blows	P.I.D.	USCS Code	Description	Well Const.
- 0 -						Asphalt.	V V V
					GW	Sandy gravel, brown, damp, loose: Fill.	
- 2 -					СН	Silty clay, dark brown, damp, high plasticity, stiff.	
- 4 -		Т	15 45				$\begin{array}{c} A & A & A \\ A & A & A \\ A & A & A \end{array}$
- 6 -	S-5		50	0	CL	Silty clay, brown, dry, low plasticity, hard.	
- 8 -							$\begin{array}{c c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$
- 10 -	S-10	H	20 30 30	0		Damp.	$\begin{array}{c c} \nabla & \nabla & \nabla \\ \hline \end{array}$
- 12 -						,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
- 14 -]	7	15 24		sc	Clayey sand, fine-grained, brown, damp, hard.	
- 16 -	S-15		30	٥			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
- 18 -							\(\nabla \) \(\nab
- 20 -	S-20		8 17 30	1		Moist, dense.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
						(Section continues downward)	

		LOG OF BORING B-12 ARCO Station 2152	PLATE
Applied	GeoSystems	22141 Center Street	8
PROJECT:	69013-6	Castro Valley, California	

epth	Sample No.	BLOWS	P.I.D.	USCS Code	Description	Well Const
				SC	Clayey sand, fine-grained, brown, moist, dense.	\times \t
į					3. Land 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\(\nabla \nabla \)
-22						abla abl
						777
				 +		 ♥ ▼ ▼
أيما				CL	Silty clay, brown, damp, low plasticity, hard.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
-24		13		1		\[\text{\rightarrow} \times \times \times \times \times \\ \text{\rightarrow} \]
	S-25	32 46	2			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		40				\partial \pa
-56-		li				Δ Δ Δ <u>.</u>
j	}					\partial \pa
	ĺ					$\nabla \nabla \nabla$
-28 –						\triansland \trian
	_	-				\rangle \rangl
{	Ц	12 15				$\nabla \nabla \nabla$
-30 🗕	S-30	15	10		Noticeable product odor.	$\triangle \triangle \triangle$
		28				\text{\tinc{\tinc{\tinc{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\exitit{\text{\tinit}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex
İ						\trianslate \trian
-35						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
						<u> </u>
ļ						\trianslate \trian
34-		ا ۱				$\nabla \nabla \nabla$
3 ⁻	H	12 16	13			$\nabla \nabla \nabla \nabla$
1	S-35	29	13			7 2 2
-36-	Γ	29				$\triangle \triangle \triangle$
307						$\triangle \triangle \triangle \triangle$
						7 7 7 7
20						\trianslate \trian
38-						$\nabla \nabla \nabla$
		<u> </u>				0000
40		15	110			
40-	5-40	17 22	110		Very stiff; noticeable product odor.	$\triangle \triangle \triangle$
	3	22				\trianslike{\dagger}{\pi} \trianslike{\pi} \trianslike{\dagger}{\pi} \trianslike{\dagger}{\pi} \
-	į					\rangle \rangl
42						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
ļ			ļ			`▽`▽`▽`
			ļ	SC T	Clayey sand, fine-grained, brown, damp, dense;	
44	 	16			noticeable product odor.	\times \t
	S-45 H	27	4		noticed product odor.	$\nabla \nabla \nabla$
ļ	J 7J	31				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
46-	[T	10			·	\(\sigma\)\(\sigma\)\(\sigma\)
	S-47 H	25	9		Medium-grained.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		29	-			
48-					Total Depth = $47-1/2$ feet.	
50 -						
J 0	-	-				
				ļ		ļ
ĺ	ļ		İ			

ı

	LOG OF BORING B-12	PLATE
Applied GeoSystems	ARCO Station 2152 22141 Center Street	9
PROJECT 69013-6	Castro Valley, California	

Depth of boring: 45-1/2 feet Diameter of boring: 8 inches Date drilled: 1-17-91

Well depth: 38 feet Material type: Sch 40 PVC Casing diameter: 4 inches

Screen interval: 28 to 38 feet Slot size: 0.020-inch

Drilling Company: Exploration GeoServices Driller: Mike and John

Method Used: Hollow-Stem Auger Field Geologist: Steve Bittman

Signature of Registered Professional:

Registration No.: CE 044600 State: CA

Depth	Samp No.		Blows	P.I.D.	USCS Code	Description	Well Const.
- 0 -					0.11	Asphalt.	V V V V V V V V V V V V V V V V V V V
- 2 -					GW CH	Sandy gravel, brown, damp, loose: Fill. Silty clay, dark brown, moist, high plasticity, stiff.	
- 4 -	S-5		23 38 50	0		Brown, damp, hard.	
- 8 - - 10 - - 12 -	S-10		18 34 50	0	CL	Silty clay, dark brown, moist, low plasticity, hard.	
- 14 - - 16 -	S-15		6 12 17	0	CL	Sandy clay, brown, damp, low plasticity, very stiff.	20 20 20 20 20 20 20 20 20 20 20 20 20 2
- 18 - - 20 -	S-20	T	8 9 14	O		(Section continues downward)	

		LOG OF BORING B-13/VW-5	PLATE
Applied (GeoSystems	ARCO Station 2152 22141 Center Street	10
PROJECT:	69013-6	Castro Valley, California	

)epth	Sample No.	BLOWS	P.I.D.	USCS Code	Description	Well Const
-22-				CL	Sandy clay, brown, damp, low plasticity, very stiff.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
-24 -	S-25	17 21 21	6	SC	Clayey sand, medium—grained, gray—brown, damp, dense; noticeable product odor.	
28 –		13 15	190	CL	Silty clay, brown mottled with gray, damp, low plasticity, hard; noticeable product odor.	
32 –	S-30 I	24	190			
34 - 36 -	S-35	11 18 22	220			
38 -	S-40	15 21 34	90			
42 -						
1	S-45	8 17 50	4	SP	Gravelly sand, brown, moist, dense. Total Depth = 45-1/2 feet.	
50 -						

Applied	GeoSystems
PROJECT	69013-6

LOG OF BORING B-13/VW-5

ARCO Station 2152 22141 Center Street Castro Valley, California PLATE

Depth of boring:	45-1/2 feet Diameter of	boring: 8 i	nches Date drille	ed: <u>1-17-91</u>
Weil depth:	N/A Material type:	N/A	Casing diam	eter: N/A
Screen interval:	N/AN/A	Slot size:	N _Z	/A
Drilling Compan	y: Exploration GeoServices	Driller:	Mike and John	
Method Used:	Hollow-Stem Auger	<u></u>	Field Geologist:	Steve Bittman
Sign	ature of Registered Profes	ssional <u>:</u>		
	Registration No.:	State:		

Depth	Sampl No.	e	Blows	P.I.D.	USCS Code	Description	Weil Const.
- 0 -						Asphalt.	V V V V
_					GW	Sandy gravel, brown, damp, loose: Fill.	$\nabla \nabla \nabla \nabla$
- 2 -					СН	Silty clay, brown, damp, high plasticity, hard.	\[\delta \q
- 4		Ţ	8				$\begin{array}{c c} A & A & A \\ A & A & A \\ A & A & A \end{array}$
- 6 -	5-5		34	0			
				I			$\nabla \nabla \nabla \nabla$
- 8 -							$\triangle \triangle \triangle \triangle$
		П	16 29				
- 10 -	S-10		10	0	CL	Silty clay, slightly sandy, brown, low plasticity, hard.	
- 12 -							\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
[-				į	ML	Clayey silt, brown, moist, low plasticity, hard.	$\triangle \triangle \triangle \triangle$
14 -			g				$\begin{array}{c} \triangle \ \triangle \ \triangle \ \triangle \ \triangle \ \triangle \ \triangle \ \triangle \ \triangle \ \triangle $
1 1	< 1. [\mathbf{H}	8				
- 16 -	S-15	·	22	1			$\nabla \nabla \nabla$
							$\triangle \triangle \triangle \triangle$
- 18 -							4 4 4 4
'			8		CH	Silty clay, brown, moist, high plasticity, very stiff.	
- 20 -	S-20	<u>H</u> ,	8 8 13				$ abla \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	3-20		12	0			$\triangle \triangle \triangle \triangle$
						(Section continues downward)	$\triangle \triangle \triangle \triangle$

69013-6

LOG OF BORING B - 14ARCO Station 2152 22141 Center Street Castro Valley, California **PLATE** 12

epth	Sample No.	BLOWS	P.I.D.	USCS Code	Description	Well Cons
22-				CH	Silty clay, brown, moist, high plasticity, very stiff.	2 2 2 2 2 2 2 2 2 2 2 2
24 — 26 —	S-25	10 20 31	0	SP	Gravelly sand, medium—grained with subrounded gravel to 1/4", brown, damp, very dense.	
28 – 30 – 32 –	s-30	10 24 32	a		Increase gravel size.	V V V V V V V V V V V V V V V V V V V
34 —	S-35	12 23 35	2	CL	Silty clay, brown mottled with gray, damp, low plasticity, hard.	V V V
38 - 40 -	S-40	29 48 50	55		Noticeable product odor.	A A A A A A
14 —	S-45	30 50 50	0	GC	Clayey gravel with some sand, brown, damp, very dense Total Depth = $45-1/2$ feet.	A A B A B A B A B A B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B </td
18-						

	LOG OF BORING B-14	PLATE
Applied GeoSystems	ARCO Station 2152 22141 Center Street	13
PROJECT 69013-6	Castro Valley, California	

	10-1/2 feet Diameter of N/A Material type:			
Screen interval:	N/A	Slot size:	N _Z	/A
Drilling Compan	y: Exploration GeoServices	Driller:	Mike and John	
Method Used:	Hollow—Stem Auger		Field Geologist:	Steve Bittman
Sign				
	Registration No.:	State:		

Depth	Samp No.	le	Blows	P.I.D.	USCS Code	Description	Well Const.
							į
F 0 1						Asphalt.	V V V
		П	7		GW	Sandy gravel, brown, damp, loose: Fill.	\trianslate \trian
			12 15				``\`\`\`\`\`\`
- 2	S-2		15	٥	СН	Silty clay, gray, damp, high plasticity, very stiff.	Q Q Q Q
							\$ \$ \$ \$
					-		- → ▽ ▽ ▽ ·
4		П	50 50 50		ML	Clayey silt, brown, dry, low plasticity, hard.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		Н	50				7777
1	5-5		50	0			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
- 6 -			ļ				
							\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		.	ļ				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
- 8 -							\[\sigma \sigma \simma \sigma
[i						\dagger \dagge
		_	15				\ \nabla \tau \nabla \ \ \nabla \ \nabla \ \ \nabla \ \ \nabla \ \ \nabla \ \ \nabla \ \ \nabla \ \ \nabla \ \ \nabla \ \ \nabla \ \ \nabla \ \ \nabla \ \ \nabla \ \ \nabla \ \ \nabla \ \ \nabla \ \ \nabla \ \nabla \ \ \nabla \ \nabla \ \ \nabla \nabla \nabla \ \nabla \nabla \ \nabla \nabla \nabla \nabla \nabla \ \nabla \na
] _]		Ш	37)			
10	S-10		37 50	0			\dagger \dagge
						Total Depth = $10-1/2$ feet.	<u> </u>
1			1			total bepth - 10-1/2 leec.	1
12-		ļ	ł				
		1					
- 14 -		-					
- + -		- 1					
! !			ļ				
,							
- 16 -	1						
-							
		j	})
- 18 🚽	ļ			}			
				ļ			
	}		1	}			
- 20 -]	-					
- 20 7	1	-		1			
ļ		-	ļ	}			
]		İ	1		

Applied	GeoSystems	
PROJECT:	69013-6	

ARCO Station 2152 22141 Center Street Castro Valley, California PLATE 14

,	10-1/2 feet Diameter of N/A Material type:	<u> </u>		
Screen interval:	N/A	Slot size:	N/	/A
Drilling Compan	y: <u>Exploration GeoServices</u>	Driller:	Mike and John	
Method Used:	Hollow—Stem Auger		Field Geologist:	Steve Bittman
Sigr	nature of Registered Profes	ssional:		
	Registration No.:	State:		

	No.	le	Blows	P.I.D.	USCS Code	Description	Well Const.
- 0 -						Asphait.	\(\sigma\) \(\sigma\) \(\sigma\) \(\sigma\)
		П	2		GW	Sandy gravel, brown, damp, loose: Fill.	
- 2 -	5-2		2 4 4	26	СН	Silty clay, gray, moist, high plasticity, stiff; obvious product odor.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
- 4 -			8 17				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
- 6 -	5-5		17 35	0		Brown, damp, hard.	
	!						
- 8 -							
- 10 -	S-10		10 15 45	0	CL	Silty clay, brown, damp, low plasticity, hard.	\[\frac{1}{2} \sqrt{2} \sqrt{2} \qqrt{2} 2
- 12 -						Total Depth = $10-1/2$ feet.	
- 14 -							
- 16 -							
- 18 -			1				
- 20 -							

		LOG OF BORING B-16	PLATE
Applied	GeoSystems	ARCO Station 2152 22141 Center Street	15
PROJECT:	69013-6	Castro Valley, California	

