

5900 Hollis Street, Suite A Emeryville, California 94608

Telephone:

(510) 420-0700 Fax: (510) 420-9170

www.CRAworld.com

				RANSMITTAL		
DATE:	July 14	. 2011		REFERENCE No.:	060119	
		-		PROJECT NAME:	2350 (2	368) Harrison Street, Oakland
To:	Jerry W	ickham				DEGENTED
	Alame	da County	Environmental	Health		RECEIVED
	1131 H	arbor Bay	Parkway, Suite 2	250		11:13 am, Jul 18, 2011
	Alame	da, Califor	nia 94502-6577			Alameda County
						Environmental Health
Please find	d enclose		Oraft	Final		
			Originals Prints	Other		
Sent via:		— ·	Anil			1
Sem via:			Mail Overnight Courier	Same Day Co Other Geo		nd Alameda County FTP
-						
QUAN	TITY			DESCRIPT	TION	
1		Soil Vapo	or Sampling Rep	ort		
					····	
	equested Your Use		⊠ Fo	r Review and Comment		
	ioui ose					
001 (1 (E)	N TOTAL					
COMME!		actions ro	garding the cent	ants of this document	nlagge go	Il Dator Calca afair at
	e any qu	estions re	garding the cont	ents of this document,	, please ca	ll Peter Schaefer at
If you hav (510) 420-	ve any qu 3319.					ll Peter Schaefer at
If you hav	ve any qu 3319. I	Denis Brov	vn, Shell Oil Pro	ducts US (electronic co	ору)	
If you hav (510) 420-	ve any qu 3319. I	Denis Brov	vn, Shell Oil Pro		ору)	
If you hav (510) 420-	re any qu 3319. I I	Denis Brov	vn, Shell Oil Produge, 490 Grand A	ducts US (electronic co	opy) kland, CA	94610

Mr. Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 Denis L. Brown Shell Oil Products US

HSE – Environmental Services 20945 S. Wilmington Ave. Carson, CA 90810-1039 Tel (707) 865 0251 Fax (707) 865 2542 Email denis.l.brown@shell.com

Re:

Former Shell Service Station 2350 (2368) Harrison Street

Oakland, California SAP Code 173318 Incident No. 97743969 ACEH No. RO0000505

Dear Mr. Wickham:

The attached document is provided for your review and comment. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

If you have any questions or concerns, please call me directly at (707) 865-0251.

Sincerely,

Denis L. Brown

Senior Program Manager

SOIL VAPOR SAMPLING REPORT

FORMER SHELL SERVICE STATION 2350 (2368) HARRISON STREET OAKLAND, CALIFORNIA

SAP CODE

173318

INCIDENT NO.

97743969

AGENCY NO.

RO0000505

JULY 14, 2011 REF. NO. 060119 (19) This report is printed on recycled paper.

Prepared by: Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, California U.S.A. 94608

Office: (510) 420-0700 Fax: (510) 420-9170

web: http:\\www.CRAworld.com

TABLE OF CONTENTS

			<u>Page</u>
EXÉC	UTIVE SU	MMARY	i
1.0	INTROD	UCTION	1
2.0	SAMPLIN 2.1 2.2 2.3	NG ACTIVITIES PERSONNEL PRESENT SAMPLING DATES SOIL VAPOR SAMPLING	1
3.0	FINDING 3.1 3.2	SSSOIL VAPORLEAK TESTING	2
4.0	CONCLU	ISIONS AND RECOMMENDATIONS	3

LIST OF FIGURES (Following Text)

FIGURE 1

VICINITY MAP

FIGURE 2

SOIL VAPOR DATA MAP

LIST OF TABLES (Following Text)

TABLE 1

HISTORICAL SOIL VAPOR ANALYTICAL DATA

LIST OF APPENDICES

APPENDIX A

CALSCIENCE ENVIRONMENTAL LABORATORIES, INC. - LABORATORY REPORTS

EXECUTIVE SUMMARY

- On March 30, 2011, CRA sampled soil vapor probes SVP-3 through SVP-5 for TPHg and VOCs. Because the March 30, 2011 results from near sub-slab soil vapor probes SVP-4 and SVP-5 appeared anomalous compared with the March 23, 2010 results, CRA resampled these probes on June 8, 2011.
- Soil vapor probes SVP-1, SVP-2, and SVP-2A could not be sampled during either sampling event due to water in the sampling tubing.
- The soil vapor sample collected from probe SVP-3 during the March 30, 2011 event contained TPHg and benzene at concentrations exceeding RWQCB ESLs for commercial land use. It should be noted that RWQCB ESL guidance advises that "TPH ESLs must be used in conjunction with ESLs for related chemicals (e.g. BTEX, polynuclear aromatic hydrocarbons, oxidizers, etc.)." In this case, VOCs would be the appropriate related chemicals, and only benzene was detected at a concentration above ESLs. These results are consistent with previous sampling events.
- The soil vapor sample collected from probe SVP-4 during the March 30, 2011 event contained TPHg and benzene at concentrations exceeding RWQCB ESLs for commercial land use. These apparently anomalous analytical results were not confirmed during the resampling conducted on June 8, 2011. No TPHg or VOC concentrations exceeded ESLs in the soil vapor sample collected from SVP-4 during the June 8, 2011 sampling event.
- The soil vapor sample collected from probe SVP-5 during the March 30, 2011 event contained TPHg at concentrations exceeding RWQCB ESLs for commercial land use. As stated above, the RWQCB ESL guidance advises that "TPH ESLs must be used in conjunction with ESLs for related chemicals (e.g. BTEX, polynuclear aromatic hydrocarbons, oxidizers, etc.)," and no VOCs were detected at concentrations above ESLs. In addition, TPHg analytical result from soil vapor sample collected from SVP-5 during the March 30, 2011 event was not confirmed during the resampling conducted on June 8, 2011. No TPHg was detected in the soil vapor sample collected from SVP-5 during the June 8, 2011 sampling event.
- Historically, TPHg and BTEX detections in soil vapor probes SVP-1 through SVP-3 have exceeded ESLs, but TPHg and BTEX concentrations from near sub-slab soil vapor probes SVP-4 and SVP-5, located within the sidewalk adjacent to the 7-Eleven store building, have been below ESLs. The June 8, 2011 sample results for SVP-4 and SVP-5 are similar to the results from the March 23, 2010 sampling event; therefore, the results from the March 30, 2011 event appear to be anomalous. No further soil vapor sampling is recommended.

i

1.0 <u>INTRODUCTION</u>

Conestoga-Rovers & Associates (CRA) prepared this report on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell) to document the recent soil vapor probe monitoring events, as requested in Alameda County Environmental Health's March 16, 2011 letter.

The subject property is a former Shell service station located on the southern corner of the Harrison Street and Bay Place intersection in Oakland, California (Figure 1). The layout of the former station (whose address was 2368 Harrison Street) included underground fuel storage tanks, a waste oil tank, three dispenser islands, and a station building (Figure 2). The site is currently occupied by a 7-Eleven Store, whose address is 2350 Harrison Street, and the area surrounding the station is predominantly a mix of commercial and residential use.

A summary of previous work performed at the site and additional background information was submitted in CRA's September 20, 2010 Subsurface Investigation Report and is not repeated herein.

2.0 <u>SAMPLING ACTIVITIES</u>

2.1 PERSONNEL PRESENT

CRA Staff Geologist Erin Swan sampled soil vapor probes SVP-3 through SVP-5 under the supervision of California Professional Geologist Peter Schaefer.

2.2 SAMPLING DATES

March 30, 2011 and June 6, 2011.

2.3 SOIL VAPOR SAMPLING

CRA sampled soil vapor probes SVP-3 through SVP-5 using a lung box and Tedlar[®] bag. Based on the March 30, 2011 results from soil vapor probes SVP-4 and SVP-5, CRA resampled these probes on June 8, 2011.

Prior to sampling each probe, CRA purged at least three tubing volumes of air from the vapor probe using a vacuum pump. Immediately after purging, a soil vapor sample was collected using a laboratory-supplied Tedlar® bag. During sampling, the Teflon® tubing for the vapor probe was connected to a lung box containing the Tedlar® bag, and the lung box chamber was connected to the vacuum pump. The sample was then drawn into the Tedlar® bag by reducing the pressure in the lung box with the vacuum pump. The samples were labeled, documented on a chain-of-custody, and submitted to Calscience Environmental Laboratories, Inc. of Garden Grove, California for analysis within 72 hours.

To check the system for leaks, a containment unit (or shroud) was placed to cover the soil gas probe surface casing and sampling manifold. Prior to soil gas probe purging, helium was introduced into the containment unit to obtain a minimum 50 percent helium content level. The helium content within the containment unit was confirmed using a helium meter. The helium meter reading is presented in Section 3.2. The sample was analyzed by the laboratory for helium, and CRA presents the results in Section 3.2 and on Table 1.

3.0 <u>FINDINGS</u>

3.1 SOIL VAPOR

The soil vapor samples collected from SVP-3 through SVP-5 on March 30, 2011 contained up to 26,000,000 micrograms per cubic meter ($\mu g/m^3$) total petroleum hydrocarbons as gasoline (TPHg), and samples from SVP-3 and SVP-4 contained up to 1,400 $\mu g/m^3$ benzene.

The soil vapor samples collected from SVP-4 and SVP-5 on June 6, 2011 contained up to $2.2 \,\mu g/m^3$ benzene. TPHg was not detected in these samples.

Table 1 summarizes historical soil vapor analytical data. TPHg, and benzene, toluene, ethylbenzene, and total xylenes (BTEX) results are shown on Figure 2, and the laboratory analytical reports are presented in Appendix A.

3.2 LEAK TESTING

CRA performed leak testing as described above, and up to 0.0184 percent by volume (%v) helium was detected in the samples. As shown in the following table, the

detections are less than 10 percent of the concentration detected in the shroud, and the samples are considered valid.

