

P.O. BOX 4032 • CONCORD, CA 94524-4032

MARKETING DEPARTMENT • ENVIRONMENTAL ENGINEERING

MARLA D. GUENSLER SENIOR ENGINEER (925) 246-8776 (925) 246-8798 FAX

99:2 × 86:91 d35

September 14, 1998

Mr. Scott Seery Alameda County Health Care Services 1131 Harbor Bay Parkway Alameda, CA 94502-6577

RE: Exxon RAS #7-7003/349 Main St., Pleasanton, CA

Dear Mr. Seery:

Attached for your review and comment is a *Site Closure Request Report*, for the above referenced site. This report was prepared by Delta Environmental Consultants, Inc. of Rancho Cordova, California. The results of the Risk-Based Corrective Action (RBCA) analysis contained in the report indicate that the residual hydrocarbons remaining at the site do not appear to be at concentration levels which exceed a human health-based risk of one in one million. Based on the results of the RBCA analysis and current site conditions, it is recommended that the site be evaluated for closure.

If you have any questions or comments, please contact me at (925) 246-8776.

Sincerely.

Marla D. Guensler Senior Engineer

MDG/tim

attachment: Delta's Site Closure Request Report dated August 21, 1998.

cc: w/attachment:

Mr. David Lunn - Alameda Co. Flood Control and Water Conservation District Mr. Dennis Mischek - California Regional WQCB - San Francisco Bay Region

w/o attachment:

Mr. James R. Brownell - Delta Environmental Consultants, Inc.

FORMER EXXON SERVICE STATION NO. 7-7003 349 MAIN STREET PLEASANTON, CALIFORNIA DELTA PROJECT NO. D094-838

August 21, 1998

Prepared By

DELTA ENVIRONMENTAL CONSULTANTS, INC. 3164 Gold Camp Drive, Suite 200 Rancho Cordova, California 95670 (916) 638-2085

TABLE OF CONTENTS

1.0	INTRODUCTION]
	1.1 Purpose]
2.0	BACKGROUND INFORMATION	
2.0		
	2.1 Site Location and Description.	
	2.2 Site History	4
	2.4 Regional Geology	
	2.5 Regional Hydrogeology	
	2.6 Water Well Search	
3.0	SOIL AND GROUND WATER ASSESSMENT RESULTS	5
٥.٠		
	3.1 Soil Borings and Site Geology	2 4
	3.3 Well Construction	
	3.4 Ground Water Level Measurements, Flow Direction, and Hydraulic Gradient	
	3.5 Ground Water Analytical Results	
<i>1</i> 0	DISTRIBUTION OF PETROLEUM HYDROCARBONS IN SOIL	
7.0	DISTRIBUTION OF TETROBLEM ITT DROOM WOUND BY SOID	,,
5.0	DISTRIBUTION OF PETROLEUM HYDROCARBONS IN GROUND WATER	7
		_
6.0	RISK-BASED CORRECTIVE ACTION	გ
7.0	BACKGROUND OF PRIMARY SOURCES	
7.0	BACKGROUND OF PRIMARY SOURCES	8
7.0	BACKGROUND OF PRIMARY SOURCES	8
	BACKGROUND OF PRIMARY SOURCES 7.1 Chemicals of Concern 7.2 Primary Sources	8 8
	BACKGROUND OF PRIMARY SOURCES 7.1 Chemicals of Concern 7.2 Primary Sources SECONDARY SOURCES	8 8 9
8.0	BACKGROUND OF PRIMARY SOURCES 7.1 Chemicals of Concern 7.2 Primary Sources SECONDARY SOURCES 8.1 Impacted Surface Soil	8 8 9
8.0	BACKGROUND OF PRIMARY SOURCES 7.1 Chemicals of Concern 7.2 Primary Sources SECONDARY SOURCES 8.1 Impacted Surface Soil 8.2 Impacted Subsurface Soil	8 8 9
8.0	BACKGROUND OF PRIMARY SOURCES 7.1 Chemicals of Concern 7.2 Primary Sources SECONDARY SOURCES 8.1 Impacted Surface Soil 8.2 Impacted Subsurface Soil 8.2.1 Volatilization to Outdoor Air	88 89 99
8.0	BACKGROUND OF PRIMARY SOURCES 7.1 Chemicals of Concern 7.2 Primary Sources SECONDARY SOURCES 8.1 Impacted Surface Soil 8.2 Impacted Subsurface Soil 8.2.1 Volatilization to Outdoor Air 8.2.2 Volatilization to Indoor Air	8 8 9 9
8.0	BACKGROUND OF PRIMARY SOURCES 7.1 Chemicals of Concern 7.2 Primary Sources SECONDARY SOURCES 8.1 Impacted Surface Soil 8.2 Impacted Subsurface Soil 8.2.1 Volatilization to Outdoor Air 8.2.2 Volatilization to Indoor Air 8.2.2.1 Tier 1 Volatilization to Indoor Air	
8.0	BACKGROUND OF PRIMARY SOURCES 7.1 Chemicals of Concern 7.2 Primary Sources SECONDARY SOURCES 8.1 Impacted Surface Soil 8.2 Impacted Subsurface Soil 8.2.1 Volatilization to Outdoor Air 8.2.2 Volatilization to Indoor Air 8.2.2.1 Tier 1 Volatilization to Indoor Air 8.2.2.2 Tier 2 Volatilization to Indoor Air	
8.0	BACKGROUND OF PRIMARY SOURCES 7.1 Chemicals of Concern 7.2 Primary Sources SECONDARY SOURCES 8.1 Impacted Surface Soil 8.2 Impacted Subsurface Soil 8.2.1 Volatilization to Outdoor Air 8.2.2 Volatilization to Indoor Air 8.2.2.1 Tier 1 Volatilization to Indoor Air 8.2.2.2 Tier 2 Volatilization to Indoor Air 8.2.3 Leaching to Ground Water	
8.0	BACKGROUND OF PRIMARY SOURCES 7.1 Chemicals of Concern 7.2 Primary Sources SECONDARY SOURCES 8.1 Impacted Surface Soil 8.2 Impacted Subsurface Soil 8.2.1 Volatilization to Outdoor Air 8.2.2 Volatilization to Indoor Air 8.2.2.1 Tier 1 Volatilization to Indoor Air 8.2.2.2 Tier 2 Volatilization to Indoor Air 8.2.3 Leaching to Ground Water 8.3 Impacted Ground Water	8 8 9 9 9 9 10 11
8.0	BACKGROUND OF PRIMARY SOURCES 7.1 Chemicals of Concern 7.2 Primary Sources SECONDARY SOURCES 8.1 Impacted Surface Soil 8.2 Impacted Subsurface Soil 8.2.1 Volatilization to Outdoor Air 8.2.2 Volatilization to Indoor Air 8.2.2.1 Tier 1 Volatilization to Indoor Air 8.2.2.2 Tier 2 Volatilization to Indoor Air 8.2.3 Leaching to Ground Water 8.3 Impacted Ground Water 8.3.1 Vapors to Outdoor Air	8 9 9 9 10 11 11
8.0	BACKGROUND OF PRIMARY SOURCES. 7.1 Chemicals of Concern. 7.2 Primary Sources. SECONDARY SOURCES. 8.1 Impacted Surface Soil. 8.2 Impacted Subsurface Soil. 8.2.1 Volatilization to Outdoor Air. 8.2.2 Volatilization to Indoor Air. 8.2.2.1 Tier 1 Volatilization to Indoor Air. 8.2.2.2 Tier 2 Volatilization to Indoor Air. 8.2.3 Leaching to Ground Water. 8.3 Impacted Ground Water. 8.3.1 Vapors to Outdoor Air. 8.3.2 Vapors to Indoor Air.	
8.0	BACKGROUND OF PRIMARY SOURCES	
8.0	BACKGROUND OF PRIMARY SOURCES. 7.1 Chemicals of Concern 7.2 Primary Sources SECONDARY SOURCES 8.1 Impacted Surface Soil 8.2 Impacted Subsurface Soil 8.2.1 Volatilization to Outdoor Air 8.2.2 Volatilization to Indoor Air 8.2.2.1 Tier 1 Volatilization to Indoor Air 8.2.2.2 Tier 2 Volatilization to Indoor Air 8.2.3 Leaching to Ground Water 8.3 Impacted Ground Water 8.3.1 Vapors to Outdoor Air 8.3.2 Vapors to Indoor Air 8.3.3 Ingestion 8.4 Exposure to Surface Water	899910 .110 .111 .121 .121 .121 .13
8.0	BACKGROUND OF PRIMARY SOURCES	899910 .110 .111 .121 .121 .121 .13

TABLE OF CONTENTS-Continued

<u>Tables</u>

TABLE I	Water Wells Within a 1/2 Mile Radius
TABLE 2	Soil Sample Analytical Results From Tank Removal Activities
TABLE 3	Soil Sample Analytical Results From Product Line Removal Activities
TABLE 4	Soil Sample Analysis From Drilling Activities
TABLE 5	Summary of Monitoring Well Construction Details
TABLE 6	Ground Water Monitoring Data
TABLE 7	Exposure Pathway Evaluation
TABLE 8	Soil Risk-Based Screening Level and Site Specific Target Level Summary
TABLE 9	Ground Water Risk-Based Screening Level Summary

Figures

FIGURE 1	Site Location Map
FIGURE 2	Site Map
FIGURE 3	Water Well Location Map Within a 1/2 Mile Radius of Site
FIGURE 4	Geologic Cross Section Location Map
FIGURE 5	Geologic Cross Section A-A'
FIGURE 6	Geologic Cross Section B-B'
FIGURE 7	Soil Sample Location Map of Tank Removal Activities - August 1 & 2, 1989
FIGURE 8	Soil Sample Location Map of Tank Removal - August 3 & 4, 1989
FIGURE 9	Water Table Contour Map - December 31, 1996
FIGURE 10	Inferred Extent of Petroleum Hydrocarbons in Subsurface Soil - 0' to 20' bsg
FIGURE 11	Inferred Extent of Petroleum Hydrocarbons in Subsurface Soil - 20' to 40' bsg
FIGURE 12	Existing Building Location Map

Appendices

APPENDIX A	RBCA Analysis Input Parameters
APPENDIX B	Tier 1.RBCA Evaluation Worksheets
APPENDIX C	Tier 2 RBCA Evaluation Worksheets

FORMER EXXON SERVICE STATION NO. 7-7003 349 MAIN STREET PLEASANTON, CALIFORNIA DELTA PROJECT NO. D094-838

1.0 INTRODUCTION

1.1 Purpose

Delta Environmental Consultants, Inc. (Delta), has been authorized by Exxon Company U.S.A. (Exxon), to review investigative work and remedial actions conducted at and adjacent to former Exxon Service Station No. 7-7003 located at 349 Main Street, Pleasanton, Alameda County, California, and assess if the residual concentrations of petroleum hydrocarbons in the subsurface are at levels which would allow site closure. The risk analysis was conducted using the Standard Guide for Risk-Based Corrective Action (RBCA) Applied to Petroleum Release Sites (ASTM E 1739 - 95) and the Guidance Manual for Risk-Based Corrective Action (Conner, et al., 1995).

2.0 BACKGROUND INFORMATION

2.1 Site Location and Description

Former Exxon Service Station No. 7-7003 is located at 349 Main Street, in Pleasanton, Alameda County, California (Township 3 South, Range 1 East, Section 31, Livermore Baseline and Meridian), within the jurisdiction of the Alameda County Flood Control and Water Conservation District - Zone 7 (Zone 7). The site is shown on the 7.5 minute topographical United States Geological Survey Map, Dublin Quadrangle, presented in Figure 1.

The site is a former Exxon retail gasoline station located in the center of the business district in the City of Pleasanton. Immediately north and east, the site is bounded by Angela Street and Main Street, respectively. A Bank of America (B of A) office and associated asphalt-paved parking lot (which is the property of B of A) borders the Exxon property to the west and south. A gift shop is present at the northeast corner of

Former Exxon Service Station No. 7-7003 349 Main Street Pleasanton, California Delta Project No. D094-838 Page 2

the intersection of Main Street and Angela Street. Additional businesses in the area include a hair salon and gift store west of the site across Main Street, and a coffee shop north of the site across Angela Street.

The former station building and related features, including the basins of the former underground storage tanks (USTs), are depicted in Figure 2. The surface topography of the site is generally flat, with an elevation of approximately 344 feet above mean sea level. Customer entrances to the site were from both Main Street and Angela Street. The site was predominantly paved with asphalt. The site currently has a commercial building with an asphalt parking lot.

2.2 Site History

The site was formerly a retail gasoline service station operated by Exxon. Records were not available to Delta indicating when the original USTs were installed and when the original station was constructed. In July 1989, three steel USTs, each with a 8,000-gallon capacity, and one 500-gallon used-oil tank and the associated product line piping were removed from the site. In August 1989, three fiberglass USTs (one 12,000-gallon and two 10,000-gallon capacity) and one used-oil tank (500-gallon capacity) and associated product line piping were installed in new tank basin areas. The tanks were used to store unleaded, premium unleaded, and leaded gasoline. The station was closed by Exxon and the fiberglass replacement USTs were excavated and removed in May 1993. The former locations of the steel USTs, the initial used oil tank (1), and the fiberglass and replacement used oil tank (2) are shown on Figure 2.

2.3 Summary of Previous Work

Environmental investigative activities at the site were first conducted by Applied GeoSystems (AGS) in June 1989. The environmental investigative work was initiated during the removal and replacement of the four original steel USTs (AGS Report No. 19025-1V dated July 20, 1989). In January 1990, AGS advanced four soil borings (B-1A and B-1 through B-3) completing B-1A, B-2, and B-3 as ground water monitoring wells MW-1 through MW-3, respectively. Quarterly ground water monitoring was then initiated at the site. In June 1990, AGS advanced nine borings (B-4 through B-12) completing borings B-10 and B-12 as ground water monitoring wells MW-4 and MW-5, respectively. In March 1991, soil borings B-13 through B-18 were advanced and ground water monitoring wells MW-6 and MW-7 and

Former Exxon Service Station No. 7-7003 349 Main Street Pleasanton, California Delta Project No. D094-838 Page 3

vapor extraction well VE-1 were installed in B-15, B-16, and B-18, respectively. The location of these soil

borings and vapor extraction well are shown in Figure 2.

In May 1993, soil borings B-19 through B-21 were drilled and ground water monitoring well MW-8 and

vapor extraction wells VE-2 and VE-3 were installed in B-19, B-20, and B-21, respectively. Their

locations are shown in Figure 2. The fiberglass USTs installed at the site as replacement tanks in

August 1989 and associated product line piping were removed in May 1993. Records were not available to

Delta indicating the date when the fiberglass USTs and associated piping were removed. Additionally,

Delta could not obtain records indicating what the material was used to backfill either of the former tank

basins.

Ground water monitoring wells MW-2 and MW-8 were destroyed to facilitate the construction of a

commercial building on the site in November 1996. Ground water monitoring wells MW-3 through MW-5

and vapor extraction wells VE-1 through VE-3 were destroyed in April 1997.

2.4 Regional Geology

The site is located in the north-central portion of the Livermore Valley, within the eastern edge of the Coast

Ranges Geomorphic Province. The Livermore Valley slopes gently towards the west.

Livermore Valley is underlain by non-water bearing rocks and water bearing rocks and sediments (DWR,

Department of Water Resources Bulletin No. 118-2, 1966, 1974). The non-water bearing rocks are marine

sandstone, and conglomerate sandstone of Eocene to Miocene age. These rocks are exposed in the

mountains surrounding Livermore Valley and are found at depths greater than 1,000 feet beneath the valley

floor.

The Plio-Pleistocene age Livermore Formation overlaps the Tassajara Formation beneath the north portion

of the valley and is exposed over broad regions south of the valley. Sediments of this formation consist

primarily of clayey gravel in a sandy clay matrix. Sedimentary units south of the valley dip gently north,

and are nearly level beneath the valley floor, and dip gently south beneath the north edge of the valley

(DWR, Department of Water Resources Bulletin No. 118-2, 1966).

RPT001.838

Former Exxon Service Station No. 7-7003 349 Main Street Pleasanton, California Delta Project No. D094-838 Page 4

Surficial valley-fill material overlie both the Tassajara Foundation and the Livermore Formation and range from a few feet to approximately 400 feet in thickness. The Pleistocene to Holocene age sediments include unconsolidated sand, gravel, and clay which occur as either terrace deposits, alluvial fan deposits with gravely clayey facies, alluvium, basin deposits, and channel deposits of active streams (DWR, Department of Water Resources Bulletin No. 118-2, 1966, 1974).

2.5 Regional Hydrogeology

Ground water beneath the area of investigation is located within the Livermore ground water basin. The sediments and water bearing units comprising the Livermore Valley ground water basin include valley-fill materials of the Tassajara Formation and the Livermore Formation (DWR, Department of Water Resources Bulletin No. 118-2, 1966, 1974). The Livermore Valley ground water basin is characterized by hydrologic discontinuities, and is segregated into sub-basins on the basis of localized faults. The Livermore Valley ground water system is a multi-layered system with an unconfined aquifer overlying sequential partially confined aquifers. Ground water in the basin generally flows to the west (DWR, Department of Water Resources Bulletin No. 118-2, 1966, 1974). The principal streams in the area are Arroyo Valley Creek and Arroyo Mocho Creek, which flow toward the western end of the valley. Both creeks are greater than one half mile from the site.

2.6 Water Well Search

Delta conducted a review of the Zone 7 records in Pleasanton, California. The records indicate that eight wells at six locations exist within a 1/2 -mile radius of the site. The information provided by Zone 7 for each well site is compiled in Table 1. The locations of the wells are plotted on Figure 3. According to the Zone 7 records, five of the wells are monitoring wells, one is an active water-supply well, one is an abandoned water-supply well, and one is used for electrolysis protection.

Former Exxon Service Station No. 7-7003 349 Main Street Pleasanton, California Delta Project No. D094-838 Page 5

3.0 SOIL AND GROUND WATER ASSESSMENT RESULTS

3.1 Soil Borings and Site Geology

AGS advanced fifteen soil borings from the base and sidewalls of the UST basin area of the former steel tanks at depths ranging between 7 and 24 feet below surface grade (bsg). One soil sample (S-13-NTB) was obtained from the new tank basin and six soil samples (S-3-PL1 through S-3-PL6) were collected at approximately 3 feet bsg beneath the original product line locations in August 1989. Four soil borings (B-1A and B-1 through B-3) were advanced to depths of approximately 40 feet bsg in January 1990. Soil borings B-1A, B-2, and B-3 were completed as ground water monitoring wells MW-1, MW-2, and MW-3, respectively. Nine soil borings (B-4 through B-12) were advanced to depths ranging between 31 and 42 feet bsg in June 1990. Soil borings B-10 and B-12 were completed as ground water monitoring wells MW-4 and MW-5, respectively. Two soil borings (B-13 and B-14) were advanced to approximate depths of 33 feet bsg in February 1991. One off-site soil boring B-15 was advanced to approximately 60 feet bsg and completed as ground water monitoring well MW-6 in February 1991. One off-site soil boring B-16 was advanced to approximately 46 feet bsg and completed as ground water monitoring well MW-7 in February 1991. Two soil borings (B-17 through B-18) were advanced to approximate depths of 27 feet bsg in March 1991. Soil boring B-18 was completed as vapor extraction well VE-1. Three soil borings (B-19 through B-21) were advanced to depths ranging between 25 and 26 feet bsg in March 1993. Ground water monitoring well MW-8 and vapor extraction wells VE-2 and VE-3 were installed in B-19, B-20, and B-21, respectively. The locations of the borings/wells are depicted in Figure 4.

