

December 14, 1993

Project No. 1233

Mr. Ravi Arulanantham Alameda County Department of Environmental Health 80 Swan Wav. #200 Oakland, CA 94621

> MONTGOMERY WARD AUTO SERVICE CENTER RE: 7575 Dublin Boulevard, Dublin, California

Dear Mr. Arulanantham:

Enclosed herewith are two copies of our report entitled, "Ground Water Monitoring Report, Fourth Quarter 1993, Montgomery Ward Auto Service Center, 7575 Dublin Boulevard, Dublin, California," dated December 14, 1993.

Please call the undersigned or Steven Bright if you have any questions.

Sincerely,

ENVIRONMENTAL AUDIT, INC.

Christopher P.R. d'Sa, R.E.A.

Project Geologist

Frank S. Muramoto, R.G.

Senior Geologist

CPD:FSM:SAB:sss

enclosure

C. West, Montgomery Ward (w/enclosure) cc:

G. Jonas, Montgomery Ward (w/enclosure)

M. Gilmartin, Straw & Gilmartin (w/enclosure)

CHRIS:1233M93D.DOC (c)

QUARTERLY GROUND WATER MONITORING REPORT

Fourth Quarter 1993 Montgomery Ward Auto Service Center 7575 Dublin Boulevard Dublin, California

December 14, 1993

Project No. 1233

Prepared for:

Montgomery Ward 39201 Fremont Boulevard Fremont, CA 94538

ENVIRONMENTAL AUDIT, INC. ®

Planning, Environmental Analyses and Hazardous Substances Management and Remediation

1000-A ORTEGA WAY PLACENTIA, CA 92670-7125 714/632-8521

TABLE OF CONTENTS

1.0	INTRODUC	TION
2.0	2.1 Ground2.2 Ground2.3 Sample	TIGATION
3.0	MONITORIN	IG WELL SURVEY
4.0	ANALYTICA	L TESTING
5.0	LIMITATION	
TABL	ES:	
	Table 1:	Ground Water Elevations Table
	Table 2:	Analytical Testing Results
FIGU	RES:	
	Figure 1:	Location Map
	Figure 2:	Ground Water Elevation Map
APPE	NDICES:	
	Appendix A:	Ground water sampling log forms
	Appendix B:	Chain of Custody Record Forms
	Appendix C:	Monitoring Well Survey Data
	Appendix D:	Laboratory Reports

CHRIS:1233M93D.DOC (b)

GROUND WATER MONITORING REPORT FOURTH QUARTER 1993 Montgomery Ward Auto Service Center 7575 Dublin Boulevard Dublin, California

1.0 INTRODUCTION

This document constitutes a quarterly ground water monitoring report for the Montgomery Ward Auto Service Center property located at 7575 Dublin Boulevard, Dublin, California (see Figure 1). This report represents the fourth quarter 1993 monitoring report.

A ground water extraction and treatment system (System) is operated and maintained at the site by others. Well B-12 is the only extraction well associated with the System (see Figure 2). All other wells function only as monitoring wells at this time. Wells MW-100, MW-101 and MW-102 were installed in May 1993, pursuant to a request by the Alameda County Department of Environmental Health, and were subsequently included in the quarterly ground water monitoring.

As requested by the Montgomery Ward & Company, Inc., the wells at the ENEA Properties site located at the intersection of Amador Plaza Road and Dublin Boulevard were also gauged and sampled as part of the fourth quarter 1993 monitoring activities.

2.0 FIELD INVESTIGATION

2.1 GROUND WATER ELEVATION SURVEY

The System was temporarily shut down by Montgomery Ward on October 7, 1993 in order for Environmental Audit, Inc. (EAI) to gauge and then obtain ground water samples for analytical testing from the wells. On October 14, 1993, EAI obtained ground water depth measurements from the wells associated with the site and the ENEA Properties wells using an Oil Recovery Systems' interface probe accurate to 0.01 feet. No free-product was detected in the wells during gauging activities. The measured water levels were converted to elevations by subtracting the measured water level from the ground level datum for each well (see Table 1). Ground water elevation data obtained from the wells were used to construct a ground water elevation map (see Figure 2).

2.2 GROUND WATER AND EFFLUENT SAMPLING

On October 14 and 15, 1993, ground water samples were obtained from the wells for analytical testing. Prior to sampling, all wells except extraction well B-12 were purged using a ES-40 submersible pump. Purging activities continued until the temperature, conductivity and pH of the extracted water had stabilized (see Appendix A). Well B-12 was purged last, for approximately one hour prior to sampling by reactivating the ground water extraction pump associated with the System.

The wells were sampled in the order that purging activities were completed. The water samples were collected from just below the water surface using Voss Technologies disposable bottom bailers equipped with volatile organic compound samplers. Use of these bailers precludes the potential for cross-contamination. A treated effluent sample was obtained from the sampling port located downstream of the two 2,000-pound carbon canisters. The water samples were sealed in two 40-milliliter (ml) VOA vials with Teflon septa lined lids and in one-liter plastic bottles. The containers were completely filled so that no head space existed between the samples and the lids. The samples were labeled with the sample point identification, date, time and EAI project number, and immediately placed into an ice chest chilled using frozen blue ice. The samples were kept chilled until delivered to the laboratory for analytical testing. All samples were logged on a chain of custody record form (see Appendix B). Due to electrical problems, the System was not restarted following sampling of the ground water wells.

2.3 SAMPLING EQUIPMENT CLEANING PROTOCOL

The submersible pump and hose (Equipment) used only to purge the wells prior to sampling was decontaminated between each purging activity using the following procedure: 1) the Equipment was flushed in a solution of Alconox detergent and tap water; and 2) the Equipment was flushed with tap water.

2.4 EFFLUENT HANDLING

All effluent generated during purging, sampling and equipment decontamination activities was temporarily stored in five 55-gallon drums which were then emptied into the System for treatment.

3.0 MONITORING WELL SURVEY

Kier and Wright Civil Engineers and Surveyors, Inc., California licensed land surveyors, were retained by Montgomery Ward to survey well locations and elevations with respect to mean sea level of the wells associated with the Montgomery Ward and the ENEA Properties site. These wells were surveyed on October 14, 1993, in conjunction with the quarterly monitoring activities. The elevation of all the wells were surveyed to the City of Dublin Benchmark No. DUB-680 (elevation = 331.60 feet Mean Sea Level), located along Dublin Boulevard, 0.60 miles easterly from San Ramon Road (See Appendix C)

4.0 ANALYTICAL TESTING

All samples were delivered for analytical testing to Sequoia Analytical, a state certified hazardous waste testing laboratory (Certificate No. 1271) located in Concord, California. The samples were tested for total petroleum hydrocarbons as gasoline (TPH-G) using modified EPA Method 8015, benzene, toluene, xylenes and ethylbenzene (BTXE) using EPA Method 8020, and total lead using EPA Method 7420. The results of the testing are shown in Table 3 along with the results from previous period's testing. The laboratory reports are contained in Appendix D.

5.0 LIMITATION

Our professional services have been performed using that degree of care and skill ordinarily exercised, under similar circumstances, by reputable environmental consultants practicing in this or similar localities. No other warranty, expressed or implied, is made as to the information contained in this report.

