

Working To Restore Nature

3315 Almaden Expressway, Suite 34

San Jose, CA 95118 Phone: (408) 264-7723 Fax: (408) 264-2435

PERMIT APPLICATION FOR AN AUTHORITY TO CONSTRUCT AND PERMIT TO OPERATE A VAPOR EXTRACTION SYSTEM

at ARCO Station 2152 22141 Center Street Castro Valley, California

69013.08

Permit prepared for ARCO Products Company

for Submittal to Bay Area Air Quality Management District

> by RESNA

Staff Engineer

Joan E. Tiernan, Ph.D., P.E. Engineering Manager

December 9, 1991

No. C 044600

3315 Almaden Expressway, Suite 34 San Jose, CA 95118

Phone: (408) 264-7723 Fax: (408) 264-2435

> December 9, 1991 1209ESTE 69013.08

Mr. Eric Stevenson
Permit Services Division
Bay Area Air Quality Management District
939 Ellis Street
San Francisco, CA 94109

Subject:

Permit Application for an Authority to Construct and Permit to Operate a

Vapor Extraction System at ARCO Station 2152, 22141 Center Street, Castro

Valley, California.

Mr. Stevenson:

At the request of the ARCO Products Company (ARCO), RESNA is submitting the attached application for an Authority to Construct and Permit to Operate a carbon adsorption system as an off-gas treatment method for hydrocarbon-bearing vapor removed from beneath ARCO Station 2152. The location of the site is shown on the Site Vicinity Map, Plate 1. Residential areas are southeast and west-southwest of the site, and commercial developments are northwest across Grove Way and northeast across Center Street. The locations of adjacent streets and structures are shown on the Area Map, Plate 2.

Previous Work

RESNA performed a vapor extraction test (VET) onsite on February 15, 1991, at the request of ARCO. The VET had two objectives: (1) to collect operational data to evaluate the efficiency and practicality of vapor extraction as a soil remediation alternative; and (2) to select the most appropriate off-gas treatment alternative. The VET was performed in accordance with Bay Area Air Quality Management District (BAAQMD) guidelines.

The vapor-extraction equipment consisted primarily of: (1) six-cylinder internal combustion (I.C.) engine to treat off-gas emissions; (2) instrumentation for measuring air flow, air velocity, air pressure, temperature, electrical current, and volatile organic compound (VOC) concentrations; and (3) PVC piping, fittings, and wellhead connections.

Air samples were collected and temperature, flow rate, pressure and vacuum readings, and VOC concentrations were monitored. Air samples were collected through a 4-inch Teflon sample line connected to a stainless steel wellhead fitting and collected in air sample bags. Teflon tubing was used to minimize sample loss through adsorption and the possibility of distorted results from sample lines contaminated by a previous test run. The samples were sealed in the bags and labeled appropriately. The samples were immediately placed in a dry container for transport to a State Certified analytical laboratory under Chain of Custody documentation. Chain of Custody protocol was followed throughout field and laboratory procedures. The samples were analyzed at Superior Analytical Laboratory in San Francisco, California (Certification No. 319 & 220), for benzene, toluene, ethylbenzene, and total xylene isomers, by Environmental Protection Agency (EPA) method 8020, and for total petroleum hydrocarbons reported as gasoline (TPHg) by modified EPA method 8015. Chain of Custody Records and results of laboratory analyses of the vapor samples are attached to this letter report in Appendix A. These and other results were previously reported (Applied GeoSystems [AGS], July 1991) and submitted to the Regional Water Quality Control Board (RWOCB).

Results of these laboratory analyses are summarized in Table 1, and indicate average influent TPHg and benzene concentrations of 594 and 1.3 milligrams per cubic meter, respectively. The air flow rate was greater than 50 cubic feet per minute at vacuums ranging from 40-48 inches of water.

Proposed Remediation System

Based on the results of the vapor extraction test, RESNA recommended vapor extraction combined with carbon adsorption as an off-gas treatment method (Applied GeoSystems, July 1991).

A total of four vapor extraction wells (VW-2 through VW-5) will be connected to the system. The vapor extraction wells, and remediation compound location are shown on Plate 3. Wellheads will be piped and valved, and an air sampling port will be installed at each wellhead and at the remediation compound. Well vaults with traffic covers will be installed at each vapor well. The collection pipe will direct air flow to the remediation compound which will contain a condensate separator, vacuum blower, and two activated carbon canisters containing 1,200 pounds each of activated carbon. The treated off-gas will be discharged through a nine foot stack.

The Process Flow Schematic is shown in Plate 4 together with engineering details of the remediation compound and equipment. The compound will be fenced to preclude public access.

RESNA will install two VENT-SCRUB VSC-1200-2 activated carbon canisters onsite and operate the abatement equipment for approximately six months or until the combined offgas airstream hydrocarbon concentration is less than 50 parts per million by volume (ppmv) TPHg, a typical detection limit for vapor samples. The manufacturer specifications for the VENT-SCRUB VSC-1200-2 activated carbon canisters are attached in Appendix B. The vapor extraction system will continue to run if this threshold value is not reached in six months, or it may be shut down sooner, if the threshold value is reached sooner.

BAAOMD Permit

The BAAQMD Permit Application for Authority to Construct and Permit to Operate is attached in Appendix B and includes Data Forms P101B, A, G, and P, Plant Data Form P-201, Risk Screening Analysis, manufacturer data on the carbon canisters and Rotron blower, a Process Flow Diagram, Emission Rate Calculations and other required data.

Emission Rates

Emission rate calculations are attached in Appendix B with the Bay Area Air Quality Management District (BAAQMD) Permit Applications. Calculations were conducted for system start-up emission rates and for emission rates after about two months.

The approximate start-up emission rates, after abatement, for TPHg and benzene at a flow rate of 500 cubic feet per minute (cfm) while on 24-hour operation, are 6.0 and 0.010 pounds per day, respectively. These concentrations will decrease with continued system operation. The emission rate calculations were based on the peak air flow capacity of the carbon, which is 500 cfm. However, at startup and during approximately the first two weeks of system operation, it is predicted that the in-the-field flow rates will be considerably less and could be as low as 300 cfm. Although in-the-field emissions are expected to be closer to 3.5 lb. TPHg/day at startup, rather than 6 lb/day, the carbon is designed to draw 500 cfm, and this is the reason 500 cfm was the value used to determine mass emission rate. This provides a factor of safety for startup emissions, and leaves capacity for adding additional wells to the system.

After about two months of system operation, emissions concentrations are estimated to decrease to 0.6 lb TPHg/day and 0.0010 lbs benzene/day at a flow of 500 cfm. This estimate is based upon theoretical data (Johnson, et al, 1990), and RESNA field data. Based on this information, the venting and abatement system will operate for 24 hours per day to meet discharge requirements set by the Bay Area Air Quality Management District of 10 lbs/day VOC emissions and 1 lb/day benzene emissions.

Application for an Authority to Construct/Permit to Operate Arco Station No. 2152, Castro Valley, California

December 9, 1991 69013.08

If you have any questions or require any additional data regarding this permit application, please call us at (408) 264-7723.

Sincerely, RESNA

Dana Dietz Weiss Staff Engineer

Dana Dietz Weiss

Joan Tiernan, Ph.D., P.E.