Soil data collected during the drilling indicates the alluvial sediments underlying the site consists of silty sand, clay, and sandy clay, with interlayered lenses of silty sand and clayey sand. Figure 4 shows the traces of two geologic cross sections: cross sections A-A' and B-B'. Figures 5 and 6 illustrate the inferred subsurface lithologies along the cross sections,

Former Exxon Service Station No. 7-7003 349 Main Street Pleasanton, California Delta Project No. D094-838

Page 6

3.2 Soil Sample Analytical Results

Soil samples were collected from beneath the former steel USTs, and following additional excavation from the basin sidewalls immediately above static water. Ground water was observed at approximately 26 feet

bsg. The location of the soil samples are illustrated in Figures 7 and 8.

Soil samples were submitted for chemical analysis of benzene, toluene, ethylbenzene, and total xylenes

(BTEX), and total petroleum hydrocarbons (TPH) as gasoline. The soil sample collected from beneath the

used oil tank was also analyzed for total oil and grease, cadmium, chromium, lead and zinc. Analytical

results are compiled in Table 2. Following removal and sampling beneath the former USTs, the product

lines were removed. Six soil samples (S-3-PL1 through S-3-PL6) were collected beneath the former lines.

These samples were analyzed for BTEX and TPH as gasoline and the analytical results are summarized in

Table 3. The locations of the soil samples are shown on Figure 8. Based on information from the AGS

report dated October 24, 1991, an additional foot of soil was overexcavated in the area beneath soil

samples S-23-T1B, S-21-T2B and S-23-T3B, during tank replacement activities.

Soil samples were also collected for laboratory analysis from the soil borings. One to four soil samples

were analyzed for BTEX, TPH as gasoline, and total lead from each boring with the exception of B-18.

No samples were collected from B-18 due to its close proximity to B-13. Analytical results from soil

boring samples are presented in Table 4.

3.3 Well Construction

A total of eight ground water monitoring wells (MW-1 through MW-8) and three vapor extraction wells

(VE-1 through VE-3) were installed at the site. The well depths ranged from 25 to 58 feet bsg. A

summary of the well construction details are included in Table 5.

3.4 Ground Water Level Measurements, Flow Direction, and Hydraulic Gradient

Depth to ground water beneath the site has been measured in the monitoring and vapor extraction wells

during quarterly monitoring events between November 1989 and May 1997. Cumulative depth to ground

water data is included in Table 6. Monitoring wells MW-2 through MW-5 and MW-8 were destroyed in

RPT001.838

Former Exxon Service Station No. 7-7003 349 Main Street Pleasanton, California Delta Project No. D094-838 Page 7

late 1996 and early 1997, therefore, the water table level measurements from the ground water monitoring event conducted on May 19, 1996, were used to illustrate the ground water table contours and flow direction shown in Figure 9. Ground water depth at the site is approximately 20 feet below surface grade (bsg).

3.5 Ground Water Analytical Results

Ground water samples have been collected since November 1989 for laboratory analysis of BTEX and total purgeable petroleum hydrocarbons (TPPH) as gasoline on a quarterly basis. Methyl tertiary butyl ether (MTBE) has been analyzed in ground water samples since May 1995. Cumulative analytical results are summarized in Table 6.

4.0 DISTRIBUTION OF PETROLEUM HYDROCARBONS IN SOIL

Soil sample analytical results suggest that concentrations of benzene and TPH as gasoline are highest in the location adjacent to the initial UST basin area. Figure 10 and Figure 11 illustrate the inferred distribution of benzene and TPH as gasoline in soil (plan view) between 0 to 20 feet and 20 to 40 feet bsg, respectively. Concentrations utilized in the construction of these figures were obtained from investigation activities performed since 1989. It is anticipated that current concentrations of hydrocarbons in soil are actually lower due to nearly ten years of naturally occurring bioremediative processes following the removal of the steel tanks. The inferred vertical distribution of benzene and TPH as gasoline in soil is illustrated in the cross sections shown in Figures 5 and 6.

5.0 DISTRIBUTION OF PETROLEUM HYDROCARBONS IN GROUND WATER

Concentrations of BTEX, MTBE, and TPH as gasoline in ground water were below laboratory reporting limits for four consecutive sampling quarters in samples collected from monitoring wells MW-3 through MW-8, with the following exceptions: monitoring well MW-4 contained toluene at 3.7 micrograms per liter (µg/L) on December 31, 1996 and MW-8 contained TPPH as gasoline at 79 µg/L on June 25, 1996 and toluene and total xylenes at 0.62 and 6.8 µg/L, respectively, on November 30, 1995. Concentrations of benzene have been reported in MW-1 and MW-2 within the last four consecutive quarters at a maximum concentration of 11 µg/L (MW-1). However, the benzene concentrations were below the laboratory reporting limit of 0.5 µg/L in each well during the last sampling event (May 19, 1997 for MW-1 and

Former Exxon Service Station No. 7-7003 349 Main Street Pleasanton, California Delta Project No. D094-838 Page 8

September 25, 1996 for MW-2). Ground water samples collected from monitoring well MW-1 have shown a decreasing trend in BTEX and TPH as gasoline and appear to be stable in MW-2. Residual petroleum hydrocarbons in ground water appear to be stable, as the surrounding well samples exhibited a consistent history of being below the laboratory's reporting limits prior to destruction.

6.0 RISK-BASED CORRECTIVE ACTION

A RBCA Tiered analysis was performed to assess if current representative soil and ground water BTEX concentration levels at the site meet criteria established for regulatory closure. The analysis was conducted under guidance from the Standard Guide for RBCA Applied at Petroleum Release Sites (ASTM, 1995) and Tier 2 Guidance Manual for Risk-Based Corrective Action (Conner, et al., 1995).

7.0 BACKGROUND OF PRIMARY SOURCES

7.1 Chemicals of Concern

BTEX compounds have been identified as the chemicals of concern (COCs) at the site. Appendix A provides chemical characteristics, toxicity data, and physical data for these compounds. Residual petroleum hydrocarbon COCs on-site have impacted the subsurface soil. However, the impacts are limited to the immediate area of the former UST basin area between a depth of approximately 18.5 to 30 feet bsg. Based on ground water analytical results, the COCs have impacted ground water in the vicinity of the site but appear to be stable. Concentrations of BTEX were not reported in MW-6 and MW-7 during the last monitoring event conducted on June 15, 1998.

For conservative purposes, the representative concentrations for the ground water constituents were based on data collected during the last four sampling events at each well.

7.2 Primary Sources

The primary source of COCs at the site associated with the initial gasoline USTs. Activities associated with these tanks and the dispensing of fuel, impacted the subsurface soil with residual petroleum hydrocarbons. Based on the presumed location of the hydrocarbons, the ground water is not considered to

Former Exxon Service Station No. 7-7003 349 Main Street Pleasanton, California Delta Project No. D094-838 Page 9

be a potential primary source, however, BTEX constituents have been reported in ground water at the site as a result of the residual petroleum hydrocarbons in the soil.

8.0 SECONDARY SOURCES

An exposure pathway evaluation was performed to assess the health risk from the impacted mediums at the site, termed secondary sources by the RBCA guidance manual. The exposure pathway evaluation is summarized in Table 7.

8.1 Impacted Surface Soil

Surface soil, defined as soil from just below the surface to a depth of three feet below grade, was not impacted by the primary source of petroleum hydrocarbons on-site. Laboratory analyses of surface soil samples S-3-PL1 through S-3-PL6 did not detect BTEX constituents. The exposure pathways for surface soil were not considered further during the RBCA analysis.

8.2 Impacted Subsurface Soil

Subsurface soil, defined as soil greater than three feet below surface grade, was impacted by the primary source of petroleum hydrocarbons on-site. For the RBCA analysis, twenty-three soil samples selected at depths ranging from 18.5 to 33 feet bsg were used to evaluate a representative source concentration value for each COC. The average concentrations from the soil sample analytical results were computed and used as the individual constituent representative concentrations in the RBCA analysis. This technique will remove anomalies while ensuring that the results are still conservative, and is in accordance with the *Tier 2 Guidance Manual for Risk-Based Corrective Action* (Conner, et al, 1995). The representative average BTEX concentrations for the collective soil source area are: benzene, 0.046 milligrams per kilogram (mg/kg); toluene, 0.055 mg/kg; ethylbenzene, 0.1 mg/kg; and total xylenes, 0.13 mg/kg. The interpreted residual source area is located in the area of the former steel gasoline UST basin. The size of the impacted area is approximately 27,400 cubic feet estimated as a volume 70 feet long by 27 feet wide by 14.5 feet deep. The subsurface soil input data for the RBCA analysis is contained in Appendix A. Values for constituents below laboratory reporting limits were computed as half the reporting limit, as per RBCA guidelines.

Former Exxon Service Station No. 7-7003 349 Main Street Pleasanton, California Delta Project No. D094-838 Page 10

Three exposure pathways were considered for the RBCA evaluation for subsurface soil. The RBCA Guidance Manual for Risk-Based Corrective Action and associated spreadsheet models were used in the evaluation. Appendix B contains subsurface soil Tier 1 RBCA Risk-Based Screening Level (RBSL) modeling output results and risk assessment results. Appendix C contains subsurface soil Tier 2 RBCA Site Specific Threshold Limit (SSTL) modeling output results and risk assessment results. The following subsections discuss the exposure pathways assessed for the impacted subsurface soil.

8.2.1 Volatilization to Outdoor Air

The RBCA Tier 1 guidance model was used to establish RBSLs for assessing the potential pathway of petroleum hydrocarbon vapor constituents from the impacted subsurface soil to outdoor air. The model results indicate a RBSL for benzene in subsurface soil of 22 mg/kg. The representative benzene source concentration of 0.046 mg/kg is less than the computed RBSL. Representative subsurface soil concentration levels are below the Tier 1 RBSLs for this exposure pathway for toluene, ethylbenzene, and total xylenes. The modeling results are contained in Table 8.

8.2.2 Volatilization to Indoor Air

A building has been constructed on-site, and is likely to exist on-site in the future. Future use of the site is anticipated to be commercial, therefore, vapors to indoor air from impacted subsurface soil were evaluated as a potential exposure pathway. The RBCA guidance system model was used to compute appropriate RBSLs for this potential exposure pathway. The RBSL model is conservative because it assumes vapor equilibrium with soil, no decay of COCs, and an infinite source. The model also assumes that a building will be placed directly above the impacted soil.

8.2.2.1 Tier 1 Volatilization to Indoor Air

The model estimated a RBSL of 0.01 mg/kg for benzene for this exposure pathway. The representative benzene source concentration is 0.046 mg/kg, and exceeds the RBSL for this exposure pathway. A RBSL was calculated by the Tier 1 model for toluene and resulted in a value of 70 mg/kg. The representative toluene source concentration of 0.055 mg/kg is below the RBSL criteria. Similarly, the representative concentrations for ethylbenzene and total xylenes were less than RBSL values calculated for those constituents. The Tier 1 modeling results are summarized in Table 8. Since the Tier 1 RBSL value was exceeded for benzene, a Tier 2 analysis was performed for this pathway.

Former Exxon Service Station No. 7-7003 349 Main Street Pleasanton, California Delta Project No. D094-838 Page 11

8.2.2.2 Tier 2 Volatilization to Indoor Air

A Tier 2 analysis was performed for this pathway because the benzene RBSL was exceeded. The Tier 2 analysis was performed to compute a SSTL concentration value, using additional site specific input information in the analysis. The Tier 2 modeling results are summarized in Table 8 and the input information is included in Appendix C. The model estimated a SSTL of 0.047 mg/kg for benzene. The representative benzene source concentration (0.046 mg/kg) is less than the SSTL for this exposure pathway.

As previously stated in Section 8.2.2, the model is conservative due to the assumptions that soil vapor is in equilibrium with the soil, that there has not been and will not be any decay of COCs, that there is an infinite source, and that the building is placed entirely over the impacted soil. Data utilized in this model have been collected since 1989 and do not evaluate the decay or remediation of hydrocarbons by naturally occurring processes that have occurred at the site. The model also assumes that the building will encompass the entire lateral extent of impacted soil. Figure 12 shows the inferred lateral extent of hydrocarbons remaining in soil and the location of the recently constructed building. Although the building overlies a portion of the affected area, it does not encompass the entire affected area. By not covering the entire affected area, a reduction in the representative source concentration for benzene (0.046 mg/kg) for volatilization to indoor air would be observed.

8.2.3 Leaching to Ground Water

The exposure pathway of residual BTEX constituents from impacted subsurface soil leaching to ground water was considered to ensure protection of ground water. The RBCA model estimated a benzene RBSL of 0.23 mg/kg for this exposure pathway for a commercial well located on-site. The model is conservative because it does not allow for natural attenuation of the leachate and assumes equilibrium between the absorbed soil phase and aqueous phases. The results indicate that the representative benzene concentration in ground water (0.046 mg/kg) does not exceed the RBSL criteria for this exposure pathway. The representative toluene, ethylbenzene, and total xylenes also do not exceed the computed individual RBSLs for this exposure pathway. The modeling results for this potential pathway are contained in Table 8.

Former Exxon Service Station No. 7-7003 349 Main Street Pleasanton, California Delta Project No. D094-838 Page 12

8.3 Impacted Ground Water

8.3.1 Vapors to Outdoor Air

Ground water at the site averages 20 feet bsg, thus the emission potential from vapors in the ground water to outdoor air is not likely. This pathway was considered however, for conservative purposes. The computed benzene RBSL for the potential exposure pathway of vaporization from ground water to outdoor air is 30 µg/L. The representative benzene concentration in ground water (0.00057 µg/L) is less than the computed RBSL for this exposure. The remaining BTEX constituent RBSL values were greater than the solubility of each constituent in water. The RBSL ground water results are summarized in Table 9.

8.3.2 Vapors to Indoor Air

Since the site is predominantly paved and will likely remain so in the future, petroleum hydrocarbon vapors are unlikely to be released from the ground water to an enclosed space (indoor air), however, this pathway was considered for conservative purposes. The representative benzene concentration in ground water $(0.00057 \,\mu\text{g/L})$ does not exceed the computed RBSL $(0.023 \,\mu\text{g/L})$ for this pathway. The computed RBSL for toluene $(92 \,\mu\text{g/L})$ is greater than the representative toluene concentration $(0.00052 \,\mu\text{g/L})$. The computed RBSLs for total xylenes and ethylbenzene are greater than the solubility of each respective constituent representative concentrations in water. The RBSL ground water results for this exposure pathway are summarized in Table 9.

8.3.3 Ingestion

Ground water beneath the site in the shallow unconfined aquifer has been impacted by petroleum hydrocarbons. The nearest drinking water well to the site is approximately one-half mile north of the site, thus it is unlikely residual petroleum hydrocarbons in ground water at the site will impact drinking water. The exposure pathway of ingestion was considered for a commercial well on-site to conservatively ensure the protection of the ground water supply.

The RBCA analysis model estimated a ground water benzene RBSL of 0.0029 µg/L. The representative benzene concentration is 0.00057 µg/L, which is less than the computed RBSL value. Toluene, ethylbenzene, and total xylenes have representative concentrations below the respective RBSLs for this

Former Exxon Service Station No. 7-7003 349 Main Street Pleasanton, California Delta Project No. D094-838

Page 13

potential exposure pathway as well. The RBSL ground water results and representative concentrations are

summarized in Table 9.

8.4 Exposure to Surface Water

No surface water bodies exist within a one mile radius of the site. It is unlikely that exposure from residual

hydrocarbons in either the subsurface soil or ground water will impact any surface water bodies in the

vicinity of the site. Additionally, there is no sensitive habitat or recreational use of surface water within

one mile of the site.

9.0 CONCLUSIONS

A RBCA analysis was performed for former Exxon Service Station No. 7-7003, located at 349 Main

Street, Pleasanton, California. The RBCA analysis indicates that the current representative BTEX

concentrations in ground water do not exceed the conservative Tier 1 RBSLs computed for the investigated

pathways. The RBCA analysis results indicate that the representative benzene concentration in subsurface

soil exceeded the Tier 1 RBSL, however, the Tier 2 (more specific) SSTL concentration was not exceeded.

The results of the RBCA analysis indicate that the residual hydrocarbons remaining at the site do not

appear to be at concentration levels which exceed a human health-based risk of one in one million. Based

on the results of the RBCA analysis and current site conditions, Delta recommends the site be evaluated for

closure.

10.0 REMARKS/SIGNATURES

The interpretations contained in this report represent our professional opinions and are based, in part, on

information supplied by the client. These opinions are based on currently available information and are

arrived at in accordance with currently accepted hydrogeologic and engineering practices at this time and

location. Other than this, no warranty is implied or intended.

RPT001.838

Former Exxon Service Station No. 7-7003 349 Main Street Pleasanton, California Delta Project No. D094-838 Page 14

A copy of this report should be forwarded to the following agencies:

Mr. Scott Seery Alameda County Environmental Health Department 1131 Harbor Bay Parkway Alameda, California 94501-6577

Mr. Dennis Mishek California Regional Water Quality Control Board, San Francisco Region 2101 Webster Street, Suite 500 Oakland, California 94612

Mr. David Lunn Alameda County Flood Control and Water Conservation District - Zone 7 5997 Parkside Drive Pleasanton, California 94566

PREPARED BY:

DELTA ENVIRONMENTAL CONSULTANTS, INC.

Michael Berrington

Project Geologist

Date

No. 5078 EXP. 8/31/00

OF CALL

REVIEWED BY:

James R. Brownell, R.G.

Project Manager

California Registered Geologist No. 5078

 $\frac{8}{21} \frac{98}{98}$

REFERENCES

American Industrial Health Council, 1994, Exposure Factors Sourcebook.

American Society of Testing Materials (ASTM), 1991. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites, ASTM E-1739, Philadelphia, PA.

Conner, J.A., J.P. Nevin, M. Malander, C. Stanley, G. De Vaull, 1995, Tier 2 RBCA Guidance Manual for Risk Based Corrective Action. Ground Water Services, Inc.

USEPA, 1989, Exposure Factors Handbook, EPA / 600 / 8-89 / 043, NTIS No. PB90-10677.

USEPA, 1991, Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual Supplemental Guidance: Standard Default Exposure Factors, Interim Final, OSWER Directive 9285.6-03, NTIS NO. PB91-921314.

USEPA, 1992, Dermal Exposure Assessment: Principles and Applications, Interim Report, EPA / 600 / 8-91 / 011B.

USEPA, 1994, How to Evaluate Alternative Clean Up Technologies for Underground Storage Tank Sites - A Guide for Corrective Action Plan Reviewers. EPA 510-B-94-003, Chapter IX.

U.S. Department of Agriculture Soil Conservation Service, 1978.

WATER WELLS WITHIN A 1/2 MILE RADIUS

Exxon Service Station No. 7-7003 349 Main Street Pleasanton, California

Well Location Number ^a	Well Type	Well Owner	Well Location	Well Status	Screen Interval	Well Depth	Year Well Installed	Number of Wells
1	Water Supply	Unknown	Vervais Ave. & Santa Rita	Active	Unknown	82	Unknown	1
2	Water Supply	Unknown	4558 2nd Street	Abandoned	Unknown	35	Unknown	1
3	Monitoring	Unknown	Case Ave. & Bernal Ave.	Monitoring	Unknown	25	Unknown	1
4	Electrolysis	Unknown	249 Main Street	Protection	Unknown	Unknown	Unknown	1
5	Monitoring	Unknown	1st Street & Bernal Ave.	Monitoring	Unknown	28.5 - 95	Unknown	3
6	Monitoring	Unknown	200 Bernal Ave.	Monitoring	Unknown	72	Unknown	1

Well number corresponds to that shown on Figure 3.

NOTE: Data based on Alameda County Flood Control and Water Conservation District records.

