ANTON EMERYVILLE, LLC

950 Tower Lane, Suite 1225, Foster City CA 94404 Office 650-549-1600.Email hello@AntonDev.com.

July 21, 2017

RECEIVED

By Alameda County Environmental Health 8:37 am, Aug 01, 2017

Alameda County Department of Environmental Health 1131 Harbor Bay Parkway Alameda, California 94502-6577

Attention: Mr. Mark Detterman, PG, CEG, Senior Hazardous Materials Specialist

TRANSMITTAL LETTER SUPPLEMENTAL OFF-SITE SUBSURFACE INVESTIGATION REPORT 6701, 6705, and 6707 SHELLMOUND STREET EMERYVILLE, CALIFORNIA Fuel Leak Case No. RO0000548 Geotracker Global ID T0600100894

Dear Mr. Detterman:

Submitted herewith for your review is the Supplemental Off-Site Subsurface Investigation Report, 6701, 6705, and 6707 Shellmound Street, Emeryville, California dated July 6, 2017, prepared by PES Environmental, Inc.

I have read and acknowledge the content, recommendations and/or conclusions contained in the attached document or report submitted on my behalf to ACDEH's FTP server and the SWRCB's GeoTracker website.

Very truly yours,

ANTON EMERYVILLE, LLC

Rachel Green Senior Development Manager

A Report Prepared For:

Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

SUPPLEMENTAL OFF-SITE SUBSURFACE INVESTIGATION REPORT 6701, 6705, AND 6707 SHELLMOUND STREET EMERYVILLE, CALIFORNIA FUEL LEAK CASE NO. RO0000548 GEOTRACKER GLOBAL ID T0600100894

JULY 6, 2017

By:

Christopher J. Baldassari, P.G. No. 8920 Senior Geologist

Kyle S. Flory, P.G. No. 6472 Principal Geologist

1448.001.03.002

TABLE OF CONTENTS

LIST OF TABLESiii
LIST OF ILLUSTRATIONSiii
1.0 INTRODUCTION1
2.0 BACKGROUND INFORMATION 2 2.1 Site Geology and Hydrogeology 2
3.0 INVESTIGATION METHODS
4.0 RESULTS
5.0 SUMMARY AND CONCLUSIONS85.1 Summary and Discussion of Findings85.2 Conclusions and Recommendations9
6.0 REFERENCES

TABLES

ILLUSTRATIONS

APPENDICES A – ALAMEDA COUNTY PUBLIC WORKS AGENCY DRILLING PERMITS

B – SOIL BORING AND WELL CONSTRUCTION LOGS

C – LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

D – PERTINENT DATA FROM PREVIOUS INVESTIGATION

DISTRIBUTION

LIST OF TABLES

Table 1	Soil Vapor Probe Installation and Analytical Program
Table 2	Summary of Soil Vapor Monitoring Probe Construction Details
Table 3	Summary of Soil Vapor Analytical Results
Table 4	Summary of Soil Vapor Leak Check Results

LIST OF ILLUSTRATIONS

Plate 1	Site Location
Plate 2	Supplemental Off-Site Soil Vapor Sample Results – Vinyl Chloride

PES Environmental, Inc.

1.0 INTRODUCTION

This report has been prepared by PES Environmental, Inc. (PES) on behalf of Anton Emeryville, LLC (Anton) to present the results of a supplemental off-site subsurface investigation conducted at the 6601-6603 Shellmound Street property in Emeryville, California. The off-site building is located adjacent to the southern property boundary of the 6701-6707 Shellmound Street property (the subject property or site). The subject property consists of a single legal parcel identified by Alameda County Assessor's Parcel Number (APN) 049-14906-02, covering approximately 2.27 acres. The site location is shown on Plate 1.

The subject property is currently listed as an open Spills, Leaks, Investigation and Cleanup (SLIC) case under a former site occupant (Mike Roberts Color Production) using the former site address of (6707 Bay Street) with Alameda County Environmental Health (ACEH) as the lead environmental regulatory agency. PES is assisting Anton in working with ACEH to obtain SLIC case closure as part of the site redevelopment process. PES understands Anton is seeking to acquire the site for redevelopment purposes and the development plans include demolition of existing buildings; grading and soil excavation for utilities and building foundations; and construction of a new multi-story multi-use building and associated parking, driveway, and landscaped areas.

Numerous investigations have been conducted at the subject property to assess conditions in soil, soil gas, and groundwater as part of pre-construction site characterization activities. On behalf of Anton, PES conducted an off-site subsurface investigation in October 2016 at the 6601-6603 Shellmound Street property. The off-site investigation was conducted in accordance with PES' *Work Plan for Off-Site Subsurface Investigation* dated August 29, 2016 (PES, 2016f) and conditionally approved in a letter from ACEH dated September 4, 2015. The primary objective of the off-site investigation included delineation of the extent of volatile organic compound (VOC) contamination, primarily vinyl chloride, affecting soil, soil gas, and groundwater at the 6601-6603 Shellmound Street property.

After completion of the off-site investigation, implementation of an interim remedial measure (IRM) consisting of soil vapor extraction (SVE) commenced November 8, 2016 under a Bay Area Air Quality Management District (BAAQMD) permit and ACEH approval of operation of the SVE system (ACEH, 2016b). The utilization of SVE as an IRM was conducted to reduce concentrations of VOCs in the subsurface prior to, and possibly during, the initiation of the planned development activities and to reduce potential exposure to future site users. Based on concentrations below site-specific risk-based concentrations, the SVE system was shut down on February 28, 2017 to permit assessment of vapor rebound VOC concentrations. Vapor rebound sampling was conducted on June 1, 2017; based on indications of rebounding vapor concentrations in select wells, PES recommended that the SVE system be restarted and operated for approximately one week per month to limit potential repropagation of pre-SVE subsurface vapor conditions (PES, 2017b).

The results of the off-site subsurface investigation were presented in a report entitled *Off-Site Sub-Surface Investigation Report* dated December 21, 2016 (PES, 2016g; Off-Site Report). Subsurface conditions with respect to the magnitude and horizontal and vertical extent of VOCs at the western portion of the off-site property were substantially characterized. With the exception of chlorinated VOCs (in particular, vinyl chloride), the laboratory analytical detections of VOCs and lithologic observations were generally consistent with the known presence of fill material in the site vicinity. As noted in the Off-Site Report (and shown in Plate 5a, presented in Appendix D), there were several locations where detected concentrations of vinyl chloride in soil gas (one location at 5 feet below ground surface (bgs) [(PSV10], and three locations at 10 feet bgs [PSV1, PSV6, and PSV10]) exceeded the Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) Environmental Screening Level (ESL) for vapor intrusion for a commercial setting. As such, additional investigation was recommended to laterally define concentrations of vinyl chloride-affected soil vapor.

The supplemental off-site investigation tasks described herein were conducted in accordance with methods and procedures presented in PES' *Draft Corrective Action Plan* (PES, 2017a; Draft CAP). Implementation of the supplemental off-site investigation work was approved by Alameda County Environmental Health (ACEH) in correspondence dated February 2, 2017 (ACEH, 2017).

2.0 BACKGROUND INFORMATION

The existing building at 6601-6603 Shellmound Street was constructed in 1959 with a slab-on-grade concrete flooring and pre-fabricated exterior concrete walls. The exterior of the property consists of asphalt paved parking and driving areas on the south and west sides of the building.

Available historical information indicates the building was initially in use as a warehouse and wholesale distribution facility for sugar and liquor items. The original warehouse building was converted to office space during various renovations performed between the 1970s to 1990s. Beginning in 1998 and continuing presently, the site is occupied by the Ex'pression College for Digital Arts.

2.1 Site Geology and Hydrogeology

The off-site investigation identified subsurface soil generally consistent with the findings of previous investigations conducted at the subject property.

Sandy and gravelly clay and sandy and gravelly silt were encountered across the site to depths up to 9 feet bgs, underlain in portions of the site by dark green to black clay of medium to high plasticity. Lenses of fine-to coarse-grained gray to black sand and gravelly sand were also observed within the fine-grained material in most borings. Variable amounts of wood debris, asphaltic and tar-like materials, glass, brick, and concrete were encountered at various depths.

144800103R006.docx

Observations recorded during the off-site investigation, including the presence of hydrocarbon-enriched fluids observed within fill materials, are consistent with the widespread presence of artificial fill within the vicinity containing abundant quantities of debris.

Saturated soil (indicative of shallow groundwater level) was encountered during the October 2016 off-site investigation at depths ranging from approximately 12.5 to 16 feet bgs.

3.0 INVESTIGATION METHODS

On May 30 and 31, 2017, soil vapor sampling activities, and installation of permanent multi-depth vapor monitoring probes was conducted using direct push drilling methods at six locations at the off-site property, as shown on Plate 2. To minimize potential disturbance to the occupants while conducting intrusive investigation activities, the investigation was conducted outside of normal business hours (e.g., from 12:00 a.m. to 8:00 a.m.).

Supplemental investigation activities included:

- Installing and sampling 2 temporary soil vapor probes (PSV12 and PSV13) at two exterior locations adjacent to the off-site building (Plate 2); and
- Installing permanent multi-depth soil vapor monitoring probes (with vapor probe inlets at 5 and up to 9 feet bgs) at four locations inside the 6601-6603 Shellmound Street building.

The preliminary field activities, sampling and analytical methods, and investigation results are discussed below. Drilling and sampling activities were conducted with oversight by a licensed California Professional Geologist.

3.1 Field Preparation Activities

Drilling and sampling activities were conducted in accordance with the Site-specific Health and Safety Plan conforming to applicable federal, California Occupational Safety and Health Administration (OSHA) and Title 29 CFR 1910.120 guidelines. Drilling permits were obtained from the Alameda County Public Works Agency, Water Resources Section (ACPWA). Copies of the drilling permits are presented in Appendix A.

PES contacted Underground Service Alert (USA North) before beginning drilling activities to locate and mark utilities at the site. C. Cruz Locators, Inc., of Milpitas, California was retained to clear the boring locations for subsurface utilities, and Pacific Coast Cutters, Inc. of Petaluma, California, was retained to core the concrete slab at interior locations in advance of drilling activities.

Environmental Control Associates (ECA) of Aptos, California, a drilling contractor possessing a valid C-57 water well contractor's license issued by the State of California, was retained to install the permanent and temporary soil vapor probes.

3.2 Soil Vapor Field Activities

Soil vapor sampling activities were conducted in accordance with procedures outlined in the guidance document titled *Advisory – Active Soil Gas Investigations* (ASGI; DTSC, 2015).

3.2.1 Temporary Soil Vapor Probe Installation, Sampling, and Analysis

On May 31, 2017, ECA utilized a truck-mounted direct push Geoprobe[™] drilling rig to install temporary soil vapor probes PSV-12 (7 feet bgs) and PSV-13 (5 and 8 feet bgs). Due to saturated conditions identified at approximately 8 feet bgs at PSV12, the soil vapor probe was installed at 7 feet bgs; based on saturated conditions identified at approximately 9 feet bgs at PSV13, the deeper soil vapor probe was installed at 8 feet bgs.

Soil samples were collected continuously for lithologic description, field screening for VOCs using a photoionization detector (PID). Reusable drilling and soil sampling equipment coming in contact with subsurface material were decontaminated between sampling points using an Alconox[™] wash and potable water rinse.

Upon reaching the target depth, a new ceramic soil vapor probe was placed within a filter pack constructed with #2/12 sand extending 3 inches above and below the sampling interval, and attached to $\frac{1}{4}$ -inch diameter TeflonTM tubing extending to ground surface. One-foot of dry granular bentonite was placed on top of the sand pack to preclude the infiltration of hydrated bentonite grout into the sand pack. The borehole annular space between above the dry granular bentonite was filled with hydrated bentonite.

A shallower soil vapor probe was installed within the same borehole at PSV13. The shallow ceramic probe tip was placed at approximately 5 feet bgs within a #2/12 sand pack extending 3 inches above and below the sampling interval, and attached to $\frac{1}{4}$ -inch diameter TeflonTM tubing extending to ground surface. One-foot of dry granular bentonite was placed on top of the sand pack. The borehole annular space from approximately 3.75 feet bgs to ground surface was filled with hydrated bentonite. The upper end of the tubing for each probe was capped with a vapor-tight fitting and marked at the surface to identify the probe location and depth. Boring logs and soil vapor probe construction details are included in Appendix B.

Each soil vapor probe was allowed to equilibrate for a minimum of two hours after installation. Prior to purging and collecting the soil vapor samples, shut-in leak testing, as described above in Section 3.2.1, was performed.

The volume of the sampling tubing, soil vapor probes, and sand pack void space was then calculated and a minimum of three volumes were purged using a six-liter SUMMA[™] canister prior to collecting each soil vapor sample.

Following completion of the shut-in leak test and purging, sample train leak testing was performed using helium gas as a tracer in combination with a shroud box.

Upon completion of soil vapor sampling activities, the probes and annular materials were removed to the total installed depth using the direct push drilling rig, each boring was filled to the ground surface with neat cement grout, and the surface was restored using concrete to match the surrounding material.

A total of three soil vapor samples were transported to TestAmerica Laboratories, Inc. (TestAmerica) of Pleasanton, California, a state-certified analytical laboratory, under chain-of-custody protocol for analysis for vinyl chloride using U.S. Environmental Protection Agency (EPA) Test Method TO-15 and helium using ASTM Test Method D1946.

3.2.2 Installation of Permanent Soil Vapor Monitoring Probes

Eight (8) soil vapor monitoring probes were installed at four locations (PSGP1 through PSGP4), as shown on Plate 2. Installation procedures are summarized below. Soil vapor monitoring probe lithologic logs and construction details are presented in Table 2 and Appendix B.