CPD:SAB:FSM:ss

CHRIS 1233M93D.DOC

Table 1GROUND WATER ELEVATIONS

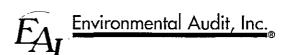
Montgomery Ward Auto Service Center ENEA Properties

		·	, <u> </u>		Page 1 of 3
Date Measured	Elevation of top surface of PVC well casing (feet MSL)	Measured depth of ground water (feet bgs)	Measured depth of Product	Product Thickness	Ground water elevation (feet MSL)
B-5					
	340.05				
04-16-92		10.62	0	0	329.43
07-24-92		11.91	0	0	328.14
10-22-92		12.97	0	0	327.08
01-15-93		12.97	0	0	327.08
04-15-93		9.75	0	0	330.30
05-14-93		10.07	0	0	329.98
07-14-93		10.80	0	0	329.25
10-14-93		12.08	0	0	327.97
B-10					
	339.70				
04-16-92		10.32	0	0	329.38
07-24-92		11.69	0	0	328.01
10-22-92		12.67	0	0	327.03
01-15-93		9.48	0	0	330.22
04-15-93		9.49	0	0	330.21
05-14 - 93		9.87	0	0	329.83
07-14-93		10.64	0	0	329.06
10-14-93		11.80	0	0	327.90
B-12			<u>.</u>	· · · · · · · · · · · · · · · · · · ·	
	339.10			oi	
04-16-92	JJ5. IV	9.95	0	0	329.15
07-24-92		9.95 11.57	0	0	327.53
10-22-92		12.82	0	0	327.33
01-15-93		8.66	0	0	330.44
04-15-93		8.70	0	0	330.44
05-14-93		9.32	0	0	329.78
07-14-93		9.95	0	0	329.76
10-14-93		10.94	0	0	328.16
.0 ; 7 .0		10.54	· ·	U	520.10

Table 1GROUND WATER ELEVATIONS

Montgomery Ward Auto Service Center ENEA Properties

					Page 2 of 3
Date Measured	Elevation of top surface of PVC well casing (feet MSL)	Measured depth of ground water (feet bgs)	Measured depth of Product	Product Thickness	Ground water elevation (feet MSL)
B-15				<u> </u>	
	340.62				******
04-16-92		11.09	0	0	329.53
07-24-92		12.33	0	0	328.29
10-22-92		13 <i>.</i> 25	0	0	327.37
01-15-93		10.22	0	0	330.40
04-15-93		10.26	0	0	330.36
05-14- 9 3		10.64	0	0	329.98
07-14-93		11.35	0	0	329.27
10-14-93		12.41	0	0	328.21
B-16					
	339.82				
04-16-92		10.63	0	0	329.19
07-24-92		11.90	0	0	327.92
10-22-92		12.88	0	0	326.94
01-15- 9 3		9.79	0	0	330.03
04-15-93		9.83	0	0	329.99
05-14-93		10.20	0	0	329.62
07-14-93		10.92	0	0	328.90
10-14-93		11.99	0	0	327.83
MW-1	<u></u>				
10100-11	339.61		***************************************		
05-14-93	333.01	10.34	0	0	329.27
07-14-93		11.00	0	0 0	329.27
10-14-93		12.12	0	0	327.49
10 14-55		12.12	U	U	327.49
MW-1	01	<u>.</u>			
	338.54				
05-14-93		9.91	0	0	328.63
07-14-93		10.38	0	0	328.16
10-14-93		11.30	0	0	327.24
					*


Table 1GROUND WATER ELEVATIONS

Montgomery Ward Auto Service Center ENEA Properties

		ENEA Fropen	ies		Page 2 of 2
Date Measured	Elevation of top surface of PVC well casing (feet MSL)	Measured depth of ground water (feet bgs)	Measured depth of Product	Product Thickness	Page 3 of 3 Ground water elevation (feet MSL)
MW-10) 2		,		
05-14-93 07-14-93 10-14-93	339.23	9.60 10.31 11.57	0 0 0	0 0 0	329.63 328.92 327.66
MW-1					
10-14-93	335.84	9.05	0	0	326.79
MW-2					
10-14-93	335.61	8.90	0	0	326.71
MW-3					
10-14-93	336.93	9.89	0	0	327.04
NOTES:					
MSL -	Mean Sea Level				
bgs -	below ground surface				
•	Depth to water is as mea	asured from the cut notch	n top north side of each 4-inc	h PVC well casir	ıg.
-	The elevations of all well (elevation=331.60 MSL)	ls were surveyed in Octob , located along Dublin Bo	er 1993 to City of Dublin Ben ulevard, 0.60 miles easterly fr	chmark No DU om San Ramon	B-680 Road.
-	Wells B-5, B-10, B-12, B- located on 7575 Dublin	15, B-16, MW-100, MW-1 Boulevard.	01 and MW-2 are owned by	Montgomery W	ard and are
-	Wells MW-1, MW-2 and	MW-3 are owned by ENE	A Properties and are located	on Amador Plaz	a Road.

The elevation of all depth to water measurements were converted to mean sea level elevations using well

casing elevation datum surveyed on October 14, 1993.

TABLE 2

ANALYTICAL TESTING RESULTS

Montgomery Ward Auto Service Center ENEA Properties Dublin, California Parts per billion (ppb)

Page 1 of 3

Well B-5

Compounds	TPH-G	Benzene	Toluene	Xylenes	Ethylbenzene	Lead
04/16/92	4400	670	160	320	280	ND
07/24/92	31000	5400	2600	5800	2200	ND
10/22/92	9100	1100	190	740	520	ND
01/15/93	2300	530	160	470	300	7.9
04/15/93	4900	600	160	390	470	ND
07/14/93	8800	590	210	1100	840	9.9
10/14/93	4500	530	46	350	490	ND

Well B-10

Compounds	TPH-G	Benzene	Toluene	Xylenes	Ethylbenzene	Lead
04/16/92	7300	1400	640	1100	880	ND
07/24/92	27000	3800	1600	4000	2000	ND
10/22/92	16000	2300	340	1200	1100	ND
01/15/93	10000	1400	310	1100	730	13
04/15/93	8100	580	270	580	810	19
07/14/93	6400	840	120	800	750	7.1
10/14/93	100000	720	120	1100	930	ND

Well B-12

Compounds	TPH-G	Benzene	Toluene	Xylenes	Ethylbenzene	Lead
04/16/92	12000	1300	1100	1200	510	ND
07/24/92	12000	1000	630	1000	520	ND
10/22/92	11000	370	230	940	400	ND
01/15/93	120	2.8	ND	3.6	1.6	11
04/15/93	7100	730	240	570	350	ND
07/14/93	4500	540	97	610	380	ND
10/14/93	11000	710	170	1600	650	ND

Well B-15

Compounds	TPH-G	Benzene	Toluene	Xylenes	Ethylbenzene	Lead
04/16/92	65	4.4	2.4	2.8	6.1	ND
07/24/92	ND	3.6	1.5	1.6	3.1	ND
10/22/92	ND	1.7	0.89	0.88	0.78	ND
01/15/93	ND	ND	ND	ND	ND	13
04/15/93	ND	2.8	ND	1.5	3.0	ND
07/14/93	ND	ND	ND	0.74	0.57	7.8
10/14/93	ND	0.96	2.6	3.6	1.3	0.0

Environmental Audit, Inc.

TABLE 2

ANALYTICAL TESTING RESULTS

Montgomery Ward Auto Service Center ENEA Properties Dublin, California Parts per billion (ppb)

Page 2 of 3

Well B-16

Compounds	TPH-G	Benzene	Toluene	Xylenes	Ethylbenzene	Lead
04/16/92	1300	390	1.7	9.3	35	ND
07/24/92	1600	120	5.7	410	120	ND
10/22/92	1000	76	ND	130	55	NĐ
01/15/93	160	6.5	0.86	2.6	2.3	5.5
04/15/93	300	65	ND	2	13	ND
07/14/93	170	5.9	ND	12	4.6	ND
10/14/93	390	11	2.4	45	16	0.02

Well MW-100

Compounds	TPH-G	Benzene	Toluene	Xylenes	Ethylbenzene	Lead
05/13/93	13000	83	ND	820	960	NA
07/14/93	13000	32	ND	790	1400	8
10/14/93	7500	48	16	520	900	0.02

Well MW-101

Compounds	TPH-G	Benzene	Toluene	Xylenes	Ethylbenzene	Lead
05/13/93	ND	ND	ND	ND	ND	NA
07/14/93	ND	ND	ND	ND	ND	11
10/14/93	ND	0.65	0.89	1.1	ND	ND

Well MW-102

Compounds	TPH-G	Benzene	Toluene	Xylenes	Ethylbenzene	Lead
05/13/93	3600	17	ND	63	130	NA
07/14/93	1500	13	ND	4.9	64	ND
10/14/93	24000	9.6	5.2	60	60	ND