Joan Tiernan, Ph.D., P.E. Engineering Manager

cc: Mr. Chuck Carmel, ARCO Products Company

Mr. Scott Seery, ACHCSA Mr. Joel Coffman, RESNA Ms. Kim Nyugen, RESNA Attachments:

References Cited

Permit Fee to BAAQMD for \$395.00 (Check No. 433)

Plate 1:

Site Vicinity Map

Plate 2:

Area Map

Plate 3:

Generalized Site Plan

Plate 4:

Remediation Compound Layout and Process Flow Diagram

Table 1:

Results of Laboratory Analyses of Air Samples

Appendix A: Chain of Custody and Results of Laboratory Analysis for Air Samples

Appendix B: BAAQMD Permit Applications for Authority to Construct and Permit to Operate Industrial Sources

Form P101B - Application for Authority to Construct and Permit to Operate Industrial Sources

Plant Data (P-201)

Data Form A - Abatement Device (Devices A-1 & A-2)

Data Form G - General Air Pollution Source

Data Form P - Emission Point

Request for Information; Risk Screening Analysis

Emissions Rate Calculations at Systems Start-Up

Emissions Rate Calculations after Two Months

Manufacturer's Specifications and Description of

VENT-SCRUB VSC-1200-2 Carbon Adsorption System

Manufacturer's Specifications and Description of Rotron DR -12 Regenerative Blower

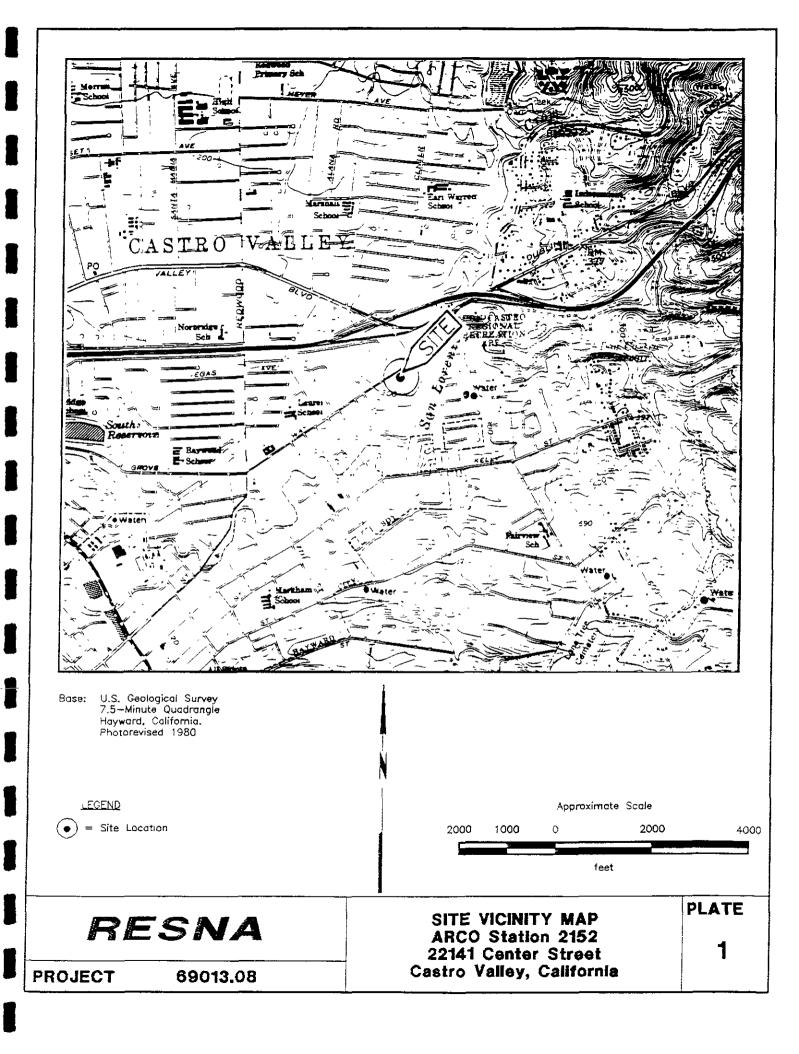
Process Flow Diagram

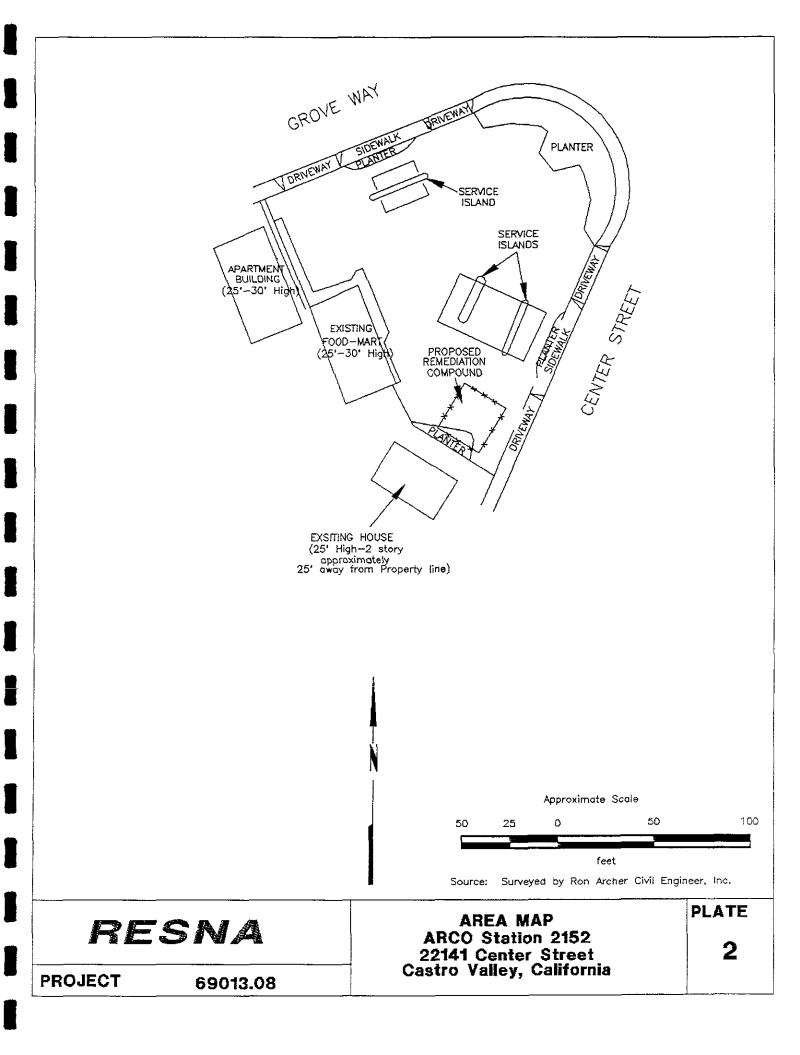
December 9, 1991 69013.08

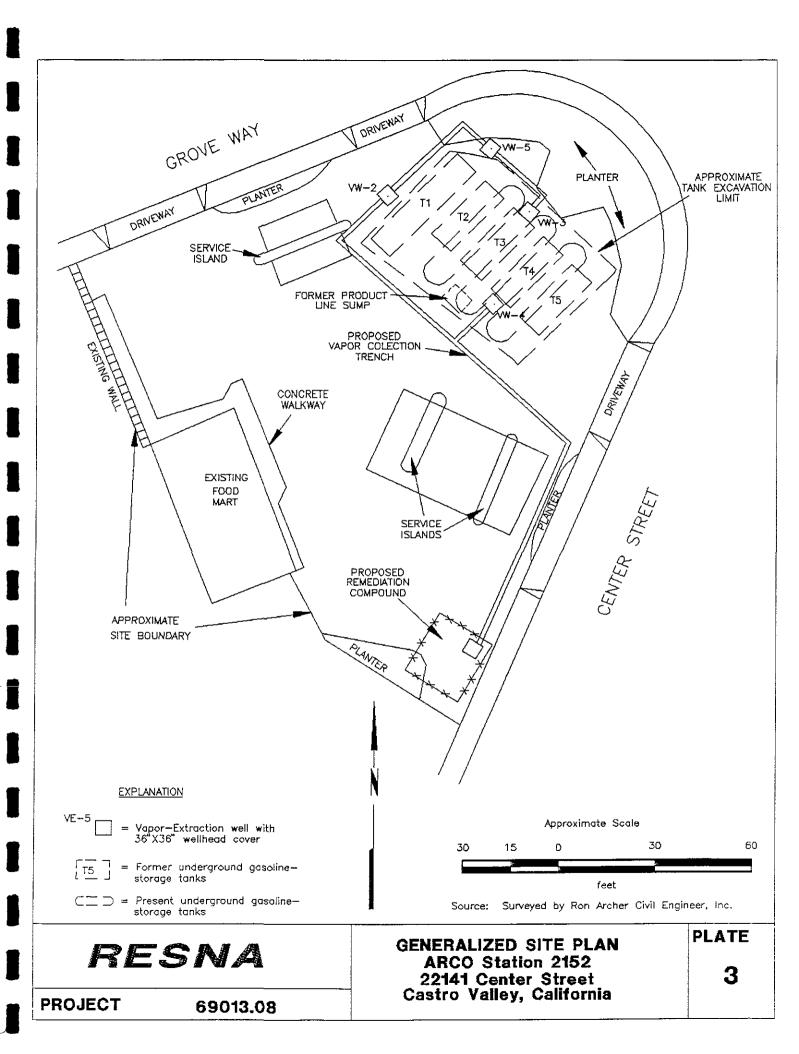
REFERENCES CITED

Applied Geosystems. July 2, 1991. <u>Supplemental Subsurface and Remedial Investigation</u>, 22141 Center Street, Castro Valley, California, AGS Report 69013-6.

