

ENVIRONMENTAL RESOLUTIONS, INC.

REQUEST FOR CASE CLOSURE

for

Former Exxon Service Station 7-0236 6600 East 14th Street Oakland, California

ERI Job No. 200903.R03

Prepared for

Exxon Company, U.S.A. P.O. Box 4032 Concord, California 94524-4032

by

Environmental Resolutions, Inc.

James F. Chappell' Senior Staff Scientist

John B. Bobbitt

R.G. 4313

December 13, 1999

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
	1.1	Setting	1
2.0	SITE	DESCRIPTION	2
	2.1	Background	2
	2.2	Regional Setting	4
	2.3	Site Geology and Hydrogeology	4
	2.4	Current Site Conditions	4
		2.4.1 Soil Conditions	4
		2.4.2 Groundwater Conditions	5
3.0	OFF-	SITE INVESTIGATION	5
	3.1	Field Activities	5
	3.2	Analytical Methods	5
	3.3	Analytical Results	
4.0	PLUI	IE EVALUATION	6
	4.1	Source Identification.	
	4.2	Plume Delineation	
	4.3	Groundwater Monitoring Data	
5.0	BIOA	TTENUATION	8
	5.1	Parameters	8
	5.2	Results	
	5.3	Interpretation	
6.0	RISK	BASED CORRECTIVE ACTION	9
	6.1	Pathways Analyzed	10
	6.2	Results	
7.0	SUM	MARY	10
8.0	LIMI	FATIONS	11
9.0	REFI	RENCES	11
		TABLES	
		TABLES	
TABI	E 1:	CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA	
TABI	LE 2:	CUMULATIVE SOIL BORING SAMPLE RESULTS	
TABL	LE 3:	GROUNDWATER SAMPLE RESULTS	
TABI	Æ4:	SOIL STOCKPILE SAMPLE RESULTS	
TABI	LE 5:	BIOREMEDIATION PARAMETER RESULTS	

PLATES

PLATE 1:	SITE VICINITY MAP
PLATE 2:	GENERALIZED SITE PLAN
PLATE 3:	CROSS-SECTION A-A'
PLATE 4:	CROSS-SECTION B-B'
PLATE 5:	CROSS-SECTION C-C'
PLATE 6:	GROUDWATER FLOW DIRECTION ROSE DIAGRAM
PLATE 7:	MTBE ISOCONCENTRATION MAP
PLATE 8:	BENZENE ISOCONCENTRATION MAP

	CD A DVIG
	GRAPHS
GRAPH 1:	BENZENE AND MTBE CONCENTRATIONS AND GROUNDWATER
	ELEVATION VERSUS TIME - MW2
GRAPH 2:	BENZENE AND MTBE CONCENTRATIONS AND GROUNDWATER
	ELEVATION VERSUS TIME - MW3
GRAPH 3:	BENZENE AND MTBE CONCENTRATIONS AND GROUNDWATER
	ELEVATION VERSUS TIME – MW4
GRAPH 4:	BENZENE AND MTBE CONCENTRATIONS AND GROUNDWATER
	ELEVATION VERSUS TIME - MW5
GRAPH 5:	BENZENE AND MTBE CONCENTRATIONS AND GROUNDWATER
	ELEVATION VERSUS TIME – MW6
GRAPH 6:	BENZENE AND MTBE CONCENTRATIONS AND GROUNDWATER
	ELEVATION VERSUS TIME – MW8
GRAPH 7:	MTBE CONCENTRATION VERSUS DISTANCE
GRAPH 8:	DISSOLVED OXYGEN - THIRD QUARTER 1999
GRAPH 9:	FERROUS IRON – THIRD QUARTER 1999
GRAPH 10:	ALKALINITY – THIRD QUARTER 1999
GRAPH 11:	NITRATE – THIRD QUARTER 1999
GRAPH 12:	SULFATE – THIRD QUARTER 1999

APPENDICES

APPENDIX A:	ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY -
	ENVIRONMENTAL HEALTH SERVICES LETTER DATED JANUARY 7,
	1999
APPENDIX B:	CALTRANS ENCROACHMENT PERMIT
APPENDIX C:	LABORATORY ANALYSIS REPORT AND CHAIN OF CUSTODY
	RECORD
APPENDIX D:	SOIL DISPOSAL DOCUMENTATION
APPENDIX E:	RBCA ANALYSIS

ENVIRONMENTAL RESOLUTIONS, INC.

REQUEST FOR CASE CLOSURE

for

Former Exxon Service Station 7-0236 6600 East 14th Street Oakland, California

For Exxon Company, U.S.A.

1.0 INTRODUCTION

At the request of Exxon Company, U.S.A. (Exxon), Environmental Resolutions, Inc. (ERI) performs environmental assessment activities at the subject site. ERI is submitting this request for case closure for the subject site. The request for case closure incorporates the results of on-site and off-site investigations, an evaluation of bioattentuation, plume modeling, a risk-based corrective action (RBCA) evaluation, and the results of previous investigations. The purpose of the off-site investigation was to evaluate hydrocarbon concentrations including methyl tertiary butyl ether (MTBE) in groundwater downgradient of the site. The work included recording bioremediation parameters in groundwater monitoring wells, installing oxygen releasing compound (ORC) socks in groundwater monitoring well MW2, drilling one on-site and two off-site soil borings, collecting grab groundwater samples from the borings, and collecting groundwater samples from on-site groundwater monitoring well MW2. ERI performed the work in response to a letter from the Alameda County Health Care Services Agency - Environmental Health Services (the County), dated January 7, 1999 (Appendix A).

1.1 Setting

The site is located on the southwest corner of 66th Avenue and East 14th Street in Oakland, California, as shown on the Site Vicinity Map (Plate 1). The locations of the former underground storage tanks (USTs), former dispenser islands, and other selected site features are shown on the Generalized Site Plan (Plate 2).

The site operated as an Exxon Service Station until 1996, at which time the USTs and above ground site constructions were removed.

2.0 SITE DESCRIPTION

2.1 Summary of Site Activities

A summary of site activities including remedial efforts at the site follows. Cited reports are listed in Section 10, References.

- April 1991 Exxon submitted a Preliminary Site Investigation Report.
- March 1991 Exxon installed three groundwater monitoring wells MW1 through MW3.
- May 1992 Exxon installed four groundwater monitoring wells MW4 through MW7 and initiated —
 quarterly groundwater monitoring and sampling.
- June 1992 Exxon submitted a Final Site Investigation Report.
- March 1993 Exxon performed a record search and site investigation to investigate potential sources within the vicinity.
- October 1993 Exxon submitted a Work Plan for Supplemental Environmental Investigation.
- November 1993 Exxon installed three soil vapor extraction (SVE) wells VE1 through VE3.
- December 1993 Exxon performed a SVE feasibility test and a groundwater extraction feasibility test. SVE and groundwater extraction were determined not to be feasible remedial alternatives for the site.
- February 1994 Exxon submitted a Supplemental Environmental Investigation Report.
- May 1994 Exxon submitted a Remedial Action Plan (RAP) to the California Regional Water Quality Control Board, San Francisco Bay Region (Regional Board) recommending remediation by excavation of hydrocarbon-impacted soil and continued groundwater monitoring.
- February 1996 Exxon submitted a Corrective Action Plan (CAP) to the Regional Board and the
 County. The CAP recommended passive bioremediation as a remedial alternative at the site. This
 recommendation was based on fate and transport analysis of soil and groundwater conditions and
 hydrocarbon concentrations, subsurface lithology, and a letter from the Regional Board, dated March

- 7, 1994, which agreed with the recommendations of the 1994 RAP.
- September 1996 Exxon installed ORC socks in groundwater monitoring wells MW1, MW2, MW3, and MW6.
- December 1996 Exxon destroyed the station building and removed three fuel USTs, one used-oil
 UST, associated product lines and dispensers, and two hoists. Soil samples were collected by ERI
 during field activities. Analytical laboratory results of soil samples indicated residual petroleum
 hydrocarbons as diesel and gasoline were present in soil.
- January 1997 Exxon destroyed two groundwater monitoring wells (MW1 and MW7), and three SVE wells (VE1 through VE3). Exxon installed one groundwater monitoring well (MW8).
- February 1997 Exxon performed a geophysical investigation to search for additional USTs.

 Three areas were discovered with magnetic anomalies possibly associated with small USTs.
- May 1997 Exxon excavated the three areas with magnetic anomalies. Additional USTs were not discovered.
- December 1997 Exxon excavated approximately 197 tons of soil from the former dispenser area.
- January 1998 Exxon drilled two soil borings SB1 and SB2 and collected soil samples. Atrode ? No
- March 1998 Exxon removed ORC from MW2 because it was deteriorating.
- April 1998 Exxon excavated approximately 151 tons of soil in the area between the former $\sqrt{\delta}$ dispensers and SB1 and SB2.
- April 1999 Exxon performed a sensitive receptor survey and an underground utility survey.
- February 1999 Exxon submitted a Work Plan for Utility Survey, Sensitive Receptor Survey, and Baseline Risk Assessment for Case Closure to the County.
- June 1999 Exxon submitted an Addendum to the Work Plan for Off-Site Investigation.
- October 1999 Exxon installed ORC socks into groundwater monitoring well MW2.
- October 1999 Exxon performed an off-site investigation including drilling SB1 through SB3.

Currently there are six groundwater monitoring wells (MW2 through MW6, and MW8) on and in the vicinity of the site as shown on Plate 2.

Laboratory analysis of groundwater samples collected from the wells indicate the presence of total extractable petroleum hydrocarbons as diesel (TEPHd), total purgeable petroleum hydrocarbons as

gasoline (TPPHg), benzene, toluene, ethylbenzene, and total xylenes (BTEX), and MTBE. Cumulative groundwater monitoring and sampling data are summarized in Table 1. Cumulative soil boring sample results are presented on Table 2.

2.2 Regional Setting

The site is located along the western portion of an alluvial fan, northeast of the San Leandro Bay, approximately 1.5 miles east of the Oakland Airport Channel.

2.3 Site Geology and Hydrogeology

Based on previous investigations, ERI has identified one sediment for the ongoing investigation at the site. From the ground surface to 20 feet below ground surface (bgs) there exists a single "upper" aquifer composed of low permeability clay, silty clay, and gravelly silt. Geologic cross sections depicting site stratigraphy are presented as Plates 3, 4, and 5.

Based on quarterly groundwater monitoring data, the depth to groundwater across the site has fluctuated from approximately 4 to 15 feet bgs. Groundwater flows persistently towards the south-southwest with a hydraulic gradient ranging from 0.018 to 0.0387. A rose diagram depicting groundwater flow directions is shown on Plate 6.

2.4 Current Site Conditions

2.4.1 Soil Conditions

Residual hydrocarbons are present in subsurface soil. TPPHg, TEPHd, and BTEX were detected in soil samples collected during the removal of the USTs, hoists, dispensers and associated piping.

Analysis of soil samples collected from the gasoline UST cavity at 9 feet bgs detected TPPHg at up to 16 mg/kg and TEPHd at up to 7.8 mg/kg. Analysis of soil samples collected from the used-oil UST cavity at 8 feet bgs detected TEPHd at up to 52 mg/kg and total recoverable petroleum hydrocarbons (TRPH) at up to 220 mg/kg. Analysis of soil samples collected from the bottom of the hoist cavity at 10 feet bgs (the soil/water interface) detected TPPHg at up to 16 mg/kg and TRPH at up to 590 mg/kg. Analysis of

soil samples collected from beneath the former dispensers at 2.5 to 3.5 feet bgs detected TPPHg at up to 350 mg/kg and TEPHd at up to 56 mg/kg. Approximately 197 tons of soil was removed from beneath of the former dispenser area (D2 and D6) and adjacent to monitoring well MW8. Soil was excavated to a depth of approximately 10 feet below ground surface (soil/water interface).

2.4.2 Groundwater Conditions

During 1999 (four quarters of monitoring), groundwater monitoring well MW2, downgradient of the former dispensers had the maximum concentrations of hydrocarbons at the site; TEPHd at 2,480 μ g/l, TPPHg at 2,900 μ g/l, benzene at 100 μ g/l and MTBE at 2,200 μ g/l.

3.0 OFF-SITE INVESTIGATION

The work was performed in accordance with ERI's Work Plan Addendum for Off-Site Investigation (Work Plan), dated June 23, 1999. Prior to performing fieldwork, ERI obtained an encroachment permit from the State of California Department of Transportation (Caltrans) (Appendix B).

3.1 Field Activities

On October 15, 1999, ERI drilled three soil borings (SB1 through SB3) to approximately 2 feet below first-encountered groundwater using a 3-inch hand auger. Groundwater was allowed to enter the open boreholes and grab groundwater samples were collected using disposable bailers. The borings were backfilled to approximately 1 foot bgs using grout. The surface was replaced with concrete and finished to match surrounding grade. The locations of the soil borings are shown on Plate 2. A groundwater sample was also collected from on-site groundwater monitoring well MW2 during the offsite investigation.

3.2 Analytical Methods

Groundwater samples were submitted to Southern Petroleum Laboratories, Inc. (SPL) a California state- certified laboratory, under Chain of Custody protocol. The samples were analyzed for BTEX,

MTBE, and TPPHg, using the methods listed in the notes in Table 3. The laboratory analysis report and Chain of Custody record are attached (Appendix C).

Soil cuttings from the drilling of SB1 through SB3 were stockpiled onsite and covered with plastic sheeting pending disposal. Soil stockpile sample results are presented in Table 4. On November 23, 1999, Dillard Trucking of Byron, California transported approximately 1 cubic yard of soil to Redwood Landfill in Novato, California for disposal. Disposal documentation is attached (Appendix D).

3.3 Analytical Results

Analytical results of groundwater samples collected during the off-site investigation are presented in Table 3. Laboratory analysis of the water samples collected from off-site borings SB2 and SB3 did not detect the requested analytes at or above the laboratory method detection limits. Laboratory analysis of the water sample collected from on-site boring SB1 detected TPPHg, BTEX, and MTBE. Based on the results of these samples, ERI concludes that the MTBE plume is delineated in the downgradient direction from the site.

4.0 PLUME EVALUATION

According to Arulanantham et al (1998), the following criteria must be met to demonstrate a stable MTBE plume in groundwater:

- The release mechanism has been identified and corrective action has been performed, or the primary source has been removed;
- The plume has been defined, in terms of concentration (mass), and extent (not necessarily to non-detectable concentrations), and;
- Groundwater elevation and constituent monitoring data are available for at least two consecutive years.

4.1 Source Identification

Based on the results of ERI's report of Removal of Hoists, Underground Storage Tanks, Product Lines, and Dispensers (ERI, 1997) and ERI's report of Environmental Activities (ERI, 1998), the known sources of petroleum hydrocarbons at the site have been removed.

- Two hydraulic car hoists removed,
- Three 10,000-gallon fiberglass gasoline USTs removed,
- One 550-gallon fiberglass used-oil UST removed,
- Six multi-product dispensers removed and impacted soil excavated,
- Associated product piping removed.

Approximately 348 tons of soil were removed from the area of the former dispenser islands.

Laboratory analysis of soil samples collected from the lateral limits of the excavation detected TPPHg up to 13 mg/kg and TEPHd up to 25 mg/kg. Based on the results of the *Geophysical Investigation* (ERI 1997) additional sources of petroleum hydrocarbons have been sufficiently investigated and no additional sources were identified.

4.2 Plume Delineation

The MTBE plume originating from this site has been delineated in the downgradient and crossgradient directions. To date, MTBE has not been detected in samples collected from wells MW1, MW4 MW5, and MW7. MTBE was also not detected in grab groundwater samples collected from soil borings SB2 and SB3.

4.3 Groundwater Monitoring Data

Groundwater monitoring data have been collected from the subject site since March 1991; MTBE concentration data have been collected since September 1993. Plots of MTBE and benzene concentrations, and groundwater elevation versus time for each groundwater monitoring well are included as Graphs 1 through 6. Graph 7 presents MTBE concentrations in groundwater monitoring

wells versus the approximate distance from the former source area. An MTBE isoconcentration map based on 4th Quarter 1999 quarterly monitoring (QM) results is presented as Plate 7. MTBE concentrations appear to be decreasing over time in on-site wells MW2, MW3, and MW6. The concentration versus distance plot shows that MTBE concentration decreases in the downgradient direction (i.e. between wells MW2 and MW5).

5.0 BIOATTENUATION

Bioattenuation is the process of aerobic and anaerobic microorganisms naturally degrading petroleum hydrocarbons. As microorganisms consume hydrocarbons, concentrations of particular molecules are either decreased or increased in groundwater. Dissolved oxygen (DO) levels generally decrease as the rate of aerobic biodegradation of hydrocarbons increases. Aerobic biodegradation, utilizing DO, is the most energetically preferred degradation pathway. As the amount of DO decreases, a corresponding increase in the amount of dissolved carbon dioxide is observed because carbon dioxide is a metabolic by-product of aerobic biodegradation. As the level of DO decreases, the rate of anaerobic biodegradation increases. At this point nitrates are consumed by anaerobic biodegradation, thereby decreasing the amount of nitrates in the groundwater. The increased rate of anaerobic biodegradation leads to an increase in the dissolved metabolic by-products of anaerobic biodegradation: dissolved ferrous iron, dissolved hydrogen sulfide, and dissolved methane. Monitoring for these constituents can provide a description of the activity and state of microorganisms in the groundwater (U.S. Environmental Protection Agency, 1996).

5.1 Parameters

During the third quarter 1999, samples were collected from groundwater monitoring wells MW2, MW3, and MW5, and analyzed for the following constituents: nitrate as NO₃, ferrous iron, sulfate as SO₄, and alkalinity. DO field measurements were collected in wells MW2, MW3, and MW5. Bioattenuation parameter results are presented in Table 5 and Graphs 8 through 12.

5.2 Results

- The DO values measured in well MW2 (within the plume) are lower than the DO values measured in MW3 and MW5 (outside the plume), as shown on Graph 8. This indicates that aerobic biodegradation is occurring within the plume.
- Ferrous iron (Fe²⁺) concentrations are a product of bacterial iron reduction. The ferrous iron levels in well MW2 (inside the plume) are higher than the levels in MW3 and MW5 (outside the plume), as shown in Graph 9. This indicates that the production of ferric iron (Fe³⁺) is taking place within the plume.
- Alkalinity generally increases with the biodegradation of organic compounds. The alkalinity level in MW2 (inside the plume) is higher than the alkalinity levels in MW3 and MW5 (outside the plume) as shown in Graph 10.
- Nitrate concentrations are expected to be lower inside the plume. The nitrate level in MW2 (inside
 the plume) is lower than the nitrate level in MW3 (outside the plume) as shown in Graph 11. This
 indicates that bacteria are utilizing nitrates as an energy source. Nitrogen is an essential nutrient of
 microbial growth and biodegradation.
- As sulfate concentrations decrease, the activity of methanogenic bacteria increases. This difference
 may be due to the result of one or more mechanisms of natural attenuation, possibly sulfate
 reduction. The sulfate level in MW2 (inside the plume) is higher than the levels in MW3 and MW5
 (outside the plume) as shown in Graph 12. This indicates that sulfate-reducing bacteria may be at
 work inside the plume.

5.3 Interpretation

Based on the bioattenuation parameters, ERI concludes that natural biodegradation of petroleum hydrocarbons is occurring at this site. This conclusion is supported by the decline in hydrocarbon concentrations detected in groundwater over time.

6.0 RISK-BASED CORRECTIVE ACTION

In November 1999, ERI performed a RBCA analysis for the subject site for BTEX constituents. The results are presented in Appendix E. A RBCA analysis was not performed for MTBE because there are no applicable exposure pathways, permissible exposure limits (PELs), or maximum constituent levels (MCLs). Based on the results of the Sensitive Receptor Survey/Underground Utility Survey (ERI,

1999), there are no groundwater receptors within 1,000 feet of the site. The RBCA was performed to evaluate residential exposure standards based on the estimated future use of the property.

6.1 Pathways Analyzed

ERI evaluated the following exposure pathways in the Tier II assessment:

- Surface soil direct ingestion and dermal contact (residential receptor) N/A
- Surface soil volatilization to indoor air (inhalation: residential receptor)
- Subsurface soil volatilization to indoor air (inhalation: residential receptor)
- Groundwater volatilization to indoor air (inhalation: residential receptor)
- Surface soil volatilization to outdoor air (inhalation: residential receptor) N/A
- Subsurface soil volatilization to outdoor air (inhalation: residential receptor)
- Groundwater volatilization to outdoor air (inhalation: residential receptor) 🗸

6.2 Results

The maximum soil and groundwater concentrations do not exceed the regulatory site-specific target levels (SSTLs) for any of the evaluated exposure pathways for BTEX based on the PEL. Surface soil (less than 3 feet bgs) exposure pathway analyses are not valid because the analytical data for surface soils are not available. Representative subsurface soil concentrations do not exceed SSTLs for surface soil. The RBCA Tier II Analysis output files are provided in Appendix E.

hutep

NO

7.0 SUMMARY

Based on the following criteria, it is ERI's opinion that soil and groundwater conditions at this site do not warrant additional assessment or monitoring, and that case closure for this site is warranted.

- The sources of petroleum hydrocarbons at this site have been identified and removed
- The MTBE plume is delineated and stable.

- Benzene and MTBE concentrations in groundwater samples show a decreasing trend.
- Biodegradation of petroleum hydrocarbons is occurring.
- SSTLs are not exceeded in the RBCA analysis.

ERI recommends that case closure be granted and that all groundwater monitoring wells associated with this investigation be destroyed.

8.0 LIMITATIONS

This report was prepared in accordance with generally accepted standards of environmental practice in California at the time this investigation was performed. This report has been prepared for Exxon Company, U.S.A., and any reliance on this report by third parties shall be at such party's sole risk.

9.0 REFERENCES

Alton Geoscience. April 29, 1991. <u>Preliminary Site Investigation Report for Exxon Service Station</u> 7-0236, 6630 East 14th Street, Oakland, California.

Alton Geoscience. June 17, 1992. <u>Final Site Investigation Report for Exxon Service Station 7-0236</u>, 6630 <u>East 14th Street</u>, Oakland, California.

Arulanantham, R. <u>Assessment and Management of MtBE Impacted Sites</u>. University of California Extension. Spring 1998

California Regional Water Quality Control Board, San Francisco Bay Region. August 10, 1990. <u>Tri-Regional Board Staff Recommendations for Preliminary Investigation and Evaluation of Underground Tank Sites.</u>

Environmental Resolutions, Inc. February 27, 1996. <u>Corrective Action Plan for Exxon Service Station</u> 7-0236, 6600 East 14th Street, Oakland, California. ERI Job Number 200904.R01

Environmental Resolutions, Inc. March 5, 1997. Removal of Hoists, Underground Storage Tanks. Product Lines, and Dispensers at Former Exxon Service Station 7-0236, 6600 East 14th Street. Oakland, California. ERI Job Number 200932.R01

Environmental Resolutions, Inc. March 17, 1997. <u>Geophysical Investigation at Former Exxon Service Station 7-0236, 6600 East 14th Street, Oakland, California. ERI Job Number 200903.L03</u>

Environmental Resolutions, Inc. August 20, 1998. <u>Environmental Activities at Former Exxon Service Station 7-0236, 6600 East 14th Street, Oakland, California. ERI Job Number 200912.R01</u>

Environmental Resolutions, Inc. February 18, 1999. Work Plan for Utility Survey, Sensitive Receptor Survey, and Baseline Risk Assessment for Case Closure at Former Exxon Service Station 7-0236, 6600 East 14th Street, Oakland, California. ERI Job Number 200903.W01

Environmental Resolutions, Inc. June 23, 1999. <u>Sensitive Receptor Survey/Underground Utility</u>
<u>Survey Letter Report and Work Plan Addendum for Off-Site Investigation at Former Exxon Service Station 7-0236, 6600 East 14th Street, Oakland, California. ERI Job Number 200903.W02</u>

Environmental Resolutions, Inc. November 5, 1999. Quarterly Groundwater Monitoring and Sampling Report, Fourth Quarter 1999 at Former Exxon Service Station 7-0236, 6600 East 14th Street, Oakland, California. ERI Job Number 200913.R20

Fetter, C.W. Applied Hydrogeology. Macmillan College Publishing Company. 1994

RESNA Industries. August 20, 1993. Work Plan: Supplemental Environmental Investigation at Exxon Service Station 7-0236, 6630 East 14th Street, Oakland, California.

RESNA Industries. February 14, 1994 <u>Supplemental Environmental Investigation at Exxon Service Station 7-0236, 6630 East 14th Street, Oakland, California.</u>

RESNA Industries. May 16, 1994. Remedial Action Plan for Exxon Service Station 7-0236, 6630 East 14th Street, Oakland, California.

U.S. Environmental Protection Agency. August, 1996. <u>BIOSCREEN Natural Attenuation Decision</u> Support System User's Manual Version 1.3.

United States Geological Survey. (Photorevised 1980). 7.5 Minute East Oakland Quadrangle.

Former Exxon Service Station 7-0236 6600 East 14th Street Oakland, California (Page 1 of 8)

Well ID#	Sampling	SUBJ	DTW	Elev.	TEPHd	TPPHg	мтве	В	т	E	Х	DO	Ferrous Iron	Alkalinity	Nitrate	Sulfate
(TOC)	Date	feet	, >		<		1494 1 49	ug/L	11 > 1 - 1 - 1		> <	,, ,,	*****	.mg/L		>
MWI	3/15/91	NR	7.44	12 76	**-	< 50		< 0.3	0.5	0.3	13				•••	
(20.20)	1/15/92 (H,T)	NR	10.60	9 60	< 300	< 50		< 0.5	07	< 0.5	0.9		•••			***
	3/23/92 (II,T)	NR	6.38	13 82	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5			•••		
	4/6/92	NR	7.55	12 65					+++		***			***		
	7/8/92 (H,T)	NR	9.85	10.35	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5		***			••-
	10/13/92 (H,T)	NR	12.95	7.25	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5					•-•
	3/9/93	NLPH	7.38	12.82	< 50	< 50	•••	< 0.5	< 0.5	< 0.5	< 0.5				***	
	6/4/93	NLPH	8.55	11 65	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5	•				
	9/2/93	NLPH	10.85	9.35	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5					
	11/16/93	NLPH	12.43	7.77	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5		***	***		***
	2/4/94	NLPH	9.10	11 10	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5					
	4/29/94	NLPH	8 45	11.75	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5	•				
	9/20/94	NLPH	10.73	9.47	< 50	< 50	***	< 0.5	< 0.5	< 0.5	< 0.5				***	***
	12/14/94	NLPH	7.35	12.85	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5				•••	***
	3/27/95	NLPH	7.06	13 14	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5		***		•••	***
	5/18/95	NLPH	7 32	12.88	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5		•••			***
	8/8/95	NLPH	9 24	10.96	< 50	< 50	< 25	< 0.5	< 0.5	< 0.5	< 0.5			***		
	11/7/95	NLPH	10 74	9.46	< 50	< 50	< 25	< 0.5	< 0.5	< 0.5	< 0.5					***
	2/29/96	NLPH	6.80	13 40	53	< 50	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5	***		•		
	5/10/96	NLPH	8,13	12.07	150	< 50	< 25	< 0.5	< 0.5	< 0.5	< 0.5					
	8/20/96	NLPH	9.58	10.62	< 50	< 50	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5					
	10/17/96	~~=			***							9 50	•			***
	11/27/96						***					11.54	•••			
	12/6/96	NLPH	8.10	12,10			***					10.05	•••			
	1/19/97	abandoned											•••			
MW2	1/15/01 /11 77).ID	9 05	10.10	120	1 700		190	2.6	12	64				•••	
	3/15/91 (H,T)	NR		10.10	1,000	1,700		81	<10	320	170					•••
(19.15)	1/15/92 (H,T)	NR	11.60	7,55 9,73		6,800		740	30	810	490					
	3/23/92 (H,T)	NR	9.42		3,000	7,100				-		•••			•••	
	4/6/92	NR	9.09	10.06	2.100	7.000		250	14	200	160				•••	***
	7/8/92	NR	10.08	9 07	2,100	7,000		250 97		300 97	160 53			•••	**-	
	10/13/92	NR	12.06	7.09	1,900	3,200	***		2.6	-						
	3/9/93	sheen	9.71	9.44					***				•••			
	6/4/93	sheen	9.40	9.75	4 700	11.000	2.500	210	***	200	 59		•••	•		
	9/2/93	sheen	10.46	8.69	3,700	11,000	2,500	210	18	260	39 32			•••	•••	•••
	11/16/93 (M*)	NLPH	11.44	7.71	3,300	8,500		75	27	51			•••	•		
	2/4/94	NLPH	10 41	8.74	2,700	4,400		120	16	22	7.7			•••		
	4/29/94	NLPH	9.51	9.64	2,000	380	***	5 9	0 6 29***	16 110	<0.5 27***			***		***
	9/20/94	NLPH	10 57	8 58	1,800**	19,000		190								***
	12/14/94	sheen	8 90	10.25	1 700			410		250	42				•••	•••
	3/27/95	NLPH	7,72	11.43	1,700	6,300		210	15	250	43					***
	5/18/95	sheen	8.65	10 50	2,000#	6,000		180	9.9	220	55					
	8/8/95	NLPH	9.67	9 48	2,700	5,300	36,000	110	<20	120	< 20					
	11/7/95	NLPH	10.49	8.66	1,800	6,400	24,000	120	11	95	38				*	***
	0.00.00	. 14 ml 1	0.45	10.50	0 400			ral minerals and		120	-40					
	2/29/96	NLPH	8 45	10 70	2,500	< 5,000	25,000	120	< 50	120	< 50				***	**-

Former Exxon Service Station 7-0236 6600 East 14th Street Oakland, California (Page 2 of 8)

Weil ID#	Sampling	SUBJ	DTW	Elev	TEPHd	TPPHg	MTBE	В	Т Т	E	X	DO	Ferrous Iron	Alkalinity	Nitrate	Sulfate
(TOC)	Date	feet			<			ug/L			>	_	***	. mg/L	. 14	>
MW2 (cont)	5/10/96	NLPH	9.02	10.13	2,300	11,000	26,000	210	120	210	140		***			
(19.15)	8/20/96	NLPH	10.08	9 07				•••								
	10/17/96		***			***						7.75				
	11/27/96					•						6.28				***
	12/6/96	NLPH	10.21	8 94	1,700	5,800	< 125	170	< 25	38	< 25	5.21			***	
	1/17/97	NLPH				200		***				3.67				
(22 19)	2/25/97	NLPH	8 15	14 04	1,500	5,900	4,400	110	14	310	52	2.71			*	
	3/13/97		***		~**	-,						2,46	**-			•••
	4/16/97		***				***	***		***		1 00	•			***
	5/21/97	NLPH	10 50	11.69	1,600	5,700	1,800	71	11	240	59	0.85	**-			
	6/5/97				1,000				••			2 18	***	•••		•••
	7/11/97			***		***						1 87				***
	8/6/97	NLPH	10 80	11.39	1,600	4,100	(1,900)	40	5.2	49	17	1.51			•••	
	9/23/97	***		****		7,100	(1,500)	***		*		2 36			•••	***
	10/7/97	NLPH	11.08	11.11	1,200	280	230	1.2	2 4	< 0.5	1.1	1 56	•••			•••
	12/24/97				1,200					- 0.5	***	1.23	•••	•		•••
	1/16/98	NLPH	7.29	14.90	1,200	3,500	3,000	190	14	110	31	1.18		•••	•••	
	2/20/98	***			1,200	3,500	5,000					1.30	***			***
	3/26/98		***		***						***	1.30	***			•••
	4/17/98	NLPH	8 61	13.58	970	3,200	2,600	150	6.9	37	5 7	1.38			•••	
	5/13/98	NLFII	9.01	15.56	970		2,000		0.9		<i>3 (</i>	0.45		•		
	6/22/98					***		•						•••	•••	
	7/17/98	NLPH		12 81	1 200	1 700		cn		 - 5 A		1.09			•••	
			9.38	11 78	1,300	1,700	1,500	63	< 50	< 5.0	< 5.0	0 86	•••		***	
	10/16/98	NLPH	10.41		1,500	2,000	1,400	22	< 20	< 2.0	2.4					***
	1/15/99	NLPH	10.01	12.18	900	2,300	2,200	< 50	6.0	< 5.0	6.5			•••	***	
	4/23/99	NLPH	7.61	14.58	967	2,140	937	42 3	<10	22.3	<10			•••	•••	
	7/30/99	NLPH	9.82	12.37	1,620	2,480	1,470/1,360*	100	< 10.0	< 10 0	< 10.0	***				
	8/12/99	NLPH	10.00	12 19			***		40-4			***	0 710	750	6.0	7 2
	9/3/99	NLPH										1 02				
	10/11/99	NLPH	10.46	11.73	1,700	2,900	1,300/1,400*	<1.0	2.5	< 1.0	< 1.0	10.71	0.200	927	14.8	27.6
	10/14/99	NLPH	444	***	***	***		***	***	***	***	19.71	•			
MW3	3/15/91 (H,T)	NR	7.84	11 75	160	3,100		2 2	19	100	84			•••		
(19.59)	1/15/92 (H,T)	NR	10.30	9 29	< 300	250		0.7	68	1.5	1.5	•••				
(3/23/92 (H,T)	NR	6.84	12.75	440	640		< 0.5	12	25	6 5	•••				***
	4/6/92	NR	7.84	11 75	***						•••				***	
	7/8/92 (H,T)	NR	8.63	10.96	960	2,900		< 0.5	2 6	12	63 7					
	10/13/92 (H)	NR	12.10	7.49	400	1,100		5.5	< 0.5	4 6	1.1					•••
	3/9/93	sheen	9.05	10.54	***						***		•••	•••		
	6/4/93	sheen	8.43	11.16			***		•••				•			•••
	9/2/93	NLPH	10.22	9.37	690	840		2 7	3.6	5 4	29	***				***
	11/16/93	NLPH	11.44	8 15	310	650	***	< 0.5	11	7.7	2 4	***			***	***
	2/4/94	NLPH	9.27	10 32	340	870		0.6	14	1.2	0.8	***		•	•••	
	4/29/94	NLPH	9.27 8.10	10 32	290	790		< 0.5	< 0.5	0.8	1					
					290 91**						44			•••		
	9/20/94	NLPH	10 10	9.49		1,900		< 0.5	< 0.5	11		***	***			***
	12/14/94	NLPH	8 00	11 59	190	1,700		17	22	< 0.5	< 0.5	***				***
	3/27/95	NLPH	7 23	12.36	1,100	1,500		5 0	3.1	6 3	3.6				***	

Former Exxon Service Station 7-0236 6600 East 14th Street Oakland, California (Page 3 of 8)