	21—1/2 feet Diameter of N/A Material type:			
	N/A		N,	_
Drilling Company:	: Gregg Drilling Co.	Driller:	Pierce	
Method Used:	Hollow—Stem Auger		Field Geologist:	Mike Barminski
•	iture of Registered Profe Registration No.:	ssional <u>:</u> State:		

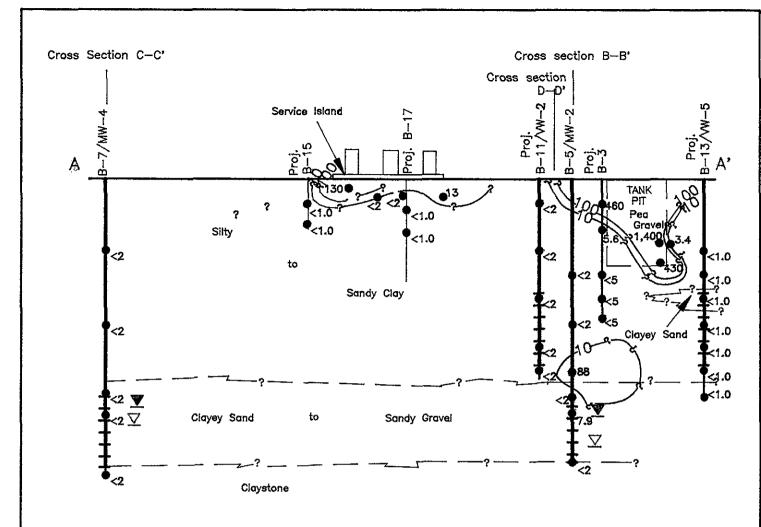
Depth	epth Sample No.		P.I.D.	USCS Code	Description	Well Const.
0 -						, A A A
- 2 -			,		Pea gravel to 5 feet.	\lambda \lambd
- 4 -					Bottom of pea gravel backfill.	\(\delta \q
- 6 -	S-5 S-5.5 S-6		1.1	CL	Silty clay, brown, damp, low plasticity, hard.	
- 8 -					•	
- 10 -	S-10 S-10.5 S-11		3.6		With sand.	
_ 12 -			***************************************			$\begin{array}{c c} & & & & & \\ & & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ \end{array}$
14 -	S-15					
- 16 -	S-15 S-15.5 S-16		2.2			
- 18 -						
- 20 -	S-20.5 S-21		1.3		Mottled brown and green, very hard. Total Depth = $21-1/2$ feet.	\lambda \times \dot \dot \dot \dot \dot \dot \dot \dot

	LOG OF BORING B - 17	PLATE	
Applied GeoSystems	ARCO Station 2152 22141 Center Street	16	
PROJECT: 69013-6	Castro Valley, California		

Depth of boring:	22 feet Diameter of	boring: 8 i	nches Date drille	ed: 2-21-91
Well depth:	N/A Material type:	N/A	Casing diam	eter: N/A
Screen interval:	N/A	Slot size:	N/A	
Drilling Company	: Garret Drilling Co.	Driller:	Pierce	
Method Used:	Hollow—Stem Auger		Field Geologist:	Mike Barminski
Signo				

Depth	Sample No.	Blows	P.I.D.	D. USCS Description		Well Const.	
- 0 -					Cement		
- 2 -					Pea gravel to 5 feet.	$\begin{array}{c c} A & A & A \\ A & A & A \\ A & A & A \\ A & A &$	
	S-3.5		138		Bottom of pea gravel backfill.		
- 4 -			130		Silty clay, brown mottled black, dry, low plasticity, hard; noticeable product odor.	$\begin{array}{c} \triangle \ \triangle \ \triangle \ \triangle \ \triangle \ \triangle \ \triangle \ \triangle \ \triangle \ \triangle $	
- 6 -				CL	•	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
- 8 -	5-8						
- 10-	133			CL	CL Sandy clay, red-brown, damp, low plasticity, hard; noticeable product odor.		
_ 12 -	S-12.5		1078			\(\times \times \	
- 14	S-14				Brown, medium plasticity.	$\begin{array}{c c} A & A & A \\ \hline A & A &$	
- 16 -	S-15 S-15.5 S-16 S-17		27.1		Low plasticity.		
- 18 -				GW	Sandy gravel, brown to dark gray, moist to very moist, dense.		
- 20 -						$\begin{array}{c c} A & A & A & A \\ A & A & A & A \\ A & A &$	
	S-21 II S-21.5	-	1.3			$\begin{array}{c c} \triangle & \triangle & \triangle \\ \hline \triangle & \triangle & \triangle \\ \hline \end{array}$	

Total Depth = 22 feet.

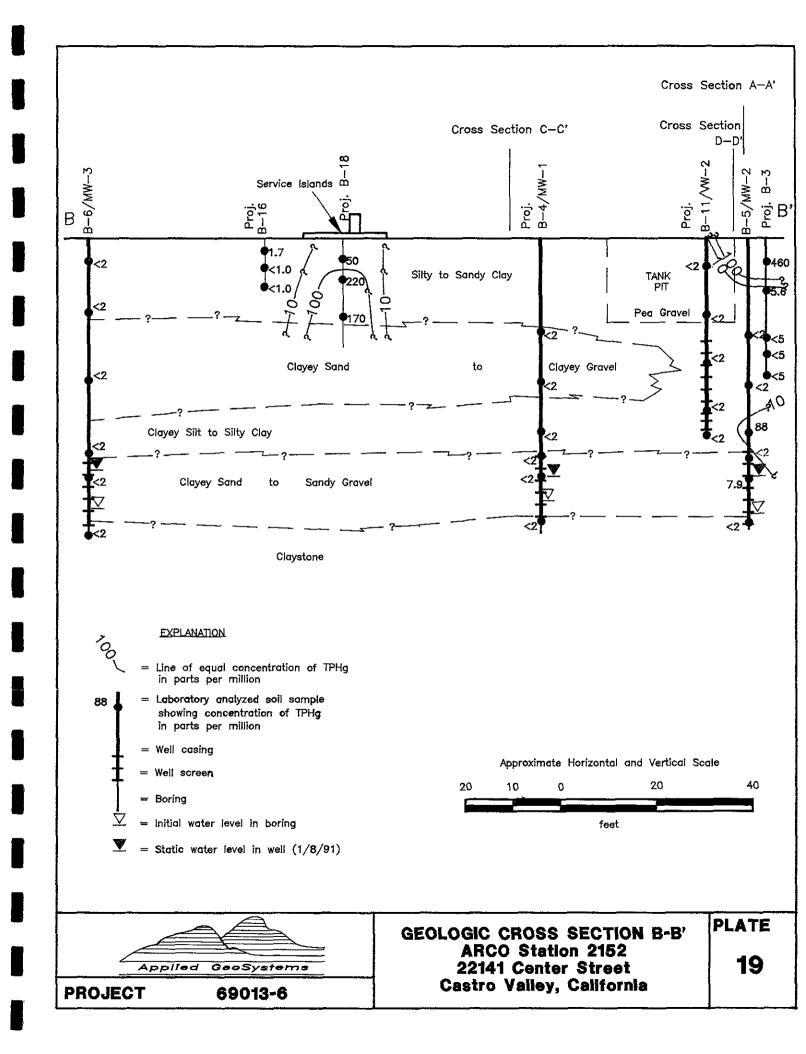

Applied	GeoSystems	
PROJECT:	69013-6	

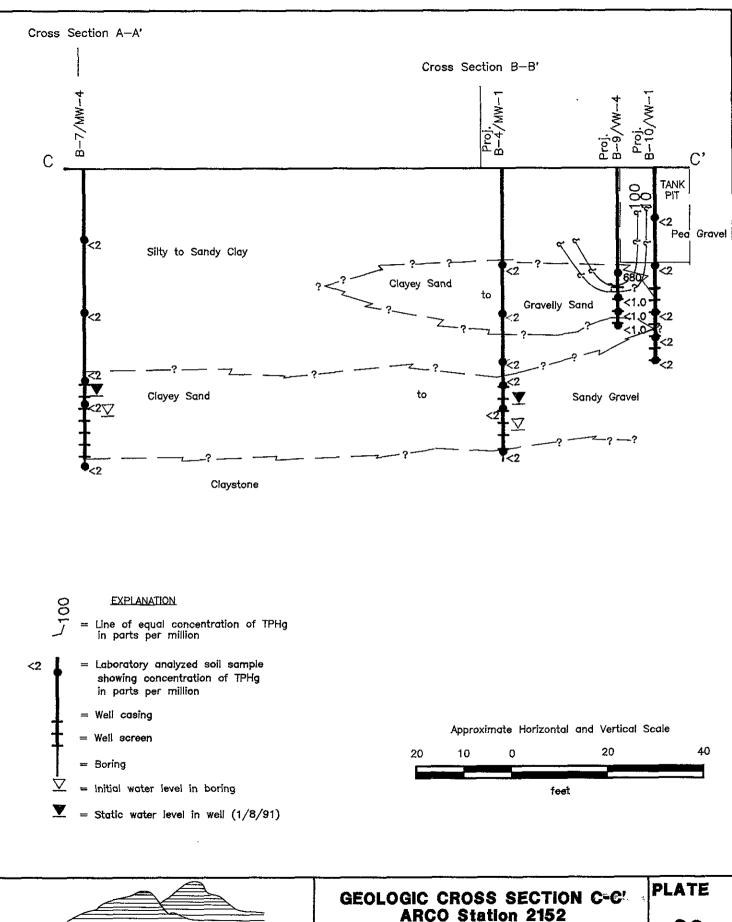
LOG OF BORING B— 18

ARCO Station 2152
22141 Center Street
Castro Valley, California

17

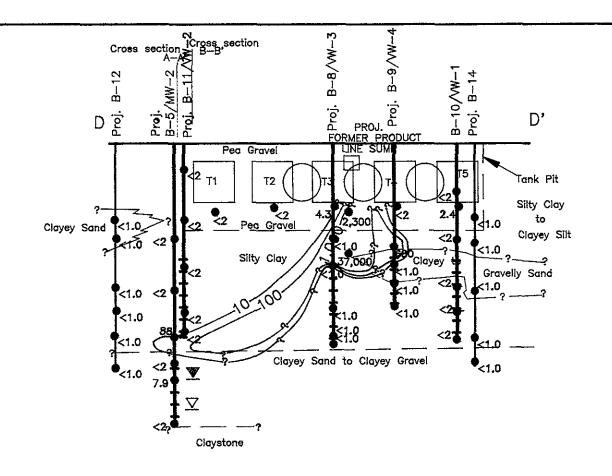
PLATE

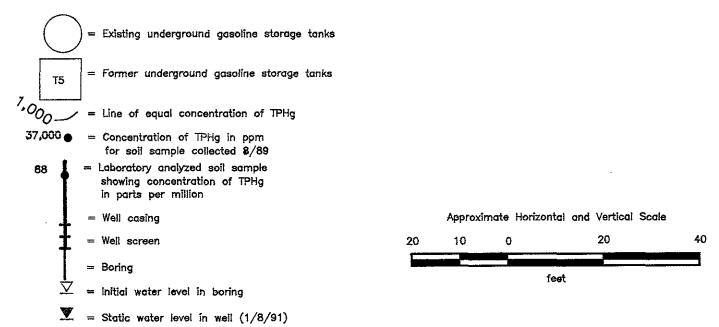

EXPLANATION


_100 = Line of equal concentration of TPHg in parts per million = Laboratory analyzed soil sample 1,400 showing concentration of TPHg in parts per million = Well casing Approximate Harizontal and Vertical Scale = Well screen 20 40 20 10 Q = Boring = Initial water level in boring fost = Static water level in well (1/8/91)

GEOLOGIC CROSS SECTION A-A'
ARCO Station 2152
22141 Center Street
Castro Valley, California

PLATE 18




PROJECT 69013-6

GEOLOGIC CROSS SECTION C=C!
ARCO Station 2152
22141 Center Street
Castro Valley, California

20

EXPLANATION

GEOLOGIC CROSS SECTION D-D'
ARCO Station 2152
22141 Center Street
Castro Valley, California