Johnson et al, 1990. "A Practical Approach to the Design, Operation, and Monitoring of In-Situ Soil Venting Systems." Shell Development/Shell Oil Company, Westhollow Research Center. Houston, Texas.


TRANSMITTAL


3315 Almaden Expressway, Suite 34


San Jose, CA 95118 Phone: (408) 264-7723 Fax: (408) 264-2435

ACE 80	SCOTT SEERY HCSA SWAN WAY, ROOK KLAND, CALIFOR		DATE: 12/10/91 PROJECT NUMBER: 69013.08 SUBJECT: ARCO STATION 2152 AT 22141 CENTER STREET, CASTRO VALLEY, CALIFORNIA.
FROM: TITLE:	DANA DIE		
WE ARE SE	ENDING YOU	k Attached	[] Under separate cover via the following items:
[]:	Shop drawings	[] Prints	[] Reports [] Specifications
[]	Letters	[] Change Ord	ders []
COPIES	DATED 12/9/91	NO.	DESCRIPTION PERMIT APPLICATION FOR AN AUTHORITY TO
	1		CONSTRUCT AND PERMIT TO OPERATE A VAPOR
			EXTRACTION SYSTEM AT THE ABOVE SUBJECT SITE
	1	<u> </u>	
	E TRANSMITTED		w: as submitted [] Resubmit copies for approval
	equested		as noted [] Submit copies for distribution
	approval		corrections [] Return corrected prints
			corrected prints
[] FOI y	your files	[]	
REMARK	S:		
Copies: 1 to	project file no. 69	0013.08	

*Revision Date: 11/21/91
*File Name: TRANSMT.PRJ

Application for an Authority to Construct/Permit to Operate Arco Station No. 2152, Castro Valley, California

December 9, 1991 69013.08

TABLE 1

RESULTS OF LABORATORY ANALYSES OF AIR SAMPLES

ARCO Station No. 2152 22141 Center Street Castro Valley, California

Sample ID	Taken From						
Sample 1D		Elapsed Time (minutes)	TPHg	В	T	E	Х
AS-0215-1	VW-1 INF	. 20	150	< 0.3	1.2	0.6	3.7
AS-0215-2	VW-2 INF	20	12,000	< 0.3	46	11	26
AS-0215-3	VW-3 INF	20	< 110	< 0.3	<1.0	0.3	1.9
AS-0215-4	VW-5 INF	15	600	12	1.7	6.9	27
AS-0215-5	VW-5 INF	120	130	1.3	<1.0	1.0	3.9
AS-0215-6	VW-5 EFF	125	< 110	< 0.3	<1.0	1.0	7.6
AS-0215-7	VW-1 INF	5	<110	0.3	<1.0	0.6	4
AS-0215-8	VW-1 INF	120	380	< 0.3	2.2	1.2	6.4

Concentrations are in mg/m³

Minimum detection limit for Gasoline in Air: 110 mg/m³
Minimum detection limit for Benzene: 0.30 mg/m³
Minimum detection limit for Toluene: 1.0 mg/m³

Minimum detection limit for Ethyl benzene: 0.30 mg/m³

Minimum detection limit for Xylenes: 1.1 mg/m³

TPHg: Total petroleum hydrocarbons as gasoline (analyzed by EPA SW-846 Methods 5030 and 8015).

B: benzene, T: toluene, E: ethyl benzene, X: total xylene isomers BTEX: Analyzed by EPA SW-846 Methods 5030 and 8020.

Sample identification: AS-0215-1

Air sample number
Date of Sample
Air Sample Designation

APPENDIX A

CHAIN OF CUSTODY AND RESULTS OF LABORATORY ANALYSIS FOR AIR SAMPLES

CONIX	PAGILO	NAME	CHAIN-C		7	· · · · ·				ΑĻ					
ью ю. С УО[Э,[RCO 2152 AS (Signaturo) R Software Poter Set		/	5/	\ &\.	/ p./	//	/ /	//	//	//	//	, eserved?	Superior LABS
DATE	ТІМЕ	SAMPLE I.D.	No. of Con- tainers	17	PH9	\$ \alpha \begin{array}{c} \alpha \end{array}	PHA								ABORATORY I.D. NUMBER
	0940	AS , 0215. 1			1	1									
_	1005	AS. 0215. 2		✓	1										
	1035	AS. 0215. 3		✓	1				·						
	1055	AS: 0215. 4		/	<u>/</u>			_							
	1240	42. 0512. 2		<u>\</u>	<u>/</u>							_			
	1245	AS . OSIS . 6	<u>-</u>	/	Y							ļ			
2015-91	1300	A5.0215. 7	!	<u>/_</u>	\mathbf{Y}_{i}	-				_					
10 13 7	1200	A5.0215. 8		<u> </u>	_						<u> </u>	 		·	· · · · · · · · · · · · · · · · · · ·
				-						-		ļ			
				- 									 		
				-			-					 —			
•								-				-			
					·	-		-			 		 		
	·			1							ļ :				
											ļ				
				-	_									ļ <u></u>	
				-					-	-					****
Rty	D BY (Signature O BY (Signature O BY) (Signature	DATE / TIME FILED	IVED BY (Signature) IVED BY (Signature) IVED FOR ABORATORY (-/S-	91	1	600		MARK Voe Ples		se tloc	Taind and	results	SEND RESULTS TO: Applied GeoSystems 4191 Power Inn Road Suite D & E Sacramento, California 95826 (916) 452-2901

SUPERIOR ANALYTICAL LABORATORIES, INC.

825 ARNOLD, STE. 114 • MARTINEZ, CALIFORNIA 94553 • (415) 229-1512

DOHS #319 DOHS #220

CERTIFICATE OF ANALYSIS

LABORATORY NO.: 32483

DATE RECEIVED: 02/15/91

CLIENT: APPLIED GEOSYSTEMS

DATE REPORTED: 02/18/91

CLIENT JOB NO.: 69013.07

ANALYSIS FOR TOTAL PETROLEUM HYDROCARBONS by Modified EPA SW-846 Method 5030 and 8015

LAB # 	Sample Identification	Concentration mg/m [*] Gasoline Range
1	AS.0215.1	150
2	AS.0215.2	12000
3	AS.0215.3	NDK110
4	AS.0215.4	600
5	AS.0215.5	130
6	AS.0215.6	ND.110
7	AS.0215.7	ND:110
3	AS.C215.8	380

Minimum Detection Limit for Gasoline in Air: 110 mg/m Concentration of gasoline in air talculated based on standard temperature and pressure and an assumed molecular weight of hexane.

QAQC Summary:

Daily Standard run at 2mg/L: RPD Gasoline = <1,5 MS/MSD Average Recovery = 96%: Duplicate RPD = 3

Pichard Srna. Ph.E.

Laboratory Manager

SUPERIOR ANALYTICAL LABORATORIES, INC.

825 ARNOLD, STE. 114 • MARTINEZ, CALIFORNIA 94553 • (415) 229-1512

DOHS #319 DOHS #220

CERTIFICATE OF ANALYSIS

_ABORATORY NO.: 82483

DATE RECEIVED: 02/15/91

CLIENT: APPLIED GEOSYSTEMS

DATE REPORTED: 02/15/91

DLIENT JOB NO.: 69013.07

ANALYSIS FOR BENZEME. TOLUEME, ETHYL BENZEME & KYLEMES by EPA SW-846 Methods 5030 and 8020

1.AB			Concentr	ation mg/ Ethyl	n:
	Sample Identification	Senzane	Toluene	Benzene	-ylenes
▼ 84 0 4 10 0 1 - 0	48.0215.1 A8.0215.2 A8.0215.3 AS.0215.4 A8.0215.5 A3.0215.8 A8.0215.8	ND(0.3 10 1.3 ND(0.3 0.3	46 ND 1.3	0.3 6.9 1.0	7. 3 3 5 5 5 4 3 6 1

Minimum Detection Limit in Air for Benzene: 0.30 mg/mt

Minimum Detection Limit in Air for Toluene: 1.0 mg/mr Minimum Detection Limit in Air for Ethyl Benzene: 9.30 mg/mr

minimum Detection Limit is Air for Mylenes: 1.1 mg/m

Concentration of STXE in air calculated based on standard temperature and cressure.