Well ID#	Sampling	SUBJ	DTW	Elev.	TEPHd	TPPHg	MTBE	В	Т	E	х	DO	Ferrous Iron	Alkalinity	Nitrate	Sulfate
(TOC)	Date	feet	. >		٠	**** ***** ** *		ug/L			,> <		***********	mg/L		>
MW3 (cont.)	5/18/95	NLPH	7 73	11.86	470#	1,000		< 0.5	< 0.5	4.1	0 94					
(19 59)	8/8/95	NLPH	8.81	10 78	580	1,600	12	12	< 0.5	2 4	0 63			•••		
	11/7/95	NLPH	9 96	9.63	540	1,500	26	<25	2.9	< 2.5	<25	•••				
	2/29/96	NLPH	8 47	11.12	680	1,000	< 25	< 5 0	< 5 0	< 5.0	< 50				•••	
	5/10/96	NLPH	7 93	11.66	560	480	68	< 10	< 1.0	< 1.0	< 10				•	•••
	8/20/96	NLPH	10.13	9 46				***			*					
	10/17/96			•••		•••				~*^		7.65	***		•••	•••
	11/27/96		***		***			•-•				8 76	***	•••		
	12/6/96	NLPH	9.21	10 38	450	970	19	<10	< 1.0	< 10	1.8	10.14		•••		
	1/17/97	J									•	14.02		•••		
(22.62)	2/25/97	NLPH	8 34	14.28	410	990	47	10	0.85	0.86	1 5	10 69	•		•••	•••
	3/13/97	J	77-									8 68	•••			***
	4/16/97	**-		***				***			•••	18.73				
	5/21/97	NLPH	9.99	12.63	270	< 50	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5	6.76			•••	•••
	6/5/97				***							6 70	•		•••	***
	7/11/97											4.10		***	***	
	8/6/97	NLPH	10.29	12.33	310	650	< 50	4.0	< 1 0	<10	< 10	10.59	•••			
	9/23/97									•••		8.62	•••			***
	10/7/97	NLPH	10.86	11.76	500	1,600	12	24	10	<20	3.5	11.81	***			
	12/24/97		***	***									•••			
	1/16/98	***						70-			***		•••	***		
	2/20/98	,		***				***			***	11 22		***		
	3/26/98							***			•••	10.55				
	4/17/98	NLPH	7 56	15.06	220	710	21	< 0.5	0.76	< 0.5	< 0.5	9 40		***		
	5/13/98			***							***	0.22		***		
	6/22/98	J							*			0.96			***	•••
	7/17/98	NLPH	8.23	14.39	180	450	8 9	9 5	< 1.0	< 10	<10	0.94			•••	•••
	10/16/98	NLPH	9.75	12.87	320	520	5 1	< 0.5	11	< 0.5	0.93		•••	•••		
	1/15/99	NLPH	8.83	13.79	600	190	12	< 0.5	0 91	<05	0.7		•••			
	4/23/99	NLPH	7.11	15.51	194	406	2.71	< 0.5	< 0.5	< 0.5	< 0.5		**-			•••
	7/30/99	NLPH	8.98	13.64	72.5	193	< 2 50	< 0.5	< 0.5	< 0.5	< 0.5				•••	•••
	8/12/99	NLPH	9.40	13.22					***				0 0440	330	48 1	47 4
	9/3/99	NLPH		***			***					2 56	•••	•••		
	10/11/99	NLPH	9.91	12,71	100	130	<1.0	<1.0	< 1.0	< 1.0	< 1.0		0.0490	317	50.1	48.2
	10/14/99	NLPH	***									1.41			•••	
MW4	4/6/92	NR	7.76	11 70	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5	•••	•			
(19 46)	7/8/92	NR	9.56	9 90	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5					
	10/13/92	NR	12.09	7 37	<80	< 50		< 0.5	< 0.5	< 0.5	< 0.5	•••			***	
	3/9/93	NLPH	7.53	11 93	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5	***				
	6/4/93	NLPH	8.50	10.96	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5		•••			
	9/2/93	NLPH	10,30	9.16	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5				•••	•••
	11/16/93*		•••			H=4						***				
	2/4/94	NLPH	8.82	10.64	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5			•••	•••	•••
	4/29/94 (D)	NLPH	8 55	10.91	100	< 50		< 0.5	< 0.5	< 0.5	< 0.5			***		
	9/20/94	NLPH	10 21	9.25	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5			•••		
	12/14/94	NLPH	7.04	12 42	<50	< 50		< 0.5	< 0.5	< 0.5	< 0.5					
				· -												

TABLE 1

CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-0236 6600 East 14th Street Oakland, California

(Page	4	of 8)	

Well ID#	Sampling	SUBJ	DTW	Elev.	TEPHd	TPPHg	мтве	В	Ţ	Е	Х	DO	Ferrous Iron	Alkalinity	Nitrate	Sulfate
(TOC)	Date	. feet	>		<		******	.ug/L			>	<		. mg/L		<u>.</u> . >
MW4 (cont.)	3/27/95	NLPH	6.38	13 08	140	< 50		< 0.5	< 0.5	< 0.5	< 0.5					
(19 46)	5/18/95	NLPH	7 56	11.90	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5				***	***
	8/8/95	NLPH	8.92	10.54	< 50	< 50	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5			•••		***
	11/7/95	NLPH	10 30	9.16	< 50	< 50	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5				•	
	2/29/96	NLPH	6.44	13.02	< 50	< 50	<25	< 0.5	< 0.5	< 0.5	< 0.5				•••	
	5/10/96	NLPH	8.15	11.31	< 50	< 50	< 2.5	< 0.5	0.84	< 0.5	2 3			•••		
	8/20/96	NLPH	9.27	10 19	< 50	< 50	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5		•••		•••	
	10/17/96				***						•••	1 63				
	11/27/96	***			***	*						1.54				
	12/6/96	NLPH	7.76	11.70						***		2 33		•••		
	1/17/97					***						0.91				
(22.58)	2/25/97	NLPH	7.98	14 60	< 50	< 50	<25	< 0.5	0 89	< 0.5	1.8	1 03				
()	3/13/97			***				***				1 06				
	4/16/97	* **=	•					~**			•	4.03				•••
	5/21/97	NLPH	9.03	13.55		•••	***			***		0 90		•••		
	6/5/97			***		***						1.46		***		
	7/11/97	•••										1 31		•••		
	8/6/97	NLPH	9,74	12.84	< 50	< 50	< 2.5	< 0.5	< 0.5	<0.5	< 0.5	1 46		***		•••
	9/23/97			***			***		4			1 50	•			
	10/7/97	NLPH	10 06	12.52		444						1 65	•		•••	
	12/24/97					***			***	***		1 96	***			
	1/16/98	NLPH	5.01	17.57	< 50	< 50	<25	< 0.5	< 0.5	< 0.5	< 0.5	1 68				
	2/20/98	HEFT.	J.04	17.37		~ 30						3 33	***		•••	•••
	3/26/98											1.65	*			
	4/17/98	NLPH	7.21	15.37								3.10		•••		
	5/13/98	NLF II		13.37					~			0.10	***		•••	
	6/22/98								~			1.20		•••		
	7/17/98	NLPH	8,46	14 12	< 50	< 50	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5	1.20				
	10/16/98	NLPH	9,84	12 74	~ JO	~ JU		~03	~	~0.5		1 0**		***		•••
					< 50	< 50		< 0.5	< 0.5	<0.5	< 0.5			•••		
	1/15/99	NLPH	11.33	11 25			< 2.5	~ 03		<03						
	4/23/99	NLPH	7.63	14 95								*		***		
	7/30/99	NLPH	9,17	13.41	< 50	< 50	< 2.5	< 0.5	< 0.5	<0.5	< 0.5	2.04		***		
	9/3/99	NLPH					***		***		***	2.94		•	***	***
	10/11/99	NLPH	9.98	12.60			***					1.26				•••
	10/14/99	NLPH			•••			405		***		1.36				
Mus	416100	ND	10.66	6 20	~ 50	J-60		- n c	< 0.5	~n s	< 0.5			•••		
MW5	4/6/92	NR	10.66	6.29	< 50	<50	***	< 0.5		< 0.5						
(16 95)	7/8/92 *		15.00	1.00			***				-0.5		*		***	•-•
	10/13/92	NR	15.02	1 93	< 50	69		< 0.5	< 0.5	< 0.5	< 0.5			•••		
	3/9/93	NLPH	10.27	6.68	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5		•••		•••	
	6/4/93	NLPH	11.35	5.60	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5		•	•	•••	
	9/2/93	NLPH	13, 15	3.80	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5				•••	
	11/16/93	NLPH	14.35	2.60	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5				•••	
	2/4/94	NLPH	11 83	5.12	60	< 50		< 0.5	< 0.5	< 0.5	< 0.5	***		•••		
	4/29/94	NLPH	11,15	5 80	< 50	< 50	***	< 0.5	< 0.5	< 0.5	< 0.5			•		
	9/20/94	NLPH	12.79	4 16	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5					
	12/14/94	NLPH	9 95	7 00	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5			•••		

Former Exxon Service Station 7-0236 6600 East 14th Street Oakland, California (Page 5 of 8)

Well ID#	Sampling	SUBJ	DTW	Elev	TEPHd	TPPHg	MTBE	В	T	E	x	DO	Ferrous Iron	Alkalımıy	Nitrate	Sulfate
(TOC)	Date	. feet	>		< ,			ug/L		*** ****	., .,, > <	< .	******	mg/L	* ***	>
MW5 (cont.)	3/27/95	NLPH	9.09	7.86	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5				***	
(16 95)	5/18/95	NLPH	10.29	6 66	< 50	< 50		< 0.5	4.6	0.65	2 8				***	
	8/8/95	NLPH	11 13	5 82	51	< 50	<25	< 0.5	< 0.5	< 0.5	< 0.5			***	***	
	11/7/95	NLPH	12.12	4.83	< 50	< 50	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5			••-	***	•••
	Additional Analyses f	or general miner	als and properti	es <**												
	2/29/96	NLPH	9.24	7 71	60	< 50	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5					•••
	5/10/96	NLPH	10 71	6 24	< 50	< 50	< 2.5	< 0.5	< 0.5	< 0.5	1.6		***			
	8/20/96	NLPH	11.45	5.50								•••				***
	10/17/96	***				***									***	
	11/27/96			***												***
	12/6/96	NLPH	10.70	6.25	90	62	< 2.5	12	6.5	17	11	•••	•••			
	1/17/97				***										***	•••
	2/25/97	NLPH	10.49	6.46	90	< 50	<25	14	2.4	0.95	7 4			•••		
(19 98)	3/13/97															
, ,	4/16/97										***				***	***
	5/21/97	NLPH	11 31	8 67	< 50	< 50	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5					***
	6/5/97				***											***
	7/11/97		***	***	100	***				***				***	***	***
	8/6/97	NLPH	11.78	8 20	< 50	< 50	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5				***	
	9/23/97			***	***										***	•••
	10/7/97	NLPH	12.26	7.72	< 50	< 50	<25	< 0.5	< 0.5	< 0.5	< 0.5	***	***			
	12/24/97				***						***				***	***
	1/16/98	NLPH	8 87	11 11	< 50	< 50	<25	< 0.5	< 0.5	< 0.5	0.64					***
	2/20/98	Per	775													***
	3/26/98			***	***	***								***		
	4/17/98	NLPH	9.97	10.01	< 50	< 50	<25	0.9	2.2	0.81	3 6			•••		
	5/13/98				***			400		***				•••		
	6/22/98													•••		
	7/17/98	NLPH	11 00	8.98	< 50	< 50	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5		•••			•••
	10/16/98	NLPH	11.92	8.06	51	<50	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5	***	***			
	1/15/99	NLPH	9.01	10 97	< 50	< 50	<2.5	< 0.5	< 0.5	< 0.5	< 0.5		***			
	4/23/99	NLPH	6 31	13.67	< 50	< 50	< 2.0	< 0.5	< 0.5	< 0.5	< 0.5			**-	•••	
	7/30/99	NLPH	11 16	8.82	< 50	< 50	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5		•••			
	8/12/99	NLPH	11.48	8.50	***	•••	***				***	***	0 110	510	< 1.0	17 7
	9/3/99	NLPH		***					J		***	2 11		***		
	10/11/99	NLPH	12.01	7.97	< 50	< 50	<1.0	< 1.0	< 1.0	< 1.0	<1.0		4.00	457	5.39	27.2
	10/14/99	NLPH							***		•••	1.58				
MW6	4/6/02 (11)	kth.	8 29	10 50	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5				***	***
	4/6/92 (H)	NR	9 22	9 57	<50	<50		< 0.5	< 0.5	< 0.5	< 0.5				•••	
(18 79)	7/8/92 (H,T)	NR					***		< 0.5			•••	*			
	10/13/92	NR NLDU	11 51	7.28	< 50	<50		< 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5			•••		
	3/9/93	NLPH	8.26	10.53	< 50	< 50		< 0.5 < 0.5	< 0.5		< 0.5					
	6/4/93	NLPH	8.90	9.89	< 50	< 50	***			< 0.5				***		
	9/2/93	NLPH	9.92	8.87	60	< 50		< 0.5	< 0.5	< 0.5	< 0.5			***		•••
	11/16/93	NLPH	10.65	8.14	< 50	< 50	***	< 0.5	< 0.5	< 0.5	< 0.5				•••	
	2/4/94	NLPH	9 26	9 53	80	<50		< 0.5	< 0.5	< 0.5	< 0.5	*	•••		***	
	4/29/94	NLPH	8.33	10.46	110	< 50		< 0.5	< 0.5	< 0.5	< 0.5			•••	•••	

Former Exxon Service Station 7-0236 6600 East 14th Street Oakland, California (Page 6 of 8)

Well ID#	Sampling	SUBJ	DTW	Elev	ТЕРНО	TPPHg	МТВЕ	В	T	Е	Х	DØ	Ferrous Iron	Alkalinity	Nitrate	Sulface
(TOC)	Date	, feet	>		<	11111 14		.ug/L .	Pt 144	**	>	<		mg/L	e4 >>	. >
MW6 (cont.)	9/20/94	NLPH	9 23	9.56	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5					
(18 79)	12/14/94	sheen	7.87	10.92	***					***					•••	•
	3/27/95	NLPH	7.63	11.16	54	56		< 0.5	< 0.5	< 0.5	< 0.5	***		***	•••	
	5/18/95	NLPH	8.00	10.79	71	56		< 0.5	< 0.5	< 0.5	< 0.5	***			•••	
	8/8/95	NLPH	8 92	9.87	60	< 50	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5	•••		•	***	
	11/7/95	NLPH	9 77	9.02	< 50	< 50	4 7	< 0.5	< 0.5	< 0.5	< 0.5		•••			•••
	2/29/96	NLPH	7.67	11.12	64	< 50	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5	***		•••		
	5/10/96	NLPH	8.33	10.46	110	< 50	5 4	< 0.5	< 0.5	< 0.5	< 0.5			•••		•••
	8/20/96	NLPH	9 16	9.63										***		
	10/17/96		•••				•••					10 58				•••
	11/27/96		***			***						14 17			•••	
	12/6/96	NLPH	8 55	10.24	68	< 50	3.9	< 0.5	< 0.5	< 0.5	< 0.5	10 33	•••			
	1/17/97						***	***			•••	11 71	***			
(21.84)	2/25/97	NLPH	8.42	13,42	67	<50	68	< 0.5	< 0.5	< 0.5	< 0.5	10.94			***	
(21.01)	3/13/97					***						8.88		***		
	4/16/97									***		15.20		***		
	5/21/97	NLPH	9 16	12.68	82	<50	3 4	< 0.5	< 0.5	< 0.5	< 0.5	12.38		***		
	6/5/97		•••			***						10 99		*	•••	
	7/11/97	***										10 13		***		
	8/6/97	NLPH	9.82	12.02	< 50	<50	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5	9.05		••-		
	9/23/97			7-1					***			6.22		•••		
	10/7/97	NLPH	9.85	11.99	89	< 50	4 1	< 0.5	< 0.5	< 0.5	< 0.5	9 68				
	12/24/97		3.05				* 1				***	2 78	***			•••
	1/16/98	NLPH	5.50	16.34	93	<50	<25	< 0.5	< 0.5	< 0.5	< 0.5	2.73		•••		•
	2/20/98	145111	3.30		*							3 55				***
	3/26/98	***							***		***	3 90	•••			•••
	4/17/98	NLPH	8 12	13.72	59	< 50	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5	5.08			***	
	5/13/98	NLFN	0 12	13.72					~0.3		~0.5	6.90			***	
	6/22/98							***		***	***	8.96				
	7/17/98	NLPH	8.81	13 03	63	< 50	3 3	< 0.5	<0.5	< 0.5	< 0.5	10 69	***			
	10/16/98	NLPH	9.84	12.00	60	<50	<25	<05	< 0.5	< 0.5	< 0.5	10.02	•			•
			9.64 9.55	12.00	< 50	<50	37	< 0.5	< 0.5	<05	< 0.5			*		
	1/15/99	NLPH	9.33 8.72	13.12	106	<50	14.4	< 0.5	< 0.5	<05	< 0.5				•••	
	4/23/99	NLPH	9.32	12.52	<50	<50	<2.50/2.50*	< 0.5	< 0.5	< 0.5	< 0.5			•••		•••
	7/30/99 9/3/99	NLPH NLPH		12.32		< 30	< 2.30/2.30°					6.20				
		NLPH	9.54	12.30	< 50	< 50	3,4/5*	<1.0	<1.0	<1.0	<1.0	0.20			•••	
	10/11/99 10/14/99	NLPH NLPH	9.34	12.30	~ 30		3(4/5)					9.09				***
	10/14/99	MLFII										7.07				
MW7	4/6/92	NR	8 34	10.89	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5				***	
(19.23)	7/8/92 *	NR NR	10.30	8,93	<50	<50		< 0.5	<05	< 0.5	< 0.5					
(19.23)	10/13/92	NR NR	12.91	6 32	94	670		0.3	<05	< 0.5	2.5			•		•••
	3/9/93			0 32	94											
			8 68	10.55	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5				•••	
	6/4/93	NLPH				<50			< 0.5	< 0.5	< 0.5			•••		•••
	9/2/93	NLPH	10.80	8.43	< 50	<50		< 0.5 < 0.5	< 0.5	< 0.5	< 0.5			•••		
	11/16/93	NLPH	12.38	6.85	< 50											
	2/4/94	NLPH	9.28	9.95	< 50	<50	***	< 0.5	< 0.5	< 0.5	< 0.5					
	4/29/94	NLPH	9.19	10.04	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5		***		***	

TABLE 1 CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 7-0236

6600 East 14th Street Oakland, California (Page 7 of 8)

Well ID #	Sampling	SUBJ	DTW	Elev	TEPHd	ТРРНg	MTBE	В	T	E	Х	DQ	Ferrous Iron	Alkalinity	Nitrate	Sulfate
(TOC)	Date	feet.	>		<			ug/L	. (1 1)*****	** * ** *	>	<		mg/L		. , >
MW7 (cont)	9/20/94	NLPH	10 85	8.38	<50	< 50		< 0.5	< 0.5	< 0.5	< 0.5			***		
(19.23)	12/14/94	NLPH	8.44	10 79	< 50	< 50		< 0.5	< 0.5	< 0.5	< 0.5		•••			
	3/27/95	NLPH	7.54	11.69	280	< 50		< 0.5	< 0.5	< 0.5	< 0.5				•	
	5/18/95	NLPH	8 11	11.12	< 50	< 50	***	< 0.5	< 0.5	< 0.5	< 0.5					•••
	8/8/95	NLPH	9.48	9 75	52	< 50	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5				•••	***
	11/7/95	NLPH	10.83	8.40	< 50	<50	<25	< 0.5	< 0.5	< 0.5	< 0.5			***		
	2/29/96	NLPH	7.70	11 53	< 50	< 50	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5		•••	***		
	5/10/96	NLPH	8.76	10 47	< 50	< 50	<25	< 0.5	< 0.5	< 0.5	2.1					
	8/20/96	NLPH	9.91	9 32	< 50	< 50	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5					•••
	10/17/96								J			1.48		•	***	
	11/27/96	•••	***	••-	***							2 71				
	12/6/96 1/19/97	NLPH abandoned	8.90	10.33					,			8.90				
MW8	1/17/97	•••	***	•	***		***	•••				1.39			***	
(22.60)	2/25/97	NLPH	7.93	14.67	<50	69	30	< 0.5	< 0.5	< 0.5	< 0.5	1.82		***		
	3/13/97											1 58	***	***		
	4/16/97								J			0.81	***	•••		
	5/21/97	NLPH	9 04	13 56	< 50	< 50	3 5	< 0.5	< 0.5	< 0.5	< 0.5	0.74			***	
	6/5/97											0.55	***			
	7/11/97	***	•••		•••	***						0 85	***		***	
	8/6/97	NLPH	9.90	12.70	< 50	< 50	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5	0.77		***		
	9/23/97	***	***		•••				***			0 75				***
	10/7/97	NLPH	10.23	12.37	< 50	100	4 9	11	< 0.5	< 0.5	< 0.5	0.82	***	•••		
	12/24/97	***	•••	***					***		***	0 86				•••
	1/16/98	NLPH	4.39	18.21	81	180	96	2.8	< 0.5	< 0.5	0 92	0 94			***	
	2/20/98									***		0.61				
	3/26/98											0.53				•••
	4/17/98	NLPH			74	370	27	< 0.5	0.94	< 0.5	0 79	2.65			•••	•••
	5/13/98			+	•••							0.25	•••			•••
	6/22/98	***						•••				1 38	•••			
	7/17/98	NLPH	8 02	14.58	< 50	< 50	3.3	< 0.5	< 0.5	< 0.5	< 0.5	2 09				
	10/16/98	NLPH	9.78	12.82	< 50	< 50	< 2.5	< 0.5	< 0.5	< 0.5	< 0.5				•••	
	1/15/99	NLPH	8.40	14.20	< 50	< 50	< 2.5	< 0.5	0 97	< 0.5	< 0.5				•••	
	4/23/99	NLPH	7.35	15.25	70.1	111	3.45	< 0.5	< 0.5	< 0.5	< 0.5				•••	
	7/30/99	NLPH	8.86	13.74	<50	89.4	< 2.5	< 0.5	27	< 0.5	< 0.5				•••	
	9/3/99	NLPH										2.45			•••	
	10/11/99	NLPH	10.04	12.56	< 50	< 50	<1.0	<1.0	<1.0	<1.0	<1.0					•••
	10/14/99	NLPH	***		***	***	***		***		***	0.69	***	•••	***	

TABLE 1

CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA

Former Exxon Service Station 7-0236 6600 East 14th Street Oakland, California (Page 8 of 8)

Notes		
SUBJ	==	Results of subjective evaluation, liquid-phase hydrocarbon thickness (HT) in feet
NLPH	=	No liquid-phase hydrocarbons present in well
TOC	::4	Elevation of top of well casing; relative to mean sea level.
DTW	==	Depth to water.
Elev.	=	Elevation of groundwater. If hquid-phase hydrocarbons present, elevation adjusted using TOC - [DTW - [PT x 0 8]].
TEPHd	=	Total extractable petroleum hydrocarbons as diesel analyzed using EPA method 8015 (modified)
TPPHg	æ	Total purgeable petroleum hydrocarbons as gasoline analyzed using EPA method 5030/8015 (modified).
MTBE	e	Methyl tertiary butyl ether analyzed using EPA method 5030/8020
•	=	Methyl tertiary butyl ether analyzed using EPA method 8260.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA method 5030/8020.
Nitrate	=	Nitrate as NO ₃ analyzed using EPA Method 300,
Sulfate	ta	Sulfate as SO, analyzed using EPA Method 300.
Ferrous Iron	=	Ferrous Iron analyzed using EPA Method 6000/7000.
Alkalinity	-	Total alkalinity analyzed using APHA/EPA methods.
	=	Not measured/not analyzed.
<	=	Less than the indicated detection limit shown by the laboratory.
DO	*2	Dissolved Oxygen
**	60	Lighter hydrocarbons contribute to diesel range quantitation.
***	-	Results obtained past technical holding time (10/08/94) due to dilution requirements
С	=	High boiling point hydrocarbons are present in sample.
D	**	Sample pattern does not match diesel standard pattern.
H	=	EPA Method 8010 compounds not detected at or above their respective laboratory detection limits
		Exceptions: MW2, 03/15/91, Methylene Chloride detected at 1 ppb.
		MW3, 03/15/91, Methylene Chloride detected at 21 ppb
M*	=	A compound suspected to be methyl tertiary butyl ether was present
т	==	Total Oil and Grease (TOG) using Standard Method 5520 not detected at or above the laboratory detection limit of 5,000 ppb
<*	E \$	Less than stated laboratory detection limits except 490 ppm blearbonate, 37 ppm calcium,
		31 ppm chloride, 390 ppm hardness, 790 ppb iron, 60 ppm magnesium, 4,700 ppb manganese,
		1.1 ppm sodium, 61 ppm sulfate, 540 ppm TDS, 730 umhos/cm conductivity, pH=6.9,
<**	ta ta	Less than the stated laboratory detection limits except 200 ppm bicarbonate, 23 ppm calcium,
		21 ppm chloride, 78 ppb copper, 190 ppm hardness, 49,000 ppb iron, 44 ppm magnesium, 4,200 ppb manganese,
		3.9 ppm potassium, 52 ppm sodium, 60 ppm sulfate, 390 ppm TDS.
ug/L	ha	micrograms per liter.
ppm	**	parts per million
mg/L	===	Milligrams per liter
-		

TABLE 2 CUMULATIVE SOIL BORING SAMPLE RESULTS

Former Exxon Service Station 7-0236 6600 East 14th Street Oakland, California (Page 1 of 2 Pages)

Collected	ID	Designation								
		Designation			4 + 3 + 4 4 2 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4		mg/Kg			
March 1991		MW1	6		< 1.0	< 0.003	< 0.003	< 0.003	< 0.003	
		MW1	11		<1.0	< 0.003	< 0.003	< 0.003	< 0.003	
		MW1	16		<1.0	< 0.003	< 0.003	< 0.003	< 0.003	
March 1991		MW2	6		2.0	0.01	0.018	< 0.003	0.025	777
		MW2	11		98.0	0.07	0.12	0.24	0.19	
		MW2	16		<1.0	0.05	0.003	0.018	0.009	
March 1991		MW3	6		<1.0	0.009	< 0.003	< 0.003	0.1	
		MW3	11		< 1.0	< 0.003	< 0.003	< 0.003	0.018	
		MW3	16		<1.0	< 0.003	< 0.003	< 0.003	0.004	
March 1992		MW4	5	< 5.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.005	
		MW4	15	< 5.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	***
March 1992		MW5	5	< 5.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	
		MW5	15	< 5.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	
March 1992		MW6	5	< 5.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	
		MW6	15	< 5.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	
March 1992		MW7	5	< 5.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	***
		MW7	15	23	18	< 0.005	< 0.005	< 0.005	< 0.005	
11/29/93	\$6.2B-1	B- 1	6.2	< 5.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.005	
	S11.5B-1	B-1	11.5	< 5.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.005	
11/23/93	S8.0B-2	B-2	8	< 5.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	
	S11.0B-2	B-2	11	< 5.0	4.6	< 0.005	< 0.005	< 0.005	< 0.005	

TABLE 2 CUMULATIVE SOIL BORING SAMPLE RESULTS

Former Exxon Service Station 7-0236 6600 East 14th Street Oakland, California (Page 2 of 2 Pages)

Date	Sample	Boring/	Depth	TEPHd	ТРРНд	В	T	Е	Χ	MTBE
Collected	ID	Designation		**************	***************		mg/Kg			
11/29/93	\$8.0VE-1	VE-1	8	8.5	4.8	0.024	0.014	0.057	0.023	
	S11.3VE-1	VE-1	11.3	47	200	< 0.005	< 0.005	< 0.005	2.5	
11/23/93	\$6.0VE-2	VE-2	6	7.2	<1.0	< 0.005	< 0.005	< 0 005	< 0.005	
	S11.2VE-2	VE-2	11.2	< 5.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	
11/23/93	S6.0VE-3	VE-3	6	< 5.0	< 1 0	< 0.005	< 0.005	< 0.005	< 0.005	
	S11.3VE-3	VE-3	11.3	150	1.7	< 0.005	< 0.005	< 0.005	< 0.005	
1/10/97	S-10-MW8	MW8	10	14	22	0.26	0.13	0.067	0.19	< 0.025
1/26/98	S-6-B1	В1	6	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	
1/26/98	S-6-B2	B2	6	1.0	<1.0	< 0.005	< 0.005	< 0.005	<0.005	

Notes:		
SP1-(1-4)	=	Soil sample - depth - boring number.
TPPHg	=	Total purgeable petroleum hydrocarbons as gasoline analyzed using EPA method 8015 (modified).
TEPHd	=	Total extractable petroleum hydrocarbons as diesel analyzed using EPA method 8015 (modified).
BTEX	==	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA method 8020.
MTBE	=	Methyl tertiary butyl ether analyzed using EPA method 8020.
<1	n .:	Not detected at or above the stated laboratory method detection limits.
mg/Kg	=	Milligrams per kilogram.
	=	Not analyzed.

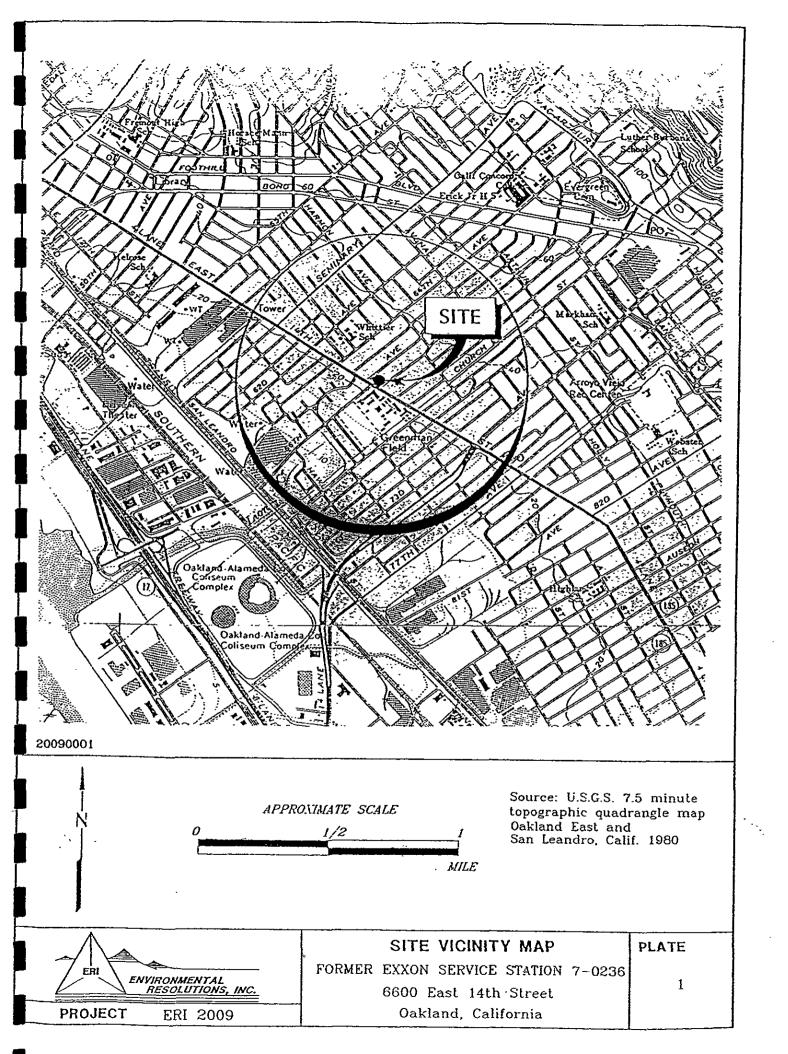
TABLE 3 GROUNDWATER SAMPLE RESULTS

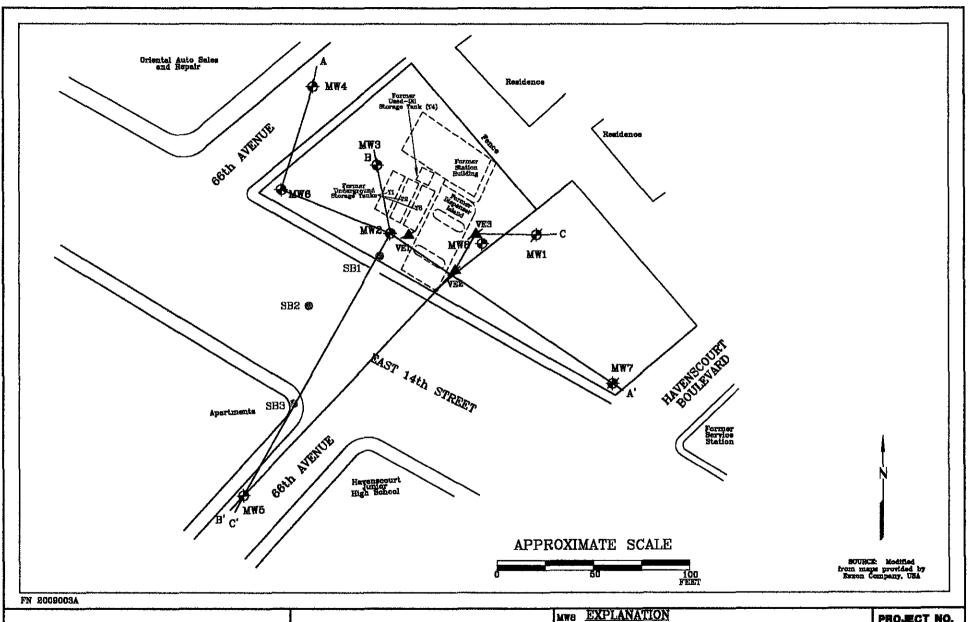
Former Exxon Service Station 7-0236 6600 East 14th Street Oakland, California (Page 1 of 1)

Sample	Sampling	DTW	TEPHd	TPPHg	MTBE	В	Т	Е	X	DO			
	Date		<			ug/L			******	<mg l=""></mg>			
W-11-SB1	10/13/99	11		18,000	1,900	46	<25	1,200	32				
W-13-SB2	10/13/99	13		< 50	< 5	<1	<1	<1	<1				
W-16-SB3	10/13/99	1 6		< 50	<5	<1	<1	<1	<1				
W-21-MW2	10/13/99	21	590	1,800	1,300	8.6	< 5	<5	<5	8.71			
Notes:				 	···	<u> </u>							
W-11-SB1	2013	Water sample	collected from so	il boring one at	11 feet below gr	ade surface.							
DTW	=	Depth to water											
TEPHd	=	Total extractab	le petroleum hyd	rocarbons as die	esel analyzed usir	ng EPA method	8015 (modified)) .					
TPPHg	=	Total purgeable	e petroleum hydr	ocarbons as gas	oline analyzed us	sing EPA metho	d 5030/8015 (m	odified).					
MTBE	=		butyl ether analy			-							
BTEX	=	Benzene, tolue	ne, ethylbenzene	, and total xylen	es analyzed using	g EPA method 8	3021.						
DO	=	Dissolved oxyg	gen reading colle	cted after well p	urging using a Y	'SI model 55 me	eter.						
	=	Not measured/	not analyzed.										
_	=	Less than the in	Less than the indicated detection limit shown by the laboratory.										
<			Micrograms per liter.										
ug/L	3.02			_	·								

TABLE 4 SOIL STOCKPILE SAMPLE RESULTS

Former Exxon Service Station 7-0236 6600 East 14th Street Oakland, Ca (Page 1 of 1 Pages)


Date	Sample	TEPHd	TPPHg	В	Т	Е	Х	Total Lead	VOC's
Collected	ID	<		****************		.mg/Kg			>
10/13/99	SP1 (1-4)	2.10	<1	< 0.001	< 0.001	0.0011	< 0.001	4.12	<0.005*
Notes:									,
SP1-(1-4)	=	Soil sample - d	epth - boring m	ımber.					
TPPHg	=	Total purgeable	e petroleum hyd	rocarbons as ga	soline analyzed	using EPA me	thod 8015 (mo	dified).	
TEPHd	=	Total extractab	le petroleum hy	drocarbons as d	liesel analyzed u	ising EPA meth	od 8015 (modi	ified).	
BTEX	22	Benzene, tolue	ne, ethylbenzen	e, and total xyle	enes analyzed us	ing EPA metho	d 8020.		
Total Lead	=	Total lead analy	yzed using EPA	method 6010B					
VOC's	=	Volatile organi	c compounds ar	alyzed using El	PA method 802	1			
<1	=	Not detected at	or above the st	ated laboratory	method detection	n limits.			
mg/Kg	=	Milligrams per	kilogram.						
	==	Not analyzed.							
*	=	Volatile organi	c compounds w	ere not detected	in the sample.				


