

Underground Contamination Investigations, Groundwater Consultants, Environmental Engineering

QUARTERLY GROUNDWATER SAMPLING REPORT (sampled March 6, 1993)

19100 Mission Blvd Hayward, California

March 15, 1993

TABLE OF CONTENTS

I.	INTRODUCTION	:
II.	FIELD WORK	
	Monitoring Well Sampling	
	Water Level Measurement	6
	Waste Generation	•
III.	. SAMPLING RESULTS	
	Laboratory Analysis	
	Results of Laboratory Analysis	

ATTACHMENT A -- Correspondence

ATTACHMENT B -- Well Sampling Results

ATTACHMENT C -- Analytical Results: Groundwater

I. INTRODUCTION

The site location is the property at 19100 Mission Blvd, Hayward, California. The location of the site is shown in Figure 1. In conjunction with an auto service operation, the site has historically operated two underground fuel storage tanks for a number of years.

On June 5, 1990, one 550-gallon underground Gasoline storage tank and one 280-gallon underground Waste Oil storage tank were removed by Decon Environmental Services, Inc., Hayward, California. The results of laboratory analyses performed on soil samples indicated the presence of Oil & Grease at concentrations of up to 700 mg/kg (ppm).

A map of the site is shown in Figure 2. This map shows the layout of the facility, along with the location of the previous underground tank excavation.

Based upon the results of the analytical data generated during the tank removal, a groundwater investigation was required by the Alameda County Department of Environmental Health. An on-site subsurface investigation was subsequently completed by Hageman-Aguiar, Inc. The purpose of the investigation was to install and sample one on-site monitoring well (MW-1) in order to define the extent of any petroleum constituents that may be present in the shallow groundwater beneath the site in the immediate vicinity of the underground storage tanks. The results of the investigation were presented in a report by Hageman-Aguiar, Inc., dated November 18, 1992.

On March 6, 1993, the on-site monitoring well MW-1 was sampled for the subsequent laboratory analysis for dissolved petroleum constituents. This sampling represents the first

round of regular quarterly shallow groundwater monitoring, as required by Juliet Shin of the Alameda County Department of Environmental Health on December 30, 1992, and as required by the California State Regional Water Quality Control Board (RWQCB), San Francisco Bay Region.

A copy of the correspondence with Juliet Shin is included as Attachment A.

II. FIELD WORK

Monitoring Well Sampling

On March 6, 1993, groundwater samples were collected from the one on-site monitoring well. The location of the monitoring well is shown in Figure 2 (site map). Prior to groundwater sampling, the well was purged by bailing several casing volumes of water. Field conductivity, temperature, and pH meters were present on-site during the monitoring well sampling. As the purging process proceeded, the three parameters were monitored. Purging continued until readings appeared to have reasonably stabilized. After the water level in the well had attained 80% or more of the original static water level, a groundwater sample was collected using a clean teflon bailer. The water sample was placed inside appropriate 40 mL VOA vials and 1-liter amber bottles free of any headspace. The samples were immediately placed on crushed ice, then transported under chain-of-custody to the laboratory at the end of the work day.

At the time the monitoring well was sampled, the following information was recorded in the field: 1) depth-to-water prior to purging, using an electrical well sounding tape, 2) identification of any floating product, sheen, or odor prior to purging, using a clear teflon bailer, 3) sample pH, 4) sample temperature, and 5) specific conductance of the sample.

A copy of the well sampling log is included as Attachment B.

Water Level Measurement.

The shallow groundwater elevation in MW-1 was measured as 32.17 feet below ground surface on March 6, 1993.

Waste Generation.

All water removed from the well during development and purging was drummed and stored on-site until the results of laboratory analyses were obtained. Based upon these results, the water should be sewered (if possible) as a non-hazardous liquid waste in accordance with local sewering agency permit requirements, or else it should be transported as a hazardous liquid waste under proper manifest to an appropriate TSD facility for treatment and disposal. The disposal of wastewater is the responsibility of the property owner (waste generator), and is beyond the scope of work as described in this report.

III. SHALLOW GROUNDWATER SAMPLING RESULTS

Laboratory Analysis

All analyses were conducted by a California State DOHS certified laboratory in accordance with EPA recommended procedures. All Groundwater samples were analyzed for 1) Total Petroleum Hydrocarbons as Gasoline (EPA method 8015), 2) Total Extractable Petroleum Hydrocarbons (EPA method 8015), 3) Benzene, Toluene, Ethylbenzene, and Total Xylenes (EPA method 602), 4) Halogenated Volatile Organics (EPA method 601) and 5) Oil & Grease (EPA method 5520).

Analytical Results: Groundwater

Tables 1 and 2 present the results of the laboratory analysis of the groundwater samples collected from monitoring well MW-1.

As shown in Table 1, no detectable concentrations of either Total Extractable Petroleum Hydrocarbons (Dissolved Gasoline, Diesel, Kerosene, Motor Oil) or Oil & Grease were found in the shallow groundwater sample.

The results presented in Table 2 indicate that <u>no detectable</u> <u>concentrations</u> of any Halogenated Volatile Organics were found in the shallow groundwater sample.

A copy of the laboratory certificate for the water sample analysis is included as Attachment C.

TABLE 1.
Shallow Groundwater Sampling Results

Well	Date	TPH as Gasoline (ug/L)	TPH as Kerosene (ug/L)	TPH as Diesel (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethyl- benzene (ug/L)	Total Xylenes (ug/L)	Motor Oil (mg/L)	Oil & Grease (mg/L)
MW-1	11-12-92 12-07-92 03-06-93	ND 78 ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND 1.6 ND	ND 6.4 ND	ND ND ND	ND ND ND
Detectio	n Limit	50	50	50	0.5	0.5	0.5	0.5	0.5	0.5

ND = Not Detected

. ..

TABLE 2.

Groundwater Sampling Results

Halogenated Volatile Organics by EPA Method 601

Weli	Date	Chloroform (ug/L)	Methylene Chloride (ug/L)	Trichloro- ethene (ug/L)	1,1,1-Trichloro- ethane (ug/L)	Tetrachioroethene (ug/L)	Other Organics (ug/L)		
MW-1 11-12-92 12-07-92 03-06-93		ND ND ND	ND ND		ND ND ND	ND ND ND	ND ND ND		
Detection Limit		0.5	0.5	0.5	0.5	0.5	0.5		

ND = Not Detected

GROUNDWATER SAMPLING REPORT 19100 Mission Blvd, Hayward, California

March 15, 1993

No. C-34262

No. C-34262

No. C-34262

EXP. 9-30-95

Gary Aguiar

RCE 34262

Rick Milelli Env. Engineer

ATTACHMENT A

CORRESPONDENCE

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

DAVID J. KEARS, Agency Director

RAFAT A. SHAHID, ASST. AGENCY DIRECTOR

DEPARTMENT OF ENVIRONMENTAL HEALTH
State Water Resources Control Board
Division of Clean Water Programs
UST Local Oversight Program
80 Swan Way. Rm 200
Oakland, CA 94621
(510) 271-4530

December 30, 1992

Clifton A. Sherwood Sherwood-Dawson & Co. P.O. Box 2673 Castro Valley, CA 94546

STID 3744

RE: 19100 Mission Blvd., Hayward, California

Dear Mr. Sherwood,

This office has received Hageman-Aguiar's Groundwater Sampling Report, dated December 21, 1992. Analysis of the ground water sample collected from the on-site monitoring well identified 78 parts per billion (ppb) Total Petroleum Hydrocarbons as gasoline (TPHg), 1.6 ppb ethylbenzene, and 6.4 ppb xylenes.

According to the report, this round of ground water sampling was Hageman-Aguiar's last recommended sampling event, however, this office requires at least four quarters of ground water sampling before the site can be considered for closure. A minimum of four quarters of ground water sampling is required to account for seasonal fluctuations in the water level and any coinciding fluctuations in contaminant concentrations.

The next quarterly ground water sampling report is due to this office in March 1992. If you have any questions or comments, please contact me at (510) 271-4530.

Sincerely,

Juliet Shin

Hazardous Materials Specialist

cc: Sumadha Arigala, RWQCB

Hugh Murphy, Hayward Fire Dept.

Gary Aguiar
Hageman-Aguiar, Inc.
3732 Mt. Diablo Blvd., Ste. 372
Lafayette, CA 94549

Edgar Howell-File(JS)

ATTACHMENT B

WELL SAMPLING LOGS

WELL SAMPLING LOG

Project/No. 🖊	roject/No. NP ASSOCIATES Page 1 of 1 te Location MISSION ST, HAYWARD Bute 3-6-9= II No. MW 1 ather PT CLOUDY 50°T EVACUATION DATA EVACUATION DATA Stron of Measuring Point (MP) NEZL Box AT GRASSION Founded Depth of Well Below MP 43,62 - Depth to Water Below MP 32.17 = Water Column in Well 11.45 Fin Casing 1,8 + Annular Space (30% porosity) Gallons Pumped Prior to Sampling 3 SAMPLING DATA / FIELD PARAMETERS SAMPLING DATA / FIELD PARAMETERS Spection for Free Product: NONE DETECTED Sickness to 0.1 inch, if any) Time 1010 1028 1040 1052 Sals Removed 15 25 35 Temperature 16.9 17.2 16.5 16.4 Separation for Free Productivity 200 1150 1160 1100 ph 7.3 7.2 7.2 7.1 Color / Odor CLE NO BRA NED MED MED Turbidity Lon MED MED MED MED Temperats: None New York Temperature 16.9 17.2 16.5 Turbidity Lon MED MED MED MED Temperature MED MED MED Temperature MED MED MED MED Temperature MED MED MED MED Temperature MED		<u>,</u>		
Site Location 2	MISSION S	ST HAYWA	9RD	2 (92
Well No.	nw/				_
Weather P	CLOUBY	50°F	Time ! Comp	leted	_
	•				
		1	⊅	1-0	an 1
			u pox	147 61	74-236
Total Sounded Depth	of Well Below M	43,62	Diame	ter //	
- Depth	to Water Below #	19 <u>32,17</u>	of Ca	$\frac{2}{}$	
					,
Gallons in Casing _	1,8 +	Annular Space _	(6,8)=	Total Gallons	8.6
		(30% porosity)		$(x \neq = 3)$	34.5)
			-		<u>35</u>
Evacuation Method _	7E1	FLON 7	BAILER		
	SAMPL	.ING DATA / F	TELD PARAME	TERS	
			λ		
Inspection for (thickness to 0	Free Product:	NONE	DETEC.	TED	
Time	1010	1028	1040	1052	
Gals Removed	_6_	15	25	<u>35</u>	
Temperature	16.9	17.2	16.5	16.4	
				,	
Turbidity	<u>con</u>	INED	ITED	INE D	
Comments:	NONE				

ATTACHMENT C

ANALYTICAL RESULTS: GROUNDWATER

PRIORITY ENVIRONMENTAL LABS

Presiden Environmental Analytical Laboratory

March 11, 1993

PEL # 9303013

HAGEMAN - AGUIAR, INC.

Attn: Jeffrey Roth

Re: One water sample for Gasoline/BTEX, TEPH, and Oil &

Grease analyses.

Project name: NIP Associates

Project location: Mission Blvd., - Hayward, CA.

Date sampled: Mar 06, 1993

Date extracted: Mar 10-11, 1993

Date submitted: Mar 10, 1993

Date analyzed: Mar 10-11, 1993

RESULTS:

SAMPLE I.D.	Kerosene	Gasoline	Diesel	Benzene					Stoddard Solvent
1.0.	(ug/L)	(ug/L)	(ug/L)	(ug/L)					
MW-1	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Blank	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Spiked Recovery	88.0%	105.4%	97.6%	101.3%	100.9%	98.2%	105.0)%	83.7%
Detection limit	n 50	50	50	0.5	0.5	0.5	0.5	0.5	50
Method of Analys	f 3510/ is 8015	5030 / 8015	3510 / 8015	/ 602	602	602	602	5520 2 C & I	3510/ F 8015

David Duong Laboratory Director

PRIORITY ENVIRONMENTAL LABS

Precision Environmental Analytical Laboratory

March 11, 1993

PEL #: 9303013

HAGEMAN - AGUIAR, INC.

Attn: Jeffrey Roth

Project name:NIP Associates

Project location: Mission Blvd., -Hayward, CA.

Sample I.D.: MW 1

Date Sampled: Mar 06, 1993

Date Analyzed: Mar 10, 1993

Date Submitted: Mar 10, 1993

Method of Analysis: EPA 601

Detection limit: 0.5 ug/L

COMPOUND NAME	CONCENTRATION (ug/L)	SPIKE RECOVERY (%)
Chloromethane	N.D.	
Vinyl Chloride	N.D.	83.1
Bromomethane	N.D.	
Chloroethane	N.D.	
Trichlorofluoromethane	N.D.	
1,1-Dichloroethene	N.D.	86.8
Methylene Chloride	N.D.	
1,2-Dichloroethene (TOTAL)	N.D.	
1,1-Dichloroethane	N.D.	
Chloroform	N.D.	84.2
1,1,1-Trichloroethane	N.D.	
Carbon Tetrachloride	N.D.	
1,2-Dichloroethane	N.D.	
Trichloroethene	N.D.	92.6
1,2-Dichloropropane	N.D.	
Bromodichloromethane	N.D.	
2-Chloroethylvinylether	N.D.	
Trans-1,3-Dichloropropene	N.D.	
Cis-1,3-Dichloropropene	N.D.	
1,1,2-Trichloroethane	N.D.	
Tetrachloroethene	N.D.	94.3
Dibromochloromethane	N.D.	
Chlorobenzene	N.D.	
Bromoform	N.D.	
1,1,2,2-Tetrachloroethane	N.D.	
1,3-Dichlorobenzene	N.D.	
1,4-Dichlorobenzene	N.D.	
1,2-Dichlorobenzene	N.D.	

David Duong Laboratory Director

1764 Houret Court Milpitas, CA, 95035

PEL # 9303013 INV # 23425

CHAIN OF CUSTODY RECORL

PROJECT NAME AND ADDRESS NIE ASSELVATES MISSELON FBLVD. HAYWARD, CA					HAGEMAN - AGUIAR, INC. 3732 Mt. Diablo Blvd., Suite 372 Lafayette, CA 94549 (415)284-1661 (415)284-1664 (FAX)				ANALYSIS REQUESTED								
REFERENCE DATE TIME I E R				E	STATION LOCATION				REMARK								
Mn/		3-693		X	MONITORING h	ELL# 1		X	X	X	X			Noen	747		
		ļ				***********											
			ļ	ļ						<u> </u>		 	ļ	ļ			
		<u> </u>								 	-	-	 	<u> </u>			
						5-5-10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	 -			 		├		<u> </u>			
		ł								 -	 	┧	-	 			
		 	ļ <u>.</u>	ļ			 	 		ļ —	 	 		 			
		<u> </u>			· · · · · · · · · · · · · · · · · · ·								-	 			
																	
														1			
RELINQUISHED BY	(Signature)	3-	ff		DATE 3-16-93	RECEIVED BY: (Signa	iture)	-						DA	TE ME		
RELINQUISHED BY	(Signature)	-//		·	DATE DATE	RECEIVED BY: (Signa	iture)							DA			
	*				TIME									TII	*******		
RELINQUISHED BY	(Signature)				DATE	RECEIVED BY: (Signa	ture)			• • • • •	 .			DA			
RELINQUISHED BY	(Skapatura)				TIME	RECEIVED FOR LABO	DÁTOS	V DV: 70	iannhe	<u> </u>				70			
HELIITQUISHED BT	(Orginaldie)				DATE	HEVELVED FUNDABLE	\mathcal{T}_{a}	ton 1	- WINSTH	9					TE3-10-9 NE 1205		