QAGC Summary:

Daily Standard run at 20ug/L: PPD = 15% MS/MSD Average Recovery = 94%: Duplicate RPD = <2

Richard Scha. Ph.D.

APPENDIX B

BAAQMD Permit Applications for Authority to Construct and Permit to Operate Industrial Sources

Form P101B - Application for Authority to Construct and Permit to Operate Industrial Sources

Plant Data (P-201)

Data Form A - Abatement Device

Data Form G - General Air Pollution Source

Data Form P - Emission Point

Request for Information; Risk Screening Analysis

Emissions Rate Calculations at Systems Start-Up

Emissions Rate Calculations after Two Months

Manufacturer's Specifications and Description of VENT-SCRUB VSC-1200-2 Carbon Adsorption System

Manufacturer's Specifications and Description of Rotron DR -12 Regenerative Blower

Process Flow Diagram

PERMIT SERVICES DIVISION BAY AREA AIR QUALITY MANAGEMENT DISTRICT 939 Ellis Street, San Francisco, CA. 94109 RECEIVED (415) 771-6000

415) //1-6000	<u> </u>
	11 ⁴ R 4 1991
	· · · · · · · · · · · · · · · · · · ·
	APPLICATION NO.
	OFFUED GEORY

BAAQHD PLANT	NO
--------------	----

 SAN JOSE PROSTEMS
 SAN JOSE BRANCH

APPI	LICATION FOR			RUCT AND I	PERMIT TO OPER	LATE	
BUSINESS NAME ARCO) Products Co	mpany (ARCC	O), Stati	on No. 21	52 (C/O RESI	NA)	-,
MAILING ADDRESS_33	315 Almaden E	xpressway,	Ste.34CI	TY/ZIP CO	DE San Jose	, CA 95118	<u> </u>
PLANT ADDRESS 221	41 Center St	reet	CI	TY/ZIP CO	DE Castro V	alley 94546	
NAME OF CONTACT_E	ana Weiss or	Joan Tierr	nan	PHON	E (408) 264-	7723	
EQUIPMENT DESCRIPT	IONRotro	n DR-12 reg	generativ	e blower	and activated	carbon	<u> </u>
NUMBER OF SOURCES	[] NEW	CONSTRUCT	ION []	MODIF	ICATION []	REPLACE	IENT [
RELOCATION []	DEMOI	LITION OR S	NWOD TUHS	[]	TRANSF	ER OF OWNERS	HIP [
	Į.	ABATEMENT E	EQUIPMENT	ONLY [XX]		
HAS AN ENVIRONMENT	AL IMPACT REF	PORT (EIR)	BEEN PRE	PARED FOR	THIS PROJECT	? YES	NO_×
IF YES, BY WHOM?		<u> </u>					
IS THIS APPLICATION	N A RESULT OF	A VIOLATI	ON NOTIC	E? YES_	NO X		
IF YES, GIVE THE Y	IOLATION NOTI	CE NUMBER:					
TOTAL EMISSIONS FOR	R THIS APPLIC	CATION:					,
		EMISS	IONS IN	LB/HR			
	TSP	IQGIC	S 0 x	TPHg	benzene		
				0.25	4.2x10 ⁻⁴		
TYPICAL USAGE RATE:	HOURS/DAY	24 ;	DAYS/WEE	X 7	_; WEEKS/YEA	R 36	•
ARE OFFSETS OR TRAD	EOFFS INVOLV	ED IN THIS	APPLICAT	TION? YES	S NOX		
IF YES, GIVE DOCUME	NTS AND PAGE	NUMBERS OF	N WHICH T	HIS INFOR	MATION IS PRO	VIDED:	

HAVE 1	YOU PROVIDED AN AIR QUALITY ANALYSIS? YES NO _XX
IF YES	, GIVE DOCUMENTS AND PAGE NUMBERS ON WHICH THIS INFORMATION IS PROVIDED:
locati or man	OLLOWING ITEMS SHOULD ACCOMPANY THIS APPLICATION: on of this facility; (b) Process Flow Diagram (if applicable) and; (c) a description ufacturer's catalogue of equipment and air pollution abatement equipment. (See AB88 and Criteria for further details.
IMPORT	ANT: All information that you submit will be considered as public information unles you indicate that it is considered TRADE_SECRET and give the reasons.
	[X] ACKNOWLEDGEMENT
SIGNAT	URE Dane Dietz Weiss Staff Engineer / ENGINEERING MANAGE
NAME (PRINTED) Dana Dietz Weiss / JOAN TIERNAN DATE 10-21-91
NOTE:	PERMITS FOR YOUR PROJECT MAY ALSO BE REQUIRED FROM OTHER AGENCIES. FOR FURTHER INFORMATION, YOU SHOULD CONTACT THE LOCAL CITY OR COUNTY OFFICE IN WHICH THE PROPOS PROJECT WILL BE LOCATED. ALSO, THE OFFICE OF PERMIT ASSISTANCE WITHIN THE OFFICE OF PLANNING AND RESEARCH IN SACRAMENTO IS AVAILABLE TO PROVIDE INFORMATION ON PERMITTI THE ADDRESS IS AS FOLLOWS: OFFICE OF PLANNING AND RESEARCH 1400 Tenth Street Sacramento, California 95814
FORM P- Revised jrb	

BAY AREA

AIR QUALITY MANAGEMENT DISTRICT PERMIT SERVICES DIVISION

939 Elilo Street, San Francisco California 84109

(418) 221-4000

PLANT DATA P-201

Hame & Title of person preparing this

(419) //1-4000	
	STATION 2152
	Plant Identification No
ARCO PRODUCTS COMPANY (ARCO)	
Business Rame	
None	
Other Business Rame(s)(sf	eny) Plant Telephone Sumber
None Mame of Parent Company (5)	(ARY)
22141 Center Stfeet	3315 Almaden Expressway, Ste. 34
Plant Address?	Hailing Address
Castro Valley, California 945	46 San Jose, CA 95118
City State Is	p Code City State Sip Code
PRINCIPAL PRODUCT Gas S	tation () Private () Utility () Local Government () State Government
Please submit a name and ad all correspondence can be	
	Staff Engr/ Engr Mgr.
Contact Hame	Title Fumbers are assigned by the BAAQND. Leave
RESNA/APPLIED GEOSYSTEMS 3315 Almaden Expressway, Suite Street Address	
San Jose, CA 95118	
City State	ity Code
(408) 264-7723 Telephone Number	Dana Weiss / Staff Engineer

Form P-201 1 of 1

9/84

BAY AREA

AIR QUALITY MANAGEMENT DISTRICT 939 Ellis Street, San Francisco, CA 94109 (415) 771-6000

Abatement Device: Equipment/process whose primary purpose is to reduce the quantity of pollutant(s) emitted to the atmosphere.

	s Name:			(ARCO)		Plant No.: <u>Sta.</u> (If unum	own, leave blank)	
Name or	Descript	ion: Vapor-p	hase carbon	adsorption	n system	Abatement Device (+o.: <u> </u>	
dake, Mo	odel and	Rated Capacity:	Vent-Scr				<u> </u>	
batemer	nt Device	code (Table on	n reverse side):.	56		Date of Initial O	peration: Upon	BAAQMD Ap
With reg	gard to a s) and/or	air pollutant fl abatement devi	low into this aba ice(s) are <u>immed</u>	atement device, <u>lately</u> upstream?	what	S_{-1}	S NONE	S NONE
S NO	ONE	\$ None	S None	A None	A None	A None	A None	A _{None}
			at Inlet:	onnicastion fon	an AUTHORITY Toperation, com	O CONSTRUCT, comb	etion of the fol	lowing table not required.
		POLLU	TANT		PERCENT REDUCTI		BASIS CODE Codes on reverse	side)
	Part	iculate		- 4. * * * · · · · · · · · · · · · · · · ·	-	1,		
	⊃rga	nics				<i>q</i> ,		
1								i
-	Nitr	ogen Oxides (as	1 102)			1		
		ogen Oxides (as	1 102)			7.		
	Sulf		1 NO ₂)					
•	Sulf	on Monoxide	s NO ₂)		95	7	3	
	Sulf	on Monoxide			95 95	Ţ.	3	
ith reg	Sulf Carb Othe Othe Check bo Abatemen	on Monoxide r: TPHg r: Benzene x if this Abate t Device No. ab	ement Device burn love for the Sour ow from this aba	ce No., and att	95 e lines 1, 2 ar ach to this for what source(s)	% % % nd 15-36 on Form Com. m. abatement device	3 (using the	QNore
ith reg	Sulf Carb Othe Othe Check bo Abatemen ard to a	on Monoxide r: TPHg r: Benzene x if this Abate t Device No. ab	ement Device burn nove for the Sour	ce No., and att	95 e lines 1, 2 ar ach to this for what source(s)	% % ad 15-36 on Form C	3 (using the	PNone