TABLE 5 BIOREMEDIATION PARAMETER RESULTS

Third Quarter 1999

Former Exxon Service Station 7-0236 6600 East 14th Street Oakland, California (Page 1 of 1)

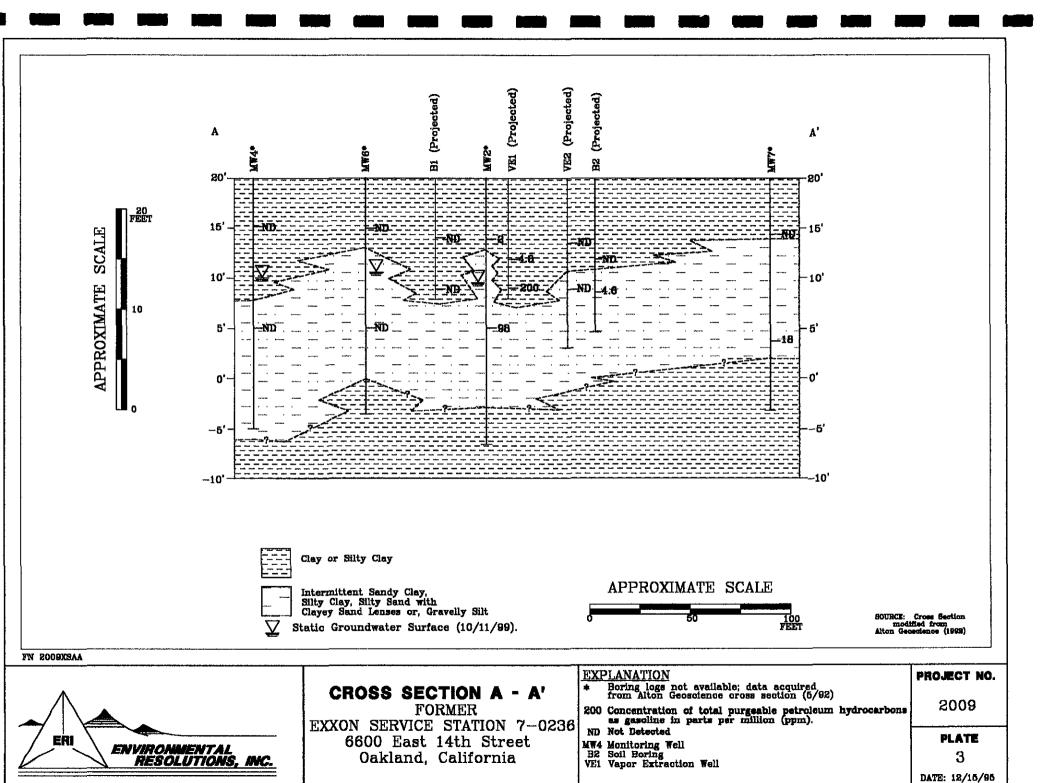
Well ID#	Sampling Date	DO	Ferrous Iron	Alkalinity	Nitrate	Sulfate				
	Date	<		mg/l	***************************************	<u>></u>				
MW2	8/12 and 9/3/99	1.02	0.710	750	6.0	7.2				
MW3	8/12 and 9/3/99	2.56	0.0440	330	48.1	4 7.4				
MW5	8/12 and 9/3/99	2.11	0.110	510	<1.0	17.7				
Notes:	····									
DO	=	Dissolved O	xygen.							
Nitrate	=	Nitrate as No	O ₃ analyzed using	EPA Method 30	00.					
Sulfate	=	Sulfate as SO ₄ analyzed using EPA Method 300.								
Ferrous Iron	=	Ferrous Iron analyzed using EPA Method 6000/7000.								
Alkalinity	=	Total alkalinity analyzed using APHA/EPA methods.								
	=	Not measure	d/not analyzed.							
<	=	Less than the	indicated detectio	n limit shown b	y the laborator	y.				
mg/L	=	Millgrams po	••.							

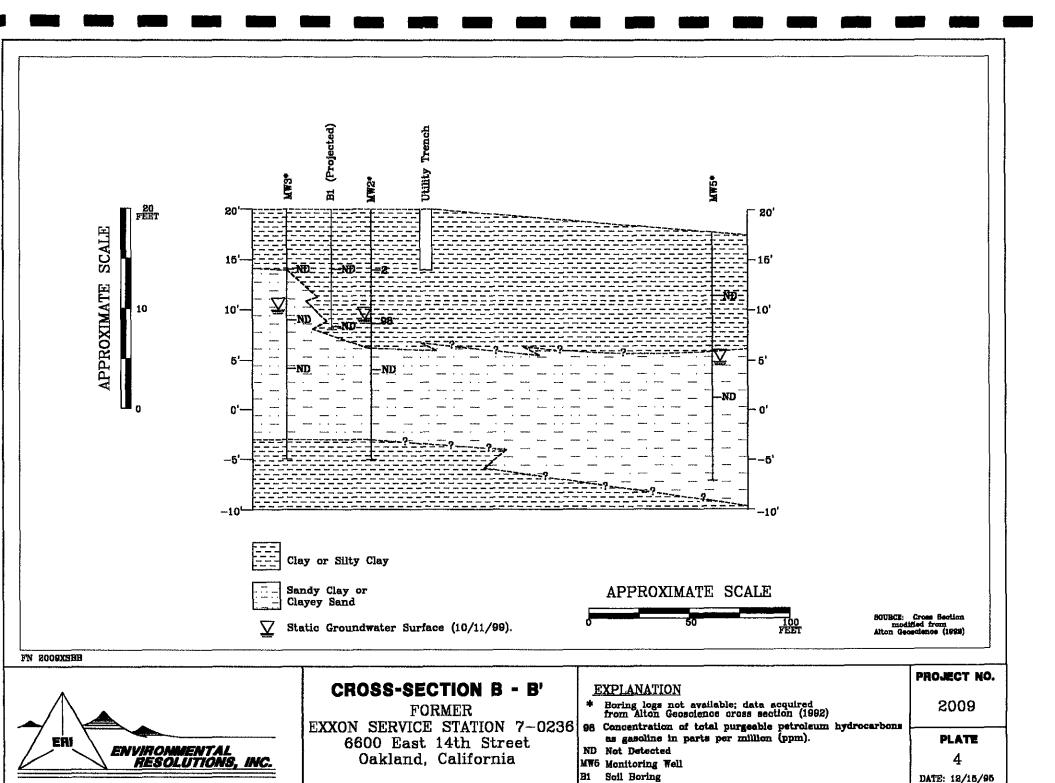
GENERALIZED SITE PLAN

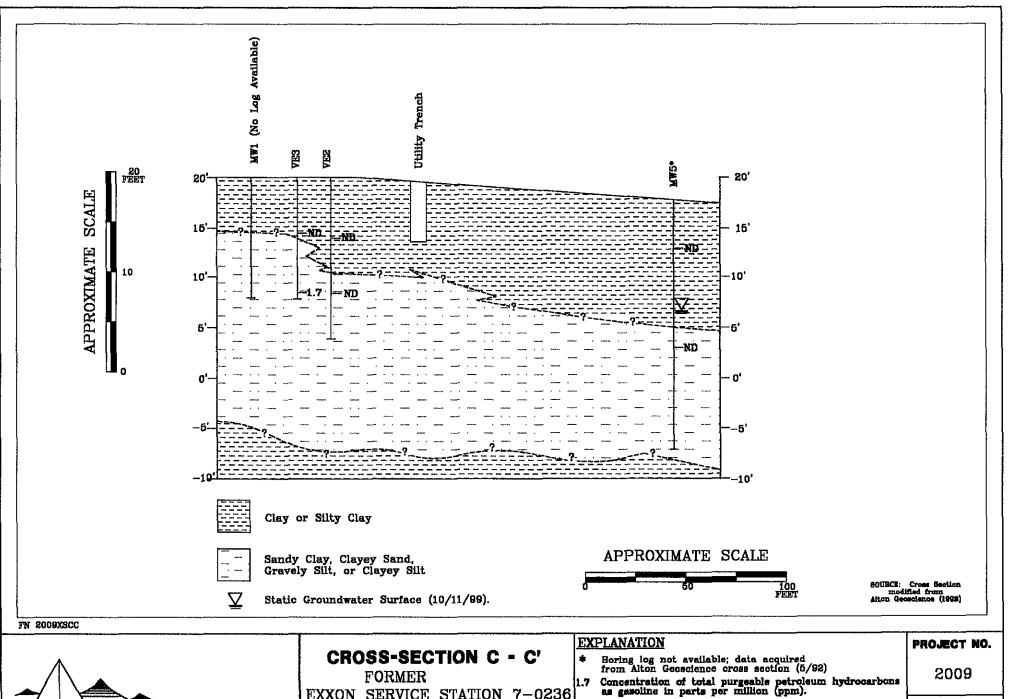
FORMER EXXON SERVICE STATION 7-0236 6600 East 14th Street Oakland, California

♦ Groundwater Monitoring Well

- **★ Groundwater Monitoring Well (Destroyed)**
- Soil Boring

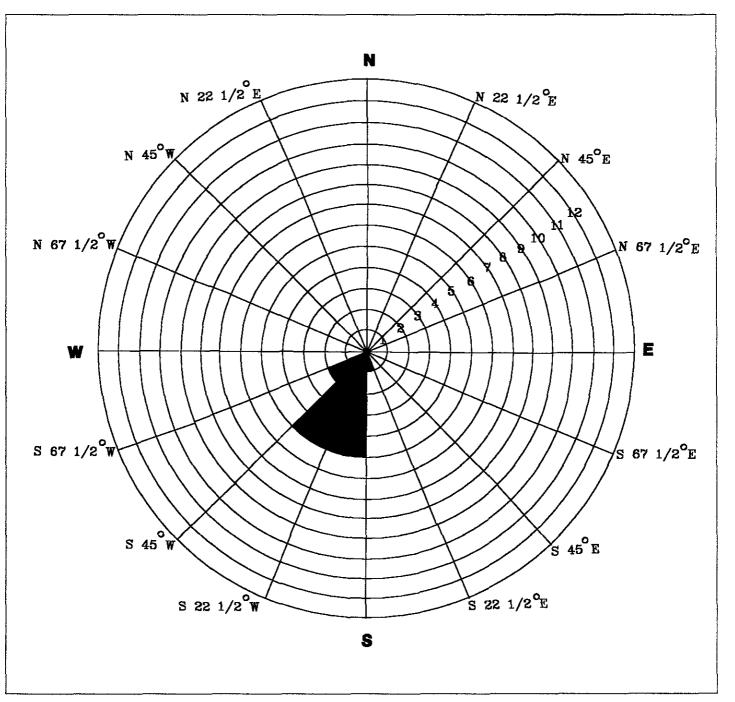

VESA Vapor Extraction Well (Destroyed)


PROJECT NO.


2009

PLATE

2



EXXON SERVICE STATION 7-0236 6600 East 14th Street Oakland, California

- ND Not Detected
- MW1 Monitoring Well
- VES Vapor Extraction Well

PLATE 5

DATE: 12/15/95

FN 20090005

<u>EXPLANATION</u>

N Compass Direction
Thirteen Data Points Shown

Rose diagram developed by evaluating the groundwater gradient direction from the quarterly monitoring data. Each circle on the rose diagram represents the number of monitoring events that the gradient plotted in that 22 1/2 degree sector. For example, five quarterly groundwater gradient directions plotted between due south and south 22 1/2 degrees west. Therefore, the dominant groundwater gradient direction as depicted by the rose diagram is between due south and south 45 degrees west.

GROUNDWATER FLOW DIRECTION ROSE DIAGRAM

FORMER EXXON SERVICE STATION 7-0236 6600 East 14th Street Oakland, California PROJECT NO.

2009

PLATE

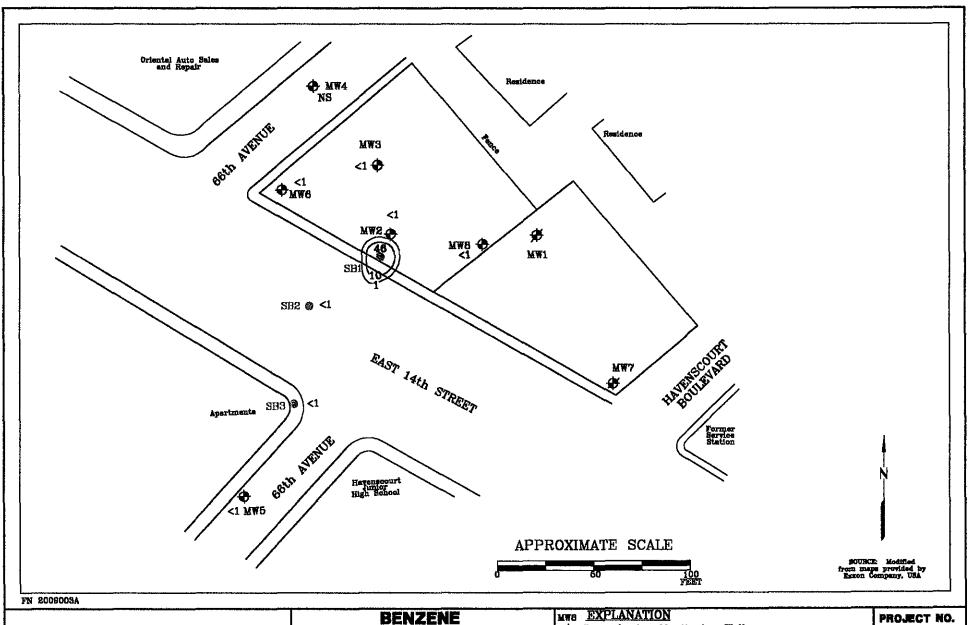
6 June 21, 1995

ISOCONCENTRATION MAP **OCTOBER 11, 1999**

FORMER EXXON SERVICE STATION 7-0236 6600 East 14th Street Oakland, California

Groundwater Monitoring Well

Groundwater Monitoring Well (Destroyed)


Soil Horing

<1 MTBE Concentration in ug/l</p>

2009

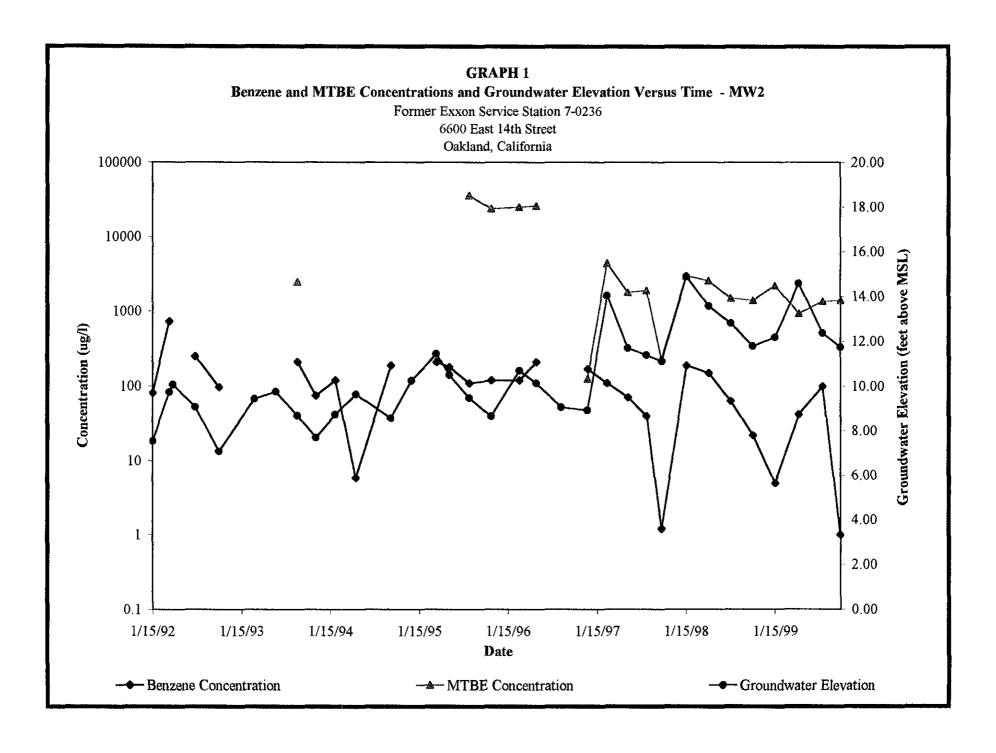
PLATE

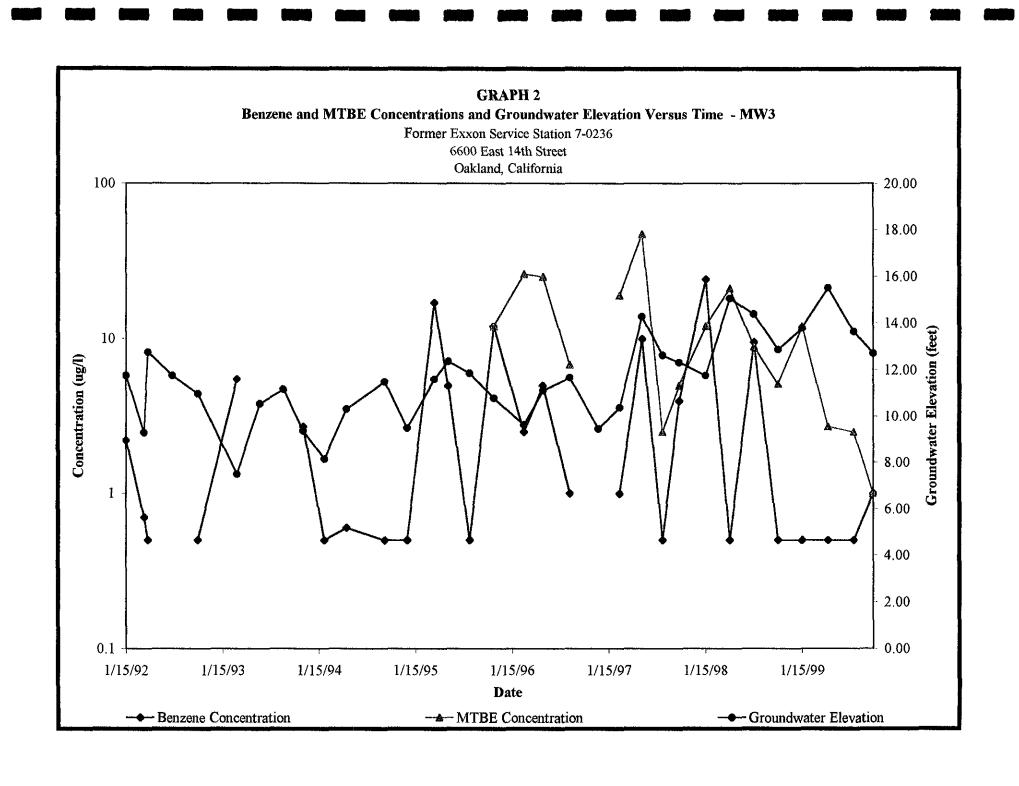
7

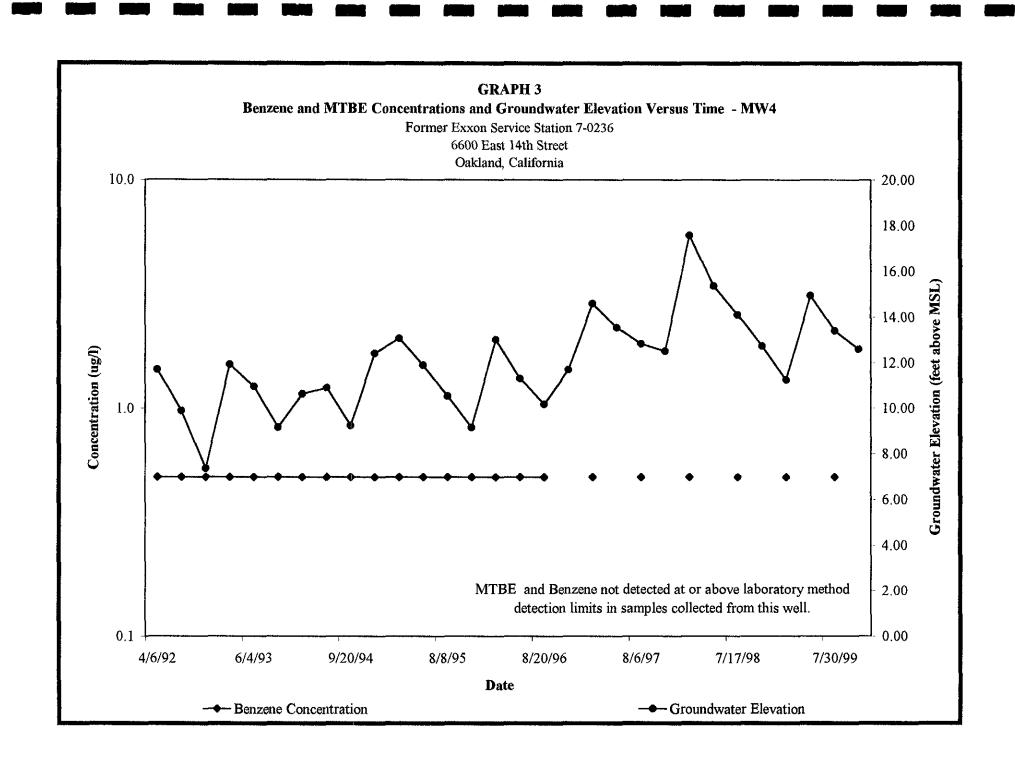
ISOCONCENTRATION MAP **OCTOBER 11, 1999**

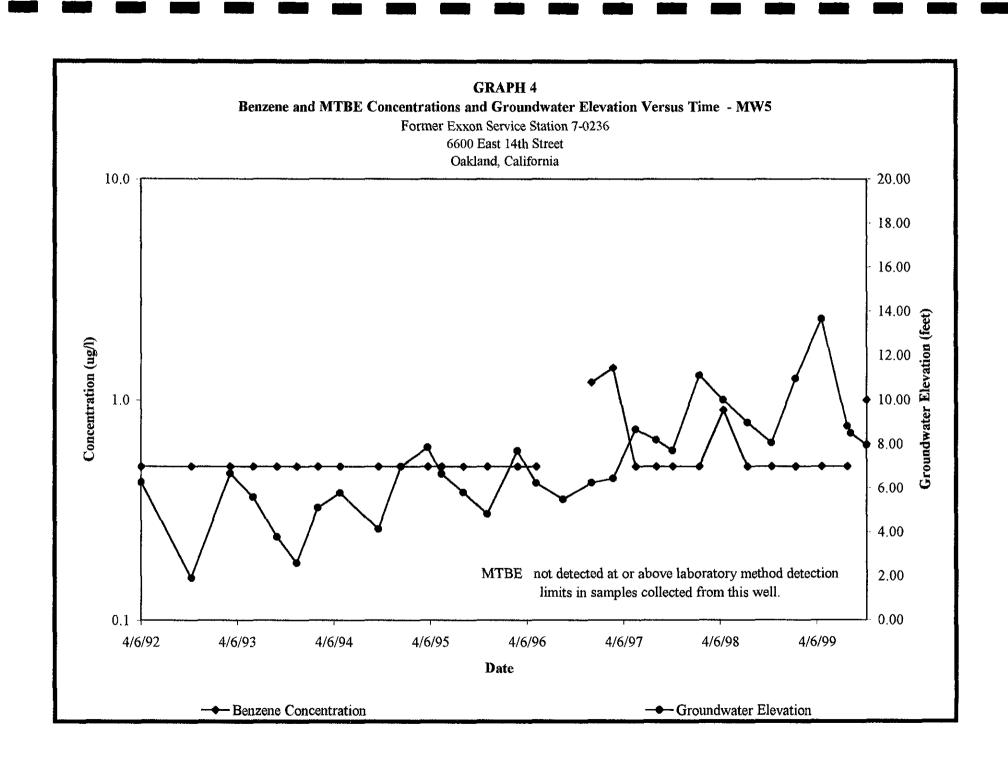
FORMER EXXON SERVICE STATION 7-0236

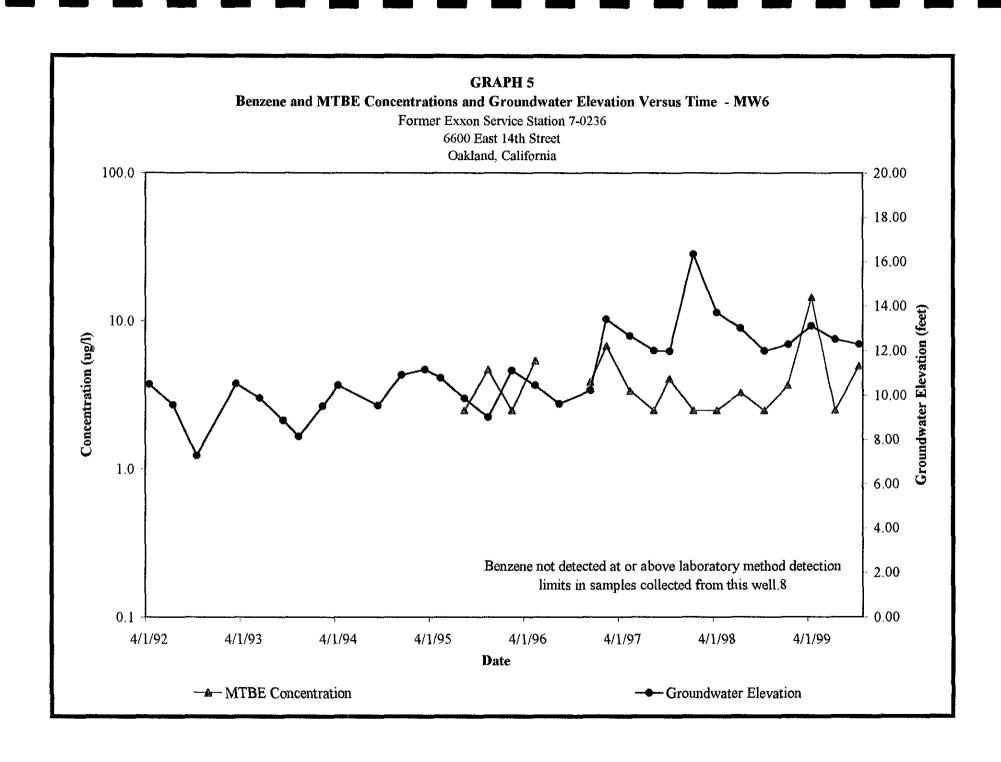
6600 East 14th Street Oakland, California

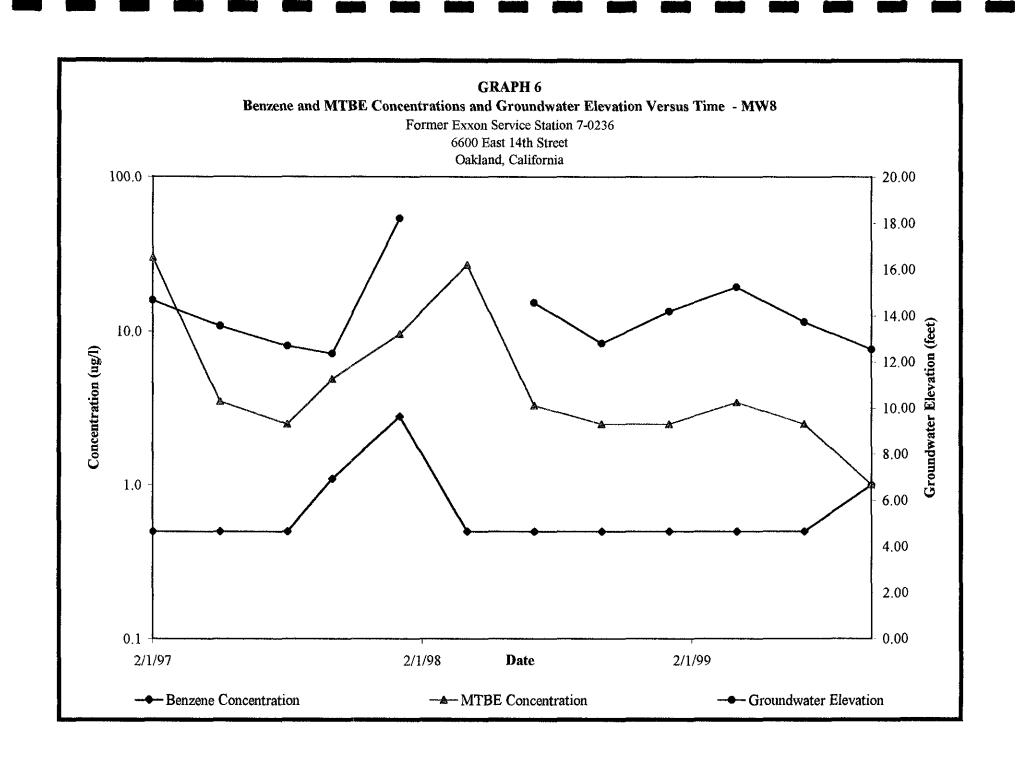

♦ Groundwater Monitoring Well

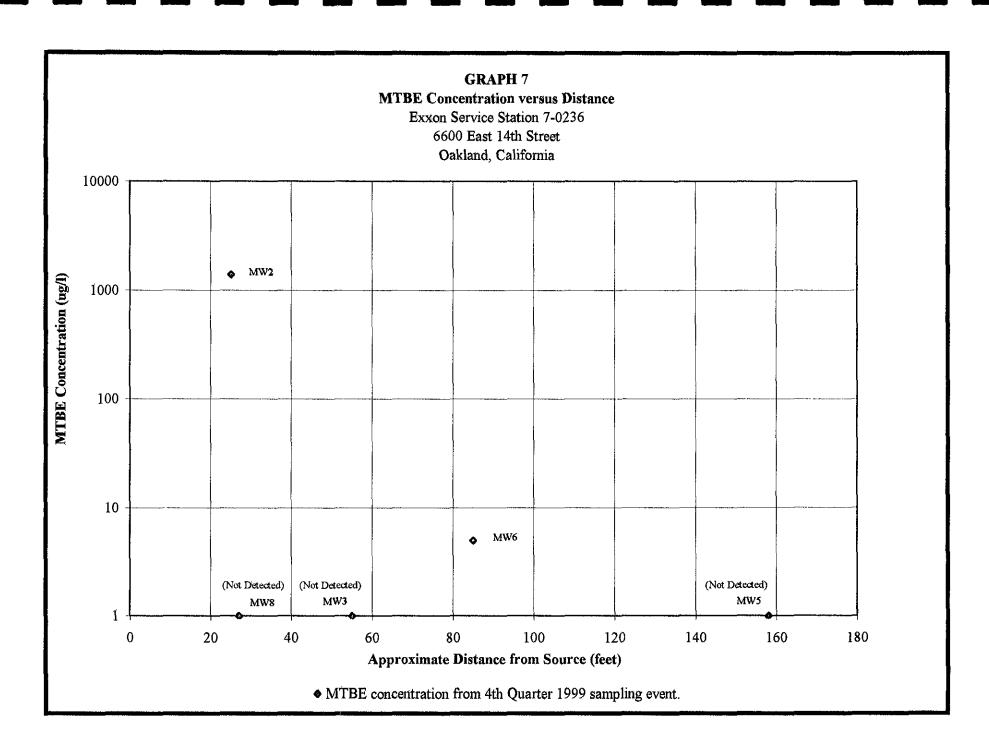

- **♯** Groundwater Monitoring Well (Destroyed)
- Soil Boring
- <1 Benzene Concentration in ug/l