PLATE

21

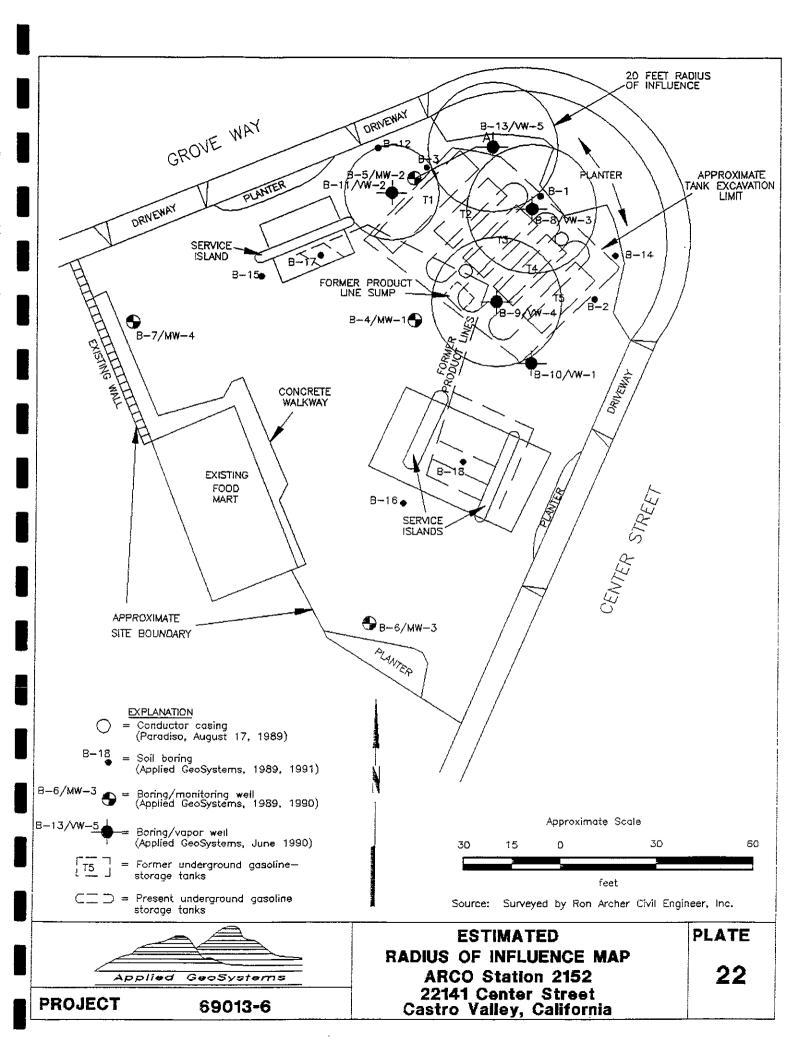


TABLE 1
CUMULATIVE RESULTS OF LABORATORY ANALYSIS OF SOIL SAMPLES
ARCO Station 2152
Castro Valley, California
Page 1 of 3

Date	Sample ID	TPHg	В	T	E	X
4/13/89	S-10-B1	< 2.0	< 0.050	< 0.050	< 0.050	< 0.050
4/13/89	S-20-B1	< 2.0	0.11	0.15	< 0.050	0.19
4/13/89	S-25-B1	< 2.0	0.22	0.34	0.088	0.38
4/13/89	S-30-B1	5.1	0.42	0.89	0.11	0.56
4/13/89	S-35-B1	5.1	0.40	0.72	0.094	0.42
4/13/89	S-40-B1	< 2.0	0.10	< 0.050	< 0.050	< 0.050
4/13/89	S-45-B1	< 2.0	<0.050	< 0.050	< 0.050	< 0.050
4/13/89	S-10-B2	<2.0	< 0.050	< 0.050	< 0.050	< 0.050
4/13/89	S-20-B2	< 2.0	< 0.050	< 0.050	< 0.050	< 0.050
4/13/89	S-25-B2	< 2.0	< 0.050	< 0.050	< 0.050	< 0.050
4/13/89	S-30-B2	< 2.0	< 0.050	< 0.050	< 0.050	< 0.050
4/13/89	S-5-B3	460	5.1	. 34	9.6	51
4/13/89	S-10-B3	5.6	< 0.050	0.11	< 0.050	1.0
4/13/89	S-20-B3	< 2.0	< 0.050	< 0.050	0.055	0.068
4/13/89	S-25-B3	< 2.0	< 0.050	< 0.050	0.17	0.16
4/13/89	S-30-B3	<2.0	< 0.050	< 0.050	< 0.050	< 0.050
6/15/90	S-20-B4	<2.0	< 0.050	< 0.050	< 0.050	< 0.050
6/15/ 9 0	S-29.5-B4	< 2.0	< 0.050	< 0.050	< 0.050	< 0.050
6/15/90	S-40-B4	< 2.0	< 0.050	< 0.050	< 0.050	< 0.050
6/15/90	S-44.5-B4	< 2.0	< 0.050	< 0.050	< 0.050	< 0.050
6/15/90	S-49.5-B4	< 2.0	< 0.050	< 0.050	< 0.050	< 0.050
6/15/90	S-59-B4	<2.0	<0.050	< 0.050	< 0.050	< 0.050
6/14/90	S-20-B5	<2.0	< 0.050	< 0.050	< 0.050	0.077
6/14/90	S-30-B5	< 2.0	0.17	< 0.050	< 0.050	0.16
6/14/90	S-40-B5	88	2.1	7.2	1.8	13
6/14/90	S-45-B5	< 2.0	< 0.050	< 0.050	< 0.050	< 0.050
6/14/90	S-49.5-B5	7.9	< 0.050	< 0.050	< 0.050	0.096
6/14/90	S-59-B5	< 2.0	< 0.050	< 0.050	< 0.050	< 0.050
6/12/90	S-5-B6	<2.0	< 0.050	< 0.050	< 0.050	< 0.050
6/12/90	S-15-B6	< 2.0	< 0.050	< 0.050	< 0.050	< 0.050
6/12/90	S-29.5-B6	< 2.0	< 0.050	< 0.050	< 0.050	< 0.050
6/12/90	S-44.5-B6	< 2.0	< 0.050	< 0.050	< 0.050	< 0.050
6/12/90	S-49.5-B6	< 2.0	< 0.050	< 0.050	< 0.050	< 0.050
6/12/90	S-62-B6	< 2.0	< 0.050	< 0.050	< 0.050	< 0.050

See notes on page 3 of 3.

TABLE 1
CUMULATIVE RESULTS OF LABORATORY ANALYSIS OF SOIL SAMPLES
ARCO Station 2152
Castro Valley, California
Page 2 of 3

Date	Sample ID	ТРНд	В	Т	E	X
6/13/90	S-5-B7	<2.0	< 0.050	< 0.050	< 0.050	< 0.050
6/13/90	S-15-B7	< 2.0	< 0.050	< 0.050	< 0.050	< 0.050
6/13/90	S-30-B7	< 2.0	< 0.050	< 0.050	< 0.050	< 0.050
6/13/90	S-44.5-B7	< 2.0	< 0.050	0.10	< 0.050	0.093
6/13/90	S-49-B7	< 2.0	< 0.050	< 0.050	< 0.050	< 0.050
6/13/90	S-61-B7	< 2.0	< 0.050	< 0.050	< 0.050	< 0.050
1/16/91	S-20-B8	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
1/16/91	S-15-B8	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
1/16/91	S-33-B8	<1.0	0.006	< 0.005	< 0.005	< 0.005
1/16/91	S-39-B8	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
1/16/91	S-22-B9	680	< 0.005	19	16	91
1/16/91	S-26-B9	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
1/16/91	S-29-B9	<1.0	0.006	< 0.005	< 0.005	< 0.005
1/16/91	S-33-B9	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
6/18/90	S-10-B10	<2.0	< 0.05	< 0.05	< 0.05	< 0.05
6/18/90	S-20-B10	< 2.0	< 0.05	< 0.05	< 0.05	< 0.05
6/18/90	S-30-B10	< 2.0	< 0.05	< 0.05	< 0.05	< 0.05
6/18/90	S-35-B10	< 2.0	< 0.05	< 0.05	< 0.05	< 0.05
6/18/90	S-40-B10	< 2.0	< 0.05	< 0.05	< 0.05	< 0.05
6/18/90	S-5-B11	< 2.0	< 0.05	< 0.05	< 0.05	< 0.05
6/18/90	S-15-B11	< 2.0	< 0.05	< 0.05	< 0.05	< 0.05
6/18/90	S-25-B11	< 2.0	< 0.05	< 0.05	< 0.05	< 0.05
6/18/90	S-35-B11	< 2.0	< 0.05	< 0.05	< 0.05	< 0.05
6/18/90	S-40-B11	< 2.0	< 0.05	< 0.05	< 0.05	< 0.05
1/16/91	S-15-B12	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
1/16/91	S-30-B12	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
1/16/91	S-35-B12	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
1/16/91	S-40-B12	<1.0	0.028	< 0.005	< 0.005	< 0.005
1/16/91	S-47-B12	<1.0	0.028	< 0.005	< 0.005	0.006
1/16/91	S-15-B13	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
1/16/91	S-20-B13	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
1/16/91	S-25-B13	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
1/16/91	S-30-B13	<1.0	0.033	< 0.005	< 0.005	0.018
1/16/91	S-35-B13	<1.0	0.030	< 0.005	< 0.005	< 0.005
1/16/91	S-40-B13	<1.0	0.096	< 0.005	< 0.005	< 0.005
1/16/91	S-45-B13	<1.0	< 0.005	< 0.005	< 0.005	< 0.005

See notes on page 3 of 3.

TABLE 1 CUMULATIVE RESULTS OF LABORATORY ANALYSIS OF SOIL SAMPLES ARCO Station 2152 Castro Valley, California Page 3 of 3

Date	Sample ID	ТРНд	В	Т	E	х
1/16/91	S-15-B14	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
1/16/91	S-20-B14	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
1/16/91	S-30-B14	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
1/16/91	S-40-B14	<1.0	< 0.005	< 0.005	< 0.005	0.007
1/16/91	S-45-B14	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
1/16/91	S-5-B15	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
1/16/91	S-10-B15	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
1/16/91	S-2-B16	1.7	0.037	< 0.005	0.080	< 0.005
1/16/91	S-5-B16	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
1/16/91	S-10-B16	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
2/14/91	S-51/2-B17*	<1.0	< 0.005	< 0.005	< 0.005	0.007
2/14/91	S-10-B17*	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
2/14/91	S-4-B18*	50	0.12	1.2	0.62	4.3
2/14/91	S-8-B18*	220	0.31	7.3	5.5	36
2/14/91	S-151/2-B18*	170	0.84⊹	9.0	4.4	24
1/29/91	S-0129- SP1,2,3,4*	< 0.5	<0.005	< 0.005	< 0.005	< 0.005
4/11/91	S-0411- 1A,B,C,D	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050

Results in parts per million (ppm).

TPHg: Total petroleum hydrocarbons as gasoline (analyzed by EPA Method 5030).

B:benzene T:toluene E:ethylbenzene X:total xylene isomers

BTEX analyzed by EPA Method 8020.

*: Selected samples analyzed for Organic Lead (by California Luft method [12/87]) and nondetectable concentrations (see lab sheets for detection limits) were reported in all samples.

Sample ID: S-40-B11 S-0129-SP1,2,3,4

Boring number Composite sample
Approximate sample depth in feet Soil Sample

Soil Sample

TABLE 2 VAPOR-EXTRACTION TEST FIELD MONITORING DATA ARCO Station 2152 Castro Valley, California

Extraction Point VW-5

Influent Air Stream			Monitoring Wells				
Flow	Concen- tration	Vacuum	Temp.	<u>VW-2</u> Vacuum	<u>VW-3</u> Vacuum	VW-4 Vacuum	<u>VW-1</u> Vacuum
>50	<400	40	72	< 0.01	.04	< 0.01	< 0.01
>50	400	42	72	< 0.01	.04	< 0.01	< 0.01
>50	400	42	72	< 0.01	.04	< 0.01	< 0.01
>50	<400	42	72	< 0.01	.04	< 0.01	< 0.01
>50	<400	42	72	< 0.01	.04	< 0.01	< 0.01
Distanc	e from extract	ion well VW	-5 (feet):	29.0	27.7	48.4	61.9

Extraction Point VW-1

Influent Air Stream				Monitoring Wells				
Flow	Concen- tration	Vacuum	Temp.	VW-2 Vacuum	VW-3 Vacuum	VW-4 Vacuum	VW-5 Vacuum	
>50	200	42	72	< 0.01	< 0.01	.08	.01	
>50	200	48	72	< 0.01	< 0.01	.09	.01	
>50	< 200	48	72	< 0.01	< 0.01	.08	.01	
>50	< 200	48	70	< 0.01	0.01	.08	.01	
>50	<200	48	70	< 0.01	0.01	.08	.01	
Distanc	e from extract	ion well VW	-1 (feet):	61.3	34.5	17.7	61.9	

Flow measured in cubic feet per minute (cfm).

Concentration measured in parts per million by volume (ppmv) on Photoionization Meter.

Vacuum measured in inches of water column vacuum.

Temperature measured in degrees Fahrenheit.

TABLE 2 VAPOR-EXTRACTION TEST FIELD MONITORING DATA ARCO Station 2152 Castro Valley, California

Vapor Sample	Taken	Elapsed			Ethyl-		
number	from	time	Benzene	Toluene	benzene	Xylenes	TPH
AS-0215-1	VW-1 inf	20	<85	340	140	840	43
AS-0215-2	VW-2 inf	20	< 85	13,000	2,500	5,800	3,400
AS-0215-3	VW-3 inf	20	< 85	<250	68	430	<30
AS-0215-4	VW-5 inf	15	3,600	480	1,600	6,100	170
AS-0215-5	VW-5 inf	120	400	< 250	230	880	36
AS-0215-6	VW-5 eff	125	< 85	<250	230	1,700	<30
AS-0215-7	VW-1 inf	5	92	<250	140	1,000	<30
AS-0215-8	VW-1 inf	120	<85	620	270	1,400	110

All measurements are in parts per billion by volume (ppbv); except 1) Time, which is measured in minutes, and 2) TPH, which is measured in parts per million by volume (ppmv).