Abatement Device Codes

```
DEVICE
CODE
       ADSORBER (See VAPOR RECOVERY)
       AFTERBURNER
         CO Boiler
         Catalytic
         Direct Flame
         Flare
         Furnace-Firebox
         Other
       BACHOUSE (See DRY FILTER)
       CYCLONE (See DRY INERTIAL COLLECTOR and SCRUBBER)
       DRY FILTER
         Absolute
         Baghouse, Pulse Jet
  8
         Baghouse, Reverse Air
  Q
         Baghouse, Reverse Jet
 10
         Baghouse, Shaking
 11
         Baghouse, Simple
 12
         Bagnouse, Other
 13
 14
         Envelope
         Moving Belt
 15
         Other
 16
       DRY INERTIAL COLLECTOR
         Cyclone, Dynamic
Cyclone, Multiple, (12 inches diam. or more)
 17
 18
         Cyclone, Multiple, (less than 12 inches diam.)
 19
         Cyclone, Simple
 20
         Settling Chamber, Baffled/Louvered
 21
         Settling Chamber, Simple
 22
         Other
 23
       ELECTROSTATIC PRECIPITATOR
         Single Stage
 24
         Single Stage, Wet
 25
 26
         Two Stage
 27
28
         Two Stage, Wet
         Other
       INCINERATOR (See AFTERBURNER)
       KNOCK-OUT POT (See LIQUID SEPARATOR)
       LIQUID SEPARATOR
         Knock-Out Pot
 29
         Mist Eliminator, Horizontal Pad, Dry
Mist Eliminator, Panel, Dry
 31
         Mist Eliminator, Spray/Irrigated
Mist Eliminator, Vertical Tube, Dry
Mist Eliminator, Other
 32
 33
 źΨ
 35
         Other
       MIST ELIMINATOR (See LIQUID SEPARATOR)
       SCRUBBER
         Baffle and Secondary Flow
 37
38
         Centrifugal
         Cyclone, Irrigated
         Fibrous Packed
 39
 40
         Impingement Plate
         Impingement and Entrainment
 41
         Mechanically Aided
 42
 43
         Moving Bed
         Packed Bed
 44
         Preformed Spray
 45
 46
         Venturi
         Other
       SETTLING CHAMBER (See DRY INERTIAL COLLECTOR)
       SULFUR DIOXIDE CONTROL
         Absorption and Regeneration, for Sulfur Plant
 48
         Claus Solution Reaction, for Sulfur Plant
Dual Absorption, for H2SO4 Plant
 49
 50
         Flue Gas Desulfurization, for Fossil Fuel Combustion
 51
         Reduction and Solution Regeneration, for Sulfur Plant
 52
         Reduction and Stretford Process, for Sulfur Plant
 53
         Sodium Sulfite-Bisulfite Scrubber, for H2SO4 Plant
 54
         Other
 55
       VAPOR RECOVERY
         Adsorption, Activated Carbon/Charcoal
 56
         Adsorption. Silica
 57
         Adsorption, Other
 58
 59
         Balance
         Compression/Condensation/Absorption
 60
         Compression/Refrigeration
 51
         Condenser, Water-Cooled
 62
         Condenser, Other
 63
 64
         Other
       MISCELLANEOUS
         Not classified above
```

Basis Codes

CODES	METHOD SECTION OF THE
0	Not applicable for this pollutant
1	Source Testing or other measurement by plant
2	Source Testing or other measurement by BAAOMD
3	Specifications from vendor.
4	Material balance <u>by plant</u> using engineering expertise and knowledge of process
5	Material balance by BAACMD using engineering expertise and knowledge of process
6	Taken from AP-42 ("Compilation of Air Pollutant Emission Factors", E.P.A.)
7	Taken from literature, other than AP-42
8	Guess

BAY AREA

AIR QUALITY MANAGEMENT DISTRICT 939 Ellis Street, San Francisco, CA 94109 (415) 771-6000

Abatement Device: Equipment/process whose primary purpose is to reduce the quantity of pollutant(s) emitted to the atmosphere.

1. Busin	ess Name: Al	RCO Produc	ts Company	(ARCO)	1	Plant No.: <u>Sta</u> Of un	2152 Amoun, leave blank)	
2. Name o	or Descriptio	on:_Vapor-p	hase carbo	n adsorptio	n system	Abatement Device	No.: A-2	
3. Make,	Model and Ra	ated Capacity:	Vent-Sc					
4. Abater	ment Device (Code (Table on	reverse side):	56		Date of Initial	Operation: Upon	BAAQMD Appr
5. With source	regard to aim e(s) and/or m	r pollutant fla abatement devi	ow into this al	patement device, <u>Hiately</u> upstream	, what 1?	(BLOWER) S-1	Snone	SNONE
SN	ONE	S None	S None	A -1	4 None	A None	A None	Anone
		a Temperature a eing submitted not, and the A	on north of an	application for	an AUTHORITY TO	CONSTRUCT, completion of table	pletion of the fol is requested but	lowing table not required.
		POLLUT	ANT		PERCENT REDUCTI		BASIS CODE (Codes on reverse	side)
7.	Partic	culate				.		
8.	Organi	cs				3		
9.	Nitrog	en Oxides (as	NO ₂)			5		
0.	Sulfur	Dioxide				5		
1.	Carbon	Monoxide		,		*	<u> </u>	
2.	Other:	TPHg	·		95	1	3	
3.	Other:	Benzene		1	95	3	3	
5. With r	Abatement	Device No. abo	we for the Sou w from this ab	rce No.) and at	te lines 1, 2 and tach to this for what source(s),	171.		
<u> </u>	None	A _{None} _	A None	P Stack	P _{None}	Pyone	P None	PNone
11-30-87		Person C	ompleting this		Weiss/ Joa	n Tiernan	Date:10-2]	L-91

Abatement Device Codes

Abat	ement Device Codes
CODE	DEVICE
	ADSORBER (See VAPOR RECOVERY) AFTERBURNER
1	CO Boiler
ż	Catalytic
3	Direct Flame
4	Flare
5	Furnace-Firebox
5 6	Other
	BACHOUSE (See DRY FILTER)
	CYCLONE (See DRY INERTIAL COLLECTOR and SCRUBBER)
	DRY FILTER
7	Absolute
8	Baghouse, Pulse Jet Baghouse, Reverse Air
9 10	Baghouse, Reverse Jet
11	Baghouse, Shaking
12	Baghouse, Simple
13	Baghouse, Other
14	Envelope
15	Moving Belt
16	Other
	DRY INERTIAL COLLECTOR
17	Cyclone, Dynamic Cyclone, Multiple, (12 inches diam. or more)
18 19	Cyclone, Multiple, (less than 12 inches diam.)
20	Cyclone, Simple
21	Settling Chamber, Baffled/Louvered
22	Settling Chamber, Simple
23	Other
	ELECTROSTATIC PRECIPITATOR
24	Single Stage Single Stage, Wet
25 26	Two Stage
27	Two Stage, Wet
28	Other
	INCINERATOR (See AFTERBURNER)
	KNOCK-OUT POT (See LIQUID SEPARATOR)
20	LIQUID SEPARATOR Knock-Out Pot
29 30	Mist Eliminator, Horizontal Pad, Dry
31	Mist Eliminator, Panel, Dry
32	Mist Eliminator, Spray/Irrigated
33	Mist Eliminator, Vertical Tube, Dry
34	Mist Eliminator, Other
35	Other MIST ELIMINATOR (See LIQUID SEPARATOR)
	SCRUBBER
36	Baffle and Secondary Flow
3 7	Centrifugal
38	Cyclone, Irrigated
39	Fibrous Packed
40	Impingement Plate Impingement and Entrainment
41 42	Mechanically Aided
43	Moving Bed
44	Packed Bed
45	Preformed Spray
46	Venturi
47	Other SETTLING CHAMBER (See DRY INERTIAL COLLECTOR)
	SHIFTED DIOYIDE CONTROL
48	Absorption and Regeneration, for Sulfur Plant
49	Claus Solution Reaction, for Sulfur Plant
50	Dual Absorption for M2SO4 Plant
51	Flue Gas Desulfurization, for Fossil Fuel Combustion Reduction and Solution Regeneration, for Sulfur Plant
5 2	Reduction and Stretford Process, for Sulfur Flant
53 54	Sodium Sulfite-Bisulfite Scrubber, for H2SO4 Plant
5 5	Other
	VAPOR RECOVERY
56	Adsorption, Activated Carbon/Charcoal
57	Adsorption, Silica
58 50	Adsorption, Other Balance
59 50	Compression/Condensation/Absorption
50 51	Compression/Refrigeration
62	Condenser, Water-Cooled
63	Condenser, Other
64	Other MISCELLANEOUS
65	Not classified above
-,	