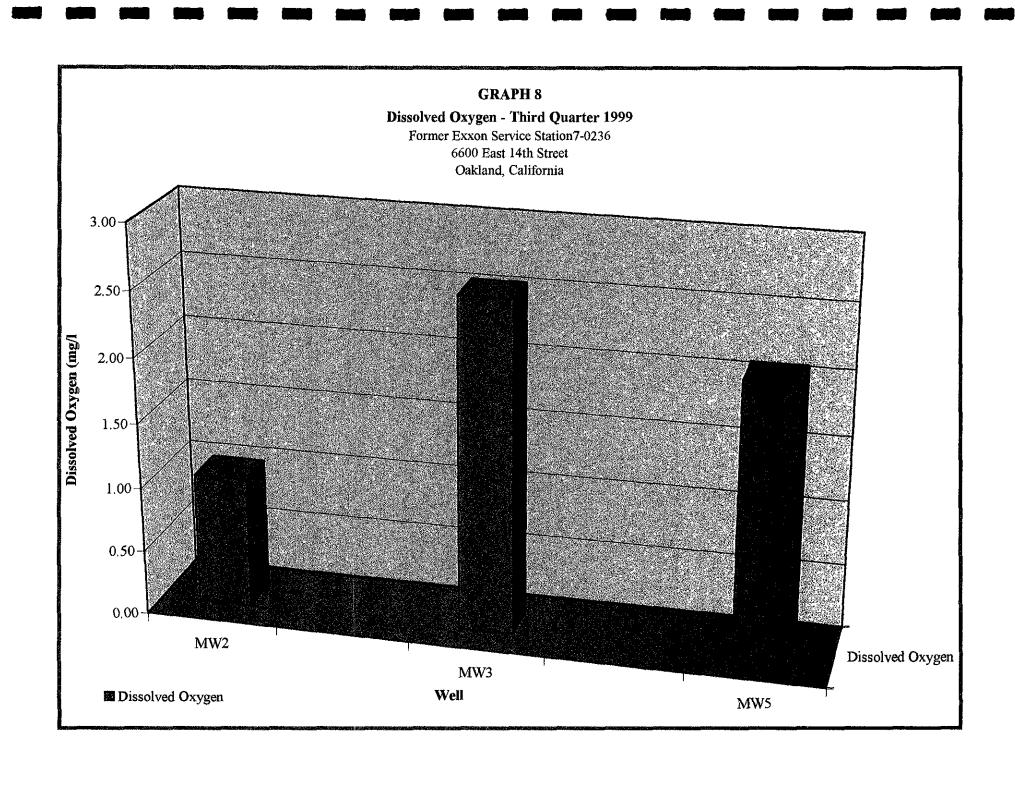

2009

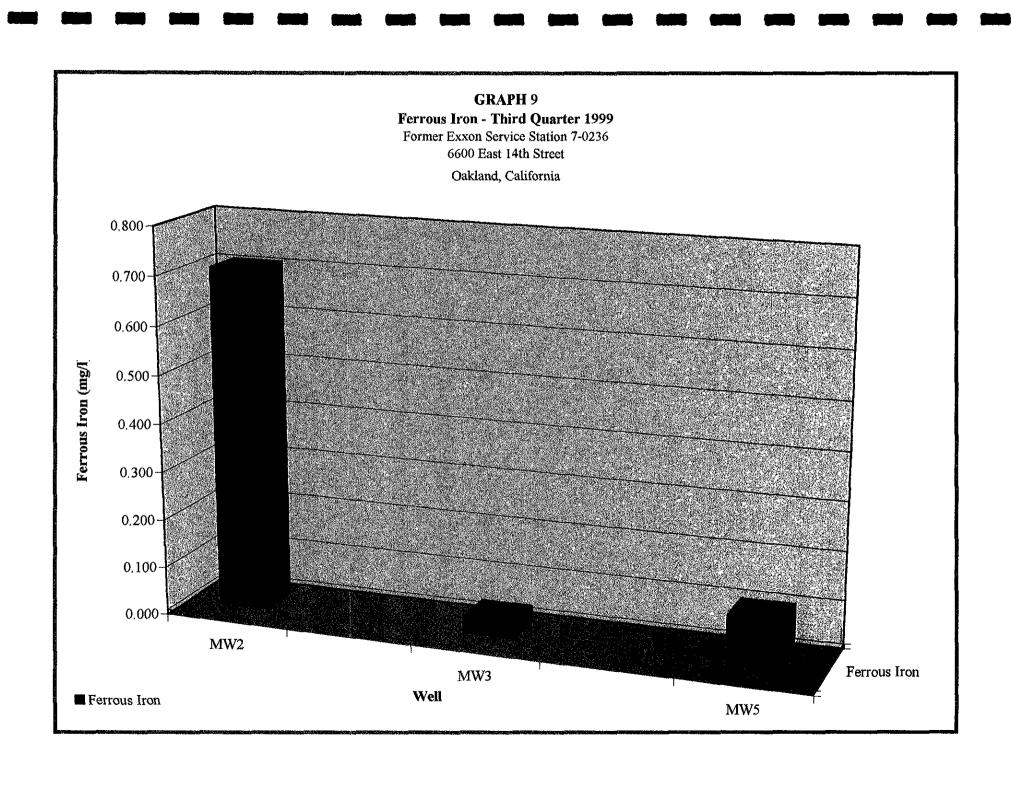

PLATE

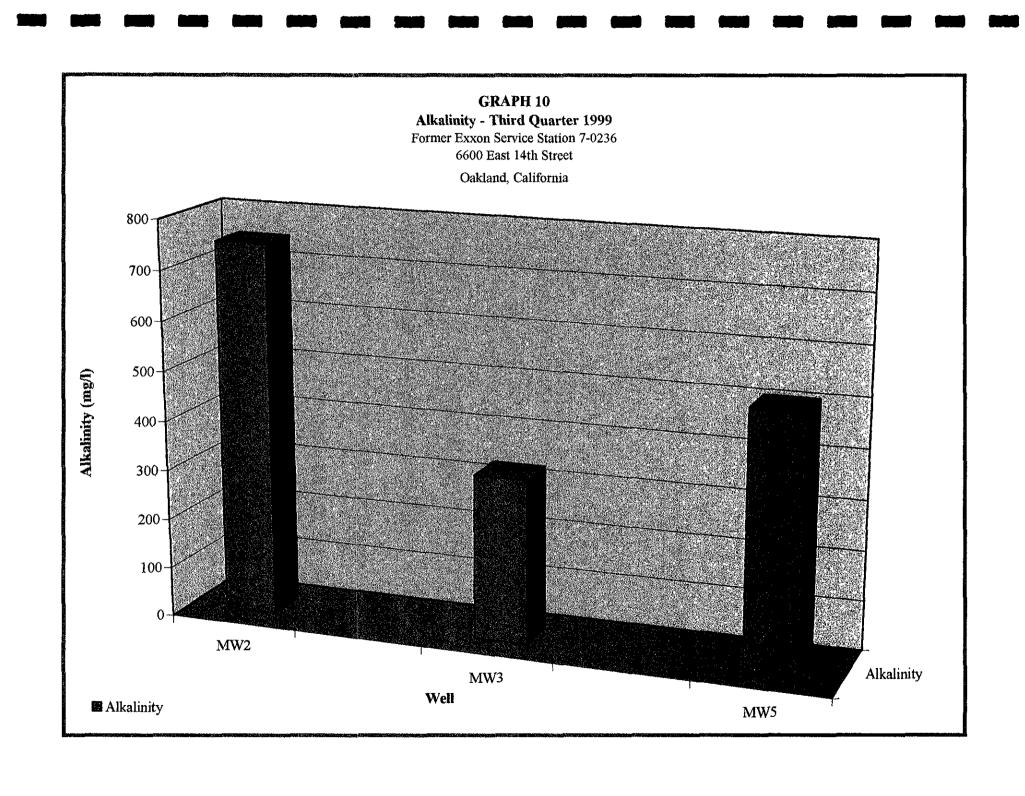

8

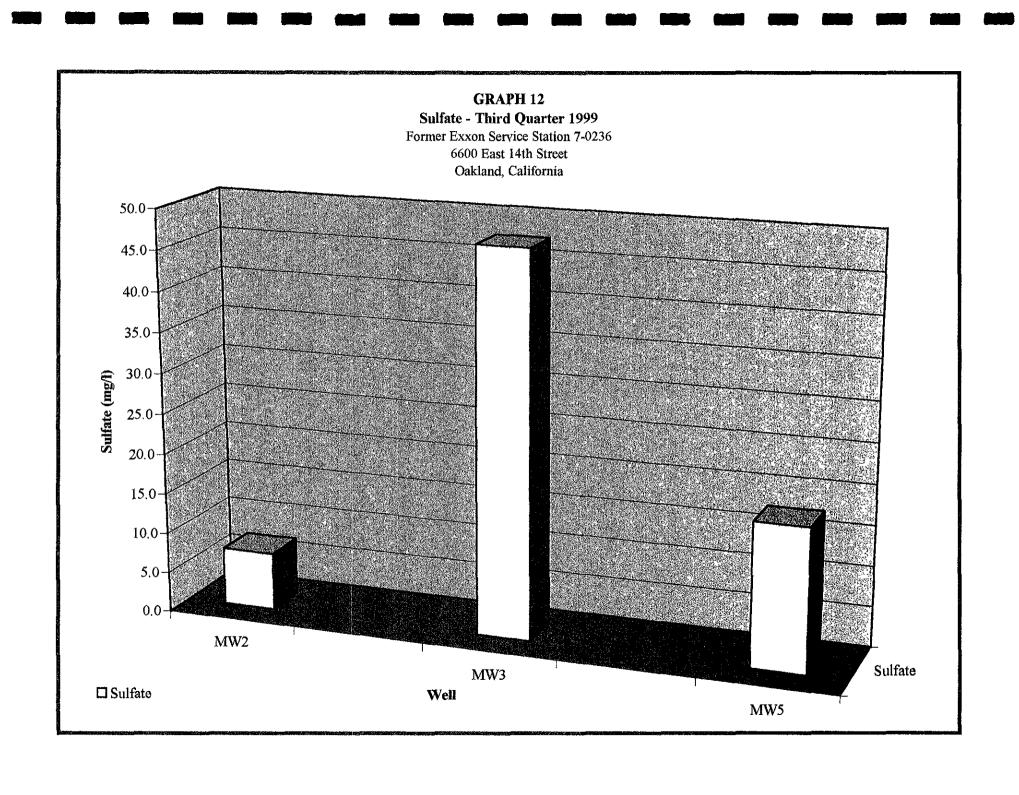


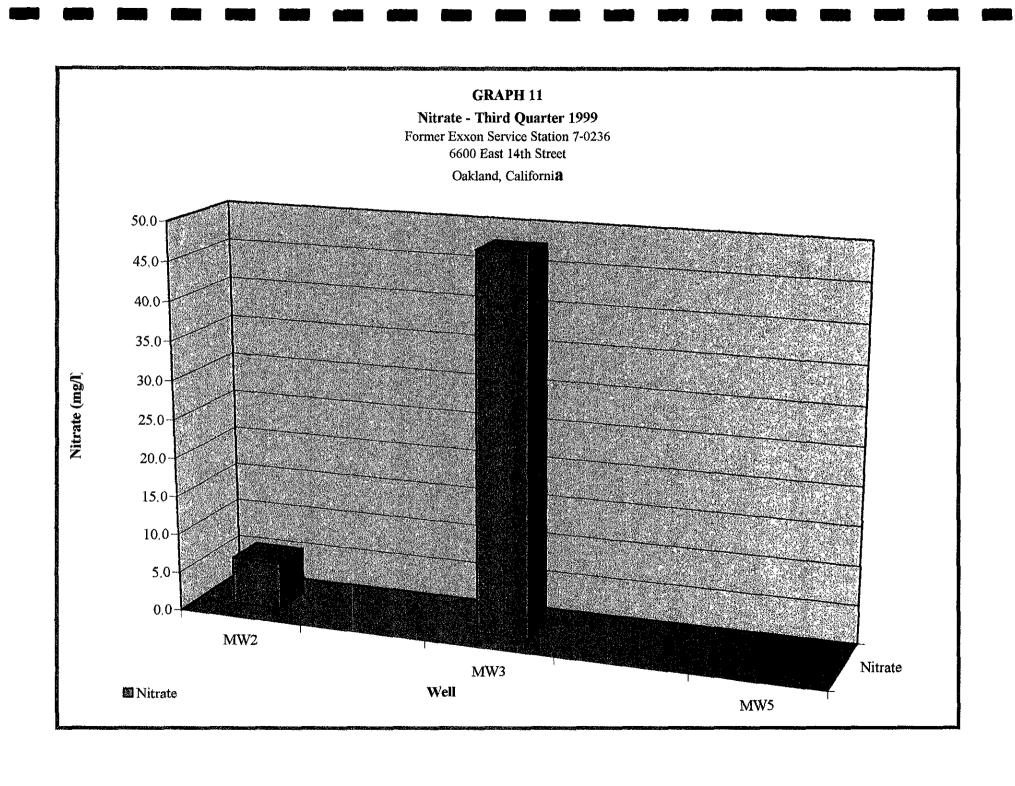












APPENDIX A

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY-ENVIRONMENTAL HEALTH SERVICES LETTER DATED JANUARY 7, 1999

ALAMEDA COUNTY

HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

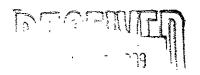
January 7, 1999 StID # 1068

Ms. Marla Guensler Exxon Company, USA P.O. Box 4032 Concord CA 94524-4032 ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION (LOP) 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Re: Request for Work Plan for Exxon RAS #7-0236, 6600 E. 14th St., Oakland CA 94621

Dear Ms. Guensler:

This letter follows up the November 19, 1998 meeting at our offices with Mr. Mark Dockum and Ms. Tracy Faulkner of Environmental Resolutions, Inc. (ERI). This meeting was meant to address my November 5, 1998 letter and provide guidance and recommendations for site closure.


The November 5th letter questioned the fluctuating dissolved oxygen concentrations reported in the well samples. It additionally requested that the additional bio-remediation parameters; oxidation-reduction potential, nitrate, sulfate, ferrous iron and alkalinity be run on the well samples. I suggest that this be done on monitoring wells MW3, MW2 and MW5 to establish the conditions up- and down-gradient and within the plume. You were also requested to consider adding oxygen releasing compound socks to MW-2, the most impacted well. Please perform these requested actions prior to your next groundwater sampling event.

The November 19th meeting was intended to discuss methods which would lead to site closure. The major obstacle was the elevated MTBE concentration found in MW-2. As you are aware, the Water Board has only provided guidance in handling MTBE cases, not policy. Because of the elevated MTBE concentration currently found in MW-2, the site must be adequately characterized and the concentration must be shown to be stable before site closure is to be considered. The Risk Management approach for the site requires the following:

- Adequate site characterization
- Removal of source
- Stable plume
- Examination of public health and ecological threat
- Institutional control

With this in mind, I requested the following; a well survey, a utility survey, a baseline risk assessment on the residual contaminants and a work plan for the advancement of off-site borings to determine the extent of MTBE plume. In a follow-up conversation with ERI, they could not confirm that you concurred with this approach, though it was my impression that you would.

This letter, therefore, requests the submission of a work plan to perform the above-mentioned items. Please submit this work plan within 30 days or by February 5, 1999.

Ms. Marla Guensler StID # 1068 6600 E. 14th St., Oakland CA 94621 January 7, 1999 Page 2.

You may contact me at (510) 567-6765 if you have any questions.

Sincerely,

Barney M. Chan

Barney M Cha-

Hazardous Materials Specialist

C: B. Chan, files

Mr. M. Dockum, Environmental Resolutions, Inc., 74 Digital Drive, Suite 6, Novato, CA 94949

Wprq-6600E14

APPENDIX B CALTRANS ENCROACHMENT PERMIT

ENCROACHMENT PERMIT	Permit No.
TR-0120	0499-6SV2088
	Dist/Co/Rte/PM
In compliance with (Check one):	04-Ala-185 9.10
	Date
Your application of Aug 10, 1999	Sept 27, 1999
Utility Notice No. of	Fee Paid Deposit \$280.00 Performance Bond Amount (1) Payment Bond Amount (2)
Agreement No. of	Performance Bond Amount (1) Payment Bond Amount (2) Bond Company
R/W Contract No. of	вопо Согграпу
	Bond Number (1) Bond Number (2)
TO: Environmental Resolutions, Inc 73 Digital Drive, Suite 100 Novato, CA 94949	
Attn: James Chappell Phone (415) 382-4323	PERMITTEE
and subject to the following, PERMISSION IS HEREBY GRANTED to:	
Pothole and collect groundwater samples at East 14 th Street to evalusite on State Highway 04-Ala-185, Post Mile 9.10, in the City of Oal	
Two days before work is started under this permit, notice shall be gi operations, public safety, and traffic control shall be obtained from S Redwood Road, Castro Valley, CA 94546-5920, (510) 881-4017, we All personnel working within the State right of way shall wear hard during construction. Immediately following completion of the work permitted herein, Completion attached to this permit.	state Representative, Mohammad Suleiman, 21030 bekdays, between 7:30 A.M. and 4:00 P.M. hats and orange vets, shirt or jackets as appropriate
The following attachments are also included as part of this permit (Check applicable	e): In addition to fee, the permittee will be billed actual
∑ Yes	costs for:
Yes 🔯 No Utility Maintenance Provisions	☐ Yes ☒ No Review
Yes No Special Previsions	Yes No Inspection
Yes No A Cal-OSHA permit required prior to beginning work:	☐ Yes Field Work
	(If any Caltrans effort expended)
	peen reviewed and considered prior to approval of this permit.
This permit is void unless the work is completed before December 31, 1999	
This permit is to be strictly construed and no other work other than specifically men No project work shall be commenced until all other necessary permits and environment of the project work shall be commenced until all other necessary permits and environment.	ental clearances have been obtained.
APPROV	ED:
HARRY	Y. YAHATA, District Director
BY:	mnianu
G. J. BA	TTAGLINI, District Permit Engineer
Page 1 of 2	

Name: Environmental Resolutions, Inc.
Permit #: 0499-6SV2088
Date: Sept 27, 1999

Traffic control is authorized only between traffic control which requires lane closurequired by the plan, the use of a flashing

Traffic control is authorized only between 9:00 A.M. and 3:00 P.M., Monday through Friday, holidays excluded. Any traffic control which requires lane closures shall be in compliance with the appropriate traffic control plan. Where required by the plan, the use of a flashing arrow sign is MANDATORY.

Before any work is begun which will interrupt the normal flow of public traffic, approval shall be obtained from State's representative, and closures will be as shown on the attached copy of Standard Plan Sheet T-11.

Survey vehicles may be parked in State highway right-of-way off paved shoulders. Auxiliary support and employee vehicles shall remain outside the right-of-way and shall not interfere with the free flow of traffic or pedestrian during work is in process.

All survey operation shall be conducted off the traveled way except where necessary to cross the pavements and medians.

No excavation shall be left open overnight without written permission from the Caltrans representative or unless otherwise specified herein.

If at the end of day, backfilling operations have not been properly completed, steel bridging is required to make the entire highway facility available to the travelling public. All steel plates utilized in the traveled way shall comply with the "Steel Plate Bridging" provisions.

The site of the work shall be enclosed by suitable barricades, signs and lights, as approved by State's representative, to warn and protect traffic effectively.

Excavations made within the limits of the highway shall be backfilled before leaving the work for the night unless otherwise authorized by State's representative. After backfilling the trench, temporary surfacing shall be placed if required by State's representative.

Any damage to existing facilities, landscaping or irrigation within the State's Right of Way shall be replaced in kind by the permittee at permittee's expense.

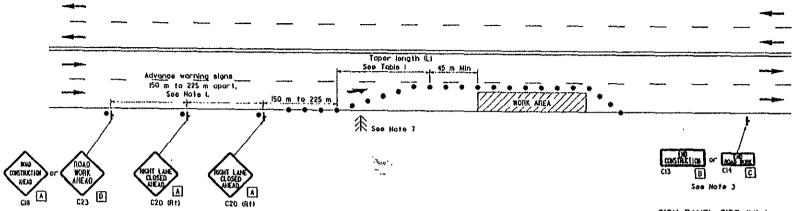
All painted markings shall be made with water soluble paint.

When survey operation are being conducted, the pemittee shall furnish, place and maintain signs and safety equipment in accordance with the latest edition of the "Manual of Traffic Controls for Construction and Maintenance Work Zones".

Certain details of work authorized hereby are shown on permittee's plans submitted with the request for permit.

This permit does not authorize any freeway lane closure.

This permit does not authorize tree trimming or tree removal.


STATE OF CALIFORNIA, DEPARTMENT OF TRANSPORTATION ENCROACHMENT PERMIT GENERAL PROVISIONS TR-0045 (REV 8/98)

- AUTHORITY: The Department's authority to issue encroachment permits is provided under, Div. I. Chpt. 3, Art. 1, Sect. 660 to 734 of the Streets and Highways Code
- 2. REVOCATION: Encroachment permits are revocable on five days notice unless otherwise stated on the permit and except as provided by law for public corporations, franchise holders, and utilities. These General Provisions and the Encroachment Permit Utility Provisions are subject to modification or abrogation at any time. Permittees joint use agreements, franchise rights, reserved rights or any other agreements for operating purposes in State highway right of way are exceptions to this revocation.
- DENIAL FOR NONPAYMENT OF FEES: Failure to pay permit fees when due can result in rejection of future applications and denial of permits.
- ASSIGNMENT: No party other than the permittee or permittee's authorized agent is allowed to work under this permit.
- ACCEPTANCE OF PROVISIONS: Permittee understands and agrees to accept these General Provisions and all attachments to this permit, for any work to be performed under this permit.
- 6. BEGINNING OF WORK: When traffic is not impacted (see Number 35), the permittee shall notify the Department's representative, two (2) days before the intent to start permitted work. Permittee shall notify the Department's Representative if the work is to be interrupted for a period of five (5) days or more, unless otherwise agreed upon. All work shall be performed on weekdays during regular work hours, excluding holidays, unless otherwise specified in this permit.
- 7. STANDARDS OF CONSTRUCTION: All work performed within highway right of way shall conform to recognized construction standards and current Department Standard Specifications, Department Standard Plans High and Low Risk Facility Specifications, and Utility Special Provisions. Where reference is made to "Contractor and Engineer," these are amended to be read as "Permittee and Department representative."
- PLAN CHANGES: Changes to plans, specifications, and permut provisions are not allowed without prior approval from the State representative.
- 9. INSPECTION AND APPROVAL: All work is subject to monitoring and inspection. Upon completion of work, permittee shall request a final inspection for acceptance and approval by the Department. The local agency permittee shall not give final construction approval to its contractor until final acceptance and approval by the Department is obtained.
- 10. PERMIT AT WORKSITE: Permittee shall keep the permit package or a copy thereof, at the work site and show it upon request to any Department representative or law enforcement officer. If the permit package is not kept and made available at the work site, the work shall be suspended.
- 11. CONFLICTING ENCROACHMENTS: Permittee shall yield start of work to ongoing, prior authorized, work adjacent to or within the limits of the project site When existing encroachments conflict with new work, the permittee shall bear all cost for rearrangements, (e.g., relocation, alteration, removal, etc.).
- 12. PERMITS FROM OTHER AGENCIES: This permit is invalidated if the permittee has not obtained all permits necessary and required by law, from the Public Utilities Commission of the State of California (PUC), California Occupational Safety and Health Administration (Cal-OSHA), or any other public agency having jurisdiction.
- 13. PEDESTRIAN AND BICYCLIST SAFETY: A safe minimum passageway of 1.21 meter (4') shall be maintained through the work area at existing pedestrian or bicycle facilities. At no time shall pedestrians be diverted onto a portion of the street used for vehicular traffic. At locations where safe alternate passageways cannot be provided, appropriate signs and barricades shall be installed at the limits of construction and in advance of the limits of construction at the nearest crosswalk or intersection to detour pedestrians to facilities across the street.
- 14. PUBLIC TRAFFIC CONTROL: As required by law, the permittee shall provide traffic control protection warning signs, lights, safety devices, etc. and take all other measures necessary for traveling public's safety Day and night time lane closures shall comply with the Manuals of Traffic Controls, Standard Plans, and Standard

- Specifications for traffic control systems. These General Provisions are not intended to impose upon the permittee, by third parties, any duty or standard of care, greater than or different from, as required by law
- 15. MINIMUM INTERFERENCE WITH TRAFFIC: Permittee shall plan and conduct work so as to create the least possible inconvenience to the traveling public: traffic shall not be unreasonably delayed. On conventional highways, permittee shall place properly attired flagger(s) to stop or warn the traveling public in compliance with the Manual of Traffic Controls and Instructions to Flaggers Pamphlet.
- 16. STORAGE OF EQUIPMENT AND MATERIALS: Equipment and material storage in State right of way shall comply with Standard Specifications, Standard Plans, and Special Provisions Whenever the permittee places an obstacle within 3.63 m (12') feet of the traveled way, the permittee shall place temporary railing (Type K).
- 17. CARE OF DRAINAGE: Permittee shall provide alternate drainage for any work interfering with an existing drainage facility in compliance with the Standard Specifications, Standard Plans and/or as directed by the Department's representative.
- RESTORATION AND REPAIRS IN RIGHT OF WAY: Permittee
 is responsible for restoration and repair of State highway right of
 way resulting from permitted work (State Streets and Highways
 Code, Sections 670 et. seq.).
- 19. RIGHT OF WAY CLEAN UP: Upon completion of work, permittee shall remove and dispose of all scraps, brush, timber, materials, etc. off the right of way. The aesthetics of the highway shall be as it was before work started.
- 20. COST OF WORK: Unless stated in the permit, or a separate written agreement, the permittee shall bear all costs incurred for work within the State right of way and waives all claims for indemnification or contribution from the State.
- ACTUAL COST BILLING: When specified in the permit, the Department will oill the permittee actual costs at the currently set hourly rate for encroachment permits.
- 22 AS-BUILT PLANS: When required, permittee shall submit one (1) set of as-built plans in compliance with Department's requirements. Plans shall be submitted within thirty (30) days after completion and approval of work.
 - As-Built plans or accompanying correspondence shall not include disclaimer statements of any kind. Such statements shall constitute non-compliance with these provisions. Failure to provide complete and signed As-Built plans shall be cause for bond or deposit retention by the Department.
- 23. PERMITS FOR RECORD PURPOSES ONLY: When work in the right of way is within an area under a Joint Use Agreement (JUA) or a Consent to Common Use Agreement (CCUA), a fee exempt permit is issued to the permittee for the purpose of providing a notice and record of work. The Permittee's prior rights shall be preserved without the intention of creating new or different rights or obligations, "Notice and Record Purposes Only" shall be stamped across the face of the permit.
- BONDING: The permittee shall file bond(s), in advance, in the amount set by the Department. Failure to maintain bond(s) in full force and effect will result in the Department stopping of all work 24. and revoking permit(s) Bonds are not required of public corporations or privately owned utilities, unless permittee failed to comply with the provision and conditions under a prior permit. The surety company is responsible for any latent defects as provided in California Code of Civil Procedures, Section 337.15 Local agency permittee shall comply with requirements established as follows: In recognition that project construction work done on State property will not be directly funded and paid by State, for the purpose of protecting stop notice claimants and the interests of State relative to successful project completion, the local agency permittee agrees to require the construction contractor furnish both a payment and performance bond in the local agency's name with both bonds complying with the requirements set forth in Section 3-1 02 of State's current Standard Specifications before construction work. The local agency performing any project indemnify, and hold harmless the State, its officers and employees from all project construction related claims by contractors and all stop notice or mechanic's lien claimants. The local agency also agrees to remedy, in a timely manner and to State's satisfaction, any latent defects occurring as a result of the project construction work.
- FUTURE MOVING OF INSTALLATIONS: Permittee understands and agrees to rearrange a permitted installation upon request by the Department, for State construction, reconstruction, or maintenance

TYPICAL LANE CLOSURE

SIGN PANEL SIZE (MIn)

- A 900 mm x 900 mm
- B 1200 mm x 450 mm
- (C) 900 mm x 450 mm
- 0 750 mm x 750 mm

LEGEND

- Traffic Cone
- Portable Sign
- Direction of Travel

Flashing Arrow Sign

NOTES

See Notes 2 and 4

See Note 10

See Note ID

- 2, All advance worning sign installations shall be equipped with flags for daytime closures.
- 3. A CI3 "END CONSTRUCTION" or CI4 "END ROAD WORK" sign, as appropriate, shall be placed at the end at the lane closure unless the end of work area is obvious, or ends within a larger project's limits.
- 4. If the CIB (or C23) sign would follow within 600 m of a stationary CIB, C23, or CII "STATE HIGHWAY CONSTRUCTION NEXT ... MILES", use a C20 sign for the first advance warning sign.
- 5. All comes used for night lane closures shall be filted with reflective sleaves as specified in the specifications.

- L. Whore approach speeds are low, signs may be placed at 90 m spacing and in urban areas, closer.

 6. Portable delineators, placed at one-half the spacing indicated for traffic cones, may be used in lieu of comes for daytime closures only.
 - 7. Flashing arrow sign shalbs either Type I or Type II.
 - 8. The maximum spacing between cones in a taper stall be approximately as shown in Table 1 and 15 m maximum spacing on tangent.
 - 9. for approach speeds over 60 km/h, use the "Traffic Control System for Lane Closure On Freeways And Expressways" plan for Jane closure details and requirements.
 - IO.Where specified in the special provisions, a Wil "LANE REDUCTION SYMBOL" sign is to be used in place of the C20 "RIGHT LANE CLOSED AHEAD" sign.

TABLE I

Approach Speed (km/h)	loper Length (L) (m)	humber of Cones for Toper	Spacing of Cones Along Toper (m) t
0-40	38	6	7.5
40-65	98	9	12
65-80	183	13	15
Over 80	See Hote	9	

* Based on 3.6 m wide ione. This column is also appropriate for ione widths less

STATE OF CALIFORNIA DEPARTMENT OF TRANSPORTATION

TRAFFIC CONTROL SYSTEM FOR LANE CLOSURE ON MULTILANE CONVENTIONAL HIGHWAYS

NO SCALE

T11

APPENDIX C

LABORATORY ANALYSIS REPORT AND CHAIN OF CUSTODY RECORD

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 (713) 660-0901

Case Narrative for: EXXON Company U.S.A.

Certificate of Analysis Number: 99100225

Report To:

Environmental Resolution, Inc.

Jim Chappell

73 Digital Drive Suite 100

Novato

California

94949-

ph: (415) 382-5996

fax: (415) 382-1856

Project Name:

Site:

200903X

7-0236,19432502

Site Address:

6600 E. 14th St.

Qakland

CA

PO Number:

EWR#19911922

State:

California

State Cert. No.:

1903

Date Reported:

Any data flags or quality control exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Wyatt, Neaundra
Project Manager

11/6/99

Date

EXXON Company U.S.A.

Certificate of Analysis Number:

99100225

eport To:

Environmental Resolution, Inc.

Jim Chappell

73 Digital Drive Suite 100

Novato California

94949-

ph: (415) 382-5996

fax: (415) 382-1856

Project Name:

200903X

Site:

7-0236,19432502

Site Address:

6600 E. 14th St.

Oakland

ÇA

PO Number:

EWR#19911922

State:

California

State Cert. No.: 1903

Date Reported:

Client Sample ID	Lab Sample ID	Matrix	Date Collected	Date Received	COC ID	HOLD
		,	r			
16-SB3	99100225-01	Water	10/13/99 12:00:00 PM	10/15/99 10:00:00 AM		
16-SB3	99100225-01	Water	10/13/99 12:00:00 PM	10/15/99 10:00:00 AM		
13-SB2	99100225-02	Water	10/13/99 1:15:00 PM	10/15/99 10:00:00 AM		
13-SB2	99100225-02	Water	10/13/99 1:15:00 PM	10/15/99 10:00:00 AM		
11-SB1	99100225-03	Water	10/13/99 4:15:00 PM	10/15/99 10:00:00 AM		
11-SB1	99100225-03	Water	10/13/99 4:15:00 PM	10/15/99 10:00:00 AM		
21-MW2	99100225-04	Water	10/13/99 5:20:00 PM	10/15/99 10:00:00 AM		
21-MW2	99100225-04	Water	10/13/99 5:20:00 PM	10/15/99 10:00:00 AM		$\overline{}$
BB-MW2	99100225-05	Water	10/13/99 5:10:00 PM	10/15/99 10:00:00 AM		

yatt, Neaundra oject Manager Affact

11/6/99

Date

Joel Grice Laboratory Director

Ted Yen Quality Assurance Officer

Client Sample ID W-16-SB3		Coll	ected: 10/13/99 12:00:0	SPL Sample ID:	99100	99100225-01	
Analyses/Method	Result	Rep.Limit	Dil. Factor QUAL	Date Analyzed	Analyst	Seq.#	
GASOLINE RANGE ORGANICS			CA_GRO	CA GRO Units: ug/L			
Gasoline Range Organics	ND	50	1	10/21/99 1:38	D_R	77937	
Surr: 1,4-Difluorobenzene	97	62-144	1	10/21/99 1:38	D_R	77937	
Surr: 4-Bromofluorobenzene	110	44-153	1	10/21/99 1:38	D_R	77937	
PURGEABLE AROMATICS		······································	SW8021B	-			
Benzene	ND	1	1	10/21/99 1:38	D_R	77565	
Ethylbenzene	ND	1	1	10/21/99 1:38	D_R	77565	
Toluene	ND	1	1	10/21/99 1:38	D_R	77565	
m,p-Xylene	ND	1	1	10/21/99 1:38	D_R	77565	
o-Xylene	ND	1	1	10/21/99 1:38	D_R	77565	
Xylenes,Total	ND	1	1	10/21/99 1:38	D_R	77565	
Surr: 1,4-Difluorobenzene	93	72-137	1	10/21/99 1:38	D_R	77565	
Surr: 4-Bromofluorobenzene	97	48-156	1	10/21/99 1:38	D_R	77565	
VOLATILE ORGANICS METHOD	8260B		SW8260B	Units: ug/l			
Methyl tert-butyl ether	ND	5	1	10/20/99 9:44	JC	77119	
Surr: 1,2-Dichloroethane-d4	100	80-120	1	10/20/99 9:44	JC	77119	
Surr: 4-Bromofluorobenzene	90	86-115	1	10/20/99 9:44	JC	77119	
Surr: Toluene-d8	98	88-110	1	10/20/99 9:44	JC	77119	

Wyatt, Neaundra

Qualifiers:

Project Manager

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

99100225 Page 2 11/6/99 12:16:20 PM

Client Sample ID W-13-SB2		Colle	cted: 10/13/99 1:15	00 SPL Sample ID	99100)225-02
Analyses/Method	Result	Rep.Limit	Dil. Factor QU	IAL Date Analyzed	Analyst	Seq.#
GASOLINE RANGE ORGANICS			CA_GRO	Units: ug/	Ĺ	
Gasoline Range Organics	ND	50	1	10/21/99 2:06	D_R	77949
Surr: 1,4-Difluorobenzene	92	62-144	1	10/21/99 2:06	D_R	77949
Surr: 4-Bromoffuorobenzene	110	44-153	1	10/21/99 2:06	D_R	77949
PURGEABLE AROMATICS			SW8021B	L,		
Benzene	ND	1	1	10/21/99 2:06	D_R	77578
Ethylbenzene	ND	1	1	10/21/99 2:06	D_R	77578
Toluene	ND	1	1	10/21/99 2:06	D_R	77578
m,p-Xylene	ND	1	1	10/21/99 2:06	D_R	77578
o-Xylene	ND	1	1	10/21/99 2:06	D_R	77578
Xylenes,Total	ND	1	1	10/21/99 2:06	D_R	77578
Surr: 1,4-Difluorobenzene	98	72-137	1	10/21/99 2:06	D_R	77578
Surr: 4-Bromofluorobenzene	100	48-156	1	10/21/99 2:06	D_R	77578
VOLATILE ORGANICS METHOD	8260B		SW8260B	Units: ug/	L	
Methyl tert-butyl ether	ND	5	1	10/20/99 13:47	JC	77126
Surr: 1,2-Dichloroethane-d4	96	80-120	1	10/20/99 13:47	JC	77126
Surr: 4-Bromofluorobenzene	92	86-115	1	10/20/99 13:47	JC	77126
Surr: Toluene-d8	100	88-110	1	10/20/99 13:47	JC	77126