Probe ID	Date	Helium concentration in sample (%v)	Minimum Helium detected in shroud (%v)	Maximum acceptable helium concentration in sample (%v)
SVP-3	3/30/2011	<0.0100	62	6.2
SVP-4	3/30/2011	<0.0100	51	5.1
SVP-4	6/6/2011	<0.0100	50	5.0
SVP-5	3/30/2011	0.0184	56	5.6
SVP-5	6/6/2011	<0.0100	50	5.0

The laboratory analytical reports for helium are presented in Appendix A, and CRA includes the results on Table 1.

4.0 CONCLUSIONS AND RECOMMENDATIONS

On March 30, 2011, CRA sampled soil vapor probes SVP-3 through SVP-5 for TPHg and volatile organic compounds (VOCs). Because the March 30, 2011 results from near sub-slab soil vapor probes SVP-4 and SVP-5 appeared anomalous compared with the March 23, 2010 results, CRA resampled these probes on June 8, 2011.

The soil vapor sample collected from probe SVP-3 during the March 30, 2011 event contained TPHg and benzene at concentrations exceeding San Francisco Bay Regional Water Quality Control Board (RWQCB) environmental screening levels¹ (ESLs) for commercial land use. It should be noted that RWQCB ESL guidance advises that "TPH ESLs must be used in conjunction with ESLs for related chemicals (e.g. BTEX, polynuclear aromatic hydrocarbons, oxidizers, etc.)." In this case, VOCs would be the appropriate related chemicals, and only benzene was detected at a concentration above ESLs. These results are consistent with previous sampling events.

The soil vapor sample collected from probe SVP-4 during the March 30, 2011 event contained TPHg and benzene at concentrations exceeding RWQCB ESLs for commercial land use. These apparently anomalous analytical results were not confirmed during the resampling conducted on June 8, 2011. No TPHg or VOC concentrations exceeded ESLs in the soil vapor sample collected from SVP-4 during the June 8, 2011 sampling event.

Screening for Environmental Concerns at Site With Contaminated Soil and Groundwater, California Regional Water Quality Control Board, Interim Final – November 2007 [Revised May 2008]

The soil vapor sample collected from probe SVP-5 during the March 30, 2011 event contained TPHg at concentrations exceeding RWQCB ESLs for commercial land use. As stated above, the RWQCB ESL guidance advises that "TPH ESLs must be used in conjunction with ESLs for related chemicals (e.g. BTEX, polynuclear aromatic hydrocarbons, oxidizers, etc.)," and no VOCs were detected at concentrations above ESLs. In addition, the TPHg analytical result from soil vapor sample collected from SVP-5 during the March 30, 2011 event was not confirmed during the resampling conducted on June 8, 2011. No TPHg was detected in the soil vapor sample collected from SVP-5 during the June 8, 2011 sampling event.

Historically, TPHg and BTEX detections in soil vapor probes SVP-1 through SVP-3 have exceeded ESLs, but TPHg and BTEX concentrations from near sub-slab soil vapor probes SVP-4 and SVP-5, located within the sidewalk adjacent to the 7-Eleven store building, have been below ESLs. The June 8, 2011 sample results for SVP-4 and SVP-5 are similar to the results from the March 23, 2010 sampling event; therefore, the results from the March 30, 2011 event appear to be anomalous. No further soil vapor sampling is recommended.

All of Which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES

Peter Schaefer, CEG, CHG

Anney K. Cool, PG

FIGURES

Former Shell Service Station

2350 (2368) Harrison Street Oakland, California

Vicinity Map

TABLE

HISTORICAL SOIL VAPOR ANALYTICAL DATA FORMER SHELL SERVICE STATION 2350 (2368) HARRISON STREET, OAKLAND, CALIFORNIA

Sample ID	Date	Screened Interval (fbg)	TPHg	Acetone	Benzene	Carbon Disulfide	Chloro- form	Dichloro- difluoro- methane	Ethyl- benzene	4-Ethyl- toluene	Toluene	Total Xylenes	methyl-	1,2,4-Tri- methyl- benzene	Helium (%v)	Oxygen & Argon (%v)	Carbon Dioxide (%v)	Methane (%v)
•																		
SVP-1	5/28/2009	4.4-4.5		<3,000	52,000	<3,900	<1,500	<1,600	5,200	<1,500	5,000	6,500	<1,500	<3,100	0.195	-		
SVP-2	5/28/2009	4.4-4.5		44,000	530,000	<30,000	<12,000	<12,000	14,000	<12,000	<42,000	11,000	<12,000	<24,000	<0.0177			
SVP-2-DUP	5/28/2009	4.4-4.5		48,000	520,000	<31,000	<12,000	<12,000	12,000	<12,000	10,000	<43,000	<12,000	<24,000	0.165			
SVP-2	3/23/2010	4.4-4.5	75,000,000	<590,000 ^a	160,000 ^a	<160,000ª	<12,000 ^a	<12,000 ^a	<11,000 ^a	25,000 ^a	<94,000°	160,000 ^a	32,000 ^a	61,000 ^a	<0.0100	2.43	9.46	10.8
SVP-3	E /20 /2000	4445		<670	2,400	1,000	<340	<350	370	<350	550	1,400	<350	<690	0.266			
	5/28/2009	4.4-4.5	24 000 000	<24,000 ^a	1,400 ^a	<6,200 ^a	<490 ^a	<490 ^a	<430 ^a	<490 ^a	<3,800 ^a	<1,700 ^a	<490 ^a	<1,500 ^a	<0.0100	1.94	10.7	5.59
SVP-3	3/23/2010	4.4-4.5	24,000,000	•	•	•	<310 ^a	<310 ^a	<270 ^a	<310 ^a	<2,400 ^a	1,700 ^a	<310 ^a	<920 ^a	<0.0100	1.81	10.7	6.30
SVP-3	3/30/2011	4.4-4.5	26,000,000	<15,000 ^a	1,400 ^a	<3,900ª	<310	\310	\2/0	\310	\2,400	1,700	\310	\920	\0.0100	1.61	10.8	0.30
SVP-4 ^b	3/23/2010	NA	<8,300	27	<2.3	<9.0	7.2	<3.6ª	<3.1	<3.5	<2.7	<13	<3.5	<11	<0.0144	14.5	<0.720	<0.720
SVP-4 ^b	3/30/2011	NA	190,000	<1,200 ^a	950 ^a	<310 ^a	100 ^a	<25 ^a	<22ª	<25ª	<190 ^a	<87 ^a	<25 ^a	<74 ^a	< 0.0100	19.6	0.654	< 0.500
SVP-4 ^b	6/8/2011	NA	<7,000	<120 ^a	2.2ª	<31ª	19ª	2.6 ^a	3.9 ^a	<2.5ª	<19 ^a	17 ^a	<2.5 ^a	<7.4 ^a	<0.0100	19.8	1.01	<0.500
SVP-5 ^b	3/23/2010	NA	<9,400	<7.7	<2.6	<10	7.2	<4.0 ^a	<3.5	<4.0	<3.1	<14	<4.0	<12	<0.0163	12.0	1.20	<0.815
SVP-5 ^b	3/30/2011	NA	30,000	<120 ^a	26ª	<31 ^a	<2.4 ^a	<2.5 ^a	12 ^a	6.7^{a}	<19 ^a	22 ^a	6.3ª	17ª	0.0184	16.8	2.41	< 0.500
		NA NA				<31 ^a	<2.4°	2.6 ^a	5.4ª	<2.5 ^a	<19 ^a	24 ^a	<2.5 ^a	<7.4 ^a	< 0.0101	18.2	1.95	<0.500
SVP-5 ^b	6/8/2011	INA	<7,000	<120 ^a	2.0 ^a	\31	<2.4	2.0	5.4	\2. 3	\19	24	\2. 3	\7.4	\0.0100	10.2	1.53	~0.500
Trip Blank	5/28/2009			<4.8	<1.6	<6.2	<2.4	<2.5	<2.2	<2.5	<1.9	<8.7	<2.5	<4.9	<0.0100			
SFRWQCB I Shallow Soil	ESLs ^c l Gas Commei	rcial	29,000	1,800,000	280	NA	1,500	NA	3,300	NA	180,000	58,000	NA	NA	NA	NA	NA	NA

Notes:

All results in micrograms per cubic meter ($\mu g/m^3$) unless otherwise indicated.

fbg = Feet below grade

%v = Percentage by volume

Volatile organic compounds analyzed by EPA TO-15. All detected analytes tabulated; see laboratory report for a complete list of specific constituents and results.

TPHg = Total petroleum hydrocarbons as gasoline analyzed by EPA Method TO-3M

Helium analyzed by ASTM D-1946 (M)

Oxygen and argon, carbon dioxide, and methane analyzed by ASTM D-1946.

--- = Not analyzed

NA = No applicable ESL

ESL = Environmental screening level

a = Laboratory method EPA TO-15 was modified to use Tedlar® bags instead of Summa canisters.

HISTORICAL SOIL VAPOR ANALYTICAL DATA FORMER SHELL SERVICE STATION 2350 (2368) HARRISON STREET, OAKLAND, CALIFORNIA

b = Near sub-slab soil vapor probes

c = San Francisco Bay Regional Water Quality Control Board commercial land use ESL for soil gas for evaluation of potential vapor intrusion concerns (Table E of Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater, California Regional Water Quality Control Board, Interim Final - November 2007 [Revised May 2008]).

Results in **bold** equal or exceed applicable ESL

APPENDIX A

CALSCIENCE ENVIRONMENTAL LABORATORIES, INC. LABORATORY REPORTS

April 11, 2011

Peter Schaefer Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Subject: Calscience Work Order No.: 11-03-2120

> **Client Reference:** 2350 (2368) Harrison St., Oakland, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 3/31/2011 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc.