Two probes were nested within each boring. The borings were continuously cored using a track-mounted, direct-push drill rig by driving a 4-foot long by 2-inch outside-diameter sampler into undisturbed soil. A PES geologist supervised the drilling activities and prepared field lithologic and well completion logs.

The monitoring probes were constructed using Geoprobe AT86 vapor sampling implants with a 6-inch screen length. A total of four (4) shallow vapor monitoring probes were placed with screened intervals from at approximately 4.75 to 5.25 feet bgs (PSGP1-5.0 through PSGP4-5.0). A total of four (4) deeper vapor monitoring probes were installed at depths between 7 and 9 feet bgs. The deeper probes were installed shallower than the planned 10-foot bgs screened midpoint due to saturated soil conditions observed during continuous core drilling. As shown in Table 2 and Appendix B, PSGP1 was screened from 8.75 to 9.25 feet bgs; PSGP2 was screened from 7.75 to 8.25 feet bgs; and PSGP3 and PSGP4 were screened from 6.75 to 7.25 feet bgs.

Each soil vapor probe was fitted with 0.25-inch outside-diameter nylon tubing. The filter pack consisted of No. 3 sand extending 3 inches below to 6 inches above the top of each screened probe interval. Uncoated bentonite chip seals were placed between each filter pack interval and subsequently hydrated. A bentonite-cement seal was placed from the top of the shallow probe filter pack to the surface. Each monitoring probe was labeled and fitted with a compression fitting, and a flush-mounted aluminum 2-inch diameter by 6-inch deep well box was installed.

As noted in the Draft CAP (PES, 2017a), the off-site soil vapor monitoring probes will provide data suitable for assessing SVE influence in areas to the south of the on-site SVE system. Based on the planned future operation of the SVE system (e.g., one week of operation per month; PES, 2017b), PES anticipates collecting vacuum measurements to further assess SVE influence on the subsurface from the permanent multi-depth probes. PES further anticipates collection and analysis of soil vapor samples after final shut down of the on-site SVE system.

3.3 Decontamination and Waste Management

Reusable downhole drilling and sampling equipment used for soil, soil vapor, and groundwater sampling were cleaned using an Alconox[™] wash and triple rinsed before use. Upon completion of sampling activities, each borehole was grouted to the ground surface with neat cement grout in accordance with ACPWA requirements, and the surface was restored using concrete dyed to match the surrounding material. Investigation-derived waste (IDW) from the drilling activities was stored in secured, labeled 55-gallon steel drums pending profiling and off-site disposal.

4.0 RESULTS

The results of the supplemental off-site subsurface investigation activities are summarized below. Laboratory analytical reports and chain-of-custody documents for soil vapor samples collected from the soil vapor probes are presented in Appendix C.

4.1 Off-Site Subsurface Physical Conditions Observations

The off-site investigation identified subsurface soil generally consistent with the findings of previous investigations conducted at the subject property. Soil boring/well construction logs are presented in Appendix B.

Sandy and gravelly clay and sandy and gravelly silt were encountered across the site to depths up to 9 feet bgs, underlain in portions of the site by dark green to black clay of medium to high plasticity. Lenses of fine-to coarse-grained gray to black sand and gravelly sand were also observed within the fine-grained material in most borings. Variable amounts of wood debris, asphaltic and tar-like materials, glass, brick, and concrete were encountered at various depths. Observations recorded during the off-site investigation were consistent with the widespread presence of artificial fill within the vicinity containing abundant quantities of debris.

Saturated soil (indicative of shallow groundwater level) was encountered at depths ranging from approximately 7.5 to 9.5 feet bgs¹.

¹ During the previous investigation (October 2016; PES, 2016), the depth to saturated soil ranged from 12.5 to 16 feet bgs; the significantly shallower depth to saturated materials is likely attributable to well-above-average precipitation levels received in the region over the 2016-2017 winter.

4.2 Soil Vapor Analytical Results

Analytical results for the soil vapor samples are presented on Table 3. Soil vapor sampling locations and laboratory analytical results for vinyl chloride are presented on Plate 2. Laboratory analytical reports and chain-of-custody documents for the soil vapor samples are presented in Appendix C. Soil vapor analytical results for the off-site property were compared with commercial/industrial ESLs for soil gas for evaluation of potential vapor intrusion (RWQCB, 2016).

As shown on Table 3, vinyl chloride was detected in the vapor sample collected at 7 feet bgs at PSV12 at a concentration of 2.5 micrograms per cubic meter of air (μ g/m3), below the commercial/industrial ESL of 160 μ g/m3. Vinyl chloride was detected equivalent to the commercial/industrial ESL in the vapor sample collected at 5 feet bgs at PSV13, and at 370 μ g/m3 in the deeper soil vapor sample collected at 8 feet bgs.

4.3 Evaluation of Leak Detection Compound in Shroud and Vapor Samples

As indicated on Tables 3 and 4, the leak check gas (helium) was detected at or above laboratory reporting limits in one soil vapor sample (PSV12-7.0). Real-time field monitoring of reported helium percentages within the shroud during vapor sampling was conducted to permit quantification of potential leakages in vapor sample trains. The integrity of soil vapor sample results was evaluated using the following formula to calculate an ambient air breakthrough factor, where C_{samp} is the concentration of leak check compound detected in the soil vapor sample, C_{shroud} is the concentration of leak check compound detected in the shroud sample, and f_{break} is the breakthrough factor:

$$f_{break} = 100\% * \frac{C_{samp}}{C_{shroud}}$$

The calculated breakthrough factor was compared with the 5% breakthrough acceptable limit² for ambient air dilution. None of the samples exhibited a breakthrough factor above the recommended 5% limit; as such, the leak check compound analytical results do not indicate concerns with respect to sample train leaks or atmospheric dilution.

4.4 QA/QC Evaluation of Analytical Results

Data quality for the soil vapor samples was assessed by implementing appropriate quality assurance/quality control (QA/QC) procedures and through review of analytical data, including evaluation of laboratory QA/QC data. The following is a summary of the data quality review:

• All samples were analyzed within the required holding times for the requested analyses;

² In accordance with the California Environmental Protection Agency/Department of Toxic Substances Control *Advisory – Active Soil Gas Investigations*, July 2015 – Appendix C: Quantitative Leak Testing Using a Tracer Gas.

- The method blanks did not contain target VOCs at or above the laboratory reporting limits; and
- With the exception of one surrogate recovery compound slightly outside control limits for PSV13-5 and PSV13-8 (4-bromofluorobenzene), the results of the laboratory control and laboratory control duplicate samples were within acceptable recovery ranges.

Based on the QA/QC procedures and results, the laboratory analytical results are considered representative and of good quality.

5.0 SUMMARY AND CONCLUSIONS

5.1 Summary and Discussion of Findings

PES conducted supplemental off-site subsurface investigation activities on May 30 and 31, 2017 at the 6601-6603 Shellmound Street property. The primary objective of the supplemental off-site investigation activities included: (1) delineation of the lateral extent of vinyl chloride in soil gas above the commercial/industrial ESL at the 6601-6603 Shellmound Street property through installation, sampling, and laboratory analysis of soil vapor samples; and (2) installation of permanent soil vapor monitoring probes to provide data suitable for assessing SVE influence in areas to the south of the SVE system through collection of periodic vacuum measurements (during SVE operation) and collection and analysis of soil vapor samples after final shut down of the SVE system.

Soil vapor sampling was conducted using direct push drilling technology to install two (2) temporary soil vapor probes at exterior locations at the off-site property. The supplemental off-site investigation activities were conducted in accordance the scope, methods, and procedures presented in PES' *Draft CAP* dated January 30, 2017 and conditionally approved in a letter from ACEH dated February 2, 2017. Due to the increase in the groundwater elevation surface compared to the previous off-site investigation (conducted in October 2016), the deeper vapor probes (both temporary and permanent) were constructed at shallower depths than anticipated.

Findings based on the supplemental off-site subsurface investigation indicate:

• As indicated on Plate 2, the western lateral extent of vinyl chloride in deeper soil vapor was delineated (based on the results from sample PSV12-7) to concentrations less than the vapor intrusion ESL for commercial settings. The southern lateral extent of vinyl chloride in shallow soil vapor (5 feet bgs) was delineated, based on the results from sample PSV13-5, to a concentration equivalent to the vapor intrusion ESL for commercial settings; however, the results for the deeper soil vapor sample at 8 feet bgs was above the vapor intrusion ESL; and

• The results are consistent with the prior observation of vinyl chloride concentrations in soil vapor attenuating with shallowing of depth (i.e., VOC concentrations generally decrease with increasing vertical depth.

5.2 Conclusions and Recommendations

The results of the investigation materially address the stated investigation objectives, including delineation of the western and southern lateral extent of vinyl chloride, at the off-site property. While the deeper soil vapor sample at PSV13 had a detected vinyl chloride concentration above the commercial ESL, based on: (1) the result of the shallow (overlying) vapor sample at the same location equivalent to the ESL; and (2) the area south of PSV13 is currently used as an exterior driving lane and parking lot, no further investigation is recommended.

PES recommends the following;

• As noted in the *Draft CAP* (PES, 2017a), SVE as an IRM commenced at the subject property on November 8, 2016, and is currently operated on a one-week per month basis. PES recommends periodically documenting observations of measurable vacuum in the subsurface from each of the permanent vapor monitoring probes during weekly operation periods. To further assess the SVE system influence on improving soil vapor conditions, PES also recommends collecting vapor samples from probes PSGP1 through PSGP4 to be analyzed for vinyl chloride by U.S. EPA Test Method TO-15 after cessation of the SVE system.

6.0 REFERENCES

- Alameda County Environmental Health Services (ACEH), 2016. Conditional Interim Remedial Work Plan Approval and Work Plan Request; SCP Case RO000548 and Geotracker Global ID T0600100894, Mike Roberts Color Production, 6707 Bay Street, Emeryville, CA 94608. April 26.
- ACEH, 2016. Modified Work Plan Approval and Request for Corrective Action Plan; SCP Case RO000548 and Geotracker Global ID T0600100894, Mike Roberts Color Production 6707 Bay Street, Emeryville, CA 94608. September 26.
- ACEH, 2017. Report Reviews, Work Plan Request, Conditional Approval of Work Plan, and HHRA Acceptance; SCP Case RO000548 and Geotracker Global ID T0600100894, Mike Roberts Color Production, 6707 Bay Street, Emeryville, CA 94608. February 2.
- California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB), 2010. San Francisco Bay Basin (Region 2) Water Quality Control Plan (Basin Plan). December 31.

- California RWQCB, 2016. San Francisco Bay Region, Environmental Screening Levels. February 22.
- Department of Toxic Substances Control (DTSC), 2011. Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air – Final. California Environmental Protection Agency. October.
- DTSC, 2015. Advisory Active Soil Gas Investigations. Jointly developed by the California Environmental Protection Agency Department of Toxic Substances Control (DTSC), and the California Regional Water Quality Control Board – Los Angeles Region (LARWQCB) and RWQCB - San Francisco Region (RWQCB). July.
- Graymer, R.W., 2000. Geologic map and map database of the Oakland metropolitan area, Alameda, Contra Costa, and san Francisco Counties, California, USGS Miscellaneous Field Studies MF-2342.
- Nichols, D.R. and Wright, N.A., 1971. Preliminary map of historic margins of marshland, San Francisco Bay, California, U.S. Geological Survey Open-File Report.
- PES Environmental, Inc. (PES), 2014. Supplemental Subsurface Investigation Report, 6701, 6705, and 6707 Shellmound Street, Emeryville, California. January 13.
- PES, 2015a. Conceptual Site Model, 6701 6707 Shellmound Street, Emeryville, California. February 6.
- PES, 2015b. Site Management and Contingency Plan for Redevelopment Construction, 6701-6707 Shellmound Street, Emeryville, California. May 19.
- PES, 2015c. Revised Work Plan for Pre-Construction Subsurface Investigation, 6701, 6705, and 6707 Shellmound Street, Emeryville, California, Fuel Leak Case No. RO0000548, GeoTracker Global ID T0600100894. August 28.
- PES, 2016a. Work Plan for Supplemental Pre-Construction Subsurface Investigation, 6701, 6705, and 6707 Shellmound Street, Emeryville, California, Fuel Leak Case No. RO0000548, GeoTracker Global ID T0600100894. January 21.
- PES, 2016b. Pre-Construction Subsurface Investigation Report, 6701, 6705, and 6707 Shellmound Street, Emeryville, California, Fuel Leak Case No. RO0000548, GeoTracker Global ID T0600100894. April 8.
- PES, 2016c. Work Plan for Soil Vapor Extraction, 6701, 6705, and 6707 Shellmound Street, Emeryville, California, Fuel Leak Case No. RO0000548, GeoTracker Global ID T0600100894. April 8.

- PES, 2016d. Work Plan for Off-Site Subsurface Investigation, 6701, 6705, and 6707 Shellmound Street, Emeryville, California, Fuel Leak Case No. RO0000548, Geotracker Global ID T0600100894. August 29.
- PES, 2016e. Off-Site Subsurface Investigation Report, 6701, 6705, and 6707 Shellmound Street, Emeryville, California, Fuel Leak Case No. RO0000548, Geotracker Global ID T0600100894. December 21.
- PES, 2017a. Corrective Action Plan for Soil Vapor Extraction, 6701, 6705, and 6707 Shellmound Street, Emeryville, California, Fuel Leak Case No. R00000548, Geotracker Global ID T0600100894. January 30.
- PES, 2017b. Remedial Progress Report No. 8, June 1, 2017 through June 30, 2017, 6701, 6705, and 6707 Shellmound Street, Emeryville, California, Fuel Leak Case No. RO0000548, Geotracker Global Id T0600100894. July 5.
- United States Environmental Protection Agency (U.S. EPA), 1989. *Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual (Part A), Interim Final.* Office of Emergency and Remedial Response, Washington D.C., EPA/540/1-89/002. July.