Wyatt, Neaundra
Project Manager

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

99100225 Page 3 11/6/99 12:16:21 PM

99100225-03

10/13/99 4:15:00 SPL Sample ID:

Client Sample ID: W-11-SB#

Analyses/Method Result Rep.Limit Dil. Factor QUAL. Date Analyzed Analyst Seq.# CA_GRO Units: ug/L **GASOLINE RANGE ORGANICS** 10/22/99 2:33 1200 25 D_R 78885 Gasoline Range Organics 18000 78885 10/22/99 2:33 D_R 62-144 25 150 Surr: 1,4-Difluorobenzene Surr: 4-Bromofluorobenzene 120 44-153 25 10/22/99 2:33 D_R 78885

Collected:

PURGEABLE AROMATICS		<u>, , , , , , , , , , , , , , , , , , , </u>	SW8021B	Units: ug/		
Benzene	46	25	25	10/22/99 2:33	D_R	78825
Ethylbenzene	1200	25	25	10/22/99 2:33	D_R	78825
Toluene	ND	25	25	10/22/99 2:33	D_R	78825
m,p-Xylene	32	25	25	10/22/99 2:33	D_R	78825
o-Xylene	ND	25	25	10/22/99 2:33	D_R	78825
Xylenes,Total	32	25	25	10/22/99 2:33	D_R	78825
Surr: 1,4-Difluorobenzene	97	72-137	25	10/22/99 2:33	D_R	78825
Surr: 4-Bromofluorobenzene	97	48-156	25	10/22/99 2:33	D_R	78825

OLATILE ORGANICS METHOD 8260B		SW8260B	Units: ug/l			
Methyl tert-butyl ether	1900	120	25	10/20/99 16:03	JC	77130
Surr: 1,2-Dichloroethane-d4	88	80-120	25	10/20/99 16:03	JC	77130
Surr: 4-Bromofluorobenzene	96	86-115	25	10/20/99 16:03	JC	77130
Surr: Toluene-d8	96	88-110	25	10/20/99 16:03	JC	7 7130

Wyatt, Neaundra Project Manager

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

99100225 Page 4 11/6/99 12:16:22 PM

Client Sample ID W-2	1-MW2		Collec	ted: 10/	13/99 5	:20:00	SPL Sample ID	99100	99100225-04	
Analyses/Method	I	Result	Rep.Limit	Dīl.	Factor	QUAL	Date Analyzed	Analyst	Seq.#	
DIESEL RANGE ORGA	ANICS- CA			CA DR			Units: ug/	L		
Diesel Range Organics		590	50		1		10/21/99 21:31	RR	79348	
Surr: n-Pentacosane		100	20-150		1		10/21/99 21:31	RR	79348	
Run ID/Seq #: HP_	V_991021C-7934	48						<u> </u>		
Prep Method	Prep Date		Prep Initials							
SW3510B	10/20/1999 10:4	4	KL							
GASOLINE RANGE ORGANICS			CA_GR	0		Units: ug/	L			
Gasoline Range Organic	cs	1800	250		5		10/21/99 3:01	D_R	77951	
Surr: 1,4-Difluorobenzene		93	62-144		5		10/21/99 3:01	D_R	77951	
Surr: 4-Bromofluorobenzene		130	44-153		5		10/21/99 3:01	D_R	77951	
PURGEABLE AROMA	TICS			SW8021	В	Units: ug/L		L		
Benzene		8.6	5		5		10/21/99 3:01	D_R	77582	
Ethylbenzene		ND	5	· 	5		10/21/99 3:01	D_R	77582	
Toluene		ND	5		5	·	10/21/99 3:01	D_R	77582	
m,p-Xylene		ND	5		5		10/21/99 3:01	D_R	77582	
o-Xylene		ND	5		5		10/21/99 3:01	D_R	77582	
Xylenes, Total		ND	5		5		10/21/99 3:01	D_R	77582	
Surr: 1,4-Diffuorobenz	zene	95	72-137		5		10/21/99 3:01	D_R	77582	
Surr: 4-Bromofluorobe	enzene	100	48-156		5		10/21/99 3:01	D_R	77582	
VOLATILE ORGANICS	S METHOD 826	0B		SW8260)B		Units: ug/	L		
Methyl tert-butyl ether		1300	50		10		10/20/99 15:37	JC	77129	
Surr: 1,2-Dichloroetha	ane-d4	100	80-120		10		10/20/99 15:37	JC	77129	
Surr: 4-Bromofluorobe	enzene	94	86-115		10		10/20/99 15:37	JC	77129	
Surr: Toluene-d8		98	88-110		10		10/20/99 15:37	JC	77129	

Themme Uffact

Wyatt, Neaundra Project Manager

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

99100225 Page 5 11/6/99 12:16:23 PM

Client Sample ID W-BB	-MW2	Colle	ected: 10/13/99	5:10:00	SPL Sample ID	99100	99100225-05	
Analyses/Method	Result	Rep.Limit	Dil. Fac	or QUAL	Date Analyzed	Analyst	Seq.#	
DIESEL RANGE ORGAN	NICS- CA		CA_DRO		Units: ug	ſL.		
Diesel Range Organics	ND	50			10/21/99 23:27	RR	79351	
Surr: n-Pentacosane	29	20-150			10/21/99 23:27	RR	79351	
Run ID/Seq #: HP_V	991021C-79351							
Prep Method F	Prep Date	Prep Initials						
SW35108 1	0/20/1999 10:44	KL						
GASOLINE RANGE OR	ASOLINE RANGE ORGANICS				Units: ug	***		
Gasoline Range Organics		50	CA_GRO		10/21/99 3:28	D_R	77966	
Surr: 1,4-Difluorobenze	ne 94	62-144	·	_	10/21/99 3:28	D_R	77966	
Surr: 4-Bromofluoroben	zene 120	44-153			10/21/99 3:28	D_R	77966	
PURGEABLE AROMATI	CS		SW8021B		Units: ug	/L		
Benzene	ND	1			10/21/99 3:28	D_R	77592	
Ethylbenzene	ND	1			10/21/99 3:28	D_R	77592	
Toluene	ND	1	•		10/21/99 3:28	D_R	77592	
m,p-Xylene	ND	1	,,		10/21/99 3:28	D_R	77592	
o-Xylene	ND	1			10/21/99 3:28	D_R	77592	
Xylenes, Total	ND	1			10/21/99 3:28	D_R	77592	
Surr: 1,4-Difluorobenze	ne 96	72-137			10/21/99 3:28	D_R	77592	
Surr: 4-Bromofluoroben	zene 100	48-156			10/21/99 3:28	D_R	77592	

The war lifted

Wyatt, Neaundra Project Manager

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

99100225 Page 6 11/6/99 12:16:24 PM

EXXON Company U.S.A.

200903X

Analysis:

Diesel Range Organics-CA

Method:

CA_DRO

WorkOrder:

99100225

Lab Batch ID:

1237

Method Blank

Samples in Analytical Batch:

RuniD:

HP V 991021C-79345

Units:

mg/L

Lab Sample ID 99100225-04C

Client Sample ID

nalysis Date: reparation Date:

10/21/1999 20:15 10/20/1999 10:44

Analyst: Prep By:

RR KL

Method SW3510B

99100225-05B

W-21-MW2 W-BB-MW2

Analyte	Result	Rep Limit
Diesel Range Organics	ND	0.050
Surr. n-Pentacosane	87.2	20-150

Laboratory Control Sample (LCS)

RunID:

HP_V_991021C-79346

Units:

mg/L

Analysis Date:

10/21/1999 20:53

RR Analyst:

Preparation Date: 10/20/1999 10:44 Prep By: KL Method SW3510B

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Diesel Range Organics	2.5	2.4	96	21	175

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

99100225-04

RunID:

HP_V_991021C-79349

Units:

mg/L

Analysis Date:

10/21/1999 22:10

Analyst: RR

Preparation Date:

10/20/1999 10:44

Prep By: KL Method SW3510B

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Diesel Range Organics	0.59	5	2.2	32.8	5	2.2	33.0	0.608	20	21	175

ualifiers:

ND/U - Not Detected at the Reporting Limit

* - Recovery Outside Advisable QC Limits

B - Analyte detected in the associated Method Blank

D - Surrogate Recovery Unreportable due to Dilution

EXXON Company U.S.A. 200903X

Analysis:

RuniD:

halysis Date:

Purgeable Aromatics

Method:

SW8021B

WorkOrder:

Samples in Analytical Batch:

99100225

Lab Batch ID:

R3667

Method Blank

VARE_991020C-77488 10/20/1999 20:36

Units: Analyst:

D_R

ug/L

Lab Sample ID

Client Sample ID

99100225-01A

W-16-SB3

99100225-02A

W-13-SB2

99100225-04A

W-21-MW2

99100225-05A

W-BB-MW2

Analyte	Result	Rep Limit
Benzene	ND	1.0
Ethylbenzene	ND	1.0
Toluene	ND	1.0
m,p-Xylene	ND	1.0
o-Xylene	ND	1.0
Xylenes Total	ND	1.0
Surr: 1,4-Difluorobenzene	93,7	72-137
Surr: 4-Bromofluorobenzene	102.0	48-156

Laboratory Control Sample (LCS)

RuniD:

VARE 991020C-77487

Units:

ug/L

Analysis Date:

10/20/1999 19:41

Analyst: D_R

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Benzene	50	55	110	61	119
Ethylbenzene	50	52	103	70	118
Toluene	50	56	113	65	125
m,p-Xylene	100	100	103	72	116
o-Xylene	50	46	92	72	117
Xylenes,Total	150	146	97	72	116

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

99100224-03

RunID:

VARE_991020C-77489

Units:

ug/L

Analysis Date:

10/20/1999 21:03

Analyst:

D_R

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit		High Limit
cenzene	ND	20	20	99.8	20	22	112	11.9	21	32	164
Ethylbenzene	ND	20	16	80.0	20	19	96.1	18.4	19	52	142
oluene	ND	20	19	95.5	20	22	109	13.4	20	38	159

Qualifiers:

ND/U - Not Detected at the Reporting Limit

* - Recovery Outside Advisable QC Limits

B - Analyte detected in the associated Method Blank

D - Surrogate Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

EXXON Company U.S.A. 200903X

Analysis: ethod:

Purgeable Aromatics

SW8021B

WorkOrder:

99100225

Lab Batch ID:

R3667

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

RuniD:

99100224-03

VARE_991020C-77489

Units:

ug/L

10/20/1999 21:03 Analysis Date:

D_R Analyst:

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
p-Xylene	ND	40	34	85.3	40	41	102	17.5*	17	53	144
o-Xylene	ND	20	16	79.6	20	20	99.4	22.1*	18	53	143
<u>Xv</u> lenes,Total	ND	60	50	83.3	60	61	102	19.8*	17	53	143

Qualifiers:

ND/U - Not Detected at the Reporting Limit

* - Recovery Outside Advisable QC Limits

B - Analyte detected in the associated Method Blank

D - Surrogate Recovery Unreportable due to Dilution

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 (713) 660-0901

Quality Control Report

EXXON Company U.S.A. 200903X

Analysis:

RunID:

nalysis Date:

Gasoline Range Organics

CA_GRO Method:

WorkOrder:

99100225

Lab Batch ID:

R3687

Method Blank

VARE_991020D-77908

10/20/1999 20:36

Units: mg/L

Analyst:

D_R

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

99100225-01A

W-16-SB3

99100225-02A

W-13-SB2

99100225-04A

W-21-MW2

99100225-05A

W-BB-MW2

Analyte	Result	Rep Limit
Gasoline Range Organics	ND	0.050
Surr: 1,4-Difluorobenzene	95.2	62-144
Surr: 4-Bromofluorobenzene	114.6	44-153

Laboratory Control Sample (LCS)

RunID:

VARE_991020D-77906

Units:

mg/L

Analysis Date:

10/20/1999 20:08

Analyst: D_R

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Gasoline Range Organics	1	0.95	95	64	131

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

99100224-04

RunID:

VARE_991020D-77913

Units:

mg/L

Analysis Date:

10/20/1999 21:58

Analyst: D_R

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Gasoline Range Organics	ND	0.9	0.67	74.2	0.9	0.47	52.5	34.1	36	36	160

Qualifiers:

ND/U - Not Detected at the Reporting Limit

* - Recovery Outside Advisable QC Limits

B - Analyte detected in the associated Method Blank

D - Surrogate Recovery Unreportable due to Dilution

EXXON Company U.S.A.

200903X

Analysis:

Purgeable Aromatics

Method:

SW8021B

WorkOrder:

Samples in Analytical Batch:

99100225

Lab Batch ID:

R3721

Method Blank

RunID: malysis Date:

VARE_991021D-78809

10/21/1999 12:10

Units: Analyst:

ug/L D_R

Lab Sample ID

Client Sample ID

99100225-03A

W-11-SB1

Analyte	Result	Rep Limit
Benzene	ND	1.0
Ethylbenzene	ND	1.0
Toluene	ND	1.0
m,p-Xylene	ND	1.0
Xylenes,Total	ND	1.0
Surr. 1,4-Difluorobenzene	90.2	72-137
Surr. 4-Bromofluorobenzene	103.9	48-156

Laboratory Control Sample (LCS)

RunID:

o-Xylene

Xylenes,Total

VARE_991021D-78808

Units: Analyst:

ug/L D_R

Analysis Date:

10/21/1999 11:15

Percent Spike Upper Analyte Result Lower Added Limit Recovery Limit Benzene 50 57 114 61 119 50 52 104 70 118 Ethylbenzene 50 58 117 65 125 Toluene 100 100 72 116 m,p-Xylene 103

50

150

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

9910247-01A

RunID:

VARE_991021D-78866

Units:

ug/L

Analysis Date:

10/21/1999 13:38

Analyst: D_R

46

146

93

97

72

72

117

116

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit		High Limit
enzene	ND	20	22	110	20	22	110	0.248	21	32	164
Ethylbenzene	ND	20	19	92.5	20	18	87.6	5.52	19	52	142
Toluene	ND	20	20	101	20	20	102	1.42	20	38	159

Qualifiers:

ND/U - Not Detected at the Reporting Limit

* - Recovery Outside Advisable QC Limits

B - Analyte detected in the associated Method Blank

D - Surrogate Recovery Unreportable due to Dilution

EXXON Company U.S.A.

200903X

Analysis: Method:

Purgeable Aromatics

SW8021B

WorkOrder:

99100225

Lab Batch ID:

R3721

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

RuniD:

9910247-01A

VARE_991021D-78866

Units:

ug/L

Analysis Date:

10/21/1999 13:38

Analyst:

D_R

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit		High Limit
,p-Xylene	ND	40	39	98.2	40	38	95.9	2.39	17	53	144
o-Xylene	ND	20	20	97.7	20	19	95.5	2.31	18	53	143
Xylenes,Total	ND	60	59	98.3	60	57	95.0	3.45	17	53	143

lualifiers:

ND/U - Not Detected at the Reporting Limit

* - Recovery Outside Advisable QC Limits

B - Analyte detected in the associated Method Blank

D - Surrogate Recovery Unreportable due to Dilution

HOUSTON LABORATORY 8880 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 (713) 660-0901

Quality Control Report

EXXON Company U.S.A.

200903X

Analysis:

Gasoline Range Organics

Method:

CA_GRO

WorkOrder:

99100225

Lab Batch ID:

R3725

Method Blank

Samples in Analytical Batch:

RunID: nalysis Date:

VARE_991021E-78904

mg/L Units:

Lab Sample ID

Client Sample ID

10/21/1999 12:10

Analyst:

D_R

99100225-03A

W-11-SB1

Analyte	Result	Rep Limit
Gasoline Range Organics	ND	0.050
Surr: 1,4-Difluorobenzene	95.9	62-144
Surr. 4-Bromofluorobenzene	131.4	44-153

Laboratory Control Sample (LCS)

RunID:

VARE_991021E-78869

Units:

mg/L

Analysis Date:

10/21/1999 11:43

Analyst: D R

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Gasoline Range Organics	1	0.93	93	64	131

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

99100247-02

RunID:

VARE_991021E-78878

Units:

mg/L

Analysis Date:

10/21/1999 21:58

 D_R Analyst

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Gasoline Range Organics	0.58	0.9	1.2	65.5	0.9	0.99	45.0	37.1*	36	36	160

ualifiers:

ND/U - Not Detected at the Reporting Limit

* - Recovery Outside Advisable QC Limits

B - Analyte detected in the associated Method Blank

D - Surrogate Recovery Unreportable due to Dilution

EXXON Company U.S.A. 200903X

Analysis: ethod:

RunID:

alysis Date:

Volatile Organics

SW8260B

WorkOrder: Lab Batch ID: 99100225

R3649

Method Blank

N_991020A-77118 10/20/1999 9:15 Units:

Analyst:

ug/L JC

Lab Sample ID 99100225-01B

Samples in Analytical Batch:

Client Sample ID

W-16-SB3

99100225-02B

W-13-SB2

99100225-03B

W-11-SB1

99100225-04B

W-21-MW2

Analyte	Result	Rep Limit
Methyl tert-butyl ether	ND	5.0
Surr. 1,2-Dichloroethane-d4	100.0	80-120
Surr. 4-Bromofluorobenzene	92.0	86-115
Surr. Toluene-d8	98.0	88-110

Laboratory Control Sample (LCS)

RunID:

N_991020A-77117

Units:

ug/L

Analysis Date:

10/20/1999 8:49

Analyst: JC

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
1,1-Dichloroethene	50	55	110	61	145
Benzene	50	57	114	76	127
Chlorobenzene	50	54	108	75	130
Toluene	50	55	110	76	125
Trichloroethene	50	57	114	71	120

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

99100225-01

RuniD:

N_991020A-77120

Units:

ug/L

Analysis Date:

10/20/1999 10:10

JC Analyst:

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit		High Limit
-Dichloroethene	ND	50	53	106	50	54	108	2	14	61	145
Benzene	ND	50	56	112	50	55	110	2	11	76	127
Chlorobenzene	ND	50	53	106	50	53	106	0	13	75	130
luene	ND	50	54	108	50	54	108	0	13	76	125
mchloroethene	ND	50	54	108	50	54	108	0	14	71	120

ualifiers:

ND/U - Not Detected at the Reporting Limit

* - Recovery Outside Advisable QC Limits

B - Analyte detected in the associated Method Blank

D - Surrogate Recovery Unreportable due to Dilution

Chain of Custody And Sample Receipt Checklist

EXXO	COMPA	NY,	US	A.	- (77	700	<i>)</i> ス.	25	CH	HAIN	OF	CUS	TODY	Y RE	COF	l 1 OF	1O	<u> </u>					Pag	e	1	of _	21
Evvon Engineer:	Daris L. Row	he s	hone:	(4)	25) 2	46 -	87/	. 8	Γ									REQ OPRI								отні	≣R
Consultant Co No.	FRI	<u> </u>	none:		<u> </u>			<u>ب / رو</u>	<u>, ()</u>				[Image: control of the			
Consultant Co. Nai	me: <u>ERI</u> 3 Digital Di		оптас	ئىسى ئا ئارىم	<u>۱۲۰۱</u> ۲۲۰۱	^ 2	er >	10CU	37 3				109								EE 2		TCLP		KGNITABILITY		- [
Address:/_	on Digital D	۲ <u>کالمال</u> م	none:	<u> </u>	<u> </u>				<u>, , , , , , , , , , , , , , , , , , , </u>			602	8			√set-					o		LEAD,		NITAE			
Nova to	00, ' Ca 9494	19	·ax:		•••				<u> </u>	İ		9			3.2	8015 DRO			8270	0	PEST	뒫	=		9			
												in in	8		GRAV. 413.2	115 D				PCB ONLY	SEMI-VOA 🗆	Ę.	<u>-</u>		0		0	
AFE # Commission	236 Faci	iity/State) # טו	IN U	niy):		2/20	912	~			WITH MTBE	8 N		GRA') B	ľ	625	8310	82	8	METALS,	7421		CORROSIVITY	- 1	97	
AFE # (Terminal U	nly):	······································	onsuli זה ל	ant F	roje)	Ct#:	<u>~~</u>	<u>ر ر ن 7</u>	<u> </u>	ုန္		H	S S				624	9		_	1	2) 24 15	ł	0	
Location: 6600	EE	(City):S □ C & N	100 K (ave	`		(St SDT	ate):			ZE	5	ALO			GRO	/8			0	ğ				8			
Consultant Work R	elease #: 194	3 2	502	<u>-</u>			·-··			CONTAINERS	IR SI	8020-7	Ë.		IR 413 1 🗆	3015	-	827	8100	1 80	>	TOTAL []	AL 2		ū		179	
Sampled By:	Jylan Crou	5 <u><</u>		, 						1 70	CONTAINER SIZE	805	PURGEABLE HALOCARBON 8010	TPHVIR 418 1		ည	-8240 T	SEMI-VOL 8270	PNA/PAH 8100 🗆	PCB/PEST 8080 □	불	LS.	Σ	П НОТ/ХОТ	REACTIVITY []	щ	2	
SAMPI		DATE	TIME	COMP.	GRAB	M/ H ₂ O S	ATRIX	OTHER	PRESERVATIVI	E 02	CON	BTEX	PURC	TPH/IR	0&G	TPH/GC 8015 GRO &	ğ	SEMI	PNA	PCB/	TCLP FULL	METALS,	LEAD, TOTAL 239 1	δĘ	REAC	STATE	MIB	
W-16-	<u> </u>	10/13			X	X			HcL		40	X				×											X	
W-13	-5BZ	'[]	1315		×	X			Hel	16		X	Ì			X		Ĭ.									\times	
	- 381		16.15		X	X			HCL	6		X				X											X	
10-21-	mw Z		1720			У			11/L	8	And	X				X		\prod									X	
W- BB		1	1710			×			14	1 2	40smi		<u> </u>			X												
	<i>γ</i> · ω -	1	1770					1		<u> </u>	///	-	7	123	- <u>/</u>		X				 		 -					$\dashv \dashv$
						 		-	·		 	-	\ \frac{1}{\Delta}	150				V			1	}						
										 	 	-	1	150					ļ <u>.</u>		 	<u> </u>	<u> </u>				\dashv	
										-	 	ļ				<u> </u>		_						ļ <u>-</u>			_	
									· · · · · · · · · · · · · · · · · · ·	_	-	 	ļ						<u> </u>		ļ		<u> </u>					\perp
	 	<u> </u>	····	لـلــا			L	<u> </u>				<u></u>	<u> </u>								<u>L</u>	<u> </u>	<u> </u>	<u> </u>				
TAT 24 HR* 7	'2 Hr* E	VVON HE		SPEC	IAL D	ETEC	TION L	IMITS (Specify)					REMA	ARKS	3:												
		XXON US NTRACT N	F																									
,		S02317M01		20501	A. D		TIMO C		REMENTS	2 /0-						0)11				 -					orage			
Otherto	Sending Sample)`	SPECI	и п	EPUF	יוואט ד	ieuuir	IEMENIS	g (Sp	ecny	ı	}	LAB I			3	LC	or # /\/0	δ				31	orage	LOC	allon	
Standard ★ CLP □	QA/QC Level			~ -	7			_	EAV 0 0	C 14	uber	ODT		. سمب	5			1/: /2	, -		-		= :	- ,	۰			
Standaro X CLP	Other Relinquished By Sar	npler:	<u> [</u>	FAX [FAX C-O	-C W }ate	/HE		Time	WOR		RDER ceive	-	9/0	04		LAB	WOF	RK RI	ELEA	SE#	:		
	D- LYOU								[0]	1141	97			•			,											
CUSTODY	Relinquished By:							·····		Date			Time)	Re	ceive	d By	:									············	
RECORD	B.C. Jakoba			·				· · · · · · · · · · · · · · · · · · ·				<u>-</u>				 ,	1			4	2/				6/	! !5;	194	100
	Relinquished By:								ļ	Date	I		Time	•		1. //	1 / L	Labo 'A	obetor	×{/	//		/ O=	, ala: ⁻	Como	<i>y</i>	Ц	,]
	AMDIES BACK TO:														ILX2	4 (3/11		Ή	Q	<u>Y</u>			· (0	oier	Temp	<u> </u>	Z	

Sample Receipt Checklist

Workorder:	99100225		Received by:		Estrada, Ruben
Date and Time Received:	10/15/99 10:00:00 AM		Carrier name:		FedEx
Temperature:	4				
Shipping container/cooler in	good condition?	Yes 🗹	No 🗌	Not Present	
Custody seals intact on ship	pping container/cooler?	Yes 🗌	No 🗌	Not Present	✓
Custody seals intact on sam	ple bottles?	Yes 🗌	No 🗌	Not Present	lacksquare
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed whe	en relinquished and received?	Yes 🗹	No 🗌		
Chain of custody agrees with	sample labels?	Yes 🗹	No 🗌		
Samples in proper container	/bottle?	Yes 🗹	No 🗌		
Sample containers intact?		Yes 🗹	No 🗆		
Sufficient sample volume for	indicated test?	Yes 🗹	No 🗌		
All samples received within I	nolding time?	Yes 🗹	No 🗌		
Container/Temp Blank temp	erature in compliance?	Yes 🗹	No 🗌		
Water - VOA vials have zero	headspace?	Yes 🗹	No 🗌	Not Present	
Water - pH acceptable upon	receipt?	Yes 🗹	No 🗌		

Case Narrative for: **EXXON Company U.S.A.**

Certificate of Analysis Number:

99100237

Environmental Resolution, Inc.

Jim Chappell

73 Digital Drive Suite 100

Novato California

Report To:

94949-

ph (415) 382-5996

fax: (415) 382-1856

Project Name: Site:

Site Address:

6600 E. 14th SE

20090

Oakland

CA

PO Number:

EWR#19911923

State:

California

State Cert. No.:

1903

Date Reported:

11/08/1999

Your sample ID " SP1 (1-4) Composite" (SPL ID: 99100237-01) was randomly selected for the use in SPL's quality control program for the Diesel Range Organics analysis by California method. The Matrix Spike Duplicate (MSD) was outside of the advisable quality control limits (Batch ID: 1248), due to matrix interference. A Laboratory Control Sample (LCS) was analyzed as a quality control check for the analytical batch and all recoveries were within acceptable limits.

Any other data flags or quality control exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

aundio Ut Project Manager

11/11/1999

Date

EXXON Company U.S.A.

Certificate of Analysis Number:

99100237

Report To:

Environmental Resolution, Inc.

Jim Chappell

73 Digital Drive Suite 100

Novato Californía

94949-

ph: (415) 382-5996

Client Sample ID

fax: (415) 382-1856

Lab Sample ID

Project Name:

200903X

Site: 7-0236

7-0236,19432502

Site Address:

6600 E. 14th St.

Oakland

CA

COC ID

HOLD

PO Number:

EWR#19911923

Date Received

State:

California

State Cert. No.:

Date Reported:

1903

SP1 (1-4) Composite	99100237-01	Soil	10/13/99 5:15:00 PM	10/15/99 10:00:00 AM	

Date Collected

Matrix

Jama Ufaat

11/8/99

Wyatt, Neaundra Project Manager Date

Joel Grice Laboratory Director

Ted Yen

Quality Assurance Officer

Client Sample ID SP1	(1-4) Composite		Collected:	10/13/99 5	5:15:00	SPL Sample ID:	99100	237-01
Analyses/Method	Resu	lt Rep.Lin	nit	Dil. Factor	QUAL	Date Analyzed	Analyst	Seq.#
DIESEL RANGE ORG	ANICS		CA	_DRO		Units: mg/	Kg	
Diesel Range Organics	2	.1 2		1		10/22/99 0:45	RR	79255
Surr: n-Pentacosane	{	37 20-150	l	1		10/22/99 0:45	RR	79255
Run ID/Seq #: HP	_V_991021B-79255		···					
Prep Method	Prep Date	Prep In	itials					
SW3550A	10/19/1999 8:35	СВ						
GASOLINE RANGE O	RGANICS		CA	_GRO		Units: mg/	'Kg	
Gasoline Range Organi	ics N	D 1		1		10/19/99 23:47	FB	76606
Surr: 1,4-Diffuoroben	zene 8	35 72-153		1		10/19/99 23:47	FB	76606
Surr: 4-Bromofluorob	enzene (94 51-149		1		10/19/99 23:47	FB	76606
METALS BY METHOD	6010B, TOTAL		SW	6010B	- :	Units: mg/	Kg	
Lead	4.1	2 0.5		1		10/19/99 0:03	EG	75257
Run ID/Seq #: TJ/	AT_991018A-75257							
Prep Method	Prep Date	Prep Ini	tials					
SW3050B	10/18/1999 9:26	EE						
PURGEABLE AROMA	ATICS		SW	/8021B		Units: mg/	'Kg	
Benzene	N	D 0.001		1		10/19/99 23:47	FB	76738
Ethylbenzene	0.00	1 0.001		1		10/19/99 23:47	FB	76738
Toluene	N	D 0.001		1		10/19/99 23:47	FB	76738
m,p-Xylene	0.00	0.001		1		10/19/99 23:47	FB	76738
o-Xylene	N	D 0.001		1		10/19/99 23:47	FB	76738
Xylenes,Total	N	D 0.001		1		10/19/99 23:47	FB	76738
Surr: 1,4-Diffuoroben	zene 9	3 59-127		1		10/19/99 23:47	FB	76738
Surr: 4-Bromofluorob				1			FB	76738