APPENDIX A

Previous Work

PREVIOUS WORK

May 1989 Limited Site Assessment

AGS performed a limited site assessment (AGS, May 26, 1989) to evaluate the presence of gasoline hydrocarbons in soil near the underground gasoline-storage tanks prior to ARCO's planned tank replacement at the site. The work involved drilling three soil borings (B-1 through B-3) close to the fill ends of the tanks. The locations of these borings are shown on Plate 2. Results of laboratory analysis of soil samples from the borings indicated nondetectable concentrations (<5.0 ppm) of gasoline hydrocarbons, with the exception of two samples collected from depths of 30 and 35 feet in boring B-1 (5.1 ppm TPHg) and two samples collected from depths of 5 and 10 feet in boring B-3 (460 and 5.6 ppm TPHg, respectively). Ground water was not encountered in the borings to a depth of 45 feet. Results of laboratory analyses of soil samples collected during the drilling are summarized in Table 1, Cumulative Results of Laboratory Analysis of Soil Samples.

August through October 1989 Tank Removal and Replacement

The former underground gasoline-storage tanks and product-dispenser lines were removed from the site by Paradiso Construction Company on August 17, 1989 and from September 9 through October 4, 1989, respectively (AGS, January 1990). No holes were noted in the tanks during removal. AGS was present to collect soil samples from the former tank pit from depths of 14 to 22 feet. The results of the laboratory analyses of soil samples from the gasoline-tank pit indicated elevated concentrations (up to 37,000 ppm) of TPHg in soil at depths of 14 and 22 feet beneath the former product line sump. AGS also collected soil samples from beneath the former product-dispenser lines. TPHg concentrations ranging from <2.0 ppm to 73 ppm were reported in 11 soil samples collected from beneath the lines at a depth of approximately three feet, and TPHg concentrations of 100 to 190 ppm were reported in soil samples from the southwestern ends of the dispenser islands near Grove Way and Center Street. Results of laboratory analyses of the samples collected from the former tank pit and beneath the former product lines are presented on Tables A1 and A2, respectively, in this Appendix A.

Approximately 1,850 cubic yards of soil excavated from the gasoline-tank pit and the product-dispenser line trenches was aerated onsite between August 21 and October 10, 1989 in accordance with Regulation 8, Rule 40 of the BAAQMD. AGS collected composite soil samples from the aerated soil to verify TPHg concentrations of 100 ppm or lower. Paradiso arranged for the soil to be transported to Redwood Landfill in Novato, California by Conrad Trucking of Escalon, California. Three new 12,000-gallon fiberglass tanks were

installed at the site by others along with new product delivery lines in September 1989. It is understood that four 12-inch diameter polyvinyl chloride (PVC) conductor casings were positioned between the tanks to provide access for future exploratory drilling and/or well installation.

It was concluded that the vertical extent of gasoline hydrocarbons in soil beneath the former tanks had not been delineated. It was also concluded that the lateral extent of gasoline hydrocarbons in the area of the former tanks above depths of approximately 14 feet appeared to be limited to the tank-pit area, with the possible exception of the northwestern side of the tank pit, and that the extent of gasoline hydrocarbons was not delineated near the southwestern ends of the dispenser islands.

June through September 1990 Subsurface Investigation

In June 1990, AGS conducted a subsurface investigation to evaluate the extent of gasoline hydrocarbons in soil and ground water beneath the site. This work included drilling six soil borings (B-4 through B-7, B-10, and B-11), constructing four 4-inch-diameter ground-water monitoring wells (MW-1 through MW-4), constructing two 2-inch-diameter vadose zone monitoring wells (VW-1 and VW-2), collecting soil samples for laboratory analysis, developing the wells, collecting water samples for laboratory analysis, evaluating the ground-water flow direction and gradient, performing a well search, and preparing a report documenting the findings and conclusions. The results of this investigation were as follows:

- o first encountered ground water is at a depth of approximately 50 feet and the direction of ground-water flow is toward the southwest. Sampling of wells MW-1 through MW-4 indicated nondetachable concentrations of TPHg and BTEX. The results of ground-water sampling at the site are shown on Table A-3 in Appendix A.
- soil has not been impacted in the areas of borings B-4 through B-7, B-10 and B-11, with the exception of boring B-5, where 88 ppm TPHg and 7.9 ppm TPHg were reported in samples from 40 and 49-1/2 feet, respectively. The results of laboratory analysis of soil samples are shown on Table 1.
- a well research with Alameda County Public Works Department (ACPWD) indicated 11 wells within 1/2-mile of the site. Four of these wells are used for irrigation; four wells for ground-water monitoring; and one well for domestic purposes. The uses of the other two wells are unknown. The irrigation wells are between 24 and 260 feet deep; have reported water levels of 5 to 35 feet below the ground surface; and are constructed of 4- to 8-inch diameter casing. The exact locations of two of these

irrigation wells are unknown. The monitoring wells are located north of the site at a Texaco retail station and are listed as 30 to 45 feet deep; have reported water levels of 20 to 28 feet below the ground surface; and were constructed of 2- or 4-inch diameter casing in December 1987. The domestic well is 365 feet deep; has a reported water level of 208 feet below the ground surface; and was constructed of 10-inch diameter casing in July 1976. The location of this domestic well is unknown, but it is listed as being situated in a section approximately 1/4-mile southwest of the site. No location for one of the wells of unknown use was available.

Based on the results of the subsurface investigation, it was concluded that:

- elevated concentrations of gasoline hydrocarbons previously reported beneath the former gasoline-storage tanks and product line sump appear to be limited laterally to the tank pit area, with the possible exception of the areas northwest of the tank pit near boring B-3, and the northeastern corner of the tank pit;
- o the vertical extent of gasoline hydrocarbons in soil beneath the former tank pit, and the lateral and vertical extent of gasoline hydrocarbons by the dispenser islands have not been delineated;
- the June 25 and 26, 1990 ground-water sampling episode indicated the presence of low levels of gasoline hydrocarbons as suggested by concentrations of TPHg (27 to 64 ppb) in wells MW-1 through MW-3, benzene (0.63 and 0.65 ppb) in wells MW-1 and MW-3, and toluene (1.5 ppb) and total xylenes (2.0 ppb) in well MW-3. These levels are below regulatory action levels. The September 26, 1990 sampling indicated nondetectable levels of gasoline hydrocarbons in MW-1 through MW-4 (see Table A3 in Appendix A).

1st Quarter 1991 Quarterly Monitoring

Quarterly monitoring at the site has been performed since June 1990, when wells were installed. Quarterly monitoring for the first quarter 1991 was performed on January 8, 1991 (AGS, March 1991). Laboratory analysis of ground-water samples obtained from wells MW-1 through MW-4 during this episode of quarterly ground-water monitoring by AGS reported nondetectable levels of gasoline hydrocarbons in the water samples collected from these four wells. These results are reported in Table A3, Cumulative Results of Laboratory Analyses of Ground-Water. The ground-water gradient evaluated from ground-water elevation data collected between June 1990 and January 1991 has remained consistent since June 1990, approximately 0.004 to the southwest.

TABLE A1 RESULTS OF LABORATORY ANALYSES OF TANK-PIT SOIL SAMPLES ARCO Station 2152 Castro Valley, California

Date	Sample #	ТРНд	В	Т	E	x
Tank-Pit Excar	vation	,				
08/18/89	S-14-T1S	<2	0.24	< 0.05	< 0.05	< 0.05
08/18/89	S-13-T2S	<2	< 0.05	< 0.05	< 0.05	< 0.05
08/18/89	S-13-T3S	4.3	0.09	< 0.05	< 0.05	< 0.05
08/18/89	S-13-T4S	<2	< 0.05	< 0.05	< 0.05	< 0.05
08/18/89	S-13-T5S	2.4	< 0.05	< 0.05	< 0.05	< 0.05
08/18/89	S-14-T1N	1,400	0.72	6.1	11	130
08/18/89	S-13-T2N	<2	0.076	< 0.05	1.1	8.5
08/18/89	S-13-T3N	12	0.29	0.29	0.22	1.3
08/18/89	S-13-T4N	4.4	< 0.05	< 0.05	< 0.05	0.23
08/18/89	S-13-T5N	700	4.6	2.0	4.6	83
08/18/89	S-18-T1N	430	< 0.05	< 0.05	1.1	8.5
08/18/89	S-18-T2N	<2	0.076	< 0.05	< 0.05	0.092
08/18/89	S-19-T3N	93	0.11	0.11	0.74	3.5
08/18/89	S-19-T4N	<2	< 0.05	< 0.05	< 0.05	< 0.05
08/18/89	S-19-T5N	3,800	< 0.05	15	18	150
08/24/89	S-22-T5N	6.5	< 0.05	0.36	0.093	0.82
08/22/89	S-14-NW1	<2	< 0.05	< 0.05	< 0.05	< 0.05
08/22/89	S-14-EW1	<2	< 0.05	< 0.05	< 0.05	< 0.05
08/30/89	S-14-NW2	3.4	< 0.005	< 0.005	< 0.005	.030
08/30/89	S-14-WW1	<1	< 0.005	< 0.005	< 0.005	< 0.005
08/30/89	S-14-SF1	<1	< 0.005	< 0.005	< 0.005	< 0.005
08/30/89	S-14-SF2	<1	< 0.005	< 0.005	< 0.005	< 0.005
08/30/89	S-14-VR1	2,300	<2	<2	19	146
08/30/89	S-22-VR1	37,000	<40	510	38	2,600

Results in milligrams per kilogram (mg/kg) or parts per million (ppm).

Sample Identification:

S-14-T1S

└ Area of sample (See Plate A1)

- Approximate sample depth in feet below grade

— Soil sample

TPHg: Total petroleum hydrocarbons as gasoline

B: Benzene T: Toluene E: Ethylbenzene X: Total xylenes

<: Less than the detection limit for the analysis method.

TABLE A2 RESULTS OF LABORATORY ANALYSES OF PRODUCT-LINE SOIL SAMPLES ARCO Station 2152 Castro Valley, California

Date	Sample #	TPHg	В	T	E	x
Center Str	eet Dispensers					
09/06/89	S-4-PL3	43	1.0	3.2	0.74	4.0
09/06/89	S-2-PL9	4.9	0.24	0.18	0.16	0.64
09/06/89	S-4-PL10	3.4	0.21	0.18	0.11	0.25
09/06/89	S-3.5-PL11	43	1.0	3.2	0.74	4.0
09/06/89	S-2-PL12	73	0.13	< 0.050	0.60	3.6
09/11/89	S-3-PL14	<2	< 0.050	< 0.050	< 0.050	< 0.050
09/11/89	S-3.5-PL15	<2	< 0.050	< 0.050	< 0.050	0.087
09/15/89	S-3-PL16	21	0.14	0.84	0.42	2.5
09/15/89	S-3-PL17	190	0.85	7.4	2.3	14
09/15/89	S-3-PL18	100	0.72	3.3	1.2	7.2
09/15/89	S-2.5-PL19	<2	< 0.050	< 0.050	< 0.050	< 0.050
09/15/89	S-3-PL20	<2	< 0.050	< 0.050	< 0.050	< 0.050
09/15/89	S-5-PL21	<2	< 0.050	< 0.050	< 0.050	< 0.050
09/15/89	S-3-PL22	<2	< 0.050	< 0.050	< 0.050	< 0.050
rove Street	Dispensers					
09/06/89	S-1.5-PL1	130	1.6	3.8	2.4	13
09/19/89	S-4-PL22	13	0.20	0.97	0.16	1.2
10/04/89	S-3-PL25	<2	< 0.050	< 0.05	< 0.050	< 0.050
10/04/89	S-3-PL26	<2	< 0.050	< 0.050	< 0.050	< 0.050

Results in milligrams per kilogram (mg/kg) or parts per million (ppm).

TPHg: Total petroleum hydrocarbons as gasoline

B: Benzene T: Toluene E: Ethylbenzene X: Total xylenes

<: Less than the detection limit for the analysis method.

Sample identification:

S-4-PL3

Area of sample (See Plate A2)

Approximate sample depth in feet below grade

Soil sample

TABLE A3 CUMULATIVE RESULTS OF LABORATORY ANALYSES OF GROUND WATER ARCO Station 2152 Castro Valley, California

Well	Date	TPHg	В	Т	E	X
MW-1	06/26/90	64	0.63	<0.50	< 0.50	<0.50
	09/26/90	<50	< 0.50	< 0.50	< 0.50	< 0.50
	01/08/91	<50	< 0.50	< 0.50	< 0.50	< 0.50
MW-2	06/26/90	27	< 0.50	< 0.50	< 0.50	< 0.50
	09/26/90	<50	< 0.50	< 0.50	< 0.50	< 0.50
	01/08/91	<50	< 0.50	< 0.50	< 0.50	< 0.50
MW-3	06/25/90	52	0.65	1.5	< 0.50	2.0
	09/26/90	<50	< 0.50	< 0.50	< 0.50	< 0.50
	01/08/91	<50	< 0.50	< 0.50	< 0.50	< 0.50
MW-4	06/25/90	<20	< 0.50	<0.50	< 0.50	< 0.50
	09/26/90	<50	< 0.50	< 0.50	< 0.50	< 0.50
	01/08/91	< 50	< 0.50	< 0.50	< 0.50	< 0.50

Results in parts per billion (ppb).