TABLES

Table 1 Soil Vapor Probe Installation and Analytical Program Supplemental Off-Site Subsurface Investigation Report 6601-6603 Shellmound Street, Emeryville, California

			Analytica	l Program	
Sample Location ID	Sample Rationale	Target Sample Depth (feet bgs)	Vinyl Chloride (by U.S. EPA Test Method TO-15)	Helium (ASTM 1946D) - leak check compound	Comments
Soil Vapor					
PSV12	Assess westernmost extent of vinyl chloride in vicinity of PSV6	10	х	Х	Probe installed at 7 feet bgs due to presence of saturated soil below 7.5 feet bgs. Analytical reporting for vinyl chloride only
PSV13	Assess southernmost extent of vinyl chloride in vicinity of PSV10	5 and 10	х	х	Deeper probe installed at 8 feet bgs due to presence of saturated soil below 8.5 feet bgs. Analytical reporting for vinyl chloride only
Soil Vapor	Monitoring Probe				
PSGP1	Monitor vapor conditions at 6601-6603 Shellmound Street subsurface	5 and 10	х		Probe installed at 9 feet bgs due to presence of saturated soil below 9.5 feet bgs. Vapor samples for laboratory analysis to be collected upon completion of SVE operations.
PSGP2	Monitor vapor conditions at 6601-6603 Shellmound Street subsurface	5 and 10	Х		Probe installed at 8 feet bgs due to presence of saturated soil below 8.5 feet bgs. Vapor samples for laboratory analysis to be collected upon completion of SVE operations.
PSGP3	Monitor vapor conditions at 6601-6603 Shellmound Street subsurface	5 and 10	Х		Probe installed at 7 feet bgs due to presence of saturated soil below 7.5 feet bgs. Vapor samples for laboratory analysis to be collected upon completion of SVE operations.
PSGP4	Monitor vapor conditions at 6601-6603 Shellmound Street subsurface	5 and 10	x		Probe installed at 7 feet bgs due to presence of saturated soil below 7.5 feet bgs. Vapor samples for laboratory analysis to be collected upon completion of SVE operations.

Notes:

bgs = Below ground surface. X = Scheduled for Analytical.

Table 2Summary of Soil Vapor Monitoring Probe Construction DetailsSupplemental Off-Site Subsurface Investigation Report6601-6603 Shellmound Street, Emeryville, California

Vapor Probe Identification	Date Installed	Borehole Depth (feet bgs)	Borehole Diameter (inches)	Screen Interval (feet bgs)	Sand Pack Interval (feet bgs)	Screen Diameter (inches)
PSGP1-5.0	5/31/17	10.5	2.0	4.75 to 5.25	4 to 5.5	0.375
PSGP1-9.0	5/31/17	10.5	2.0	8.75 to 9.25	8 to 9.5	0.375
PSGP2-5.0	5/31/17	10.5	2.0	4.75 to 5.25	4 to 5.5	0.375
PSGP2-8.0	5/31/17	10.5	2.0	7.75 to 8.25	7 to 8.5	0.375
PSGP3-5.0	5/31/17	10.0	2.0	4.75 to 5.25	4 to 5.5	0.375
PSGP3-7.0	5/31/17	10.0	2.0	6.75 to 7.25	6 to 7.5	0.375
PSGP4-5.0	5/31/17	8.0	2.0	4.75 to 5.25	4 to 5.5	0.375
PSGP4-7.0	5/31/17	8.0	2.0	6.75 to 7.25	6 to 7.5	0.375

Notes:

bgs =below ground surface.

Table 3Summary of Soil Vapor Analytical ResultsSupplemental Off-Site Subsurface Investigation Report6601-6603 Shellmound Street, Emeryville, California

Sample Location	Sample ID	Sample Depth (feet bgs)	Date Sampled	Vinyl chloride (µg/m³)	Helium (% v/v)		
PSV12	PSV12-7	7.0	5/31/2017	2.5	26		
	PSV13-5	5.0	5/31/2017	160	25		
F3V13	PSV13-8	8.0	5/31/2017	370	25		
RWQ	RWQCB Commercial/Industrial Land Use VI ESL (Subslab / Soil Gas) ¹						

Notes:

Detections are shown in bold. Results equal to or exceeding applicable regulatory screening levels are shaded.

bgs = Below ground surface.

 μ g/m³ = Micrograms per cubic meter.

% v/v = Percent by volume.

< 2.9 = Not detected at or above the indicated laboratory method reporting limit.

ND = Not detected at or above the respective laboratory method reporting limits.

NE = Not established.

-- = Not applicable/not analyzed.

1. ESL = February 2016 Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) Environmental Screening Levels (ESLs), Table SG-1 Subslab/Soil Gas Vapor Intrusion: Human Health Risk Levels. Commercial/industrial Final VI Screening Level.

Table 4Summary of Soil Vapor Leak Check ResultsSupplemental Off-Site Subsurface Investigation Report6601-6603 Shellmound Street, Emeryville, California

Sample Location	Sample ID	Sample Depth (feet bgs)	Date Sampled	Helium Detected in Sample (% v/v)	Helium Detected in Shroud (% v/v)	Breakthrough Factor (%)
PSV12	PSV12-7	5	10/21/2016	0.17	26	0.7
PSV13	PSV13-5	10	10/21/2016	0.10	25	0.4
	PSV13-8	5	10/21/2016	0.10	25	0.4
Acceptable Ambient Air Breakthrough Limit ¹					5%	

Notes:

Detections are shown in bold. Results equal to or exceeding applicable RPD limits are shaded.

bgs = Below ground surface.

% v/v = Percent by volume.

-- = Not applicable.

1. In accordance with California Environmental Protection Agency/Department of Toxic Substances Control Advisory - Active Soil Gas Investigations, July 2015 - Appendix C: Quantitative Leak Testing Using a Tracer Gas.

ILLUSTRATIONS

PES Environmental, Inc. Engineering & Environmental Services Aerial Photo: October 30, 2015 (Google 2016)

Site Location

Supplemental Off-Site Investigation Report 6601-6603 Shellmound Street Emeryville, California

JOB NUMBER

1448.001.03.001

SCALE IN FEET

CJB REVIEWED BY PLATE

Explanation

	Approximate Property Boundary
PSV12 • 2.5 (7 ft bgs)	May 31, 2017 Soil Vapor Sample Location with Vinyl Chloride concentration in micrograms per cubic meter (μ g/m ³) (Depth in feet below ground surface)
PSGP1 🔻	Multi-Depth (5- and 10-ft) Soil Vapor Monitoring Probe
SVE-6 <1	Soil Vapor Extraction (SVE) Well Location with June 1, 2017 Sample Results for Vinyl Chloride expressed in $\mu g/m^3$
SVP-1 1.2	Soil Vapor Monitoring Probe Location with June 1, 2017 Sample Results for Vinyl Chloride expressed in $\mu g/m^3$
AI-2 🔻	Air Inlet Well Location
PSV9	Multi-Depth Soil Vapor Sampling Location (PES, 2016)
PSV5 🔺	Multi-Depth Soil Vapor and Soil Sampling Location (PES, 2016)
PGW5	Grab Groundwater Sample Location (PES, 2016)
	Prior Soil and Grab Groundwater Sample Location
SB62	Prior Grab Groundwater Sample Location
SV7 🔷	Prior Soil Vapor Sampling Location
SS	Sanitary Sewer Line (source undated survey map)
Г <u>—</u> Е —	Electrical Line
SD	Storm Drain Line
— w —	Fire Supression Line (Water)
l l	Salitary Sewer Line Clean-Out
03 Shellmound Baser	0 40 SCALE IN FEET
Site Sail Vanar 6	Sample Pocults - Vinyl Chlorida
Ind Street	

APPENDIX A

ALAMEDA COUNTY PUBLIC WORKS AGENCY DRILLING PERMITS

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 05/26/2017 By jamesy

Permit Numbers: W2017-0448 to W2017-0449 Permits Valid from 05/30/2017 to 05/31/2017

Application Id:	1494888176357 6601 Shellmound Street, Emeryville CA	City of Project Site: Emeryville	
Project Start Date: Assigned Inspector:	05/30/2017 Contact Lindsay Furuyama at (925) 956-2311 or	Completion Date: 05/31/2017 Lfuruyama@groundzonees.com	
Applicant:	PES Environmental, Inc., - Christopher	Phone: 415-899-1600	
Property Owner:	Baldassari 7665 Redwood Bl., Suite 200, Novato, CA 94945 Griffin Capital Shellmound, c/o Julie Treinen 1520 East Grand Avenue, El Segundo, CA 9024	5 Phone: 310-469-6107	
Client:	Anton Evolve Emeryville, c/o Rachel Green	Phone: 650-549-1607	
Contact:	James Phillips	Phone: 415-899-1600 Cell: 415-250-2864	
		Total Due:	\$530.00

Total Due:	\$530.00
Total Amount Paid:	\$530.00
Paid By: VISA	PAID IN FULL
	Total Due: Total Amount Paid: Paid By: VISA

Works Requesting Permits:

Borehole(s) for Investigation-Vapor Sampling 24 to 48 hours only - 2 Boreholes Driller: Environmental Control Associates - Lic #: 695970 - Method: DP

Work Total: \$265.00

Specifications								
Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth			
Number			Boreholes					
W2017-	05/26/2017	08/28/2017	2	2.00 in.	10.25 ft			
0448								

Specific Work Permit Conditions

1. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

2. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

4. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and

Alameda County Public Works Agency - Water Resources Well Permit

all expense, cost and liability in connection with or resulting from the exercise of this Permit including, but not limited to, property damage, personal injury and wrongful death.

5. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

6. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

7. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

8. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

9. NOTE:

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

10. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Temp Vapor wells shall not be converted to monitoring Vapor wells, without a seperate permit application process.

11. Vapor monitoring wells constructed with tubing shall be decomissioned by complete removal of tubing, grout seal, and fill material of sand or bentonite. Fill material may be removed by hand auger if material can be removed completely.

Vapor monitoring wells constructed with pvc pipe less than 2" shall be overdrilled to total depth.

Vapor monitoring wells constructed with 2" pvc pipe or larger may be grouted by tremie pipe (any depth) or pressure grouted (less than 30', 25 psi for 5 min).

Remediation Well Construction-Vapor Remediation Well - 4 Wells Driller: Environmental Control Associates - Lic #: 695970 - Method: DP

Specifications									
Permit #	Issued Date	Expire Date	Owner Well	Hole Diam.	Casing	Seal Depth	Max. Depth		
			ld		Diam.				
W2017-	05/26/2017	08/28/2017	PSGP1	2.00 in.	0.25 in.	4.50 ft	10.25 ft		
0449									
W2017-	05/26/2017	08/28/2017	PSGP2	2.00 in.	0.25 in.	4.50 ft	10.25 ft		

Work Total: \$265.00

0449							
W2017-	05/26/2017	08/28/2017	PSGP3	2.00 in.	0.25 in.	4.50 ft	10.25 ft
0449							
W2017-	05/26/2017	08/28/2017	PSGP4	2.00 in.	0.25 in.	4.50 ft	10.25 ft
0449							

Specific Work Permit Conditions

1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

3. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 30 days. Include permit number and site map.

4. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

5. Minimum seal depth (Neat Cement Seal) is 2 feet below ground surface (BGS).

6. Minimum surface seal thickness is two inches of cement grout placed by tremie.

7. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

8. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

9. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

APPENDIX B

SOIL BORING AND WELL CONSTRUCTION LOGS

	MAJOR DIVISIONS				TYPICAL NAMES		
		CLEAN GRAVELS	GW		WELL-GRADED GRAVELS WITH OR WITHOUT SAND		
) SIEVE	GRAVELS MORE THAN HALF COARSE FRACTION IS LARGER THAN NO. 4 SIEVE	WITH LESS THAN 15% FINES	GP		POORLY-GRADED GRAVELS WITH OR WITHOUT SAND		
NN NO. 200		GRAVELS WITH 15% OR MORE FINES	GM		SILTY GRAVELS WITH OR WITHOUT SAND		
AINED SC RSER TH/			GC		CLAYEY GRAVELS WITH OR WITHOUT SAND		
ARSE-GR	SANDS MORE THAN HALF COARSE FRACTION IS FINER THAN NO. 4 SIEVE SIZE	CLEAN SANDS WITH LESS THAN 15% FINES	sw		WELL-GRADED SANDS WITH OR WITHOUT GRAVEL		
CC CC THAN HAI			SP		POORLY-GRADED SANDS WITH OR WITHOUT GRAVEL		
MORE		SANDS WITH 15%	SM		SILTY SANDS WITH OR WITHOUT GRAVEL		
		OR MORE FINES	sc		CLAYEY SANDS WITH OR WITHOUT GRAVEL		
SIEVE					INORGANIC SILTS OF LOW TO MEDIUM PLASTICITY WITH OR WITHOUT SAND OR GRAVEL		
S 1 NO. 200	SILTS AND CLAYS LIQUID LIMIT 50% OR LESS		CL		INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY WITH OR WITHOUT SAND OR GRAVEL		
INED SOIL			OL		ORGANIC SILTS OR CLAYS OF LOW TO MEDIUM PLASTICITY WITH OR WITHOUT SAND OR GRAVEL		
FINE-GRA			мн		INORGANIC SILTS OF HIGH PLASTICITY WITH OR WITHOUT SAND OR GRAVEL		
E THAN F	SILTS AN	SILTS AND CLAYS LIQUID LIMIT GREATER THAN 50%			INORGANIC CLAYS OF HIGH PLASTICITY WITH OR WITHOUT SAND OR GRAVEL		
MOR			он		ORGANIC SILTS OR CLAYS OF HIGH PLASTICITY WITH OR WITHOUT SAND OR GRAVEL		
HIGHLY ORGANIC SOILS PT					2 3/2 3/2 4/2 1 3/2 PEAT AND OTHER HIGHLY ORGANIC SOILS		
	ABBREVIA	TION KEY			SYMBOLS KEY		
PID (PPN	 Photo Ionization E million from field h 	Detector readings in part leadspace sample scree	s per ning.	No Soil Sample Recovered Partial Soil Sample Recovered			
BLOWS/6" - Blows required to drive sampler 6 inches as indicated on the logs using sample drive hammer weight of 140 pounds falling 30 inches.					Undisturbed Soil Sample Recovered		
2.5YR 6/	2.5YR 6/2 - Soil Color according to Munsell Soil Color Cha (1994 Revised Edition)		Charts	Soil Sample Submitted for Laboratory Analysis Hydropunch Sample			
feet MSL- feet above Mean Seal Levelfeet BGS- feet below ground surface				abla First Encountered Groundwater Level			
PES Er	nvironmen	tal, Inc.		Unified 6601 -	Soil Classification System Chart 6603 Shellmound Street		