Basis Codes

	• • • • • • • • • • • • • • • • • • •
CODES	METHOD
0	Not applicable for this pollutant
1	Source Testing or other measurement by plant
2	Source Testing or other measurement by BAAQMD
3	Specifications from vendor.
4	Material balance <u>by plant</u> using engineering expertise and knowledge of process
5	Material balance by BAAOMD using engineering expertise and knowledge of process
6	Taken from AP-42 ("Compilation of Air Pollutant Emission Factors", E.P.A.)
7	Taken from literature, other than AP-42
8	Guess

BAY AREA

AIR QUALITY MANAGEMENT DISTRICT 939 Ellis Street, San Francisco, CA 94109 (415) 771-6000

DATA FORM 6 General Air Pollution Source

If in addition to the general process described hereon this source burns fuel, then complete Form C also.
Use specific forms if applicable: Form T (organic tankage, loading), Form S (surface coating, solvent use).

			*	1
Business Name: AR(CO Products Company (ARCO)	Pla	ant No: Sta 2152	<u> </u>
SIC Number:	Date of Initial Operation:	Upon BAAQMD Approval	L	
Name or Description:	Rotron DR12 Regenerative	Blower sou	urce No.: \$ -1	•
Make, Model, and Rat	ted Capacity of Equipment: Rotron D	R12BG72W, Rated Capac	eity 40,200 scfh	
	mn A): 7098 Materials Code*			
Total throughout. la	ast 12 months: N/A Usage Un	nits* Max operating rat	te: 40,200 Us	age Units
	throughput: Dec-Feb 50 4 Mar-			
	imes: 24 hrs/day			
	processes: N/A min/o			
Exhaust gases from s	source: Wet gas flow rate			
(at max. operation	n)	apor content <u>N/A</u>		
is mandatory. If no	eximum operating rate) ng supmitted as part of an application ot, and the Source is already in operat burns fuel, do not include those compa	istion products in the emission	n factors below;	
is mandatory. If no If this source also they are accounted frestimate from those		ustion products in the emission of data are available for composit the general process and shownt Device(s). EMISSION FACTORS	n factors below; site emissions only, w below. Basis Code	
is mandatory. If no If this source also they are accounted for estimate from those	ng supmitted as part of an application ot, and the Source is already in operation burns fuel, do not include those completer on Form C. If source test or other data the emissions attributable to Jus	ustion products in the emission data are available for composit the general process and shownt Device(s).	n factors below; site emissions only, w below.	
is mandatory. If no If this source also they are accounted frestimate from those	ng supmitted as part of an application ot, and the Source is already in operation burns fuel, do not include those completer on Form C. If source test or other data the emissions attributable to Jus	ustion products in the emission of data are available for composit the general process and shownt Device(s). EMISSION FACTORS	n factors below; site emissions only, w below. Basis Code	
is mandatory. If no If this source also they are accounted frestimate from those	ng submitted as part of an application of, and the Source is already in operation burns fuel, do not include those combifor on Form C. If source test or other data the emissions attributable to Justicors apply to emissions after Abateme	ustion products in the emission of data are available for composit the general process and shownt Device(s). EMISSION FACTORS	n factors below; site emissions only, w below. Basis Code	
is mandatory. If no If this source also they are accounted for estimate from those	ng submitted as part of an application of, and the Source is already in operation burns fuel, do not include those combifor on Form C. If source test or other data the emissions attributable to justice to apply to emissions after Abateme Particulate	ustion products in the emission data are available for composit the general process and shownt Device(s). EMISSION FACTORS lbs/Usage Unit*	n factors below; site emissions only, w below. Basis Code	
is mandatory. If no If this source also they are accounted frestimate from those	ng submitted as part of an application of, and the Source is already in operation burns fuel, do not include those combifor on Form C. If source test or other data the emissions attributable to Justicors apply to emissions after Abateme Particulate	ustion products in the emission data are available for composit the general process and shownt Device(s). EMISSION FACTORS lbs/Usage Unit*	n factors below; site emissions only, w below. Basis Code	
is mandatory. If no If this source also they are accounted for estimate from those	ng submitted as part of an application of, and the Source is already in operation burns fuel, do not include those computer on Form C. If source test or other data the emissions attributable to Justicors apply to emissions after Abateme Particulate	ustion products in the emission data are available for composit the general process and shownt Device(s). EMISSION FACTORS lbs/Usage Unit*	n factors below; site emissions only, w below. Basis Code	
is mandatory. If no If this source also they are accounted for estimate from those	ng submitted as part of an application of, and the Source is already in operation of the Source is already in operation of the source test of other for on Form C. If source test or other data the emissions attributable to Justicors apply to emissions after Abateme Particulate	ustion products in the emission data are available for composit the general process and shownt Device(s). EMISSION FACTORS lbs/Usage Unit*	n factors below; site emissions only, w below. Basis Code	
is mandatory. If no If this source also they are accounted frestimate from those	ng submitted as part of an application of, and the Source is already in operation of, and the Source is already in operation of the source of the source test or other data the emissions attributable to just ctors apply to emissions after Abateme Particulate	ustion products in the emission data are available for composit the general process and shownt Device(s). EMISSION FACTORS lbs/Usage Unit*	Basis Code (see reverse)	
is mandatory. If no If this source also they are accounted frestimate from those of [XX]Check box if fac	ng submitted as part of an application of, and the Source is already in operation of, and the Source is already in operation of the source test of other on Form C. If source test or other data the emissions attributable to just others apply to emissions after Abateme Particulate	sstion products in the emission data are available for composit the general process and shownt Device(s). EMISSION FACTORS 1bs/Usage Unit* 4.96 1b/hr 4.2 x 10 ⁻⁴	Basis Code (see reverse)	

Basis Codes

.CODES	MERROD
0	Not applicable for this pollutant
1	Source Testing or other measurement by plant
2	Source Testing or other measurement by BAAQMD.
3	Specifications from vendor
14	Material balance <u>by plant</u> using engineering expertise and knowledge of process
5	Material balance by BAAGMD using engineering expertise and knowledge of process
б	Taken from AP-42 ("Compilation of Air Pollutant Emission Factors", E.P.A.)
7	Taken from literature, other than AP-42
8	Guess

CODE TABLES*for GENERAL AIR POLLUTION SOURCES

Table	Process
G-1	Food & Agricultural
G-2	Metallurgical (Primary Metals)
G-3	Metallurgical (Secondary Metals)
G-4	Mineral
G - 5	Petroleum Refining
G-6	Incineration
G - 7	Chemical/Other