TABLE 2

SOIL SAMPLE ANALYTICAL RESULTS FROM TANK REMOVAL ACTIVITIES

Exxon Service Station No. 7-7003 349 Main Street Pleasanton, California

Total Oil Ethyl-Total TPH as TPH as and Date Depth Benzene Toluene benzene Xylenes gasoline diesel Grease Cadmium Chromium Lead Zinc (mg/kg) Sample ID Sampled Sample Location (feet) (mg/kg) S-14-T1A 08/01/89 Tank Basin 14 < 0.1 < 0.1 < 0.1 < 0.1 <1.0 NA NA NA NA NA NA S-14-T2A 08/01/89 Tank Basin 14 < 0.1 < 0.1 < 0.1 < 0.1 <1.0 NA NA NA NA NA NA S-14-T3A 08/01/89 Tank Basin 14 < 0.1 < 0.1 < 0.1 < 0.1<1.0 NA NA NA NA NA NA S-23-T1B 08/01/89 Tank Basin 23 0.5 < 0.1 < 0.1 < 0.1 150 NA NA NA NA NA NA S-21-T2B 08/01/89 Tank Basin 21 < 0.1 < 0.1 < 0,1 < 0.1 2.2 NA NA NA NA NA NA S-23-T3B 08/01/89 Tank Basin 23 0.3 0.2 < 0.1 < 0.1 130 NA NA NA NA NA NA S-20-NWE 08/01/89 Tank Pit Wall 20 < 0.1 < 0.1 < 0.1 < 0.1 1.3 NA NA NA NA NA NA Tank Pit Wall S-20-NWW 08/01/89 20 < 0.1 < 0.1 < 0.1 <1.0 NA < 0.1NA NA NA NA NA S-20-WW 08/01/89 Tank Pit Wall 20 < 0.1 < 0.1 4.5 1.4 15 NA NA NA NA NA NA S-7-WOT 08/01/89 Used Oil Tank Pit < 0.1 7 < 0.1 < 0.1 < 0.1 <1.0 < 5.0 < 50 < 0.1 42 13 44 S-15-CPE 08/02/89 Tank Basin < 0.1 15 < 0.1 < 0.1< 0.1 <1.0 NA NΑ NA NA NA NA S-15-CPW Tank Basin 08/02/89 15 < 0.1 < 0.1 < 0.1 < 0.1<1.0 NA NA NA NA NA NA S-24-T1B 08/02/89 Tank Basin 24 < 0.1 < 0.1 < 0.1< 0.1 <1.0 NA NA NA NA NA NA S-24-T3B 08/02/89 Tank Basin 24 2.7 < 0.1 15 2,8 40 NA NA NA NA NA NA S-24-T1B' 08/03/89 Tank Basin 24 < 0.1 < 0.1 <5 < 0.1 < 0.1 NA NA 4.3 NA NA NA S-13-NPB 08/04/89 New Tank Basin 13 < 0.1 < 0.1 < 0.1 < 0.1<1.0 10 NA NA NA NA NA

TPH = Total petroleum hydrocarbons.

mg/kg = Concentrations in milligrams per kilogram.

NOTE: Samples collected by Applied GeoSystems.

TABLE 3
SOIL SAMPLE ANALYTICAL RESULTS FROM PRODUCT LINE REMOVAL ACTIVITIES

Sample	Date	Depth (feet)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Total Xylenes (mg/kg)	TPH as gasoline (mg/kg)
S-3-PL1	08/08/89	3	<0.1	<0.1	<0.1	<0.1	<1.0
S-3-PL2	08/08/89	3	<0.1	< 0.1	< 0.1	<0.1	<1.0
S-3-PL3	08/08/89	3	< 0.1	<0.1	< 0.1	< 0.1	<1.0
S-3-PL4	08/08/89	3	< 0.1	< 0.1	< 0.1	<0.1	<1.0
S-3-PL5	08/08/89	3	< 0.1	< 0.1	< 0.1	< 0.1	<1.0
S-3-PL6	08/08/89	3	< 0.1	< 0.1	< 0.1	< 0.1	<1.0

TPH = Total petroleum hydrocarbons.

mg/kg = Concentrations in milligrams per kilogram.

TABLE 4
SOIL SAMPLE ANALYSIS FROM DRILLING ACTIVITIES

Sample I.D.	Date Collected	Depth (feet)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Total Xylenes (mg/kg)	TPH ^a as gasoline (mg/kg)	Total Lead (mg/kg)
S-11-B1	02/14/90	11.0	< 0.05	< 0.05	< 0.05	< 0.05	<2.0	NA
S-21-B1	02/14/90	21.0	0.061	0.32	9.7	17	320	6.4
S-33-B1	02/14/90	33.0	<0.05	< 0.05	< 0.05	0.2	4.3	NA
201 - 2	0.27.2.7.7			•				
MW-1/S-16-B1A	02/15/90	16.0	< 0.05	< 0.05	< 0.05	< 0.05	< 2.0	NA
S-25.5-B1A	02/15/90	25.5	< 0.05	< 0.05	0.94	1.3	52	8.3
S-30,5-B1A	02/15/90	30.5	< 0.05	< 0.05	< 0.05	< 0.05	<2.0	NA
MW-2/S-20-B2	02/14/90	20.0	< 0.05	< 0.05	< 0.05	< 0.05	<2.0	NA
S-25.5-B2	02/14/90	25.5	< 0.05	< 0.05	< 0.05	< 0.05	<2.0	5.2
S-30.5-B2	02/14/90	30,5	0.086	0.3	0.066	0.4	17	NA
MW-3/S-20-B3	02/14/90	20.0	< 0.05	< 0.05	< 0.05	0.11	<2.0	NA
S-25-B3	02/14/90	25.0	< 0.05	< 0.05	< 0.05	< 0.05	<2.0	6.8
S-33-B3	02/14/90	33.0	< 0.05	< 0.05	< 0.05	< 0.05	<2.0	NA
S-18.5-B4	05/29/90	18.5	< 0.005	0.0067	<0.005	< 0.005	<1.0	NA
S-21-B4	05/29/90	21.0	0.02	0.016	0.066	1.1	13	6.4
S-26-B4	05/29/90	26.0	< 0.005	0.018	< 0.005	< 0.005	<1.0	NA
S-18.5-B5	05/30/90	18.5	< 0.005	0.025	< 0.005	< 0.005	2.3	NA
S-21-B5	05/30/90	21.0	5.5	5.3	33	35	1,400	14
S-26.5-B5	05/30/90	26.5	< 0.005	0.0088	< 0.005	< 0.005	<1.0	NA
S-18.5-B6	05/30/90	18.5	< 0.005	0.054	< 0.005	< 0.005	<1.0	NA.
S-26-B6	05/30/90	26.0	2.1	0.55	1.2	0.86	180	12
S-28.5-B6	05/30/90	28.5	0.0054	0.018	0.0039	< 0.005	<1.0	NA
S-18.5-B7	05/30/90	18.5	0.0073	0.029	0.009	0.02	3.5	NA
S-26-B7	05/30/90	26.0	0.011	0.05	0.042	0.018	<1.0	14
S-31-B7	05/30/90	31.5	0.0081	0.028	< 0.005	0.015	<1.0	NA
S-18.5-B8	05/31/90	18.5	< 0.005	0.027	<0.005	< 0.005	<1.0	NA
S-26-B8	05/31/90	26.0	0.0058	0.011	< 0.005	< 0.005	<1.0	5.7
S-31-B8	05/31/90	31.0	0.016	0.038	< 0.005	< 0.005	<1.0	NA
S-21-B9	05/31/90	21.0	< 0.005	0.014	<0.005	0.0058	<1.0	NA
S-26 - B9	05/31/90	26.0	< 0.005	0.012	< 0.005	< 0.005	<1.0	4.9
S-31-B9	05/31/90	31.0	< 0.005	0.034	< 0.005	0.0057	<1.0	NA

TABLE 4
SOIL SAMPLE ANALYSIS FROM DRILLING ACTIVITIES

	Date	Depth	Велгепе	Toluene	Ethyl- benzene	Total Xylenes	TPH ^a as gasoline	Total Lead
Sample I.D.	Collected	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
MW-4/S-16-B10	05/31/90	16.0	<0.005	<0.005	<0.005	0.013	<1.0	NA
S-23.5-B10	05/31/90	23.5	< 0.005	0.0055	< 0.005	< 0.005	<1.0	7.2
S-31-B10	05/31/90	31.0	< 0.005	0.033	< 0.005	0.014	<1.0	NA
S-43.5-B10	05/31/90	43.5	< 0.005	0.036	<0.005	0.0062	<1.0	NA
S-18.5-B11	06/01/90	18.5	< 0.005	0.022	<0.005	< 0.005	<1.0	NA
S-21-B11	06/01/90	21.0	< 0.005	< 0.005	<0.005	< 0.005	<1.0	5.5
S-28.5-B11	06/01/90	28.5	< 0.005	0.014	< 0.005	<0.005	<1.0	NA
MW-5/S-21-B12	06/04/90	21.0	< 0.005	<0.005	<0.005	0.026	<1.0	3.8
S-28.5-B12	06/04/90	28.5	<0.005	<0.005	< 0.005	0.015	<1.0	NA
S-21-B13	02/27/91	21.0	<0.005	< 0.005	< 0.005	< 0.005	<1.0	<0.5
S-21.5-B13	02/27/91	23.5	< 0.005	< 0.005	5.3	3.9	580	<0.5
S-21-B14	02/27/91	21.0	<0.005	< 0.005	<0.005	< 0.005	<1.0	<0.5
S-23.5-B14	02/27/91	23.5	< 0.005	< 0.005	<0.005	< 0.005	<1.0	<0.5
MW-6/S-26-B15	02/28/91	26.0	<0.005	<0.005	<0.005	0.007	<1.0	<0.5
MW-7/S-23.5-B16	03/01/91	23.5	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	< 0.5
MW-7/S-31-B16	03/01/91	31.0	< 0.005	< 0.005	<0.005	<0.005	<1.0	<0.5
S-16-B17	03/07/91	16.0	< 0.005	< 0.005	< 0.005	0.011	<1.0	<0.5
S-23-B17	03/07/91	23.0	0.041	0.075	0.041	0.053	15	<0.5
MW-8/S-5-B19	05/04/93	5.0	<0.005	<0.005	< 0.005	< 0.005	<1.0	NA
MW-8/S-10-B19	05/04/93	10.0	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	NA
MW-8/S-15-B19	05/04/93	15.0	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	NA
MW-8/S-17.5-B19	05/04/93	17.5	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	NA.
MW-8/S-25.5-B19	05/04/93	25.5	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	NA
VE-2/S-5-B20	05/03/93	5.0	<0.005	<0.005	<0.005	< 0.005	<1.0	NA
VE-2/S-10-B20	05/03/93	10.0	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	NA
VE-2/S-15-B20	05/03/93	15.0	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	NA
VE-2/S-20-B20	05/03/93	18.0	<0.005	< 0.005	< 0.005	< 0.005	<1.0	NA
VE-2/S-24.5-B20	05/03/93	24.5	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	NA

TABLE 4
SOIL SAMPLE ANALYSIS FROM DRILLING ACTIVITIES

Sample I.D.	Date Collected	Depth (feet)_	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Total Xylenes (mg/kg)	TPH ^a as gasoline (mg/kg)	Total Lead (mg/kg)
VE-3/S-5-B21	05/03/93	5.0	<0.005	<0.005	<0.005	< 0.005	<1.0	NA
VE-3/S-5-B21	05/03/93	10.0	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	NA
VE-3/S-5-B21	05/03/93	15.0	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	NA
VE-3/S-5-B21	05/03/93	17.5	< 0.005	< 0.005	< 0.005	< 0.005	<1.0	NA

^{*} Low to medium boiling point hydrocarbons

TPH = Total petroleum hydrocarbons.

NA = Not analyzed.

Note: Samples from borings by Applied Geo Systems

TABLE 5
SUMMARY OF MONITORING WELL CONSTRUCTION DETAILS

Well I.D.	Date Installed	Status	Diameter (inches)	Total Depth (feet)	Slotted Interval (feet)	Slot Size (inches)	Sand Interval (feet)	Bentonite Interval (feet)	Grout Interval (feet)
B1A/MW-1	02/15/90	Inoperable	4	40.0	38.5-24	0.020	38.5-23	23-21	21-0
B-2/MW-2	02/13/90	Destroyed 11/27/96	4	41.0	40-26	0.020	40-25	25-23	23-0
B-3/MW-3	02/14/90	Destroyed 04/14/97	4	40.5	40-25	0.020	40-23	23-20	20-0
B-10/MW-4	05/31/90	Destroyed 04/14/97	4	48.5	47-37	0.020	47-36	36 - 35	35-0
B-12/MW-5	06/04/90	Destroyed 04/14/97	4	35.0	35-24	0.020	35-23	23-21	21-0
B-15/MW-6	02/28/91	Active	4	58.0	58-38	0.020	58 - 36	36-35	35-0
B-16/MW-7	03/01/91	Active	4	46.5	46.5-28	0.020	46.5-26	26-25	25-0
B-19/MW-8	05/04/93	Destroyed 11/27/96	4	26.0	26-17	0.010	26-15	15-13.5	13.5-0
B-18/VE-1	03/07/91	Destroyed 04/14/97	2	27.0	27-16.5	0.010	27-16	16-15	15-0
B-20/VE-2	05/03/93	Destroyed 04/14/97	4	25.0	25-11	0.010	25-9.5	9.5-8.5	8.5-0
B-21/VE-3	05/03/93	Destroyed 04/14/97	4	25.5	25.5-13	0.010	25.5-11	11-9.5	9.5-0

GROUND WATER MONITORING PATA

Monitoring		Reference Elevation	Depth to Ground Water	Ground Water Elevation	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TPPH as gasoline	Lead	Total Oil and Grease	VOC	MTBE	
Well	Date	(feet)	(feet)	(feet)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(ppm)	(ppm)	(μg/L)	(μg/L)	Comments
MW-1	02/23/90	343.83	26.08	317.75	21	9.2	59	19	3,300	100	NA	NA	NA	No LPH
	06/15/90,		26.49	317.34	7.9	5.9	32	58	1,300	<50	NA	NA	NA	No LPH
	08/01/90		26.47	317.36	77	280	50	250	2,500	<50	NA	NA	NA	No LPH
	12/18/90		28.00	315.83	9.0	2.0	43	400	390	<100	NA	NA	NA	No LPH
	03/19/91		23,63	320,20	45	12	240	300	4,500	<100	NA	12.0 ^a	NA	No LPH
	06/27/91		22.11	321.72	5.4	2.6	29	34	710	<100	NA	ND	NA	No LPH
	09/26/91		27,75	316.08	1.9	< 0.5	0,6	0.6	290	<100	NA	ND	NA	No LPH
•	01/10/92		25.61	318.22	52	15	690	496	5,400	<100	NA	6.1ª	NA	No LPH
•	03/12-13/92		22.52	321.31	87	22	1,200	1,000	1,400	NA	NA	14 ^a , 2.1 ^b , 1.2 ^c 0.5 ^d , 0.8 ^c	NA	No LPH
	06/09/92		21.53	322.30	27	5,9	400	300	4,500	<100	<5,000	ND	NA	No LPH
	09/28-29/92		29.84	313.99	<0.5	0.9	< 0.5	< 0.5	60	NA	<5,000	ND	NA	No LPH
	12/12/92		23.86	319.97	53	18	1,100	570	1,400	NA	<5,000	49ª	NA	No LPH
	02/02-03/93		19.00	324.83	61	27	900	840	10,000	NA	<5,000	19 ^a , 2.2 ^b 1.1 ^d , 2.4 ^c	NA	No LPH
	06/08-09/93		16.62	327.21	42	32	970	720	7,500	NA	<5,000	1.8^{a} , 1.0^{c} , 0.8^{e}	NA	No LPH
	09/22-23/93		19.63	324.20	36	34	820	540	6,600	NA	<5,000	0.6°	NA	No LPH
	11/17-18/93		20.82	323.01	24	10	470	300	5,900	NA	NA	ND	NA	No LPH
	02/16-17/94		21.47	322,36	42	15	470	330	6,700	NA	NA	ND	NA	No LPH
	05/12-13/94		19.78	324.05	26	9.4	400	210	4,000	NA	<5,000	ND	NA	No LPH
	09/07/94		21.16	322,67	3.5	2.0	17	18	170	NA	NA	ND	NA	No LPH
	12/02/94		NM	NC	NS	NS	NS	NS	NS	NS	NS	NS	NS	Dry
	03/06/95		18.70	325.13	9.8	5.2	130	80	1,500	NA	NA	ND	NA	No LPH
	05/30/95		17.70	326.13	41	14	480	270	6,200	NA	NA	ND	<50	No LPH
	09/06/95		20.21	323,62	8.1	5.7	120	65	1,500	NA	NA	NA	<12	No LPH
	11/30/95		21.47	322,36	1.9	0.7	5,3	5,5	77	NA	NA	NA	<5.0	No LPH
	03/28/96		15.45	328,38	54	5.8	420	210	6,700	NA	NA	NA	<50	No LPH
	06/25/96		18.91	324.92	17	12	110	72	1,600	NA	NA	NA	11	No LPH
	09/25/96		21.10	322.73	11	5.1	37	36	500	NA	NA	NA	<5.0	No LPH
	12/31/96		19.38	324.45	11	7.0	48	41	540	NA	NA	NA	<5.0	No LPH
	05/19/97		17.64	326.19	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<2.5	No LPH
	09/17/97		NM	NC	NS	NS	NS	NS	NS	NS	NS	NS	NS	NM
	12/23/97		NM	NC	NS	NS	NS	NS	NS	NS	NS	NS	NS	NM
	03/24/98		NM	NC	NS	NS	NS	NS	NS	NS	NS	NS	NS	NM
	06/15/98		NM	NC	NS	NS	NS	NS	NS	NS	NS	NS	NS	NM
												(Pag	ge 1 of 11) 94	I-838.XLS

GROUND WATER MONITORING DATA

		D - £	Depth to	Ground			1741	TD-4-1	mpp(I		Total Oil			
N. Comittonian a		Reference	Ground	Water	D	The females	Ethyl-	Total	TPPH as	v 1	and	MOG) (mp)	
Monitoring	ъ.	Elevation	Water	Elevation	Benzene	Toluene	benzene	Xylenes	gasoline	Lead	Grease	VOC	MTBE	_
Well	Date	(feet)	(feet)	(feet)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(ppm)	(ppm)	(μg/L)	(μg/L)	Comments
MW-2	02/23/90	344.22	26.31	317.91	3.0	2.0	0.98	6.5	650	8.0	NA	NA	NA	No LPH
	06/15/90,		26.25	317.97	< 0.5	2.6	< 0.5	<0.5	670	<50	NA	NA	NA	No LPH
	08/01/90		26,15	318.07	24	130	37	170	1,300	<50	NA	NA	NA	No LPH
	12/18/90		27,94	316.28	< 0.3	0.5	1.0	3.0	470	<100	NA	NA	NA	No LPH
	03/19/91		23.41	320.81	10	3.4	6.1	3.8	700	<100	NA	ND	NA	No LPH
	06/27/91		21.63	322.59	8.7	2.1	8.8	33	1,400	<100	NA	ND	NA	No LPH
	09/26/91		27.19	317.03	< 0.5	0.6	0.6	3.9	300	<100	NA	ND	NA	No LPH
	01/10/92		25.67	318.55	9.3	1.0	2.4	3.2	800	<100	NA	ND	NA	No LPH
	03/12-13/92		22,28	321.94	< 0.5	0.6	0.63	1.0	350	NA	NA	ND	NA	No LPH
	06/09/92		21.17	323.05	1.9	2.5	2.51	5.1	150	<100	NA	ND	NA	No LPH
	09/28-29/92		29.58	314.64	< 0.5	< 0.5	< 0.5	< 0.5	71	NA	NA	ND	NA	No LPH
	12/12/92		NM	NC	NS	NS	NS	NS	NS	NS	NS	NS	NS	NM
	02/02-03/93		18.69	325.53	3.9	8.2	21	20	720	NA	NA	NA	NA	No LPH
	06/08-09/93		16,32	327,90	0.5	3.3	5.7	2.0	160	NA	NA	NA	NA	No LPH
	09/22-23/93		19,43	324.79	0.7	5.6	4.0	2.6	240	NA	NA	NA	NA	No LPH
	11/17-18/93		20.56	323.66	1.2	2.3	3.2	1.3	490	NA	NA	NA	NA	No LPH
	02/16-17/94		20.93	323.29	< 0.5	2.3	1.0	2.0	280	NA	NA	NA	NA	No LPH
•	05/12-13/94		19.64	324.58	< 0.5	0.7	0.6	3.8	100	NA	NA	NA	NA	No LPH
	09/07/94		20.93	323.29	< 0.5	< 0.5	3.8	2.9	410	NA	NA	NA	NA	No LPH
	12/02/94		20.39	323.83	< 0.5	< 0.5	< 0.5	< 0.5	55	NA	NA	NA	NA	No LPH
	03/06/95		18.66	325,56	< 0.5	< 0.5	< 0.5	< 0.5	190	NA	NA	NA	NA	No LPH
	05/30/95		17.69	326.53	0.55	< 0.5	< 0.5	< 0.5	58	NA	NA	NA	<2.5	No LPH
	09/06/95		20.18	324.04	<0.5	< 0.5	< 0.5	< 0.5	81	NA	NA	NA	<2.5	No LPH
	11/30/95		21.17	323.05	3.4	< 0.5	< 0.5	0.85	200	NA	NA	NA	<5.0	No LPH
	03/28/96		NM	NC	NS	NS	NS	NS	NS	NS	NS	NS	NS	NM
	06/25/96		18.91	325,31	1.4	< 0.5	< 0.5	< 0.5	68	NA	NA	NA	<5.0	No LPH
•	09/25/96		20.92	323.30	< 0.5	< 0.5	<0.5	< 0.5	170	NA	NA	NA	<5.0	No LPH
	11/27/96		Well destro	yed										

GROUND WATER MONITORING DATA

		T. 4	Depth to	Ground			70.1	m . 1			Total Oil			
3.6		Reference	Ground	Water	n	m 1	Ethyl-	Total	TPPH as		and	****		
Monitoring	_	Elevation	Water	Elevation	Benzene	Toluene	benzene	Xylenes	gasoline	Lead	Grease	VOC	MTBE	
Well	Date	(feet)	(feet)	(feet)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(ppm)	(ppm)	(μg/L)	(μg/L)	Comments
MW-3	02/23/90	342,70	24.78	317.92	< 0.5	< 0.5	< 0.5	< 0.5	<20	100	NA	NA	NA	No LPH
	06/15/90,		25.29	317.41	< 0.5	< 0.5	< 0.5	< 0.5	200	< 50	NA	NA	NA	No LPH
	08/01/90		25.40	317.30	54	380	23	400	3,200	<50	NA	NA	NA	No LPH
	12/18/90		26.84	315.86	8.0	12	6.0	24	200	<100	<5,000	4.1°	NA	No LPH
	03/19/91		22.13	320.57	< 0.5	< 0.5	< 0.5	< 0.5	<50	<100	<5,000	ND	NA	No LPH
	06/27/91		21.04	321,66	< 0.5	< 0.5	< 0.5	< 0.5	<50	<100	<5,000	ND	NA	No LPH
	09/26/91		26,63	316.07	< 0.5	< 0.5	< 0.5	<0.5	<50	<100	<5,000	ND	NA	No LPH
	01/10/92		24.26	318.44	< 0.5	< 0.5	<0.5	< 0.5	<50	<100	5,100	ND	NA	No LPH
	03/12-13/92		21.60	321.10	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA '	5,000	ND	NA	No LPH
•	06/09/92		20.88	321.82	< 0.5	< 0.5	< 0.5	< 0.5	<50	<100	<5,000	ND	NA	No LPH
	09/28-29/92		28.67	314.03	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	<5,000	ND	NA	No LPH
	12/12/92		20.73	321.97	< 0.5	< 0.5	< 0.5	1.3	<50	NA	<5,000	NA	NA	No LPH
	02/02-03/93		19.30	323.40	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	<5,000	NA	NA	No LPH
	06/08-09/93		15.89	326.81	0.6	0.9	3.4	2.8	<50	NA	<5,000	NA	NA	No LPH
	09/22-23/93		18.63	324.07	< 0.5	1.0	1.6	4.4	<50	NA	NA	NA	NA	No LPH
	11/17-18/93		19.97	322.73	< 0.5	< 0.5	< 0.5	1.5	<50	NA	NA	NA	NA	No LPH
	02/16-17/94		20.64	322.06	1.5	5.3	1.6	9.2	<50	NA	NA	NA	NA	No LPH
	05/12-13/94		18.32	324.38	< 0.5	0.8	< 0.5	2.8	<50	NA	NA	NA	NA	No LPH
	09/07/94		20.52	322.18	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	NA	No LPH
	12/02/94		19.59	323.11	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	NA	No LPH
	03/06/95		16.98	325.72	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	NA	No LPH
	05/30/95		16.65	326.05	< 0.5	< 0.5	< 0.5	<0.5	<50	NA	NA	NA	<2.5	No LPH
	09/06/95		18.86	323.84	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<2.5	No LPH
	11/30/95		20.76	321.94	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<5.0	No LPH
	03/28/96		14.93	327.77	< 0.5	< 0.5	< 0.5	< 0.5	< 50	NA	NA	NA	< 5.0	No LPH
	06/25/96		17.85	324.85	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<5.0	No LPH
	09/25/96		20.29	322.41	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<5.0	No LPH
	12/31/96		17.82	324.88	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<5.0	No LPH
	04/14/97		Well destro	yed										

GROUND WATER MONITORING DATA

		Reference	Depth to Ground	Ground Water			Ethyl-	Total	TPPH as		Total Oil and			
Monitoring		Elevation	Water	Elevation	Benzene	Toluene	benzene	Xylenes	gasoline	Lead	Grease	VOC	MTBE	
Well	Date	(feet)	(feet)	(feet)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(ppm)	(ppm)	(μg/L)	(μg/L)	Comments
MW-4	06/15/90	343.38	30.94	312.44	<0.5	<0.5	< 0.5	<0.5	<20	<50	NA	NA	NA	No LPH
	08/01/90		31.21	312.17	5.2	5.4	5.4	9.9	120	<50	NA	NA	NA	No LPH
	12/18/90		32.86	310.52	7.0	1.0	< 0.3	2.0	50	<100	NA	NA	NA	No LPH
	03/19/91		26.76	316.62	1.8	0.8	2.2	11	160	<100	NA	ND	NA	No LPH
	06/27/91		25.91	317.47	< 0.5	< 0.5	< 0.5	< 0.5	<50	<100	NA	ND	NA	No LPH
	09/26/91		32.29	311.09	< 0.5	<0.5	< 0.5	< 0.5	<50	<100	NA	1.0°	NA	No LPH
	01/10/92		29.06	314.32	0.9	< 0.5	7.6	4.4	98	<100	NA	1.0°	NA	No LPH
	03/12-13/92		24.25	319.13	1.2	< 0.5	5.3	4.3	82	NA	NA	ND	ΝA	No LPH
	06/09/92		25.00	318.38	0,6	1.0	< 0.5	2.5	<50	<100	NA	0.7°	NA	No LPH
	09/28-29/92		34.41	308.97	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	ND	NA	No LPH
	12/12/92		30.77	312.61	1.0	0.9	7.0	11	99	NA	NA	ND	NA	No LPH
	02/02-03/93		21.03	322,35	2.3	2.2	6.2	8.4	170	NA	NA	ND	NA	No LPH
	06/08-09/93		18.35	325,03	0.7	0.9	0.7	<0.5	<50	NA	NA	0.6°	NA	No LPH
	09/22-23/93		21.86	321.52	8.0	2.0	3.1	5.3	59	NA	NA	ND	NA	No LPH
	11/17-18/93		22.98	320.40	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	ND	NA	No LPH
	02/16-17/94		23.94	319.44	8.7	17	4.2	24	98	NA	NA	0.5°	NA	No LPH
	05/12-13/94		22.30	321.08	8.0	0.9	0.7	6.1	<50	NA	NA	ND	NA	No LPH
	09/07/94		23.44	319.94	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	ND	NA	No LPH
	12/02/94		23.07	320,31	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	ND	NA	No LPH
	03/06/95		20.52	322,86	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	ND	NA	No LPH
	05/30/95		19.16	324,22	< 0.5	< 0.5	<0.5	< 0.5	<50	NA	NA	ND	<2.5	No LPH
	09/06/95		22.26	321.12	< 0.5	<0.5	< 0.5	< 0.5	< 50	NA	NA	NA	<2.5	No LPH
	11/30/95		23.67	319.71	<0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<5,0	No LPH
	03/28/96		16.50	326,88	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<5.0	No LPH
	06/25/96		20.38	323.00	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<5.0	No LPH
	09/25/96		23.16	320.22	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	< 5.0	No LPH
	12/31/96		22.55	320.83	< 0.5	3.7	< 0.5	< 0.5	<50	NA	NA	NA	<5.0	No LPH
	04/14/97		Well destro	yed										

TAbles 6

GROUND WATER MONITORING PATA

			Depth to	Ground							Total Oil			
		Reference	Ground	Water			Ethyl-	Total	TPPH as		and			
Monitoring		Elevation	Water	Elevation	Benzene	Toluene	benzene	Xylenes	gasoline	Lead	Grease	VOC	MTBE	
Well	Date	(feet)	(feet)	(feet)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(ppm)	(ppm)	(µg/L)	(μg/L)	Comments
MW-5	06/15/90	345,20	26.94	318.26	<0.5	<0.5	<0.5	<0.5	<20	60	NA	NA	NA	No LPH
	08/01/90,		26.90	318.30	9.7	12	7.6	17	120	<50	NA	NA	NA	No LPH
	12/18/90		28.31	316.89	2.0	3.5	2.0	0.8	50	<100	NA	NA	NA	No LPH
·	03/19/91		23.98	321.22	< 0.5	< 0.5	< 0.5	< 0.5	160	<100	NA	NA	NA	No LPH
	06/27/91		22.41	322.79	< 0.5	< 0.5	<0.5	< 0.5	<50	<100	NA	0.5ª	NA	No LPH
	09/26/91		27,77	317.43	< 0.5	< 0.5	< 0.5	< 0.5	<50	<100	NA	ND	NA	No LPH
	01/10/92		26.38	318.82	< 0.5	< 0.5	< 0.5	0.6	98	<100	NA	ND	NA	No LPH
	03/12-13/92		22.08	323.12	< 0.5	< 0.5	<0.5	< 0.5	82	NA	NA	ND	NA	No LPH
	06/09/92		31.98	313.22	NS	NS	NS	NS	NS	NS	NS	NS	NS	No LPH
	09/28-29/92		30,26	314.94	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	NA	No LPH
	12/12/92		27.20	318.00	0.9	11	0.5	3.1	210	NA	NA	ND	NA	No LPH
	02/02-03/93		20.01	325.19	< 0.5	2.7	<0.5	0.9	70	NA	NA	NA	NA	No LPH
	06/08-09/93		16.80	328.40	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	NA	No LPH
	09/22-23/93		20.28	324.92	1.0	< 0.5	1.1	2.1	<50	NA	NA	NA	NA	No LPH
	11/17-18/93		21.19	324.01	< 0.5	< 0.5	< 0.5	0.9	<50	NA	NA	NA	NA	No LPH
	02/16-17/94		21.61	323.89	1.2	4.3	1.4	8.2	<50	NA	NA	NA	NA	No LPH
	05/12-13/94		20.61	324.59	1.7	2.3	1.5	9.1	<50	NA	NA	NA	NA	No LPH
	09/07/94		21.63	323.57	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	NA	No LPH
	12/02/94		21.12	324.08	<0.5	< 0.5	< 0.5	<0.5	<50	NA	NA	NA	NA	No LPH
	03/06/95		19.67	325,53	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	NA	No LPH
	05/30/95		18.63	326,57	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<2.5	No LPH
	09/06/95		21.02	324.18	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<2.5	No LPH
	11/30/95		21.87	323.33	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	< 5.0	No LPH
	03/28/96		16.19	329.01	< 0.5	< 0.5	< 0.5	<0.5	<50	NA	NA	NA	<5.0	No LPH
	06/25/96		19.92	325,28	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<5.0	No LPH
	09/25/96		21.68	323.52	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<5.0	No LPH
	12/31/96		20.17	325.03	< 0.5	< 0.5	<0.5	<0.5	<50	NA	NA	NA	<5.0	No LPH
	04/14/97		Well destro	yed										

GROUND WATER MONITORING DATA

			Depth to	Ground							Total Oil			
		Reference	Ground	Water			Ethyl-	Total	TPPH as		and			
Monitoring		Elevation	Water	Elevation	Benzene	Toluene	benzene	Xylenes	gasoline	Lead	Grease	VOC	MTBE	
Well	Date	(feet)	(feet)	(feet)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(ppm)	(ppm)	(μg/L)	(μg/L)	Comments
MW-6	03/19/91	342.25	34.42	307.83	< 0.5	<0.5	<0.5	< 0.5	<50	<100	NA	ND	NA	No LPH
	06/27/91,		35.01	307.24	2.6	1.8	0.8	< 0.30	<50	<100	NA	ND	NA	No LPH
	09/26/91		40.34	301.91	< 0.5	< 0.5	< 0.5	< 0.5	<50	<100	NA	ND	NA	No LPH
	01/10/92		36.20	306.05	< 0.5	< 0.5	< 0.5	< 0.5	<50	<100	NA	ND	NA	No LPH
	03/12-13/92		31.95	310.30	< 0.5	<0,5	< 0.5	< 0.5	<50	NA	NA	ND	NA	No LPH
	06/09/92		33.22	309.03	< 0.5	< 0.5	<0.5	< 0.5	<50	<100	NA	ND	NA	No LPH
	09/28-29/92		40.96	301.29	< 0.5	< 0.5	0.9	0.9	<50	NA	NΑ	ND	NA	No LPH
	12/12/92		NM	NC	< 0.5	<0.5	< 0.5	<0.5	<50	NA	NA	NA	NA	NM
	02/02/93		26.51	315.74	< 0.5	<0.5	<0.5	< 0.5	<50	NA	NA	NA	NA	No LPH
,	06/08/93		22.62	319.63	0.6	0.7	1.7	1.8	<50	NA	NA	NA	NA	No LPH
	09/22/93		26.74	315.51	< 0.5	< 0.5	0.7	1.1	<50	NA	NA	NA	NA	No LPH
	11/17-18/93		28.49	313.76	0.6	0.8	1.2	3.9	<50	NA	NA	NA	NA	No LPH
	02/16-17/94		29.83	312.42	3.8	7.9	2.0	11	51	NA	NA	NA	NA	No LPH
	05/12-13/94		27.89	314.36	0.6	1.0	< 0.5	2.7	<50	NA	NA	NA	NA	No LPH
	09/07/94		28.81	313.44	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	NA	No LPH
	12/02/94		28.55	313,70	<0.5	< 0.5	< 0.5	<0.5	<50	NA	NA	NA	NA	No LPH
	03/06/95		24.70	317.55	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	NA	No LPH
	05/30/95		22.03	320.22	< 0.5	0.52	< 0.5	<0.5	<50	NA	NA	NA	<2.5	No LPH
	09/06/95		26.54	315.71	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<2,5	No LPH
	11/30/95		28.90	313.35	< 0.5	< 0.5	< 0.5	< 0.5	< 50	NA	NA	NA	<5.0	No LPH
	03/28/96		NM	NC	NS	NS	NS	NS	NS	NS	NS	NS	NS	NM
	06/25/96		22.96	319.29	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<5.0	No LPH
	09/25/96		27.80	314.45	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<5.0	No LPH
	12/31/96		26.34	315.91	< 0.5	< 0.5	< 0.5	<0.5	<50	NA	NA	NA	<5.0	No LPH
	05/19/97		25.70	316.55	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<2.5	No LPH
	09/17/97		28.54	313.71	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<2.5	No LPH
	12/23/97		28.93	313.32	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	NA	No LPH
	03/24/98		19.00	323,25	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<2.5	No LPH
	06/15/98		21.21	321.04	<0.5	< 0.5	<0.5	<0.5	<50	NA	NA	NA	<2.5	No LPH

ТАрые б

GROUND WATER MONITORING DATA

		Reference	Depth to Ground	Ground Water			Ethyl-	Total	TPPH as		Total Oil and			
Monitoring		Elevation	Water	Elevation	Benzene	Toluene	benzene	Xylenes	gasoline	Lead	Grease	VOC	MTBE	
Well	Date	(feet)	(feet)	(feet)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(ppm)	(ppm)	(μg/L)	(μg/L)	Comments
MW-7	03/19/91	343,62	24.68	318.94	<0.5	<0.5	<0.5	<0.5	140	<100	NA	0.7 ^a , 0.8 ^g	NA	No LPH
	06/27/91,		23.10	320,52	5.2	5.6	3.9	16	100	<100	NA	ND	NA	No LPH
	01/10/92		26.98	316.64	< 0.5	< 0.5	< 0.5	< 0.5	<50	<100	NA	ND	NA	No LPH
	03/12-13/92		21.86	321.76	< 0.5	< 0.5	< 0.5	< 0.5	120		NA	ND	NA	No LPH
	06/09/92		22,32	321,30	< 0.5	<0.5	< 0.5	<0.5	81	<100	NA	ND	NA	No LPH
	09/28-29/92		31.92	311.70	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	ND	NA	No LPH
	12/12/92		28.80	314.82	5.1	6.9	3.3	19	200	NA	NA	NA	NA	No LPH
	02/02-03/93		19.50	324.12	< 0.5	6.6	0.6	1.7	170	NA	NA	NA	NA	No LPH
	06/08-09/93		16.72	326,90	< 0.5	8.0	< 0.5	< 0.5	<50	NA	NA	NA	NA	No LPH
	09/22-23/93		19.90	323.72	0.6	0.9	0.7	1.1	<50	NA	NA	NA	NA	No LPH
	11/17-18/93		20.75	322.87	< 0.5	< 0.5	<0.5	<0.5	<50	NA	NA	NA	NA	No LPH
	02/16-17/94		21.36	322.26	0.9	2.7	< 0.5	3.2	< 50	NA	NA	NA	NA	No LPH
	05/12-13/94		20.32	323,30	< 0.5	1.1	< 0.5	1.6	<50	NA	NA	NA	NA	No LPH
	09/07/94		21.19	322,43	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	NA	No LPH
	12/02/94		20,95	322,67	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	NA	No LPH
	03/06/95		19.35	324.27	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	NA	No LPH
	05/30/95		18.19	325,43	< 0.5	<0.5	< 0.5	< 0.5	<50	NA	NA	NA	<2.5	No LPH
	09/06/95		20.57	323,05	< 0.5	<0.5	<0.5	< 0.5	< 50	NA	NA	NA	<2.5	No LPH
	11/30/95		21.64	321.98	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<5.0	No LPH
	03/28/96		NM	NC	NS	NS	NS	NS	NS	NS	NS	NS	NS	NM
	06/25/96		19.51	324.11	< 0.5	< 0.5	< 0.5	< 0.5	< 50	NA	NA	NA	<5.0	No LPH
	09/25/96		21.30	322.32	< 0.5	< 0.5	< 0.5	<0.5	< 50	NA	NA	NA	<5.0	No LPH
	12/31/96		20.52	323,10	< 0.5	<0.5	< 0.5	<0.5	<50	NA	NA	NA	<5.0	No LPH
	05/19/97		NM	NC	NS	NS	NS	NS	NS	NS	NS	NS	NS	No LPH
	09/1 7 /97		21.64	321.98	< 0.5	< 0.5	< 0.5	<0.5	<50	NA	NA	NA	<2.5	No LPH
	12/23/97		21.27	322.35	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	NA	No LPH
	03/24/98		15.64	327.98	<0.5	< 0.5	< 0.5	<0,.5	<50	NA	NA	NA	<2.5	No LPH
	06/15/98		17.77	325,85	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<2.5	No LPH

GROUND WATER MONITORING DATA

			Depth to	Ground							Total Oil			
		Reference	Ground	Water			Ethyl-	Total	TPPH as		and			
Monitoring		Elevation	Water	Elevation	Benzene	Toluene	benzene	Xylenes	gasoline	Lead	Grease	VOC	MTBE	
Well	Date	(feet)	(feet)	(feet)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(ppm)	(ppm)	(μg/L)	(μg/L)	Comments
MW-8	06/08-09/93	344.00	15.78	328.22	<0.5	1.1	0.8	1.7	65	NA	NA	NA	NA	No LPH
	09/22-23/93		18,86	325.14	4.1	8.9	6.7	14	110	NA	NA	NA	NA	No LPH
	11/17-18/93		20.01	323.99	< 0.5	0.9	< 0.5	< 0.5	78	NA	NA	NA	NA	No LPH
	02/16-17/94		20.30	323.70	< 0.5	1.8	< 0.5	< 0.5	< 50	NA	NA	NA	NA	No LPH
	05/12-13/94		18.92	325.08	<0.5	1.0	< 0.5	< 0.5	<50	NA	NA	NA	NA	No LPH
	09/07/94		20.25	323.75	< 0.5	<0.5	< 0.5	< 0.5	67	NA	NA	NA	NA	Sheen
	12/02/94		19.73	324.27	<0.5	<0.5	< 0.5	< 0.5	110	NA	NA	NA	NA	No LPH
	03/06/95		17.66	326.34	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	NA	No LPH
	05/30/95		16,97	327.03	<0.5	<0.5	< 0.5	< 0.5	<50	NA	NA	NA	<2.5	No LPH
,	09/06/95		19.30	324,70	<0.5	<0.5	< 0.5	< 0.5	<50	NA	NA	NΑ	<2.5	No LPH
	11/30/95		20.44	323.56	< 0.5	0.62	< 0.5	6.8	<50	NA	NA	NA	<5.0	No LPH
	03/28/96		14.91	329.09	< 0.5	< 0.5	< 0.5	< 0.5	<50	ΝA	NA	NA	<5.0	No LPH
	06/25/96		18.10	325.90	< 0.5	< 0.5	< 0.5	< 0.5	79	NA.	NA	NA	<5.0	No LPH
	09/25/96		20.20	323.80	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	< 5.0	No LPH
	11/27/96		Well destroy	/ed										

GROUND WATER MONITORING DATA

Monitoring Well	Date	Reference Elevation (feet)	Depth to Ground Water (feet)	Ground Water Elevation (feet)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	TPPH as gasoline (µg/L)	Lead (ppm)	Total Oil and Grease (ppm)	VOC (μg/L)	MTBE (μg/L)	Comments
VE-1	09/28/92	343.38	21.92	321.46	NS	NS	NS	NS	NS	NS	NS	NS	NS	No LPH
	06/08/93		16.44	326,94	<5.0	15	830	500	5,800	NA	NA	NA	NA	No LPH
	09/22-23/93		19.47	323.91	5.4	21	380	240	3,700	NA	'nΑ	NA	NA	No LPH
	11/17-18/93		20.64	322.74	5.8	2.0	220	180	3,600	NA	NA	NA	NA	No LPH
	02/16-17/94		21.20	322.18	31	4.0	500	300	7,600	NA	NA	NA	NA	No LPH
	05/12-13/94		19.69	323.69	0.7	< 0.5	56	33	970	NA	NA	NA	NA	No LPH
	09/07/94		21.30	322.08	7.3	46	620	150	8,100	NA	NA	NA	NA	No LPH
	12/02/94		20.63	322.75	3.4	37	450	210	8,300	NA	NA	NA	NA	No LPH
	03/06/95		18.40	324.98	< 0.5	< 0.5	< 0.5	< 0.5	52	NA	NA	NA	NA	No LPH
	05/30/95		17.58	325.80	15	<5 ⁱ	270	89	3,400	NA	NA	NA	<2.5	No LPH
	09/06/95		20.32	323.06	< 0.5	< 0.5	1.6	< 0.5	100	NA	NA	NA	<2.5	No LPH
	11/30/95		21.75	321.63	48	10	240	35	5,200	NA	NA	NA	<50	No LPH
	03/28/96		15.75	327.63	<5.0 ⁱ	<5.0 ¹	250	81	3,800	NA	NA	NA	<50	No LPH
	06/25/96		18.99	324.39	19	<5.0 ⁱ	140	42	3,800	NΑ	NA	NA	8	No LPH
	09/25/96		21.32	322.06	< 0.5	7.0	65	21	2,500	NA	NA	NA	<5.0	No LPH
	12/31/96		19.40	323.98	<0.5	< 0.5	< 0.5	0.86	270	NA	NA	NA	<5.0	No LPH
	04/14/97		Well destroy	yed										

GROUND WATER MONITORING DATA

		Reference	Depth to Ground	Ground Water			Ethyl-	Total	TPPH as		Total Oil			
Monitoring		Elevation	Water	Elevation	Benzene	Toluene	benzene	Xylenes	gasoline	Lead	and Grease	VOC	MTBE	
Well	Date	(feet)	(feet)	(feet)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(ppm)	(ppm)_	(μg/L)	(μg/L)	Comments
VE-2	06/08/93	343,39	16.20	327.19	10	18	900	340	7,000	NA	NA	NA	NA	No LPH
	09/22-23/93		19.23	324.16	15	33	240	82	2,600	NA	NA	NA	NA	No LPH
	11/17-18/93		20.44	322.95	22	< 0.5	220	56	3,500	NA	NA	NA	NA	No LPH
	02/16-17/94		20,90	322,49	45	<5.0	220	60	3,400	NA	NA	NA	NA	No LPH
	05/12-13/94		19.41	323.98	19	29	66	110	1,900	NA	NA	NA	NА	No LPH
	09/07/94		20,94	322,45	5.5	<0.5	9.0	3.0	690	NA	NA	NA	NA	Sheen
	12/02/94		20.30	323.09	3.7	$21^{\rm h}$	50	8.8	1,900	NA	NA	NA	NA	No LPH
	03/06/95		18.14	325.25	< 0.5	< 0.5	9.4	1.3	460	NA	NA	NA	NA	No LPH
	05/30/95		17.29	326,10	<1.0	<1.0	20	2.3	580	NA	NA	NA	<5.0	Sheen
	09/06/95		19.99	323.40	<1.0	<1.0	<1.0	<1.0	290	NA	NA	NA	12	No LPH
	11/30/95		21.33	322,06	13	0.64	2.7	4.1	990	NA	NA	NA	<5.0	No LPH
	03/28/96		15.23	328,16	< 0.5	< 0.5	11	1.1	460	NA	NA	NA	8.2	No LPH
	06/25/96		18.53	324,86	31	13	210	87	3,400	NA	NA	NA	28	No LPH
	09/25/96		20,96	322,43	< 0.5	< 0.5	< 0.5	< 0.5	610	NA	NA	NA	11	No LPH
	12/31/96		19.12	324.27	5.0	0.54	0.59	0.56	390	NA	NA	NA	<5.0	No LPH
	04/14/97		Well destroy	yed										

GROUND WATER MONITORING DATA

Exxon Service Station No. 7-7003 349 Main Street Pleasanton, California

Monitoring Well	Date	Reference Elevation (feet)	Depth to Ground Water (feet)	Ground Water Elevation (feet)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	TPPH as gasoline (µg/L)	Lead (ppm)	Total Oil and Grease (ppm)	VOC (μg/L)	MTBE (μg/L)	Comments
VE-3	06/08/93	343,39	16.48	326.91	3.1	3.1	18	15	130	NA	NA	NA	NA	No LPH
	09/22-23/93		18.96	324.43	11	7.3	13	32	130	NA	NA	NA	NA	No LPH
	11/17-18/93		20.00	323,39	NS	NS	NS	NS	NS	NS	NS	NS	NS	No LPH
	02/16-17/94		21.02	322.37	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	NA	No LPH
	05/12-13/94		20.58	322.81	<0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	NA	No LPH
	09/07/94		20,35	323.04	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	NA	No LPH
	12/02/94		21.85	321.54	NS	NS	NS	NS	NS	NS	NS	NS	NS	No LPH
	03/06/95		19.12	324.27	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	NA	No LPH
	05/30/95		17.37	326.02	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<2.5	No LPH
	09/06/95		19.49	323.90	< 0.5	<0.5	< 0.5	< 0.5	<50	NA	NA	NA	<2.5	No LPH
	11/30/95		20,96	322.43	NS	NS	NS	NS	NS	NS	NS	NS	NS	No LPH
	12/31/95		NM	NC	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<5.0	NM
	03/28/96		15.68	327.71	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<5.0	No LPH
	06/25/96		18.37	325.02	1.5	0.62	< 0.5	< 0.5	67	NA	NA	NA	5.1	No LPH
	09/25/96		20.04	323.35	< 0.5	<0.5	< 0.5	< 0.5	<50	NA	NA	NA	<5.0	No LPH
	12/31/96		20.84	322.55	< 0.5	< 0.5	< 0.5	< 0.5	<50	NA	NA	NA	<5.0	No LPH
	04/14/97		Well destroy	yed										

- Chloroform.
- Methylene chloride.
- c 1,2-Dichloroethane.
- d Trichloroethane.
- * Tetrachloroethane.
- Sample was diluted due to the presence of high levels of hydrocarbons.
- Bromodichloromethane.
- h The presence of this compound confirmed by second column, however, the confirmation concentration differed from the reported result by more than a factor of two.
- Elevated detection limit quantified by multiplying laboratory reporting limits by report limit multiplication factor.

Reference elevation = Elevation relative to mean sea level.

Depth to ground water = Measured from notch/mark on north edge of well casing

μg/L = Micrograms per liter.

ppm = parts per million

TPPH = Total purageble petroleum hydrocarbons or total petroleum hydrocarbons (TPH) by EPA Method 8015 Modified

VOC = Volatile organic compounds

MTBE = Methyl tertiary butyl other.

LPH = Liquid-phase petroleum hydrocarbons

NA = Not analyzed

NM = Not measured

NC = Not calculated

EXPOSURE PATHWAY EVALUATION

Former Exxon Service Station No. 7-7003 349 Main Street Pleasanton, California

Impacted Medium	Exposure Pathway	Pathway Selected for Evaluation	Reason for Selection or Non-selection				
Surface Soils (< 3 feet)	Vapor Inhalation and Dust Ingestion	No	The site is primarily a paved surface and surface soils remain unimpacted.				
	Dermal Contact and/or Ingestion	No	Personal contact is limited by the paved surface therefore this pathway was eliminated from consideration.				
	Leaching to Ground Water	No	This pathway was considered for subsurface soils greater than 3 feet below surface grade; surface soils remain unimpacted.				
Subsurface Soils (> 3 feet)	Volatilization to Outdoor (Ambient) Air	Yes	The site is primarily paved thus limiting emissions from surface soils to ambient air, however, this pathway was considered.				
	Volatilization to Indoor (Enclosed Spaces) Air	Yes	Any future property use will likely include a building.				
	Dermal Contact and/or Ingestion	No	This pathway is highly unlikely due to the depth of impacted subsurface soils.				
	Leaching to Ground Water	Yes	This pathway was considered to ensure that ground water was protected to the most stringent level.				
Ground Water	Volatilization to Outdoor (Ambient) Air	Yes	Dilute BTEX concentrations are not expected to result in significant emissions relative to vapors from soils, however, this pathway was considered.				
	Volatilization to Indoor (Enclosed Spaces) Air	Yes	This pathway is not considered likely, however, it was considered for conservative purposes.				
	Ground Water Ingestion	Yes	Recent ground water monitoring results do not indicate impact from the release on-site; however, a worst-case scenario was considered to ensure protection of ground water to the most stringent level.				
	Discharge to Surface Water	No	Ground water is not expected to discharge into any surface waters.				

SOIL RISK-BASED SCREENING LEVEL AND SITE SPECIFIC TARGET LEVEL SUMMARY

Former Exxon Service Station No. 7-7003 349 Main Street Pleasanton, California

Chemical of Concern	Exposure Pathway	Representative Concentration (mg/kg)	RBSL (mg/kg)	Exceed?	SSTL (mg/kg)	Exceed?
	Vapors to Outdoor (Ambient) Air		22.0	No	N/A	N/A
Benzene	Vapors to Indoor (Enclosed Spaces) Air	0.046	0.01	Yes	0.047	No
	Leaching to Ground Water		0.23	No	N/A	N/A
	Vapors to Outdoor (Ambient) Air		>Res	No	N/A	N/A
Toluene	Vapors to Indoor (Enclosed Spaces) Air	0,055	70.0	No	N/A	N/A
_	Leaching to Ground Water		>Res	No	N/A	N/A
	Vapors to Outdoor (Ambient) Air		>Res	No	N/A	N/A
Ethylbenzene	Vapors to Indoor (Enclosed Spaces) Air	0.1	120.0	No	N/A	N/A
	Leaching to Ground Water		>Res	No	N/A	N/A
	Vapors to Outdoor (Ambient) Air		>Res	No	N/A	N/A
Xylenes	Vapors to Indoor (Enclosed Spaces) Air	0.13	>Res	No	N/A	N/A
	Leaching to Ground Water		>Res	No	N/A	N/A

RBSL = SSTL =

mg/kg =

Risk-based screening level.
Site specific target level.
Milligrams per kilogram.
A concentration greater than saturation would be required to exceed applicable health criteria.
Not applicable. SSTL was not calculated because RBSL was not exceeded. RBSL values are adjusted by a 0.1 Slope factor. >Řes N/A

GROUND WATER RISK-BASED SCREENING LEVEL SUMMARY

Former Exxon Service Station No. 7-7003 349 Main Street Pleasanton, California

Chemical of Concern	Exposure Pathway	Representative Concentration (µg/L)	RBSL (µg/L)	Exceed?	SSTL (µg/L)	Exceed?
	Vapors to Outdoor (Ambient) Air		30.0	No	N/A	N/A
Benzene	Vapors to Indoor (Enclosed Spaces) Air	0.00057	0.023	No	N/A	N/A
	Leaching to Ground Water		0.0029	No	N/A	N/A
	Vapors to Outdoor (Ambient) Air		>Sol	No	N/A	N/A
Toluene	Vapors to Indoor (Enclosed Spaces) Air	0.00052	92.0	No	N/A	N/A
	Leaching to Ground Water		20.0	No	N/A	N/A
	Vapors to Outdoor (Ambient) Air		>Sol	No	N/A	N/A
Ethylbenzene	Vapors to Indoor (Enclosed Spaces) Air	0.00074	>Sol	No	N/A	N/A
	Leaching to Ground Water		10.0	No	N/A	N/A
	Vapors to Outdoor (Ambient) Air		>Sol	No	N/A	N/A
Xylenes	Vapors to Indoor (Enclosed Spaces) Air	0.0068	>Sol	No	N/A	N/A
	Leaching to Ground Water		>Sol	No	N/A	N/A

RBSL = SSTL = Risk-based screening level. Site specific target level.

Micrograms per liter.

Not applicable. SSTL was not calculated because RBSL was not exceeded. RBSL values are adjusted by a 0.1 Slope factor. μg/L N/A

>Sol A concentration greater than the solubility in water.

APPENDIX A

RBCA Analysis Input Parameters

	CHEMICAL		
KDUA	CHEMICAL	UATAD/	(v)

Physical Property Data

												Vapor					
				Dif	ffusio	on		log (Koc) or			Pressure					
		Moleci	ılar	Coe	fficie	ents		log(Ko	i)	Henry's La	w Constant	(@ 20 - 25	C)	Solubility			
		Weig	ht	in air	i	in water	•	(@ 20 - 2	5 C)	(@ 20	- 25 C)	(mm Hg)		(@ 20 - 25 0	3)		
CAS		(g/mo	le)	(cm2/s)		(cm2/s)		(I/kg)	1	(<u>atm-m3</u>)	(unitless)	Pure		(mg/l) Pur	e acid	base	
Number Constituent	type	MW	ref	Dair r	re	Dwat	re	Koc	ref	mol	re	Component	ref	Component	ref pKa	pKb	re
71-43-2 Benzene	Α	78.1	5	9.30E-02	A 1.	10E-05	A	1.58	Α	5.29E-03	2.20E-01 A	9.52E+01	4	1.75E+03	Α		
100-41-4 Ethylbenzene	Α	106.2	5	7.60E-02	A 8.	50E-06	Α	1.98	Α	7.69E-03	3.20E-01 A	1.00E+01	4	1.52E+02	5		
108-88-3 Toluene	Α	92.4	5	8.50E-02	A 9.	40E-06	Α	2.13	Α	6.25E-03	2.60E-01 A	3.00E+01	4	5.15E+02	29		
1330-20-7 Xylene (mixed isomers)	Α	106.2	5	7.20E-02	A 8.	.50E-06	Α	2.38	Α	6.97E-03	2.90E-01 A	7.00E+00	4	1.98E+02	5		
										· · · · · · · · · · · · · · · · · · ·							
Exxon Station No.7-700	3	Pleasa	ntor	n. Californi	а					By: L.J.Mo	Gahan	Date Comple	tad.	8/20/97			

Software version: v 1.0

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

RBCA	CHEM	DAT	ADACI	
NDUA		-/-T	[-	_

Toxicity Data

			eferen Dose			F	Slope actors				
			g/kg/d			-	ig/kg/d			EPA Weight	ls
CAS		Oral		Inhalation		Oral		Inhalation		of	Constituent
Number	Constituent	RfD_oral	ref	RfD_inhal	re	SF_oral	ref	SF_inhal	ref	Evidence	Carcinogenic?
71-43-2	Benzene		R	1.70E-03	R	1.00E-01	Α	1.00E-01	Α	А	TRUE
100-41-4	Ethylbenzene	1.00E-01	Α	2.86E-01	Α	-	R		R	D	FALSE
108-88-3	Toluene	2.00E-01	A,R	1.14E-01	,	-	R	_	R	D	FALSE
1330-20-7	' Xylene (mixed isomers)	2.00E+00	A,R	2.00E+00	Α	-	R	-	R	D	FALSE
			···								
	Exxon Station No.7-7003	Pleasanton, Cal	ifornia				Ву:	L.J.McGahan		Date Completed: 8	3/20/97

Software version: v 1.0

[©] Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

SCREEN 7.1 GROUNDWATER CONCENTRATION CALCULATOR

Choose UCL Percentile (must be 0.9 or 0.95)

Analytical Data (Up to 50 Data Points)

2 3 5 6 7 8 9 10 11 12 13 14

Calculated	Default
Distribution	Detection
of Data	Limit
	(mg/L)

Lognormal	0.005
Lognormal	0.002
Lognormal	0.002
Lognormal	0.005

	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Well Name	MVV-1	MVV-1	MVV-1	MW-1	1/1/1/-2	MVV-2	MVV-3	MW-3	MVV-3	MVV-4	MVV-4	MVV-4	MVV-5	MW-5
Date Sampled	6/25/96	9/25/96	12/31/96	5,19,97	6/25/96	5/979/95	8/25/96	9/25/96	12/31/96	6/25/96	9/25/96	12/31/96	6/25/97	9/25/96

			0.00025 0.00025 0.00025 0.00025 0.00025
			0.00025 0.00025 0.00025 0.00025 0.00025
			0.00025 0.00025 0.0037 0.00025 0.00025
0.072 0.036 0.041 0.00025	0.00025 0.00025 0.00025	0.00025 0.00025	0.00025 0.00025 0.00025 0.00025 0.00026

15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
MW-5	MW-6	MW-6	MW-6	M/V-6	MVV-7	MW-7	MVV-7	MW-8	8-WM	∨E44	VEx1	VE-1	VE-2	VE-2	VE-2	VE-3	VE-3	VE-3	P (0.00 (0.00)
12/31/96	6/25/96	9/25/96	12/31/96	5/19/97	6/25/96	9/25/96	12/31/96	6/25/96	9/25/96	6/25/96	9/25/96	12/31/96	5/25/96	9/25/96	12/31/96	6/25/96	9/25/96	12/31/96	
		,													· · · · · · · · · · · · · · · · · · ·				
0.00025	0.00025	0.00025	0.00025	0.00025	0.00025				0.00025	0.019	0.00025	0.00025	0.034	0.00025	0.005	0.0015	0.00025	0.00025	
0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0,00025	0.00025	0.00025	0.00025	0.14	0.065	0.00025	Q.21	0.00025	0.00059	0.00025	0.00025	0.00025	
0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.0025	0.007	0.00025	0.013	0.00025	0.00054	0.00062	0.00025	0.00025	
0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.00025	0.042	0.021	0.00086	0.087	0.00025	0.00056	0.00025	0.00025	0.00025	

s.