TPHg: Total petroleum hydrocarbons as gasoline

B:benzene T:toluene E:ethylbenzene X:total xylene isomers

APPENDIX B

Permit

LAMEDA COUNTY FLOOD CONTROL AND WATER CONSERVATION SERVATION

397 PARKSIDE DRIVE

PLEASANTON, CALIFORNIA 94588

415) -84-2500

3 January 1991

Applied GeoSystems 3315 Almaden Expressway, Ste. 34 San Jose, CA 95118

Gentlemen:

Enclosed is Groundwater Protection Ordinance permit 91001 for a monitoring well construction project at 22141 Center Street in Castro Valley for Arco Products Company.

Please note that permit condition A-2 requires that a well construction report be submitted after completion of the work. The report should include drilling and completion logs, location sketch, and permit number.

If you have any questions, please contact Wyman Hong or Craig Mayfield at 484-2600.

Very truly yours,

J. Killingstad, Chief Water Resources Engineering

WH:mm Enc.

APPLICANT'S SIGNATURE

ALAMEDA COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT

5997 PARKSIDE DRIVE

PLEASANTON, CALIFORNIA 94566

(415) 484-2600

121989

GROUNDWATER PROTECTION ORDINANCE PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
LOCATION OF PROJECT 22141 Center St	PERMIT NUMBER 91001
Castro Valley, CA	LOCATION NUMBER
(ARCO AMPIN)	
Address Box 5811 Phone (415) 571-2435	PERMIT CONDITIONS Circled Permit Requirements Apply
74302	on cred remain head trements Appro
APPLICANT Teve Bittman Applied Geos stems Iddress 3315 Almaden Exp Phone City San Jose (A Zip 991 95118) PE OF PROJECT	 (A.) GENERAL I. A permit application should be submitted so as to arrive at the Zone 7 office five days prior to proposed starting date. 2. Submit to Zone 7 within 60 days after completion of permitted work the original Department of
Well Construction Cathodic Protection Water Supply Monitoring Geotechnical Investigation General Contamination Well Destruction	Water Resources Water Well Drillers Report or equivalent for well projects, or drilling logs and location sketch for geotechnical projects. 3. Permit is void if project not begun within 90
OPOSED WATER SUPPLY WELL USE mestic Industrial Other funicipal Irrigation	days of approval date. B. WATER WELLS, INCLUDING PIEZOMETERS I. Minimum surface seal thickness is two inches of cement grout placed by tremie. 2. Minimum seal depth is 50 feet for municipal and
ILLING METHOD: ud Rotary Air Rotary Auger X able Other	industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Minimum seal depth for monitoring wells is the maximum depth practicable
RILLER'S LICENSE NO. C57 484288	or 20 feet.
LL PROJECTS Drill Hole Diameter 10 in. Maximum Casing Diameter 4 in. Depth 50ft. Surface Seal Depth 10 ft. Number 2	C. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings.
Number of Borings Maximum Hole Diameter in. Depth ft.	D. CATHODIC. FILL hole above anode zone with concrete placed by tremie.E. WELL DESTRUCTION. See attached.
TIMATED STARTING DATE Jan 17 1991	
hereby agree to comply with all requirements of this	W

APPENDIX C

Field Protocol

FIELD PROTOCOL

Site Safety Plan

Field work performed by Applied GeoSystems at the site on behalf of ARCO Products Company (ARCO) was conducted in accordance with Applied GeoSystems Site Safety Plan 69013-3S, dated May 8, 1990. This plan describes safety requirements for the evaluation of gasoline hydrocarbons in soil and ground water, including drilling of soil borings and installing of monitoring wells at the site. The Site Safety Plan is applicable to personnel of Applied GeoSystems and its subcontractors. Applied GeoSystems personnel (and subcontractors of Applied GeoSystems) scheduled to perform the work at the site were briefed on the contents of the Site Safety Plan before the work began. A copy of the Site Safety Plan was available at the site for reference by appropriate parties during the work. The Staff Geologist of Applied GeoSystems was the Site Safety Officer.

Drilling of Borings for Soil Sample Collection

The borings were drilled with a truck-mounted drill rig using six to 10-inch-diameter, hollow stem augers to depths of approximately 40 feet below ground surface. Drilling equipment was steam-cleaned prior to use and between borings at the site. The drilling was performed under the direction of an Applied GeoSystems field geologist who maintained a continuous log of the materials encountered and classified them by the Unified Soil Classification System, Plate 3.

Soil samples were collected by advancing the boring to a point immediately above the sampling depth and driving a California-modified split-spoon sampler (2-1/2-inch inside-diameter) through the hollow center of the auger into the soil with a standard 140-pound hammer repeatedly dropped 30 inches. The sampler was driven 18 inches, and the number of blows to drive the sampler each 6-inch increment was counted and recorded as an indication of the relative consistency of the soil.

The samples were removed from the sampler and one of the brass sleeves was promptly sealed with aluminum foil and plastic caps, and wrapped with aluminized tape. This soil sample was then labeled and placed in iced storage for laboratory analysis. A second brass-sleeved soil sample was sealed and stored separately to be available for sieve analysis.

The sampler was cleaned prior to use at the site and between sampling intervals using Alconox, and rinsed with deionized water. Brass sleeves were steam-cleaned prior to being used for soil sampling.

Field Analysis

Soil samples from each sampling interval were evaluated for concentrations of organic vapor in the field using a Thermo Environmental Instruments Inc. Model 580A Portable Organic Vapor Meter (OVM). The OVM was field calibrated to isobutylene before being used on soil samples. A portion of soil from each sample interval was placed and sealed in a resealable, zipper-type plastic bag to allow volatilization of hydrocarbons. Vapor readings were collected by placing the OVM intake port in the headspace inside the plastic bag. Field instruments such as the OVM are capable of measuring relative concentrations of vapor content, but cannot be used to measure concentrations of hydrocarbons in soil with the accuracy of laboratory analysis. The OVM readings are presented on the Logs of Borings.

Drill Cuttings

Drill cuttings generated from borings B-8, B-9, and B-12 through B-16 and drill cuttings generated from borings B-17 and B-18 were stockpiled on and covered by plastic sheets. Based on the results of laboratory testing of two composite samples from the stockpiles, on February 7, 1991, Balch Petroleum, Inc. of Milpitas, California, was present at the site to remove approximately three cubic yards of soil generated from soil borings B-8, B-9, and B-12 through B-16 to a Class III landfill, and on May 13, 1991, Caballero Trucking, San Jose, California was present at the site to remove approximately two cubic yards of soil generated from soil borings B-17 and B-18 to a Class III landfill.

Sampling of Stockpiled Soil

Composite soil samples were obtained by first evaluating relatively high, average, and low areas of hydrocarbon concentration by digging approximately one foot into the stockpile and placing the intake probe of the OVM against the surface of the soil; and then collecting one sample from the "high" reading area, and three from the "average" areas. Samples were collected by removing the top one to two feet of soil, then driving steam-cleaned brass sleeves into the soil. The samples were handled and transported to the laboratory as described above. Compositing was performed at the laboratory.

Vapor Extraction Well Construction

The three vapor extraction wells were constructed using clean 4-inch diameter, threaded Schedule 40 polyvinyl chloride (PVC) casing. Each well was screened from approximately 32 to 40 feet) using machine slotted PVC casing with 0.020-inch wide slots. Blank PVC casing was used in each well from ground surface to a depth of approximately 25 feet. No chemical cements, glues, or solvents were used in well construction. Each casing bottom was sealed with a threaded end-plug.

The annular space of each well was backfilled with No. 2 sand (or similar) to approximately two feet above the top of the screened casing. A 1 to 2 foot thick bentonite plug was placed above the san as a seal against cement entering the filter pack. The remaining annulus was backfilled with an 11 sack sand cement slurry to approximately 1 foot below the existing grade.

An aluminum traffic rated utility box with PVC apron was placed over each wellhead and set in concrete placed flush with the surrounding surface. Each wellhead was sealed with a water tightly licking cap and securing with a lock.

PROJ. NO. PROJECT NAME 69013-6 ARCO 2152 (C) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S	
PO NO SAMPLERS (Signature)	
DATE TIME Soil Sont-ainers & Sol REMARKS I.D. NU	
2-14-9 $ 3-4-15 8$ $ 3 X X N $	
5-8-B18 1 1 X X V	
2-21-91 S-15 ± 8/8 1 1 × X Composite 5 samples for C	org Pb
2-21-11 S-13 ± 818 S-8±-B17 XX	
S-10-B17 XX	
	
	<u> </u>
RELINQUISHED BY (Signature): DATE / TIME RECEIVED BY (Signature): Laboratory: Applied Analytical Applied Analytical RELINQUISHED BY (Signature): DATE / TIME RECEIVED BY (Signature): RELINQUISHED BY (Signature): DATE / TIME RECEIVED BY (Signature): DAT	3
Express # Turn Around: 1 Week Proj. Mgr.: Sta. B. Th	nan

APPLIED ANALYTICAL

Environmental Laboratories

12501 Alprae St. Buite 100 Fremont, CA 94538 Bus (415) 623-0775 Fax (415) 651-8647

ANALYSIS REPORT

			1020Iab.frm
Attention:	Mr. Steve Bittman	Date Sampled:	01-17-91
	Applied GeoSystems	Date Received:	01-21-91
	3315 Almaden Expressway	BTEX Analyzed:	01-29-91
	San Jose, CA 95118	TPHg Analyzed:	01-29-91
Project:	AGS 69013-6	TPHd Analyzed:	NR
110,000	1102 07010	Matrix:	Soil
		Ethyl- Total	

Detection Limit:	Benzene ppm 0.005	Toluene ppm 0.005	Ethyl- benzene <u>ppm</u> 0.005	Total Xylenes ppm 0.005	TPHg ppm 1.0	TPHd ppm 10
SAMPLE Laboratory Identificat	tion					
S-5-B16 S1101296	ND	ND	ND	ND	ND	NR
S-10-B16 S1101297	ND	ND.	ND	ND	ND - ;	NR

ppm = parts per million = mg/kg = milligrams per kilogram.

ND = Not detected. Compound(s) may be present at concentrations below the detection limit.

NR = Analysis not requested.

ANALYTICAL PROCEDURES

BTEX- Benzene, toluene, ethylbenzene, and total xylene isomers (BTEX) are measured by extraction using EPA Method 5030 followed by analysis using EPA Method 8020/602, which utilizes a gas chromatograph (GC) equipped with a photoionization detector (PID) and a flame-ionization detector (FID) in series.

TPHg-Total petroleum hydrocarbons as gasoline (low-to-medium boiling points) are measured by extraction using EPA Method 5030, followed by analysis using modified EPA Method 8015, which utilizes a GC equipped with an FID.

TPHd-Total petroleum hydrocarbons as diesel (high boiling points) are measured by extraction using EPA Method 3550 for soils and EPA Method 3510 for water, followed by modified EPA Method 8015 with direct sample injection into a GC equipped with an FID. 7 Lui L

Laboratory Representative

January 30, 1991

Date Reported

APPLIED ANALYTICAL

Environmental Laboratories

-2501 Albrae St., Suite 100 Fremont, CA 94538 Sus. (415) 623-0775 Fax: (415) 651-8647

ANALYSIS REPORT

			1020lab.frm
Attention:	Mr. Steve Bittman	Date Sampled:	02-14-91
	Applied GeoSystems	Date Received:	02-22-91
	3315 Almaden Expressway	BTEX Analyzed:	02-28-91
	San Jose, CA 95118	TPHg Analyzed:	02-28-91
Project:	AGS 69013-6	TPHd Analyzed:	NR
,		Matrix:	Soil

Detection Limit:	Benzene ppm 0.005	Toluene ppm 0.005	Ethyl- benzene ppm 0.005	Total Xylenes ppm 0.005	TPHg <u>ppm</u> 1.0	TPHd ppm 10
SAMPLE Laboratory Identificat	tion					
S-4-B18 S1102402	0.12	1.2	0.62	4.3	50	NR
S-8-B18 S1102403	0.31	7.3	5.5	36	220	NR

ppm = parts per million = mg/kg = milligrams per kilogram.

ND = Not detected. Compound(s) may be present at concentrations below the detection limit.

NR = Analysis not requested.

ANALYTICAL PROCEDURES

BTEX- Benzene, toluene, ethylbenzene, and total xylene isomers (BTEX) are measured by extraction using EPA Method 5030 followed by analysis using EPA Method 8020/602, which utilizes a gas chromatograph (GC) equipped with a photoionization detector (PID) and a flame-ionization detector (FID) in series.

TPHg-Total petroleum hydrocarbons as gasoline (low-to-medium boiling points) are measured by extraction using EPA Method 5030, followed by analysis using modified EPA Method 8015, which utilizes a GC equipped with an FID.