Wyatt, Neaundra Project Manager

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

alfact

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

1,1,1-Trichloroethane ND 0.001 1 10/19/99 23:03 JN 91894 1,1,2,2-Tetrachloroethane ND 0.002 1 10/19/99 23:03 JN 91894 1,1-1,1-Tichloroethane ND 0.001 1 10/19/99 23:03 JN 91894 1,1-Dichloroethane ND 0.001 1 10/19/99 23:03 JN 91894 1,1-Dichloroethane ND 0.001 1 10/19/99 23:03 JN 91894 1,1-Dichloroethane ND 0.001 1 10/19/99 23:03 JN 91894 1,2-3-Tirichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 1,2-3-Tirichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 1,2-4-Tirichloropropane ND 0.002 1 10/19/99 23:03 JN 91894 1,2-Dichloropropane ND 0.002 1 10/19/99 23:03 JN 91894 1,2-Dichloroperane ND 0.001	Analyses/Method	Result	Rep.Limit	Dil. Factor QUAL	Date Analyzed	Analyst	Seq.#
1,1,1,2-Tetrachtoroethane ND 0,001 1 10/19/99 23:03 JN 91894 1,1,1-Trichloroethane ND 0,002 1 10/19/99 23:03 JN 91894 1,1,2-Tetrachloroethane ND 0,002 1 10/19/99 23:03 JN 91894 1,1-Dichloroethane ND 0,001 1 10/19/99 23:03 JN 91894 1,1-Dichloroethane ND 0,001 1 10/19/99 23:03 JN 91894 1,1-Dichloroethane ND 0,001 1 10/19/99 23:03 JN 91894 1,1-Dichloropropene ND 0,001 1 10/19/99 23:03 JN 91894 1,2,3-Trichlorobenzene ND 0,001 1 10/19/99 23:03 JN 91894 1,2,4-Trimethylbenzene ND 0,002 1 10/19/99 23:03 JN 91894 1,2,4-Trimethylbenzene ND 0,002 1 10/19/99 23:03 JN 91894 1,2-Dichromoethane ND 0,001	VOLATILES ORGANIC COMPO	UNDS	· <u>=</u> ·	SW8021B	Units: mg	/Kg	
1,1,2,2-Tetrachloroethane ND 0.002 1 10/19/99 23:03 JN 91894 1,1,2-Trichloroethane ND 0.001 1 10/19/99 23:03 JN 91894 1,1-Dichloroethane ND 0.001 1 10/19/99 23:03 JN 91894 1,1-Dichloropropene ND 0.001 1 10/19/99 23:03 JN 91894 1,1-Dichloropropene ND 0.001 1 10/19/99 23:03 JN 91894 1,2,3-Trichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 1,2,3-Trichloropropane ND 0.002 1 10/19/99 23:03 JN 91894 1,2,4-Trimethylbenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,2-Dibromo-3-chloropropane ND 0.002 1 10/19/99 23:03 JN 91894 1,2-Dibromo-3-chloropropane ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dichloroberzene ND 0.00			0.001	1	10/19/99 23:03	JN	91894
1,1,2-Trichioroethane ND 0.001 1 10/19/99 23:03 JN 91894 1,1-Dichloroethane ND 0.001 1 10/19/99 23:03 JN 91894 1,1-Dichloroethene ND 0.001 1 10/19/99 23:03 JN 91894 1,1-Dichloropropene ND 0.001 1 10/19/99 23:03 JN 91894 1,2,3-Trichlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 1,2,4-Trichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,2,4-Trichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,2,4-Trichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,2,4-Trichlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dichoroesthane ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dichoroesthane ND 0.001	1,1,1-Trichloroethane	ND	0.001	1	10/19/99 23:03	JN	91894
1,1-Dichloroethane ND 0.001 1 10/19/99 23:03 JN 91894 1,1-Dichloroethene ND 0.001 1 10/19/99 23:03 JN 91894 1,1-Dichloropropene ND 0.001 1 10/19/99 23:03 JN 91894 1,2,3-Trichlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 1,2,3-Trichlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 1,2,4-Trinstlybenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,2-Pibromo-3-chloropropane ND 0.002 1 10/19/99 23:03 JN 91894 1,2-Dichlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dichlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dichlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dichloroperpane ND 0.001 <td< td=""><td>1,1,2,2-Tetrachioroethane</td><td>ND</td><td>0.002</td><td>1</td><td>10/19/99 23:03</td><td>JN</td><td>91894</td></td<>	1,1,2,2-Tetrachioroethane	ND	0.002	1	10/19/99 23:03	JN	91894
1,1-Dichloroethene	1,1,2-Trichloroethane	ND	0.001	1	10/19/99 23:03	JN	91894
1,1-Dichloropropene ND 0.001 1 10/19/99 23:03 JN 91884 1,2,3-Trichlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 1,2,3-Trichlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 1,2,4-Trichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,2,4-Trimethylbenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,2-Dibromo-3-chloropropane ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dichloroperopane ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dichlorobenzene ND 0.002	1,1-Dichloroethane	ND	0.001	1	10/19/99 23:03	JN	91894
1,2,3-Trichlorobenzene ND 0.001 1 10/19/99 23:03 JN 91884 1,2,3-Trichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 1,2,4-Trinchlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,2,4-Trimethylbenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,2-Dibromo-3-chloropropane ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dibromo-3-chloropropane ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,3-Dichlorobenzene ND 0.002 </td <td>1,1-Dichloroethene</td> <td>ND</td> <td>0.001</td> <td>1</td> <td>10/19/99 23:03</td> <td>JN</td> <td>91894</td>	1,1-Dichloroethene	ND	0.001	1	10/19/99 23:03	JN	91894
1,2,3-Trichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 1,2,4-Trichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,2,4-Trimethylbenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,2-Dibromo-3-chloropropane ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dibromoethane ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dichlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dichlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 1,3-Dichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,3-Dichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,3-Dichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,3-Dichlorobenzene ND 0.001 <t< td=""><td>1,1-Dichloropropene</td><td>ND</td><td>0.001</td><td>1</td><td>10/19/99 23:03</td><td>JN</td><td>91894</td></t<>	1,1-Dichloropropene	ND	0.001	1	10/19/99 23:03	JN	91894
1,2,4-Trichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,2,4-Trimethylbenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,2-Dibromo-3-chloropropane ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dibromo-schlane ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dichlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dichlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dichlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 1,3-Dichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,3-Dichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,3-Dichlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 1,3-Dichlorobenzene ND 0.001 <th< td=""><td>1,2,3-Trichlorobenzene</td><td>ND</td><td>0.001</td><td>1</td><td>10/19/99 23:03</td><td>JN</td><td>91894</td></th<>	1,2,3-Trichlorobenzene	ND	0.001	1	10/19/99 23:03	JN	91894
1,2,4-Trimethylbenzene ND 0.002 1 10/19/99 23:03 JN 91930 1,2-Dibromos-chloropropane ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dibromoethane ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dichlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dichloroptopane ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dichloroptopane ND 0.001 1 10/19/99 23:03 JN 91894 1,3-5-Trimethylbenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,3-Dichloropropane ND 0.002 1 10/19/99 23:03 JN 91894 1,3-Dichloropropane ND 0.002 1 10/19/99 23:03 JN 91894 1,4-Dichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 2,-Dichloropropane ND 0.001 1 </td <td>1,2,3-Trichloropropane</td> <td>ND</td> <td>0.001</td> <td>1</td> <td>10/19/99 23:03</td> <td>JN</td> <td>91894</td>	1,2,3-Trichloropropane	ND	0.001	1	10/19/99 23:03	JN	91894
1,2-Dibromo-3-chloropropane ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dibromoethane ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dichlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dichloroptopane ND 0.001 1 10/19/99 23:03 JN 91894 1,3-Dichloroptopane ND 0.002 1 10/19/99 23:03 JN 91894 1,3-Dichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 2,2-Dichloropropane ND 0.002 1 10/19/99 23:03 JN 91894 2,-Dichloropropane ND 0.001 1	1,2,4-Trichlorobenzene	ND	0.002	1	10/19/99 23:03	JN	91894
1,2-Dibromoethane ND 0.001 1 10/19/99 23:03 JN 91884 1,2-Dichlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dichloropethane ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 1,3-5-Trimethylbenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,3-Dichloropenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,3-Dichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 1,3-Dichloropropane ND 0.002 1 10/19/99 23:03 JN 91894 1,3-Dichloropropane ND 0.002 1 10/19/99 23:03 JN 91894 2,2-Dichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 2,-Chlorobluene ND 0.001 1 <	1,2,4-Trimethylbenzene	ND	0.002	1	10/19/99 23:03	JN	91930
1,2-Dichlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dichloroethane ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 1,3-5-Trimethylbenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,3-Dichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,3-Dichloropropane ND 0.002 1 10/19/99 23:03 JN 91894 1,4-Dichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 2,2-Dichloropropane ND 0.002 1 10/19/99 23:03 JN 91894 2,2-Dichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 2,-Chlorotoluene ND 0.001 1 10/19/99 23:03 JN 91894 4-Chlorotoluene ND 0.001 1 <td< td=""><td>1,2-Dîbromo-3-chloropropane</td><td>ND</td><td>0.001</td><td>1</td><td>10/19/99 23:03</td><td>JN</td><td>91894</td></td<>	1,2-Dîbromo-3-chloropropane	ND	0.001	1	10/19/99 23:03	JN	91894
1,2-Dichloroethane ND 0.001 1 10/19/99 23:03 JN 91894 1,2-Dichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 1,3-Dichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91930 1,3-Dichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,3-Dichlorobenzene ND 0.0001 1 10/19/99 23:03 JN 91894 1,3-Dichlorobenzene ND 0.0002 1 10/19/99 23:03 JN 91894 1,4-Dichlorobenzene ND 0.0002 1 10/19/99 23:03 JN 91894 2,2-Dichloropropane ND 0.0001 1 10/19/99 23:03 JN 91894 2,-Dichlorobulene ND 0.0001 1 10/19/99 23:03 JN 91894 4-Chlorobulene ND 0.0001 1 10/19/99 23:03 JN 91894 4-Chlorobulene ND 0.0001 1	1,2-Dibromoethane	ND	0.001	1	10/19/99 23:03	JN	91894
1,2-Dichloropropane ND 0.001 1 10/19/99 23:03 JN 91884 1,3,5-Trimethylbenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,3-Dichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,3-Dichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 1,4-Dichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 2,2-Dichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 2,C-Dichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 2,C-Dichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 2,C-Dichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 4-Chlorobune ND 0.001 1 10/19/99 23:03 JN 91894 Ally chloride ND 0.001 1 10/1	1,2-Dichlorobenzene	ND	0.001	1	10/19/99 23:03	JN	91894
1,3,5-Trimethylbenzene ND 0.002 1 10/19/99 23:03 JN 91930 1,3-Dichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,3-Dichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 1,4-Dichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 2,2-Dichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 2,C-Dichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 2,C-Dichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 4,C-Chlorobluene ND 0.001 1 10/19/99 23:03 JN 91894 4,C-Chlorobluene ND 0.001 1 10/19/99 23:03 JN 91894 4,Hyl chloride ND 0.005 1 10/19/99 23:03 JN 91894 Benzene ND 0.001 1 10/19/99 23:03	1,2-Dichloroethane	ND	0.001	1	10/19/99 23:03	JN	91894
1,3-Dichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 1,3-Dichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 1,4-Dichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 2,2-Dichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 2,Chlorotoluene ND 0.001 1 10/19/99 23:03 JN 91894 4-Chlorotoluene ND 0.001 1 10/19/99 23:03 JN 91894 4-Chlorotoluene ND 0.001 1 10/19/99 23:03 JN 91894 4-Chlorotoluene ND 0.005 1 10/19/99 23:03 JN 91894 4-Chlorotoluene ND 0.005 1 10/19/99 23:03 JN 91894 Allyl chloride ND 0.001 1 10/19/99 23:03 JN 91894 Bromochloromethane ND 0.001 1 10/19/99 23:03	1,2-Dichloropropane	ND	0.001	1	10/19/99 23:03	JN	91894
1,3-Dichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 1,4-Dichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 2,2-Dichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 2-Chlorotoluene ND 0.001 1 10/19/99 23:03 JN 91894 4-Chlorotoluene ND 0.001 1 10/19/99 23:03 JN 91894 4-Chlorotoluene ND 0.001 1 10/19/99 23:03 JN 91894 4-Chlorotoluene ND 0.001 1 10/19/99 23:03 JN 91894 Allyl chloride ND 0.005 1 10/19/99 23:03 JN 91894 Benzene ND 0.001 1 10/19/99 23:03 JN 91930 Bromobenzene ND 0.001 1 10/19/99 23:03 JN 91894 Bromochloromethane ND 0.001 1 10/19/99 23:03 JN<	1,3,5-Trimethylbenzene	ND	0.002	1	10/19/99 23:03	JN	91930
1,4-Dichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 2,2-Dichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 2-Chlorotoluene ND 0.001 1 10/19/99 23:03 JN 91894 4-Chlorotoluene ND 0.001 1 10/19/99 23:03 JN 91894 Allyl chloride ND 0.005 1 10/19/99 23:03 JN 91894 Benzene ND 0.001 1 10/19/99 23:03 JN 91930 Bromobenzene ND 0.001 1 10/19/99 23:03 JN 91930 Bromobenzene ND 0.001 1 10/19/99 23:03 JN 91894 Bromochloromethane ND 0.001 1 10/19/99 23:03 JN 91894 Bromoform ND 0.001 1 10/19/99 23:03 JN 91894 Bromoformethane ND 0.001 1 10/19/99 23:03 JN	1,3-Dichlorobenzene	ND	0.002	1	10/19/99 23:03	JN	91894
1,4-Dichlorobenzene ND 0.002 1 10/19/99 23:03 JN 91894 2,2-Dichloropropane ND 0.001 1 10/19/99 23:03 JN 91894 2-Chlorotoluene ND 0.001 1 10/19/99 23:03 JN 91894 4-Chlorotoluene ND 0.001 1 10/19/99 23:03 JN 91894 Allyl chloride ND 0.005 1 10/19/99 23:03 JN 91894 Benzene ND 0.001 1 10/19/99 23:03 JN 91930 Bromobenzene ND 0.001 1 10/19/99 23:03 JN 91930 Bromobenzene ND 0.001 1 10/19/99 23:03 JN 91894 Bromochloromethane ND 0.001 1 10/19/99 23:03 JN 91894 Bromoform ND 0.001 1 10/19/99 23:03 JN 91894 Bromoformethane ND 0.001 1 10/19/99 23:03 JN	1,3-Dichloropropane	ND	0.001	1	10/19/99 23:03	JN	91894
2-Chlorotoluene ND 0.001 1 10/19/99 23:03 JN 91884 4-Chlorotoluene ND 0.001 1 10/19/99 23:03 JN 91894 Allyl chloride ND 0.005 1 10/19/99 23:03 JN 91894 Benzene ND 0.001 1 10/19/99 23:03 JN 91930 Bromobenzene ND 0.001 1 10/19/99 23:03 JN 91930 Bromobenzene ND 0.001 1 10/19/99 23:03 JN 91894 Bromochloromethane ND 0.001 1 10/19/99 23:03 JN 91894 Bromodichloromethane ND 0.001 1 10/19/99 23:03 JN 91894 Bromoform ND 0.001 1 10/19/99 23:03 JN 91894 Bromotethane ND 0.001 1 10/19/99 23:03 JN 91894 Carbon tetrachloride ND 0.001 1 10/19/99 23:03 JN <		ND	0.002	1	10/19/99 23:03	JN	91894
4-Chlorotoluene ND 0.001 1 10/19/99 23:03 JN 91894 Allyf chloride ND 0.005 1 10/19/99 23:03 JN 91894 Benzene ND 0.001 1 10/19/99 23:03 JN 91930 Bromobenzene ND 0.001 1 10/19/99 23:03 JN 91894 Bromochloromethane ND 0.001 1 10/19/99 23:03 JN 91894 Bromodichloromethane ND 0.001 1 10/19/99 23:03 JN 91894 Bromoform ND 0.001 1 10/19/99 23:03 JN 91894 Bromomethane ND 0.001 1 10/19/99 23:03 JN 91894 Carbon tetrachloride ND 0.001 1 10/19/99 23:03 JN 91894 Chlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 Chloroethane ND 0.001 1 10/19/99 23:03 JN <td< td=""><td>2,2-Dichloropropane</td><td>ND</td><td>0.001</td><td>1</td><td>10/19/99 23:03</td><td>JN</td><td>91894</td></td<>	2,2-Dichloropropane	ND	0.001	1	10/19/99 23:03	JN	91894
Allyl chloride ND 0.005 1 10/19/99 23:03 JN 91894 Benzene ND 0.001 1 10/19/99 23:03 JN 91930 Bromobenzene ND 0.001 1 10/19/99 23:03 JN 91894 Bromochloromethane ND 0.001 1 10/19/99 23:03 JN 91894 Bromodichloromethane ND 0.001 1 10/19/99 23:03 JN 91894 Bromoform ND 0.001 1 10/19/99 23:03 JN 91894 Bromomethane ND 0.001 1 10/19/99 23:03 JN 91894 Carbon tetrachloride ND 0.001 1 10/19/99 23:03 JN 91894 Chlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 Chloroethane ND 0.001 1 10/19/99 23:03 JN 91894 Chloromethane ND 0.001 1 10/19/99 23:03 JN 9	2-Chlorotoluene	ND	0.001	1	10/19/99 23:03	JN	91894
Benzene ND 0.001 1 10/19/99 23:03 JN 91930 Bromobenzene ND 0.001 1 10/19/99 23:03 JN 91834 Bromobenzene ND 0.001 1 10/19/99 23:03 JN 91894 Bromochloromethane ND 0.001 1 10/19/99 23:03 JN 91894 Bromoform ND 0.001 1 10/19/99 23:03 JN 91894 Bromomethane ND 0.001 1 10/19/99 23:03 JN 91894 Carbon tetrachloride ND 0.001 1 10/19/99 23:03 JN 91894 Chlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 Chloroethane ND 0.001 1 10/19/99 23:03 JN 91894 Chloroform ND 0.001 1 10/19/99 23:03 JN 91894 Chloromethane ND 0.001 1 10/19/99 23:03 JN 91894	4-Chiorotoluene	ND	0.001	1	10/19/99 23:03	JN	91894
Bromobenzene ND 0.001 1 10/19/99 23:03 JN 91930 Bromobenzene ND 0.001 1 10/19/99 23:03 JN 91894 Bromochloromethane ND 0.001 1 10/19/99 23:03 JN 91894 Bromodichloromethane ND 0.001 1 10/19/99 23:03 JN 91894 Bromoform ND 0.001 1 10/19/99 23:03 JN 91894 Bromomethane ND 0.001 1 10/19/99 23:03 JN 91894 Carbon tetrachloride ND 0.001 1 10/19/99 23:03 JN 91894 Chlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 Chloroform ND 0.001 1 10/19/99 23:03 JN 91894 Chloromethane ND 0.001 1 10/19/99 23:03 JN 91894 Cis-1,2-Dichloroethene ND 0.001 1 10/19/99 23:03 JN	Allyl chloride	ND	0.005	1	10/19/99 23:03	JN	91894
Bromobenzene ND 0.001 1 10/19/99 23:03 JN 91894 Bromochloromethane ND 0.001 1 10/19/99 23:03 JN 91894 Bromodichloromethane ND 0.001 1 10/19/99 23:03 JN 91894 Bromoform ND 0.001 1 10/19/99 23:03 JN 91894 Bromomethane ND 0.001 1 10/19/99 23:03 JN 91894 Carbon tetrachloride ND 0.001 1 10/19/99 23:03 JN 91894 Chlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 Chloroethane ND 0.001 1 10/19/99 23:03 JN 91894 Chloromethane ND 0.001 1 10/19/99 23:03 JN 91894 Cis-1,2-Dichloroethene ND 0.001 1 10/19/99 23:03 JN 91894 Cis-1,3-Dichloropropene ND 0.001 1 10/19/99 23:03 <	Benzene	ND	0.001	1	10/19/99 23:03	JN	91930
Bromochloromethane ND 0.001 1 10/19/99 23:03 JN 91894 Bromodichloromethane ND 0.001 1 10/19/99 23:03 JN 91894 Bromoform ND 0.001 1 10/19/99 23:03 JN 91894 Bromomethane ND 0.001 1 10/19/99 23:03 JN 91894 Carbon tetrachloride ND 0.001 1 10/19/99 23:03 JN 91894 Chlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 Chloroethane ND 0.001 1 10/19/99 23:03 JN 91894 Chloromethane ND 0.001 1 10/19/99 23:03 JN 91894 cis-1,2-Dichloroethene ND 0.001 1 10/19/99 23:03 JN 91894 cis-1,3-Dichloropropene ND 0.001 1 10/19/99 23:03 JN 91894 Dibromochloromethane ND 0.001 1 10/19/99 23:03	Bromobenzene	ND	0.001	1	10/19/99 23:03	JN	91930
Bromodichloromethane ND 0.001 1 10/19/99 23:03 JN 91894 Bromoform ND 0.001 1 10/19/99 23:03 JN 91894 Bromomethane ND 0.001 1 10/19/99 23:03 JN 91894 Carbon tetrachloride ND 0.001 1 10/19/99 23:03 JN 91894 Chlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 Chloroethane ND 0.001 1 10/19/99 23:03 JN 91894 Chloromethane ND 0.001 1 10/19/99 23:03 JN 91894 cis-1,2-Dichloroethene ND 0.001 1 10/19/99 23:03 JN 91894 cis-1,3-Dichloropropene ND 0.001 1 10/19/99 23:03 JN 91894 Dibromochloromethane ND 0.001 1 10/19/99 23:03 JN 91894	Bromobenzene	ND	0.001	1	10/19/99 23:03	JN	91894
Bromoform ND 0.001 1 10/19/99 23:03 JN 91894 Bromomethane ND 0.001 1 10/19/99 23:03 JN 91894 Carbon tetrachloride ND 0.001 1 10/19/99 23:03 JN 91894 Chlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 Chloroethane ND 0.001 1 10/19/99 23:03 JN 91894 Chloromethane ND 0.001 1 10/19/99 23:03 JN 91894 cis-1,2-Dichloroethene ND 0.001 1 10/19/99 23:03 JN 91894 cis-1,3-Dichloropropene ND 0.001 1 10/19/99 23:03 JN 91894 Dibromochloromethane ND 0.001 1 10/19/99 23:03 JN 91894	Bromochloromethane	ND	0.001	1	10/19/99 23:03	JN	91894
Bromomethane ND 0.001 1 10/19/99 23:03 JN 91894 Carbon tetrachloride ND 0.001 1 10/19/99 23:03 JN 91894 Chlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 Chloroethane ND 0.001 1 10/19/99 23:03 JN 91894 Chloroform ND 0.001 1 10/19/99 23:03 JN 91894 Chloromethane ND 0.001 1 10/19/99 23:03 JN 91894 cis-1,2-Dichloroethene ND 0.001 1 10/19/99 23:03 JN 91894 cis-1,3-Dichloropropene ND 0.001 1 10/19/99 23:03 JN 91894 Dibromochloromethane ND 0.001 1 10/19/99 23:03 JN 91894	Bromodichloromethane	ND	0.001	1	10/19/99 23:03	JN	91894
Carbon tetrachloride ND 0.001 1 10/19/99 23:03 JN 91894 Chlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 Chloroethane ND 0.001 1 10/19/99 23:03 JN 91894 Chloroform ND 0.001 1 10/19/99 23:03 JN 91894 Chloromethane ND 0.001 1 10/19/99 23:03 JN 91894 cis-1,2-Dichloroethene ND 0.001 1 10/19/99 23:03 JN 91894 cis-1,3-Dichloropropene ND 0.001 1 10/19/99 23:03 JN 91894 Dibromochloromethane ND 0.001 1 10/19/99 23:03 JN 91894	Bromoform	ND	0.001	1	10/19/99 23:03	JN	91894
Chlorobenzene ND 0.001 1 10/19/99 23:03 JN 91894 Chloroethane ND 0.001 1 10/19/99 23:03 JN 91894 Chloroform ND 0.001 1 10/19/99 23:03 JN 91894 Chloromethane ND 0.001 1 10/19/99 23:03 JN 91894 cis-1,2-Dichloroethene ND 0.001 1 10/19/99 23:03 JN 91894 cis-1,3-Dichloropropene ND 0.001 1 10/19/99 23:03 JN 91894 Dibromochloromethane ND 0.001 1 10/19/99 23:03 JN 91894	Bromomethane	ND	0.001	1	10/19/99 23:03	JN	91894
Chloroethane ND 0.001 1 10/19/99 23:03 JN 91894 Chloroform ND 0.001 1 10/19/99 23:03 JN 91894 Chloromethane ND 0.001 1 10/19/99 23:03 JN 91894 cis-1,2-Dichloroethene ND 0.001 1 10/19/99 23:03 JN 91894 cis-1,3-Dichloropropene ND 0.001 1 10/19/99 23:03 JN 91894 Dibromochloromethane ND 0.001 1 10/19/99 23:03 JN 91894	Carbon tetrachloride	ND	0.001	1	10/19/99 23:03	JN	91894
Chloroform ND 0.001 1 10/19/99 23:03 JN 91894 Chloromethane ND 0.001 1 10/19/99 23:03 JN 91894 cis-1,2-Dichloroethene ND 0.001 1 10/19/99 23:03 JN 91894 cis-1,3-Dichloropropene ND 0.001 1 10/19/99 23:03 JN 91894 Dibromochloromethane ND 0.001 1 10/19/99 23:03 JN 91894	Chlorobenzene	ND	0.001	1	10/19/99 23:03	JN	91894
Chloromethane ND 0.001 1 10/19/99 23:03 JN 91894 cis-1,2-Dichloroethene ND 0.001 1 10/19/99 23:03 JN 91894 cis-1,3-Dichloropropene ND 0.001 1 10/19/99 23:03 JN 91894 Dibromochloromethane ND 0.001 1 10/19/99 23:03 JN 91894	Chloroethane	ND	0.001	1	10/19/99 23:03	JN	91894
cis-1,2-Dichloroethene ND 0.001 1 10/19/99 23:03 JN 91894 cis-1,3-Dichloropropene ND 0.001 1 10/19/99 23:03 JN 91894 Dibromochloromethane ND 0.001 1 10/19/99 23:03 JN 91894	Chloroform	ND	0.001	1	10/19/99 23:03	JN	91894
cis-1,3-Dichloropropene ND 0.001 1 10/19/99 23:03 JN 91894 Dibromochloromethane ND 0.001 1 10/19/99 23:03 JN 91894	Chloromethane	ND	0.001	1	10/19/99 23:03	JN	91894
Dibromochloromethane ND 0.001 1 10/19/99 23:03 JN 91894	cis-1,2-Dichloroethene	ND	0.001	1	10/19/99 23:03	JN	91894
	cis-1,3-Dichloropropene	ND	0.001	1	10/19/99 23:03	JN	91894
Dibromomethane ND 0.001 1 10/19/99 23:03 JN 91894	Dibromochloromethane	ND	0.001	1	10/19/99 23:03	JN	91894
	Dibromomethane	ND	0.001	1	10/19/99 23:03	JN	91894

Wyatt, Neaundra Project Manager

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte detected in the associated Method Blank

alfact

- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

Client Sample ID SP1 (1-4) Com	posite	Collected:	10/13/99 5:15:00	SPL Sample ID:	99100	237-01
Analyses/Method	Result	Rep.Limit	Dil. Factor QUAL	Date Analyzed	Analyst	Seq.#
Dichlorodifluoromethane	ND	0.001	1	10/19/99 23:03	JN	91894
Ethylbenzene	ND	0.001	1	10/19/99 23:03	JN	91930
Hexachlorobutadiene	ND	0.001	1	10/19/99 23:03	JN	91894
Isopropylbenzene	ND	0.001	1	10/19/99 23:03	JN	91930
Methyl tert-butyl ether	ND	0.001	1	10/19/99 23:03	JN	91930
Methylene chloride	ND	0.005	1	10/19/99 23:03	JN	91894
n-Butylbenzene	ND	0.002	1	10/19/99 23:03	JN	91930
n-Propylbenzene	ND	0.001	1	10/19/99 23:03	JN	91930
Naphthalene	ND	0.002	1	10/19/99 23:03	JN	91930
p-Isopropyltoluene	ND	0.001	1	10/19/99 23:03	JN	91930
sec-Butylbenzene	ND	0.002	1	10/19/99 23:03	JN	91930
Styrene	ND	0.002	1	10/19/99 23:03	JN	91930
tert-Butylbenzene	ND	0.001	1	10/19/99 23:03	JN	91930
Tetrachloroethene	ND	0.001	1	10/19/99 23:03	JN	9189
Toluene	ND	0.001	1	10/19/99 23:03	JN	91930
trans-1,2-Dichloroethene	ND	0.001	1	10/19/99 23:03	JN	91894
trans-1,3-Dichloropropene	ND	0.001	1	10/19/99 23:03	JN	91894
Trichloroethene	ND	0.001	1	10/19/99 23:03	JN	91894
Trichlorofluoromethane	ND	0.001	1	10/19/99 23:03	JN	91894
Vinyl chloride	ND	0.001	1	10/19/99 23:03	JN	91894
m,p-Xylene	ND	0.001	1	10/19/99 23:03	JN	91930
o-Xylene	ND	0.001	1	10/19/99 23:03	JN	91930
Xylenes, Total	ND	0.001	1	10/19/99 23:03	JN	91930
Surr: 3-Bromochlorobenzene	110	50-150	1	10/19/99 23:03	JN	91894
Surr: Fluorobenzene	98	70-130	1	10/19/99 23:03	JN	91930

Wyatt, Neaundra Project Manager

Qualifiers:

ND/U - Not Detected at the Reporting Limit

- B Analyte detected in the associated Method Blank
- * Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL

>MCL - Result Over Maximum Contamination Limit(MCL)

Quality Control Report

EXXON Company U.S.A.

200903X

Analysis:

Diesel Range Organics

Method: CA_DRO WorkOrder:

99100237

Lab Batch ID:

1248

Method Blank

Samples in Analytical Batch:

RunID:

HP_V_991021B-79258

Units:

Lab Sample ID

Client Sample ID

Analysis Date:

10/22/1999 3:59

Analyst: RR

mg/Kg

99100237-01A

Preparation Date:

10/19/1999 8:35

CB Prep By:

Method SW3550A

SP1 (1-4) Composite

Analyte	Result	Rep Limit
Diesel Range Organics	ND	2.0
Surr: n-Pentacosane	97 4	20-150

Laboratory Control Sample (LCS)

RunID:

HP_V_991021B-79259

Units: mg/Kg

Analysis Date:

10/22/1999 4:38

RR Analyst:

Preparation Date: 10/19/1999 8:35 Prep By: CB

Method SW3550A

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Diesel Range Organics	166	140	87	53	148

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

99100237-01

HP_V_991021B-79256

Units:

mg/Kg

RunID: Analysis Date:

10/22/1999 1:24

Analyst: RR

Preparation Date:

10/19/1999 8:35

Prep By: CB Method SW3550A

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit		High Limit
Diesel Range Organics	2.1	166	150	86.9	166	130	74.9*	14.8	30	75	125

Qualifiers:

ND/U - Not Detected at the Reporting Limit

* - Recovery Outside Advisable QC Limits

B - Analyte detected in the associated Method Blank

D - Surrogate Recovery Unreportable due to Dilution

Quality Control Report

EXXON Company U.S.A. 200903X

Analysis:

Gasoline Range Organics

Method:

RunID:

CA_GRO

WorkOrder:

99100237

Lab Batch ID:

R3627

Method Blank

mg/Kg

FB

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

malysis Date:

HP_O_991019B-76604 10/19/1999 23:19

Units: Analyst:

99100237-01A

SP1 (1-4) Composite

Analyte	Result	Rep Limit
Gasoline Range Organics	ND	1.0
Surr: 1,4-Diffuorobenzene	81.4	72-153
Surr: 4-Bromofluorobenzene	94.7	51-149

Laboratory Control Sample (LCS)

RuniD:

HP_O_991019B-76577

Units:

mg/Kg

Analysis Date:

10/19/1999 20:58

Analyst: FB

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Gasoline Range Organics	1	0.73	73	53	137

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

9910577-01A

RunID:

HP_O_991019B-76578

Units:

mg/Kg

Analysis Date:

10/19/1999 22:23

FΒ Analyst:

Analyte	Samp l e Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Gasoline Range Organics	ND	0.9	0.63	70.0	0.9	0.7	77.8	10.5	50	36	163

Qualifiers:

ND/U - Not Detected at the Reporting Limit

* - Recovery Outside Advisable QC Limits

B - Analyte detected in the associated Method Blank

D - Surrogate Recovery Unreportable due to Dilution

Quality Control Report

EXXON Company U.S.A. 200903X

Analysis: Method:

Purgeable Aromatics

SW8021B

WorkOrder:

99100237

Lab Batch ID:

R3633

Method Blank

Samples in Analytical Batch:

RuniD:

HP_O_991019C-76737

Units:

Lab Sample ID

Client Sample ID

Analysis Date:

10/19/1999 23:19

Analyst: FB

ug/Kg

99100237-01A

SP1 (1-4) Composite

Analyte	Result	Rep Limit
Benzene	ND	1.0
Ethylbenzene	ND	1,0
Toluene	ND	1.0
m,p-Xylene	ND	1.0
o-Xylene	ND	1.0
Xylenes,Total	ND	1.0
Surr. 1,4-Diffuorobenzene	92.3	59-127
Surr 4-Bromofluorobenzene	99.2	48-156

Laboratory Control Sample (LCS)

RuniD:

HP_O_991019C-76734

Units:

Analysis Date:

10/19/1999 20:30

ug/Kg FΒ Analyst:

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Benzene	50	47	95	60	116
Ethylbenzene	50	46	93	68	127
Toluene	50	47	94	64	122
m,p-Xylene	100	93	93	68	129
o-Xylene	50	46	93	68	127
Xylenes, Total	150	139	93	68	127

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

9910577-01A

RunID:

HP_O_991019C-76735

Units:

ug/Kg

Analysis Date:

10/19/1999 21:26

FB Analyst:

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	i .	High Limit
Benzene	ND	20	20	99.1	20	22	108	8.78	34	35	139
Ethylbenzene	ND	20	19	93.4	20	21	103	9.61	35	31	137
Toluene	ND	20	19	96.3	20	20	102	6.00	28	31	137

Qualifiers:

ND/U - Not Detected at the Reporting Limit

* - Recovery Outside Advisable QC Limits

B - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

Quality Control Report

EXXON Company U.S.A. 200903X

Analysis: Method:

Purgeable Aromatics

SW8021B

WorkOrder:

99100237

Lab Batch ID:

R3633

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

9910577-01A

RuniD:

HP_O_991019C-76735

Units:

ug/Kg

Analysis Date:

10/19/1999 21:26

Analyst: FB

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD			High Limit
m,p-Xylene	ND	40	35	87.6	40	41	102	14.8	38	19	144
o-Xylene	ND	20	18	88.6	20	21	103	14.6	57	25	139
Xylenes, Total	ND	60	53	88.3	60	62	103	15.7	38	25	139

Qualifiers:

ND/U - Not Detected at the Reporting Limit

* - Recovery Outside Advisable QC Limits

B - Analyte detected in the associated Method Blank

D - Surrogate Recovery Unreportable due to Dilution

EXXON Company U.S.A. 200903X

Analysis: Method: **Volatiles Organic Compounds**

SW8021B

WorkOrder:

99100237

Lab Batch ID:

R4340

Method Blank

Samples in Analytical Batch:

RunID:

Analysis Date:

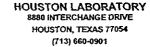
HP_F_991018A-91843 10/19/1999 3:02 Units: Analyst: ug/Kg JN

Lab Sample ID

Client Sample ID

99100237-01A

SP1 (1-4) Composite


Analyte	Result	Rep Limit
1.1.1.2-Tetrachioroethane	ND	1.0
1,1,1-Trichloroethane	ND	1.0
1,1,2,2-Tetrachloroethane	ND	2.0
1,1,2-Trichloroethane	ND	1.0
1,1-Dichloroethane	ND	1.0
1,1-Dichloroethene	ND	1.0
1,1-Dichloropropene	ND	1.0
1,2,3-Trichlorobenzene	ND	1.0
1,2,3-Trichloropropane	ND	1.0
1,2,4-Trichlorobenzene	ND	2.0
1,2-Dibromo-3-chloropropane	ND	1.0
1,2-Dibromoethane	ND	1.0
1,2-Dichlorobenzene	ND	1.0
1,2-Dichloroethane	ND	1.0
1,2-Dichloropropane	ND	1.0
1,3-Dichlorobenzene	ND	2.0
1,3-Dichloropropane	ND	1.0
1,4-Dichlorobenzene	ИD	2.0
2,2-Dichloropropane	ND	1.0
2-Chlorotoluene	ND	1.0
4-Chlorotoluene	ND	1.0
Aliyl chloride	ND	5.0
Bromobenzene	ND	1.0
Bromochloromethane	ND	1.0
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	1.0
Carbon tetrachloride	ND	1 (
Chlorobenzene	ND	3.0
Chloroethane	ND	1.0
Chloroform	ND	1.0
Chloromethane	ND	1.0
cis-1,2-Dichloroethene	ND	1.0
cis-1,3-Dichloropropene	ND	1.0
Dibromochloromethane	ND	1.0
Dibromomethane	ND	1.0
Dichlorodifluoromethane	ND	1.0
Hexachlorobutadiene	ND	1.0
Methylene chloride	ND	5.0
Tetrachioroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
trans-1,3-Dichloropropene	ND	1(
Trichloroethene	ND	1.0
Trichlorofluoromethane	ND	1.0
Vinyl chloride	ND	1.0
Surr: 3-Bromochlorobenzene	143.8	50-150

Laboratory Control Sample (LCS)

Qualifiers:

ND/U - Not Detected at the Reporting Limit

- * Recovery Outside Advisable QC Limits
- B Analyte detected in the associated Method Blank
- D Surrogate Recovery Unreportable due to Dilution
- J Estimated value between MDL and PQL

EXXON Company U.S.A. 200903X

Analysis: Method:

Volatiles Organic Compounds

SW8021B

WorkOrder:

99100237

Lab Batch ID:

R4340

RunID:

HP_F_991018A-91841

Units:

ug/Kg

Analysis Date:

10/18/1999 11:04

Analyst:

JN

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
1,1,1,2-Tetrachloroethane	20	19	93	50	150
1,1,1-Trichloroethane	20	18	92	50	150
1,1,2,2-Tetrachloroethane	20	18	90	50	150
1,1,2-Trichloroethane	20	18	90	50	150
1.1-Dichloroethane	20	18	88	50	150
1,1-Dichloroethene	20	18	91	50	150
1,1-Dichloropropene	20	18	92	50	150
1,2,3-Trichlorobenzene	20	17	87	50	150
1,2,3-Trichloropropane	20	18	89	50	156
1,2-Dibromo-3-chloropropane	20	17	87	50	150
1,2-Dibromoethane	20	19	93	50	150
1,2-Dichlorobenzene	20	17	84	50	15
1,2-Dichloroethane	20	17	83	50	15
1,2-Dichloropropane	20	19	93	50	15
1,3-Dichlorobenzene	20	17	87	50	15
1,3-Dichloropropane	20	18	91	50	15
1,4-Dichlorobenzene	20	16	82	50	15
2,2-Dichloropropane	20	17	87	50	15
2-Chlorotoluene	20	19	94	50	15
4-Chlorotoluene	20	18	91	50	15
Allyl chloride	20	17	87	50	15
Bromobenzene	20	18	91	50	15
Bromochloromethane	20	18	89	50	15
Bromodichloromethane	20	17	85	50	15
Bromoform	20	19	95	50	15
Bromomethane	20	18	92	50	15
Carbon tetrachloride	20	19	93	50	15
Chlorobenzene	20	16	82	50	15
Chloroethane	20	17	87	50	15
Chloroform	20	18	89	50	15
Chloromethane	20	18	89	50	15
cis-1,2-Dichloroethene	20	18	89	50	15
cis-1,3-Dichloropropene	20	18	89	50	15
Dibromochloromethane	20	19	93	50	15
Dibromomethane	20	19	96	50	15
Dichlorodifluoromethane	20	20	101	50	15
Hexachlorobutadiene	20	16	82	50	15

Qualifiers:

ND/U - Not Detected at the Reporting Limit

* - Recovery Outside Advisable QC Limits

B - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

EXXON Company U.S.A. 200903X

Analysis: Method: **Volatiles Organic Compounds**

SW8021B

WorkOrder:

99100237

Lab Batch ID:

R4340

Laboratory Control Sample (LCS)

RunID:

HP_F_991018A-91841

Units:

ug/Kg

Analysis Date:

10/18/1999 11:04

Analyst: JN

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Methylene chloride	20	17	86	50	150
Tetrachloroethene	20	19	93	50	150
trans-1,2-Dichloroethene	20	18	89	50	150
trans-1,3-Dichloropropene	20	18	91	50	150
Trichloroethene	20	19	94	50	150
Trichlorofluoromethane	20	18	92	50	150
Vinyl chloride	20	18	90	50	150

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

99100260-04

RunID:

HP_F_991018A-91880

Units:

ug/Kg

Analysis Date:

10/19/1999 16:02

Analyst: JN

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
1,1,1,2-Tetrachioroethane	ND	20	19	96.1	20	16	78.1	20.7	30	50	150
1,1,1-Trichloroethane	ND	20	19	95.6	20	17	82.9	14.2	30	50	150
1,1,2,2-Tetrachloroethane	ND	20	20	98.2	20	16	78.6	22.2	30	50	150
1,1,2-Trichloroethane	ND	20	19	93.4	20	15	75.9	20.8	30	50	150
1,1-Dichloroethane	ND	20	20	100	20	17	84.5	17.3	30	50	150
1,1-Dichloroethene	ND	20	19	95.2	20	17	84.5	11.9	30	50	150
1,1-Dichloropropene	ND	20	19	95.5	20	16	80.7	16.8	30	50	150
1,2,3-Trichlorobenzene	ND	20	18	90.7	20	13	62.6	36.6*	30	50	150
1,2,3-Trichloropropane	ND	20	18	90.2	20	15	73.4	20.5	30	50	150
1,2,4-Trichlorobenzene	ND	20	18	90.1	20	12	61.1	38.4*	30	50	150
1,2-Dibromo-3-chloropropane	ND	20	17	85.9	20	14	67.6	23.9	30	50	150
1,2-Dibromoethane	ND	20	19	93.8	20	16	76.6	20.3	30	50	150
1,2-Dichlorobenzene	ND	20	16	79.1	20	12	58.0	30.8*	30	50	150
1,2-Dichloroethane	2.0	20	18	82.1	20	15	66.8	20.5	30	50	150
1,2-Dichloropropane	ND	20	19	95.8	20	17	86.3	10.4	30	50	150
1,3-Dichtorobenzene	ND	20	17	83.1	20	13	64.1	25.9	30	50	150

Qualifiers:

ND/U - Not Detected at the Reporting Limit

* - Recovery Outside Advisable QC Limits

B - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

EXXON Company U.S.A. 200903X

Analysis: Method:

Volatiles Organic Compounds

SW8021B

WorkOrder:

99100237

Lab Batch ID:

R4340

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

99100260-04

RuniD:

HP_F_991018A-91880

Units:

ug/Kg

Analysis Date: 10/19/1999 16:02 Analyst: JN

1,4-Dichloroberzene	Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
2,2-Dichloropropane	1,3-Dichloropropane	ND	20	19	92.8	20	15	75.9	20.0	30	50	150
2-Chlorotoluene	1,4-Dichlorobenzene	ND	20	15	76.9	20	11	55.8	31.8*	30	50	150
A-Chlorotoluene	2,2-Dichloropropane	ND	20	18	91.3			81.8	10.9	30	50	150
Allyl chloride	2-Chlorotoluene	ND	20	18	89.7	20	15	74.0	19.2	30	50	150
Bromobenzene ND 20 18 91.1 20 14 71.9 23.5 30 50 15	4-Chlorotoluene	ND	20	15	75.3	20	13	64.4	15.6	30	50	150
Bromochloromethane	Allyl chloride	ND	20	19	95.5	20	17	83.3	13.7	30	50	150
Bromodichloromethane ND 20 18 91.0 20 16 78.5 14.8 30 50 15 15 15 15 15 15 1	Bromobenzene	ND	20	18	91.1	:		71.9	23.5	30	50	150
Bromoform ND 20 20 98.6 20 16 77.8 23.6 30 50 19 19 19 19 19 19 19 1	Bromochloromethane	ДИ	20	20	98.3	l		86.1	13.3	30	50	150
Bromomethane ND 20 20 99.2 20 18 90.9 8.68 30 50 19 19 19 10 10 10 10 1	Bromodichloromethane	ND	20	18	91.0	20	16	78.5	14.8	30	50	150
Carbon tetrachloride ND 20 19 94.0 20 16 80.2 15.9 30 50 18 Chlorobenzene ND 20 17 83.3 20 14 70.4 16.8 30 50 18 Chloroethane ND 20 19 92.7 20 17 86.4 7.07 30 50 18 Chloroform ND 20 19 94.1 20 17 84.6 10.6 30 50 11 Chloromethane ND 20 19 94.8 20 19 93.0 1,93 30 50 11 Chloromethane ND 20 19 96.4 20 17 85.8 11.6 30 50 11 Cis-1,3-Dichloroptropene ND 20 19 96.3 20 16 79.7 18.9 30 50 15 Dibromochloromethane ND 20 <td< td=""><td>Bromoform</td><td>ND</td><td>20</td><td></td><td>98.6</td><td>20</td><td>16</td><td>77.8</td><td></td><td>L</td><td>50</td><td>150</td></td<>	Bromoform	ND	20		98.6	20	16	77.8		L	50	150
Chlorobenzene ND 20 17 83.3 20 14 70.4 16.8 30 50 15 Chloroethane ND 20 19 92.7 20 17 86.4 7.07 30 50 15 Chloroform ND 20 19 94.1 20 17 84.6 10.6 30 50 15 Chloromethane ND 20 19 94.8 20 19 93.0 1.93 30 50 15 cis-1,2-Dichloroethene ND 20 19 96.4 20 17 85.8 11.6 30 50 15 cis-1,3-Dichloropropene ND 20 19 96.3 20 16 79.7 18.9 30 50 15 Dibromochloromethane ND 20 19 97.0 20 16 79.2 20.1 30 50 15 Dibromochloromethane ND 20	Bromomethane	ND	20	20	99.2	20	18	90.9	8.68	30	50	
Chloroethane	Carbon tetrachloride	ND	20	19	94.0	20	16	80.2	15.9	30	50	150
Chloroform ND 20 19 94.1 20 17 84.6 10.6 30 50 19 Chloromethane ND 20 19 94.8 20 19 93.0 1.93 30 50 19 cis-1,2-Dichloroethene ND 20 19 96.4 20 17 85.8 11.6 30 50 19 cis-1,2-Dichloropropene ND 20 19 96.3 20 16 79.7 18.9 30 50 19 Dibromochloromethane ND 20 19 97.0 20 16 79.2 20.1 30 50 19 Dibromochloromethane ND 20 21 106 20 18 88.8 17.7 30 50 19 Dichlorodifluoromethane ND 20 21 106 20 18 88.8 17.7 30 50 19 Dichlorodifluoromethane ND 20 20 101 20 20 99.4 1.28 30 50 19 Hexachlorobutadiene ND 20 15 73.8 20 12 59.9 20.9 30 50 19 Methylene chloride ND 20 24 118 20 21 105 11.2 30 50 19 Tetrachloroethene ND 20 20 97.7 20 14 70.8 20.7 30 50 19 trans-1,2-Dichloropropene ND 20 20 97.7 20 17 83.9 15.1 30 50 19 trans-1,3-Dichloropropene ND 20 18 92.2 20 16 78.4 16.2 30 50 19 Trichloroethene ND 20 18 92.2 20 16 78.4 16.2 30 50 19 Trichloroethene ND 20 19 93.0 20 16 81.9 12.7 30 50 19 Trichloroethene ND 20 19 93.0 20 16 81.9 12.7 30 50 19 Trichloroethene ND 20 19 93.0 20 16 81.9 12.7 30 50 19 Trichloroethene ND 20 19 93.0 20 16 81.9 12.7 30 50 19 Trichloroethene ND 20 19 93.0 20 16 81.9 12.7 30 50 19 Trichlorofluoromethane ND 20 19 93.0 20 16 81.9 12.7 30 50 19 Trichlorofluoromethane ND 20 19 93.0 20 16 81.9 12.7 30 50 19 Trichlorofluoromethane ND 20 19 93.0 20 16 81.9 12.7 30 50 19 Trichlorofluoromethane ND 20 19 93.0 20 16 81.9 12.7 30 50 19 Trichlorofluoromethane ND 20 19 93.0 20 16 81.9 12.7 30 50 19 Trichlorofluoromethane ND 20 19 93.0 20 16 81.9 12.7 30 50 19 Trichlorofluoromethane ND 20 19 93.0 20 16 81.9 12.7 30 50 19 Trichlorofluoromethane ND 20 19 93.0 20 16 81.9 12.7 30 50 19 Trichlorofluoromethane ND 20 19 93.0 20 16 81.9 12.7 30 50 19 Trichlorofluoromethane ND 20 19 93.0 20 16 81.9 12.7 30 50 19 Trichlorofluoromethane ND 20 19 93.0 20 16 81.9 12.7 30 50 19 Trichlorofluoromethane ND 20 19 93.0 20 16 81.9 12.7 30 50 19 Trichlorofluoromethane ND 20 19 93.0 20 16 81.9 12.7 30 50 19 Trichlorofluoromethane ND 20 19 93.0 20 16 81.9 12.7 30 50 19 Trichlorofluoromethane ND 20 19 93.0 20 16 81.9 12.7 30 50 19 Trichlorofluo	Chlorobenzene	ND	20	17	83.3	20	14	70.4	16.8	30	50	150
Chloromethane ND 20 19 94.8 20 19 93.0 1.93 30 50 11 cis-1,2-Dichloroethene ND 20 19 96.4 20 17 85.8 11.6 30 50 11 cis-1,3-Dichloropropene ND 20 19 96.3 20 16 79.7 18.9 30 50 18 Dibromochloromethane ND 20 19 97.0 20 16 79.2 20.1 30 50 19 Dibromomethane ND 20 21 106 20 18 88.8 17.7 30 50 19 Dichlorodifluoromethane ND 20 20 101 20 20 99.4 1.28 30 50 19 Hexachlorobutadiene ND 20 15 73.8 20 12 59.9 20.9 30 50 19 Methylene chloride ND	Chloroethane	ND	20	19	92.7	20	17	86.4	7.07	30	·	
cis-1,2-Dichloroethene ND 20 19 96.4 20 17 85.8 11.6 30 50 11 cis-1,3-Dichloropropene ND 20 19 96.3 20 16 79.7 18.9 30 50 11 Dibromochloromethane ND 20 19 97.0 20 16 79.2 20.1 30 50 19 Dibromochloromethane ND 20 21 106 20 18 88.8 17.7 30 50 19 Dichlorodifluoromethane ND 20 20 101 20 20 99.4 1.28 30 50 19 Hexachlorobutadiene ND 20 15 73.8 20 12 59.9 20.9 30 50 19 Methylene chloride ND 20 24 118 20 21 105 11.2 30 50 19 Tetrachloroethene ND <td>Chloroform</td> <td>ND</td> <td>20</td> <td>19</td> <td>94.1</td> <td>20</td> <td>17</td> <td>84.6</td> <td>10.6</td> <td>30</td> <td>50</td> <td>150</td>	Chloroform	ND	20	19	94.1	20	17	84.6	10.6	30	50	150
Cis-1,3-Dichloropropene ND 20 19 96.3 20 16 79.7 18.9 30 50 19 Dibromochloromethane ND 20 19 97.0 20 16 79.2 20.1 30 50 19 Dibromomethane ND 20 21 106 20 18 88.8 17.7 30 50 19 Dichlorodifluoromethane ND 20 20 101 20 20 99.4 1.28 30 50 19 Hexachlorobutadiene ND 20 15 73.8 20 12 59.9 20.9 30 50 19 Methylene chloride ND 20 24 118 20 21 105 11.2 30 50 19 Tetrachloroethene ND 20 17 87.2 20 14 70.8 20.7 30 50 19 trans-1,3-Dichloropropene ND	Chloromethane	ND	20	19	94.8	20	19	93.0	1.93	30	50	150
Dibromochloromethane ND 20 19 97.0 20 16 79.2 20.1 30 50 19 Dibromomethane ND 20 21 106 20 18 88.8 17.7 30 50 19 Dichlorodifluoromethane ND 20 20 101 20 20 99.4 1.28 30 50 19 Hexachlorobutadiene ND 20 15 73.8 20 12 59.9 20.9 30 50 19 Methylene chloride ND 20 24 118 20 21 105 11.2 30 50 19 Tetrachloroethene ND 20 17 87.2 20 14 70.8 20.7 30 50 19 trans-1,2-Dichloroethene ND 20 20 97.7 20 17 83.9 15.1 30 50 19 trans-1,3-Dichloropropene ND		ND	20	19	96.4			85.8	11.6	30	50	150
Dibromomethane ND 20 21 106 20 18 88.8 17.7 30 50 19 Dichlorodifluoromethane ND 20 20 101 20 20 99.4 1.28 30 50 19 Hexachlorobutadiene ND 20 15 73.8 20 12 59.9 20.9 30 50 19 Methylene chloride ND 20 24 118 20 21 105 11.2 30 50 19 Tetrachloroethene ND 20 17 87.2 20 14 70.8 20.7 30 50 19 trans-1,2-Dichloroethene ND 20 20 97.7 20 17 83.9 15.1 30 50 19 trans-1,3-Dichloropropene ND 20 20 97.6 20 16 78.2 22.1 30 50 19 Trichloroethene ND	cis-1,3-Dichloropropene	ND	20	19	96.3	20	16	79.7	18.9	30	50	150
Dichlorodifluoromethane ND 20 20 101 20 20 99.4 1.28 30 50 19 Hexachlorobutadiene ND 20 15 73.8 20 12 59.9 20.9 30 50 19 Methylene chloride ND 20 24 118 20 21 105 11.2 30 50 19 Tetrachloroethene ND 20 17 87.2 20 14 70.8 20.7 30 50 19 trans-1,2-Dichloroethene ND 20 20 97.7 20 17 83.9 15.1 30 50 19 trans-1,3-Dichloropropene ND 20 20 97.6 20 16 78.2 22.1 30 50 19 Trichloroethene ND 20 18 92.2 20 16 78.4 16.2 30 50 19 Trichlorofluoromethane ND </td <td>Dibromochloromethane</td> <td>ND</td> <td>20</td> <td>19</td> <td>97.0</td> <td>20</td> <td>16</td> <td>79.2</td> <td>20.1</td> <td>30</td> <td>50</td> <td>150</td>	Dibromochloromethane	ND	20	19	97.0	20	16	79.2	20.1	30	50	150
Hexachlorobutadiene ND 20 15 73.8 20 12 59.9 20.9 30 50 11 Methylene chloride ND 20 24 118 20 21 105 11.2 30 50 15 Tetrachloroethene ND 20 17 87.2 20 14 70.8 20.7 30 50 15 trans-1,2-Dichloroethene ND 20 20 97.7 20 17 83.9 15.1 30 50 15 trans-1,3-Dichloropropene ND 20 20 97.6 20 16 78.2 22.1 30 50 15 Trichloroethene ND 20 18 92.2 20 16 78.4 16.2 30 50 15 Trichlorofluoromethane ND 20 19 93.0 20 16 81.9 12.7 30 50 15	Dibromomethane	ND	20	21	106	20	18	88.8	17.7	30	50	150
Methylene chloride ND 20 24 118 20 21 105 11.2 30 50 15 Tetrachloroethene ND 20 17 87.2 20 14 70.8 20.7 30 50 15 trans-1,2-Dichloroethene ND 20 20 97.7 20 17 83.9 15.1 30 50 15 trans-1,3-Dichloropropene ND 20 20 97.6 20 16 78.2 22.1 30 50 15 Trichloroethene ND 20 18 92.2 20 16 78.4 16.2 30 50 15 Trichlorofluoromethane ND 20 19 93.0 20 16 81.9 12.7 30 50 15	Dichlorodifluoromethane	ND	20	20	101	20	20	99.4	1.28	30	50	150
Tetrachloroethene ND 20 17 87.2 20 14 70.8 20.7 30 50 15 trans-1,2-Dichloroethene ND 20 20 97.7 20 17 83.9 15.1 30 50 15 trans-1,3-Dichloropropene ND 20 20 97.6 20 16 78.2 22.1 30 50 15 Trichloroethene ND 20 18 92.2 20 16 78.4 16.2 30 50 15 Trichlorofluoromethane ND 20 19 93.0 20 16 81.9 12.7 30 50 15	Hexachlorobutadiene	ND	20	15	73.8	20	12	59.9	20.9	30	50	150
trans-1,2-Dichloroethene ND 20 20 97.7 20 17 83.9 15.1 30 50 19 15 15 15 15 15 15 15 15 15 15 15 15 15	Methylene chloride	ND	20	24	118	20	21	105	11.2	30	50	150
trans-1,3-Dichloropropene ND 20 20 97.6 20 16 78.2 22.1 30 50 19	Tetrachloroethene	ND	20	17	87.2	20	14	70.8	20.7	30		1
Trichloroethene ND 20 18 92.2 20 16 78.4 16.2 30 50 15 Trichlorofluoromethane ND 20 19 93.0 20 16 81.9 12.7 30 50 15	trans-1,2-Dichloroethene	ND	20	20	97.7	20	17	83.9	15.1	30	50	150
Trichlorofluoromethane ND 20 19 93.0 20 16 81.9 12.7 30 50 1	trans-1,3-Dichloropropene	ND	20	20	97.6	20	16	78.2	22.1	30	50	150
	Trichloroethene	ND	20	18	92.2	20	16	78.4	16.2	30	50	150
Vinyl chloride ND 20 19 91.3 20 17 83.3 9.18 30 50 19	Trichlorofluoromethane	ND	20	19	93.0	20	16	81.9	12.7	30	50	150
	Vinyl chloride	ND	20	19	91.3	20	17	83.3	9.18	30	50	150

Qualifiers:

ND/U - Not Detected at the Reporting Limit

* - Recovery Outside Advisable QC Limits

B - Analyte detected in the associated Method Blank

D - Surrogate Recovery Unreportable due to Dilution

EXXON Company U.S.A. 200903X

Analysis: lethod: **Volatiles Organic Compounds**

SW8021B

WorkOrder: Lab Batch ID: 99100237

R4342

Method Blank

Samples in Analytical Batch:

RunlD:

natysis Date:

HP_F_991018D-91887 10/19/1999 3:02 Units: Analyst:

ug/Kg

JN

Lab Sample ID

Client Sample ID

99100237-01A

SP1 (1-4) Composite

Analyte	Result	Rep Limit
1,2,4-Trimethylbenzene	ND	2.0
1,3,5-Trimethylbenzene	ND	2.0
Benzene	ND	1.0
Bromobenzene	ND	1.0
Ethylbenzene	ND.	1.0
Isopropylbenzene	ND	1.0
Methyl tert-butyl ether	ND	1.0
n-Butylbenzene	ND	2.0
n-Propylbenzene	ND	1.0
Naphthalene	ND	2.0
p-Isopropyltoluene	ND ND	1.0
sec-Butylbenzene	ND	2.0
Styrene	ND	2.0
tert-Butylbenzene	ND	1.0
Toluene	ND	1.0
m,p-Xylene	ND	1.0
o-Xylene	ND	1.0
Xylenes,Total	ND	1.0
Surr: Fluorobenzene	97.7	70-130

Laboratory Control Sample (LCS)

RunID:

HP_F_991018D-91884

Units:

ug/Kg

Analysis Date:

10/18/1999 11:04

Analyst: JN

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
1,3,5-Trimethylbenzene	20	18	92	50	150
Benzene	20	19	93	50	150
Bromobenzene	20	18	90	50	150
Ethylbenzene	20	19	93	50	150
Isopropyibenzene	20	19	94	50	150
Methyl tert-butyl ether	20	19	93	50	150
n-Butylbenzene	20	14	69	50	150
n-Propylbenzene	20	18	91	50	150
Naphthalene	20	15	77	50	150
p-isopropyltoluene	20	17	86	50	150
sec-Butylbenzene	20	18	90	50	150
Styrene	20	18	90	50	150
tert-Butyibenzene	20	18	90	50	150

Qualifiers:

ND/U - Not Detected at the Reporting Limit

* - Recovery Outside Advisable QC Limits

B - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

EXXON Company U.S.A. 200903X

Analysis: Method:

Volatiles Organic Compounds

SW8021B

WorkOrder:

99100237

Lab Batch ID:

R4342

Laboratory Control Sample (LCS)

RunID:

HP_F_991018D-91884

Units:

ug/Kg

Analysis Date:

10/18/1999 11:04

Analyst:

JN

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Toluene	20	19	93	50	150
m,p-Xylene	40	37	93	50	150
o-Xylene	20	18	91	50	150
Xylenes,Total	60	55	92	50	150

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

99100260-04

HP_F_991018D-91904

Units:

ug/Kg

RunID: Analysis Date:

10/19/1999 16:02

JN Analyst:

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
1,2,4-Trimethylbenzene	ND	20	15	73.7	20	11	56.3	26.7	30	50	150
1,3,5-Trimethylbenzene	ND	20	16	80.6	20	13	65.4	20.9	30	50	150
Benzene	ND	20	18	86.8	20	15	72.7	17.8	30	50	150
Bromobenzene	ND	20	16	82.2	20	13	63.6	25.5	30	50	150
Ethylbenzene	ND	20	17	82.3	20	14	66.7	20.9	30	50	150
Isopropylbenzene	ND	20	16	79.9	20	13	65.6	19.7	30	50	150
Methyl tert-butyl ether	ND	20	18	91.9	20	15	76.2	18.7	30	50	150
n-Butylbenzene	ND	20	11	56.7	20	9.2	46.2*	20.3	30	50	150
n-Propylbenzene	ND	20	15	74.5	20	12	62.4	17.7	30	50	150
Naphthalene	ND	20	14	71.6	20	11	56.7	23.2	30	50	150
p-Isopropyltoluene	ND	20	14	68.2	20	11	52.8	25.5	30	50	150
sec-Butylbenzene	ND	20	14	70.6	20	11	53.1	28.3	30	50	150
Styrene	ИD	20	16	80.5	20	13	62.9	24.6	30	50	150
tert-Butylbenzene	ND	20	14	68.6	20	11	53.9	24.0	30	50	150
Toluene	ND	20	18	87.5	20	14	71.0	20.8	30	50	150
m,p-Xylene	2.2	40	34	79.5	40	28	63.3	22.6	30	50	150
o-Xylene	ND	20	17	81.8	20	14	67.2	19.6	30	50	150
Xylenes,Total	2.2	60	51	81.3	60	42	66.3	20.3	30	50	150

Qualifiers:

ND/U - Not Detected at the Reporting Limit

* - Recovery Outside Advisable QC Limits

B - Analyte detected in the associated Method Blank

D - Surrogate Recovery Unreportable due to Dilution

Quality Control Report

EXXON Company U.S.A. 200903X

Analysis:

Metals by Method 6010B, Total

Method:

SW6010B

Samples in Analytical Batch:

99100237

į

WorkOrder: Lab Batch ID:

1235-T

Method Blank

RunID:

TJAT_991018A-75243

Units:

mg/L

Lab Sample ID

Client Sample ID

Analysis Date:

10/18/1999 22:25

Analyst:

99100237-01A

EG

SP1 (1-4) Composite

Preparation Date:

10/18/1999 9:26

Prep By: EE

Method SW3050B

0.5

Result Rep Limit Analyte Lead ND

Laboratory Control Sample (LCS)

RunID:

TJAT_991018A-75244

Units:

mg/Kg

Analysis Date:

10/18/1999 22:30

Analyst: EG

Preparation Date: 10/18/1999 9:26

Method SW3050B Prep By: EE

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Lead	135	1	N/A	103	167

Post Digestion Spike (PDS) / Post Digestion Spike Duplicate (PDSD)

Sample Spiked:

9910456-05B

RuntD:

TJAT_991018A-75249

Units:

mg/Kg

Analysis Date:

10/18/1999 22:54

Analyst: EG

Analyte	Sample Result	PDS Spike Added	PDS Result	PDS % Recovery	PDSD Spike Added	PDSD Result	PDSD % Recovery	RPD	RPD Limit	,	High Limit
Lead	1.03	100	101	100	100	103	102	1.5	20	75	125

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

Analysis Date:

9910456-05B

RunID:

TJAT_991018A-75246 10/18/1999 22:40

Units:

mg/Kg Analyst: EĢ

	Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
_	Lead	1.0	100	0.624	-0.408*	100	0.705	-0.327*	22.0*	20	75	125

Qualifiers:

ND/U - Not Detected at the Reporting Limit

* - Recovery Outside Advisable QC Limits

B - Analyte detected in the associated Method Blank

D - Surrogate Recovery Unreportable due to Dilution

Chain of Custody And Sample Receipt Checklist

Sample Receipt Checklist

Workorder:	99100237		Received by:		Estrada, Ruben
Date and Time Received:	10/15/99 10:00:00 AM		Carrier name:		FedEx
Temperature:	4				
Shipping container/cooler in g	good condition?	Yes 🗹	No 🗌	Not Present	
Custody seals intact on shipp	pping container/cooler?	Yes	No 🗌	Not Present	V
Custody seals intact on samp	ole bottles?	Yes 🗌	No 🗌	Not Present	\checkmark
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed when	n relinquished and received?	Yes 🗹	No 🗌		
Chain of custody agrees with	sample labels?	Yes 🗹	No 🗌		
Samples in proper container/	bottle?	Yes 🗹	No 🗌		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume for	indicated test?	Yes 🗹	No 🗌		
All samples received within h	olding time?	Yes 🗹	No 🗌		
Container/Temp Blank tempe	rature in compliance?	Yes 🗹	No 🗌		
Water - VOA vials have zero	headspace?	Yes 🗌	No 🗌	Not Present	$ \mathbf{V} $
Water - pH acceptable upon r	receipt?	Yes 🗌	No 🗹		

EXXON	COMPA	NY,	Us	A.	- 6	19	10	フス:	37	CH	IAIN	OF (CUS	TODY	RE	ÇOF	RD N	IÓ	1)			Pag	je	80	of _	Z	
				10	' سر ۱۰۰۰	\ 7	40	·- \$	7/. 0	-			•						REQ:					,			отн	ER	
Consultant Co. Name: Address: 73 Suite 100 Novato RAS #: 7-02 3	ERI Digital Doi Ca 94	ve F 549	Contac Phone: Fax:	t:	15)	<u>/</u> (Cha S82	ρρε! - 43 - 18:	56	1		BE 🗆 602 🗆	N 8010 □ 601 □		GRAV. 413.2 🗆	8015 DHO X			□ 8270 □	PCB ONLY G	SEMI-VOA 🗆 PEST 🗀 HERB 🗀	METALS, TCLP []	7421 🔘 LEAD, TCLP 🖂		TY IGNITABILITY		70	6010	
AFE # (Terminal Only) Location: [clo00 E Consultant Work Relea	: 14th Street (Consul Dak 1	tant P	rojec	ct #: □ S	2 ((Si	30 9 0 tate):	38 (a	CONTAINERS	H SIZE	8020 WITH MTBE	PURGEABLE HALOCARBON 8010 □		O&G IR 413.1 □ GR/	TPH/GC 8015 GROÆ 8	□ 624 □	SEMI-VOL 8270 625	PNA/PAH 8100 □ 8310 □	PCB/PEST 8080 □ PCB	TCLP FULL COA CO SEMI-W	METALS, TOTAL 🗆 MET	LEAD, TOTAL 239.1 74		□ CORROSIVITY □		, ,	lead	
Sampled By:	au crou	7 -								lδ	CONTAINER SIZE	EX 802	RGEAB	TPH/IR 418.1	9	H/GC	VOL 8240 🗆	MI-VOL	IA/PAH	B/PES	LP FULL	TALS,	AD, TOI	□ нот/хот	REACTIVITY [STATE	HUOL	04g	
SAMPLE 1.1	D.	DATE	TIME	COMP.	GRAB	MA H₂O S	OIL AIF	OTHER	PRESERVATIVE	E 2	J	19	.g	Ĕ	ő	$\overline{}$	8	8	ď	8	₽	ž	=	β	28	ST	3		_
SPI (1-4)	conposite	10-13	1715	X			×			<u>7</u>	Bass					X											~	X .	
										 																			
			1	$\dagger \exists \dagger$						+	 						 I												
48 HR. 96 H Standard	r* CO	XXON US NTRACT I	T NO.						Specify)	S (Sp	ecify)			REM/		ONL	Y	Lo	ju #a)	*	81	4	37/ si	20 torage	88 3 Loca	4C	178	
Standard (ST CLP C) Other	er 🗆			FAX [FAX C-O		/REF			WOR	K OP	DER			000	37	LAB	WOF	R R	ELEA	SE #	!:			_
CUSTODY RECORD	elinquished By Sar 	npler:	e						10/1	Date Date	ag 1		Time	I	Re	ceive ceive	d By		raid	V : //	1			(a)	/5	19	9		
2005	IPLES BACK TO:					·-···			Ш					713\ 6	<i>)</i> ₩ <u>a</u>	NBH	ΛŲ	4	713) 6	<u> </u>	4	<u> </u>			Temp 169-6		7	4	

APPENDIX D SOIL DISPOSAL DOCUMENTATION

Dillard Trucking, Inc. dba

Dillard Environmental Services

P.O. Box 579 Byron, CA 94514
Phone (925) 634-6850 - Fax (925) 634-0874
EPA #CAD981692809 • D.T.S.C. # 1715 • CA LIC #624665-A HAZ

November 29, 1999

ERI

Attn: James Chappell

RE: Exxon #7-0236/6600 East 14th Street, Oakland, CA

Removed: 1.0 cubic yards of bulk soil

Dear Mr. James Chappell:

Please be advised that 1.0 cubic yards of bulk soil from the above referenced site has been removed. The soil was transported for disposal to Redwood Landfill on November 23, 1999.

Should you have any questions, please do not hesitate to call.