USCS CHART 1448.001.03.002 SUPPLEMENTAL OFFSITE WORK GPJ PES_ENV.GDT 7/10/17

montal, mo Engineering & Environmental Services

Emeryville, California

1448.001.03.002 JOB NUMBER

APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

TestAmerica Job ID: 320-28797-1

Client Project/Site: Anton Emeryville Air Revision: 1

For:

PES Environmental, Inc. 7665 Redwood Blvd Suite 200 Novato, California 94945

Attn: Mr. Chris Baldassari

Slathcote

Authorized for release by: 6/20/2017 2:08:08 PM Lee Ann Heathcote, Project Manager II

(916)373-5600 leeann.heathcote@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	11
Lab Chronicle	12
Certification Summary	13
Method Summary	14
Sample Summary	15
Chain of Custody	16
Receipt Checklists	17
Clean Canister Certification	18
Pre-Ship Certification	18
Clean Canister Data	20

1 2 3 4 5 6 7 8 9 10 11 11

Qualifiers

Air - GC/MS VOA

Qualifier	Qualifier Description
Х	Surrogate is outside control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Job ID: 320-28797-1

Laboratory: TestAmerica Sacramento

Narrative

Job Narrative 320-28797-1

This report was revised on June 20, 2017, to report units in ug/m3.

Receipt

The samples were received on 6/3/2017 9:04 AM; the samples arrived in good condition.

Air - GC VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Air - GC/MS VOA

Method(s) TO-15: Surrogate recovery for the following samples was outside control limits: PSV13-5 (320-28797-2) and PSV13-8 (320-28797-3). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Lab Sample ID: 320-28797-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vinyl chloride	0.98		0.40		ppb v/v	1	_	TO-15	Total/NA
Helium	0.17		0.17		% v/v	1.7		D1946	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vinyl chloride	2.5		1.0		ug/m3	1	_	TO-15	Total/NA

Client Sample ID: PSV13-5

Analyte Vinyl chloride	Result 64	Qualifier	RL 0.78	MDL	Unit ppb v/v	Dil Fac D	Method TO-15	Prep Type Total/NA
Analyte Vinyl chloride	Result	Qualifier	RL 2.0	MDL	Unit ua/m3	Dil Fac	Method TO-15	Total/NA

Client Sample ID: PSV13-8

Lab Sample ID: 320-28797-3

Lab Sample ID: 320-28797-2

Analyte Vinyl chloride	Result 140	Qualifier	RL 1.9	MDL	Unit ppb v/v	Dil Fac 4.68	D	Method TO-15	Prep Type Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vinyl chloride	370		4.8		ug/m3	4.68		TO-15	Total/NA

This Detection Summary does not include radiochemical test results.

4-Bromofluorobenzene (Surr)

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

Client Sample ID: PSV1 Date Collected: 05/31/17 06:	2-7 25					La	ab Sampl	e ID: 320-28 Mat	8797-1 rix: Air
Date Received: 06/03/17 09: Sample Container: Summa	04 Canister 1L								
Method: TO-15 - Volatile O	rganic Compo	unds in Ar	nbient Air	MDI	Unit	P	Bronorod	Apolyzod	
		Quaimer	0.40	MDL			Frepareu	$-\frac{\text{Allaryzed}}{06/05/17\ 23.37}$	
Analyto	Posult	Qualifier	PI	МП	linit	п	Propared	Analyzod	Dil Eac
Vinyl chloride	2.5		1.0		ug/m3		Tiopulou	06/05/17 23:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130					06/05/17 23:37	1
1,2-Dichloroethane-d4 (Surr)	126		70 - 130					06/05/17 23:37	1
Toluene-d8 (Surr)	93		70 - 130					06/05/17 23:37	1
Method: D1946 - Fixed Gas	ses in Air (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
_Helium	0.17		0.17		% v/v			06/05/17 12:19	1.7
Client Sample ID: PSV1	3-5					La	ab Sampl	e ID: 320-28	797-2
Date Collected: 05/31/17 06:	47						•	Mat	rix: Air
Date Received: 06/03/17 09:0	04								
Sample Container: Summa	Canister 1L								
									1
Method: 10-15 - Volatile O	rganic Compo Result	UNOS IN Ar Qualifier	ndient Air RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	64		0.78		ppb v/v			06/06/17 00:31	1.96
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac
Vinyl chloride	160		2.0		ug/m3		•	06/06/17 00:31	1.96
Surrogate	%Recovery	Qualifier					Dura na na at		
4-Bromofluorobenzene (Surr)			Limits				Prepared	Analyzed	Dil Fac
	136	X	Limits 70 - 130				Prepared	Analyzed 06/06/17 00:31	<i>Dil Fac</i> 1.96
1,2-Dichloroethane-d4 (Surr)	136 121	X	Limits 70 - 130 70 - 130				Prepareo	Analyzed - 06/06/17 00:31 06/06/17 00:31	Dil Fac 1.96 1.96
1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr)	136 121 97	X	Limits 70 - 130 70 - 130 70 - 130				Prepareo	Analyzed 06/06/17 00:31 06/06/17 00:31 06/06/17 00:31	Dil Fac 1.96 1.96 1.96
1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) Method: D1946 - Fixed Gas	136 121 97 ses in Air (GC)	X	Limits 70 - 130 70 - 130 70 - 130				Prepared	Analyzed 06/06/17 00:31 06/06/17 00:31 06/06/17 00:31	Dil Fac 1.96 1.96 1.96
1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) Method: D1946 - Fixed Gas Analyte	136 121 97 ses in Air (GC) Result	X Qualifier	Limits 70 - 130 70 - 130 70 - 130 RL	MDL	Unit	D	Prepared	Analyzed 06/06/17 00:31 06/06/17 00:31 06/06/17 00:31 Analyzed	Dil Fac 1.96 1.96 1.96 Dil Fac
1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) Method: D1946 - Fixed Gas Analyte Helium	136 121 97 Sees in Air (GC) Result ND	X Qualifier	Limits 70 - 130 70 - 130 70 - 130 RL 0.20	MDL	Unit % v/v	D	Prepared	Analyzed 06/06/17 00:31 06/06/17 00:31 06/06/17 00:31 Analyzed 06/05/17 12:27	Dil Fac 1.96 1.96 1.96 Dil Fac 1.96
1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) Method: D1946 - Fixed Gas Analyte Helium Client Sample ID: PSV1	136 121 97 Ses in Air (GC) Result ND 3-8	X Qualifier	Limits 70 - 130 70 - 130 70 - 130 RL 0.20	MDL	Unit % v/v	D	Prepared Prepared	Analyzed 06/06/17 00:31 06/06/17 00:31 06/06/17 00:31 Analyzed 06/05/17 12:27 e ID: 320-28	Dil Fac 1.96 1.96 1.96 Dil Fac 1.96 3797-3
1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) Method: D1946 - Fixed Gas Analyte Helium Client Sample ID: PSV1 Date Collected: 05/31/17 06:	136 121 97 Sees in Air (GC) Result ND 3-8 47	X Qualifier	Limits 70 - 130 70 - 130 70 - 130 RL 0.20	MDL	Unit % v/v	D	Prepared Prepared	Analyzed 06/06/17 00:31 06/06/17 00:31 06/06/17 00:31 06/05/17 12:27 e ID: 320-28 Mat	Dil Fac 1.96 1.96 1.96 Dil Fac 1.96 3797-3 rix: Air
1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) Method: D1946 - Fixed Gas Analyte Helium Client Sample ID: PSV1 Date Collected: 05/31/17 06: Date Received: 06/03/17 09:(136 121 97 Sees in Air (GC) Result ND 3-8 47 04	X Qualifier	Limits 70 - 130 70 - 130 70 - 130 RL 0.20	MDL	Unit % v/v	D	Prepared Prepared	Analyzed 06/06/17 00:31 06/06/17 00:31 06/06/17 00:31 - Analyzed 06/05/17 12:27 e ID: 320-28 Mat	Dil Fac 1.96 1.96 1.96 Dil Fac 1.96 3797-3 rix: Air
1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) Method: D1946 - Fixed Gas Analyte Helium Client Sample ID: PSV1 Date Collected: 05/31/17 06: Date Received: 06/03/17 09:0 Sample Container: Summa	136 121 97 Ses in Air (GC) Result ND 3-8 47 04 Canister 1L	Qualifier	Limits 70 - 130 70 - 130 70 - 130 RL 0.20	MDL	Unit % v/v	D	Prepared Prepared	Analyzed 06/06/17 00:31 06/06/17 00:31 06/06/17 00:31 Analyzed 06/05/17 12:27 e ID: 320-28 Mat	Dil Fac 1.96 1.96 1.96 Dil Fac 1.96 3797-3 rix: Air
1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) Method: D1946 - Fixed Gas Analyte Helium Client Sample ID: PSV1 Date Collected: 05/31/17 06: Date Received: 06/03/17 09:(Sample Container: Summa Method: TO-15 - Volatile O	136 121 97 Sees in Air (GC) Result ND 3-8 47 04 Canister 1L rganic Compo	Qualifier	Limits 70 - 130 70 - 130 70 - 130 RL 0.20 nbient Air	MDL	Unit % v/v	<u>D</u>	Prepared Prepared ab Sampl	Analyzed 06/06/17 00:31 06/06/17 00:31 06/06/17 00:31 Analyzed 06/05/17 12:27 e ID: 320-28 Mat	Dil Fac 1.96 1.96 1.96 Dil Fac 1.96 3797-3 rix: Air
1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) Method: D1946 - Fixed Gas Analyte Helium Client Sample ID: PSV1 Date Collected: 05/31/17 06: Date Received: 06/03/17 09:0 Sample Container: Summa Method: TO-15 - Volatile Of Analyte	136 121 97 Sees in Air (GC) Result ND 3-8 47 04 Canister 1L rganic Compo Result	Qualifier unds in Ar Qualifier	Limits 70 - 130 70 - 130 70 - 130 RL 0.20 nbient Air RL	MDL	Unit % v/v	D	Prepared Prepared ab Sampl Prepared	Analyzed 06/06/17 00:31 06/06/17 00:31 06/06/17 00:31 Analyzed 06/05/17 12:27 e ID: 320-28 Mat Analyzed	Dil Fac 1.96 1.96 Dil Fac 1.96 3797-3 rix: Air Dil Fac
1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) Method: D1946 - Fixed Gas Analyte Helium Client Sample ID: PSV1 Date Collected: 05/31/17 06: Date Received: 06/03/17 09:0 Sample Container: Summa Method: TO-15 - Volatile Of Analyte Vinyl chloride	136 121 97 Sees in Air (GC) Result ND 3-8 47 04 Canister 1L rganic Compo Result 140	Qualifier unds in Ar Qualifier	Limits 70 - 130 70 - 130 70 - 130 RL 0.20 nbient Air RL 1.9	MDL	Unit % v/v	D	Prepared Prepared ab Sampl Prepared	Analyzed 06/06/17 00:31 06/06/17 00:31 06/06/17 00:31 06/05/17 12:27 e ID: 320-28 Mat Analyzed 06/06/17 01:23	Dil Fac 1.96 1.96 1.96 Dil Fac 1.96 3797-3 rix: Air Dil Fac 4.68
1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) Method: D1946 - Fixed Gas Analyte Helium Client Sample ID: PSV1 Date Collected: 05/31/17 06: Date Received: 06/03/17 09:(Sample Container: Summa Method: TO-15 - Volatile Of Analyte Vinyl chloride Analyte	136 121 97 Sees in Air (GC) Result ND 3-8 47 04 Canister 1L rganic Compor Result 140 Result	Qualifier Qualifier Qualifier Qualifier	Limits 70 - 130 70 - 130 70 - 130 RL 0.20 nbient Air RL 1.9 RL	MDL MDL MDL	Unit % v/v	D	Prepared Prepared Ab Sampl Prepared Prepared	Analyzed 06/06/17 00:31 06/06/17 00:31 06/06/17 00:31 06/05/17 12:27 e ID: 320-28 Mat Analyzed 06/06/17 01:23 Analyzed	Dil Fac 1.96 1.96 Dil Fac 1.96 3797-3 rix: Air Dil Fac 4.68 Dil Fac
1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) Method: D1946 - Fixed Gas Analyte Helium Client Sample ID: PSV1 Date Collected: 05/31/17 06: Date Received: 06/03/17 09:0 Sample Container: Summa Method: TO-15 - Volatile Of Analyte Vinyl chloride Analyte Vinyl chloride	136 121 97 Sees in Air (GC) Result ND 3-8 47 04 Canister 1L rganic Compo Result 140 Result 140 Result 370	Qualifier Qualifier Qualifier Qualifier	Limits 70 - 130 70 - 130 70 - 130 RL 0.20 nbient Air RL 1.9 RL 1.9 RL 4.8	MDL MDL MDL	Unit % v/v Unit ppb v/v Unit ug/m3	D	Prepared Prepared Prepared Prepared	Analyzed 06/06/17 00:31 06/06/17 00:31 06/06/17 00:31 06/05/17 12:27 e ID: 320-28 Mat Analyzed 06/06/17 01:23 Analyzed 06/06/17 01:23	Dil Fac 1.96 1.96 1.96 Dil Fac 1.96 S797-3 rix: Air Dil Fac 4.68 Dil Fac 4.68

06/06/17 01:23

06/06/17 01:23

06/06/17 01:23

70 - 130

70 - 130

70 - 130

135 X

120

107

4.68

4.68

4.68

Client Sample Results

Client: PES Environmental, Inc.