BAY AREA

AIR QUALITY MANAGEMENT DISTRICT

939 Ellis Street, San Francisco, CA 94109 (415) 771-6000

DATA FORM P Emission Point

Form P is for well-defined emission points such as stacks or chimneys only; do not use for windows, room vents, etc. Plant No.: Station 2152 Business Name: ARCO Products Company (ARCO) Emission Point No.: P-1 Stack With regard to air pollutant flow into this emission point, what source(s) and/or abatement device(s) are immediately upstream? S NUNE S NONE A None S_{None} S None S NONE Feet Square feet Height above grade:_____ Exit Cross-section Area: Effluent Flow from Stack: Typical Operating Condition Maximum Operating Condition cfm cfm Actual Wet Gas Flow Rate 500 400 Vol 💈 Vol 1 Percent Water Vapor o_F o_F 120 75 Temperature If this stack is equipped to measure (monitor) the emission of any air pollutants, -is monitoring continuous? _ no -what pollutants are monitored? Benzene, toluene, total xylene isomers, ethylbenzene, total petroleum hydrocarbons as gasoline

Person Completing this Form Dana Weiss/Joan Tiernan Date October 21, 1991

Form P 1 of 1

REQUEST FOR INFORMATION; RISK SCREENING ANALYSIS

NOTE: You must fill out one of these forms for each source in the permit application that requires a risk screen. These may be discrete sources such as stacks, or area sources such as surface area fugitive emissions.		
Plant nameARCO Station No. 2152		
Source description Regenerative Blower in line with a carbon		
adsorption system		
SECTION A		
Is the source a clearly defined emission point, i.e., a stack? YES NO (If NO, go on to section B)		
2. Does the stack stand alone or is it located on the roof of a building? ALONE ON ROOF		
3. What is the stack height? 9 meters or feet (Note: stack height only, whether free-standing or on rooftop)		
4. What is the combined stack height and building height (if applicable)? N/A meters or feet		
5. What is the stack diameter? 0.167 meters or feet		
6. What is the stack flowrate? 500 cfm or m ³ /sec		
7. What is the stack exit temperature? 120 degrees Fahrenheit or Centigrade		
8. If the stack is located on a rooftop, what are the dimensions of the building?		
height = N/A meters or feet		
width = N/A meters or feet		
length = N/A meters or feet		

APCO	Station	2152
AKLL	SEALIUM	

9. Are there any buildings, walls or other structures located near this source?
YES NO
If YES, what are their dimensions?
height = $\frac{25}{}$ meters or feet
width = $\frac{28}{}$ meters or feet
length = $\frac{54}{}$ meters or feet
distance from sourcemeters or feet
(GO ON TO SECTION C)
SECTION B
1. Is the source located within a building? YES NO
(If NO, please provide a description of the source. For example, fugitive emissions that must be evaluated as an area source. If an area source, provide the dimensions of the area in question. Then go on to section C.)
(If YES, proceed to #2, below)
Regenerative blower in line with a carbon adsorption system. Emissions come from a stack.
Does the source exhaust through the building ventilation system? YES NO
a. If NO, can we assume that emissions from the source escape via the building's doors and windows? YES NO

(If your answer here is also NO, please explain where the emissions are going)

	heiaht =	meters or feet
	-	meters or feet
		meters or feet
	ource?	gs. walls or other structures located near this
l	f YES, what are their	dimensions?
	height =	meters or feet
	width =	meters or feet
	length =	meters or feet
	distance from s	ourcemeters or feet
SO ON	TO SECTION C)	

ARCO Station 2152	
. 4 0.10	SECTION C
1. Describe the area wh	nere the source is located (select one):
a) zoned for co	ommercial use
b) zoned for re	sidential use
2. Distance from source	e (stack or building) to property line = meters or f <u>eet</u>
2. Distance from prope	rty line to nearest receptor** =
25	meters or feet

You must provide a plot plan or a map, <u>drawn to scale</u>, which clearly demonstrates the location of your site, the property lines and any surrounding residences and/or businesses.

(SEE PLATE 2, AREA MAP)

** Receptors are defined as individual dwellings where persons are assumed to be in continuous residence.

EMISSIONS RATE CALCULATIONS AT SYSTEM STARTUP

For the following emission calculations, the average influent concentrations observed during the pilot test were used for the initial TPHg and benzene concentrations.

TPHg Extraction Rate Calculation at Startup

The average initial TPHg concentration is 594 ppmv. The approximate initial TPHg mass extraction rate is as follows:

TPHg Emission Rate at Startup after Abatement

The approximate initial TPHg mass emission rate is as follows:

$$\frac{119.1 \text{ lbs TPHg}}{\text{day}} \times 0.05 \text{ (for a 95\% destruction efficiency)} = \frac{6.0 \text{ lbs TPHg}}{\text{day}}$$

Benzene Extraction Rate Calculation at Startup

$$\frac{4.5 \text{ mg benzene}}{1 \text{ m}^3} \quad \frac{1 \text{ mole benzene}}{1,000 \text{ mg}} \quad \frac{22.414 \text{ l}}{78 \text{ g benzene}} \quad \frac{1 \text{ m}^3}{1,000,000 \text{ cm}^3} \quad \frac{1 \text{ cm}^3}{1 \text{ ml}} \quad \frac{1,000 \text{ ml}}{1 \text{ l}} = \frac{1.3 \text{ l}}{1,000,000 \text{ l}} = 1.3 \text{ ppmv} \quad \text{Benzene}$$

The average initial benzene concentration is 1.3 ppmv. The approximate initial benzene mass extraction rate is as follows:

$$\frac{1.3 \text{ 1 (vapor)}}{1,000,000 \text{ (1 air)}} \times \frac{500 \text{ ft}^3}{\text{min}} \times \frac{1,440 \text{ min}}{\text{day}} \times \frac{28.32 \text{ 1 (air)}}{1 \text{ ft}^3} \times \frac{1 \text{ mole (gas)}}{22.414 \text{ 1 (vapor)}} \times \frac{78 \text{ grams}}{1 \text{ mole (gas)}} \times \frac{1 \text{ lb}}{454 \text{ grams}}$$

Benzene Emission Rate at Startup after Abatement

The approximate initial benzene mass emission rate is as follows:

EMISSIONS RATE CALCULATION AFTER TWO MONTHS

A ninety-percent reduction from initial hydrocarbon concentrations usually results in the first few months of operation (Johnson, et al, 1990). For the following emission calculations, a ninety-percent reduction of the average influent concentrations observed during the pilot test were used for the initial TPHg and benzene concentrations.

TPHg Extraction Rate Calculation After Two Months of Operation

The average initial TPHg concentration is 59.4 ppmv. The approximate initial TPHg mass extraction rate is as follows:

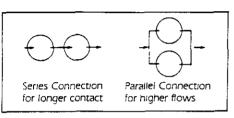
TPHg Emission Rate after Abatement and after Two Months of Operation

The approximate initial TPHg mass emission rate is as follows:

Benzene Extraction Rate Calculation

The average initial benzene concentration is 0.13 ppmv. The approximate initial benzene mass extraction rate is as follows:

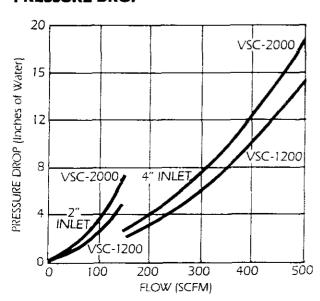
$$\frac{0.13 \ 1 \ (vapor)}{1,000,000 \ (l \ air)} x \ \frac{500 \ ft^3}{min} \ x \frac{1,440 \ min}{day} \ x \frac{28.32 \ 1 \ (air)}{1 \ ft^3} \ x \frac{1 \ mole \ (gas)}{22.414 \ 1 \ (vapor)} x \ \frac{78 \ grams}{1 \ mole \ (gas)} x \frac{1 \ lb}{454 \ grams}$$

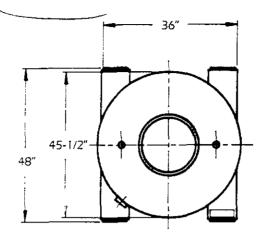

Benzene Emission Rate after Abatement and after Two Months

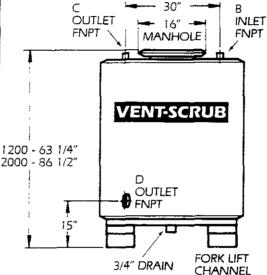
The approximate initial benzene mass emission rate is as follows:

$$\frac{0.02 \text{ lbs benzene}}{\text{day}}$$
 x 0.05 (for a 95% destruction efficiency) = $\frac{0.001 \text{ lbs benzene}}{\text{day}}$

EASY TO INSTALL


VENT-SCRUB™ adsorbers are designed for fast and easy installation on any hard, flat surface. Place the unit as close to the vapor source as possible. The only hardware needed is properly sized pipe or ducting-rigid or flexible-for connection to the injet/outlet ports. For outdoor use, a rain quard may be needed to protect VENT-SCRUB's™ exhaust.