Sincerely,

Dillard Trucking, Inc. dba,

DILLARD ENVIRONMENTAL SERVICES

Regan Cortez

legen

Customer Service Representative

Remaf

cc:file

APPENDIX E RBCA ANALYSIS

RBCA TIER 1/TIER 2 EVALUATION

Output Table 1

Site Name: Former Exxon Station 7-0236 Job Identification: 2009RBCA Software: GSI RBCA Soreadsheet Site Location: 6600 East 14th Street Date Completed: 11/10/99 Version: 1.0.1 Completed By. Steve M. Zigan NOTE: values which differ from Tier 1 default values are shown in bold italics and underlined. Exposure Residential Commercial/Industrial Surface Parameter Definition (Units) Adult (1-16 yrs) (1-6yrs) Chronic Constrctn Parameters Definition (Units) Residential Constrctn ATC Averaging time for carcinogens (yr) 70 Ā Contaminated soil area (cm^2) 8.0E+05 8.0E+05 ATn Averaging time for non-carcinogens (yr) 30 6 16 25 W Length of affect, soil parallel to wind (cm) 1.3E+03 1.3E+03 BW Body Weight (kg) 70 15 35 70 W.gw Length of affect, soil parallel to groundwater (cm 6.4E+02 lED Exposure Duration (vr) 30 16 25 Uair Ambient air velocity in mixing zone (cm/s) 2.3E+02 Averaging time for vapor flux (yr) 30 25 Air mixing zone height (cm) delta 2.0E+02 EF Exposure Frequency (days/yr) 9.1E+01 4 350 250 180 Lss Thickness of affected surface soils (cm) EF,Derm Exposure Frequency for dermal exposure 350 250 Pe Particulate areal emission rate (g/cm^2/s) 6.9E-14 **IRgw** Ingestion Rate of Water (L/day) 2 1 liRs Ingestion Rate of Soil (mg/day) 100 200 50 100 [Rad] Adjusted soiling, rate (mg-yr/kg-d) 1.1E+02 9.4E+01 **Groundwater Definition (Units)** Value (Ra.in Inhalation rate indoor (m^3/day) 15 Groundwater mixing zone depth (cm) 20 delta.gw 1.8E+02 iRa.out Inhalation rate outdoor (m^3/day) 20 20 10 Groundwater infiltration rate (cm/vr) 3.0E+01 Skin surface area (dermal) (cm^2) 5.8E+03 SA 2.0E+03 5 8E+03 5.8E+03 Ugw Groundwater Darcy velocity (cm/yr) SAadi Adjusted dermal area (cm^2-yr/kg) 2.1E+03 1.7E+03 Ugw.tr Groundwater seepage velocity (cm/vr) Soil to Skin adherence factor Saturated hydraulic conductivity(cm/s) 1 Ks AAFs Age adjustment on soil ingestion FALSE FALSE Groundwater gradient (cm/cm) grad AAFd Age adjustment on skin surface area FALSE FALSE Width of groundwater source zone (cm) 9.8E+02 Sw Use EPA tox data for air (or PEL based)? TRUE Sd Depth of groundwater source zone (cm) 1.8E+02 awMCL? Use MCL as exposure limit in groundwater? FALSE phi.eff Effective porosity in water-bearing unit 3.8E-01 Fraction organic carbon in water-bearing unit foc.sat 1.0E-03 BIO? Is bloattenuation considered? FALSE BC Biodegradation Capacity (mg/L) Matrix of Exposed Persons to Residential Commercial/industrial Complete Exposure Pathways Constrctn Chronic Definition (Units) Soll Value Outdoor Air Pathways: hc Capillary zone thickness (cm) 5.0E+00 SS.V Volatiles and Particulates from Surface Soils FALSE FALSE TRUE Vadose zone thickness (cm) hν 2.8E±02 S.v Volatilization from Subsurface Soils TRUE FALSE rho Soil density (g/cm^3) 1.7 (10) GW.v Volatilization from Groundwater TRUE **FALSE** Fraction of organic carbon in vadose zone foc 0.001 indoor Air Pathways: phi Soll porosity in vadose zone Vapors from Subsurface Solls TRUE ls.b FALSE Depth to groundwater (cm) Law 2.9E+02 GW.b Vapors from Groundwater TRUE FALSE Depth to top of affected subsurface soil (cm) l.s 9.1E+01 Soli Pathways: Thickness of affected subsurface soils (cm) Lsubs 4.0E+02 lss.d Direct Ingestion and Dermal Contact FALSE TRUE TRUE На Soil/groundwater pH 6.5 Groundwater Pathways: capillary vadose foundation GW.i Groundwater Ingestion FALSE FALSE phi.w Volumetric water content 0.12 0.342 0 12 s. Leaching to Groundwater from all Soils FALSE FALSE Volumetric air content 0.038 0.26 0.26 phi.a Building Definition (Units) Residential Commercial I.b Building volume/area ratio (cm) 2.0E+02 3.0E+02 Matrix of Receptor Distance Residential Commercial/Industrial Building air exchange rate (s^-1) ER 1.4E-04 2.3E-04 Distance and Location On- or Off-Site On-Site Distance On-Site Lcrk Foundation crack thickness (cm) 1.5E+01 eta (.01) ĠW Groundwater receptor (cm) FALSE FALSE Foundation crack fraction 0.00001 ls. Inhalation receptor (cm) TRUE FALSE Transport Matrix of Parameters Definition (Units) Residential Commercial Target Risks Individual Cumulative Groundwater TRab Target Risk (class A&B carcinogens) 1.0E-06 ax Longitudinal dispersivity (cm) TRC Target Risk (class C carcinogens) 1.0E-05 Transverse dispersivity (cm) ay тно Target Hazard Quotient 1.0E+00 Vertical dispersivity (cm) az Calculation Option (1, 2, or 3) Opt 2 Vapor 2 Tier **RBCA Tier** Transverse dispersion coefficient (cm) dcv Vertical dispersion coefficient (cm) dcz

RBCA CHEMICAL DATABASE

Physical Property Data

Date Completed: 11/10/1999

			Molec Weig			oeff	ısion icients in wate	er	log (Kod log(Ko (@ 20 - 2	d)	•	_aw Consta :0 - 25 C)	nt	Vapor Pressur (@ 20 - 25		Solubility (@ 20 - 25	,			
CAS			(g/mc	ie)	(cm2/s)	(cm2/s	5)	log(l/k	g)	(atm-m3)	•		(mm Hg)	(mg/L)	-	acid	base)
Number C	onstituent	type	MW	ref	Dair	ref	Dwat	ref		ref	mol	(unitless)	ref		ref		ref	pKa	pKb	r
71-43-2 B	enzene	Α	78.1	5	9.30E-02	Α	1.10E-05	Ä	1.58	A	5.29E-03	2.20E-01	Α	9.52E+01	4	1.75E+03	Α	·····		
100-41-4 E	thylbenzene	Α	106.2	5	7.60E-02	Α	8.50E-06	Α	1.98	Α	7.69E-03	3.20E-01	Α	1.00E+01	4	1.52E+02	5			
108-88-3 T	oluene	Α	92.4	5	8.50E-02	Α	9.40E-06	Α	2.13	Α	6.25E-03	2.60E-01	Α	3.00E+01	4	5.15E+02	29			
1330-20-7 X	ylene (mixed isomers)	Α	106.2	5	7.20E-02	Α	8.50E-06	Α	2.38	Α	6.97E-03	2.90E-01	Α	7.00E+00	4	1.98E+02	5			

Site Location: 6600 East 14th Street, Completed By: Steve M. Zigan

Software version: 1.0.1

Site Name: Former Exxon Station 7-0236

Reference Slope Dose **Factors** (mg/kg/day) 1/(mg/kg/day) **EPA Weight** ls CAS Constituent Oral Inhalation Oral Inhalation of Number Constituent RfD_oral ref RfD_inhal SF_oral SF_inhai Evidence Carcinogenic? 71-43-2 Benzene 1.70E-03 2.90E-02 2.90E-02 TRUE Α 100-41-4 Ethylbenzene 1.00E-01 Α 2.86E-01 A. D FALSE A,R 108-88-3 Toluene 2.00E-01 A,R 1.14E-01 Đ FALSE 1330-20-7 Xylene (mixed isomers) A,R 2.00E+00 D 2.00E+00 Α FALSE

RBCA CHEMICAL DATABASE

Site Name: Former Exxon Station 7-02 Site Location: 6600 East 14th Street Completed By: Steve M. Zigan

Date Completed: 11/10/1999

Toxicity Data

Software version: 1.0.1

RBCA CHEMICAL DATA

Miscellaneous Chemical Data

CAS		Maximum taminant Level	Permiss Expos Limit PEI	ure	Abs	lative orption ictors	Dete Groundw (mg/L	vater	Limits Soi (mg/k	ı	(First-Or	lf Life der Decay) lays)	
Number Constituent	MCL (mg/L)	reference	(mg/m3)	ref	Orai	Dermal		ref		ref	Saturated	Unsaturated	re
71-43-2 Benzene	5.00E-03	52 FR 25690	3.20E+00	OSHA	1	0.5	0.002	С	0.005	S	720	720	Н
100-41-4 Ethylbenzene	7,00E-01	56 FR 3526 (30 Jan 91)	4.34E+02	ACGIH	1	0.5	0.002	С	0.005	S	228	228	۲
108-88-3 Toluene	1.00E+00	56 FR 3526 (30 Jan 91)	1.47E+02	ACGIH	1	0.5	0.002	С	0.005	S	28	28	Н
1330-20-7 Xylene (mixed isomers)	1.00E+01	56 FR 3526 (30 Jan 91)	4.34E+02	ACGIH	1	0.5	0.005	С	0.005	S	360	360	F

Site Name: Former Exxon Station 7-02 Site Location: 6600 East 14th Street, Oakland, Ca

Completed By: Steve M. Zigan Date Completed: 11/10/1999

Software version: 1.0.1

Input Screen 7

REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

(Complete the following table)

	Representative COC Concentration						. .	
CONSTITUENT	1779	in Groundy	vater	in Surface	Soil	in Subsurfa	ce Soil	S-9-D6
	· · · · · · · · · · · · · · · · · · ·	value (mg/L)	note	value (mg/kg)	note	value (mg/kg)	note	
Benzene		1.0E-1	max	1		2.6E-1	max	0.62
Ethylbenzene		2.2E-2	max			1.3E-1	max	? >
Toluene		1.0E-2	max			8.7E-2	max	
Xylene (mixed isomers)		1.0E-2	max			1.3E+0	max	

Site Name: Former Exxon Station 7-0236 Completed By: Steve M. Zigan Site Location: 6600 East 14th Street, Oakland, Ca Date Completed: 11/10/1999

Input Screen 6.3

CONSTITUENT MOLE FRACTIONS

(Complete the following table)

CONSTITUENT	Mole Fraction of Constituent in		
	Source Material		
Benzene			
Ethylbenzene			
Toluene			
Xylene (mixed isomers)			

Site Name: Former Exxon Station 7-02 Completed By: Steve M. Zigan Site Location: 6600 East 14th Street, O Date Completed: 11/10/1999

Input Screen 9.4

GROUNDWATER DAF VALUES

(Enter DAF values in the grey area of the following table)
Dilution Attenuation Factor
(DAF) in Groundwater

	(5) 4 / 11 0104110114101			
CONSTITUENT	Residential	Comm./Ind.		
	Receptor	Receptor		
Benzene	1.0E+0	1.0E+0		
Ethylbenzene	1.0E+0	1.0E+0		
Toluene	1.0E+0	1.0E+0		
Xylene (mixed isomers)	1.0E+0	1.0E+0		

Site Name: Former Exxon Station 7-0236 Completed By: Steve M. Zigan Site Location: 6600 East 14th Street, Oakland, Ca Date Completed: 11/10/1999

Input Screen 9.1

CONSTITUENT HALF-LIFE VALUES

(Complete the following table)

റവ	NSTI	711	FNT

Half-Life of Constituent

	(day)
Benzene	720
Ethylbenzene	228
Toluene	28
Xylene (mixed isomers)	360

Site Name: Former Exxon Station 7-023 Completed By: Steve M. Zigan Site Location: 6600 East 14th Street, Oa Date Completed: 11/10/1999

[©] Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

	RBCA SIT	E ASSESSMENT		Tier 2 Wo	rksheet 8.1
Site Name: Former Exxon Station 7-0236 Site Location: 6600 East 14th Street Completed By: Steve M. Zigan Date Completed: 11/10/1999 1 Completed By: Steve M. Zigan Date Completed: 11/10/1999					
		TIER 2 EXPOSURE CONC	ENTRATION AND INTAKE CALCU	LATION	
OUTDOOR AIR EXPOSURE PATHY	VAYQ		CHECKED IF PATHWAY (S'ACTIVE)		
SURFACE SOILS: VAPOR AND	Exposure Concentration				
DUSY INHALATION	1) Source Medium	2) NAF Value (m^3/kg)	3) Exposure Medium	4) Exposure Multiplier	5) Average Daily Intake Rate
	1	Receptor	Outdoor Air POE Conc (mg/m ³) (1)/(2)	(IRxEFxED)/(BWxAT) (m^3/kg-day)	(mg/kg-day) (3) X (4)
NA	1				
Constituents of Concern	Surface Soil Conc.		1		
Benzene	(mg/kg) 0,0E+0	1	- 		<u> </u>
Ethylbenzene	0.0E+0				
Toluene	0.0E+0				
Xylene (mixed isomers)	0.0E+0				

NOTE:	ABS = Dermal absorption factor (dim)	BW = Body weight (kg)	EF = Exposure frequencey (days/yr)	POE = Point of exposure
	AF = Adherance factor (mg/cm^2)	CF = Units conversion factor	ET = Exposure time (hrs/day)	SA = Skin exposure area (cm^2/day)
	AT = Averaging time (days)	ED = Exposure duration (yrs)	IR = Inhalation rate (m^3/day)	

Software: GSI RBCA Spreadsheet Version: 1.0,1 Serial: G-311-YSX-926

	RBCA SI	Tier 2 W	orksheet 8.1		
Site Name: Former Exxon Station	7-0236	Site Location: 6600 East 14th	Street Completed By: S	Steve M. Zigan Date Complete	d: 11/10/1999 2 C
		TIER 2 EXPOSURE CONC	ENTRATION AND INTAKE CALCU	ILATION	
OUTDOOR AIR EXPOSURE PATHWAY	•		(CHECKED IF PATHWAY IS ACTIVE)		TO MANAGEMAN OF THE STATE OF TH
SUBSURFACE SOILS: VAPOR	Exposure Concentration				
INHALATION	1) Source Medium	2) NAF Value (m^3/kg)	3) Exposure Medium	4) Exposure Multiplier	5) Average Daily Intake Rate
,627		Receptor	Outdoor Air POE Conc. (mg/m^3) (1) / (2)	(IRxEFxED)/(BWxAT) (m^3/kg-day)	(mg/kg-day) (3) × (4)
	Subsurface Soil Conc.				
Constituents of Concern	(mg/kg)	On-Site Residential	On-Site Residential	On-Site Residential	On-Site Residential
Benzene	2,6E-1)	_4.9E+4	5.3E-6	1.2E-1	6.2E-7
Ethylbenzene	1.3E-1	4.9E+4	2.6E-6	2.7E-1	7.2E-7
Toluene	8.7E-2	4.9E+4	1.8E-6	2 7E-1	4.8E-7
Xylene (mixed isomers)	1.3E+0	4.9E+4	2.6E-5	2.7E-1	7.0E-6

NOTE. ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm^2) AT = Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Inhalation rate (m^3/day)	POE = Point of exposure SA = Skin exposue area (cm^2/day)
---	---	--	--

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-311-YSX-926

@ Groundwater Services, Inc. (GSI), 1995-1997 All Rights Reserved.

		Tier 2 W	orksheet 8.1			
Site Name: Former Exxon Stat	lon 7-0236	Site Location: 6600 East 14	Ith Street Completed By	: Steve M. Zigan	Date Completed: 11/10/1999	3 OF
		TIER 2 EXPOS	SURE CONCENTRATION AND	INTAKE CALCULATION		
OUTDOOR AIR EXPOSURE PATH	WAYS	and the second s	CHECKEDIE PATHWAY IS ACT	(VE)		
GROUNDWATER: VAPOR	Exposure Concentration					TOTAL PATHWAY INTAKE (mg/kg-day)
INHALATION	1) Source Medium	2) <u>NAF Value (m^3/L)</u> Receptor	3) Exposure Medium Outdoor Air POE Conc (mg/m²3) (1) / (2)	4) Exposure Multiplier (IRxEFxED)(BWxAT) (m^3/kg-day)	5) Average Daily Intake Rate (mg/kg-day) (3) X (4)	(Sum inteke values from surface, subsurface & groundwater routes.)
	Groundwater Conc.					
Constituents of Concern	(mg/L)	On-Site Residential	On-Site Residential	On-Site Residential	On-Site Residential	On-Site Residential
Benzene	1.0E-1	4.3E+4	2.3E-6	1.2E-1	2.7E-7	8.9E-7
Ethylbenzene	2.2E-2	4.2E+4	5.3E-7	2.7E-1	1.4E-7	8.7E-7
Toluene	1.0E-2	4.3E+4	2,3E-7	2.7E-1	6.3E-8	5.5E-7
Xylene (mixed isomers)	1.0E-2	4.6E+4	2.2E-7	2.7E-1	5.9E-8	7.1E-6

BW = Body weight (kg)
CF = Units conversion factor
ED = Exposure duration (yrs)

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-311-YSX-926

POE = Point of exposure SA = Skin exposure area (cm^2/day)

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

ABS = Dermal absorption factor (dim)
AF = Adherance factor (mg/cm^2)
AT = Averaging time (days)

EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = inhalation rate (m^3/day)

	RBCA SI	Tier 2 W	orksheet 8.1		
Site Name: Former Exxon Stat	ion 7-0236		Street, Oakland, C Completed By: 8		d: 11/10/1999 4 OF 9
INDOOR AIR EXPOSURE PATHWA			I (CHECKED IF PATHWAY IS ACTIVE)		
SUBSURFACE SOILS: VAPOR INTRUSION TO BUILDINGS	Exposure Concentration 1) Source Medium	2) <u>NAF Value (m²3/kg)</u> Receptor	3) Exposure Medium Indoor Air POE Conc. (mg/m^3) (1) / (2)	4) Exposure Multipher (IRxEFxEDY(8WxAT) (m^3/kg-day)	5) Average Daily Intake Rate (mg/kg-day) (3) × (4)
Constituents of Concern	Subsurface Soil Conc.	On-Site Residentlai	On-Site Residential	On-Site Residential	On-Sile Residential
Benzene	(2.6E-1)	3.7E+3	6.9E-5	8.8E-2	6.1E-6
Ethylbenzene	1.3E-1	4.8E+3	2.7E-5	2.1E-1	5.6E-6
Toluene	8.7E-2	6.0E+3	1.5E-5	2.1E-1	3.0E-6
Xylene (mixed isomers)	1.3E+0	9.1E+3	1.4E-4	2.1E-1	2.8E-5

NOTE: ABS ≈ Dermal absorption factor (dim) AF ≈ Adherance factor (mg/cm^2) AT ≈ Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure Ilme (hrs/day) IR = inhalation rate (m^3/day)	POE = Point of exposure SA = Skin exposure area (cm^2/day)
---	---	--	---

Software: GSI RBCA Spreadsheet Version. 1.0.1

Serial: G-311-YSX-926

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

		Tier 2 W	orksheet 8.1			
Site Name: Former Exxon Stati	on 7-0236	Site Location: 6600 East 14	h Street, Oakla Completed By	: Steve M, Zigan	Date Completed: 11/10/1999	5 OF 9
		TIER 2 EXPOS	URE CONCENTRATION AND	INTAKE CALCULATION		
INDOOR AIR EXPOSURE PATHWAY	E N SERVICE CONTRACTOR		GHECKED IF PATHWAY IS ACT	VE)		****************
GROUNDWAYER:	Exposure Concentration					TOTAL PATHWAY INTAKE (mg/kg-day)
VAPOR INTRUSION TO BUILDINGS	1) Source Medium	2) NAF Value (m^3/L) Receptor	3) Exposure Medium Indoor Air: POE Conc. (mg/m^3) (1) / (2)	4) Exposure Multiplier (IRxEFxEO)/(BWxAT) (m^3/kg-day)	5) Average Daily Intake Rate (mg/kg-day) (3) X (4)	(Sum intake values from subsurface & groundwater routes.)
Constituents of Concern	Groundwater Conc (mg/L)	On-Site Residential	On-Site Residential	On-Site Residential	On-Site Residential	On-Site Residential
Benzene	1.0E-1	2.6E+4	3.8E-6	8.8E-2	3.3E-7	6.5E-6
Ethylbenzene	2.2E-2	2.2E+4	9.9E-7	2.1E-1	2.0E-7	5.8E-6
Toluene	1.0E-2	2.4E+4	4.1E-7	2.1E-1	8 4E-8	3.1E-6
Xylene (mixed isomers)	1.0E-2	2.6E+4	3.9E-7	2.1E-1	8.0E-8	2.8E-5

NOTE:	ABS = Dermal absorption factor (dim) AF = Adherance factor (mg/cm^2) AT = Averaging time (days)	BW = Body weight (kg) CF = Units conversion factor ED = Exposure duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Inhalation rate (m^3/day)	POE = Point of exposure SA = Skin exposure area (cm^2/day)

Software GSI RBCA Spreadsheet Version: 1.0.1

Senal: G-311-YSX-926

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

RBCA SITE ASSESSMENT

Tier 2 Worksheet 8.1

Site Name; Former Exxon Statio Site Location: 6600 East 14th Street	Completed By: Steve M. Z Date Completed: 11/10/1999	6 OF 9					
TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION							

SURFACE SOILS OR SEDIMENTS:	Exposure Concentration					
DERMAL CONTACT	1) <u>Source Medium</u>	2) <u>Exposui</u> (SAXAFXABSXCFXEFXE	, — · · · · ·) <u>Average Daily Inlake Rate</u> (mg/kg-day) (1) x (2)		
Constituents of Concern	Surface Soll Conc. (mg/kg)	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	
Benzene	0.0E+0		1.0E-5	!	0.0E+0	
Ethylbenzene	0.0E+0		2.8E-5		0.0E+0	
Toluene	0.0E+0		2.8E-5		0.0E+0	
Xylene (mixed isomers)	0.0E+0		2.8E-5		0.0E+0	

NOTE.	ABS = Dermal absorption factor (dim	i) BW = Body welght (kg)	EF = Exposure frequencey (days/	POE = Point of exposure
	AF = Adherance factor (mg/cm ²) AT = Averaging time (days)	CF = Units conversion factor ED = Exposure duration (yrs)	ET = Exposure time (hrs/day) (R = intake rate (mg/day)	SA = Skin exposure area (cm^2/day)
l				

Software: GSI RBCA Spreadsheet Version, 1 0,1

Serial: G-311-YSX-926

© Groundwater Services, Inc. (GSI), 1995-1997, All Rights Reserved.

RBCA SITE ASSESSMENT Site Name: Former Exxon Station 7 Site Location: 6600 East 14th Street Completed By: Steve M. Zigan Date Completed: 11/10/1999 TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION SOIL-EXPOSURE PATHWAYS TO THE TOTAL SOLUTION OF THE PATHWAYS TO THE PATHWAY THE PA (CHECKED IF PATHWAY IS ACTIVE)

Exposure Concentration

1) Source Medium

Surface Soil Conc. (mg/kg)

0.0E+0

0.0E+0

0.0E+0

0.0E+0

Tier 2 Worksheet 8.1

E CALCULA	TION	_					
TOTAL PATHWAY INTAKE (mg/kg-day) 3} Average Daily Intake Rate (Sum Intake values from (mg/kg-day) (1) x (2) dermal & ingestion routes.)							
n-Site Residential	On-Site Commercial		On-Site Residential	On-Site Commercial			
	0.0E+0	l		0.0E+0			
	0.0E+0			0.0E+0			
	0.0E+0			0.0E+0			
	0.0E+0	١		0.0E+0			

7 OF 9

NOTE:	ABS = Dermal absorption factor (din	n) BW = 8ody weight (kg)	EF = Exposure frequencey (days/yr)	POE = Point of exposure
1	AF = Adherance factor (mg/cm^2)	CF = Units conversion factor	ET = Exposure time (hrs/day)	SA = Skin exposure area (cm^2/day)
· I	AT = Averaging time (days)	ED = Exposure duration (yrs)	IR = Intake rate (mg/day)	

2) Exposure Multiplier

(IRxCFxEFxED)/(BWxAT) (kg/kg-day)

On-Site Commercial

1.7E-7

4.9E-7

4.9E-7

4.9E-7

On-Site Residential

@ Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved

SURFACE SOILS OR SEDIMENTS:

Constituents of Concern

Xylene (mixed isomers)

NA

INGESTION

Benzene

Toluene

Ethylbenzene

Software: GSI RBCA Spreadsheet Version: 1.0.1

On-Site Residential

Senal: G-311-YSX-928

RBCA SITE ASSESSMENT Tier 2 Worksheet 8.1 Site Name: Former Exxon Station Site Location: 6600 East 14th Street, Oakland, Ca Completed By: Steve M. Zigan Date Completed: 11/10/1999 8 OF 9 TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION GROUNDWATER EXPOSURE PATHWAYS [2] (CHECKED IF PATHWAY IS ACTIVE) SOIL: LEACHING TO GROUNDWATER/ Exposure Concentration GROUNDWATER INGESTION 1) Source Medium 2) NAF Value (L/kg) 3) Exposure Medium 4) Exposure Multiplier 5) Average Daily Intake Rate Groundwater POE Conc (mg/L) (1)/(2) Receptor (IRxEFxED)(BWxAT) (L/kg-day) (mg/kg-day) (3) x (4) Soil Concentration Constituents of Concern (mg/kg) Benzene 2.6E-1 Ethylbenzene 1.3E-1 Toluene 8.7E-2

NOTE	ABS = Dermal absorption factor (dlm)	BW = Body Weight (kg)	EF = Exposure frequencey (days/yr)	POE = Point of exposure
	AF = Adherance factor (mg/cm^2)	CF = Units conversion factor	ET = Exposure time (hrs/day)	SA = Skin exposure area (cm^2/day)
	AT = Averaging time (days)	ED = Exposure duration (yrs)	IR = Intake rate (L/day)	

@ Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

1.3E+0

Xylene (mixed isomers)

Software: GSt RBCA Spreadsheet Version: 1 0.1 Serial. G-311-YSX-926

	RBCA SITE ASSESSMENT Tier 2 Worksheet											
Site Name: Former Exxon Station	9 OF 9											
TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION												
ROUNDWATER EXPOSURE PATHWAYS												
GROUNDWATER; INGESTION	Exposure Concentration					MAX, PATHWAY INTAKE (mg/kg-day)						
	1) Source Medium	NAF Value (dim) Receptor	3) Exposure Medium Groundwater POE Conc (mg/L) (\$V(2)	4) Exposure Multiplier (IRxEfxED)(BWxAT) (L/kg-day)	5) Average Daily Intake Rate (mg/kg-day) (3) x (4)	(Maximum intake of active pathways soil leaching & groundwater routes.)						
Constituents of Concern	Groundwater Conc. (mg/L)	110004107		(more very formal) form only	(10)							
Benzene	1.0E-1											
Ethylbenzene	2.2E-2											
Toluene	1.0E-2					\						
Xylene (mixed isomers)	1.0E-2		<u></u>		<u> </u>							

NOTE: ABS = Dermal absorption factor (drm) AF = Adherance factor (mg/cm^2) AT = Averaging time (days) BW = Body weight (kg) CF = Units conversion factor ET = Exposure time (hrs/day) AT = Averaging time (days) ED = Exposure duration (yrs) IR = Intake rate (L/day)	POE = Point of exposure SA = Skin exposure area (cm^2/day)
--	---

Software: GSI RBCA Spreadsheet Version: 1.0.1 Serial: G-311-YSX-926

@ Groundwater Services, Inc. (GSI), 1995-1997 All Rights Reserved.

		RBCA SITE ASSESS	SMENT				Tier 2 Wor	ksheet 8.2	
Site Name: Former Exxon Sta	ation 7-0236	Site Location: 6600 East 14th	n Street		Completed By:	Steve M. Zigan	Date Completed	: 11/10/1999	1 OF
			TIER 2 PAT	HWAY RISK	CALCULATIO	N			
OUTDOOR AIR EXPOSURE PATH	IWAYS	ara da		radi vistala 📕	(CHECKED IF PA	THWAYS ARE ACTIVE)	and the second	east a trace	ke, garagaya,
			CARCINOGENIC RI	SK			TOXIC EFFECTS		
	(1) EPA	(3) Inhalation (4) Individual COC Slope Factor Risk (2) x (3)			(5) Total Toxicant Intake Rate (mg/kg/day)	(6) Inhalation Reference Dose	• •	dual COC tient (5) / (6)	
	\		C				}		
Constituents of Concern	Carcinogenic Classification	On-Site Residential	(// do-)	On-Site Residential		On-Site Residential	(and the stank)	On-Sile	
Benzena	A	8.9E-7	(mg/kg-day)^-1 2.9E-2	2.6E-8	,	2.1E-6	(mg/kg-day) 1,7E-3	Residential 1.2E-3	
Ethylbenzene	D					8.7E-7	2.9E-1	3.0E-6	
Toluene	D					5.5E-7	1.1E-1	4.8E-6	
Xylene (mixed isomers)	D					7.1E-6	2.0E+0	3.5E-6	
		Total Pathway Carcino	genic Risk =	2.6E-8	0,0E+0	Total Pathway	Hazard Index =	1,2E-3	0.0E+0
						_	_		

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-311-YSX-926

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved

		RBCA SITE ASSESS	MENT			Tier 2 Worksheet 8.2								
Site Name: Former Exxon Station	on 7-0236	Site Location: 6600 East 14th	Street, Oaklan	d, Ca	Completed By:	Steve M. Zigan	Date Completed	Date Completed: 11/10/1999						
	TIER 2 PATHWAY RISK CALCULATION													
INDOOR AIR EXPOSURE PATHWAY	\$			U	(CHECKED IF PA	THWAYS ARE ACTIVE)								
		CA	RCINOGENIC R	isk			TOXIC EFFECTS							
	(1) EPA	(2) Total Carcinogenic Intake Rate (mg/kg/day)	(3) Inhalation Slope Factor	• •	dual COC 2) x (3)	(5) Total Toxicant Intake Rate (mg/kg/day)	(6) Inhalation Reference Dose		dual COC stient (5) / (6)					
Constituents of Concern	Carcinogenic Classification	On-Site Residential	(mg/kg-day)^-1	On-Site Residential		On-Site Residential	(mg/kg-day)	On-Sile Residential						
Benzene	Α .	6.5E-6	2.9E-2	1.9E-7		1.5E-5	1.7E-3	8.9E-3						
Ethylbenzene	D					5.8E-6	2.9E-1	2.0E-5						
Toluene	D					3.1E-6	1.1E-1	2.7E-5						
Xylene (mixed isomers)	<u>l D</u>		<u> </u>			2.8E-5	2.0E+0	1.4E-5						
		Total Pathway Carcinog	enic Risk =	1.9E-7	0.0E+0	Total Pathw	ay Hazard Index =	8.9E-3	0.0E+0					
				,										

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-311-YSX-926

		RBCA	SITE ASSESSI	MENT	·				Tier 2 Wo	ksheet 8.2	
Site Name: Former Exxon Statio	on 7-0236	Site Location: 6	600 East 14th	Street		Completed By:	Steve M. Zigan		Date Completed	3 OF	
				TIER 2 PAT	THWAY RISK	CALCULATION	N .				
SOIL EXPOSURE PATHWAYS						ACHECKED IP PA	THWAYS ARE AC	nve _l (44)		#F-965-490-90	anni se sa sa
			CA	RCINOGENIC R	ISK				TOXIC EFFECTS		
	(2) Total Carcinogenic (1) EPA Intake Rate (mg/kg/day)				• •	dual COC 2) x (3)		(5) Total Toxicant Intake Rate (mg/kg/day)			dual COC attent (5) / (6)
Constituents of Concern	Carcinogenic Classification			(mg/kg-day)^-1	On-Site On-Site Residential Commercial		On-Site On-Site Residential Commercial		(mg/kg-day)	On-Site Residential	On-Site Commercial
Benzene	A		0.0E+0	2.9E-2		0.0E+0		I			T
Ethylbenzene	D							0.0E+0	1.0E-1		0.0E+0
Toluene	D							0.0E+0	2.0E-1		0.0E+0
Xylene (mixed isomers)	D							0.0E+0	2.0E+0		0.0E+0
		Total Pati	nway Carcinog	enic Risk =	0.0E+0	0.0E+0] 70	otal Pathway I	łazard Index = [0.0E+0	0.0E+0

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-311-YSX-926

		RBCA SITE ASSES	SMENT			Tier 2 Wor	ksheet 8.2	
Site Name: Former Exxon St	ation 7-0236 S	Site Location: 6600 East 14th	Street, Oakland,	Ca Completed By:	Steve M. Zigan	Date Completed	: 11/10/1999	4 OF 4
			TIER 2 PATH	WAY RISK CALCULATION	N			
GROUNDWATER EXPOSURE PA	THWAYS			CHECKED IF PA	THWAYS ARE ACTIVE) 14 +	on the state of		MARIE ZIA
		(CARCINOGENIC RISK			TOXIC EFFECTS		
		(2) Total Carcinogenic	(3) Oral	(4) Individual COC	(5) Total Toxicant	(6) Oral	(7) Individual (OC
	(1) EPA Carcinogenic	Intake Rate (mg/kg/day)	Slope Factor Risk (2) x (3)		Intake Rate (mg/kg/day)	Reference Dose	Hazard Quotient	(5) / (6)
Constituents of Concern	Classification		(mg/kg-day)^-1			(mg/kg-day)		
Benzene	A		2.9E-2					
Ethylbenzene	D					1.0E-1		
Toluene	D					2.0E-1		
Xylene (mixed isomers)	D					2.0E+0		
		Total Pathway Carcino	genic Risk =	0.0E+0 0.0E+0	Total Pathway	Hazard Index =	0.0E+0	0.0E+0

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved

Software: GSI RBCA Spreadsheet Version, 1 0,1 Serial: G-311-YSX-926

	RBCA SITE ASSESSMENT										Tier 2 Worksheet 9.1				
Site Name: Fo	rmer Exxon Station 7-0236		Completed B	Completed By: Steve M. Zigan											
Site Location:	6600 East 14th Street		Date Comple	ted: 11/10/199	9							1 OF 1			
			Target Risk	(Class A & B)	1.0E-6	☐ MCL e	xposure limit?		Cal	culation Option:	2				
	SURFACE SOIL SSTL VAL	.UES	Target	Risk (Class C)	1.0E-5	☐ PEL ex	cposure limit?								
	(< 3 FT BGS)		Target H	azard Quotient	1.0E+0										
SSTL Results For Complete Exposure Pathways ("x" If Complete)															
CONSTITUEN	ITS OF CONCERN	Representative Concentration	Soi	Leaching to	Groundwater	Inges	tion and Dermal	x	Construction Worker	Applicable SSTL	SSTL Exceeded ?	Required CRF			
CAS No.	Name	(mg/kg)	Residential. (on-site)	Commercial: (on-site)	Regulatory(MCL): (on-site)	Residentia (on-site)	: Commercial. (on-site)	C	commercial: (on-site)	(mg/kg)	•■* If yes	Only if "yes" left			
71-43-2	Benzene	0.0E+0	NA	NA	NA	NA	3.3E+0		7.8E+1	3.3E+0		<1			
100-41-4	Ethylbenzene	0.0E+0	NA	NA	NA	NA	>Res		>Res	>Res		<1			
108-88-3	Toluene	0.0E+0	NA	. NA	NA	NA	>Res		>Res	>Res		<1			
1330-20-7	Xylene (mixed isomers)	0.0E+0	NA	NA	NA	NA	>Res	L	>Res	>Res		<1			

>Res indicates risk-based target concentration greater than constituent residual saturation value

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: G-311-YSX-926

© Groundwater Services, inc. (GSI), 1995-1997. All Rights Reserved.

		RBCA SITE	ASSESSIV	IENT								Fier 2 Worksh	eet 9.2	
Site Name: Fo	ormer Exxon Station 7-0236		Completed B	y: Steve M. Zi	gań									
Site Location:	6600 East 14th Street, Oakland, Ca		Date Comple	Date Completed: 11/10/1999									1 OF 1	
SU	BSURFACE SOIL SSTL (> 3 FT BGS)	Target Risk (Class A & B) 1.0E-6					Calculation Option: 2							
				SSTL F	tesults For Compl	ete E	xposure P	athways ("x" If	Com	olete)				
CONSTITUEN	Repres Concern CONSTITUENTS OF CONCERN					Soil Volatilization to		Soli Volatilization to X Outdoor Air		Applicable SSTL	SSTL Exceeded	Required CRF		
	Name	(mg/kg)	Residential: (on-site)	Commercial: (on-site)	Regulatory(MCL): (on-site)		sidential: on-site)	Commercial: (on-site)		sidential on-site)	Commercial (on-site)	(mg/kg)	"■" if yes	Only if "yes" left
71-43-2	Benzene	2.6E-1	NA	NA	NA	1	.5E+0	NA	1	.4E+1	NA	1.5E+0		<1
100-41-4	Ethylbenzene	1.3E-1	NA	NA	NA	l	>Res	NA		>Res	NA	>Res		<1
108-88-3	Toluene	8.7E-2	NA	_NA	NA		>Res	NA		>Res	NA	>Res		<1
1330-20-7	Xylene (mixed isomers)	1.3E+0	NA	NA	NA		>Res	NA		>Res	NA	>Res		<1

>Res indicates risk-based target concentration greater than constituent residual saturation value

Software: GSI RBCA Spreadsheet Version 1.0.1

Serial: G-311-YSX-926

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

		RBC	A SITE ASS	ESSMENT						Tier 2 Wo	rksheet 9,3	3
	ormer Exxon Station 7-0236 6600 East 14th Street, Oakland, Ca		•	ly: Steve M. Z	•							1 OF 1
	GROUNDWATER SSTL VA	LUES	Target Risk (Class A & 8) 1 0E-6					Calculation Option: 2				
CONSTITUEN	ITS OF CONCERN	Representative Concentration	SSTL Results For Complete E Groundwater Ingestion				Pathways ("x" if ater Volatilization Indoor Air	Groundwat	er Volatilization	Applicable SSTL	SSTL Exceeded	Required CRF
CAS No.	Name	(mg/L)	Residential: (on-site)	Commercial: (on-site)	Regulatory(MCL): (on-site)	Residential. (on-site)	Commercial: (on-site)	Residential (on-site)	Commercial. (on-site)	(mg/L	"" If yes	Only if "yes" left
71-43-2	Benzene	1.0E-1	NA	NA	NA	1.0E+1	NA	1.3E+1	NA .	1.0E+1		<1
100-41-4	Ethylbenzene	2.2E-2	NA	NA	NA	>Sol	NA	>Sol	NA	>Sol		<1
108-88-3	Toluene	1.0E-2	NA	NA	NA	>Sol	NA	>Sol	NA	>Sol		<1
1330-20-7	Xylene (mixed isomers) 1.0E-2 NA NA NA						NA	>Sol	NA	>Sol	l ä	<1
		· · · · · · · · · · · · · · · · · · ·		>Sol	indicates risk-bas	ed target conce	entration greater t	han constituent :	solubility			

Software: GSI RBCA Spreadsheet

Serial: G-311-YSX-926

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

Version: 1.0.1