TPHd-Total petroleum hydrocarbons as diesel (high boiling points) are measured by extraction using EPA Method 3550 for soils and EPA Method 3510 for water, followed by modified EPA Method 8015 with direct sample injection into a GC equipped with an FID.

of Luck

March 5, 1991

Laboratory Representative

Date Reported

APPLIED ANALYTICAL

Environmental Laboratories

42501 Alprae St., Suite 100 Fremon, CA 94538 Bust (415) 623-0775 Fax. (415) 651-8647

ANALYSIS REPORT

			1020lab.frm
Attention:	Mr. Steve Bittman	Date Sampled:	02-21-91
	Applied GeoSystems	Date Received:	02-22-91
	3315 Almaden Expressway	BTEX Analyzed:	03-01-91
	San Jose, CA 95811	TPHg Analyzed:	03-01-91
Project:	AGS 69013-6	TPHd Analyzed:	NR
•		Matrix:	Soil

Detection Limit:	Benzene ppm 0.005	Toluene ppm 0.005	Ethyl- benzene ppm 0.005	Total Xylenes ppm 0.005	TPHg ppm 1.0	TPHd <u>ppm</u> 10
SAMPLE Laboratory Identificat	tion					
S-15 1/2-B18 S1102404	0.84	9.0	4.4	24	170	NR
S-5 1/2-B17 S1102405	ND	ND	ND	0.007	ND	NR
S-10-B17 S1102406	ND	ND	ND	ND	ND	NR

ANALYTICAL PROCEDURES

BTEX—Benzene, toluene, ethylbenzene, and total xylene isomers (BTEX) are measured by extraction using EPA Method 5030 followed by analysis using EPA Method 8020/602, which utilizes a gas chromatograph (GC) equipped with a photoionization detector (PID) and a flame-ionization detector (FID) in series.

TPHg-Total petroleum hydrocarbons as gasoline (low-to-medium boiling points) are measured by extraction using EPA Method 5030, followed by analysis using modified EPA Method 8015, which utilizes a GC equipped with an FID.

TPHd—Total petroleum hydrocarbons as diesel (high boiling points) are measured by extraction using EPA Method 3550 for soils and EPA Method 3510 for water, followed by modified EPA Method 8015 with direct sample injection into a GC equipped with an FID.

Laboratory Representative

March 5, 1991

Date Reported

ppm = parts per million = mg/kg = milligrams per kilogram.

ND = Not detected. Compound(s) may be present at concentrations below the detection limit.

NR = Analysis not requested.