SAFETY

Under certain conditions, some chemical compounds may oxidize, decompose, or polymerize in the presence of activated carbon. This could result in temperature increases sufficient to cause ignition. As a result, particular care must be taken with compounds having peroxideforming tendencies

PRESSURE DROP

CORROSION RESISTANCE

The combination of activated carbon and many VOC's can cause severe corrosive or electrolytic damage to metals, even stainless steel VENT-SCRUB™ adsorbers are designed to prevent these effects in normal service

DIMENSIONS 😅

A	В	C	D
63-1/4"	2"	2"	N/A
63-1/4"	4"	N/A	4"
86-1/2"	4"	N/A	4"
86-1/2"	4"	N/A	4"
	63-1/4" 63-1/4" 86-1/2"	63-1/4" 2" 63-1/4" 4" 86-1/2" 4"	63-1/4" 2" 2" 63-1/4" 4" N/A 86-1/2" 4" N/A

MATERIALS OF CONSTRUCTION

Vessel:

Coated 12 ga. Carbon Steel 7 ga. Top/Bottom

External Coating.

Powder Coat Enamel

Internal Coating.

Fusion Bonded Epoxy Piping: PVC

SPECIFICATIONS	
Flow* cfm (max)	

SPECIFICATIONS	VSC-1200	VSC-2000
Flow* cfm (max)	500	500
Pressure psig (max)	12	12
Vacuum (in Hg)	15	**
Temperature deg F (max)	120	120
Carbon Fill Volume (cu. ft.)	33	65
Cross Section (sq. ft.)	12.5	12.5
Shipping Weight (lbs)	1600	2500
TAILS - Desired was a should be been a second on a second		that room wroad for

*Note, actual design should be based on superficial bed velocity (sbv) as required for specific contaminants.

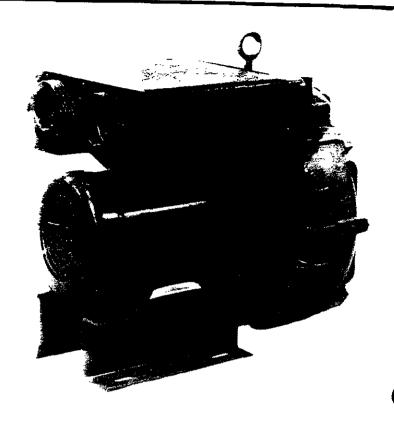
** VSC-2000-4 8 (in Ha) VSC-2000-4V 15 (in Hg)

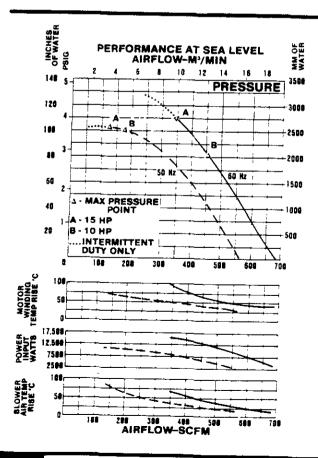
All information presented here is believed to be reliable and in accordance with accepted engineering practice. However, Westates makes no warranties as to the completeness of the information. Users should evaluate the suitability of each product to their own particular application in no case will Westates be liable for any special, indirect, or consequential damages arising from the sale, resale, or misuse of its products.

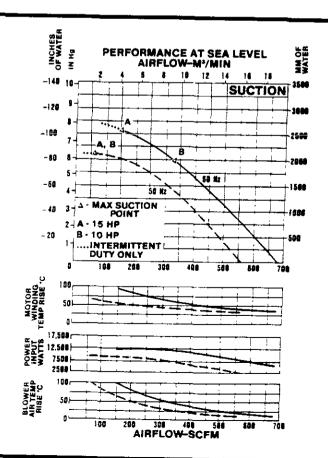
WESTATES CARBON, INC. 2130 Leo Ave , Los Angeles, CA 90040 PHONE (213) 722-7500 FAX (213) 722-8207 TWX: 910-321-2355

DR 12 Regenerative Blower

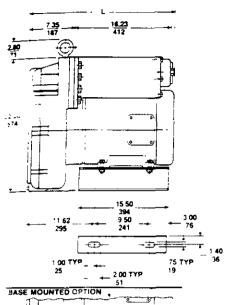
FEATURES

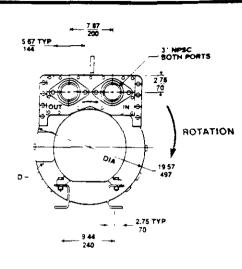

- Manufactured in the USA
- Maximum flow 670 SCFM
- Maximum pressure 110" WG
- Maximum vacuum 7.5" Hg
- 15 HP, TEFC motor, standard
- Blower construction—cast aluminum housing, impeller and cover
- · Inlet and outlet internal muffling
- Noise level within OSHA standards when properly piped or muffled
- Weight: 426 lbs. (194 Kg)

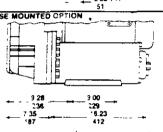

ACCESSORIES

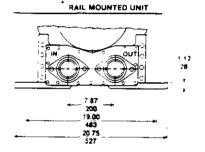

- Additional inlet/outlet mufflers
- · Inlet or Inline filters
- For details see Accessories Section

OPTIONS


- Smaller and larger HP motors
- 575-volt motors
- Surface treatments
- Gas tight sealing
- Belt drive (motorless) models; for details see Remote Drive Section






DR 12 Regenerative Blower

MODEL	L In (±.31) MM(±8)	O (Dia.)
DR128872	23.18 589	1 06 In.
DR128E72	24.31 517	1 06 In
DR128G72	25.81 656	3' NPT
DR128E86	24 <u>31</u> 517	1 06 in

DIMENSIONS	IN MM
TOLERANCES	$\pm \times \times \pm \frac{.1}{2.5}$

SPECIFICATIONS

DR12BB72W	DR12BE72W	CDR12BG72W	DR12BE86W
036717	036716	036917	036918
TEFC	TEFC	XP	TEFC
10	15	15	15
230/460	230/460	230/460	575
3	3	3	3
60	60	60	60
F	F	В	F
26/13	46/23	46/23	. 19
1 15	1.15	1.0	1.15
160/80	232/116	232/116	93
32.4/16.2	39.4/19.7	39.4/19.7	15.8
2/1	2/2	2/2	2
411/186	426/194	580/264	424/193
DR12BB72X	DR12BE72X	DR12BG72X	DR12BE86X
036721	036720	036919	036920
		,	·
77/101	110/101	110/101	110 (60 Hz)
77/83	102/83	102/83	102 (60 Hz)
450/200	350/120	350/120	350 (60 Hz)
320/70	150/70	150/70	150 (60 Hz)
	036717 TEFC 10 230/460 3 60 F 26/13 115 160/80 32.4/16.2 2/1 411/186 DR12BB72X 036721 77/101 77/83 450/200	036717 036716 TEFC TEFC 10 15 230/460 230/460 3 3 60 60 F F 26/13 46/23 1 15 1.15 160/80 232/116 32.4/16.2 39.4/19.7 2/1 2/2 411/186 426/194 DR12BB72X DR12BE72X 036721 036720 77/101 110/101 77/83 102/83 450/200 350/120	036717 036716 036917 TEFC TEFC XP 10 15 15 230/460 230/460 230/460 3 3 3 60 60 60 F F B 26/13 46/23 46/23 15 1.15 1.0 160/80 232/116 232/116 32.4/16.2 39.4/19.7 39.4/19.7 2/1 2/2 2/2 411/186 426/194 580/264 DR12BB72X DR12BE72X DR12BG72X 036721 036720 036919 77/101 110/101 110/101 77/83 102/83 102/83 450/200 350/120 350/120

All 3-phase motors are factory tested and certified to operate on 200-230,460 VAC 3 ph-60 Hz this 220-240/380-415 VAL (1904)

'Maximum operating temperatures. Motor winding temperature (winding rise plus ambient) should not exceed 140°C for Classic resolution or 110°C for Classic Blower outlet air temperature should not exceed 140°C foir temperature rise plus ambient).