TestAmerica Job ID: 320-28797-1

6

Project/Site: Anton Emeryville Air **Client Sample ID: PSV13-8** Lab Sample ID: 320-28797-3 Date Collected: 05/31/17 06:47 Matrix: Air Date Received: 06/03/17 09:04 Sample Container: Summa Canister 1L Method: D1946 - Fixed Gases in Air (GC) Analyte RL MDL Unit Dil Fac **Result Qualifier** D Prepared Analyzed Helium ND 0.16 % v/v 06/05/17 12:32 1.61

TestAmerica Sacramento

Method: TO-15 - Volatile Organic Compounds in Ambient Air

Matrix: Air					Prep Type: Total/NA
_			Pe	ercent Surro	ate Recovery (Acceptance Limits)
		BFB	12DCE	TOL	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)	
320-28797-1	PSV12-7	120	126	93	
320-28797-2	PSV13-5	136 X	121	97	
320-28797-3	PSV13-8	135 X	120	107	
LCS 320-167488/3	Lab Control Sample	116	106	108	
LCSD 320-167488/4	Lab Control Sample Dup	117	100	108	
MB 320-167488/6	Method Blank	114	106	113	
Surrogato Logond					

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

TestAmerica Sacramento

Surrogate

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

1,2-Dichloroethane-d4 (Surr)

8 9

Method: TO-15 - Volatile Organic Compounds in Ambient Air

%Recovery Qualifier

117

100

108

Lab Sample ID: MB 320-1	67488/6							C	lie	ent Sam	ple ID: Me	ethod	Blank
Matrix: Air											Prep Typ	e: To	tal/NA
Analysis Batch: 167488													
	ME	MB											
Analyte	Result	Qualifier	RL		MDL	Unit		D	Ρ	repared	Analyz	ed	Dil Fac
Vinyl chloride	NC		0.40			ppb v	/v				06/05/17 1	18:05	1
	ME	MB											
Analyte	Result	Qualifier	RL		MDL	Unit		D	Ρ	repared	Analyz	ed	Dil Fac
Vinyl chloride	NC		1.0			ug/m	3				06/05/17 1	18:05	1
	МЕ	MR											
Surrogate	WE %Recovery	, MiD Mualifiar	l imits						P	ronarod	Analyz	od	Dil Fac
4-Bromofluorobenzene (Surr)	////////////////////////////////	Quanner						-		repareu		18.05	1
1 2-Dichloroethane-d4 (Surr)	106	ì	70 130								06/05/17	18:05	1
Toluene-d8 (Surr)	113	, ,	70 - 130								06/05/17	18.05	1
	110		70-700								00/00/11	10.00	1
Lab Sample ID: LCS 320-1	167488/3						Cli	ent S	Sai	mple ID	: Lab Con	trol S	ample
Matrix: Air											Prep Typ	e: To	tal/NA
Analysis Batch: 167488													
,			Spike	LCS	LCS						%Rec.		
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Vinyl chloride			20.0	19.0			ppb v/v		_	95	69 - 129		
			Spike	LCS	LCS						%Rec.		
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Vinyl chloride			51	48.6			ug/m3		_	95	69 - 129		
		~											
Current and a		5 	1 : :4										
Surrogate	%Recovery Qu	alifier	Limits										
4-Bromotiuorobenzene (Surr)	116		70 - 130										
1,2-Dichloroethane-d4 (Surr)	106		70-130										
Toluene-d8 (Surr)	108		70-130										
_ L ch Comple ID: L CCD 220	467400/4						Nient C				Control		
Lab Sample ID: LCSD 320	-10/400/4					, c	ment 5	amp	ne	ID: Lac		samp	
Matrix, All Analysia Bataby 467499											гер тур	ie. 10	
Analysis Balch: 10/400			Spiko		109	п					%Pac		חסס
Analyto				Bocult	Oual	lifior	Unit		п	% Poc	/orcec.	חסס	Limit
			20.0	18 /	Qual	mer			_	02	60 120	3	25
			Spike		1.09	п	hhn 1/1			32	%Pac	5	20
Analyto				Posule	0	lifior	Unit		Р	%Pac	/onec.	חםק	Limit
	· ·		51	17 0	Qud	mer			_	07	60 120	2	25
			51	+1.Z			ug/III3			92	03-128	3	20
	LCSD LC	SD											

Limits

70 - 130

70 - 130

70 - 130

QC Sample Results

5

8 9

Method: D1946 - Fixed Gases in Air (GC)

Lab Sample ID: MB 320-167384/10 Matrix: Air Analysis Batch: 167384									Clie	ent Sam	ple ID: M Prep Ty	ethod be: Tot	Blank al/NA
	MB	MB											
Analyte	Result	Qualifier		RL	I	MDL	Unit		D P	repared	Analyz	ed	Dil Fac
Helium	ND			0.10			% v/v	'			06/05/17	09:11	1
Lab Sample ID: LCS 320-167384/5 Matrix: Air Analysis Batch: 167384								Clie	ent Sa	mple ID	: Lab Cor Prep Tyj	itrol Sa be: Tot	ample al/NA
· ···· / ··· · ··· · · · · · · ·			Spike		LCS	LCS					%Rec.		
Analyte			Added		Result	Qua	lifier	Unit	D	%Rec	Limits		
Helium			16.5		18.2			% v/v		110	80 - 120		
Lab Sample ID: LCSD 320-167384/6 Matrix: Air Analysis Batch: 167384	i						C	Client S	ample	ID: Lab	Control S Prep Ty	Sample be: Tot	e Dup al/NA
-			Spike		LCSD	LCS	D				%Rec.		RPD
Analyte			Added		Result	Qua	lifier	Unit	D	%Rec	Limits	RPD	Limit
Helium			16.5		18.2			% v/v		110	80 - 120	0	20

Air - GC/MS VOA

Analysis Batch: 167488

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-28797-1	PSV12-7	Total/NA	Air	TO-15	
320-28797-2	PSV13-5	Total/NA	Air	TO-15	
320-28797-3	PSV13-8	Total/NA	Air	TO-15	
MB 320-167488/6	Method Blank	Total/NA	Air	TO-15	
LCS 320-167488/3	Lab Control Sample	Total/NA	Air	TO-15	
LCSD 320-167488/4	Lab Control Sample Dup	Total/NA	Air	TO-15	

Air - GC VOA

Analysis Batch: 167384

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-28797-1	PSV12-7	Total/NA	Air	D1946	
320-28797-2	PSV13-5	Total/NA	Air	D1946	
320-28797-3	PSV13-8	Total/NA	Air	D1946	
MB 320-167384/10	Method Blank	Total/NA	Air	D1946	
LCS 320-167384/5	Lab Control Sample	Total/NA	Air	D1946	
LCSD 320-167384/6	Lab Control Sample Dup	Total/NA	Air	D1946	

TestAmerica Sacramento

Lab Sample ID: 320-28797-1

Lab Sample ID: 320-28797-2

Lab Sample ID: 320-28797-3

1 2 3 4 5 6 7 8 9 10 11

Matrix: Air

Matrix: Air

Matrix: Air

Client Sample ID: PSV12-7 Date Collected: 05/31/17 06:25 Date Received: 06/03/17 09:04

[Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type Total/NA	Analysis	- Method TO-15	Run	Factor	Amount 425 mL	Amount 250 mL	Number 167488	or Analyzed 06/05/17 23:37	Analyst SRV	Lab TAL SAC
Total/NA	Analysis	D1946		1.7	50 mL	50 mL	167384	06/05/17 12:19	AZ1	TAL SAC

Client Sample ID: PSV13-5 Date Collected: 05/31/17 06:47 Date Received: 06/03/17 09:04

[Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	TO-15		1.96	250 mL	250 mL	167488	06/06/17 00:31	SRV	TAL SAC
Total/NA	Analysis	D1946		1.96	50 mL	50 mL	167384	06/05/17 12:27	AZ1	TAL SAC

Client Sample ID: PSV13-8 Date Collected: 05/31/17 06:47 Date Received: 06/03/17 09:04

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	TO-15		4.68	86 mL	250 mL	167488	06/06/17 01:23	SRV	TAL SAC	-
Total/NA	Analysis	D1946		1.61	50 mL	50 mL	167384	06/05/17 12:32	AZ1	TAL SAC	

Laboratory References:

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Client: PES Environmental, Inc. Project/Site: Anton Emeryville Air

Laboratory: TestAmerica Sacramento

The accreditations/certifications listed below are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Oregon	NELAP	10	4040	01-28-18

6/20/2017

Client: PES Environmental, Inc. Project/Site: Anton Emeryville Air

Method	Method Description	Protocol	Laboratory
ГО-15	Volatile Organic Compounds in Ambient Air	EPA	TAL SAC
D1946	Fixed Gases in Air (GC)	ASTM	TAL SAC

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

Laboratory References:

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Sample Summary

TestAmerica Job ID: 320-28797-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
320-28797-1	PSV12-7	Air	05/31/17 06:25	06/03/17 09:04
320-28797-2	PSV13-5	Air	05/31/17 06:47 (06/03/17 09:04
320-28797-3	PSV13-8	Air	05/31/17 06:47 (06/03/17 09:04

TestAmerica Sacramento

PES Environmental Engineering & Environmental S	l, Inc. Services	CHAIR	N OF CUST	ODY RE(CORD	112016	7665 Redwo Novato	od Boulevard), California 9	Suite 200 1945
LABORATORY: Test America		SAMPLERS:	Phullios			1	ANALYSIS P	EQUESTED	
JOB NUMBER: 144 8.001.01.0	11		-				((9 (5)	
NAME/LOCATION: ANTON EMERYUI	IL, offith In	V. Cheoi- Leo	3 Shullmound St	+/Emerville	CA		setor	976 01	
PROJECT MANAGER: C. Beldessa	in/K. Flury	RECORDER:	Rullps	1		MSI	i əəs))) (
DATE		MATRIX	# of Conta & Preserve	iners atives	CDTH	035/80 8021 8021 8010	015M 8015N 0	rain (44)	
YR MO DY TIME	APLE NUMBER / DESIGNATION	Vapor Water Soil Sedim't	HCI HAO ³ H ⁵ SO ⁴ EuCote	Noc End		EPA 5035/ EPA 5035/ 27PH 5035/ 27PH 5035/ 27PH 5035/	7 PHd by 8 7 PHmo by EPA 82700 MUA Patai	mai)2H	
1705310625755	47210	×		-30 - 2 0	146			××	
1111110647DSV	13-5	X		30 - 5 1	219			××	
WAY VO 6 4 7 PSVI	13 - 8	×	-	-30-28	518			XX	
Page 16 of 32						320-28797	Chain of Custody		
NOTES				0	HAIN OF CUS	TODY RECON	Q.		
Turn Around Time: Stand and Th	9T		REPROVISIED BY (Sognature)	RL-	RECEIVED B RECEIVED B	r. (sepaptio)	ϑ	(421 (421)	7 1245
			RELINOUISHED BY: (Signature)	c/2/12/65		Y. (Signature)	- Thus	6/3	TIME
6/20/:			MSPATCHED BY: (Signature)	DAT	ETIME	ECEIVED FOR LA	B BY: (Signature)	DAT	E TIME
Page 1 of 1			AETHOD OF SHIPMENT: PICKed up b	y lab cou	101			_	

I

Client: PES Environmental, Inc.

Login Number: 28797 List Number: 1 Creator: Hytrek, Cheryl

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	N/A	
Cooler Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 320-28797-1

List Source: TestAmerica Sacramento

	STING	Sacramento Canister QC Certification Batch Certification
Certification Type Date Cleaned/Batch ID Date of QC Data File Number	TD-15 SCAN 5/12/17 320-28241 5/16/2017 C: [MGDCUEW] 1 [DATA] 170 7 MG6051605.d CANISTER ID NUMBERS	57.6 320-28241 Chain of Custody
34000806	34001789	
34001621	34000625	
34000802	34000620	
34000316	34001964	
34000910	8218	
34000769	34000679	
34002003	34001030	

The above canisters were cleaned as a batch. This certifies this batch contains no target analyte concentration greater than or equal to the method criteria for the "*Certification Type*" indicated above.

******" INDICATES THE CAN OR CANS WHICH WERE SCREENED.

1st level Reviewed By:

0 200

2nd level Reviewed By:

5/18/17

Date:

Date:

Q:\FORMS\QA-814 BATCH CAN QC 20130729.DOC QA-814

ERS 7/29/2013

TestAmerico The leader in environmental testin	lig (Sacramento Canister QC Certification Batch Certification
Certification Type Date Cleaned/Batch ID Date of QC Data File Number	TD-15 (SCA 05-18.17 320-	26393
* 8318	CANISTER ID NUMBERS	
8504	31000948	
34000984	34001938	
3400 596	34001645	
34001671	34001009	
34000971	34001498	
34001595	34001134	
34001093	34001219	

The above canisters were cleaned as a batch. This certifies this batch contains no target analyte concentration greater than or equal to the method criteria for the "*Certification Type*" indicated above.

******" INDICATES THE CAN OR CANS WHICH WERE SCREENED.

1st level Reviewed By:

Date:

2nd level Reviewed By:

Date:

Q:\FORMS\QA-814 BATCH CAN QC 20130729.DOC QA-814

ERS 7/29/2013

Lab Name: TestAmerica Sacramento	Job No.: <u>320-28241-1</u>				
SDG No.:					
Client Sample ID: <u>34000806</u>	Lab Sample ID: <u>320-28241-1</u>				
Matrix: Air	Lab File ID: MS6051605.D				
Analysis Method: TO-15	Date Collected: 05/12/2017 00:00				
Sample wt/vol: 500(mL)	Date Analyzed: 05/16/2017 11:06				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: RTX-Volatiles ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 164631	Units: ppb v/v				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	ND		5.0	0.18
107-02-8	Acrolein	ND		2.0	0.22
107-13-1	Acrylonitrile	ND		2.0	0.19
107-05-1	Allyl chloride	ND		0.80	0.11
71-43-2	Benzene	ND		0.40	0.079
100-44-7	Benzyl chloride	ND		0.80	0.16
75-27-4	Bromodichloromethane	ND		0.30	0.066
75-25-2	Bromoform	ND		0.40	0.070
74-83-9	Bromomethane	ND		0.80	0.34
106-99-0	1,3-Butadiene	ND		0.80	0.15
106-97-8	n-Butane	ND		0.40	0.15
78-93-3	2-Butanone (MEK)	ND		0.80	0.20
75-65-0	tert-Butyl alcohol (TBA)	ND		2.0	0.11
104-51-8	n-Butylbenzene	ND		0.40	0.18
135-98-8	sec-Butylbenzene	ND		0.40	0.070
98-06-6	tert-Butylbenzene	ND		0.80	0.068
75-15-0	Carbon disulfide	ND		0.80	0.078
56-23-5	Carbon tetrachloride	ND		0.80	0.064
108-90-7	Chlorobenzene	ND		0.30	0.064
75-45-6	Chlorodifluoromethane	ND		0.80	0.27
75-00-3	Chloroethane	ND		0.80	0.31
67-66-3	Chloroform	ND		0.30	0.095
74-87-3	Chloromethane	ND		0.80	0.20
95-49-8	2-Chlorotoluene	ND		0.40	0.080
110-82-7	Cyclohexane	ND		0.40	0.084
124-48-1	Dibromochloromethane	ND		0.40	0.079
106-93-4	1,2-Dibromoethane (EDB)	ND		0.80	0.075
74-95-3	Dibromomethane	ND		0.40	0.057
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroetha ne	ND		0.40	0.16
95-50-1	1,2-Dichlorobenzene	ND		0.40	0.13
541-73-1	1,3-Dichlorobenzene	ND		0.40	0.11
106-46-7	1,4-Dichlorobenzene	ND		0.40	0.15
75-71-8	Dichlorodifluoromethane	ND		0.40	0.15
75-34-3	1,1-Dichloroethane	ND		0.30	0.072
107-06-2	1,2-Dichloroethane	ND		0.80	0.088

Lab Name: TestAmerica Sacramento	Job No.: <u>320-28241-1</u>				
SDG No.:					
Client Sample ID: <u>34000806</u>	Lab Sample ID: <u>320-28241-1</u>				
Matrix: Air	Lab File ID: MS6051605.D				
Analysis Method: TO-15	Date Collected: 05/12/2017 00:00				
Sample wt/vol: 500(mL)	Date Analyzed: 05/16/2017 11:06				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: <u>RTX-Volatiles</u> ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 164631	Units: ppb v/v				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-35-4	1,1-Dichloroethene	ND		0.80	0.13
156-59-2	cis-1,2-Dichloroethene	ND		0.40	0.089
156-60-5	trans-1,2-Dichloroethene	ND		0.40	0.10
78-87-5	1,2-Dichloropropane	ND		0.40	0.24
10061-01-5	cis-1,3-Dichloropropene	ND		0.40	0.10
10061-02-6	trans-1,3-Dichloropropene	ND		0.40	0.088
123-91-1	1,4-Dioxane	ND		0.80	0.10
141-78-6	Ethyl acetate	ND		0.30	0.18
100-41-4	Ethylbenzene	ND		0.40	0.063
622-96-8	4-Ethyltoluene	ND		0.40	0.19
142-82-5	n-Heptane	ND		0.80	0.063
87-68-3	Hexachlorobutadiene	ND		2.0	0.43
110-54-3	n-Hexane	ND		0.80	0.075
591-78-6	2-Hexanone	ND		0.40	0.087
98-82-8	Isopropylbenzene	ND		0.80	0.10
99-87-6	4-Isopropyltoluene	ND		0.80	0.12
1634-04-4	Methyl-t-Butyl Ether (MTBE)	ND		0.80	0.12
80-62-6	Methyl methacrylate	ND		0.80	0.16
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		0.40	0.14
75-09-2	Methylene Chloride	ND		0.40	0.072
98-83-9	alpha-Methylstyrene	ND		0.40	0.065
91-20-3	Naphthalene	ND		0.80	0.56
111-65-9	n-Octane	ND		0.40	0.055
109-66-0	n-Pentane	ND		0.80	0.26
115-07-1	Propylene	ND		0.40	0.099
103-65-1	N-Propylbenzene	ND		0.40	0.059
100-42-5	Styrene	ND		0.40	0.059
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.40	0.069
127-18-4	Tetrachloroethene	ND		0.40	0.051
109-99-9	Tetrahydrofuran	ND		0.80	0.21
108-88-3	Toluene	ND		0.40	0.051
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		0.40	0.16
120-82-1	1,2,4-Trichlorobenzene	ND		2.0	0.43
71-55-6	1,1,1-Trichloroethane	ND		0.30	0.065
79-00-5	1,1,2-Trichloroethane	ND		0.40	0.067

Lab Name: TestAmerica Sacramento	Job No.: <u>320-28241-1</u>				
SDG No.:					
Client Sample ID: <u>34000806</u>	Lab Sample ID: <u>320-28241-1</u>				
Matrix: Air	Lab File ID: MS6051605.D				
Analysis Method: TO-15	Date Collected: 05/12/2017 00:00				
Sample wt/vol: 500(mL)	Date Analyzed: 05/16/2017 11:06				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: <u>RTX-Volatiles</u> ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 164631	Units: ppb v/v				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	ND		0.40	0.11
75-69-4	Trichlorofluoromethane	ND		0.40	0.20
96-18-4	1,2,3-Trichloropropane	ND		0.40	0.17
95-63-6	1,2,4-Trimethylbenzene	ND		0.80	0.16
108-67-8	1,3,5-Trimethylbenzene	ND		0.40	0.13
540-84-1	2,2,4-Trimethylpentane	ND		0.40	0.071
108-05-4	Vinyl acetate	ND		0.80	0.15
593-60-2	Vinyl bromide	ND		0.80	0.26
75-01-4	Vinyl chloride	ND		0.40	0.12
179601-23-1	m,p-Xylene	ND		0.80	0.10
95-47-6	o-Xylene	ND		0.40	0.054

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	93		70-130
17060-07-0	1,2-Dichloroethane-d4 (Surr)	102		70-130
2037-26-5	Toluene-d8 (Surr)	99		70-130

TestAmerica Sacramento Target Compound Quantitation Report

Data File: Lims ID: Client ID: Sample Type:	\\ChromNA\Sacramento\ChromData 320-28241-A-1 34000806 Client	a\ATMS6\20170516	p-43118.b\MS	66051605.D	
Inject. Date:	16-May-2017 11:06:30	ALS Bottle#:	5	Worklist Smp#:	5
Purge Vol:	25.000 mL	Dil. Factor:	1.0000		
Sample Info:	320-28241-A-1				
Misc. Info.:	500 mL CAN CERT				
Operator ID:	LHS	Instrument ID:	ATMS6		
Method: Limit Group:	\\ChromNA\Sacramento\ChromData MSA - TO15 - ICAL	a\ATMS6\20170516	o-43118.b\TC	015_ATMS6.m	
Last Update:	17-May-2017 09:45:37	Calib Date:	16-May-2	017 08:12:30	
Integrator:	RTE	ID Type:	Deconvol	ution ID	
Quant Method:	Internal Standard	Quant By:	Initial Cal	ibration	
Last ICal File:	\\ChromNA\Sacramento\ChromDat	a\ATMS6\20170516	-43118.b\MS	6051602.D	
Column 1 : Process Host:	RTX Volatiles (0.32 mm) XAWRK010		Det: MS S	SCAN	

First Level Reviewer: phanthasena

17-	May-201	7 09:48:10

First Level Reviewer: phanthasena		Date:			17-May-20 ⁻			
		RT	Adj RT	DIt RT			OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ppb v/v	Flags
 1 Chlorobromomethane (IS) 	130	13.094	13.094	0.000	94	43372	4.00	
* 21,4-Difluorobenzene	114	15.242	15.242	0.000	96	157030	4.00	
 * 3 Chlorobenzene-d5 (IS) 	117	21.988	21.982	0.006	89	138766	4.00	
\$ 41,2-Dichloroethane-d4 (Sur	65	14.305	14.299	0.006	99	77943	4.09	
\$ 5 Toluene-d8 (Surr)	100	18.697	18.691	0.006	98	92908	3.97	
\$ 6 4-Bromofluorobenzene (Surr	95	24.550	24.550	0.000	87	88368	3.73	
11 Propene	41	4.480	4.486	-0.006	26	353	0.0455	
17 Butane	43	5.283	5.295	-0.012	23	943	0.0487	
32 Acetone	43	8.270	8.276	-0.006	41	3028	0.1428	
Reagents:								
VAMSIS20_00002		Amount	Added: 5	0.00	U	Inits: mL	Run Reager	nt

Report Date: 17	May-2017 09:48:11		Chro	m Revision: 2	2.2 11-May	-2017 11:4	43:00						
Data File [.]	\\ChromNA\Sacr	TestAmerica Sac amento\ChromDat	rament	o S6\20170516-	43118 b\M	S6051605	D						
Injection Date:	16-May-2017 11	:06:30	Instru	ument ID:	ATMS6	00001000			Operator ID:	LH	S		
Lims ID:	320-28241-A-1		Lab S	Sample ID:	320-282	41-1			Worklist Smp#	#: 5			
Client ID:	34000806												
Purge Vol:	25.000 mL		Dil. F	actor:	1.0000				ALS Bottle#:	5			
Method:	TO15_ATMS6		Limit	Group:	MSA - T	015 - ICA	L						
Column: RTX Vo	platiles (0.32 mm)			10000540									
15				MS60516 ନ୍	05[MS SCAN	Chroj: I otal	8		<u>+</u>				
				5.24	797		1.98		556				
14-				9(15	с С)(2,		24.				
				zene	irr)((<u>S</u>))(Lur				
13				Jenz	Ū.		-d5		(S				
				orot	40 40	5	Gene		ene				
12				Diflu			Denz		Denz				
				4-□			orot		bio				
11-			Ô	*	€	•	ਤ		offic				
			3.10				*		- Ē				
10-			3)(1	299					4-B				
			<u>(10</u>	14.					↔				
<u></u>			Jan)(Lur									
000			met	l (Si									
8 ×			omo	p-e									
×			opro	han									
7			hlor	oet									
			0 *										
6				Dic									
Ŭ				1,2									
F -				\$									
5													
4													
	~ ~												
474	295												
	(5. (8.												
ene l	ane												
	But												
	- Minthly million when the set of the set	one Welfeliele in a left og bei her et der at de andere over be	and the second	- Anna German		Herein and the state of the sta	un marine Un		willow the state of the second states and th	alalynya <mark>hik</mark> ananya dah			tin til it.
3.0 5.	D 7.0 9	2.0 11.0	13.0	15.0	17.0 Min	19.0	21.0	23.0	25.0	27.0	29.0	31.0	33.0

Lab Name: TestAmerica Sacramento	Job No.: <u>320-28393-1</u>				
SDG No.:					
Client Sample ID: 8318	Lab Sample ID: <u>320-28393-1</u>				
Matrix: Air	Lab File ID: MS6051906.D				
Analysis Method: TO-15	Date Collected: 05/18/2017 00:00				
Sample wt/vol: 500(mL)	Date Analyzed: 05/19/2017 15:42				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: <u>RTX-Volatiles</u> ID: <u>0.32(mm)</u>				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 165335	Units: ppb v/v				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	0.51	J	5.0	0.18
107-02-8	Acrolein	ND		2.0	0.22
107-13-1	Acrylonitrile	ND		2.0	0.19
107-05-1	Allyl chloride	ND		0.80	0.11
71-43-2	Benzene	ND		0.40	0.079
100-44-7	Benzyl chloride	ND		0.80	0.16
75-27-4	Bromodichloromethane	ND		0.30	0.066
75-25-2	Bromoform	ND		0.40	0.070
74-83-9	Bromomethane	ND		0.80	0.34
106-99-0	1,3-Butadiene	ND		0.80	0.15
106-97-8	n-Butane	ND		0.40	0.15
78-93-3	2-Butanone (MEK)	ND		0.80	0.20
75-65-0	tert-Butyl alcohol (TBA)	ND		2.0	0.11
104-51-8	n-Butylbenzene	ND		0.40	0.18
135-98-8	sec-Butylbenzene	ND		0.40	0.070
98-06-6	tert-Butylbenzene	ND		0.80	0.068
75-15-0	Carbon disulfide	0.46	J	0.80	0.078
56-23-5	Carbon tetrachloride	ND		0.80	0.064
108-90-7	Chlorobenzene	ND		0.30	0.064
75-45-6	Chlorodifluoromethane	ND		0.80	0.27
75-00-3	Chloroethane	ND		0.80	0.31
67-66-3	Chloroform	ND		0.30	0.095
74-87-3	Chloromethane	ND		0.80	0.20
95-49-8	2-Chlorotoluene	ND		0.40	0.080
110-82-7	Cyclohexane	ND		0.40	0.084
124-48-1	Dibromochloromethane	ND		0.40	0.079
106-93-4	1,2-Dibromoethane (EDB)	ND		0.80	0.075
74-95-3	Dibromomethane	ND		0.40	0.057
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroetha ne	ND		0.40	0.16
95-50-1	1,2-Dichlorobenzene	ND		0.40	0.13
541-73-1	1,3-Dichlorobenzene	ND		0.40	0.11
106-46-7	1,4-Dichlorobenzene	ND		0.40	0.15
75-71-8	Dichlorodifluoromethane	ND		0.40	0.15
75-34-3	1,1-Dichloroethane	ND		0.30	0.072
107-06-2	1,2-Dichloroethane	ND		0.80	0.088

Lab Name: TestAmerica Sacramento	Job No.: <u>320-28393-1</u>
SDG No.:	
Client Sample ID: 8318	Lab Sample ID: <u>320-28393-1</u>
Matrix: Air	Lab File ID: MS6051906.D
Analysis Method: TO-15	Date Collected: 05/18/2017 00:00
Sample wt/vol: 500(mL)	Date Analyzed: 05/19/2017 15:42
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: <u>RTX-Volatiles</u> ID: <u>0.32(mm)</u>
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 165335	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL		
75-35-4	1,1-Dichloroethene	ND		0.80	0.13		
156-59-2	cis-1,2-Dichloroethene	ND		0.40	0.089		
156-60-5	trans-1,2-Dichloroethene	ND		0.40	0.10		
78-87-5	1,2-Dichloropropane	ND		0.40	0.24		
10061-01-5	cis-1,3-Dichloropropene	ND		0.40	0.10		
10061-02-6	trans-1,3-Dichloropropene	ND		0.40	0.088		
123-91-1	1,4-Dioxane	ND		0.80	0.10		
141-78-6	Ethyl acetate	ND		0.30	0.18		
100-41-4	Ethylbenzene	ND		0.40	0.063		
622-96-8	4-Ethyltoluene	ND		0.40	0.19		
142-82-5	n-Heptane	ND		0.80	0.063		
87-68-3	Hexachlorobutadiene	ND		2.0	0.43		
110-54-3	n-Hexane	ND		0.80	0.075		
591-78-6	2-Hexanone	ND		0.40	0.087		
98-82-8	Isopropylbenzene	ND		0.80	0.10		
99-87-6	4-Isopropyltoluene	ND		0.80	0.12		
1634-04-4	Methyl-t-Butyl Ether (MTBE)	ND		0.80	0.12		
80-62-6	Methyl methacrylate	ND		0.80	0.16		
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		0.40	0.14		
75-09-2	Methylene Chloride	ND		0.40	0.072		
98-83-9	alpha-Methylstyrene	ND		0.40	0.065		
91-20-3	Naphthalene	ND		0.80	0.56		
111-65-9	n-Octane	ND		0.40	0.055		
109-66-0	n-Pentane	ND		0.80	0.26		
115-07-1	Propylene	0.11	J	0.40	0.099		
103-65-1	N-Propylbenzene	ND		0.40	0.059		
100-42-5	Styrene	ND		0.40	0.059		
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.40	0.069		
127-18-4	Tetrachloroethene	ND		0.40	0.051		
109-99-9	Tetrahydrofuran	ND		0.80	0.21		
108-88-3	Toluene	ND		0.40	0.051		
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		0.40	0.16		
120-82-1	1,2,4-Trichlorobenzene	ND		2.0	0.43		
71-55-6	1,1,1-Trichloroethane	ND		0.30	0.065		
79-00-5	1,1,2-Trichloroethane	ND		0.40	0.067		

Lab Name: TestAmerica Sacramento	Job No.: <u>320-28393-1</u>					
SDG No.:						
Client Sample ID: 8318	Lab Sample ID: <u>320-28393-1</u>					
Matrix: Air	Lab File ID: <u>MS6051906.D</u>					
Analysis Method: <u>TO-15</u>	Date Collected: 05/18/2017 00:00					
Sample wt/vol: 500(mL)	Date Analyzed: 05/19/2017 15:42					
Soil Aliquot Vol:	Dilution Factor: 1					
Soil Extract Vol.:	GC Column: <u>RTX-Volatiles</u> ID: 0.32(mm)					
% Moisture:	Level: (low/med) Low					
Analysis Batch No.: 165335	Units: ppb v/v					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	ND		0.40	0.11
75-69-4	Trichlorofluoromethane	ND		0.40	0.20
96-18-4	1,2,3-Trichloropropane	ND		0.40	0.17
95-63-6	1,2,4-Trimethylbenzene	ND		0.80	0.16
108-67-8	1,3,5-Trimethylbenzene	ND		0.40	0.13
540-84-1	2,2,4-Trimethylpentane	ND		0.40	0.071
108-05-4	Vinyl acetate	ND		0.80	0.15
593-60-2	Vinyl bromide	ND		0.80	0.26
75-01-4	Vinyl chloride	ND		0.40	0.12
179601-23-1	m,p-Xylene	ND		0.80	0.10
95-47-6	o-Xylene	ND		0.40	0.054

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	94		70-130
17060-07-0	1,2-Dichloroethane-d4 (Surr)	93		70-130
2037-26-5	Toluene-d8 (Surr)	96		70-130

FORM I TO-15

TestAmerica Sacramento Target Compound Quantitation Report

Data File: Lims ID: Client ID: Sample Type:	\\ChromNA\Sacramento\ChromDat 320-28393-A-1 8318 Client	a\ATMS6\20170519	9-43295.b\M	S6051906.D				
Inject. Date:	19-May-2017 15:42:30	ALS Bottle#:	4	Worklist Smp#:	21			
Purge Vol:	25.000 mL	Dil. Factor:	1.0000					
Sample Info:	320-28393-A-1							
Misc. Info.:	500 mL CAN CERT							
Operator ID:	SV	Instrument ID:	ATMS6					
Method: Limit Group:	\\ChromNA\Sacramento\ChromDat MSA - TO15 - ICAL	a\ATMS6\20170519	9-43295.b\T(D15_ATMS6.m				
Last Update:	22-May-2017 10:04:41	Calib Date:	19-May-2	2017 11:49:30				
Integrator:	RTE	ID Type:	Deconvo	lution ID				
Quant Method:	Internal Standard	Quant By:	Initial Ca	libration				
Last ICal File: \\ChromNA\Sacramento\ChromData\ATMS6\20170519-43295.b\MS6051902.D								
Column 1 : Process Host:	RTX Volatiles (0.32 mm) XAWRK029		Det: MS	SCAN				

Date:

First Level Reviewer: phanthasena

22-May-2017 10:04:41

		RT	Adj RT	DIt RT			OnCol Amt	
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ppb v/v	Flags
* 1 Chlorobromomethane (IS)	130	13.100	13.100	0.000	94	40858	4.00	
* 21,4-Difluorobenzene	114	15.242	15.242	0.000	95	156100	4.00	
* 3 Chlorobenzene-d5 (IS)	117	21.988	21.988	0.000	89	139470	4.00	
\$ 41,2-Dichloroethane-d4 (Sur	65	14.299	14.305	-0.006	98	71878	3.70	
\$ 5 Toluene-d8 (Surr)	100	18.703	18.697	0.006	98	93599	3.83	
\$ 6 4-Bromofluorobenzene (Surr	95	24.556	24.549	0.007	87	93450	3.74	
11 Propene	41	4.498	4.486	0.012	37	892	0.1107	
17 Butane	43	5.307	5.295	0.012	10	997	0.0530	
32 Acetone	43	8.282	8.276	0.006	99	10616	0.5077	
40 Carbon disulfide	76	9.602	9.590	0.012	96	10934	0.4590	
58 Isooctane	57	14.244	14.232	0.012	1	1508	0.0333	
Reagents:								
VAMSIS20_00002		Amount	Added: 5	0.00	L	Inits: mL	Run Reager	nt
—							5	

Report Date:	22-May-20	017 10:04:	41		Chr	om Revision:	2.2 25-Apr	2017 13:27	7:22						
Data File [,]	\\Ch	romNA\S;	Test	America Sad	cramen	ito IS6\20170519	-43295 h\N/	\$6051906	D						
Injection Date	e: 19-N	May-2017	15:42:30)	Inst	rument ID:	ATMS6	00001700.	D		Operator ID:	S	V		
Lims ID:	320	-28393-A-	1		Lab	Sample ID:	320-283	93-1			Worklist Smp	o#: 2 [^]	1		
Client ID:	831	8													
Purge Vol:	25.0	00 mL			Dil.	Factor:	1.0000				ALS Bottle#:	4			
Method:	101 Volatiloo	5_ATMS6) \		Lim	it Group:	MSA - T	015 - ICAL	-						
	volatiles	(0.32 mm)			MS60519	906[MS SCAN	Chrol:Total							
15									88)		+(9)				
						248)	02 0		21.9		4.55				
14						15.2		- 	S)(7)(2)				
12						sne(d5 (1		Sur				
13						enze	ar	5	ene-		sue (
12-						prop			enze		enze				
12						lifluc			rob		do la				
11-						4-D	ť	÷	CHC		offuc				
						*			*		0 0				
10-					.106						4-Br				
					(13	311					↔				
ି ୨					(IS)	(14.									
000					ane	(uur)									
× 8					neth	4 (S									
≻					mor	Je-d									
7					opro	ethai									
					hlor	oroe									
6					0 *	Dichl									
						,2-□									
5						\$ 1									
4			8)												
			09.6												
3	~	32)	ie (
	301)	8.28	sulfic												
	(<u>5</u> , 4)e(n dis												
	ane	tor	Irboi												
	But	, Ac	Ca												
	Minstern Million Andreas	<u> </u>	-	Martin Martin Martin	HI-HALLAN	mallen dunnen		Land mar and a state of the sta	angerenander for	an de hier an de hier et de	miles his man white the same	http://www.engla	lin a lik did seijaan ita		legentus kilos igty
3.0	5.0	7.0	9.0	11.0	13.0	15.0	17.0 Min	19.0	21.0	23.0	25.0	27.0	29.0	31.0	33.0

APPENDIX D

PERTINENT DATA FROM PREVIOUS INVESTIGATION

TABLES

Table 2 Summary of Soil Vapor Analytical Results Off-Site Subsurface Investigation Report 6601-6603 Shellmound Street, Emeryville, California

Sample Location	Sample ID	Sample Depth (feet bgs)	Date Sampled	PCE (µg/m ³)	TCE (μg/m ³)	cis-1,2-DCE (µg/m³)	trans-1,2- DCE (μg/m ³)	Vinyl chloride (µg/m³)	1,1,1-TCA (μg/m³)	MEK (µg/m ³)	MIBK (µg/m³)	Acetone (μg/m³)	Benzene (µg/m³)	Toluene (μg/m³)	Ethylbenzene (µg/m³)	m,p-Xylene (µg/m³)	o-Xylene (µg/m³)	1,2,4-TMB (µg/m ³)	3 1,3,5-TMB (μg/m³)	4-Ethyltoluene (μg/m³)	Carbon disulfide (µg/m³)	Chloroform (µg/m³)	Other VOCs (μg/m³)	Carbon Dioxide (% v/v)	Oxygen (% v/v)	Helium (% v/v)
	SSV1	0.5	10/18/2016	< 12	23	< 7	< 7	< 4.5	< 7.3	< 10	< 7.3	220	< 5.7	< 6.7	< 7.7	< 15	< 7.7	< 17	< 8.7	< 8.7	< 11	< 6.5	ND	10	4.8	< 0.18
PSV1/SSV1	PSV1-5	5.0	10/21/2016	28	23	130	13	82	< 11	220	61	380	120	410	39	150	40	< 26	< 13	< 13	38	< 9.8	ND	11	2.4	0.30
	PSV1-10	10.0	10/21/2016	< 69	63	170	240	210	< 42	78	< 42	< 300	510	1,100	860	2,500	920	< 100	< 50	< 50	140	< 37	ND	< 1	1.9	< 0.2
	SSV2	0.5	10/18/2016	400	18	< 7	< 7	< 4.5	40	< 10	< 7.3	250	7.3	7.1	< 7.7	< 15	< 7.7	< 17	< 8.7	< 8.7	< 11	< 6.5	ND	< 0.97	19	0.27
PSV2/SSV2	PSV2-5	5.0	10/21/2016	< 2.7	3.7	75	15	300	< 1.6	140	< 1.6	330	37	270	34	130	38	18	7.2	7.1	23	< 1.5	4.8 (1,1-DCA), 4.5 (CB), 2.5 (1,3-DCB)	5.7	8.7	< 0.19
	PSV2-9	9.0	10/21/2016	< 18	< 14	30	17	190	< 11	86	92	240	110	680	73	270	83	35	15	16	50	< 9.8	ND	< 1.1	1.1	< 0.21
PSV3/SSV3	SSV3	0.5	10/18/2016	< 4.1	< 3.2	< 2.4	< 2.4	< 1.5	< 2.5	8.3	< 2.5	92	18	5.1	< 2.6	6.4	2.6	< 5.9	< 3	< 3	< 3.8	< 2.2	ND	< 0.98	13	0.52
1 810,8810	PSV3-5	5.0	10/21/2016	< 130	< 100	150	< 74	3,700	< 76	170	85	< 550	170	610	100	400	110	< 180	< 92	< 92	< 120	< 68	ND	6.4	2.2	< 0.6
	SSV4	0.5	10/18/2016	< 34	< 27	< 20	< 20	< 13	< 21	< 30	< 21	750	< 16	< 19	< 22	< 44	< 22	< 50	< 25	< 25	< 32	33	ND	< 0.99	13	0.37
PSV4/SSV4	PSV4-5	5.0	10/21/2016	< 17	< 13	< 9.9	< 9.9	< 6.4	< 10	240	68	400	110	740	86	340	95	39	17	23	73	< 9.2	ND	4.7	7.4	< 0.2
	PSV4-10	10.0	10/21/2016	< 13	< 9.9	8.8	< 7.3	< 4.7	< 7.6	100	72	150	130	370	78	270	93	52	24	19	370	< 6.8	ND	3.0	1.6	< 0.19
	SSV5	0.5	10/18/2016	< 5.6	17	< 3.3	< 3.3	< 2.1	< 3.4	< 4.8	< 3.4	160	3.6	4.4	< 3.6	7.3	< 3.6	< 8.1	< 4	< 4	25	< 3	ND	2.1	15	0.41
PSV5/SSV5	PSV5-5	5.0	10/19/2016	< 54	< 43	< 32	< 32	< 20	< 33	310	< 33	490	100	180	35	150	36	< 79	< 39	< 39	95	< 29	ND	3.6	2.4	< 0.2
	PSV5-10	10.0	10/19/2016	< 67	< 53	< 39	< 39	< 25	< 40	180	< 40	310	180	260	54	190	69	< 97	< 48	< 48	270	< 36	ND	< 0.99	3.9	< 0.2
	SSV6	0.5	10/18/2016	< 5.4	200	< 3.2	< 3.2	< 2	< 3.3	13	< 3.3	120	3.3	18	3.6	12	4.0	< 7.8	< 3.9	< 3.9	270	18	ND	2.9	18	3.1
PSV6/SSV6	PSV6-5	5.0	10/20/2016	< 11	36	100	11	150	< 6.9	250	88	470	180	150	25	98	26	20	9.6	< 8.3	20	< 6.2	ND	6.8	2.6	< 0.16
	PSV6-10	10.0	10/20/2016	< 14	< 11	< 8.3	< 8.3	460	< 8.6	92	< 8.6	160	190	69	30	97	38	29	20	13	62	< 7.7	36 (CE)	< 0.78	8.1	1.1
	SSV7	0.5	10/18/2016	< 130	< 100	< 75	< 75	< 48	< 77	< 110	140	2,800	< 60	< 71	< 82	< 160	< 82	< 190	< 93	< 93	< 120	< 69	ND	< 0.95	3.6	< 0.19
PSV7/SSV7	PSV7-5	5.0	10/20/2016	< 8.9	24	37	15	12	< 5.4	100	< 5.4	210	290	67	15	58	18	13	< 6.4	6.4	9.3	< 4.8	ND	7.1	9.8	0.33
	PSV7-10	10.0	10/20/2016	< 4.8	< 3.8	3.9	< 2.8	< 1.8	< 2.9	120	< 2.9	150	47	95	21	61	26	28	11	8.0	13	< 2.6	ND	4.1	6.6	< 0.15
	SSV8	0.5	10/18/2016	< 14	< 11	< 8.1	< 8.1	< 5.2	< 8.4	13	< 8.4	480	15	11	< 8.9	< 18	< 8.9	< 20	< 10	< 10	< 13	< 7.5	27 (1,4-Dioxane)	3.8	7.9	< 0.21
PSV8/SSV8	PSV8-5	5.0	10/20/2016	< 15	< 12	13	< 8.7	30	< 9	250	68	370	71	290	58	210	61	45	22	20	33	< 8	ND	1.2	8.4	< 0.17
	PSV8-10	10.0	10/20/2016	< 7.6	11	30	6.3	51	< 4.6	110	< 4.6	190	150	170	63	120	38	27	13	11	49	< 4.1	12 (Styrene)	2.8	5.5	< 0.2
	SSV9	0.5	10/18/2016	< 7.1	12	< 4.1	< 4.1	< 2.7	< 4.3	< 6.2	< 4.3	380	9.6	6.7	< 4.5	13	4.8	< 10	< 5.1	< 5.1	11	16	ND	< 1	13	< 0.2
PSV9/SSV9	PSV9-5	5.0	10/20/2016	< 17	95	37	58	120	< 10	320	68	370	51	160	36	140	40	34	14	< 12	< 15	< 9.1	ND	11	1.9	< 0.19
	PSV9-9	9.0	10/20/2016	48	110	98	110	210	< 4.9	130	48	170	53	150	23	69	20	< 12	< 5.9	< 5.9	190	< 4.4	17 (1,1-DCE) 9.3 (CB)	4.2	1.7	< 0.2
	SSV10	0.5	10/18/2016	< 5.8	< 4.6	< 3.4	< 3.4	< 2.2	< 3.5	< 5	< 3.5	130	4.6	3.6	< 3.7	< 7.4	< 3.7	< 8.4	< 4.2	< 4.2	< 5.3	6.5	ND	< 1.1	20	0.22
PSV10/SSV10	PSV10-5	5.0	10/20/2016	< 17	79	90	69	200	< 10	270	91	380	92	210	42	150	47	40	19	< 12	< 16	< 9.2	ND	8.4	1.5	< 0.16
	PSV10-10	10.0	10/20/2016	< 52	120	950	390	1,500	< 32	110	< 32	< 230	1,700	270	610	580	390	450	280	180	100	< 28	ND	< 0.97	1.3	< 0.19
	SSV11	0.5	10/18/2016	< 17	74	< 9.8	< 9.8	< 6.3	< 10	< 15	< 10	280	9.0	< 9.3	< 11	< 22	< 11	< 24	< 12	< 12	< 15	< 9.1	ND	3.3	14	< 0.2
PSV11/SSV11	PSV11-5	5.0	10/21/2016	< 21	23	32	< 12	15	< 12	130	< 12	790	340	260	38	240	48	< 30	< 15	< 15	33	< 11	ND	2.3	1.7	< 0.19
	PSV11-9	9.0	10/21/2016	< 11	17	40	10	43	< 6.7	72	< 6.7	230	130	210	44	270	57	46	27	15	82	< 6	17 (NAPH)	< 0.98	10	0.73
RWQCB Commercial/Industrial Land Use VI ESL (Subslab / Soil Gas) ¹ 2100		2100	3000	35,000	350,000	160	4,400,000	22,000,000	1,600,000	130,000,000	420	1,300,000	4900	440,000	440,000	NE	NE	NE	NE	530	NE	NE	NE	NE		
RWQCB TCE	Trigger Level, Comme	rcial/Industrial Subslal	b/Soil Gas ²		8000																					

Notes:

Detections are shown in bold. Results equal to or exceeding applicable regulatory screening levels are shaded. Only detected analytes are summarized on table. Refer to Appendix C for laboratory report to access entire list of compounds analyzed. PCE = Tetrachloroethene.

TCE = Trichloroethene. DCE = Dichloroethene.

TCA = Trichloroethane. PCA = Tetrachloroethane.

MEK = Methyl Ethyl Ketone.

- MIBK = Methyl Isobutyl Ketone.
- TMB = Trimethylbenzene. CB = Chlorobenzene.

CE = Chloroethane.

DCB = Dichlorobenzene.

NAPH = Naphthalene.

VOCs = Volatile organic compounds.

bgs = Below ground surface.

µg/m³ = Micrograms per cubic meter.

% v/v = Percent by volume.

4.9 = Not detected at or above the indicated laboratory method reporting limit.
 ND = Not detected at or above the respective laboratory method reporting limits.

NE = Not established.

-- = Not applicable/not analyzed.

1. ESL = February 2010 Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) Environmental Screening Levels (ESLs), Table SG-1 Subslab/Soil Gas Vapor Intrusion: Human Health Risk Levels. Commercial/industrial Final VI Screening Level.

2. RWQCB, 2016. User's Guide: Derivation and Application of Environmental Screening Levels (ESLs), TCE ESLs, Action Levels for Indoor Air (Response), and Groundwater and Soil Gas Trigger Leveles (Sample Indoor Air), Table 4-4. February.

Table 3Summary of Soil Vapor Leak Check ResultsOff-Site Subsurface Investigation Report6601-6603 Shellmound Street, Emeryville, California

Sample Location	Sample ID	Sample Depth (feet bgs)	Date Sampled	Helium Detected in Sample (% v/v)	Helium Detected in Shroud (% v/v)	Breakthrough Factor (%)
PSV1/SSV1	SSV1	0.5	10/18/2016	0.18	26.7	0.7
	PSV1-5	5	10/21/2016	0.3	24.7	1.2
	PSV1-10	10	10/21/2016	0.2	24.7	0.8
PSV2/SSV2	SSV2	0.5	10/18/2016	0.27	28.9	0.9
	PSV2-5	5	10/21/2016	0.19	32.8	0.6
	PSV2-9	9	10/21/2016	0.21	32.8	0.6
PSV2/SSV3	SSV3	0.5	10/18/2016	0.52	29.7	1.8
	PSV3-5	5	10/21/2016	0.6	34.9	1.7
PSV4/SSV4	SSV4	0.5	10/18/2016	0.37	29.3	1.3
	PSV4-5	5	10/21/2016	0.2	36.2	0.6
	PSV4-10	10	10/21/2016	0.19	36.2	0.5
PSV5/SSV5	SSV5	0.5	10/18/2016	0.41	29.1	1.4
	PSV5-5	5	10/19/2016	0.2	32.6	0.6
	PSV5-10	10	10/19/2016	0.2	36.8	0.5
PSV6/SSV6	SSV6	0.5	10/18/2016	3.1	27.5	11.3
	PSV6-5	5	10/20/2016	0.16	28.2	0.6
	PSV6-10	10	10/20/2016	1.1	28.2	3.9
PSV7/SSV7	SSV7	0.5	10/18/2016	0.19	25.9	0.7
	PSV7-5	5	10/20/2016	0.33	25.4	1.3
	PSV7-10	10	10/20/2016	0.15	25.4	0.6
PSV8/SSV8	SSV8	0.5	10/18/2016	0.21	36.2	0.6
	PSV8-5	5	10/20/2016	0.17	28.8	0.6
	PSV8-10	10	10/20/2016	0.2	28.8	0.7
PSV9/SSV9	SSV9	0.5	10/18/2016	0.2	32.7	0.6
	PSV9-5	5	10/20/2016	0.19	29.7	0.6
	PSV9-9	9	10/20/2016	0.2	29.7	0.7
PSV10/SSV10	SSV10	0.5	10/18/2016	0.22	29.7	0.7
	PSV10-5	5	10/20/2016	0.16	32.8	0.5
	PSV10-10	10	10/20/2016	0.19	32.8	0.6
PSV11/SSV11	SSV11	0.5	10/18/2016	0.2	34.8	0.6
	PSV11-5	5	10/21/2016	0.19	32.6	0.6
	PSV11-9	9	10/21/2016	0.73	32.6	2.2
	Acceptable Amb	ient Air Breakthr	ough Limit ¹			5%

Notes:

Detections are shown in bold. Results equal to or exceeding applicable RPD limits are shaded.

bgs = Below ground surface.

% v/v = Percent by volume.

-- = Not applicable.

1. In accordance with California Environmental Protection Agency/Department of Toxic Substances Control Advisory - Active Soil Gas Investigations, July 2015 - Appendix C: Quantitative Leak Testing Using a Tracer Gas.
ILLUSTRATIONS

12/16 DATE

144800101043 OR 2-6 1448.001.01.043 JOB NUMBER DRAWING NUMBER

CJB

REVIEWED BY

12/16 DATE

DISTRIBUTION

SUPPLEMENTAL OFF-SITE SUBSURFACE INVESTIGATION REPORT 6701, 6705, AND 6707 SHELLMOUND STREET EMERYVILLE, CALIFORNIA FUEL LEAK CASE NO. RO0000548 GEOTRACKER GLOBAL ID T0600100894

JULY 6, 2017

COPY NO. ____

		Copy No.
	Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502	PDF only
	Attention: Mr. Mark Detterman, PG, CEG	
2 Copies	Anton Emeryville, LLC 950 Tower Lane, Suite 1225 Foster City, California 94404	1 – 2
	Attention: Ms. Rachel Green	
2 Copies	Griffin Capital Griffin Capital Plaza 1520 E. Grand Avenue El Segundo, California 91245	3 - 4
	Attention: Ms. Julie Treinen	
1 Сору	Griffin Capital Corporation 790 Estate Drive, Suite 180 Deerfield, Illinois 60015	5
	Attention: Ms. Mary Higgins, Esq.	
2 Copies	PES Job Files	6 - 7
1 Copy	Unbound Original	8