Xuan Dang

Project Manager

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method: Units:

03/31/11 11-03-2120

N/A **ASTM D-1946** %v

Project: 2350 (2368) Harrison St., Oakland, CA

Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analy		QC Batch ID
SVP-3			ind et	13-21-20-1-Av	03/30/11 12/33	Air	GC 36	N/A	03(3) 121		1103311-01
Parameter Methane Carbon Dioxide	Result 6.30 10.8	<u>RL</u> 0.500 0.500	<u>DF</u> 1 1	Qual	<u>Parameter</u> Oxygen + Argon			Result 1.81	<u>RL</u> 0.500	<u>DF</u> 1	Qual
SVP-4			41.)3,2120-2-A	03/30/11 12/00	Air	GC 36	N/A	: 13/81 12:/		::110331L01::::
Parameter Methane Carbon Dioxide	Result ND 0.654	<u>RL</u> 0.500 0.500	<u>DF</u> 1 1	<u>Qual</u>	Parameter Oxygen + Argon			Result 19.6	<u>RL</u> 0.500	<u>DF</u> 1	Qual
svP.5			11.4	3-2120-3-A	1087501411 (22.48	Air	GC 36	N/A	:: 03/3/ 12/		.110331L01 (:
Parameter Methane Carbon Dioxide	Result ND 2.41	RL 0.500 0.500	<u>DF</u> 1 1	Qual	<u>Parameter</u> Oxygen + Argon			Result 16.8	<u>RL</u> 0.500	<u>DF</u> 1	Qual
Method Blank		in the second	099	-03-002-1,269	N/A	Air	GC 36	N/A	03/3 08:		110331L01
Parameter Methane Carbon Dioxide	Result ND ND	<u>RL</u> 0.500 0.500	<u>DF</u> 1 1	<u>Qual</u>	Parameter Oxygen + Argon			<u>Result</u> ND	<u>RL</u> 0.500	<u>DF</u> 1	Qual

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No:

Preparation:
Method:

N/A EPA TO-3M

11-03-2120

03/31/11

Project: 2350 (2368) Harrison St., Oakland, CA

Client Sample Number			Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVP-3	(1) (1) (1) (4) (3) (5) (1) (1) (1)		. 11-03-2120-1-A	2 : 03/30/11 1/2:38	Air	GC 13	N/A	0331/11 12:27	1103311.01
Parameter TPH as Gasoline		Result 26000000	<u>RL</u> 140000	<u>DF</u> 20	Qual	<u>Units</u> ug/m3			
SVR-4			11-03-2120-2-A	- 103/30/11/11 12100	Ar	, GC 13	L NATE	- 02081/461 1391/1	1103311.01
<u>Parameter</u> TPH as Gasoline		Result 190000	<u>RL</u> 7000	<u>DF</u> 1	Qual	<u>Units</u> ug/m3			
SVP-5			11-03-2120-3-A	03/30/11 12:48	-8: Alf		NA.	i pokistiá i s Pokistiá	. 21:103811L01:
Parameter TPH as Gasoline		Result 30000	<u>RL</u> 7000	<u>DF</u> 1	<u>Qual</u>	<u>Units</u> ug/m3			
Method Blank			098-01-005-3.03	O NA	, Air	== GC 13	N/A	1 0330/4(1 1 (0.08/23)	(*1410384) L011
Parameter TPH as Gasoline		Result ND	<u>RL</u> 7000	<u>DF</u> 1	Qual	<u>Units</u> ug/m3			

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No:

03/31/11

A

11-03-2120

Preparation:

N/A

Method:

ASTM D-1946 (M)

Project: 2350 (2368) Harrison St., Oakland, CA

Client Sample Number		Lab Sample Number 11-03-2120-1-A	Date/Time Collected 03/30/11 12:33	Matrix Air	Instrument GC 55	Date Prepared N/A	Date/Time Analyzed 03/31/11 13:34	QC Batch ID
<u>Parameter</u> Helium	Result ND	<u>RL</u> 0.0100	<u>DF</u> 1	Qual	<u>Units</u> %v			
SVP4		11-03-2120-2-A	03/30/11 12:00	Air	GC 55	N/A	05/51/11 14:01	1103311-01
<u>Parameter</u> Helium	<u>Result</u> ND	<u>RL</u> 0.0100	<u>DF</u> 1	Qual	<u>Units</u> %v			
SVP-5		:11-03-2120-3-A	.03/30/14 7 12:48	Ar	GC 55	N/A	ir (13/81/11) [4/23]	110331L01
<u>Parameter</u> Helium	<u>Result</u> 0.0184	<u>RL</u> 0.0100	<u>DF</u> 1	Qual	<u>Units</u> %v			
Method Blank		.099412-872-87	· NA	Air	GC 55	N/A	108/8//-1: 1/2/28	110331L01
<u>Parameter</u> Helium	<u>Result</u> ND	<u>RL</u> 0.0100	<u>DF</u> 1	<u>Qual</u>	<u>Units</u> %v		• .	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: 03/31/11 11-03-2120 N/A

Preparation Method: Units:

EPA TO-15M ug/m3

Project: 2350 (2368) Harrison St., Oakland, CA

Olicut Camarla Numbar				Sample	Date/Time	Matrix	Instrument	Date Prepared	Date/Ti Analvz		QC Batch ID
Client Sample Number		District profession of	na tradució destibió e a se	mber	Collected		122-015-0101070595-010107	ELISTER CHARGE SERVICE AND ADDRESS.	Colored Toleran process of the	.Gu	CONTRACTOR OF THE PROPERTY OF
SVP-3			11-03-21	20-1-A	03/30/11 - 12:33	Air	GC/MS ZZ	N/A	03/31/ 20:1		110331L01
					12.00	5.000					Participation in
Comment(s): -The method has been	modified to	use Tedla	r bags inst	tead of S	umma Canisters	3 .					
<u>Parameter</u>	Result	<u>RL</u>	DF 9	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Acetone	ND	15000	125		t-1,3-Dichlorop	ropene		ND	570	125	
Benzene	1400	200	125		Ethanol	•		ND	12000	125	
Benzyl Chloride	ND	970	125		Ethyl-t-Butyl Et	ther (ETBE	E)	ND	1000	125	
Bromodichloromethane	ND	420	125		Ethylbenzene	•	•	ND	270	125	
Bromoform	ND	650	125		4-Ethyltoluene			ND	310	125	
Bromomethane	ND	240	125		Hexachloro-1,3	3-Butadiene	Э	ND	2000	125	
2-Butanone	ND	550	125		2-Hexanone			ND	770	125	
Carbon Disulfide	ND	3900	125		Methyl-t-Butyl	Ether (MTE	3E)	ND	900	125	
Carbon Tetrachloride	ND	390	125		Methylene Chi	oride		ND	2200	125	
Chlorobenzene	ND	290	125		4-Methyl-2-Per	ntanone		ND	770	125	
Chloroethane	ND	160	125		Naphthalene			ND	6600	125	
Chloroform	ND	310	125		Xylenes (total)			1700	1100	125	
Chloromethane	ND	130	125		Styrene			ND	800	125	
Dibromochloromethane	ND	530	125		Tert-Amyl-Met	hyl Ether (1	ГАМЕ)	ND	1000	125	
Dichlorodifluoromethane	ND	310	125		Tert-Butyl Alco	ohol (TBA)		ND	1900	125	
Diisopropyl Ether (DIPE)	ND	1000	125		Tetrachloroeth	ene		ND	420	125	
1,1-Dichloroethane	ND	250	125		Toluene			ND	2400	125	
1,1-Dichloroethene	ND	250	125		Trichloroethen	e		ND	340	125	
1,2-Dibromoethane	ND	480	125		Trichlorofluoro	methane		ND	700	125	
Dichlorotetrafluoroethane	ND	1700	125		1,1,2-Trichlord	o-1,2,2-Trifl	luoroethane	ND	1400	125	
1,2-Dichlorobenzene	ND	380	125		1,1,1-Trichlord	ethane		ND .	340	125	
1,2-Dichloroethane	ND	250	125		1,1,2-Trichlord	oethane		ND	340	125	
1,2-Dichloropropane	ND	290	125		1,3,5-Trimethy	/lbenzene		ND	310	125	
1,3-Dichlorobenzene	ND	380	125		1,1,2,2-Tetrac	hloroethan	e	ND	860	125	
1,4-Dichlorobenzene	ND	380	125		1,2,4-Trimethy	/lbenzene		ND	920	125	
c-1,3-Dichloropropene	ND	280	125		1,2,4-Trichlord	obenzene		ND	1900	125	
c-1,2-Dichloroethene	ND	250	125		Vinyl Acetate			ND	880	125	
t-1,2-Dichloroethene	ND	250	125		Vinyl Chloride			ND '	160	125	
Surrogates:	REC (%)	Control Limits	Qual		Surrogates:			REC (%)	Control Limits	<u>C</u>	tual
1,4-Bromofluorobenzene	167	57-129		2	1.2-Dichloroet	hane-d4		90	47-137		
Toluene-d8	42	78-156		2							
10,001,000	_			_							

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A

Emeryville, CA 94608-2008

Date Received:

03/31/11

Work Order No:

11-03-2120

Preparation: Method:

N/A EPA TO-15M

Units:

ug/m3

Project: 2350 (2368) Harrison St., Oakland, CA

Page 2 of 4

Client Sample Number		-,	L	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz	ed	QC Batch ID
SVP4			11-03	2120-2-A	03/30/11 12:00	Air.	GC/MS ZZ	N/A	03/31/ 17:0	11) 1	110331L01
Comment(s): -The method has been	en modified to u	use Tedlar	bags	instead of S	umma Canisters						
Parameter	Result		<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Acetone	ND	1200	10		t-1,3-Dichlorop	ropene	•	ND	45	10	
Benzene	950	16	10		Ethanol	•		ND	940	10	
Benzyl Chloride	ND	78	10		Ethyl-t-Butyl Et	her (ETBE	E)	ND	84	10	
Bromodichloromethane	ND	34	10		Ethylbenzene	•		ND	22	10	
Bromoform	ND	52	10		4-Ethyltoluene			ND	25	10	
Bromomethane	ND .	19	10		Hexachloro-1,3	3-Butadien	е	ND	160	10	
2-Butanone	ND	44	10		2-Hexanone			ND	61	10	• •
Carbon Disulfide	ND	310	10		Methyl-t-Butyl	Ether (MTI	3E)	ND	72	10	
Carbon Tetrachloride	ND	31	10		Methylene Chi	oride		ND	170	10	
Chlorobenzene	ND	23	10		4-Methyl-2-Per	ntanone		ND	61	10.	
Chloroethane	ND	13	10		Naphthalene			ND	520	10	
Chloroform	100	24	10		Xylenes (total)			ND	87	10	
Chloromethane	ND	10	10		Styrene			ND	64	10	
Dibromochloromethane	ND	43	10		Tert-Amyl-Met	hyl Ether (TAME)	ND	84	10	
Dichlorodifluoromethane	ND	25	10		Tert-Butyl Alco	ohol (TBA)		ND	150	10	
Diisopropyl Ether (DIPE)	ND	84	10		Tetrachloroeth	ene		ND	34	10	
1,1-Dichloroethane	ND	20	10		Toluene			ND	190	10	
1,1-Dichloroethene	ND	20	10		Trichloroethen	е		ND	27	10	
1,2-Dibromoethane	ND	38	10		Trichlorofluoro			ND	56	10	
Dichlorotetrafluoroethane	ND	140	10		1,1,2-Trichlord)-1,2,2-Trif	luoroethane	ND	110	10	
1,2-Dichlorobenzene	ND	30	10		1,1,1-Trichlord			ND	27	10	
1,2-Dichloroethane	ND	20	10		1,1,2-Trichlord			ND	27	10	
1,2-Dichloropropane	ND	23	10		1,3,5-Trimethy			ND	25	10	
1,3-Dichlorobenzene	ND	30	10		1,1,2,2-Tetrac		e	ND	69	10	
1,4-Dichlorobenzene	ND	30	10		1,2,4-Trimethy			ND	74	10	
c-1,3-Dichloropropene	ND	23	10		1,2,4-Trichlor	benzene		ND	150	10	
c-1,2-Dichloroethene	ND ·	20	10		Vinyl Acetate			ND	70	10	
t-1,2-Dichloroethene	ЙD	20	10		Vinyl Chloride			ND	13	10	
Surrogates:	REC (%)	Control Limits	Q	<u>ual</u>	Surrogates:			<u>REC (%)</u>	<u>Limits</u>	<u>C</u>	<u>}ual</u>
1,4-Bromofluorobenzene	104	57-129			1,2-Dichloroet	hane-d4		93	47-137		
Toluene-d8	95	78-156									

Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

03/31/11

Work Order No: Preparation:

11-03-2120

Method:

EPA TO-15M

Units:

ug/m3

N/A

Project: 2350 (2368) Harrison St., Oakland, CA

Page 3 of 4

Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz		QC Batch ID
SVP-5			71 (03)	2120:3.A	108/(\$10/41) 12/4/8	(Air)	GC/MS/ZZ	N/A	/ 03/31/ 17:4		-110331E01 ::
Comment(s): -The method has been	modified to	use Tedlar	bags	instead of S	umma Canisters	3 .					
Parameter	Result		DF	<u>Qual</u>	<u>Parameter</u>			<u>Result</u>	RL	DF	<u>Qual</u>
Acetone	ND	120	1		t-1,3-Dichlorop	ropene		ND	4.5	1	
Benzene	26	1.6	1		Ethanol	•		ND	94	1	
Benzyl Chloride	ND	7.8	1		Ethyl-t-Butyl E	ther (ETBE)	ND	8.4	1	
Bromodichloromethane	ND	3.4	1		Ethylbenzene	•		12	2.2	1	
Bromoform	ND	5.2	1		4-Ethyltoluene	6.7	2.5	1			
Bromomethane	ND ·	1.9	1		Hexachloro-1,3	ND	16	1			
2-Butanone	ND	4.4	1		2-Hexanone	ND ·	6.1	1			
Carbon Disulfide	ND	31	1		Methyl-t-Butyl	Ether (MTE	BE)	ND	7.2	1	
Carbon Tetrachloride	ND ·	3.1	1		Methylene Chi	oride		ND	17	1	
Chlorobenzene	ND .	2.3	1		4-Methyl-2-Pe	ntanone		ND	6.1	1	
Chloroethane	ND	1.3	1		Naphthalene	ND	52	1			
Chloroform	ND	2.4	1		Xylenes (total)			22	8.7	1	
Chloromethane	ND	1.0	1		Styrene			ND	6.4	1	
Dibromochloromethane	ND	4.3	1		Tert-Amyl-Met	hyl Ether (ΓAME)	ND	8.4	1	
Dichlorodifluoromethane	ND	2.5	1		Tert-Butyl Alco	ohol (TBA)		ND	15	1	
Diisopropyl Ether (DIPE)	ND	8.4	1		Tetrachloroeth	ene		ND	3.4	1	
1,1-Dichloroethane	ND	2.0	1		Toluene			ND	19	1	
1,1-Dichloroethene	ND '	2.0	1 .		Trichloroether	ne		ND	2.7	1	
1,2-Dibromoethane	ND	3.8	1		Trichlorofluoro	methane		ND	5.6	1	
Dichlorotetrafluoroethane	ND	14	1		1,1,2-Trichlord	o-1,2,2-Trif	uoroethane	ND	11	1	
1,2-Dichlorobenzene	ND	3.0	1		1,1,1-Trichlore	cethane		ND	2.7	1	
1,2-Dichloroethane	ND	2.0	1		1,1,2-Trichlore	oethane		ND	2.7	1	
1,2-Dichloropropane	ND	2.3	1		1,3,5-Trimethy	ylbenzene		6.3	2.5	1	
1,3-Dichlorobenzene	ND	3.0	1		1,1,2,2-Tetrac	hloroethan	е	ND	6.9	1	
1,4-Dichlorobenzene	ND	3.0	1		1,2,4-Trimethy	ylbenzene		17	7.4	- 1	
c-1,3-Dichloropropene	ND	2.3	1		1,2,4-Trichlore	obenzene		ND	15	1	
c-1,2-Dichloroethene	ND	2.0	1		Vinyl Acetate			ND	7.0	-1	
t-1,2-Dichloroethene	ND	2.0	1		Vinyl Chloride			ND	1.3	1	
Surrogates:	REC (%)	Control Limits	Qı	<u>ual</u>	Surrogates:			REC (%)	Control Limits		Qual
1.4-Bromofluorobenzene	118	57-129			1,2-Dichloroe	thane-d4		96	47-137		
Toluene-d8	81	78-156									
r Gidono-do											

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: Units: 03/31/11 11-03-2120 N/A

EPA TQ-15M ug/m3

Project: 2350 (2368) Harrison St., Oakland, CA

Page 4 of 4

Client Sample Number		-		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tir Analyze		QC Batch ID
Method Blank			099	12 981 1 172	N/A	Air	(CC))NS ZZ	N/A	03/81/1 13:35		1103311.01
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result		<u>DF</u>	Qual
Acetone	ND	120	1		t-1,3-Dichlorop	ropene		ND	4.5	1	
Benzene	ND	1.6	1		Ethanol			ND	94	1	
Benzyl Chloride	ND.	7.8	1		Ethyl-t-Butyl E	ther (ETBE)	ND	8.4	1	
Bromodichloromethane	ND	3.4	1		Ethylbenzene			ND -	2.2	1	
Bromoform	ND	5.2	1		4-Ethyltoluene			ND	2.5	1	
Bromomethane	ND	1.9	1		Hexachloro-1,3	3-Butadiene	•	ND	16	1	
2-Butanone	ND	4.4	1		2-Hexanone			ND	6.1	1	
Carbon Disulfide	ND	31	1		Methyl-t-Butyl	Ether (MTE	BE)	ND	7.2	1	
Carbon Tetrachloride	ND	3.1	1		Methylene Chl	oride		ND	17	1	
Chlorobenzene	ND	2.3	1		4-Methyl-2-Pe	ntanone		ND	6.1	1	
Chloroethane	ND	1.3	1		Naphthalene			ND	52	1	
Chloroform	ND	2.4	1		Xylenes (total)			ND	8.7	1	
Chloromethane	ND	1.0	1		Styrene			ND	6.4	1	
Dibromochloromethane	ND	4.3	1		Tert-Amyl-Met	hyl Ether (ΓAME)	ND	8.4	1	
Dichlorodifluoromethane	ND	2.5	1	•	Tert-Butyl Alco	ohol (TBA)		ND	15	1	
Diisopropyl Ether (DIPE)	ND	8.4	1		Tetrachloroeth	ene		ND	3.4	1	
1,1-Dichloroethane	ND	2.0	1		Toluene			ND	19	1	
1,1-Dichloroethene	ND	2.0	1		Trichloroether	ne		ND	2.7	1	
1,2-Dibromoethane	ND	3.8	1		Trichlorofluoro	methane		ND	5.6	1	
Dichlorotetrafluoroethane	ND	14	1		1,1,2-Trichlore	o-1,2,2-Trif	luoroethane	NĎ	11	1	
1,2-Dichlorobenzene	ND	3.0	1		1,1,1-Trichlore			ND	2.7	1	•
1.2-Dichloroethane	ND	2.0	1		1,1,2-Trichlore	oethane		ND	2.7	1	
1,2-Dichloropropane	ND	2.3	1		1,3,5-Trimethy			ND	2.5	1	
1,3-Dichlorobenzene	ND	3.0	1		1,1,2,2-Tetrac	hloroethan	е	ND	6.9	1	100
1.4-Dichlorobenzene	ND	3.0	1		1,2,4-Trimeth	ylbenzene		ND	7.4	1	
c-1,3-Dichloropropene	ND	2.3	1		1,2,4-Trichlor	obenzene		ND	15	1	
c-1,2-Dichloroethene	ND	2.0	1		Vinyl Acetate			ND	7.0	1	
t-1,2-Dichloroethene	ND	2.0	1		Vinyl Chloride			ND	1.3	1	•
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		Qual
1.4-Bromofluorobenzene	100	57-129			1,2-Dichloroe	thane-d4		99	47-137		
Toluene-d8	98	78-156			· ·						
10.00.10 00											