EFFLUENT

Compounds	TPH-G	Benzene	Toluene	Xylenes	Ethylbenzene	Lead
04/15/93	ND	ND	ND	ND	ND	ND
07/14/93	ND	ND	ND	ND	ND	ND
10/14/93	ND	ND	ND	0.97	ND	0.048

TABLE 2

ANALYTICAL TESTING RESULTS

Montgomery Ward Auto Service Center **ENEA Properties** Dublin, California Parts per billion (ppb)

Page 3 of 3

Well MW-1

Compounds	TPH-G	Benzene	Toluene	Xylenes	Ethylbenzene	Lead
10/14/93	5700	76	19	160	460	ND

Well MW-2

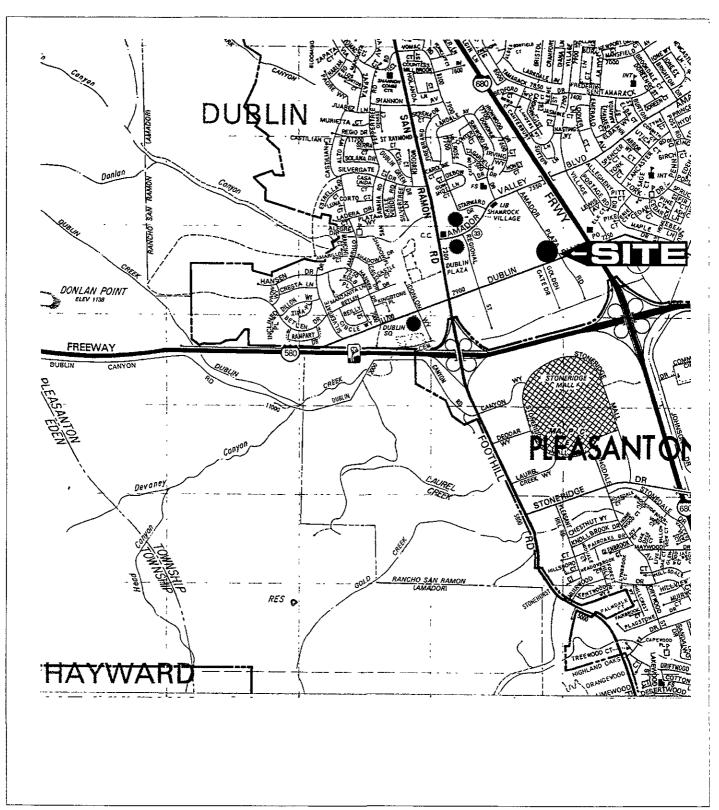
Compounds	TPH-G	Benzene	Toluene	Xylenes	Ethylbenzene	Lead
10/14/93	ND	ND	ND	1.1	0.71	0.021

Well MW-3

Compounds	TPH-G	Benzene	Toluene	Xylenes	Ethylbenzene	Lead
10/14/93	2600	26	30	100	130	ND

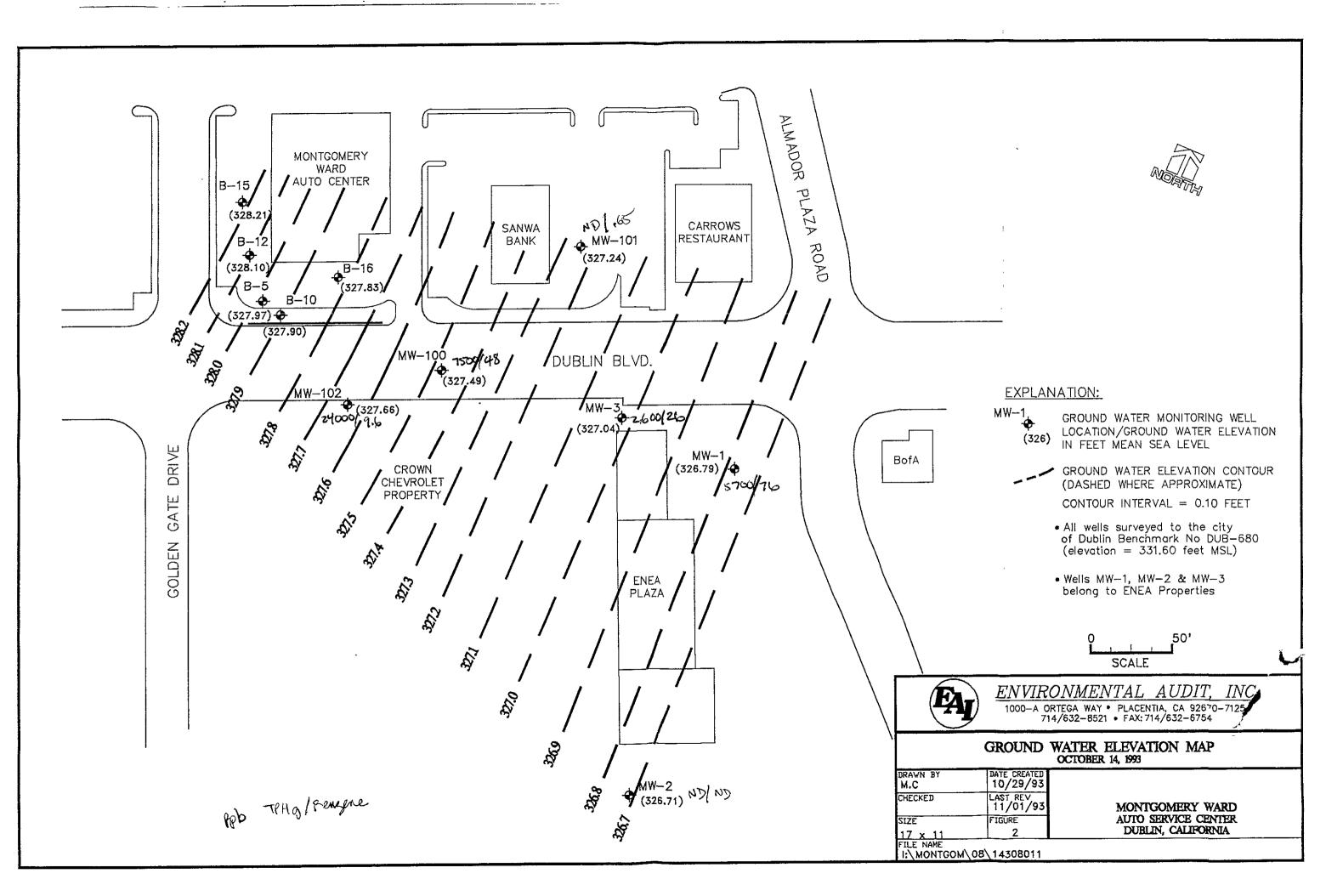
NOTE:

ND Not Detected


NA Not Analyzed

w Wells B-5, B-10, B-12, B-15, B-16, MW-100, MW-101 and MW-2 are owned by Montgomery Ward and are located on 7575 Dublin Boulevard.

Wells MW-1, MW-2 and MW-3 are owned by ENEA Properties and are located on Amador Plaza Road.



Environmental Audit, Inc.

LOCATION MAP 7575 Dublin Blvd. Dublin, California

Figure 1

APPENDIX A

Ground Water Sampling Log Forms

Environmental Audit, Inc.