CHAIN-OF-CUSTODY RECORD

PROJ. NO		C1 NAME			7		······································		ANA	\L\	/SI	S	7		7	
69013	-6 G	tru #2152				7	\mathcal{T}	7		7	7	77			/	
P.O NO.	SAMPL	ERS (Signature)	~]	80,1	7 8	3/3	7,30	/ /	/	/	//	/		/	
1	İ	10 1 10 10 10 10		/	/ e	/ 8/	/ଞ୍/	/ ^{\&} /		1	/ /	/ / ;	g: /			
		AUS-ES		/	<u>\$</u> /	\$/) g	3				/ 8	r /		/	
DATE	TIME		No. of	1/3	ב/א	٤/٤	ž/ /	Ŋ	/	/		Presence	/		LABORATO	RV
MM/DD/YY	1 41411		ainers	Vξ	18	/Æ	Sy	100 80	/ /	/		/ 4	/ REM	ARKS	I.D. NUMBE	
2/11/91		S-4- B18 \	No. of Cont- ainers				X									
1		S-9- B18 1 Imagiste S	-				$\sqrt{\chi}$		_	1					1	
		5-15/2-B18 Samules Los	 				$\overline{}$			1					BU3101	د ع ا
		5-51/2-BIT Dogania Pb.	-				☆		_	_						
1		5-9-10 5-9-1318 Composite S 5-15/2-1318 Sampler for 5-5/2-1317 Organia Pb. 5-10-1317	 				X	_		_					/	
							-/-	_	_	\dashv			<u> </u>			
	***************************************		 							_	_		ļ			
										\dashv						· · · · · · · · · · · · · · · · · · ·
									1	\dashv						
		· · · · · · · · · · · · · · · · · · ·	<u> </u>				_	-			-				<u> </u>	
			<u> </u>					\dashv		_	-					
							-		\dashv							
								\dashv			-					
							-			┰						
								_		\dashv						
			<u> </u>						-	_	_					
			ļ	<u> </u>				_	_	_						
REUNQUISTAE	J 07 16;	e); DATE / TIME RECEIVED BY (Sign							\perp]		<u></u>			
TEUNIQUISME!	or (Signalur		nature):	А			~ 4		La	bor	ator	y :		SEND RESULTS TO:		
RELINQUISHE	D BY (Signatur	1) DATE / TIME RECEIVED BY JOING	lalu(e):		<u>(f</u>	a	18					0 (١٨٨	42501 All	orae Street	
in i al	2,000	C cpcost lithe	{		V				(/)	(6	Μ	le(h	<i></i>	Fremont,	California	
RELINQUISHE	D BY (Signatur	(*): (*) DATE / TIME RECEIVED FOR LAS	ORATORY BY	/ (Sight	atu re);			······································	, ,	\vee	• •			(415) 623-0)775 ,	
With	$x_{0X} \zeta_{0}$	news world	Jul 9		W				Tu	rn	Arc	ound:	1 well	Proj. Mgr.	: Cama C	well
	~~~~~~								·				1 V	<u> </u>		

RECEIVED

MOBILE CHEM LABS INC.

1991 1991

APPLIED GEOSYSTEMS SAN JOSE BRANCH

5021 Blum Road, Suite 3 • Martinez, CA 94553 Phone (415) 372-3700 • Fax (415) 372-6955

69013-6/011689

Applied GeoSystems, Inc. 42501 Albrae Street, Suite 100

Fremont, CA 94639 ATTN: Laura Kuck

Project Manager

Date Sampled: 02-14-91 Date Received: 02-27-91

Date Reported: 02-27-91
Date Reported: 03-01-91

ORGANIC LEAD

Sample Number	Sample Description	Detection Limit	SOIL RESULTS	
		ppm	ppm	
	Project No.: ARCO #2512	69013-6		
в031010	S-4-B18, S-8-B S-15 1/2-B18, S-5 1/2-B17,S-	·	<0.5	

QA/QC: Sample blank is none detected

Note: California LUFT 12/87 (ppm) = (mg/kg)

MOBILE CHEM LABS

where in the

Ronald G. Evans
Lab Director

			\equiv	_
_	4==		<u> </u>	-
<u>_</u>				_
	pplied (300 Sy	eterna	

CHAIN-OF-CUSTODY RECORD

PROJ. NO.	PRO	XIECT NAME			ı ———	ı——									· · · · · · · · · · · · · · · · · · ·		
	ŀ						- /				AN	AL۱	YSI	S	/		/
Stati	i,	111 116	1			ł	$-/\bar{i}$	<u>~</u>	\mathcal{T}	7	T	7	7	7 7			/
P.O NO.	SAI	PI ÉRS (Signature)				Į .	10	:/ ŝ	5/5	M	/	1	1	1 /	/		/
	1	, , i			l		/ જી	/ နွ	'/ ઙૢ <u>ົ</u>	/	/	/	/	/ /	/		/
		1. 140	,			/	(e)	\ S	/ <u>~</u> /	130/	<i>'</i> /	' /	/ /	/ /	& /		/
·	1	1 1			1	/	\$	8/	& /	_/	- /	- /	- /	Preser	\$ /		/
DATE	77.50.00	_			No. of	/ /	د/ ق	Z/j	š/	$\langle I \rangle$	-/-	- /		/ §	P /		/
DATE	TIM	=			Cont-	1/3	"/ إ	<i>i/a</i>	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	7		/	/	ق /			/ LABORATORY
MM/DD/YY			*****		ainers	12	/ 20	/~	$I^{(i)}$	/ .	/	/	/	/ "	/ REM	ARKS	/ I.D. NUMBER
. 11		, (7.)	- 4) / 30		,	X	X		X 3 (8015)				[100		712 Com in 17 16 com	
·			——————————————————————————————————————			-	<u> </u>							 	_		
	····		<u> </u>	2	<u> </u>												
[ĺ	504)	آخ	,									ļ			
			·····	<u> </u>							_			<u> </u>	1		······································
														 -			
														<u> </u>	<u> </u>		
																	;
																	· · · · · · · · · · · · · · · · · · ·
					·										 		
			· · · · · · · · · · · · · · · · · · ·		 										 		
					<u> </u>								 -	ļ	<u> </u>		
				· · · · · · · · · · · · · · · · · · ·	ļ								 	ļ	· 		
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·													
			, <u></u>			Ī							Ì				
													 	ļ 			
				1.12									}—	 	-		
	·					 		 					-	 			
RELINQUISHE	D BY (Sign	ature);	DATE / TIME	RECEIVED BY (Sign	atrite).		L	l	<u> </u>			<u> </u>	l	<u></u>		SEND DESCRIPTIONS	
 3/ '	' 1) "	21 I	1-304/32		<i>u</i> /	2					L	abo	rato	ry:		SEND RESULTS TO	
	<u>. F.</u>	Charles .			A, (2)	11	40	عديم	~		1						ieoSystems
RELINQUISHE	D BY (Sign	natiúre):	DATE / TIME	RECEIVED BY SIgn	nature):	Ø					7						n Expressway
1			1 1	1							1					Suite 34	
RELINQUISH	D BY (Sia	nature);	DATE / TIME	RECEIVED FOR LAS	O VOLTAGO	V (01~	. nt c . \	<u>_</u> _			-					San Jose, Ca	alifornia 95118
	(9	· · F-	ONIL / HMG	DECEIVED FOR LAR	R LABORATORY BY (Signature):			 -				(408) 264-77					
			<u></u>						**		T	urn	Ar	ound:	Lunck	Proj. Mgr	: Steve Billman

STEVE BITTMAN
APPLIED GEO SYSTEMS - SAN JOSE
3315 ALMADEN EXPRESSWAY, SUITE 34
SAN JOSE, CA 95118

Workorder # : 9101298
Date Received : 01/30/91
Project ID : 69013-6
Purchase Order: N/A

The following samples were received at Anametrix, Inc. for analysis:

ANAMETRIX ID	CLIENT SAMPLE ID
9101298- 1	S-0129-SP1,2,3,4

This report consists of 6 pages not including the cover letter, and is organized in sections according to the specific Anametrix laboratory group or section which performed the analysis(es) and generated the data. The Report Summary that precedes each section will help you determine which Anametrix group is responsible for those test results, and will bear the signatures of the department supervisor and the chemist who have reviewed the analytical data. Please refer all questions to the department supervisor who signed the form.

Anametrix is certified by the California Department of Health Services (DHS) to perform environmental testing under Certificate Number 1234. A detailed list of the approved fields of testing can be obtained by calling our office, or the DHS Environmental Laboratory Accreditation Program at (415)540-2800.

If you have any further questions or comments on this report, please give us a call as soon as possible. Thank you for using Anametrix.

Burt Sutherland Laboratory Director

Well of the same

Date

2 - - - 4

REPORT SUMMARY ANAMETRIX, INC. (408)432-8192

STEVE BITTMAN

APPLIED GEO SYSTEMS - SAN JOSE 3315 ALMADEN EXPRESSWAY, SUITE 34

SAN JOSE, CA 95118

Workorder # : 9101298
Date Received : 01/30/91 Project ID : 69013-6

Purchase Order: N/A Department : GC Sub-Department: TPH

SAMPLE INFORMATION:

ANAMETRIX SAMPLE ID			DATE SAMPLED	METHOD	
9101298- 1	S-0129-SP1,2,3,4	SOIL	01/29/91	TPHg/BTEX	

REPORT SUMMARY ANAMETRIX, INC. (408)432-8192

STEVE BITTMAN APPLIED GEO SYSTEMS - SAN JOSE 3315 ALMADEN EXPRESSWAY, SUITE 34 Workorder # : 9101298 Date Received: 01/30/91 Project ID : 69013-6 Purchase Order: N/A

SAN JOSE, CA 95118

Department : GC Sub-Department: TPH

QA/QC SUMMARY :

- No QA/QC problems encountered for samples.

2-6-41 Department Supervisor Date

2.6.91

Date

ANALYSIS DATA SHEET - TOTAL PETROLEUM HYDROCARBONS (GASOLINE WITH BTEX) ANAMETRIX, INC. - (408) 432-8192

Anametrix W.O.: 9101298
Matrix : SOIL
Date Sampled : 01/29/91 Project Number: 69013-6 Date Released : 02/06/91

	Reporting Limit	S-0129-	Sample I.D.# 04B0205A BLANK	
COMPOUNDS	(mg/Kg)	-01	-02	
<u>1</u>	0.005 0.005 0.005 0.005	ND ND ND ND ND	иD иD иD иD иD	
<pre>% Surrogate Rec Instrument I. Date Analyzed RLMF</pre>	.D.	105% HP4 02/05/91 1	104% HP4 02/05/91 1	

ND - Not detected at or above the practical quantitation limit for the method.

All testing procedures follow California Department of Health Services (Čal-DHS) approved methods.

TPHg - Total Petroleum Hydrocarbons as gasoline is determined by GCFID using EPA Method 5030.

BTEX - Benzéne, Toluene, Ethylbenzene, and Total Xylenes are determined by modified EPA 8020.

RLMF - Reporting Limit Multiplication Factor. Anametrix Control limits for surrogate recovery are 53-147%.

REPORT SUMMARY ANAMETRIX, INC. (408)432-8192

STEVE BITTMAN APPLIED GEO SYSTEMS - SAN JOSE

3315 ALMADEN EXPRESSWAY, SUITE 34

SAN JOSE, CA 95118

Workorder # : 9101298
Date Received : 01/30/91
Project ID : 69013-6
Purchase Order: N/A
Department : METALS

Sub-Department: METALS

SAMPLE INFORMATION:

ANAMETRIX SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE SAMPLED	METHOD
9101298- 1	S-0129-SP1,2,3,4	SOIL	01/29/91	ORG Pb

REPORT SUMMARY ANAMETRIX, INC. (408)432-8192

STEVE BITTMAN APPLIED GEO SYSTEMS - SAN JOSE 3315 ALMADEN EXPRESSWAY, SUITE 34 SAN JOSE, CA 95118

Workorder # : 9101298
Date Received : 01/30/91
Project ID : 69013-6 Purchase Order: N/A Department : METALS

Sub-Department: METALS

QA/QC SUMMARY :

- No QA/QC problems encountered for samples.

Department Supervisor Date

Ming Lanel

ANALYSIS DATA SHEET - ORGANIC LEAD ANAMETRIX, INC. - (408) 432-8192

Anametrix W.O.: 9101298 Matrix : SOIL Date Sampled: 01/29/91 Project Number: 69013-6

Date Prepared : 02/04/91 Date Analyzed : 02/04/91 Date Released : 02/06/91 Instrument I.D.: AA1

	ELEMENTS	Organic S Lead	
	EPA METHOI) LUFT	
	REPORTING LIMIT	r 0.08	
ANAMETRIX ID	CLIENT ID	(mg/Kg)	
9101298-01 OMB0204S	S-0129-SP1,2,3,4 METHOD BLANK	ND ND	

ND : Not detected at or above the practical quantitation limit for the method.

Organic Lead by Leaking Underground Fuel Tank (LUFT) Manual, 1987 California State Water Resources Control Board.

2106191 Mona Kanel Chemist Date

ARCO	rodu	icts (Comp	any <	\}			Task Or	der No	Z	15,	マー	- 9	1 -	21	,							hain of Custody
ARCO Facilit	y no 🥎	150	. ionialai	City	· (ASTO	ก V 2	LIIE V]	Project	manag	er	 <_T_(·VE	7	3, #	·MA	N			434		Laboratory name
ARCO engin	er <u>/ /</u>	<u></u> 1	- O A	(Fai	cility) \	7 0 1 10	Telephon	HIEY		Telepho	ne no.	// _ Q	21.6	1 7-	70 ~2	Fax	no	4	926	11 2	430	_	SEQUOLA Contract number
ARCO engin	O C	uck 1	<u> </u>	ME	<u></u>		(ARCO)	Address	. 321	(Consul	(iant) •	100 100	<u> 20</u> = N	5x1	04		3 <i>4</i>	5	J 2.6 T. (1.	95 II	18	07-073
Consultant n	PPL	१०	<u>o eo</u>		1em			(Consulta	ni) <u> </u>	<u> </u>	1		- 1		-/	<u> </u>			2000				Memor of Singilien
				Matrix		Preser	vation	ej	g		7,8015	뜅□		903E				Se	C	Ö	ŀ		Sequera Field Tech
Sample I D	Lab no	Container no	Soil	Water	Other	lce	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEX/TPH EPA M602/8020	TPH Modified 8 Gas Diese	Oil and Grease	TPH EPA 418 1/SM503E	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Semi Metals □ VOA □ VOA □	CAM Metals EP/ TTLC STL	Lead Org /DHS CLead EPA 7420/7421 C			Special detection
5-04II-	14	اړ،	×			×.		4-11-91	4:00PM		X				-								Limit/reporting
5-0411-	l l	MpasiTE	×			×		4-11-91			×				10	11-9							
5-0411-	L	-5	×			×		4-11-91			×				10	7~1	57			ļ	ļ		
5-0411-		COA	×			×		4-11-91			X												Special QA/QC
2.014	٠٠٠٠٠		 																				
			 																				
			ļ	<u> </u>						-	-												
										-	_							<u></u>					Remarks
			ļ										<u> </u>		<u></u>						-		Run one Composite Sample, AGS Project No. 69013-6
					-			 	<u> </u>				ļ										Composite
					, <u> </u>			ļ		ļ <u>-</u>	ļ	<u> </u>	ļ					ļ	<u> </u>	<u> </u>	-		sample,
	Ì								<u> </u>				-	<u> </u>	 	<u> </u>	<u> </u>	-		-	}		AGS Project
																ļ .		ļ <u>-</u>		ļ	ļ		No. 69013-6
									\$							<u></u>	<u> </u>			ļ			Lab number
						***************************************														<u> </u>			
 	 	 	 	-	†	 		 			1										1	 	Turnaround time
	1	 		-						 	+		1	1	<u> </u>								Priority Aush 1 Business Day
Condition of sample: Crock								Tem	peratur	e recen	ved: 5		 	<u> </u>	<u>-4</u> -								
Condition of Relinquishy			od_				Date /		Time		evved b		V		 -	- ^	- 						Rush 2 Business Days
Will Kaumsh. 4/15/91 2:201						2:20 DM									Expedited								
Relinguish	. r	100	Stun	donne	W		Date 4	91	4:30pm	pr							5 Business Days						
Relinquish		WV C	3 4//1	10.00	<u> </u>		Date		Time	Rec	eived b	y labora		1			Date 4/1	5/9	/	Time / C	<u>30</u>		Standard 10 Business Days

APR 2 9 1991

APPLIED GEOSYSTEMS SAN JOSE BRANCH

Applied GeoSystems 3315 Almaden Expressway, Ste 34 San Jose, CA 95118 Attention: Steve Bittman

Project: #69013-06, Arco 2152: Castro Valley

Enclosed are the results from 1 soil samples received at Sequoia Analytical on April 15,1991. The requested analyses are listed below:

SAMPLE #	SAMPLE DESCRIPTION	DATE OF COLLECTION	TEST METHOD
1042595 A - D	Soil Comp., S-0411, A-D	4/11/91	EPA 5030/8015/8020

Please contact me if you have any questions. In the meantime, thank you for the opportunity to work with you on this project.

Very truly yours,

SEQUOIA ANALYTICAL

Bjorn A. Bjorkman Project Manager Applied GeoSystems 3315 Almaden Expressway, Ste 34 Sample Descript.: Soil Comp., S-0411, A-D San Jose, CA 95118 Attention: Steve Bittman

Client Project ID: #69013-06, Arco 2152: Castro Valley Lab Number:

Analysis Method: EPA 5030/8015/8020 104-2595 A-D

er was magalika babbinan dalamat.

Sampled: Apr 11, 1991 Apr 15, 1991 Received: Apr 23, 1991 Analyzed: Reported: Apr 26, 1991

ostava kilkinka kil

AUREITERI FERNISI

144013846 Ja

TOTAL PETROLEUM FUEL HYDROCARBONS WITH BTEX DISTINCTION (EPA 8015/8020)

Analyte	Detection Limit mg/kg (ppm)		Sample Results mg/kg (ppm)
Low to Medium Boiling Point Hydrocarbons	1.0		N.D.
Benzene	0.0050	***************************************	N.D.
Toluene	0.0050	***************************************	N.D.
Ethyl Benzene	0.0050	***************************************	N.D.
Xylenes	0.0050	***************************************	N.D.

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard. Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Bjorn A. Bjorkman Project Manager

Applied GeoSystems

Client Project ID: #69013-06, Arco 2152: Castro Valley

3315 Almaden Expressway, Ste 34

San Jose, CA 95118

Attention: Steve Bittman

ttention: Steve Bittman QC Sample Group: 104-2595 Reported: Apr 26, 1991

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl Benzene	Xylenes	
Method: Analyst: Reporting Units: Date Analyzed: QC Sample #:	EPA 8020 G.Meyer ng Apr 23, 1991 GBLK042391	EPA 8020 G.Meyer ng Apr 23, 1991 GBLK042391	EPA 8020 G.Meyer ng Apr 23, 1991 GBLK042391	EPA 8020 G.Meyer ng Apr 23, 1991 GBLK042391	
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	
Spike Conc. Added:	100	100	100	300	
Conc. Matrix Spike:	89	88	88	270	