.

.

SCREEN 7.3
SUBSURFACE SOILS
CONCENTRATION
CALCULATOR

UCL Percentile

90% (must be 0.9 or 0.95)

Analytical Data (Up to 50 Data Points)

1 2 3 4 5 6 7 8 9 10 11

Calculated Default
Distribution Detection

of Data Limit Sample Name

(mg/L) Date Sampled

Lognormal	0.005
Lognormal	0.005
Lognormal	0.005
Lognormal	0.005

	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
ıe	23-T1B	23-138	21-T2B	20-NWE	20-WW	24-738	24-T1B	21-81	33-81	25 5-B1A	30.5-B2
ed:	8/1/89	8/1/89	8/1/89	8/1/89	8/1/89	8/2/89	8/3/89	2/14/90	2/14/90	2/15/90	2/14/90

	0.08	0.3	0.05	0.05 0.05	0.05 4.5	2.7	0.05	0.061 9.7	0.025	0.025	0.086 0.086
	0.05	0.2	0.05	0.05	0.05	0.05	0.05	0.32	0.025	0.025	0.3
	0.05	0.1	0.05	0.05	14	2.8	0.05	17	02	13	0.4

12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
74.03	18.5.85	04 00	ാമ മെ	00 E 00	18.6-97	26.87				215818						
200	10000		ZUZGO	26.7-00				20.50	31:00	210-010	X3/C1/					
5/29/90	5/30/90	6/30/90	5/30/90	5/30/90	5/30/90	5/30/90	5/30/90	5/31/90	5/31/90	2/27/91	3/7/91					
0.02	0.0025	5.5	2.1	0.0054	0.0073	0.044	0.0081	0.0068	0.016	0.0025	0.041					
0.066	0.0025	33	12	0.0039	0.009	0.042	0.0025	0.0026	0.0025	5.3	0.041					
0.016	0.025	5.3	0.55	0.018	0.029	0.05	0.028	0.011	0.038	0.0025	0.075					
7.1	0.0025	36	0.86	0,0025	0.02	0.018	0.015	0.0025	0.0025	3.9	0.053					
					**********			**************************************	contraction of the contraction o		processiana	Programme 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		mmers 1 (12,000)	100000 (1000000)	transmin and the second

•

*

والمستر وبين وينه وينه وينه وين وين وين وينه وين وينه وين وينه وين وين وين وين وين وين

APPENDIX B

Tier 1 RBCA Evaluation Worksheets

RBCA TIER 1/TIER 2 EVALUATION

Output Table 1

		Name. Exxon 7-7003 cation Pleasanton, CA		b Identification. ate Completed Completed By.	D094-838 8/20/97 L J McGahan		Version:				
	n	EFAULT PARAM	/FTFRS				NOTE, values	s which differ from Tier 1 default values are shown in	n bold italies and	underlined.	Ī
Exposure	· ·	LI AULI I AIMI	Residential		Commercia	al/Industrial	Surface			Commerci	ıl/Industrial
Parameter	Definition (Units)	Adult	(1-6yrs)	(1-16 yrs)	Chronic	Constrctn		Definition (Units)	Residential	Chronic	Construction
ATc	Averaging time for carcinogens (yr)	70					t	Exposure duration (yr)	30	25	1
ATn	Averaging time for non-carcinogens (yr	r) 30	6	16	25	1	Α	Contaminated soil area (cm^2)	1.7E+06		ļ
BW	Body Weight (kg)	70	15	35	70		W	Length of affected soil parallel to wind (cm)	3 0E+02		1.0E+03
ED	Exposure Duration (yr)	30	6	16	25	1	W gw	Length of affected soil parallel to groundwater (c	3.0E+02		
EF	Exposure Frequency (days/yr)	350			250	180	Uair	Ambient air velocity in mixing zone (cm/s)	2 3E+02		
EF.Derm	Exposure Frequency for dermal exposu	ure 350			250		delta	Air mixing zone height (cm)	2.0E+02		ŀ
IRgw	Ingestion Rate of Water (I/day)	2			1		Lss	Definition of surficial soils (cm)	9 1E+01		
lRs	ingestion Rate of Soil (mg/day)	100	200		50	100	Pe	Particulate areal emission rate (g/cm^2/s)	2.2E-10		
iRadj	Adjusted soil ing. rate (mg*yr/kg*d)	1.1E+02			9,4E+01			,			
IRa.in	Inhalation rate indoor (m^3/day)	15			20		Groundwater	r Definition (Units)	Value		1
IRa.out	Inhalation rate outdoor (m^3/day)	20			20	10	delta gw	Groundwater mixing zone depth (cm)	6.1E+02	-	I
SA	Skin surface area (dermal) (cm^2)	5.8E+03		2 0E+03	5 8E+03	5 8E+03	1	Groundwater infiltration rate (cm/yr)	3.0E+01		ŀ
SAadj	Adjusted dermal area (cm^2•yr/kg)	2 1E+03			1.7E+03		Ugw	Groundwater Darcy velocity (cm/yr)	2.5E+03		
M	Soil to Skin adherence factor	1					Ugw tr	Groundwater Transport velocity (cm/yr)	6 6E+03		
AAFs	Age adjustment on soit ingestion	FALSE			FALSE		Ks	Saturated Hydraulic Conductivity(cm/s)			Y
AAFd	Age adjustment on skin surface area	FALSE			FALSE		grad	Groundwater Gradient (cm/cm)			į
tox	Use EPA tox data for air (or PEL based	d) TRUE					Sw	Width of groundwater source zone (cm)			ŀ
gwMCL?	Use MCL as exposure limit in groundw						Sd	Depth of groundwater source zone (cm)			
ľ							BC	Biodegradation Capacity (mg/L)			ļ
\$							BIO?	Is Broattenuation Considered	FALSE		
							phi eff	Effective Porosity in Water-Bearing Unit	3 8E-01		1
							foc,sat	Fraction organic carbon in water-bearing unit	1 0E-03		
Matrix of Expe	osed Persons to	Residential			Commerci	ai/industriaj	100,541	Fraction of delice cerport til weret-beging dilit	1 02-03		ļ
	osure Pathways	(10011,511,51			Chronic	Constrctn	Soll	Definition (Units)	Value		
Groundwater		······································					hc	Capillary zone thickness (cm)	5 0E+00	-	į.
GW.i	Groundwater Ingestion	FALSE			TRUE		hv	Vadose zone thickness (cm)	6.1E+02		
GW.v	Volatilization to Outdoor Air	FALSE			TRUE		tho	Soil density (g/cm^3)	1.7		Į
GW b	Vapor Intrusion to Buildings	FALSE			TRUE		foc	Fraction of organic carbon in vadose zone	0.01		
Soll Pathways					,		phi	Soil porosity in vadose zone	0.38		
sv	Volatiles from Subsurface Soils	FALSE			TRUE		Lgw	Depth to groundwater (cm)	6 1E+02		ŀ
SS v	Volatiles and Particulate Inhalation	FALSE			FALSE	FALSE	Ls	Depth to top of affected soil (cm)	5.6E+02		ľ
SS d	Direct Ingestion and Dermal Contact	FALSE			FALSE	FALSE	Lsubs	Thickness of affected subsurface soils (cm)	4.4E+02		ì
S.I	Leaching to Groundwater from all Soil				TRUE		рН	Soil/groundwater pH	6,5		
Sb	Intrusion to Buildings - Subsurface Soi				TRUE		PI I	Comgression pri	capillary	vadose	foundation
{					,,,,,,		phi,w	Volumetric water content	0 342	0 12	0 12
1							phi a	Volumetric air content	0 038	0 26	0 26
i							piliα	Your Carlo Mil Collection	0 030	0 20	0 20
							Building	Definition (Units)	Residential	Commercial	
							Lb	Building volume/area ratio (cm)	2 0E+02	3 0E+02	
Matrix of Rec	eptor Distance	Resid	ential		Commerci	allIndustrial	ER	Building air exchange rate (s*-1)	1 4E-04	2 3E-04	ì
and Location	on- or off-site	Distance	On-Site		Distance	On-Site	Lork	Foundation crack thickness (cm)	1 5E+01		
							eta	Foundation crack fraction	0.01		
GW	Groundwater receptor (cm)		TRUE			TRUE					ŀ
S	inhalation receptor (cm)		TRUE			TRUE					ş
1							Dispersive T	Fransport			
Matrix of								Definition (Units)	Residential	Commercial	
Target Risks		Individual	Cumulative	_			Groundwate		oiuoiii(di	- Villian old	
							ax	Longitudinal dispersion coefficient (cm)			į
TRab	Target Risk (class A&B carcinogens)	1 0E-06					ay	Transverse dispersion coefficient (cm)			ľ
TRo	Target Risk (class C carcinogens)	1 0E-05					az	Vertical dispersion coefficient (cm)			
THQ	Yarget Hazard Quotient	1 0E+00					az Vapor	vertical dispersion coefficient (city)			1
Opt	Calculation Option (1, 2, of 3)	1					dcy	Transverse dispersion coefficient (cm)			- 1
Tier	RBCA Tier	1					•	Vertical dispersion coefficient (cm)]
1	1,001, (101						dcz	vertical dispersion coefficient (cm)			

		RBCA SIT	e assessi	VIENT							Т	ier 1 Worksh	et 6.2	
Site Name: E	xxon 7-7003		Completed E	By: L.J. McGal	an									
Site Location	: Pleasanton, CA		Date Comple	eted: 8/20/199	7									1 OF 1
			Target Ris	k (Class A & B)	1 0E-6		MCL expo	sure limit?			Calcu	lation Option:	1	
SL	JBSURFACE SOIL RBSL	VALUES	Target	Risk (Class C)	1 0E-5		PEL expos	sure limit?						
	(> 3 FT BGS)		Target H	lazard Quotient	1.0E+0									
				RBSL	Results For Comp	lete E	xposure P	athways ("x" if	Com	plete)				
CONSTITUE	INTS OF CONCERN	Representative Concentration	X So	il Leaching to	Groundwater	x		latilization to	x		latilization to tdoor Air	Applicable RBSL	RBSL Exceeded ?	Required CRF
CAS No.	Name	(mg/kg)	Residential. (on-site)	Commercial. (on-site)	Regulatory(MCL) [,] (on-site)		esidential: (on-site)	Commercial. (on-site)		sidential: on-site)	Commercial; (on-site)	(mg/kg)	* ≡ * if yes	Only if "yes" left
71-43-2	Benzene ·	4.6E-2	NA	2.3E-1	NA		NA	1.0E-2		NA	2.2E+1	1.0E-2		4.0E+00
100-41-4	Ethylbenzene	1.0E-1	NA	>Res	NA		NA	1.2E+2		NA	>Res	1.2E+2		<1
108-88-3	Toluene	5.5E-2	NA	>Res	NA		NA	7.0E+1		NA	>Res	7.0E+1		<1
1330-20-7	Xylene (mixed isomers)	1.3E-1	NA	>Res	NA		NA	>Res		NA	>Res	>Res		<1

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version: v 1.0 Serial: G-395-PMX-154

		RBC	A SITE ASS	ESSMENT						Tier 1 Wo	rksheet 6.3	
Site Name: E	oxon 7-7003		Completed B	y, L.J. McGah	an			,,,,,				
Site Location	: Pleasanton, CA		Date Comple	ted: 8/20/199	7							1 OF 1
0	DOUNDWATER BEST	/ALUE0	i ~	k (Class A & B)		☐ MCL expo			Calcu	lation Option:	1	
G	ROUNDWATER RBSL V	VALUES	Target	Risk (Class C)	1.0E-5	☐ PEL expos	sure limit?					
			Target H	lazard Quotient	1 0E+0							
				RB:	SL Results For Con	nplete Exposure	Pathways ("x" if	Complete)				
CONSTITUE	NTS OF CONCERN	Representative Concentration	x	Groundwater	Ingestion		ater Volatilization	1	er Volatifization utdoor Air	Applicable RBSL	RBSL Exceeded ?	Required CRF
	Name '	(mg/L)	Residential: (on-site)	Commercial (on-site)	Regulatory(MCL) (on-site)	Residential, (on-site)	Commercial (on-site)	Residential (on-site)	Commercial,	(mg/L		Only if "yes" left
71-43-2	Benzene	5.7E-4	NA	2.9E-3	NA	NA	2.3E-2	NA	3.0E+1	2.9E-3		<1
100-41-4	Ethylbenzene	7.4E-4	NA	1.0E+1	NA	NA	>Sol	NA	>Sol	1.0E+1		<1
108-88-3	Toluene	5.2E-4	NA	2.0E+1	NA	NA	9.2E+1	NA	>Sol	2.0E+1		<1
1330-20-7	Xylene (mixed isomers)	6.8E-4	NA	>Sol	NA	NA	>Sol	NA	>Sol	>Sol		<1

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

Software: GSI RBCA Spreadsheet

Serial: G-395-PMX-154

Version: v 1.0

Site Name: Exxon 7-7003		Site Location: Pleasanton, CA		J. McGahan	Date Completed: 8/20/1997	1 OF 1
	TIE	R 1 EXPOSURE CONCEN	TRATION AND DITAKE ON OUR AT			
			TRATION AND INTAKE CALCULAT	ION		
AIR EXPOSURE PATHWAYS			I (Checked if pathway is active)			
SURFACE SOILS: VAPOR AND	Exposure Concentration					
DUST INHALATION	1) <u>Source Medium</u>	2) <u>NAF Value (m^3/kg)</u> Receptor	3) Exposure Medium Air: POE Conc (mg/m^3) (1)/(2)	4) <u>Exposure Multiplier</u> (IRXETXEFXED)(BWXAT) (m*3/kg-day)	5) Average Dally Intake Rate (mg/kg-day) (3) X (4)	
Constituents of Concern	Surface Soil Conc (mg/kg)]	
Benzene	0.0E+0					
Ethylbenzene	0.0E+0					
Toluene	0.0E+0					
Xylene (mixed isomers)	0.0E+0					

Serial, G-395-PMX-154

Software, GSI RBCA Spreadsheet Version v 1 0

© Groundwater Services, Inc. (GSI), 1995 All Rights Reserved

		RBCA SITE ASSES	SMENT		Tier 1 V	Vorksheet B.1
Site Name: Exxon 7-7003		Site Location	Pleasanton, CA	Completed By: L.J. McGahan	Date Complet	ted: 8/20/1997 2 OF 6
		TIER 1	EXPOSURE CONCENTRATION AF	ID INTAKE CALCULATION		
AIR EXPOSURE PATHWAYS		water to the second control of the second co	TICHECKED IE PATHWAY IS ACTIVE			Section 1 Sectio
SUBSURFACE SOILS: VAPOR	Exposure Concentration			n ne nam - mage n maps	17 7 1410 (7 1 1444) (1410) (1414) (1414)	TOTAL PATHWAY INTAKE (mg/kg-day)
INHALATION	1) <u>Source Medium</u>	2) <u>NAF Value (m^3/kg)</u> Receptor	3) Exposure Medium Air POE Conc. (mg/m^3) (1) / (2)	4) <u>Exposure Multiplier</u> (IRxETxEFxED)(BWxAT) (m ^{*3} /kg-day)	5) Average Daily Inlake Rate (mg/kg-day) (3) X (4)	(Sum intake values from surface & subsurface routes)
Constituents of Concern	Subsurface Soil Conc. (mg/kg)	On-Site Commercial	On-Site Commercial	On-Sita Commercial	On-Site Commercial	On-Site Commercial
Benzene	4.6E-2	1.5E+5	3.0E-7	7.0E-2	2.1E-8	2.1E-8
Ethylbenzene	1.0E-1	1.5E+5	6.5E-7	2.0E-1	1.3E-7	1.3E-7
Toluene	5.5E-2	1.5E+5	3.6E-7	2.0E-1	7.0E-8	7.0E-8
Xylene (mixed isomers)	1.3E-1	1.5E+5	8.5E-7	2.0E-1	1.7E-7	1.7E-7

BW = Body Weight (kg) CF = Units conversion factor

Groundwater Services, Inc. (GSI), 1995. All Rights Reserved

NOTE. ABS = Dermal absorption factor (dim) AF = Adherance factor AT = Averaging time (days)

EF = Exposure frequencey (days/yr)
ET = Exposure time (hrs/day)
IR = Intake rate (L/day or mg/day) ED = Exp. duration (yrs)

Serial: G-395-PMX-154

Software: GSI RBCA Spreadsheat Version, v 1 0

POE = Point of exposure SA = Skin surface area (cm^2)

		RBCA SITE ASSESSMENT				Tier 1 Worksheet 8.1	
Site Name: Exxon 7-7003	Site Locati	on: Pleasanton, CA	Completed By: L.J. McGaha	n	Date Completed: 8/20/19	97	30
		TIER 1 EXPOS	SURE CONCENTRATION AN	O INTAKE CALCULATION	N		
SOIL EXPOSURE PATHWAYS			: (CHECKED-IE PATHWAY IS AC	TVet			
SURFACE SOILS OR SEDIMENTS:		Exposure Concentration	. , , , , , , , , , , , , , , , , , , ,	0.7 66.8 .00.6	andras (m. 1111 a.g. p. 111 a.g. 1111		
DERMAL CONTACT		1) <u>Source Medium</u>	4) <u>Exposure Multiplier</u> (SAXAFXABSXCFXEFXED)/(BVIXAT) (1/day)		5) Average Daily Intake Rate (mg/kg-day)		
Constituents of Concern		Surface Soil Conc (mg/kg)	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	
Benzene Ethylbenzene		0.0E+0 0.0E+0				 	
Toluene		0,0E+0			 		
Xylene (mixed isomers)		0.0E+0				 	

Serial. G-395-PMX-154

GSI RBCA Spreadsheet Version: v 1 0

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved

	RECA SITE ASSESSMENT			<u> </u>	Tier 1 \	Norksheet 8.1	
Site Name: Exxon 7-7003	Site Location: Pleasanton, CA	4	Completed By: L	J. McGahan	Date Completed: 8	3/20/1997	4 OF 6
	TIER 1 EXPOS	URE CONCENTRA	TION AND INTA	KE CALCULATIO	ON		
BOIL EXPOSURE PATHWAYS	i i i i i i i i i i i i i i i i i i i	KCHECKED IF PATH	WAY IS ACTIVE)		3274.W. 1894.W.	2000 (A. 100 (A. 101 10)	
SURFACE SOILS OR SEDIMENTS:	Exposure Concentration					TOTAL PATHWAY	
NGESTION	1) <u>Source Medium</u>	4) <u>Exposur</u> (IRxCxEFxED)/(I	e Multiplier SWXAT) (1/day)		uly Intake Rate g-day)	(Sum intake dermai & inge	values from
Constituents of Concern	Surface Soil Conc (mg/kg)	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial
Benzene	0.0E+0						
Ethylbenzene	0.0E+0						
Toluene	0.0E+0						
Xylene (mixed isomers)	0.0E+0						

Serial G-395-PMX-154

Software: GSI RBCA Spreadsheet Version v 1 0

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved

	R	BCA SITE ASSESSMENT			Tier 1 Worksheet 8.	1
Site Name: Exxon 7-7003		Site Location: Pleasanton, CA	Completed By: L	.J. McGahan	Date Completed: 8/20/1997	5 OF
	·	TIER 1 EXPOSURE CONCENT	TRATION AND INTAKE CALCULA	TION		
GROUNDWATER EXPOSURE PATHWAYS			l ichecked if pathway is active)		3.6225-33.32-23.00	(J. 1997)
SOIL: LEACHING TO GROUNDWATER	Exposure Concentration					
INGESTION	1) Source Medium	2) NAF Value (L/kg)	Ground TEMPOSHIST MEDITUM (mg/L)	4) Exposure Multiplier	5) Average Daily Intake Rate	
		Receptor	(1)/(2)	(IRxEFxEO)/(BWxAT) (L/kg-day)	(mg/kg-day)	
Constituents of Concern	Soil Concentration (mg/kg)	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Commercial	
Benzene	4.6E-2	8.1E+1	5.6E-4	3.5E-3	2.0E-6	
Ethylbenzene	1.0E-1	1.8E+2	5.6E-4	9.8E-3	5.4E-6	
Toluene	5.5E-2	2.4E+2	2.3E-4	9.8E-3	2.2E-6	
Xylene (mixed isomers)	1.3E-1	4,2E+2	3.1E-4	9,8E-3	3.1E-6	

BW = Body Weight (kg)
CF = Units conversion factor
ED = Exp_duration (yrs)

Serial, G-395-PMX-154

Software: GSI RBCA Spreadsheet Version: v 1.0

POE = Point of exposure

Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

NOTE: AT = Averaging time (days)

EF = Exposure frequencey (days/yr) IR = Intake rate (L/day)

		Tier 1 Worksheet 8.1									
Site Name: Exxon 7-7003		Site Location: Pleasanton, CA					oleted By: L.J. McGahan Date Comp			eted: 8/20/1997 6 OF 6	
			TIER 1 E	XPOSURE CONCENT	RATION AN	ID INTAKE CALC	ULATION				
GROUNDWATER EXPOSURE PA	THWAYS			CHECKED IF PATHWA	Y IS ACTIVE)			<u> </u>			
GROUNDWATER: INGESTION	Exposure Concentration									MAX. PATHWAY INTAK	_
	1) Source Medium 2) NAF Value (dim)		3) Exposure Medium		4) Exposure Multiplier		5) Average Dally Intake Rate		(Maximum intake of active pathways		
		Receptor		Groundwater POE Conc (mg/L) (1)/(2)		(IRxEFxED)/(BWxAT) (L/kg-day)		(mg/kg-day)		soll leaching & groundwater routes)	
Constituents of Concern	Groundwater Concentration (mg/t.)	On-Site Commercial		Ori-Site Commercial		On-Site Commercial	1	On-Site Commercial		On-Site Commercial	
Benzene	5.7E-4	1.0E+0		5.7E-4		3.5E-3	<u></u>	2.0E-6		2.0E-6	·
Ethylbenzene ,	7.4E-4	1.0E+0	1	7.4E-4	**-	9.8E-3	 	7.2E-6		7.2E-6	
Toluene	5.2E-4	1.0E+0		5.2E-4		9.8E-3	 	5.1E-6		5.1E-6	
Xylene (mixed isomers)	6.8E-4	1.0E+0		6.8E-4		9.8E-3		6.7E-6		6.7E-6	

NOTE.	AT = Averaging time (days)	BW = Body Weight (kg) CF = Units conversion factor ED = Exp duration (yrs)	EF = Exposure frequencey (days/yr) {R = Intake rate (Uday or mg/day)	POE = Point of exposure
L				

@ Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

Serial, G-395-PMX-154

Software GSI RBCA Spreadsheet

Version: v 1.0

		RBCA SITE ASSESS	MENT			Tier 1 \	Worksheet 8.2	1 OF					
Site Name: Exxon 7-7003		Site Location	n: Pleasanton,	CA Completed I	By: L.J. McGahan	Date Completed: 8/20/1997							
			TIER 1	PATHWAY RISK CALCU	LATION								
AIR EXPOSURE PATHWAYS				To ICHECKED IF	PATHWAYS ARE ACTIVELS:		<u> </u>						
			CARCINOGENIC R		2 02 9	TOXIC EFFECTS	***************************************	<u> </u>					
	(1) EPA	(2) Total Carcinogenic Intake Rate (mg/kg/day)	(3) Inhalation Slope Factor	(4) Individual COC Risk (2) x (3)	(5) Total Toxicant Intake Rate (mg/kg/d	1 ' '							
Constituents of Concern	Carcinoganic Classification	On-Site Commercia)	(mg/kg-day)^-1	On-Site Commercial	On-Site Commercial	(mg/kg-day)	On-Site Commercial						
Benzene	A	2.1E-8	1.0E-1	2.1E-9	5.8E-8	1.7E-3	3.4E-5						
Ethylbenzene	D				1.3E-7	2.9E-1	4.4E-7						
Toluene	D				7.0E-8	1.1E-1	6.1E-7						
Xylene (mixed isomers)	D				1.7E-7	2.0E+0	8.4E-8						
		Total Pathway Carcine	genic Risk =	2.1E-9 0.0E+0	Total Pa	thway Hazard Index =	3.5E-5	0.0E+0					
					-	•							
								 					
l													

Serial: G-395-PMX-154

Software: GSI RBCA Spreadsheet Version: v 1 0

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

·		RBCA S		Tier 1 Worksheet 8.2								
Site Name: Exxon 7-7003			Site Location:	Pleasanton, C	DA	Completed By:	L.J. McGahan		2 OF			
				TIER 1	PATHWAY RI	SK CALCULAT	ION					
SOIL EXPOSURE PATHWAYS						ICHECKED IF PAT	HWAYS ARE ACT	VEX. TO SERVE TO SERVE			200 and 21 A.A.	
				ARCINOGENIC					TOXIC EFFECTS			الثنني
(1) EPA		1		(3) Oral Slope Factor	(4) Individual COC Risk (2) x (3)		(5) Total Toxicant Intake Rate (mg/kg/day)		(6) Oral Reference Dose	(7) Individual COC		
Constituents of Concern	Carcinogenic Classificatio n	On-Site Residential	On-Site Commercial	(mg/kg-day)^-1	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	(mg/kg-day)	On-Site Residential	On-Site Commerci	iat
Benzene	A			1.0E-1			Ott Oliver teamorium	STY SILE SUPPLIES CHARLE	(Myng day)	On One residence	CIFORIO CONTRIBERCI	~
Ethylbenzene	D								1.0E-1			7
Toluene	D								2.0E-1	1		_
Xylene (mixed isomers)	D								2 0E+0			
		Total Path	way Carcinog	enic Risk =	0.0E+0	0.0E+0		Total Pathway H	lazard Index =	0.0E+0	0.0E+0	
									v			
							_ 					
								Serial	G-395-PMX-154	Coffuncia	GSI RBCA Spread	deboot

0.1 v naisteV

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

		RBCA SITE	ASSESSME	NT :					Tier 1 V	/orksheet 8.2	
Site Name: Exxon 7-7003	s	ite Location:	n: Pleasanton, CA Completed By: L.J. McGahan Date Completed: 8/20/1997						3 OF		
· · · · · · · · · · · · · · · · · · ·				TIER 1 PATH	WAY RISK	CALCULATIO	NN				
GROUNDWATER EXPOSURE PA	THWAYS				-400 (2000 a	inupryen ied	ATHWAYS ARE A	Printer of Contract	20. Prose (20. Vision 10.)	79772	Warnell Lauren
<u> </u>		**************************************		RCINOGENIC RI		(michigan)	A TOTAL OF THE A	· · · · · · · · · · · · · · · · · · ·	TOXIC EFFECTS	<u> Marintalianan .</u>	
		(2) Total Car	cinogenic	(3) Oral	(4) Indivi	dual COC			(6) Oral	(7) Individual COC	
	(1) EPA	PA Intake Rate (mg/kg/day)		Slope Factor	Risk (R:sk (2) x (3)		Intake Rate (mg/kg/day)		e Hazard Quotient (5) / (6)	
Constituents of Concern	Carcinogeni c Classificati on	On-Site		(mg/kg-day)%-1	On-Site Commercial		On-Site Commercial		(mg/kg-day)	On-Site Commercial	
Benzene	A	2.0E-6		1.0E-1	2.0E-7						
Ethylbenzene	D						7.2E-6	·	1.0E-1	7.2E-5	
Toluene	D					l	5.1E-6	·	2.0E-1	2.5E-5	
Xylene (mixed isomers)						l	6.7E-6	·	2.0E+0	3.3E-6	L
		Total Pathwa	ay Carcinog	enic Risk =	2.0E-7	0.0E+0] Total	Pathway H	azard Index =	1.0E-4	0.0E+0
	·										
]
		© Groundwa	ater Services, la	nc (GSI), 1995 A	III Rights Reserv	ed.		Seria	i G-395-PMX-154	Software Version	GSI RBCA Spread

RBCA SITE ASSESSMENT

Tier 1 Worksheet 8.3

Site Name: Exxon 7-7003 Site Location: Pleasanton, CA

Completed By: L.J. McGahan Date Completed: 8/20/1997

1 of 1

TIER 1 BASELINE RISK SUMMARY TABLE BASELINE CARCINOGENIC RISK **BASELINE TOXIC EFFECTS** Risk Toxicity Limit(s) Limit(s) **Hazard Quotient** Individual COC Risk **Cumulative COC Risk** Exceeded? Exceeded? Hazard Index **EXPOSURE** Maximum Target Maximum Total Target Total Applicable Applicable **PATHWAY** Value Risk Value Risk Value Limit Value Limit AIR EXPOSURE PATHWAYS 1.0E-6 2.1E-9 N/A Complete: 2.1E-9 3.4E-5 1.0E+0 3.5E-5 N/A GROUNDWATER EXPOSURE PATHWAYS 2.0E-7 1.0E-6 2.0E-7 N/A 7.2E-5 Complete: 1.0E+0 1.0E-4 N/A SOIL EXPOSURE PATHWAYS 0.0E+0 1.0E-6 0.0E+0 Complete: N/A 0.0E+0 1.0E+0 N/A 0.0E+0 CRITICAL EXPOSURE PATHWAY (Select Maximum Values From Complete Pathways) 2.0E-7 1.0E-6 2.0E-7 N/A 7.2E-5 1.0E+0 1.0E-4 N/A

Serial: G-395-PMX

Software: GSI RBCA Spreadsheet

Version: v 1.0

APPENDIX C

Tier 2 RBCA Evaluation Worksheets

RBCA TIER 1/TIER 2 EVALUATION

Output Table 1

Site Name, Exxon 7-7003 Job Identification: D094-838 Software, GSI RBCA Spreadsheet Site Location, Pleasanton, CA Date Completed, 8/21/97 Version: v 1.0 Completed By L.J. McGahan NOTE values which differ from Tier 1 default values are shown in bold italics and underlined **DEFAULT PARAMETERS** Exposure Residential Commercial/Industrial Commercial/Industrial Parameter Definition (Units) (1-16 yrs) Adult (1-6yrs) Chronic Constrctn Parameters Definition (Units) Residential Construction Chronic ATc Averaging time for carcinogens (vr) 70 Exposure duration (vr) 30 25 ATn Averaging time for non-carcinogens (yr) 30 6 16 25 Α Contaminated soil area (cm^2) 1.7E+06 8W Body Weight (kg) 70 15 35 70 W Length of affected soil parallel to wind (cm) 3.0E+02 ED Exposure Duration (yr) 30 6 16 25 W.gw Length of affected soil parallel to groundwater (c 3.0E+02 1 FF Exposure Frequency (days/yr) 350 250 180 Uair Ambient air velocity in mixing zone (cm/s) 3.3E+02 EF.Derm Exposure Frequency for dermal exposure 350 250 delta Air mixing zone height (cm) 2 0E+02 lRgw Ingestion Rate of Water (I/day) 2 Lss Definition of surficial soils (cm) 9.1E+01 IIRs Ingestion Rate of Soil (mg/day) 100 200 50 100 Particulate areal emission rate (g/cm^2/s) Pe 2 2E-10 **IRadi** Adjusted soil ing. rate (mg*vr/kg*d) 1.1E+02 9 4E+01 lRa in inhalation rate indoor (m^3/dav) 15 20 Groundwater Definition (Units) Value IRa.out Inhalation rate outdoor (m^3/day) 20 20 delta.gw Groundwater mixing zone depth (cm) 6.1E+02 SA Skin surface area (dermal) (cm^2) 5.8E+03 2 0E+03 5 8E+03 5 8E+03 Groundwater infiltration rate (cm/yr) 3.0E+01 SAada Adjusted dermal area (cm^2-vr/kg) 2.1E+03 1.7E+03 Uaw Groundwater Darcy velocity (cm/yr) 2.5E+03 Soil to Skin adherence factor Groundwater Transport velocity (cm/yr) 1 Ugw.tr 6.6E+03 AAFs Age adjustment on soil ingestion FALSE FALSE Saturated Hydraulic Conductivity(cm/s) Κs AAFd Age adjustment on skin surface area FALSE FALSE Groundwater Gradient (cm/cm) arad tox Use EPA tox data for air (or PEL based) TRUE Sw Width of groundwater source zone (cm) awMCL? Use MCL as exposure limit in groundwater? FALSE Sd Depth of groundwater source zone (cm) Biodegradation Capacity (mg/L) BC BIO? Is Bioattenuation Considered FALSE oht eff Effective Porosity in Water-Bearing Unit 3 8E-01 foc sat Fraction organic carbon in water-bearing unit 1 0E-03 Matrix of Exposed Persons to Residential Commercial/Industrial Complete Exposure Pathways Chronic Constrctn Definition (Units) Soil Value Groundwater Pathways: hc Capillary zone thickness (cm) 5 0E+00 GW I Groundwater Ingestion FALSE TRUE hν Vadose zone thickness (cm) 6.1E+02 GW.v Volatilization to Outdoor Air FALSE TRUE Soil density (g/cm^3) 17 rho GW.b Vapor Intrusion to Buildings FALSE TRUE Fraction of organic carbon in vadose zone 0 01 foc Soil Pathways phi Soil porosity in vadose zone 038 Sv Volatiles from Subsurface Soils FALSE TRUE Low Depth to groundwater (cm) 6.1E+02 SSv Volatiles and Particulate Inhalation FALSE FALSE FALSE Depth to top of affected soil (cm) 5.6E+02 Ĺs SS.d Direct Ingestion and Dermal Contact FALSE FALSE FALSE Lsubs Thickness of affected subsurface soils (cm) 4.4E+02 S.I Leaching to Groundwater from all Soils FALSE TRUE Hq Soil/groundwater pH 65 S.b Intrusion to Buildings - Subsurface Soils FALSE TRUE capillary vadose foundation phi w Volumetric water content 0.342 0.12 0.12 phi a Volumetric air content 0.038 0.26 0.26 Building Definition (Units) Residential Commercial Lb Building volume/area ratio (cm) 2 0E+02 3 0E+02 Matrix of Receptor Distance Residential Commercial/Industrial ER Building air exchange rate (s^-1) 1.4≅-04 3.4E-04 and Location on- or off-site Distance On-Site Distance On-Site Lcrk Foundation crack thickness (cm) 1.0E+01 eta Foundation crack fraction 0.001 GΨ Groundwater receptor (cm) TRUE TRUE s Inhalation receptor (cm) TRUE TRUE Dispersive Transport Matrix of Parameters Definition (Units) Residential Commercial **Target Risks** Individual Cumulative Groundwater Longitudinal dispersion coefficient (cm) ax TRab Target Risk (class A&B carcinogens) 1 0E-06 ay Transverse dispersion coefficient (cm) TRo Target Risk (class C carcinogens) 1 0E-05 az Vertical dispersion coefficient (cm) THQ Target Hazard Quotient 1.0E+00 Vapor Calculation Option (1, 2, or 3) Opt 1 Transverse dispersion coefficient (cm) dcy

Vertical dispersion coefficient (cm)

Tier

RBCA Tier

		RBCA SIT	E ASSESSA	MENT							Т	ier 2 Workshe	et 9.2	····
Site Name: E	xxon 7-7003		Completed B	y: L.J. McGah	an							·		
Site Location	: Pleasanton, CA		Date Comple	ted: 8/21/199	7									1 OF 1
			Target Rist	(Class A & B)	1.0E-6		MCL expo	sure limit?			Calcu	lation Option:	1	
SU	JBSURFACE SOIL SSTL	VALUES	Target	Risk (Class C)	1 0E-5		PEL expos	sure limit?						
	(> 3 FT BGS)		Target H	azard Quotient	1.0E+0									
				SSTL F	Results For Comp	ete E	xposure P	athways ("x" If	Com	plete)				
CONSTITUE	INTS OF CONCERN	Representative Concentration	X Soi	Leaching to	Groundwater	х		atilization to loor Air	х	l .	latilization to tdoor Air	Applicable SSTL	SSTL Exceeded ?	Required CRF
CAS No.	Name	(mg/kg)	Residential [.] (on-site)	Commercial (on-site)	Regulatory(MCL). (on-site)	·	sidential: วก-site)	Commercial: (on-site)		sidential: on-site)	Commercial. (on-site)	(mg/kg)	"III" If yes	Only if "yes" left
71-43-2	Benzene '	4.6E-2	NA	2.3E-1	NA		NA	4.7E-2		NA	3.2E+1	4.7E-2		<1
100-41-4	Ethylbenzene	1.0E-1	NA	>Res	NA		NA	>Res		NA	>Res	>Res		<1
108-88-3	Toluene	5.5E-2	NA	>Res	NA		NA	5.3E+2		NA	>Res	5.3E+2		<1
1330-20-7	Xylene (mixed isomers)	1.3E-1	NA	>Res	NA		NA	>Res		NA	>Res	>Res		<1

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

Software: GSI RBCA Spreadsheet Version. v 1.0 Serial: G-395-PMX-154

	RBC	A SITE ASSESSMENT			Tier 2 Worksheet 8.	1
Site Name: Exxon 7-7003		Site Location: Pleasanton, CA	Completed By: i	.J. McGahan	Date Completed: 8/21/1997	1 OF 6
	TIE	R 2 EXPOSURE CONCENT	RATION AND INTAKE CALCULA	TION		
AIH EXPOSURE PATHWAYS			ICHECKED IF PATHWAY IS ACTIVED		20.72	
SURFACE SOILS: VAPOR AND	Exposure Concentration					لتجيينين
NOITALAHINI TRUG	1) <u>Source Medium</u>	2) <u>NAF Value (m^3/kg)</u> Receptor	3) Exposure Medium Air POE Conc. (mg/m^3) (1)/(2)	4) Exposure Multiplier (IRXETXEFXED)/(BWXAT) (m*3/kg-day)	5) Average Daily Intake Rate (mg/kg-day) (3) X (4)	
Constituents of Concern	Surface Soil Conc. (mg/kg)	_				
Benzene	0.0E+0					
Ethylbenzene	0.0E+0					
Toluene	0.0E+0					
Xylene (mixed isomers)	0.0E+0					
Α	BS = Dermal absorption factor (dim) F = Adherance factor T = Averaging time (days)	BW = Body Weig CF = Units conve ED = Exp. duration	rsion factor ET = Exposure time	e (hrs/day)	POE = Point of exposure SA = Skin surface area (cm^2)	

Serial G-395-PMX-154

Software, GSI RBCA Spreadsheet Version; v 1 0

Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

		RBCA SITE ASS	SESSMENT		Tier 2 \	Worksheet 8.1
Site Name: Exxon 7-7003		Site Loca	tion: Pleasanton, CA	Completed By: L.J. McGahan	Date Comple	ted: 8/21/1997 2 OF 6
		TIER	2 EXPOSURE CONCENTRATION A	·		
AIR EXPOSURE PATHWAYS			I ICHECKED IF FATHWAY IS ACTIVE	90 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
SUBSURFACE SOILS: VAPOR	Exposure Concentration			. <u> </u>	· A	TOTAL PATHWAY INTAKE (mg/kg-day
INHALATION	1) Source Medium	2) <u>NAF Value (m^3/kg)</u> Receptor	3) <u>Exposure Medium</u> Air, POE Conc. (mg/m^3) (1) / (2)	4) <u>Exposure Multiplier</u> (IRxETxEFxE0)/(8WxAT) (m^3/kg-day)	5) Average Dally Intake Rate (mg/kg-day) (3) X (4)	(Sum intake values from surface & subsurface roules.)
Constituents of Concern	Subsurface Soil Conc. (mg/kg)	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Commercial
Benzene	4.6E-2	2.2E+5	2.0E-7	7 0E-2	1.4E-8	1.4E-8
Ethylbenzene	1.0E-1	2.2E+5	4.5E-7	2.0E-1	8.8E-8	8.8E-8
Toluene	5.5E-2	2.2E+5	2.5E-7	2.0E-1	4.8E-8	4.8E-8
	1.3E-1	2.2E+5	5.9E-7	2.0E-1	1,2E-7	1,2E-7

AF = Adi	rmal absorption factor (dlm) erance factor CF = Units conversion factor aging time (days) ED = Exp duration (yrs)	EF = Exposure frequencey (days/yr) ET = Exposure time (hrs/day) IR = Intake rate (L/day or mg/day)	POE ≈ Point of exposure SA ≃ Skin surface area (cm^2)
----------	---	--	--

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved

Serial G-395-PMX-154

Software: GSI RBCA Spreadsheet

Version: v 1 0

· · · · · · · · · · · · · · · · · · ·	RBCA SITE	ASSESSMENT				Tier 2 Worksheet 8.1	
Site Name: Exxon 7-7003	Site Location: Pleasar	iton, CA	Completed By: L.J. McGaha	n	Date Completed: 8/21/19	97	3 OF
		TIER 2 EXPOSE	RE CONCENTRATION AND	NTAKE CALCULATIO	N		
SOIL EXPOSURE PATHWAYS			(CHECKED IF PATHWAY IS ACT	IVE			
SURFACE SOILS OR SEDIMENTS:	Exposure Con			<u> </u>			المشتحصفيم
DERMAL CONTACT	1) §	ource Medium	4) <u>Exposurø</u> (SAxAFxABSxCFxEFxE0		1 -	oally Intake Rate (kg-day)	
Constituents of Concern	Surface	Soil Conc (mg/kg)	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	
Benzene		0.0E+0			<u> </u>	<u> </u>	
Ethylbenzene Toluene		0.0E+0 0.0E+0				- 	
Xylene (mixed isomers)		0.0E+0	·		 	 	
			41.				
N	OTE: ABS = Dermal absorption AF = Adherance factor AT = Averaging time (day)	•	BW = Body Weight (kg) CF = Units conversion factor ED = Exp. duration (yrs)	EF = Exposure frequencey ET = Exposure time (hrs/d IR = Intake rate (L/day or n	ay)	POE = Point of exposure SA = Skin surface area (cm^2)	

@ Groundwater Services, Inc. (GSI), 1995 All Rights Reserved.

Serial: G-395-PMX-154

GSI RBCA Spreadsheet Version: v 1.0

SOIL EXPOSURE PATHWAYS	<u> </u>	JRE CONCENTRA						
SURFACE SOILS OR SEDIMENTS:	Exposure Concentration			<u> </u>		TOTAL PATHWAY I		
INGESTION	1) <u>Source Medium</u>		e Multiplier BWxAT) (1/day)		ały Intake Rate (g-day)	(Sum Intake values from dermal & Ingestion routes)		
Constituents of Concern	Surface Soil Conc. (mg/kg)	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	
Benzene	0.0E+0							
<u>Ethylbenzene</u>	0.0E+0							
Toluerie	0.0E+0							
Xylene (mixed isomers)	0.0E+0							

Serial: G-395-PMX-154

Software GSI RBCA Spreadsheet

Version v 1.0

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

	R	BCA SITE ASSESSMENT			Tier 2 Worksheet 8.	1
Site Name: Exxon 7-7003		Site Location: Pleasanton, CA	Completed By: I	.J. McGahan	Date Completed: 8/21/1997	5 OF
		TIER 2 EXPOSURE CONCEN	ITRATION AND INTAKE CALCULA	TION		
GROUNDWATER EXPOSURE PATHWAYS			W (CHECKED IF PATHWAY IS ACTIVE)		AND THE RESERVE OF THE PARTY OF	· ·
SOIL: LEACHING TO GROUNDWATER	Exposure Concentration					- Constitution
INGESTION	1) Source Medium	2) NAF Value (L/kg)	Ground)\Exposure_Medium(mg/L)	4) Exposure Multiplier	5) Average Dally Intake Rate	
		Receptor	(1)/(2)	(IRxEFxED)/(BWWAT) (L/kg-day)	(mg/kg-day)	
Constituents of Concern	Soil Concentration (mg/kg)	On Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Commercial	
Benzene	4.6E-2	8.1E+1	5.6E-4	3.5E-3	2.0E-6	
Ethylbenzene ,	1.0E-1	_1.8E+2	5.6E-4	9.8E-3	5.4E-6	
Toluene	5.5E-2	2.4E+2	2.3E-4	9,8E-3	2.2E-6	
	1.3E-1	4.2E+2	3.1E-4	9.8E-3	3.1E-6	

BW = Body Weight (kg)
CF = Units conversion factor
ED = Exp. duration (yrs)

Serial G-395-PMX-154

Software: GSI RBCA Spreadsheet Version v 1.0

POE = Point of exposure

© Groundwater Services, Inc. (GSI), 1995 All Rights Reserved

NOTE: AT = Averaging time (days)

EF = Exposure frequencey (days/yr) IR = Intake rate (L/day)

		RBCA SITE AS	SESSMENT		Tier 2 W	forksheet 8.1
Site Name: Exxon 7-7003		Site Loc	ation: Pleasanton, CA	Completed By: L.J. McGahan	Date Complete	ed: 8/21/1997 6 OF 6
		TIE	R 2 EXPOSURE CONCENTRATIO	N AND INTAKE CALCULATION		
GROUNDWATER EXPOSURE PA	THWAYS		W (CHECKED IF PATHWAY IS AC	(IVE)		
GROUNDWATER: INGESTION	Exposure Concentration				r may mar pagentant against the again	MAX. PATHWAY INTAKE (mg/kg-day)
	1) Source Medium	2) NAF Value (dlm)	3) Exposure Medium	4) Exposure Multiplier	5) Average Daily Intake Rate	(Maximum intake of active pathways
		Receptor	Groundwater: POE Conc (mg/L) (1	/(2) (IRxEFxED)/(BWxAT) (L/kg-day)	(mg/kg-day)	soil leaching & groundwater routes.)
Constituents of Concern	Groundwater Concentration (mg/L)	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Commercial	On-Site Commercial
Benzene	5.7E-4	1.0E+0	5.7E-4	3.5E-3	2.0E-6	2.0E-6
Ethylbenzene ,	7.4E-4	1.0E+0	7.4E-4	9.8E-3	7.2E-6	7.2E-6
Toluene	5.2E-4	1.0E+0	5.2E-4	9.8E-3	5.1E-6	5.1E-6
Xylene (mixed isomers)	6.8E-4	1.0E+0	6.8E-4	9.8E-3	6.7E-6	6.7E-6

Serial G-395-PMX-154

EF = Exposure frequencey (days/yr)
IR = Intake rate (L/day or mg/day)

Software: GSI RBCA Spreadsheet Version: v 1.0

POE = Point of exposure

@ Groundwater Services, Inc. (GSI), 1995. All Rights Reserved.

NOTE: AT = Averaging time (days)

BW = Body Weight (kg)
CF = Units conversion factor

ED = Exp duration (yrs)

CARCINOGENIC RI	PATHWAY RISK CALCUI	By: L.J. McGahan _ATION PATHWAYS ARE ACTIVE)	Date Completed:		1 OF
CARCINOGENIC RI	CHECKED IF				र स्ट्राप्त
CARCINOGENIC RI		ATHWAYS ARE ACTIVE			KKD3
CARCINOGENIC RI		r region amor amamag <u>aria</u> .	<u> </u>		
(0) (.) (.)			TOXIC EFFECTS	<u> </u>	الستنت
inogenic (3) inhalation g/kg/day) Slope Factor	(4) Individual COC Risk (2) x (3)	(5) Total Toxicant Intake Rate (mg/kg/ɗay	(6) Inhafation Reference Dose	(7) Individual COC Hazard Quotlent (5) / (6)	
(mg/kg-day)^-1	On-Site Commercial	On-Site Commercial	(mg/kg-day)	On-Site Commercial	
1.0E-1	1.4E-9	4.0E-8	1.7E-3	2.4E-5	
		8.8E-8	2.9E-1	3.1E-7	
		4.8E-8	1.1E-1	4.2E-7	\neg
		1.2E-7	2 0E+0	5.8E-8	
y Carcinogenic Risk =	1.4E-9 0.0E+0	Total Path	wav Hazard Index = [2.4E-5 0.0E+0	
		(mg/kg-day)^-1 Commercial 1.0E-1 1.4E-9	On-Site	On-Site On-Site Commercial (mg/kg-day)	On-Site On-Site Commercial Commercial Commercial (mg/kg-day) Commercial Commercial Commercial 1.0E-1 1.4E-9 4.0E-8 1.7E-3 2.4E-5 8.8E-8 2.9E-1 3.1E-7 4.8E-8 1.1E-1 4.2E-7 1.2E-7 2.0E+0 5.8E-8

@ Groundwater Services, Inc. (GSI), 1995. All Rights Reserved

Serial: G-395-PMX-154 Software, GSI RBCA Spreadsheet

Version, v 1.0

	RBCASI	TE ASSESSM	ENT					Tier 2	Worksheet 8.2	
		Site Location:	Pleasanton, C	CA	Completed By: I	L.J. McGahan		Date Completed	1: 8/21/1997	2
			TIER 2	PATHWAY RI	SK CALCULAT	ION				
	Anna Carlos Carlos Anna Anna Anna Anna Anna Anna Anna Ann	med to the same		************ !!!	(CHECKED IF PAT	HWAYS ARE ACT	Veja i i i i i i i i i i i i i i i i i i i			12222
(1) EPA Carcinogenic		-	(3) Oral Slope Factor					(6) Oral Reference Dose	(7) Indiv	ndual COC otient (5) / (6)
Classificatio n	On-Site Residential	On-Site Commercial		On-Site Residential	On-Site Commercial	On-Site Residential	On-Site Commercial	(mg/kg-day)	On-Site Residential	On-Site Commercial
_ <u> </u>			1.0E-1							
								1,0E-1		
								2.0E-1		
<u>D</u>		l	<u> </u>			L		2.0E+0		
	Total Path	way Carcinog	enic Risk ≃	0.0E+0	0.0E+0]	Total Pathway h	lazard Index =	0.0E+0	0.0E+0
						*************************************]
	(1) EPA Carcinogenic Classificatio	(1) EPA (2) Total C Intake Rate Carcinogenic Classificatio	Carcinogenic Classificatio n Residential Commercial A D D D D	Site Location: Pleasanton, C TIER 2 CARCINOGENIC (1) EPA (1) EPA Carcinogenic Classificatio n Residential Commercial New York Carcinogenic Classificatio New York New York Carcinogenic Classificatio New York	Site Location: Pleasanton, CA TIER 2 PATHWAY RI CARCINOGENIC RISK (2) Total Carcinogenic (3) Orat (4) Indiv (1) EPA Intake Rate (mg/kg/day) . Slope Factor Risk Carcinogenic Classificatio On-Site On-Site Residential Commercial (mg/kg-day)^-1 On-Site Residential A 1.0E-1 D D D D	Site Location: Pleasanton, CA Completed By: ITIER 2 PATHWAY RISK CALCULAT LA (CHECKED IF PATHWAY RISK CALCULAT CARCINOGENIC RISK (1) EPA (2) Total Carcinogenic (3) Orat (4) Individual COC Risk (2) x (3) Carcinogenic Classificatio On-Site On-Site Residential Commercial (mg/kg-day)^-1 On-Site Residential On-Site Commercial A 1.0E-1 D D D D D D D D D D D D D D D D D D D	Site Location: Pleasanton, CA Completed By: L.J. McGahan TIER 2 PATHWAY RISK CALCULATION LI ICHESKED IF PATHWAYS ARE ACT CARCINOGENIC RISK (2) Total Carcinogenic (3) Oral (4) Individual COC (5) Total (1) EPA Intake Rate (mg/kg/day) . Slope Factor Risk (2) x (3) Intake Rate (actinogenic Classificatio On-Site Residential Commercial (mg/kg-day)^-1 On-Site Residential On-Site Commercial On-Site Residential DD	Site Location: Pleasanton, CA Completed By: L.J. McGahan TIER 2 PATHWAY RISK CALCULATION CARCINOGENIC RISK (2) Total Carcinogenic (3) Orat (4) Individual COC (5) Total Toxicant Intake Rate (mg/kg/day) . Slope Factor Risk (2) x (3) Intake Rate (mg/kg/day) Carcinogenic Classificatio On-Site Residential Commercial (mg/kg-day)^-1 On-Site Residential On-Site Commercial On-Site Residential On-Site Commercial On	Site Location: Pleasanton, CA Completed By: L.J. McGahan Date Completed TIER 2 PATHWAY RISK CALCULATION D1 (CHECKER IF PATHWAYS ARE ACTIVE) CARCINOGENIC RISK TOXIC EFFECTS (1) EPA Intake Rate (mg/kg/day) . Slope Factor Risk (2) x (3) Intake Rate (mg/kg/day) Reference Dose Carcinogenic Classificatio On-Site Residential Commercial (mg/kg-day)^-1 On-Site Residential On-Site Commercial On-Site Residential Commercial (mg/kg-day) 1.0E-1 D	Site Location: Pleasanton, CA Completed By: L.J. McGahan Date Completed: 8/21/1997 TIER 2 PATHWAY RISK CALCULATION CARCINOGENIC RISK CARCINOGENIC RISK TOXIC EFFECTS (2) Total Carcinogenic (1) EPA Intake Rate (mg/kg/day) - Slope Factor Risk (2) x (3) Intake Rate (mg/kg/day) Reference Dose Hazard Quantum Classificatio On-Site Residential Commercial (mg/kg-day)^1 On-Site Residential On-Site Commercial On-Site Commercial (mg/kg-day) On-Site Residential On-Site Commercial On-Site Commercial (mg/kg-day) On-Site Residential On-Site Commercial On-Site Commercial (mg/kg-day) On-Site Residential On-Site Commercial On-Site Commercial On-Site Commercial On-Site Commercial On-Site Commercial (mg/kg-day) On-Site Residential On-Site Commercial On-Site Co

Version: v 1 0

@ Groundwater Services, Inc (GSI), 1995 All Rights Reserved

Site Name: Exxon 7-7003			Site Location	: Pleasanton,	CA	Completed E	βγ: L.J. McGaha	n	Date Complete	d: 8/21/1997	3
				TIER 2 PATH							<u>-</u>
GROUNDWATER EXPOSURE PA	THWAYS		one military is		¥####################################	CHECKED IF	PATHWAYS ÂRE	ACTIVEP 2: 22	. 15 80 a 20.5 a a a a a a a a a a a a a a a a a a a	emperatura en	
		110.00.00.00.00.00.00.00.00.00.00.00.		RCINOGENIC R		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- I - I - I - I - I - I - I - I - I - I	1 - 100 5 5 7 70 00 00 00 00 00 00 00 00 00 00 00 0	TOXIC EFFECTS	**********	•••••••••••••••••••••••••••••••••••••••
		(2) Total C	arcinogenic	(3) Oral	(4) Indivi	dual COC	(5) Total	I Toxicant	(6) Oral	(7) Individ	dual COC
	(1) EPA Intake Rate (mg/kg/c		(mg/kg/day)	Slope Factor	ppe Factor Risk (2) x (3)		Intake Rate	Intake Rate (mg/kg/day)		Hazard Quo	tient (5) / (6)
	Carcinogeni c Classificati	On-Site			On-Site		On-Site			On-Site	1
Constituents of Concern	on	Commercial		(mg/kg-day)^-1	Commercial		Commercial		(mg/kg-day)	Commercial	
Benzene	A	2.0E-6		1.0E-1	2.0E-7						
Ethylbenzene	D						7.2E-6		1.0E-1	7.2E-5	
Toluene	D						5.1E-6		2.0E-1	2,5E-5	
Xylene (mixed isomers)	Ð					<u> </u>	6.7E-6		2.0E+0	3.3E-6	
		Total Path	way Carcinog	renic Risk =	2.0E-7	0.0E+0	⊤ ot	al Pathway H	lazard index =	1.0E-4	0.0E+0
			,		· · · · · · · · · · · · · · · · · · ·	ł					· · · · · · · · · · · · · · · · · · ·

© Groundwater Services, Inc. (GSI), 1995. All Rights Reserved

Serial G-395-PMX-154 5

Software. GSI RBCA Spreadsheet

Version: v 1 0

RBCA SITE ASSESSMENT

Tier 2 Worksheet 8.3

Site Name: Exxon 7-7003 Site Location: Pleasanton, CA Completed By: L.J. McGahan Date Completed: 8/21/1997

1 of 1

		BASELIN	IE CARCINC	GENIC RISK			BASEL	INE TOXIC E	FFECTS	
	Individual	COC Risk	Cumulativ	e COC Risk	Risk Limit(s) Exceeded?	Hazard	Quotient	Hazar	d Index	Toxicity Limit(s) Exceeded?
EXPOSURE PATHWAY	Maximum Value	Target Risk	Total Value	Target Risk		Maximum Value	Applicable Limit	Total Value	Applicable Limit	
AIR EXPOSURE	PATHWAYS	J. 4500 No. 3 1986	Burgajo vintais ja. T	11 julija - 12 jul			. 1000 1000 1000 1000 1000 1000 1000 10	7	i entervene en	
Complete:	1.4E-9	1.0E-6	1.4E-9	N/A		2.4E-5	1.0E+0	2.4E-5	N/A	
GROUNDWATER	EXPOSURE P	ATHWAYS		Angeles (1997) (engenger og styrende skalende skalende skalende skalende skalende skalende skalende skalende skalende skalende engelskalende skalende skalend		Constitution (Constitution Constitution Cons		Angres (2000) Turki Angres (2000) Turki Angres (2000) Angres	
Complete:	2.0E-7	1.0E-6	2.0E-7	N/A		7.2E-5	1.0E+0	1.0E-4	N/A	
SOIL EXPOSURE	PATHWAYS									
Complete:	0.0E+0	1.0E-6	0.0E+0	N/A		0.0E+0	1.0E+0	0.0E+0	N/A	
0.000			0700000							
CRITICAL EXPO	SURE PATHWA	Y (Select M	aximum Valu	es From Compl	ete Pathways)					
	2.0E-7	1.0E-6	2.0E-7	N/A		7.2E-5	1.0E+0	1.0E-4	N/A	
			000 0000000000000000000000000000000000	Marine Service	I de la companya de l	Language some comment		10000000000000000000000000000000000000		

Serial: G-395-PMX

Software: GSI RBCA Spreadsheet

Version. v 1.0