Planning Environmental Analyses and Hazardous Substances Management and Remediation

1000-A ORTEGA WAY PLACENTIA, CA 92670-7125 **☎** (714) 632 - 8521 ☑ (714) 632 - 6754

_		
DATE:	10/1-4/93	
PROJECT NO.:	1233	
CLIENT:	Montgomery Ward, Dublin	
WELL NO.:	HW-1	
WELL DIAMETER (
SAMPLED BY:	CPD/ic	

		2- harrier 2	arandon or a			أعرال والأوال	
TOTAL DEPTH OF WELL (ft.): 15.10					1415		DLUME FACTORS
DEPTH TO FREE	PRODUCT (ft. I	ogs.):			WEL	<u>L CASING ID</u>	
DEPTH TO GRO	IIND WATER (fi	has.}-	9.0			2.0	0.16
DEI III IO ORO	One white (iii	. 595.7.	7 - 8	-3		4.0	(0.65)
ONE CASING VO	LUME OF WATE	R CALCULATED U	SING THE F	OLLOWING:		6.0	1.47
15.10	9	.05	6.0	25	-65	•	3.9
TOTAL DEPTH	<u> </u>	H TO WATER		Х	WELL VOLUM		ONE CASING
OF WELL		EVEL		_	VOLUME FAC		VOLUME OF WATER (GALLONS)
PURGE TIME:	STA	ART 12	30	STOP	1238		
PURGE METHOD): DOWN HOLE	PUMP X D	EDICATED I	РИМР 🔲	BAILER 🔲	OTHER 🗀	
TYPE/MODEL:		ES-40					
		1		······································			
GALLONS	TEMP	CONDUCTIVI	TY	_ti	TURBIDITY		REMARKS
PURGED	(°F)	(Micro-ohms/	cm)	pΗ	(NTU)		KEMAKKO
3	72.4	9.46	x 10 ²	7,93	11.80		
6	72.4	9.44	x 10 ²	7.62	9.72		
9	72.2	9.49	x 10 ²	7.50	11,45		
12	72.1	9.50	x 10 ²	7.55	5.89		
15	71.9	9.49	x 10 ²	7.33	3.69		
18	72.1	9.51	x 10 ²	7.34	2.92		
	72.0	9.51	x 10 ²	7.35	2.10		
2/	10.0	7,37	x 10 ²	<u>" </u>	2.70	 	··· <u> </u>
			x 10 ²	-			
			x 10 ²			 	
			x 10 ²				
<u> </u>	,	<u> </u>	x 10 ²				
		(##.hg\\52762762762767777777777777777777777777	X 10-			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
			1				
TIME SAMPLED	. [1240					
SAMPLE METHO	D: DOWN HOL	E PUMP	DEDICATED	PUMP 🗀	BAILER 🔀	OTHER [, .
TYPE/MODEL:		Voss Technologies					•
COMMENTS:	L		i				
					W-100°		

Environmental Audit, Inc.

Planning Environmental Analyses and Hazardous Substances Management and Remediation

1000-A ORTEGA WAY PLACENTIA, CA 92670-7125 **☎** (714) 632 - 8521 ⋈ (714) 632 - 6754

	_
DATE:	10/14/93
PROJECT NO.:	1233
CLIENT: Montgo	omery Ward, Dublin
WELL NO.:	MW-2
WELL DIAMETER (INCHES):	4"
SAMPLED BY:	CPD/jc

			andria.				
TOTAL DEPTH O	F WELL (ft.):		14	.7/		WELL VO	LUME FACTORS
DEPTH TO FREE	PRODUCT (ft. b	gs.):			WE	LL CASING ID	(inches) VOLUME FACTOR
DEPTH TO GROU	•	- •	9	90		2.0	0.16
		-30.1.	8.	70		4.0 6.0	0.65
ONE CASING VO	LUME OF WATE	R CALCULATED USIN	IG THE F	OLLOWING:		0.0	1.4/
/4. 7/ TOTAL DEPTH OF WELL	- DEPTI	.90 H TO WATER =	5.	81 X	WELL VOLU VOLUME FA	ME =	3.8 ONE CASING VOLUME OF WATER (GALLONS)
PURGE TIME:	STA	IRT /304	4	STOP	1312		
PURGE METHOD Type/Model:	_	PUMP X DED ES-40	ICATED	PUMP 🔲	BAILER 🔲	OTHER 🗀	
GALLONS PURGED	TEMP (°F)	CONDUCTIVITY (Micro-ohms/cm		рН	TURBIDITY (NTU)		REMARKS
3	72.8	10.22	x 10 ²	7.96	78.8		
6	73.5	10.24	x 10 ²	7.61	131.3		
9	73./	10.18	x 10 ²	7.61	95.5	-	
12	73.2	10.16	x 10 ²	7.59	96.6		
15	73./	10.20	x 10 ²	758	<i>55.</i> /		
18	72.9	10.20	x 10 ²	7.48	35.5	-	
			x 10 ²	,			
			x 10 ²				
			x 10 ²				
			x 10 ²				
			x 10 ²		() Committee of (
			x 10 ²				~~~
					1 20 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
TIME SAMPLED:	: [1315					
SAMPLE METHO TYPE/MODEL : COMMENTS:	_			PUMP 🔃	BAILER 🔯	OTHER 🗀	

Environmental Audit, Inc.

Planning Environmental Analyses and Hazardous Substances Management and Remediation

1000-A ORTEGA WAY PLACENTIA, CA 92670-7125 **≅** (714) 632 - 852† ⋈ (714) 632 - 6754

		
DATE:	10/14/93	
PROJECT NO.:	1233	
CLIENT: M	ontgomery Ward, Dubli	n
WELL NO.:	MW-3	
WELL DIAMETER (INCH	IES): 4"	
SAMPLED BY:	CPD/jc	

TOTAL DEPTH C	OF WELL (ft.):	15	.10	V	WELL VOLUME FACTORS
DEPTH TO FREE	PRODUCT (ft. b	ogs.):		WELL	CASING ID (inches) VOLUME FACTOR
DEPTH TO GRO	UND WATER (ft.	bgs.): 9.	89		2.0 4.0 0.16 0.65
OUT CLOWD VO	LILLE OF WATER				6.0 1.47
		R CALCULATED USING THE		<u> </u>	
TOTAL DEPTH		7.89 S. H TO WATER =	<i>⊇/</i>	WELL VOLUME	3.39 = ONE CASING
OF WELL	LE	VEL	^ ,	VOLUME FACTO	
PURGE TIME:	ATS	ART 1156	STOP	1212	
PURGE METHOD). DOWN HOLF	PUMP X DEDICATED	PIIMP 🗀	BAILER 🗀	OTHER 🗀
TYPE/MODEL:	_	ES-40	i Onii 🗀	DAILER	o trick 🛄
THE CHIEFE.	<u> </u>		7' '		
GALLONS	TEMP	CONDUCTIVITY	 pH	TURBIDITY	REMARKS
PURGED	(°F)	(Micro-ohms/cm)		(NTU)	
3	70.8	1.11	7.43	37.2	
6	70.9	$9./9 \times 10^{2}$ 9.2×10^{2}	7.3.2	11.68	
9	71,3	102	7.19	7.70	
12	70.9	9.19 x 10 ²	7 30	5.16	
15	71.1	9-20 x 10 ²	7.25	3.62	
18	71.2	9.24 x 102	7.22	3.05	
		x 10 ²			
		x 10 ²			
		x 10 ²			
		x 10 ²			
		x 10 ²			
		x 10 ²			
TIME SAMPLED:		1215	·		
SAMPLE METHO	D: DOWN HOL		D PUMP 🔲	BAILER 🐼	OTHER
TYPE/MODEL:		Voss Technologies Disposabl			_
COMMENTS:	5			<u></u>	

Environmental Audit, Inc.