Quality Control - Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 03/31/11 11-03-2120 N/A EPA TO-3M

Project: 2350 (2368) Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
SVP-3	Air.	GC 13	N/A	03/31/11	110331001
Parameter	Sample Conc	DUP Conc	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	25660000	24980000	3	0-20	

Quality Control - LCS/LCS Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:
Work Order No:
Preparation:
Method:

N/A 11-03-2120 N/A ASTM D-1946

Project: 2350 (2368) Harrison St., Oakland, CA

Quality Control Sample ID		strument	Date Prepared	Date Analyzed 03/31/11	LCS/LCSD Bat Number 1/1033/1L01	ch
099-03-002-1,269		andre Diane en le la la companie de	Set to an income page to the control of the control		200 - Secondo Company de la co	
<u>Parameter</u>	LCS %REC	LCSD %RE	<u>C %REC</u>	CCL RPD	RPD CL	<u>Qualifiers</u>
Methane	95	96	80-1	120 0	0-30	
Carbon Dioxide	106	106	80-1	120 0	0-30	
Carbon Monoxide	103	103	80-	120 0	0-30	
Oxygen + Argon	92	93	80-1	120 0	0-30	
Nitrogen	98	99	80-	120 1	0-30	

Quality Control - LCS/LCS Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 11-03-2120 N/A ASTM D-1946 (M)

Project: 2350 (2368) Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		LCS/LCSD Batcl Number	n
099-12-872-87	Air LCS %RE	6C 55 EC LCSD 9	N/A %REC <u>%</u> F	03/31/41 REC CL	RPD	RPD CL	Qualifiers
Helium Hydrogen	102 111	103 112		80-120 80-120	0 0	0-30 0-30	

CL - Control Limit

Quality Control - LCS/LCS Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

N/A 11-03-2120 N/A EPA TO-15M

Project: 2350 (2368) Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal		LCS/LCSD E Number	
0994124981-1,177	: Air	TERMS ZZ	NA NA	103/31		11033110	n e e e e e e e e e e e e e e e e e e e
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	105	105	60-156	44-172	0	0-40	
Carbon Tetrachloride	112	112	64-154	49-169	0	0-32	
1,2-Dibromoethane	108	107	54-144	39-159	1	0-36	
1,2-Dichlorobenzene	91	91	34-160	13-181	1	0-47	
1,2-Dichloroethane	101	102	69-153	55-167	1	0-30	
1,2-Dichloropropane	104	104	67-157	52-172	1	0-35	
1,4-Dichlorobenzene	95	95	36-156	16-176	0	0-47	
c-1,3-Dichloropropene	109	111	61-157	45-173	2	0-35	
Ethylbenzene	106	107	52-154	35-171	1	0-38	
Naphthalene	70	69	40-190	15-215	1	0-30	
Xylenes (total)	106	107	52-148	36-164	1	0-38	
Tetrachloroethene	113	111	56-152	40-168	1	0-40	
Toluene	107	106	56-146	41-161	1	0-43	
Trichloroethene	106	106	63-159	47-175	0	0-34	
1,1,2-Trichloroethane	102	104	65-149	51-163	3	0-37	
Vinyl Chloride	96	97	45-177	23-199	1	0-36	

Total number of LCS compounds: 16 Total number of ME compounds: 0 Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 11-03-2120

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
, , , J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

LA	B (LOCATION)					!			She	ell Oil	Pro	od	luct	s C	hai	n O	f C	ısto	dy	Red	COI	ď					-
Z CALSCIE	ENCE (55555	Ple	ase Checl			e Box	é:::::::	Pri	nt Bil	li To	Cont	act Na	ime:				·in	CIDE	NT#	(EN	IV SE	RVI	DES)	Сн	ECK IF NO INCIDENT # APPLIES
SPL (_	<u> </u>		EN				SHELL RETAI											7	7					1	TE: 3/30/2011		
☐ XENCO	<u> </u>		[Two	TIVA SD&CM		ONSULT	ANT	76	LUBES	-	Pet	ter s	Schae		-14:00		141444		9			4 3 9 6 9 DA SAP#		1 5	DATE, 3/30/2011		
TEST A	MERICA (ANI		LODES					PO	#∷							9 % .	.#::::			PA	GE:1 of1_
OTHER	<u> </u>		☐ SHE	LL PIPELINE		THER_				_الـ									1	7	3	3	1	8			
MPLING COMP			···			LOG CO					DRESS: S		-						State				LID NO:	M22	27		
onestog	a-Rovers & Assoc	iates	<u> </u>			CRA	W			EDF DELME	(2368 RABLE TO	(Name,	AFFISO!	i St.,	Daki.	and	РН	ONE NO:	CA	<u> </u>		E-MAIL:	ויטטכ	022	31		CONSULTANT PROJECT NO
	is Street, Suite A, E		608							Brenda	a Carte	er, Cl	RA, Em	eryville	2		۔ ا					_6_81					
rovect com eter Sch	ACT (Hardcopy or PDF Report to)									SAMPLER		Print):			-		[5	0-420-3	343		!	Snelle	earwc	rawor		B USE	060119-95-10.06 DNL-Y
ELEPHONE:		FAX		E-MAIL:						Erin S	wan															/ 4	3 - 2120
	10-420-3319 OUND TIME (CALENDAR	510-42	0-9170		psch	аетепо	(crawork		S NEEDED																1888	U) 2199
			3 DAYS	2 DAYS	☐ 24 HO	URS			EEKEND		.=							REC	UEST	ED AI	NALY	SIS					
] LA - RW	VQCB REPORT FORMAT	UST AGEN	ICY:									T	T												-	1 1	TEMPERATURE ON RECEIPT
CDECI	AL INSTRUCTIONS	OR NOTES :			☑ SHELL	CONTR	ACT RATE	APPLIES		9,		1						ļ									TEMPERATURE ON RECEIP
Alad	126 tedlar 6005 nal report to Shell Li	which in 72 hrs	š .				JRSEMENT	RATE A	PPLIES	Siok	₩ 6	<u> </u>		-						Ī							
Copy fi	nal report to Shell.La	ab.Billing@crawor	ld.com		☐ EDD N					l vog	SS	Š						1	}					ļ	-	1 }	
	results in % by volun e report results i		leaded detection	limit of heles			FICATION			S.	scall VOCs, &	1							1	İ							
rieas	e report results i	ii µg/iiiior 8260. N		MPLING	i i eo pg/iii o ic	T 1, 1,2,	PRESER			/gen, Carbon Diokle,	Sca	2															
					MATRIX				NO.	of Ö	Methane Metho TPHg, Full sca	<u>a</u>							1								Container PID Readings
A/S	Field Sample	e Identification	DATE	TIME	MAIRO				ice CO	M. <u>ja</u>					-			j		İ					-		or Laboratory Notes
VS SE L/V						HCL	HNO3 H2SO	MONE			\$ F 2	<u> </u>		\sqcup	_		$\perp \perp$	<u> </u>				·	_	_	4	-	
								1			+-					1_											
								7																			
						1	+	1			1	1			╅		\vdash		1					_	1		
			3					-				-	-	\vdash	+	+			╁	 				-+	+-	1-1	
S	VP-3	<u></u>	3/30/	11 12:33	Vapor			X	+- +-	Х	X			LL	_				-	ļ			-+			+	
- s	VP-4		3/30/	11 12:00	Vapor			X		X	X					ــــــــــــــــــــــــــــــــــــــ				<u> </u>							
	VP-5		3/30/	11 12:48	Vapor			X		Х	Х						, ,	-									
3	VI -5		3/30/	11 00 0	V apo.	1 1	$\neg +$	+	1-1-		-	\top			1		\Box	1	Ť								
	•					+-					+-	+			+		\vdash		+		_		\dashv	-	+	+ 1	
				1				İ			<u> </u>																
															ı					ŀ			.				
Щ.				-		1-1		-				+	+		+		╁╼╁	+		\vdash	_		-+	\dashv		+	
													-														
Minquished	by: (Signature)				Received by: (Si	gnature)	7	~					α								Date:	2	/_	. 1		Time:	
9!	Swa	٠ - ·					(&)				() 1	=								5/	31)/	[[4:20
elinguished			127/16	· · · · · · · · · · · · · · · · · · ·	Received by: (S	gnature)	\sim		$\overline{\lambda}$		$\overline{}$		7	<u> </u>			- 1				Dale:	1	1			Time:	
ノブ	by: (sagriature)	>	130111	`A					U		1	N	do	Σ.		CE	3				-	3\?	31	11			0800
est (shed	by (Shorture)	/)	113	\mathcal{O}_{-}	Received by: (St	gnalure)															Date:					Time:	
-	C J																									1	
													-													ــــــــــــــــــــــــــــــــــــــ	05/2/06 Revision

〈WebShip〉〉〉〉〉

800-322-5555 www.gso.com

Ship From: ALAN KEMP CAL SCIENCE- CONCORD 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

Ship To: SAMPLE RECEIVING CEL 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00

Reference: CRA

Delivery Instructions:

Signature Type: SIGNATURE REQUIRED

516261911 Tracking #:

IRC

GARDEN GROVE

D92843A

Print Date: 03/30/11 16:26 PM Package 1 of 1

NPS

Send Label To Printer

Print All

Edit Shipment

Finish

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

STEP 1 - Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer.

STEP 2 - Fold this page in half.

STEP 3 - Securely attach this label to your package, do not cover the barcode.

STEP 4 - Request an on-call pickup for your package, if you do not have scheduled daily pickup service or Drop-off your package at the nearest GSO drop box. Locate nearest GSO dropbox locations using this link.