Matrix Spike % Recovery:	89	88	88	90	
Conc. Matrix Spike Dup.:	94	94	94	280	
Matrix Spike Duplicate % Recovery:	94	94	94	93	
Relative % Difference:	5.5	6.6	6.6	3.6	

Quality Assurance Statement: All standard operating procedures and quality control requirements have been met.

SEQUOIA ANALYTICAL

% Recovery: Conc. of M.S. - Conc. of Sample x 100 Spike Conc. Added Relative % Difference: Conc. of M.S. - Conc. of M.S.D. x 100 (Conc. of M.S. + Conc. of M.S.D.) / 2

Bjorn A. Bjorkman Project Manager

APPENDIX D

Laboratory Data Sheets and Chain of Custody Records

Applied PROJ. NO.	GeoSyate		CHAIN	1-O	F-(CUS	STC	DY	R	EC	OR	ID.			
-нал. No. 59013-		GTNAME IRCO 2152					7	y-	AN /	AL.	YSIS	s /	7		/
PO NO	CALIDI	ERS (Signature) Hen Bethvan			Olipe	BTEX (602/8025)	ndiesel (8015)	?/ / /	/	/	//	//	/ %	i /	
DATE	ТІМЕ		No. o Cont ainers		14. 1988	BTEX (/	/			/	Preservens	REMARKS	LABORATORY I.D. NUMBER
1-16-91		5-20-B8		×	<u>ر ا</u> ک							10	?		
		5-25-B8				[Ī		
		S-33-B8													
		5-39-B8					<u>] </u>								
_		5-41-B8		11		<u> </u>									
1-14-91		5-22-139		$\perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$					<u> </u>						
1-14-91		5-26-89							<u></u> ,						
1-15-91		5-29-89		11											
1-15-91		S-3 3 -B9						<u> </u>		<u> </u>					
1-16-41		S-15-B12						<u> </u>							
		S-20-B12			\prod		<u> </u>	<u> </u>							
	· · · · · · · · · · · · · · · · · · ·	5-30-812			\prod					<u> </u>					
	····	S-35- B12			Ш										
	·	S-40-B12													
V		S-47-BIL			\prod										
1-17-91		5-15-13													
		5-20-1313													
RELINOUSHI		5-25-B13	11	\Box	Π,										

RELINOUISHED BY (Signature)	DATE / TIME	RECEIVED By (Signature):
. Ta B/thm	1-18 4100	Jun - Getter
RELINQUISHED BY (Signature):	DATE / TIME	RECEIVED BY Signature):
Jun Trutes	1	,
RELINQUISHED BY (Signature):	DATE / TIME	RECEIVED FOR LABORATORY BY (Signature):
		and y:30

Applied GeoSystems
3315 Almaden Expressway
Suite 34

Suite 34 San Jose, California 95118 (408) 264-7723

Turn Around: Lucks Proj. Mgr.: Ster Bittona

CHAIN-OF-CUSTODY RECORD

PROJ. NO.		OJECT NAME					,										
19013-1	ر ^{۳۳}	A O a land				1				AN	ALY	YSI	S,			· 	7
PONO	SA	ARCO 2152 MPLERS (Signature) Sten Bullmon				/ {	(S)	1 PHdiesel (8015)	$\sqrt{}$						/		/
		(-1- p. ft.				9		8/8/	/ /	Ι,	/ ,	/ ,	/	/ ,	s. /		
		Den Bolymon			/	/ j j	g	`/ `& /			' /		' /	ہ کے	? /		
DATE	TIM	E		No. of Cont-	[/:	နို/	ช /	<u> </u>						Preservent			LABORATORY
MM/DD/YY				ainers	18	/ 6		<u>*</u> /,	Ĺ.,	_	_	<u>_</u>	_	Q.	<u> REM</u>	ARKS	L.D. NUMBER
1-17-91		5-30-813			X	X							10	ેલ			
		S-35-B13					_						<u> </u>				
		5-40-813															
		6-45-B13 S-15-B14															
1-17-41	·	S-15-B14											<u> </u>				
		5-20-B14															
		5-30-814															
		S-40-B14 S-45-B14			\prod	Ш											
		S-45. B14															
		5-5- BIS															
		S-10-B15			П	П											
		S-2-B16			П		1										
		5-5-B16												•			
		S-10-B16			V	1	1						V	ſ			
						1					1		<u> </u>				
					1	1											
				1	1	1	1-) ———	1-	1					
					1	1	1				1						
RELINQUISHE	\mathcal{O}		TIME RECEIVED BY (SIg	nature):	•	/	-J		l	<u> </u> լ	abo	rato	ry:		I	SEND RESULTS TO	
HELINQUISI	O BY ISI	The 1-18	1 /1/1/10-	· · · · · · · · · · · · · · · ·		ti	20	le)					-				ieoSysterns en Expressway
	.5 21 (01)	DATE /	HEUEIVED BY (Sig	By (Signature):										Suite 34			
RELINQUISING	D BY (Sig	gnature) DATE /	TIME RECEIVED FOR LA	ED FOR-LABORATORY BY (Signature):					- 1, to 1 n + 11					n to 11	San Jose, California 95118		
		<i>Y</i>	1	SHEABORATORY BY (Signature): 1-219/				7 11				******					
					····			1 30	<u> </u>		uIII	HI	oui	iu:	r meek!	i Proj. wigr	S/1/man

Environmental Laboratories

-2501 Albrae St. Suite 100 Fremont, CA 94538 Bus (415) 623-0775 Fax: (415) 651-8647

ANALYSIS REPORT

1020lab.frm 01-16-91 Mr. Steve Bittman Date Sampled: Attention: 01-21-91 Applied GeoSystems Date Received: 01-25-91 BTEX Analyzed: 3315 Almaden Expressway TPHg Analyzed: 01-25-91 San Jose, CA 95118 NR AGS 69013-6 TPHd Analyzed: Project: Soil Matrix: Total Ethyl-**TPHd** Toluene benzene **Xylenes TPHg** Benzene ppm ppm ppm ppm ppm <u>ppm</u> 10 1.0 0.005 0.0050.005Detection Limit: 0.005 SAMPLE Laboratory Identification

S-20-B8 S1101266	ND	ND	ND	ND	ND	NR
S-25-B8 S1101267	ND	ND.	ND	ND	ND	NR
S-33-B8 S1101268	0.006	ND	ND	ND	ND	NR
S-39-B8 S1101269	ND	ND	ND	ND	ND	NR
S-41-B8 S1101270	ND	ND	ND	ND	ND	NR

ppm = parts per million = mg/kg = milligrams per kilogram.

ANALYFICAL PROCEDURES

BTEX-- Benzene, toluene, ethylbenzene, and total xylene isomers (BTEX) are measured by extraction using EPA Method 5030 followed by analysis using EPA Method 8020/602, which utilizes a gas chromatograph (GC) equipped with a photoionization detector (PID) and a flame-ionization detector (FID) in series.

TPHg-Total petroleum hydrocarbons as gasoline (low-to-medium boiling points) are measured by extraction using EPA Method 5030, followed by analysis using modified EPA Method 8015, which utilizes a GC equipped with an FID.

TPHd-Total petroleum hydrocarbons as diesel (high boiling points) are measured by extraction using EPA Method 3550 for soils and EPA Method 3510 for water, followed by modified EPA Method 8015 with direct sample injection into a GC equipped with an FID.

Laboratory Representative

ND = Not detected. Compound(s) may be present at concentrations below the detection limit.

NR = Analysis not requested.

Environmental Laboratories

-2501 Aforae St. Suite 100 Fremont, CA 94538 Bus: (415) 623-0775 Fax. (415) 651-8647

ANALYSIS REPORT

1020lab.frm Date Sampled: 01-14/15/16-91 Mr. Steve Bittman Attention: 01-21-91 Date Received: Applied GeoSystems 01-25-91 3315 Almaden Expressway BTEX Analyzed: 01-25-91 TPHg Analyzed: San Jose, CA 95118 TPHd Analyzed: NR

Project: AGS 69013-6 TPHd Analyzed: NR Matrix: Soil

Detection Limit:	Benzene ppm 0.005	Toluene ppm 0.005	Ethyl- benzene ppm 0.005	Total Xylenes ppm 0.005	TPHg <u>ppm</u> 1.0	TPHd ppm 10
SAMPLE Laboratory Identificati	ion					
S-22-B9 S1101271	ND	19	16	91	680	NR
S-26 - B9 S1101272	ND	ND	0.008	0.011	ND ·	NR
S-29-B9 S1101273	ND	ND	ND	ND	ND	NR
S-33-B9 S1101274	ND	ND	ND	ND	ND	NR
S-15-B12 S1101275	ND	ND	ND	ND	ND	NR

ppm = parts per million = mg/kg = milligrams per kilogram.

ANALYTICAL PROCEDURES

BTEX—Benzene, toluene, ethylbenzene, and total xylene isomers (BTEX) are measured by extraction using EPA Method 5030 followed by analysis using EPA Method 8020/602, which utilizes a gas chromatograph (GC) equipped with a photoionization detector (PID) and a flame-ionization detector (FID) in series.

TPHg-Total petroleum hydrocarbons as gasoline (low-to-medium boiling points) are measured by extraction using EPA Method 5030, followed by analysis using modified EPA Method 8015, which utilizes a GC equipped with an FID.

TPHd--Total petroleum hydrocarbons as diesel (high boiling points) are measured by extraction using EPA Method 3550 for soils and EPA Method 3510 for water, followed by modified EPA Method 8015 with direct sample injection into a GC equipped with an FID.

Laboratory Representative

ND = Not detected. Compound(s) may be present at concentrations below the detection limit.

NR = Analysis not requested.

Environmental Laboratories

42501 Albrae St., Suite 100 Fremont, CA 94538 Bus. (415) 623-0775 Fax: (415) 651-8647

ANALYSIS REPORT

1020lab.frm Mr. Steve Bittman Attention: Date Sampled: 01-16-91 Applied GeoSystems Date Received: 01-21-91 3315 Almaden Expressway BTEX Analyzed: 01-25-91 San Jose, CA 95118 TPHg Analyzed: 01-25-91 Project: AGS 69013-6 TPHd Analyzed: NR Matrix: Soil

Detection Limit:	Benzene ppm 0.005	Toluene ppm 0.005	Ethyl- benzene <u>ppm</u> 0.005	Total Xylenes ppm 0.005	TPHg <u>ppm</u> 1.0	TPHd ppm 10
SAMPLE Laboratory Identificat	ion					
S-20-B12 S1101276	ND	ND	ND	ND	ND	NR
S-30-B12 S1101277	ND	ND	ND	ND	ND	NR
S-35-B12 S1101278	ND	ND	ND	ND	ND	NR
S-40-B12 S1101279	0.028	ND	ND	ND	ND	NR
S-47-B12 S1101280	ND	ND	ND	0.006	ND	NR

ppm = parts per million = mg/kg = milligrams per kilogram.

ANALYTICAL PROCEDURES

BTEX-- Benzene, toluene, ethylbenzene, and total xylene isomers (BTEX) are measured by extraction using EPA Method 5030 followed by analysis using EPA Method 8020/602, which utilizes a gas chromatograph (GC) equipped with a photoionization detector (PID) and a flame-ionization detector (FID) in series.

TPHg-Total petroleum hydrocarbons as gasoline (low-to-medium boiling points) are measured by extraction using EPA Method 5030, followed by analysis using modified EPA Method 8015, which utilizes a GC equipped with an FID.

TPHd-Total petroleum hydrocarbons as diesel (high boiling points) are measured by extraction using EPA Method 3550 for soils and EPA Method 3510 for water, followed by modified EPA Method 8015 with direct sample injection into a GC equipped with an FID.

Laboratory Representative

ND = Not detected. Compound(s) may be present at concentrations below the detection limit.

NR = Analysis not requested.

Environmental Laboratories

-2501 Alorae St. Suite 100 Fremont, CA 94538 Bus. (415) 623-0775 Fax: (415) 651-8647

ANALYSIS REPORT

Attention: Project:	Appli 3315 San J	teve Bittman ed GeoSyste Almaden Ex ose, CA 951 69013-6	ms pressway	Dat BTI TPI	e Sampled: e Received: EX Analyzed: Ig Analyzed: Id Analyzed:	01-17-91 01-21-91 01-29-91 01-29-91 NR Soil		
Detection I	_imit:	Benzene ppm 0.005	Toluene ppm 0.005	Ethyl- benzene ppm 0.005	Total Xylenes ppm 0.005	T PHg <u>ppm</u> 1.0	TPHd ppm 10	
SAMPLE Laboratory Id	entificati	on						
S-15-B13 S1101281		ND	ND	ND	ND	ND	NR	
S-20-B13 S1101282		ND	ND	ND	ND	ND	NR	
S-25-B13 S1101283		ND	ND	ND	ND	ND	NR	
S-30-B13 S1101284		0.033	ND	ŅD	0.018	ND	NR	
S-35-B13 S1101285		0.030	ND	ND	ND	ND	NR	

ppm = parts per million = mg/kg = milligrams per kilogram.

ND = Not detected. Compound(s) may be present at concentrations below the detection limit.

ANALYTICAL PROCEDURES

BTEX—Benzene, toluene, ethylbenzene, and total xylene isomers (BTEX) are measured by extraction using EPA Method 5030 followed by analysis using EPA Method 8020/602, which utilizes a gas chromatograph (GC) equipped with a photoionization detector (PID) and a fiame-ionization detector (FID) in series.

TPHg-Total petroleum hydrocarbons as gasoline (low-to-medium boiling points) are measured by extraction using EPA Method 5030, followed by analysis using modified EPA Method 8015, which utilizes a GC equipped with an FID.

TPHd-Total petroleum hydrocarbons as diesel (high boiling points) are measured by extraction using EPA Method 3550 for soils and EPA Method 3510 for water, followed by modified EPA Method 8015 with direct sample injection into a GC equipped with an FID.

Laboratory Representative

January 30, 1991

Date Reported

NR = Analysis not requested.

Environmental Laboratories

42501 A brae St. Suite 100 Fremont CA 94538 Bus: (415) 623-0775 Fax. (415) 651-8647

ANALYSIS REPORT

Attention: Mr. Steve Bittman Applied GeoSystems 3315 Almaden Expressway San Jose, CA 95118 Project: AGS 69013-6				Dat BTI TPI	e Sampled: e Received: EX Analyzed: Ig Analyzed: Id Analyzed:	01-17-91 01-21-91 01-29-91 01-29-91 NR Soil	
Detection I	Limit:	Benzene ppm 0.005	Toluene ppm 0.005	Ethyl- benzene ppm 0.005	Total Xylenes ppm 0.005	TPHg ppm 1.0	TPHd ppm 10
SAMPLE Laboratory Id	entificati	ion	•				
S-40-B13 S1101286		0.096	ND	ND	ND	ND	NR
S-45-B13 S1101287		ND	ŃĎ	ND	ND	ND	NR
S-15-B14 S1101288		ND	ND	ND	ND	ND	NR
S-20-B14 S1101289		ND	ND	ND	ND	ND	NR
S-30-B14 S1101290		ND	ND	ND	ND	ND	NR

ppm = parts per million = mg/kg = milligrams per kilogram.

ANALYTICAL PROCEDURES

BTEX—Benzene, toluene, ethylbenzene, and total xylene isomers (BTEX) are measured by extraction using EPA Method 5030 followed by analysis using EPA Method 8020/602, which utilizes a gas chromatograph (GC) equipped with a photoionization detector (PID) and a flame-ionization detector (FID) in series.

TPHg-Total petroleum hydrocarbons as gasoline (low-to-medium boiling points) are measured by extraction using EPA Method 5030, followed by analysis using modified EPA Method 8015, which utilizes a GC equipped with an FID.

TPHd-Total petroleum hydrocarbons as diesel (high boiling points) are measured by extraction using EPA Method 3550 for soils and EPA Method 3510 for water, followed by modified EPA Method 8015 with direct sample injection into a GC equipped with an FID.

Laboratory Representative

ND = Not detected. Compound(s) may be present at concentrations below the detection limit.

NR = Analysis not requested.

Environmental Laboratories

42501 Alorae St. Suite 100 Fremont, CA 94538 Bus. (415) 623-0775 Fax. (415) 651-8647

ANALYSIS REPORT

Attention: Mr. Steve Bittman Applied GeoSystems 3315 Almaden Expressway San Jose, CA 95118 Project: AGS 69013-6				Dat BTI TPF	e Sampled: e Received: EX Analyzed: Ig Analyzed: Id Analyzed:	01-17-91 01-21-91 01-29-91 01-29-91 NR Soil					
Detection L	Limit:	Benzene ppm 0.005	Toluene ppm 0.005	Ethyl- benzene pom 0.005	Total Xylenes ppm 0.005	TPHg <u>ppm</u> 1.0	TPHd ppm 10				
SAMPLE Laboratory Identification											
S-40-B14 S1101291		ND	ND	ND	0.007	ND	NR				
S-45-B14 S1101292		ND	ND	ND	ND	ND	NR				
S-5-B15 -S1101293		ND	ND	ND	ND	ND	NR				
S-10-B15 S1101294		ND	ND	ND	ND	ND	NR				
S-2-B16 S1101295		0.037	ND	0.080	ND	1.7	NR				

ppm = parts per million = mg/kg = milligrams per kilogram.

ANALYTICAL PROCEDURES

BTEX—Benzene, toluene, ethylbenzene, and total xylene isomers (BTEX) are measured by extraction using EPA Method 5030 followed by analysis using EPA Method 8020/602, which utilizes a gas chromatograph (GC) equipped with a photoionization detector (PID) and a flame-ionization detector (FID) in series.

TPHg-Total petroleum hydrocarbons as gasoline (low-to-medium boiling points) are measured by extraction using EPA Method 5030, followed by analysis using modified EPA Method 8015, which utilizes a GC equipped with an FID.

TPHd-Total petroleum hydrocarbons as diesel (high boiling points) are measured by extraction using EPA Method 3550 for soils and EPA Method 3510 for water, followed by modified EPA Method 8015 with direct sample injection into a GC equipped with an FID.

Laboratory Representative

ND = Not detected. Compound(s) may be present at concentrations below the detection limit.

NR = Analysis not requested.