Planning Environmental Analyses and Hazardous Substances Management and Remediation

1000-A ORTEGA WAY PLACENTIA, CA 92670-7125

全 (714) 632 - 8521 ⋈ (714) 632 - 6754

	
DATE:	10/13/93
PROJECT NO.:	1233
	gomery Ward, Dublin
WELL NO.:	B-5
WELL DIAMETER (INCHES)	: 2"
SAMPLED BY:	CPD/jc

				15012-17-13	3
TOTAL DEPTH C	OF WELL (ft.):		2/	W	ELL VOLUME FACTORS
DEPTH TO FREE	PRODUCT (ft. b	gs.):		WELL (ASING ID (inches) VOLUME FACTOR
DEPTH TO GRO	UND WATER (ft.	bgs.):	2.05		2.0
	•		(103)		4.0 0.65 6.0 1.47
ONE CASING VO	LUME OF WATE	R CALCULATED USING THE	FOLLOWING:		1.77
21			95	.16	1.43
TOTAL DEPTH OF WELL		H TO WATER =	х	WELL YOLUME VOLUME FACTO	= ONE CASING R VOLUME OF WATER (GALLONS)
PURGE TIME:		ART 1640	STOP	1645	TOESING OF THE EX (OALLOSS)
		\	<u>-</u>	7,47,3	
PURGE METHOD		~ 	PUMP 🔲	BAILER 🔲 0	THER 🔲
TYPE/MODEL:		ES-40			
GALLONS	TEMP	CONDUCTIVITY		TURBIDITY	
PURGED	(°F)	(Micro-ohms/cm)	pН	(NTU)	REMARKS
2	69.5	8.86 × 102	3.08	15:68	
4	69.6	8.82 x 102	7.72	9.52	
6	69.5	8.81 x 102	1100	6.78	
8	69.5	8.82 x 102	1.07	5,45	
		x 10 ²			
		x 10 ²			
		x 10 ² x 10 ²			
		x 10 ²			
	<u> </u>	x 10 ²			
		x 10 ²			
		x 10 ⁷			
TIME SAMPLED:		1652	A COMPANY OF THE PROPERTY AND A STATE OF THE PARTY OF THE		or in the first than the second contraction of the second section of the second second second second second se
SAMPLE METHO	- L		ED PUMP 🗀	BAILER 🔀	OTHER 🗀
TYPE/MODEL:	_	Voss Technologies Disposal			······
COMMENTS:	ւ				

Environmental Audit, Inc.

Planning, Environmental Analyses and Hazardous Substances Management and Remediation

1000-A ORTEGA WAY PLACENTIA, CA 92670-7125 **全** (714) 632 - 8521 ⋈ (714) 632 - 6754

)		$\overline{}$
DATE:	10/14/93	
PROJECT NO.:	1233	
CLIENT: Montg	omery Ward, Dublin	
WELL NO.:	8-10	
WELL DIAMETER (INCHES):		
SAMPLED BY:	CPD/jc	

				12010111					
TOTAL DEPTH (OF WELL (ft.):	G	20		WELL VOLU	ME FACTORS			
DEPTH TO FREE PRODUCT (ft. bgs.): WELL CASING ID (inches) VOLUME FACT									
DEPTH TO GRO	UND WATER (fr.	. bgs.):	1.80		2.0	0.16			
	•	Ţ.			4.0 6.0	0.65 1.47			
ONE CASING VO	ONE CASING VOLUME OF WATER CALCULATED USING THE FOLLOWING:								
20			72	-14		.3/			
TOTAL DEPTH OF WELL		H TO WATER =	Х	WELL VOLUME FA	ME = ON Ctor voi	E CASING LUME OF WATER (GALLONS)			
PURGE TIME:		ART 1005	STOP	1015	_	•			
		<u> </u>		<u> </u>					
PURGE METHOD): DOWN HOLE	<u> </u>	ED PUMP 🔲	BAILER 🗌	OTHER 🗀				
TYPE/MODEL:		ES-40	·-··						
GALLONS	TEMP	CONDUCTIVITY		TURBIDITY		REMARKS			
PURGED	(°F)	(Micro-ohms/cm)	рН	(NTU)		VEWINDS .			
<i>⇒2</i>	69.3	8.92 x1	1-77	23.70					
4	69.7	8.97 X1	1 / 2 /	16.04	·				
6	69.8	8.97 x1	/- 3/	12.72	<u> </u>				
8	69.9	8.94 x1	1-04	9.54					
	!	x 1							
		x1			,				
		x1							
		x I							
		x 1	O ²						
		x1							
		x1	0 ²						
TIME SAMPLED		1020							
SAMPLE METHO	D: DOWN HOL	E PUMP DEDICA	TED PUMP 🔲	BAILER	OTHER 🗀	•			
TYPE/MODEL:		Voss Technologies Dispos	able						
COMMENTS:	•								

Environmental Audit, Inc.

Planning Environmental Analyses and Hazardous Substances Management and Remediation

1000-A ORTEGA WAY PLACENTIA, CA 92670-7125 **☎** (714) 632 - 8521 ⋈ (714) 632 - 6754

_		
DATE:	10/14/93	
PROJECT NO.:	1233	
CLIENT: Mont	gomery Ward, Dublin	
WELL NO.:	B-15	
WELL DIAMETER (INCHES)		
SAMPLED BY:	CPD/jc	

TOTAL DEPTH O	F WELL (ft.):		20.	64		WELL V	OLUME FACTORS
DEPTH TO FREE	PRODUCT (ft. b	gs.):			WEL		D (inches) VOLUME FACTOR
DEPTH TO GRO	UND WATER (ft.	bgs.):	12.	4/		2.0 4.0	0.16
			•			6.0	1.47
ONE CASING VO	LUME OF WATE	R CALCULATED US				<u>-</u> _	
20.64 TOTAL DEPTH OF WELL	- DEPTI	7. 4/ 1 TO WATER = VEL		23 X	WELL VOLUM VOLUME FAC	AE =	5.35 ONE CASING VOLUME OF WATER (GALLONS)
PURGE TIME:	STA	r	-	STOP	1547		TOLONIC OF TIMER (ONLEGIO)
PURGE METHOD): DOWN HOLE	PUMP X DE	DICATED	- Pump [_]	BAILER 🔲	OTHER []
TYPE/MODEL:	_	ES-40					-
GALLONS PURGED	TEMP (°F)	CONDUCTIVIT (Micro-ohms/c	-	рН	TURBIDITY (NTU)		REMARKS
5	69.4	8.56	x 10 ²	7.68	12.85		
10	69.3	8.69	x 10 ²	7.51	4.72		
15	69.3	8.69	x 10 ²	7.51	3. <i>3</i> /		
20	69.4	8.64	x 10 ²	7.53	2.87		
25	69.4	8.69	x 10 ²	7.51	2.74		
30	69.3	8.71	x 10 ²	7.53	2.7/		
			x 10 ²				
			x 10 ²				
			x 10 ²				
		-	x 10 ²	·			,
			x 10 ²				
			x 10 ²				
					STATE OF THE PROPERTY OF THE P		
TIME SAMPLED:	: [1550					
SAMPLE METHO	_			PUMP 🔲	BAILER 🔂	OTHER [`
TYPE/MODEL:	į,	Voss Technologies	Disposable	<u> </u>			

Environmental Audit, Inc.

Planning Environmental Analyses and Hazardous Substances Management and Remediation

1000-A ORTEGA WAY -PLACENTIA, CA 92670-7125 **全** (714) 632 - 8521 ⋈ (714) 632 - 6754

_		<u> </u>
DATE:	10/1.3/93	
PROJECT NO.:	1233	
CLIENT:	Montgomery Ward, Dublin	1
WELL NO.:	B-16	
WELL DIAMETER (IN		
SAMPLED BY:	CPD/jc	

						Till.	
TOTAL DEPTH O	F WELL (ft.):		<u>23</u>	.35		WELL V	OLUME FACTORS
DEPTH TO FREE	PRODUCT (ft. I	ogs.):			W	ELL CASING	ID (inches) VOLUME FACTOR
DEPTH TO GRO	UND WATER (fr.	bas.):	11.	98		2.0	0.16
	····· (···	-3/-	_///	77		4.0 6.0	0.65
ONE CASING VO	LUME OF WATE	R CALCULATED USIN	IG THE F	OLLOWING:			1.4/
23,35	1.	1.99	11.	36	.65	-	7.38
TOTAL DEPTH OF WELL		H TO WATER =		χ	WELL VOL		ONE CASING
PURGE TIME:		EVEL ART 1548	1	STOP	VOLUME F	ACTOR	VOLUME OF WATER (GALLONS)
TOROL IIML:	311	ART /548		3101	1614	i	
PURGE METHOD	: DOWN HOLE	PUMP X DED	ICATED I	PUMP 🗀	BAILER 🗀	OTHER [1
TYPE/MODEL:		ES-40					
							1
GALLONS	TEMP	CONDUCTIVITY	1	На	TURBIDITY		REMARKS
PURGED	(°F)	(Micro-ohms/cm	x 10 ²	•	(NTU)		
5	72.2	9.30		7.70	5.84		
10	72.8	9.16	x 10 ²	7.36	4.01		77.2.74
15	72.4	9.16		7.3/	2.49		
20	73-0	9.14	x 10 ²	7.26	2.12		-
25	728	9.13	x 10 ²	7.26	2.04		
30	72.0	9.11	x 10 ²	7.34	1,67		
35	718	9.11	x 10 ²	7.28	/.73		
40	71.6	9.10	x 10 ²	7.3/	1.58		
			x 10 ²				
			x 10 ²				
			x 10 ²				
			x 10 ²				
300000							
TIME SAMPLED:		1617					
SAMPLE METHO	D: DOWN HOL		DICATED	PUMP 🔲	BAILER X	OTHER	
TYPE/MODEL:		Voss Technologies D					
COMMENTS:	ι	·	•				

COMMENTS: _

Environmental Audit, Inc.

Planning Environmental Analyses and Hazardous Substances Management and Remediation

1000-A ORTEGA WAY PLACENTIA, CA 92670-7125 **≅** (714) 632 - 8521 ⋈ (714) 632 - 6754

)		=
DATE:	10/14/93	
PROJECT NO.:	1233	
CLIENT: Moi	ntgomery Ward, Du	ıblin
WELL NO.:	MW-100	9
WELL DIAMETER (INCHE		
SAMPLED BY:	CPD/jc	

			The state of the s				
TOTAL DEPTH C	F WELL (ft.):		28			WELL V	OLUME FACTORS
DEPTH TO FREE	DEPTH TO FREE PRODUCT (ft. bgs.):					LL CASING I	
DEPTH TO GRO	UND WATER (ft.	bgs.):	1.2	12		2.0 4.0	0.16
	·	•		762		4.0 6.0	0.65
ONE CASING VO	LUME OF WATE	R CALCULATED US	NG THE F	OLLOWING:			
28	_	2.12	15.	88	:45		10.32
TOTAL DEPTH OF WELL	- DEPT	H TO WATER =		Х	WELL VOLU VOLUME FA		ONE CASING VOLUME OF WATER (GALLONS)
PURGE TIME:		ART 1441		STOP	1505	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
				-1			
PURGE METHOD			DICATED	PUMP 🔲	BAILER 🔲	OTHER [1
TYPE/MODEL:		ES-40					
GALLONS	TEMP	CONDUCTIVIT	γ		TURBIDITY		
PURGED	(°F)	(Micro-ohms/cr		рН	(NTU)		REMARKS
5	70.3	9.28	x 10 ²	7.72	/3.80		
10	70.0	9.19	x 10 ²	7.50	8.24		
15	70.1	9.11	x 10 ²	7.38	8.15		
20	70.0	9.09	x 10 ²	7.29	7.75		
25	69.9	9.09	x 10 ²	7.29	5.44		
30	69.8	9.04	x 10 ²	7.28	3.42		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
35	69.9	9.00	x 10 ²	7.25	3,00		
40	70.0	8.98	x 10 ²	7.20	2.94		
			x 10 ² x 10 ²	·			
			x 10 ²	·			
			x 10 ²				
	A STANCTON	a car de distribuidad de la composición	Y 10	e takwikamenini India 	<u>ड्याक्ट्रक्ट्रक्ट्</u> रक्ट्रक्ट्रक्ट्रक्ट्र	y	
		use was was well as	and See of	ineadre electric		ADMINI DE C	
TIME SAMPLED:	:	1510					
SAMPLE METHO	D: DOWN HOL			PUMP 🔲	BAILER₩	OTHER (. ·
TYPE/MODEL:	Ţ.	Voss Technologies	Disposabl	e			

Environmental Audit, Inc.

Planning Environmental Analyses and Hazardous Substances Management and Remediation

1000-A ORTEGA WAY PLACENTIA, CA 92670-7125 **全**. (714) 632 - 8521 ⋈ (714) 632 - 6754

DATE:	10/1_3/93	
PROJECT NO.:	1233	Ĩ
CLIENT: Montg	omery Ward, Dublin	
WELL NO.:	MW-101	
WELL DIAMETER (INCHES):	4"	
SAMPLED BY:	CPD/jc	

					JAMIN LLD DI		1 11-	
						IO V		
TOTAL DEPTH (TOTAL DEPTH OF WELL (ft.): WELL VOLUME FACTORS							
DEPTH TO FREE	PRODUCT (ft.)	ogs.):		_	WEL	L CASING ID (i	nches) VOLUME FACTOR	
DEPTH TO GRO	•	- •				2.0	0.16	
DEI III 10 GRU	OND MAILK (III.	ugs./:				4.0	0.65	
ONE CASING VO	LUME OF WATE	R CALCULATED USI	NG THE F	OLLOWING:		6.0	1.47	
28		//	/	7	-45		11-05	
TOTAL DEPTH OF WELL		H TO WATER =		χ	WELL VOLUM VOLUME FAC		ONE CASING VOLUME OF WATER (GALLONS)	
PURGE TIME:	STA	ART 17/3	2	STOP	1736			
		7778		.				
PURGE METHOD): DOWN HOLE	PUMP 🗶 DEC	OCATED I	PUMP 🔲	BAILER 🗀	OTHER 🔲		
TYPE/MODEL:		ES-40						
,								
GALLONS	TEMP	CONDUCTIVITY		рН	TURBIDITY		REMARKS	
PURGED	(°F)	(Micro-ohms/cm	·	hu	(NTU)		ALIIS (CA)	
2	68.5	9.48	x 10 ²	8.16	9.79			
10	68.6	9.44	x 10 ²	7.64	8.63			
15	68.3	9.40	x 10 ²	7.56	10.61			
20	68.4	9.42	x 10 ²	7.54	19.1			
25	68.5	9.42	x 10 ²	7. 47	38.4			
30	68.3	9.43	x 10 ²	7.49	<i>39.</i> 3			
35	68.2	9.40	x 10 ²	7.50	24.7			
40	68.1	9.41	x 10 ²	7.50	ير 23./	·		
			x 10 ²	***				
			x 10 ²		_			
		-	x 10 ²					
			x 10 ²					
					SIGNED TEST			
	Γ	THE WILLIAM SERVICES		nentral and a deliver	De comme de la Contraction de			
TIME SAMPLED	:	1740						
SAMPLE METHOD: DOWN HOLE PUMP DEDICATED PUMP BAILER DOTHER D								
TYPE/MODEL:	Į	Voss Technologies D)isposabl	e				
COMMENTS.								

Environmental Audit, Inc.

Planning Environmental Analyses and Hazardous Substances Management and Remediation

1000-A ORTEGA WAY PLACENTIA, CA 92670-7125

SAMPLE METHOD: DOWN HOLE PUMP

TYPE/MODEL: COMMENTS: _

全 (714) 632 - 8521 ⋈ (714) 632 - 6754

	3		\mathcal{C}
	DATE:	10/14/93	
	PROJECT NO.:	1233	
>	CLIENT: Montgo	omery Ward, Dublin	
	WELL NO.:	MW-102	
	WELL DIAMETER (INCHES):	4"	
	SAMPLED BY:	CPD/jc	

					SAMPL	בט פו:	CI DI L
					<u> </u>		
TOTAL DEPTH O)F WELL (ft.):		ړي	7		WELL \	OLUME FACTORS
DEPTH TO FREE	PRODUCT (ft. l	ogs.):			_		ID (inches) VOLUME FACTOR
DEPTH TO GRO	UND WATER (ft.	bgs.):	1/1	57		2.0 4.0	0.16
	·	- ,				4.0 6.0	0.65
ONE CASING VO	LUME OF WATE	R CALCULATED USI	NG THE F	OLLOWING:	L		
28		1.57	16.	43	_	5	10.7
TOTAL DEPTH OF WELL	- DEPT Le	H TO WATER =		Х		VOLUME = NE FACTOR	ONE CASING VOLUME OF WATER (GALLONS)
PURGE TIME:	STA	ART 1050	}	STOP	11 1		,
		7	•				
PURGE METHOD			ICATED	PUMP 🔲	BAILER (OTHER []
TYPE/MODEL:	Į	ES-40					
GALLONS	TEMP	CONDUCTIVITY			TURBID	ITY	DEM VDIAC
PURGED	(°F)	(Micro-ohms/cm	}	рН	(NTU)	}	REMARKS
5	69.3	8-49	x 10 ²	7.65	37.	4	
10	70.4	8.55	x 10 ²	7.34	<i>20.</i>	3	
15	70.5	8.58	x 10 ²	7.33	24,	7	
20	70.9	8.60	x 10 ²	7.29	25.	1	
25	70.8	8.61	x 10 ²	7.30	19.		
30	70.6	8.59	x 10 ² x 10 ²	7.29	15.		
35	70.7	8.58	x 10 ²	7.29	14.	1	
40	70.5	8.58 8.59	x 10 ²	7.33 7.34	10.		
73	70.5	9.3/	x 10 ²	1.37	/0	73	
			x 10 ²				· · · ·
-			x 10 ²		,		
				Server of the se	TECO :	क्षा का स्थापना स्थापन स्थापना स्थापना स्थापन	
			za dezer		de la companya de la	marker rades	
TIME SAMPLED:	: [_	1/20					

DEDICATED PUMP

Voss Technologies Disposable

BAILER 🔀

OTHER

APPENDIX B

Chain of Custody Record Forms

FA	`					Audit						(Ch	a	in	0	f	C	U:	stod	y F	Rec	or	d	
						nalyses and nt and Rem				us	S/	MPLI	NG R	EQUI	REMEN	VTS:	RC	RA [1	NPDES 🔲	SDWA	8)		C]
$1 \setminus 1 $	/	1000-	A OR	TEGA WA	Y	2 (714) 632	2 - 8	352	1	- 1		EN Q		ORŢ	TT	URNA	NROL	JND	TIME:					
				4, CA 926	70-7125	⊠ (714) 632	2 - 6	5754	4					AME	ME DAY 🗀		24hr 🗌	481	ır 🔲	NORM	Vr (<u>X</u>)			
PROJECT NO. 1233		F	N	T NAME Nontgome Iublin	ry Ward,		TYP				-	ANA		REQU	JESTEI) 			E8			MARKS			
SAMPLER: (Signature)	-	h	£		JECT MANA rank Mur			S TUBE	8015M	TPH-G 8015M TRPH 418.1	2) 8020	25 8270	REASE ETALS TOT WEI						R OF CONTAINERS	Call at EA		s d'Sa any		stion	s
SAMPLE NUMBER DA	ATE	TIME	COMP	SAM	PLE DESCRIP	TION	GLASS	BRASS/ S	OFF!	TRPH 41	99 ETTE (60	FOG 6	OIL & G	LEAD					NUMBER						
B-16 101	13 /93	1617		Wat	er		\mathbb{Z}		_/		/			Λ	3	100	180	07	P-			lastic Bo DA Vials			
B-5 10	13	1652					\mathbb{Z}		_/					\mathbb{A}			80	08	3	}					
MW-101 10	(13	1740					M							Λ			80	49	3						
	414	1090					1//	1	/	1				Λ			8	<i>1</i> 0	3						
EFFLUENT O	14	1040					\mathbb{Z}	_	_/	/	/			1			8	7	3						
MW-102 10	3/14	1120			,		//			/	$/\!\!\!\perp$			$/\!$			8	12	3						
MW-3 10	14	ાટાક		V	/		W		/								WUK	73	3	Ψ	V				
RELINQUISHED BY: (Sign	nature			DATE/TIME	RECEIVED	BY: (Signature)				RELIN	OUIS	HED	BY; (S	ignat	OF	ĆŎŊ	<u>ITAIN</u>	<u>ERS</u>	TIME	RECEIVE	:D BY: (Signatur	e)		
REUNOUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature)			******			RELIN	auis 1	UISHED BY: (Signature)				D	DATE/TIME		RECEIVE	RECEIVED BY: (Signature)									
SAMPLES SHIPPED VIA: SHIPPED BY: (Signature) FEDEX UPS AIRBORNE BUS HAND (X)			Y: (Signature)	•			COURTER: (Signature)					m	Meliuse Chusel 5 pw			19									

E.		En	vir	onn	nen	tal /	Audit	·,	lr	C.	®)		(Cł	10	ir	1	ol	F (Cı	US	stody	/ Re	COI	rd	
$(\mathbf{L}\mathbf{\Delta}_{\mathbf{I}}$	r)						lyses and and Rem				ou	s	sA	MPU	ING	REO	UIRE	VEN.	r s :	RCF	v □) N	IPDES \S	DWA ()			_
1		1000-	A OF	RTEGA 1 IA, CA 9	WAY	-	2 (714 ⊠ (714) 63	32 -	852	21 54		RC	IITUC	EN C	ac 🛭	_	Г			ROU		IME: 24hr 🔲	48hr 🗀	NORA	NVT 🗵	
PROJECT NO. 1233	•	1	1	T NAME Montgoi Dublin	mery W	/ard,			ONT PE	R	,		ANALYSES REQUESTED				<u>8</u>			REMARKS							
SAMPLER: (Signature)	 					t MANAGE ik Muran			i c	S 108E	3015M	8.1	2) 8020 :4 8240	5 8270	1	IALS IOI WEI		,				R OF CONTAINERS		Chris d'S if any		stions	i
SAMPLE NUMBER	DATE	TIME	COMP GRAB		SAMPLE (DESCRIPTIC	N	GIASS	PLASTIC.	TPH-D 8015M	TPH-G 8015M	TRPH 418.1	BTEX 602) 802(VOCs 624 824(EOCs 62	OIL & GF	EAD ME						NUMBER					
MW-1 18	9/14 /93	1240		٧	Vater													3	0)\$ {	74	34	One 1- two 40	Liter Plastic I -ml VOA Via	offie (le s (BTEX)	ad) /TPH)	
MW-2	10/14	1315						//	7			,								87	5	3]				
MW-100	10/14	1510				,		/	7											87	0	3					
B-15	10/14	1550		,			ı		/				/							87	7	3	1				
B-12	1414	1640		V			1	$\sqrt{}$	/		/							`		87	8	3	Λ /	Ju .			
						. 1												IOI		INZER	50						
REUNQUISHED BY: (S	Signatur	e)		DATE/TII	ME RE	CEIVED BY:	(Signature)				RI	EUNC	OUISI	ΗED	BY:	(Sign	nature	OF C	IL NI ONT		RS TE/TI		RECEIVED	BY: (Signati	ire)		
REUNQUISHED BY: (S	ilgnatur	e)		DATE/TII	ME RE	CEIVED BY:	(Signature)	•			RE	ELINC	DUISI	łЕD	BY:	(Sign	nature	1	·· <u>·</u> ·	DΛ	TE/T	IME	RECEIVED	BY: (Signati	ıre)		
SAMPLES SHIPPED VIA: FEDEX UPS ARBORNE BUS HAND \						C	OURI	ER: (Signa	ature	:i \\\	(()		•	REC	Vx.	الم	OR BY; ISIgn	luxer	<u></u>	DATE/TIM ICHY! 5 pv						

APPENDIX C

Monitoring Well Survey Data

October 14, 1993 Job No. 93557

Monitoring Well Survey Table of Coordinates and Elevations Montgomery Ward Site 7575 Dublin Boulevard Dublin, California

<u>Well No.</u>	Northing	Easting	Elevation	
MW-1	4903.95	4922.70	336.29 335.84	Top North rim of box at punch mark Top of PVC casing at notch
MW-2	4575.17	4812.34	336.09 335.61	Top North rim of box at punch mark Top of PVC casing at notch
MW-3	4956.92	4806.92	337.48 336.93	Top North rim of box at punch mark Top of PVC casing at notch
MW-100	5006.17	4622.54	339.92 339.61	Top North rim of box at punch mark Top of PVC casing at notch
MW-101	5130.19	4765.11	338.75 338.54	Top North rim of box at punch mark Top of PVC casing at notch
MW-102	4972.23	4526.57	339.52 339.23	Top North rim of box at punch mark Top of PVC casing at notch
B-5	5076.96	4439.62	340.45 340.05	Top North rim of box at punch mark Top of PVC casing at notch
B-10	5062.84	4457.80	340.23 339.70	Top North rim of box at punch mark Top of PVC casing at notch
B-12	5123.86	4425.88	339.97 339.10	Top North rim of box at punch mark Top of PVC casing at notch
B-15	5178.24	4418.93	341.29 340.62	Top North rim of box at punch mark Top of PVC casing at notch
B-16	5100.74	4517.07	340.37 339.82	Top North rim of box at punch mark Top of PVC casing at notch

Benchmark:

City of Dublin benchmark. "DUB-680" "T" painted yellow on top center Northerly concrete curb above D.I. located 0.60 miles Easterly along Dublin Blvd. from San Ramon Road; 121.5 feet Westerly of centerline I-680 measured along the Northerly curb line of Dublin Blvd. and $43\pm$ feet Northerly of Old centerline of Dublin Blvd.

Elevation = 331.60 M.S.L.

APPENDIX D

Laboratory Reports Environmental Audit 1000-A Ortega Way

Placentia, CA 92670 Attention: Frank Muramoto Barramanaran merangkar lak bermalah kebuangkan di Arabah berma

Client Project ID: Montgomery Ward 1233

Sample Matrix: Water

EPA 5030/8015/8020 Analysis Method:

First Sample #: 310-0867

Sampled: Oct 13 & 14/93 Received:

anga ag dagnatifigarah bi filikan garsasah di di libi debibi bi bi bilaga tiban kan banga bi bir di bibi. Bi

Oct 14, 1993 Reported: Oct 29, 1993

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 310-0867 B-16	Sample I.D. 310-0868 B-5	Sample I.D. 310-0869 MW-101	Sample I.D. 310-0870 B-10	Sample I.D. 310-0871 EFFLUENT	Sample I.D. 310-0872 MW-102
Purgeable Hydrocarbons	50	390	4,500	N.D.	100,000	N.D.	24,000
Benzene	0.5	11	530	0.65	720	N.D.	9.6
Toluene	0.5	2.4	46	0.89	120	N.D.	5.2
Ethyl Benzene	0.5	16	490	N.D.	930	N.D.	60
Total Xylenes	0.5	45	350	1.1	1,100	0.97	60
Chromatogram Pat	tern:	Gasoline	Gasoline		Gasoline		Gasoline

Quality Control Data

Report Limit Multiplication Factor:	1.0	20	1.0	50	1.0	50
Date Analyzed:	10/21/93	10/21/93	10/21/93	10/21/93	10/21/93	10/21/93
Instrument Identification:	ML #2					
Surrogate Recovery, %: (QC Limits = 70-130%)	109	106	105	112	103	117

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Karen L. Enstrom Project Manager

Environmental Audit Client Project ID: 1000-A Ortega Way Placentia, CA 92670

Sample Matrix:

Montgomery Ward 1233 Water

Sampled: Received:

Oct 13 & 14/93 Oct 14, 1993

Attention: Frank Muramoto First Sample #: 310-0873

Analysis Method:

EPA 5030/8015/8020

Reported:

Oct 29, 1993

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 310-0873 MW-3	Sample I.D. 310-0874 MW-1	Sample I.D. 310-0875 MW-2	Sample I.D. 310-0876 MW-100	Sample I.D. 310-0877 B-15	Sample I.D. 310-0878 B-12
Purgeable Hydrocarbons	50	2,600	5,700	N.D.	7,500	N.D.	11,000
Benzene	0.5	26	76	N.D.	48	0.96	710
Toluene	0.5	30	19	N.D.	16	2.6	170
Ethyl Benzene	0.5	130	460	0.71	900	1.3	650
Total Xylenes	0.5	100	160	1.1	520	3.6	1,600
Chromatogram Pat	tern:	Gasoline	Gasoline		Gasoline	Gasoline	Gasoline

Quality Control Data

Report Limit Multiplication Factor:	20	20	1.0	20	1.0	10
Date Analyzed:	10/22/93	10/22/93	10/21/93	10/22/93	10/22/93	10/22/93
Instrument Identification:	ML #2					
Surrogate Recovery, %: (QC Limits = 70-130%)	104	103	96	100	90	120

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Karen L. Enstrom **Project Manager**

Environmental Audit 1000-A Ortega Way

Placentia, CA 92670 Attention: Frank Muramoto Client Project ID:

Montgomery Ward 1233

Sample Descript: Water Analysis for: Lead First Sample #: 310-0867

Sampled: Oct 13 & 14/93 Received: Oct 14, 1993 Extracted:

Oct 27, 1993 Analyzed: Oct 28, 1993¹ Reported: Oct 29, 1993 År der register komber der militare bereiter bereiter det bereiter beste beste

LABORATORY ANALYSIS FOR: Lead

Sample Number	Sample Description	Detection Limit mg/L	Sample Result mg/L	
310-0867	B-16	0.020	0.021	
310-0868	B-5	0.020	N.D.	
310-0869	MW-101	0.020	N.D.	
310-0870	B-10	0.020	N.D.	
310-0871	EFFLUENT	0.020	0.048	
310-0872	MW-102	0.020	N.D.	
310-0873	MW-3	0.020	N.D.	
310-0874	MW-1	0.020	N.D.	
310-0875	MW-2	0.020	0.021	
310-0876	MW-100	0.020	0.022	
310-0877	B-15	0.020	0.025	
310-0878	B-12	0.020	N.D.	

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

karen L. Enstrom Project Manager

Environmental Audit 1000-A Ortega Way Placentia, CA 92670

Client Project ID: Montgomery Ward 1233

Matrix: Water

Attention: Frank Muramoto

QC Sample Group: 3100867-878 Protestabanalaine en etroporor de perecoarbaira de localor protectura e escolor de electro de electro de protesta de electro de elec

Reported: Oct 29, 1993

QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl-			
	Benzene	Toluene	Benzene	Xylenes	Lead	
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	EPA 200.7	
Analyst:	J.D.	J.D.	J.D.	J.D.	K.A.	
Conc. Spiked:	20	3.D. 20	3.D. 20	5.D. 60	0.10	
Units:	μg/L	μg/L	μg/L	μg/L	mg/L	
LCS Batch#:	GBLK102193	GBLK102193	GBLK102193	GBLK102193	BLK102793	
					MS-1	
Date Prepared:	10/21/93	10/21/93	10/21/93	10/21/93	10/27/93	
Date Analyzed:	10/21/93	10/21/93	10/21/93	10/21/93	10/28/93	
nstrument I.D.#:	ML #2	ML #2	ML #2	ML #2	Liberty 100	
LCS %						
Recovery:	108	101	104	105	101	
Control Limits:	±30	±30	±30	±30	75-125	

MS/MSD Batch #:	G3100871	G3100871	G3100871	G3100871	3100867
Date Prepared:	10/21/93	10/21/93	10/21/93	10/21/93	10/27/93
Date Analyzed:	10/21/93	10/21/93	10/21/93	10/21/93	10/28/93
Instrument I.D.#:	ML #2	ML #2	ML #2	ML #2	Liberty 100
Matrix Spike % Recovery:	135	125	130	130	103
Matrix Spike Duplicate % Recovery:	120	110	110	112	72
Relative % Difference:	12	13	17	15	35

SEQUOIA ANALYTICAL

Karen L. Enstrom Project Manager

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery data is used for validation of sample batch results. Due to matrix effects, the QC limits for MS/MSD's are advisory only and are not used to accept or reject batch results.