ADDITIONAL OPTIONS:

Send Label Via Email

Create Return Label

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all the service terms and conditions described in this section. Our liability for loss or damage to any package is limited to your actual damages or \$100 whichever is less, unless you pay for and declare a higher authorized value. If you declare a higher value and pay the additional charge, our liability will be the lesser of your declared value or the actual value of your loss or damage. In any event, we will not be liable for any damage, whether direct, incidental, special or consequential, in excess of the declared value of a shipment whether or not we had knowledge that such damage might be incurred including but not limited to loss of income or profit. We will not be liable for your acts or omissions, including but not limited to improper or insufficient packaging, securing, marking or addressing. Also, we will not be liable if you or the recipient violates any of the terms of our agreement. We will not be liable for loss, damage or delay caused by events we cannot control, including but not limited to acts of God, perils of the air, weather conditions, act of public enemies, war, strikes, or civil commotion. The highest declared value for our GSO Priority Letter or GSO Priority Package is \$500. For other shipments the highest declared value is \$10,000 unless your package contains items of "extraordinary value", in which case the highest declared value we allow is \$500. Items of "extraordinary value" include, but or not limited to, artwork, jewelry, furs, precious metals, tickets, negotiable instruments and other items with intrinsic value.

WORK ORDER #: 11-03- 2 1 2 0

SAMPLE RECEIPT FORM

Box <u>|</u> of <u>|</u>

LIENT: CXA DATE:	03/31/11
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C - 6.0 °C, not frozen)	
Temperature°C + 0.5°C (CF) =°C □ Blank	☐ Sample
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).	
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of samplin	g.
☐ Received at ambient temperature, placed on ice for transport by Courier.	
Ambient Temperature: ☑ Air ☐ Filter	Initial: <u>WS</u>
CUSTODY SEALS INTACT:	1110
☑ Box □ □ No (Not Intact) □ Not Present □ N/A	Initial: Wb
□ Sample □ □ No (Not Intact) ☑ Not Present	Initial: <u>2</u> /
SAMPLE CONDITION: Yes	No N/A
SAMPLE CONDITION: Yes Chain-Of-Custody (COC) document(s) received with samples	
Chain-Or-Custody (COC) document(s) received with samples	
COC document(s) received complete.	
Collection date/time, matrix, and/or # of containers logged in based on sample labels.	
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.	
Sampler's name indicated on COC	
Sample container label(s) consistent with COC	
Sample container(s) intact and good condition	
Proper containers and sufficient volume for analyses requested	
Analyses received within holding time	
pH / Residual Chlorine / Dissolved Sulfide received within 24 hours	
Proper preservation noted on COC or sample container	
☐ Unpreserved vials received for Volatiles analysis	
Volatile analysis container(s) free of headspace	
Tedlar bag(s) free of condensation CONTAINER TYPE:	
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores® □Terra	Cores® □
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □1AGB	⊐1AGBna₂ □1AGBs
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB	□500PB □500PB na
□250PB □250PBn □125PB □125PB znna □100PJ □100PJ na ₂ □ □	
Air: DTedlar® DSumma® Other: DTrip Blank Lot#: Labeled/ Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope Description: http://dx.doi.org/10.000/10.0000/10.00000/10.00000000000	Reviewed by:

June 16, 2011

Peter Schaefer Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Subject:

Calscience Work Order No.: 11-06-0589

Client Reference:

2350 (2368) Harrison St., Oakland, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 6/9/2011 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental Laboratories, Inc. Xuan Dang **Project Manager**

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: 06/09/11 11-06-0589 N/A

Method: Units:

ASTM D-1946 %v

Project: 2350 (2368) Harrison St., Oakland, CA

Client Sample Number				ab Sample Number	Date/Time Collected	Matrix		Date Prepared	Date/Time Analyzed		QC Batch ID
SVP-4			14-05	0589-1-A	: 06/08/11 13:49	Air	GC 36	N/A	06/09 11:0		110609L01
Parameter	Result	<u>RL</u>	DF	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Methane	ND	0.500	1		Oxygen + Argo	n		19.8	0.500	1	
Carbon Dioxide	1.01	0.500	1 4 60	0590 O A	06/08/11	Air	GC 36	N/A 』	06/09	V11	110609L01
SVP-5			11-00-	0589-2-A	14:09	All	GC 30	WA	11		
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	RL	DF	Qual
Methane Carbon Dioxide	ND 1.95	0.500 0.500	1		Oxygen + Argo	'n		18.2	0.500	1	
Method Blank	1.95	0.500	- 099-0	3-002-1,315	N/A	Air	GC 36	WA	- 06/0		-110609L01
									- 08:	59	
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Methane Carbon Dioxide	ND ND	0.500 0.500	1 1		Oxygen + Argo	on .		ND	0.500	1	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No:

06/09/11 11-06-0589 N/A

Preparation: Method:

EPA TO-3M

Project: 2350 (2368) Harrison St., Oakland, CA

Page 1 of 1

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVP-4		11-06-0589-1-A	06/08/11 13:49	Air	GC 13	N/A	06/09/11 11:55	110609L01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	7000	1		ug/m3			
SVP-5		11.06-0589-2-A	06/08/11 14:09	Air	GC 13	WA':	(06/08//10 (17/05	11.0609L01
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	7000	1		ug/m3			
Method Blank		098-01-005-3,164	NA V	Air	GC 13	NA .	06/09/11 08:57	110609L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	7000	1		ug/m3			

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

06/09/11

Work Order No: Preparation:

11-06-0589 N/A

Method:

ASTM D-1946 (M)

Project: 2350 (2368) Harrison St., Oakland, CA

Page 1 of 1

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVP4		11-06-0589-1-A	06/08/11 13:49	Air	GC 55	N/A	06/09/11 13:09	110609L01
<u>Parameter</u> Helium	<u>Result</u> ND	<u>RL</u> 0.0100	<u>DF</u> 1	Qual	<u>Units</u> %v			
SVP-5	e di englishe di e	11:06-0589-2-A	- 06/08/11 14:09	Air	GC 55	N/A	06/09/11 12:49	110609L01
<u>Parameter</u> Helium	Result ND	<u>RL</u> 0.0100	<u>DF</u> 1	Qual	<u>Units</u> %v			
Method Blank		099-12-872-115	NA .	Āir.	GC 55	N/A	06/09/11 12:28	110609L01
<u>Parameter</u> Helium	<u>Result</u> ND	<u>RL</u> 0.0100	<u>DF</u> 1	Qual	<u>Units</u> %v			

Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

Work Order No:

Preparation:

Method: Units:

od:

EPA TO-15M ug/m3

06/09/11

N/A

11-06-0589

Project: 2350 (2368) Harrison St., Oakland, CA

Page 1 of 3

Client Sample Number			L	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz		QC B	atch ID
SVP.4		7.7	11-06	-0589-1-A	06/08/11	Air	GC/MS V	N/A	06/09/	Market Service	11060)9L01
					13:49	1			16:5	8	7.44	
Comment(s): -The Method has been	modified to	use Tedla	r Rags	instead of S	umma Canister	s and is not	NELAC acci	redited				
Parameter	Result	RL	DF	Qual	Parameter	o una lo mo	112210 4001		RL	DF	Qu	<u>ıal</u>
Acetone	ND	120	1		t-1,3-Dichloro	ropene		ND	4.5	1		
Benzene	2.2	1.6	1		Ethanol	J. Op 00		ND	94	1		
Benzyl Chloride	ND	7.8	1		Ethyl-t-Butyl E	ther (ETBE)	ND	8.4	1		
Bromodichloromethane	ND	3.4	1		Ethylbenzene		,	3.9	2.2	1		
Bromoform	ND	5.2	i		4-Ethyltoluene)		ND	2.5	1		
Bromomethane	ND	1.9	1		Hexachloro-1.		·	ND	16	1		
2-Butanone	ND	4.4	i		2-Hexanone			ND	6.1	1		
Carbon Disulfide	ND	31	1		Methyl-t-Butyl	Ether (MTE	BE)	ND	7.2	1		
Carbon Tetrachloride	ND	3.1	1	et	Methylene Ch	•	,	ND	17	1		
Chlorobenzene	ND	2.3	1		4-Methyl-2-Pe			ND	6.1	1		
Chloroethane	ND	1.3	1		Naphthalene			ND	26	1		
Chloroform	19	2.4	1		Xylenes (total))		17	8.7	1		
Chloromethane	ND	1.0	1		Styrene			ND	6.4	1		
Dibromochloromethane	ND	4.3	1		Tert-Amyl-Me	thyl Ether (1	AME)	ND	8.4	1		
Dichlorodifluoromethane	2.6	2.5	1		Tert-Butyl Alc	ohol (TBA)	•	ND	15	1		
Diisopropyl Ether (DIPE)	ND	8.4	1		Tetrachloroeth	nene		ND	3.4	1		
1,1-Dichloroethane	ND	2.0	1		Toluene			ND	19	- 1		
1,1-Dichloroethene	ND	2.0	1		Trichloroether	ne		ND	2.7	1		
1,2-Dibromoethane	ND	3.8	1 .		Trichlorofluoro	omethane		ND	5.6	1		
Dichlorotetrafluoroethane	ND	14	1		1,1,2-Trichlor	o-1,2,2-Trifl	uoroethane	ND	11	1		
1,2-Dichlorobenzene	ND	3.0	1		1,1,1-Trichlor	oethane		ND	2.7	1		,
1,2-Dichloroethane	ND	2.0	1		1,1,2-Trichlor	oethane		ND	2.7	1		
1,2-Dichloropropane	ND	2.3	1		1,3,5-Trimeth	ylbenzene		ND	2.5	1		
1,3-Dichlorobenzene	ND [*]	3.0	1		1,1,2,2-Tetrac	chloroethane	•	ND	6.9	1		
1,4-Dichlorobenzene	ND	3.0	1		1,2,4-Trimeth	ylbenzene		ND	7.4	1		
c-1,3-Dichloropropene	ND	2.3	1		1,2,4-Trichlor	obenzene		ND	15	1		
c-1,2-Dichloroethene	ND	2.0	1		Vinyl Acetate			ND	7.0	1		
t-1,2-Dichloroethene	ND	2.0	1		Vinyl Chloride)		ND	1.3	1		
Surrogates:	REC (%)	Control Limits	Q	<u>ual</u>	Surrogates:			REC (%)	Control Limits		Qual	
1,4-Bromofluorobenzene	100	57-129			1,2-Dichloroe	thane-d4		100	47-137			
Toluene-d'8	96	78-156										

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: Units: 06/09/11

11-06-0589 N/A

EPA TO-15M ug/m3

Project: 2350 (2368) Harrison St., Oakland, CA

Page 2 of 3

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tir Analyze		QC Batch ID
SVP-5			TO COMPANY STATE)589-2-A	06/08/11	Air	GC/MS V	N/A	06/09/	11	110609L01
					14:09				17:52		
Comment(s): -The Method has been	modified to	isa Tadla	r Rags i	nstead of S	umma Canister	s and is not	NELAC acci	edited			
Parameter	Result	RL	DE DE	Qual	Parameter	o una lo not	1122 10 4001		<u>RL</u>	DF	Qual
	ND	120	1	Quui	t-1,3-Dichloro	oronono		ND	4.5	1	
Acetone	2.0	1.6	1		Ethanol	Jiopene		ND ND	94	1	
Benzene Benzyl Chloride	ND	7.8	1		Ethyl-t-Butyl E	ther (FTRE	١	ND	8.4	1	
Bromodichloromethane	ND	3.4	1		Ethylbenzene	ther (LTDL	,	5.4	2.2	1	
Bromoform	ND	5.4 5.2	1		4-Ethvitoluene			ND	2.5	1	
Bromomethane	ND	1.9	1		Hexachloro-1,		•	ND	16	1	
2-Butanone	NĎ	4.4	1		2-Hexanone	o-Dutaulerie	•	ND	6.1	i	
Carbon Disulfide	ND	31	1		Methyl-t-Butyl	Ether (MTE	IE)	ND	7.2	1	
Carbon Tetrachloride	ND	3.1	1		Methylene Ch		,L)	ND	17	1	
Chlorobenzene	ND	2.3	1 .		4-Methyl-2-Pe			ND	6.1	1	
Chloroethane	ND	1.3	1		Naphthalene	and ione		ND	26	1	•
Chloroform	ND	2.4	1		Xylenes (total)			24	8.7	1	
Chloromethane	ND	1.0	1		Styrene	•		ND	6.4	1	
Dibromochloromethane	ND	4.3	1		Tert-Amyl-Me	thvl Fther (1	AME)	ND	8.4	1	
Dichlorodifluoromethane	2.6	2.5	1		Tert-Butyl Alc	•	,,	ND	15	1	
Diisopropyl Ether (DIPE)	ND	8.4	1		Tetrachloroeth			ND	3.4	1	
1,1-Dichloroethane	ND	2.0	1		Toluene			ND	19	1	
1,1-Dichloroethene	ND	2.0	1		Trichloroether	ne		ND	2.7	1	
1.2-Dibromoethane	ND	3.8	1		Trichlorofluor			ND	5.6	1	
Dichlorotetrafluoroethane	ND	14	. 1		1,1,2-Trichlor		uoroethane	ND	11	1	
1,2-Dichlorobenzene	ND	3.0	1		1,1,1-Trichlor			ND	2.7	1	
1,2-Dichloroethane	ND	2.0	1		1,1,2-Trichlor			ND	2.7	1	
1,2-Dichloropropane	ND	2.3	1		1,3,5-Trimeth	ylbenzene		ND	2.5	.1	
1,3-Dichlorobenzene	ND	3.0	1		1,1,2,2-Tetrac	chloroethane	è	ND	6.9	1	
1,4-Dichlorobenzene	ND	3.0	1		1,2,4-Trimeth	ylbenzene		ND	7.4	1	
c-1,3-Dichloropropene	ND	2.3	1		1,2,4-Trichlor	obenzene		ND	15	1	
c-1.2-Dichloroethene	ND	2.0	1		Vinyl Acetate			ND	7.0	1	
t-1,2-Dichloroethene	ND	2.0	1		Vinyl Chloride	•		ND	1.3	1	
Surrogates:	REC (%)	Control Limits	Qu	<u>al</u>	Surrogates:			REC (%)	Control Limits		Qual
1,4-Bromofluorobenzene	101	57-129			1,2-Dichloroe	thane-d4		101	47-137		
Toluene-d8	95	78-156									
	. *										

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: Units: 06/09/11

11-06-0589 N/A

EPA TO-15M ug/m3

Project: 2350 (2368) Harrison St., Oakland, CA

Page 3 of 3

Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz		QC Batch ID
Method Blank			099-	12-981-1,302	turn and contributions in the state of the s	Air	GC/MS V	N/A	06/09/		110609L01
							1		13:1	5	
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
Acetone	ND	120	1		t-1,3-Dichlorop	oropene		ND	4.5	1	
Benzene	ND	1.6	1		Ethanol			ND	94	1	
Benzyl Chloride	ND.	7.8	1		Ethyl-t-Butyl E	ther (ETBE)	ND	8.4	1	
Bromodichloromethane	ND	3.4	1		Ethylbenzene			ND	2.2	1	
Bromoform	ND	5.2	1		4-Ethyltoluene)		ND	2.5	1	
Bromomethane	ND	1.9	1		Hexachloro-1,	3-Butadiene	•	ND	16	1	
2-Butanone	ND	4.4	1		2-Hexanone			ND	6.1	1	
Carbon Disulfide	ND	31	1		Methyl-t-Butyl	Ether (MTE	BE)	ND	7.2	1	
Carbon Tetrachloride	ND	3.1	1		Methylene Ch	loride		ND	17	1	
Chlorobenzene	ND	2.3	1		4-Methyl-2-Pe	entanone		ND	6.1	1	
Chloroethane	ND	1.3	1		Naphthalene			ND	26	1	
Chloroform	ND	2.4	1		Xylenes (total)			ND	8.7	1	
Chloromethane	ND	1.0	1		Styrene			ND	6.4	1	•
Dibromochloromethane	ND	4.3	1		Tert-Amyl-Me	thyl Ether (1	TAME)	ND	8.4	1	
Dichlorodifluoromethane	ND	2.5	1		Tert-Butyl Alc			ND	15	1	
Diisopropyl Ether (DIPE)	ND	8.4	1		Tetrachloroeth	nene		ND	3.4	1	
1,1-Dichloroethane	ND	2.0	1		Toluene			ND	19	1	
1;1-Dichloroethene	ND	2.0	1		Trichloroether	ne		ND	2.7	1	
1,2-Dibromoethane	ND	3.8	1		Trichlorofluoro	omethane		ND	5.6	1	
Dichlorotetrafluoroethane	ND	14	1		1,1,2-Trichlor	o-1,2,2-Trifl	uoroethane	ND	11	1	
1,2-Dichlorobenzene	ND	3.0	1		1,1,1-Trichlor	oethane		ND	2.7	1	
1,2-Dichloroethane	ND	2.0	1		1,1,2-Trichlor	oethane		ND	2.7	1	
1,2-Dichloropropane	ND	2.3	1		1,3,5-Trimeth	ylbenzene		ND	2.5	1	
1,3-Dichlorobenzene	ND	3.0	1		1,1,2,2-Tetrac	chloroethan	e	ND	6.9	1	
1,4-Dichlorobenzene	ND	3.0	1		1,2,4-Trimeth	ylbenzene		ND	7.4	1	
c-1,3-Dichloropropene	ND	2.3	1		1,2,4-Trichlor	obenzene		ND	15	1	
c-1,2-Dichloroethene	ND .	2.0	1		Vinyl Acetate			ND	7.0	1	
t-1,2-Dichloroethene	ND	2.0	1		Vinyl Chloride)		ND	1.3	1	
Surrogates:	<u>REC (%)</u>	Control Limits	9	Qual	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
1,4-Bromofluorobenzene	99	57-129			1,2-Dichloroe	thane-d4		100	47-137		
Toluene-d8	98	78-156							•		
i diadilo-ad											

Quality Control - Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 06/09/11 11-06-0589 N/A EPA TO-3M

Project: 2350 (2368) Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
11-06-0606-3	Air	Timelet is in	, NA	06/09/11	110609D01
<u>Parameter</u>	Sample Conc	DUP Conc	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	398000	393200	1	0-20	

Quality Control - LCS/LCS Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

N/A 11-06-0589 N/A **ASTM D-1946**

Project: 2350 (2368) Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyze	ed	LCS/LCSD Bato Number	h
099-03-002-1,315	Air	GC 36	N/A	06/09/1	1	110609L01	
<u>Parameter</u>	LCS %REC	C LCSD %	REC %R	EC CL	RPD	RPD CL	Qualifiers
Methane	97	96	80)-120	1	0-30	
Carbon Dioxide	107	107	80	0-120	0	0-30	
Carbon Monoxide	104	104	80	0-120	1	0-30	
Oxygen + Argon	94	94	80	0-120	0	0-30	
Nitrogen	100	100	80	0-120	0	0-30	

Quality Control - LCS/LCS Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

N/A 11-06-0589 N/A

ASTM D-1946 (M)

Project: 2350 (2368) Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	l	LCS/LCSD Bato Number	h
099-12-872-115	Air	GC 55	N/A	.06/09/11		110609L01	
Parameter	LCS %RE	C LCSD %	REC %R	EC CL	<u>RPD</u>	RPD CL	Qualifiers
Helium	85	88	8	0-120	4	0-30	
Hydrogen	85	89	. 8	0-120	5	0-30	

Quality Control - LCS/LCS Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:
Work Order No:
Preparation:
Method:

N/A 11-06-0589 N/A EPA TO-15M

Project: 2350 (2368) Harrison St., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal		LCS/LCSD I	
099-12-981-1,302	Air -	GC/MS V	, N/A	06/09/	11	110609L0	01
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	109	109	60-156	44-172	0	0-40	
Carbon Tetrachloride	112	.113	64-154	49-169	1	0-32	
1,2-Dibromoethane	-111	111	54-144	39-159	0	0-36	
1,2-Dichlorobenzene	104	105	34-160	13-181	1	0-47	
1.2-Dichloroethane	106	106	69-153	55-167	1	0-30	
1,2-Dichloropropane	110	110	67-157	52-172	0	0-35	
1,4-Dichlorobenzene	107	108	36-156	16-176	. 1	0-47	
c-1,3-Dichloropropene	114	115	61-157	45-173	1	0-35	*
Ethylbenzene	111	112	52-154	35-171	1	0-38	
Naphthalene	82	83	40-190	15-215	1	0-30	
Xvlenes (total)	113	114	52-148	36-164	1	0-38	
Tetrachloroethene	112	113	56-152	40-168	1	0-40	
Toluene	110	. 111	56-146	41-161	1	0-43	
Trichloroethene	110	. 110	63-159	47-175	0	0-34	
1,1,2-Trichloroethane	109	110	65-149	51-163 0		0-37	
Vinyl Chloride	113	113	45-177	23-199	0	0-36	

Total number of LCS compounds: 16

Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 11-06-0589

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
. 1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
Е	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

1	AB (LOCATION))		She	II O	il f	^o ro	dı	uct	s C	Cha	in	Of	Cı	ısto	dy	Re	СО	rd						
(d) cals	CIENCE ()	5355555	Ple	ase Check	(Abt	oropri	ate B	ox:		₽	rint	Bill	Τó	Cont	act N	Name					∴IN	ICIDE	ENT	# (El	W S	ERVI	CES): o	HECK IF N	O INCIDENT # APPLIES
C) SPL	()	□ ENV.	SERVICES			RETAIL			L RETAIL	1				chaef			, , , , , , ,		• • • • •		9 7 7 4 3 9 6							9 1	ATE:	4/8/11
	xo()		IVA SD&CM	=	ONSUL			LUBE	S	1		rete	. 3	criaei) #					1			SAF		<u> </u>	- 1			
☐ TES	AMERICA ()	LI MOII	IVA SUSICM			IANI				}			$\ddot{\cdots}$	· · · · · · · ·	PQ	<i>7∵#</i>	·····				1	1	<u> </u>		17.			F	AGE: _	1 of1_
🔲 отн	ÊR ()	SHEL	L PIPELINE		THER_]			<u> </u>								1	7	<u>/ 3</u>		1 ALIDNO	8				
AMPLING C					LOG CC					1		SS: Stre		-							State			1		1022	27			
	oga-Rovers & Associates				CRA	w	 .			EDF DEL	0 (2	368) 3£10(№	Hai	rrisor	i St.,	, Oak	cland		PH	ONE NO :	()	<u> </u>		E-MAIL	000	1022	.51		C	ONSULTANT PROJECT NO
	contact (Hardcopy or PCF Report to):			 						7				A, Em	eryvi	ille			5	10-420-3	343			shel	ledf@	crawo	rld.con		OF ONLY	0119-95-10.06
	chaefer									- Erin		an (Prin	g:																	neca
TELEPHON	510-420-3319 FAX 510-420-917	70	E-MAIL:	psch	aefer(@crawc	orid.com	<u>n</u>										-										(ノのこ	OS 89
	ROUND TIME (CALENDAR DAYS): DARD (14 DAY)	5 0	2 DAYS	☐ 24 HO	URS		RESI ON	JLTS NEE	DED ND				•							REQ	UES.	TED A	NAL	YSIS						
	RWQCB REPORT FORMAT UST AGENCY:			······································									Γ	T															TEMPE	RATURE ON RECEIPT
				☑ SHELL	CONTI	RACT RAT	TE APPL	IES		7 :	ę i			1																
SPE	CIAL INSTRUCTIONS OR NOTES:			☐ STATE	REIME	BURSEME	NT RAT	E APPLIES	6		946	TPHg, Full scall VOCs, & Naphthalene (EPA 8260B)	-																	
Con	y final report to Shell.Lab.Billing@craworld.cor	m.		EDD N	OT NE	EDED					M D1	Cs, 8					.		İ	ĺ				1					-	
Repo	rt results in % by volume for ASTM 1946			☑ RECEI						1 1	AST	₽ <u>₹</u>																		
Ple	ase report results in µg/mfor 8260. Neede	d detection i	imit of belov	v 140 µg/m3 fo	or 1,1,2					- }	hod.	e G								-										
		SAM	PLING	,	-	PRE	SERVATI		-	ز ا۔	Met	불통	ı												l					11
	Field Sample Identification	DATE	TIME	MATRIX					NO. O		ane,	异	İ	ŀ										1				İ		ntainer PID Readings or Laboratory Notes
lae USE Only		DATE	Time !		147	HNO3 H	DECK N	ONE OTH	ER		¥ to	돌	1																<u> </u>	
	SVP-4	6/8/11	11:49	Vapor	no.	11103		X		7		х															\prod			
			12:09		1			х	1	7	(Х	Τ																1	
٠.	SVP-5	14/1/	12:07	vapoi	+		-+		┵				十		 						1	1		1						
					┷	Щ.				-			\vdash		-	+-1			-+		+	┼	+		╂				+	
													L							_ _	╀-	—	-	-	-		\dashv			
														1																
		+	 						_	—			T	1								T	T							•
					-	╀							╁	+-	-	1-1			\dashv	-+	+	+	+	1	+-	I	_	_	T	
					1	$oxed{oxed}$							+		<u> </u>	+					-	+	+-	+-	\vdash	+	-			
							•																							
			-			+-+							+	_	†						1					\prod				
			l										1		1_				_		-	-		+-	┼				+	
							ſ																							
لللليل				Received by: (S	grature	1 1						L				نــــــــــــــــــــــــــــــــــــــ							Da	to:				П	me:	
Relinquis	hed by: (Signature)				(otin f			۷,	X <	>			(1	اخ	<u></u>								6/	8	111				58
Province	hed by: (Signature) -c) 6	8(1		Received by: (S	ignature)		-	1	0				Ì	W	\sqrt{v}	F	·	(\ <u>T</u>	4			De	ال:"	, 19	<i>\\</i> ,		"	 07	45
1 6	2000	173	30									·		V~~	700	<u>~</u>	<u>~</u>				<u>:</u>		De	do:	, ,	111			me:	
Relinqui	orby: (Signature)			Received by: (S	ilgnature))																								
	•																												0677	06 Revision
		_,,																											93/2/	
	•																													
									*																				•	

〈WebShip〉〉〉〉〉

800-322-5555 www.qso.com

Ship From: ALAN KEMP CAL SCIENCE- CONCORD 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

Ship To: SAMPLE RECEIVING CEL 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00

Reference: CARDNO ERI

Delivery Instructions:

Signature Type: SIGNATURE REQUIRED

516738108 Tracking #:

NPS

GARDEN GROVE

D92843A

Print Date: 06/08/11 13:04 PM

Package 3 of 3

Send Label To Printer

☑ Print All

Edit Shipment

Finish

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

STEP 1 - Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer.

STEP 2 - Fold this page in half.

STEP 3 - Securely attach this label to your package, do not cover the barcode.

STEP 4 - Request an on-call pickup for your package, if you do not have scheduled daily pickup service or Drop-off your package at the nearest GSO drop box. Locate nearest GSO dropbox locations using this link.

ADDITIONAL OPTIONS:

Send Label Via Email

Create Return Label

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all the service terms and conditions described in this section. Our liability for loss or damage to any package is limited to your actual damages or \$100 whichever is less, unless you pay for and declare a higher authorized value. If you declare a higher value and pay the additional charge, our liability will be the lesser of your declared value or the actual value of your loss or damage. In any event, we will not be liable for any damage, whether direct, incidental, special or consequential, in excess of the declared value of a shipment whether or not we had knowledge that such damage might be incurred including but not limited to loss of income or profit. We will not be liable for your acts or omissions, including but not limited to improper or insufficient packaging, securing, marking or addressing. Also, we will not be liable if you or the recipient violates any of the terms of our agreement. We will not be liable for loss, damage or delay caused by events we cannot control, including but not limited to acts of God, perils of the air, weather conditions, act of public enemies, war, strikes, or civil commotion. The highest declared value for our GSO Priority Letter or GSO Priority Package is \$500. For other shipments the highest declared value is \$10,000 unless your package contains items of "extraordinary value", in which case the highest declared value we allow is \$500. Items of "extraordinary value" include, but or not limited to, artwork, jewelry, furs, precious metals, tickets, negotiable instruments and other items with intrinsic value.

WORK ORDER #: 11-06- ☑ 5 5 9

SAMPLE RECEIPT FORM

Box 1 of 1

CLIENT: DATE: 0	06/09/11
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not frozen) Temperature °C + 0.5 °C (CF) = °C] Sample Initial: <u>₩</u>
CUSTODY SEALS INTACT: Sox Supple No (Not Intact) Not Present N/A No (Not Intact) Not Present N/A	Initial: WB
Chain-Of-Custody (COC) document(s) received with samples	No N/A
□ No analysis requested. □ Not relinquished. □ No date/time relinquished. Sampler's name indicated on COC	
Sample container(s) intact and good condition	
☐ Unpreserved vials received for Volatiles analysis Volatile analysis container(s) free of headspace	
Tedlar bag(s) free of condensation	
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB □50 □250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂ □ □ Air: □1edlar® □Summa® Other: □ Trip Blank Lot#: Labeled/Che Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Envelope Rev	

Preservative: h: HCL n: HNO₃ na₂:Na₂S₂O₃ na: NaOH p: H₃PO₄ s: H₂SO₄ znna: ZnAc₂+NaOH f: Field-filtered Scanned by: