

Chevron U.S.A. Inc.

2410 Camino Ramon, San Ramon, California • Phone (510) 842-9500 Mail Address, P.O. Box 5004, San Ramon, CA 94583-0804

91 007 -9 PN 2:00

Marketing Department

October 7, 1991

Mr. Rafat Shahid Alameda County Health Care Services 80 Swan Way, Room 200 Oakland, CA 94621

Re: Former Chevron Service Station #9-1026

3701 Broadway, Oakland

94611 former GW project

Dear Mr. Shahid:

Enclosed we are forwarding the Quarterly Ground Monitoring Report dated September 30, 1991, prepared by our consultant Weiss Associates for the above referenced site. As indicated in the report, ground water samples collected were analyzed for total petroleum hydrocarbons as gasoline and BTEX. Benzene concentrations ranged from non-detectable to 28,000 ppb. Depth to ground water was measured at approximately 14 to 20-feet below grade, and the direction of flow fluctuates from the southwest to the south.

The deepening of existing monitor wells F and B-1 has been held up while necessary documents are compiled per the City of Oakland encroachment permit requirements. We anticipate the reinstallation of these wells within approximately two (2) months. We are in the process of finalizing a groundwater remediation work plan and will forward to your office upon completion for your review and concurrence.

Chevron will continue to monitor this site and report findings on a quarterly basis.

If you have any questions or comments, please do not hesitate to contact me at (510) 842-9581.

Very truly yours, CHEVRON U.S.A. INC

Nancy Vukelich

Environmental Engineer

Enclosure

cc: Mr. Eddie So, RWQCB-Bay Area Ms. B.C. Owen File (9-1026Q1)

Mr. Bruce Bercovich Kay & Merkel 100 The Embarcadero, Third Floor San Francisco, CA 94105

Fax: 415-547-5043

Phone: 415-547-5420

5500 Shellmound Street, Emeryville, CA 94608

September 30, 1991

Nancy Vukelich Chevron U.S.A., Inc. P.O. Box 5004 San Ramon, CA 94583-0804

Re: Third Quarter 1991
Ground Water Monitoring Report
Former Chevron Service Station #9-1026
3701 Broadway
Oakland, California
WA Job #4-418-01

Dear Ms. Vukelich:

As you requested, Weiss Associates (WA) is providing this Ground Water Monitoring Report for the site referenced above (Figure 1). WA sampled the ground water monitoring wells (Figure 2) on August 21, 1991, in accordance with the requirements and procedures of the California Regional Water Quality Control Board - San Francisco Bay Region and local regulatory agencies.

SAMPLING PROCEDURES

Prior to purging and sampling the wells, WA measured the depth to ground water in each well to the nearest 0.01 ft using an electric sounder (Table 1). We also checked the wells for floating hydrocarbons or sheen. No floating hydrocarbons were detected in any well.

WA collected ground water samples for analysis after purging at least 3 well-casing volumes of ground water from each well. Each sample was decanted from a steam-cleaned or dedicated bailer into the appropriate clean sample containers and delivered to a California-certified laboratory following proper sample preservation and chain-of-custody procedures. Purged ground water was stored onsite in DOT-approved 55-gallon drums until properly disposed of offsite.

Nancy Vukelich September 30, 1991 2

MONITORING AND ANALYTIC RESULTS

The top-of-casing elevation, depth to ground water and the ground water elevation for each well is presented in Table 1. The ground water elevation contours and ground water flow direction are shown on Figure 2.

Current and historical ground water analytic results are summarized in Table 2. The water sample collection records, and the analytic report and chain-of-custody forms are included as Attachments A and B, respectively. Ground water elevation contour maps for the past year are included in Figure 3.

PROPOSED WORK SCHEDULE

The Fourth Quarter 1991 ground water sampling is scheduled for November 13, 1991. We will submit a report presenting the field and analytic data by January 1992.

We appreciate this opportunity to provide hydrogeologic consulting services to Chevron USA and trust that this submittal meets your needs. Please call if you have any questions regarding this report.

Sincerely,

Weiss Associates

Mariette Shin Staff Geologist

James W. Carmody, C.E.G.

Senior Project Hydrogeologist

MMS/JWC:cr

E:\ALL\CHEV\400\418QMSE1.WP

Attachments A - Water Sample Collection Records

IGINEERING

B - Analytic Report and Chain-of-Custody Forms



Figure 1. Site Location Map - Former Chevron Service Station #9-1026, 3701 Broadway, Oakland, California

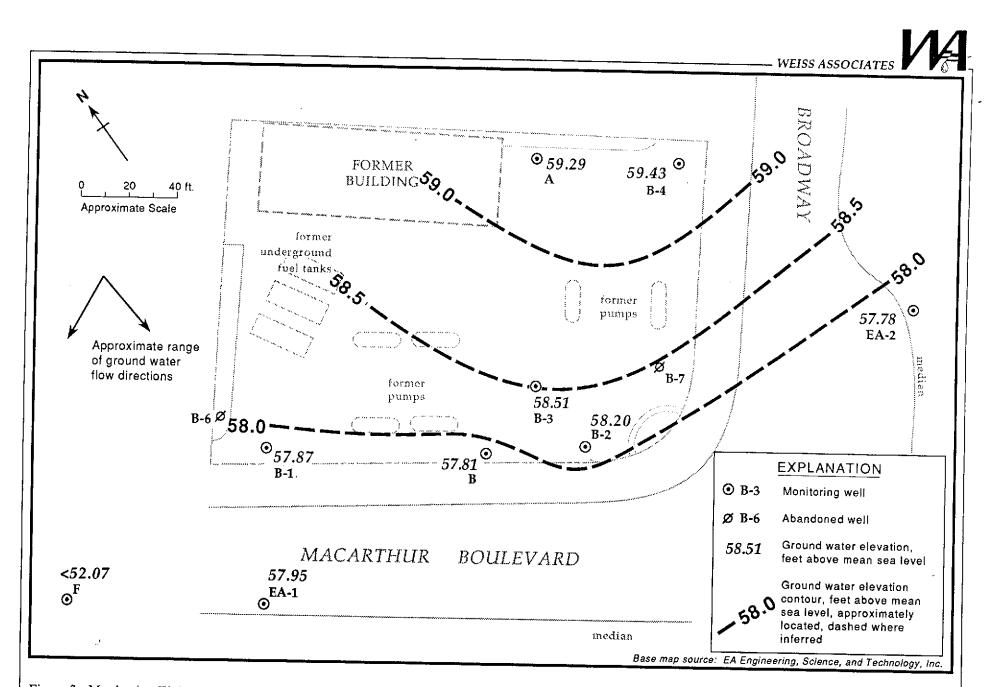


Figure 2. Monitoring Well Locations and Ground Water Contours - August 21, 1991 - Former Chevron Service Station #9-1026, 3701 Broadway, Oakland, California

TABLE 1. Ground Water Elevation Data, Former Chevron Service Station #9-1026, 3701 Broadway, Oakland, California

Well ID	Date	Top-of-Casing Elevation (ft above msl)	Depth to Water (ft)	Thickness of Floating Hydrocarbons in Well (ft)	Ground Water Elevation (ft above ms!)
A	05/10/89	75.28 ^a	13.92		61.36
	08/09/89		15.62		59.66
	11/09/89		15.95		59.33
	02/08/90		14.73		60.55
	05/10/90		15.48		59.80
	08/09/90		15.66		59.62
	11/13/90		16.48		58.80
	04/05/91		13.22		62.06
	06/19/91		15.37		59.91
	08/21/91		15.99		59.29
В	05/10/89	73.39ª	13.97	.20	59.58 ^b
	08/09/89		15.69	.20	57.86 ^b
	11/09/89		15.29	.08	58.16 ^b
	02/08/90		14.46		58.93
	05/10/90		15.07		58.32
	08/09/90		15.12		58.27
	11/13/90		15.76		57.63
	04/05/91		13.38		60.01
	06/19/91		15.14		58.25
	08/21/91		15.58		57.81
B-1	05/10/89	71.77 ^a	12.58		59.19
	08/09/89		14.09		57.68
	11/09/89		14.06		57.71
	02/08/90		12.65		59.12
	05/10/90		13.62		58.15
	08/09/90		13.87		57.90
	11/13/90		14.38		57.39
	04/05/91		11.73		60.04
	06/19/91		13.56		58.21
	08/21/91		13.90		57.87
B-2	05/10/89	74.51 ^a	14.58		59.93
	08/09/89		16.06		58.45
	11/09/89		16.95		57.56
	02/08/90		15.56		58.95
	05/10/90		15.94		58.57
	08/09/90		15.97		58.54
	11/13/90		16.70		57.81
	04/05/91		14.20		60.31
	06/19/91		15.83		58.68
	08/21/91		16.31		58.20

⁻⁻ Table 1 continues on next page --

TABLE 1. Ground Water Elevation Data, Former Chevron Service Station #9-1026, 3701 Broadway, Oakland, California (continued)

Well ID	Date	Top-of-Casing Elevation (ft above msl)	Depth to Water (ft)	Thickness of Floating Hydrocarbons in Well (ft)	Ground Water Elevation (ft above msl)
 В-3	05/10/89	74.12ª	14.02		60.01
ט-ט	08/09/89	77.12	15.38		58.74
	11/09/89		15.55	.05	58.61 ^b
	02/08/90		14.68	<0.01	59.44 ^b
	05/10/90		15.15	.02	58.99 ^b
	08/09/90		15.27	< 0.01	58.85 ^b
	11/13/90		16.04	.06	58.13 ^b
	04/05/91		13.30	< 0.01	60.82 ^b
	06/19/91		15.16		58.96
	08/21/91		15.61		58.51
B-4	05/10/89	76.43ª	14.93		61.50
	08/09/89		16.65		59.78
	11/09/89		16.99		59.44
	02/08/90		16.05		60.38
	05/10/90		16.49		59.94
	08/09/90		16.64		59.79
	11/13/90		17.42		59.01
	04/05/91		14.66		61.77
	06/19/91		16.48		59.95
	08/21/91		17.00		59.43
B-6	05/10/89	72.66ª	12.11		60.55
	08/09/89		14.72		57.94
	11/09/89		13.85		58.81
	02/08/90		7.73		64.93
	05/10/90		С		
	08/09/90		14.51		58.15
	11/13/90		14.86		57.80
	04/05/91		10.43		62.23
	06/19/91°				
B-7	05/10/89	75.40ª	14.73		60.67
	08/09/89		16.36		59.04
	11/09/89		16.64		58.76
	02/08/90		15.69		59.71
	05/10/90		c		* 0.00
	08/0 9 /90		16.31		59.09
	11/13/90		17.09		58.31
	04/05/91		14.36		61.04
	06/19/91°				

⁻⁻ Table 1 continues on next page --

TABLE 1. Ground Water Elevation Data, Former Chevron Service Station #9-1026, 3701 Broadway, Oakland, California (continued)

Well ID	Date	Top-of-Casing Elevation (ft above msl)	Depth to Water (ft)	Thickness of Floating Hydrocarbons in Well (ft)	Ground Water Elevation (ft above msl)
EA-1	05/10/89	73.94ª	14.56		59.38
	08/09/89		16.09		57.85
	11/09/89		15.84		58.10
	02/08/90		15.05		58.89
	05/10/90		15.65		58.29
	08/09/90		15.67		58.27
	11/13/90		16.32		57.62
	04/05/91		14.03		59.91
	06/19/91		15.56		58.38
	08/21/91		15.99		57.95
E A- 2	05/10/89	75.24ª	15.95		59.29
	08/09/89		17.45		57.79
	11/09/89		17.41		57.83
	02/08/90		16.57		58.6 7
	05/10/90		17.12		58.12
	08/09/90		17.20		58.04
	11/13/90		17.88		57.36
	04/05/91		15.54		59.70
	06/19/91		17.07		58.17
	08/21/91		17.46		57.78
F	05/10/89	72.01ª	18.70		53.31
	08/09/89		19.03		52.98
	11/09/89		19.02		52.99
	02/08/90		18.70		53.31
	05/10/90		18.98		53.03
	08/09/90		18.95		53.06
	11/13/90		19.10		52.91
	04/05/91		d		
	06/19/91		_ 18.95		53.06
	08/21/91		/ >19.94 <i>/</i> /	•	<52.07

^a = Top-of-Casing surveyed on 02/08/90

b = Ground water elevation adjusted for floating hydrocarbons in the well by the relation: Corrected ground water elevation = top-of-casing - depth to water + (0.8 x hydrocarbon thickness)

c = Well abandoned in May 1991.

d = Water level not recorded

ell	Date	Depth-to Water	Analytical	TPH-G	В	Е	т	x
ecc ID	Sampled	(ft)	Lab	<	parts	per billion (#		>
	oump to a				<u> </u>	<u>· </u>		
	05-09-89	13.92	SAL	11,000	260	94	<2	230
	08-09-89	15.62	SAL	12,000	370	100	<1.5	240
	11-09-89	15.95	SAL	16,000	690	180	10	350
	02-08-90	14.73	GTEL.	14,000	600	120	7	270
	05-10-90	15.48	GTEL	16,000	840	140	4.8	340
	08-09-90	15.66	GTEL	17,000	510	170	40.0	280
	11-13-90	16.48	CEC	9,000	570	86	3.1	170
	03-27-91	13.22	SAL	8,000	660	110	<5	250
	06-19-91	15.37	SAL	8,900	740	120	<3	280
	08-21-91	15.99	CEC	6,800	620	85	23	200
	00 E1 71			•,				
	05-09-89 ^a	13.97				-		
	08-09-89 ^a	15.69						
	11-00-80 ⁸	15.29						
	02-08-90	14.46						
	05-10-90 ^C	15.07					***	
	08-09-90 a	15.12						
	11-13-90 d	15.76					•••	
	03-27-91 d	13.38						
	06-19-91	15.14	SAL	26,000	7,100	430	370	1,000
	08-21-91	15.58	CEC	16,000	4,900	390	270	640
- 1	05-10-89	12.58	SAL	16,000	2,300	81	260	740
	08-09-89	14.09	SAL	12,000	2,600	100	340	870
	11-09-89	14.06	SAL	17,000	340	110	140	760
	02-08-90	12.65	GTEL	5,500	70	<u>17</u>	19	150
	05-10-90	13.62	GTEL	18,000	770	73	110	600
	08-09-90	13.87	GTEL	82,000	750	95	66	980
	11-13-90	14.38	CEC	43,000	1,300	74	120	760
	03-27-91	11.73	SAL	18,000	580	94	92 57	770
	06-19-91	13.56	SAL	21,000	910	96	56	810
	08-21-91 ^e	13.90	CEC	50,000	2,400	300	610	1,800
_	AT 00 55	44 50	CAL	170,000	30,000	2,300	8,400	12,000
-2	05-09-89	14.58	SAL		29,000	2,400	8,700	12,000
	08-10-89	16.06	SAL	60,000		2,800	5,500	12,000
	11-09-89	16.95	SAL	110,000	32,000	2,300	5,900	11,000
	02-08-90	15.56	GTEL	67,000	28,000	2,300		
	05-10-90	15.94	GTEL	69,000	24,000	2,000	4,800 4,000	11,000 12,000
	08-09-90	15.97	GTEL	100,000	33,000	2,100		
	11-13-90	16,70	CEC	110,000	33,000	2,900	4,300	13,000
	03-27-91	14.20	SAL	160,000	26,000	2,600	3,200	15,000
	06-19-91	15.83	SAL	100,000	22,000	2,000	2,500	11,000
	08-21-91	16.31	CEC	80,000	28,000	2,400	2,800	12,000

⁻⁻ Table 2 continues on next page --

		Depth-to						
lell	Date	Water	Analytical	TPH-G	В	E	T	Х
ID	Sampled	(ft)	Lab	<	parts	per billion (μg/L)	>
-3	05-10-89	14.02	SAL	70,000	12,000	1,400	9,500	8,900
•	na-no-ao ^a	15.38			•••		·	•
	11-09-89 a	15.55					•••	
	02-08-90 ^a	14.68			•••			
	05-10-90 a	15.15						
	08-09-90 a	15.27						
	11-13-90 a	16.04	•••					
	03-27-91 a	13.30					***	
	06-19-91	15.16	SAL	260,000	20,000	2,200	9,000	16,000
	08-21-91	15.61	CEC	70,000	28,000	1,800	11,000	11,000
	00-21-71	17.01	OL U	10,000	20,000	1,000	11,000	11,000
-4	05-10-89	14.93	SAL	3,600	840	120	34	200
•	08-09-89	16.65	SAL	<500	4,200	370	130	260
	08-09-89 (dup)	16.65	SAL	5,000	4,200	400	83	250
	11-09-89	16.99	SAL	14,000	6,000	53 0	70	300
	02-08-90	16.05	GTEL	12,000	5,400	460	130	320
	05-10-90	16.49	GTEL	16,000	7,400	530	120	350
	08-09-90	16.64	GTEL	21,000	7,000	550	100	320
	11-13-90	17.42	CEC	17,000	8,500	500	120	300
	03-27-91	14.66	SAL	14,000	7,700	610	75	210
	06-19-91	16.48	SAL	16,000	7,800	550	110	340
	08-21-91	17.00	CEC	18,000	11,000	450	110	340
2	05-09-89	12.11	SAL	26,000	120	250	110	1,300
-6	08-09-89	14.72	SAL	19,000	470	440	150	1,400
	11-09-89	13.85	SAL	13,000	70	36	36	440
	02-08-90	7.73	GTEL	2,900	16	10	5	58
		7.13		2,700				
	02-10- 70	14.51	GTEL	14,000	55	130	3	500
	08-09-90 11-17-00 d	14.86	GIEL	14,000		130		500
	11-13-90 d 03-27-91 d	10.43					•••	
	U3-21-91 ,	10.45	•••					
	06-19-91 ^T							
-7	05-10-89	14.73	SAL	210,000	13,000	2,000	19,000	20,000
•	08-09-89	16.36	SAL	672,000	8,700	2,700	17,000	30,000
	11-09-89	16.64	SAL	150,000	7,000	1,800	12,000	16,000
	02-08-90	15.69	GTEL	41,000	2,500	1,100	6,900	11,000
	05-10-90 C	12,07			-,500			,
	08-09-90 ,	16.31	GTEL	50,000	1,100	640	3,900	7,200
	11-13-90 d	17.09		50,000	1,100		5,700	7,200
	03-27-91 d	14.36						
	06-19-91 f	14.30						

⁻⁻ Table 2 continues on next page --

ID ID	Date	Water	Analytical	TPH-G	В	E	Ţ	X
A-1	Sampled	(ft)	Lab	<	parts p	er billion (μς	ı/L)	
A-1	05-09-89	14.56	SAL	<500	<0.5	<0.5	<0.5	<0.5
				<500 <500	<0.5	<0.5	<0.5	<0.5
	08-09-89	16.09	SAL			0.5	*0.5	·0.5
	11-09-89	15.84	SAL	<500	<0.5	<0.5	<0.5	<0.5
	02-08-90	15.05	GTEL	<50	<0.3	<0.3	<0.3	<0.6
	05-10-90	15.65	GTEL	<50	1	<0.3	<0.3	<0.6
	08-09-90	15.67	GTEL	< 5 0	<0.3	<0.3	<0.3	<0.6
	11-13-90	16.32	CEC	<50	<0.4	<0.3	<0.3	<0.4
	03-27-91	14.03	SAL	<50	0.7	<0.5	<0.5	<0.5
	06-19-91	15.56	SAL	<50	<0.5	<0.5	<0.5	<0.5
	08-21-91	15.99	CEC	<50	<0.4	<0.3	<0.3	<0.4
A-2	05-09-89	15.95	SAL	760	<0.5	1.1	<0.5	<0.5
^, =	08-09-89	17.45	SAL	<500	<0.5	<0.5	<0.5	<0.5
	11-09-89	17.41	SAL	<500	<0.5	<0.5	1	<0.5
	02-08-90	16.57	GTEL	190	<0.3	<0.3	<0.3	<0.6
	05-10-90	17.12	GTEL	<50	<0.3	<0.3	<0.3	<0.6
	08-09-90	17.20	GTEL	120	<0.3	<0.3	<0.3	<0.6
	11-13-90	17.88	CEC	160	<0.4	<0.3	1.0	<0.4
	03-27-91	15.54	SAL	110	<0.5	<0.5	<0.5	<0.5
	06-19-91	17.07	SAL	<50	<0.5	<0.5	<0.5	<0.5
	08-21-91	17.46	CEC	70	0.8	<0.3	1.4	<0.4
	45 40 40	40.70	•	.500	.0.5	.0.5	0.4	4.0
	05-09-89	18.70	SAL	<500	<0.5	<0.5	0.6	1.0
	08-09-89 ⁹	19.03						
	11-09-89 ^g	19.02						
	02-08-90	18.70	GTEL	<50	0.4	<0.3	0.3	<0.6
	05-10-90 ^g	18.98						
	08-09-90 ⁹	18.95					•••	
	11-13-90 ⁹	19.10						
	03-27-91		SAL	64	<0.5	<0.5	<0.5	1
	06-19-91 ⁹	18.95						
	08-21-91 ^g	>19.94						
ravel	05-10-89		SAL	<500	<0.5	<0.5	<0.5	<0.5
lank	08-09-89		SAL	<500	<0.5	<0.5	<0.5	<0.5
- 441 114	11-09-89		SAL	<500	<0.5	<0.5	<0.5	<0.5
	02-08-90		GTEL	<50	<0.3	<0.3	<0.3	<0.6
	05-10-90		GTEL	<50	<0.3	<0.3	<0.3	<0.6
	08-09-90		GTEL	<50	<0.3	<0.3	<0.3	<0.6
	11-13-90		CEC	< 50	<0.4	<0.3	<0.3	<0.4
	03-27-91		SAL	<50 <50	<0.5	<0.5	<0.5	<0.5
	06-19-91		SAL	<50	<0.5	<0.5	<0.5	<0.5
	08-21-91		CEC	<50	<0.4	<0.3	<0.3	<0.4

⁻⁻ Table 2 continues on next page --

TABLE 2. Analytic Results for Ground Water - Former Chevron Service Station #9-1026, 3701 Broadway, Oakland, California (continued)

Well ID	Date Sampled	Depth-to Water (ft)	Analytical Lab	TPH-G <	8 parts p	Ε per billion (μg,	τ /L)	X
Bailer	05-10-89		SAL	<500	<0.5	<0.5	<0.5	<0.5
Blank	02-08-90		GTEL	<50	<0.3	<0.3	0.3	<0.6
	03-27-91		SAL	<50	<0.5	<0.5	<0.5	0.6
DHS MCI	.s			NE	1	680	100 ^h	1,750

Abbreviations:

TPH-G = Total Petroleum Hydrocarbons as Gasoline by EPA Method 8015

B = Benzene by EPA Method 8020

E = Ethylbenzene by EPA Method 8020

T = Toluene by EPA Method 8020

X = Xylenes by EPA Method 8020

dup = Duplicate analysis

<n = Not detected at detection limit of n parts per billion</pre>

DHS MCLs = Department of Health Services Maximum Contaminant Level for Drinking Water

NE = Not established by DHS

Notes:

- a = Not sampled due to presence of floating hydrocarbons
- b = Not sampled due to large volume of evacuation water necessary
- c = Not sampled because screened interval of well needs to be
- d = Well was not sampled due to poor surface water seals
- e = A groundwater sample was analyzed for Priority Pollutant Metals; concentrations were below detection limits.

- f = Well abandoned in May 1991
 g = Not sampled because of insufficient water in the Well h = DHS Recommended Action Level for Drinking Water, MCL not established

Analytical Laboratory:

- GTEL = GTEL Environmental Laboratories, Inc. of Concord, California
- SAL = Superior Analytical Laboratories of San Francisco and Martinez, California
- CEC = Clayton Environmental Consultants of Pleasanton, California

ATTACHMENT A WATER SAMPLE COLLECTION RECORDS

WATER SAMPLING DATA
Well Name A Date 8/21/9/ Time of Sampling 1500
Job Name Chev Oakland III Job Number 4-4/8-0/ Initials PC
Sample Point Description (M = Monitoring Well)
Location NEXT TO VAL STRONGH OFFICE
WELL DATA: Depth to Water 15.99 ft (state, pumping) Depth to Product ft.
Product Thickness Well Depth 20.07 ft(sounded) Well Diameter 2 in
Initial Height of Water in Casing 4.01 ft. = volume 0.61 gal.
EVACUATION METHOD: Pump # and type Hose # and type
Bailer# and type teflen Dedicated Y (Y/N)
Other
Evacuation Time: Stop <u>1353</u>
Start /341 Formulas/Conversions
Total Evacation Time $12min$ $r = well radius in ft.$
Total Evacuated Prior to Sampling gal. h = ht of water col in ft.
Evacuation Rate gal. per minute vol. in cyl. = $\pi r^2 h$
Depth to Water during Evacuation ft time 7.48 gal/ft ³
Dopen to water sering a version
V_6 " casing = 1.47 gal/ft
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft
Calibration: 4.0 7.0 10.0
Measured: SC/μmhos pH T°C Time Volume Evacuated (gal.)
SAMPLE: Color OFF CLEAR (CLOUDY) Odor —
Description of matter in sample: FLAKY MAREGIAL Sampling Method: Decorated from dedicated bailer
Sampling Method: Decanted from dedicated bailer Sample Port: Rate gpm Totalizer gal.
Time Total Rate
of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAB
Cont. ID Type ¹ (specify) Method
3 081-A W/CV 40ml N Y HCL EPA BOIS/BOZO N CLAYION
· · · · · · · · · · · · · · · · · · ·

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

WATER SAMPLING DATA
Well Name B Date 21.91 Time of Sampling 355 / 350
Job Name OAKLAND II Job Number 4-418-01 Initials CC
Sample Point Description (M = Monitoring Well)
Location 1 50 ft FROM BEDADARY MACARAGER OF MAC SIDERALL
WELL DATA: Depth to Water 15.58 ft (Static) pumping) Depth to Product ft.
Product Thickness Well Depth 34.50ft (spec) Well Depth ft(sounded) Well Diameter 4 in
Initial Height of Water in Casing 18. 92 ft. = volume 12.35 gal.
Casing Volumes to be Evacuated. Total to be evacuated 37.06 gal.
EVACUATION METHOD: Hose # and type Hose # and type
Railer# and type 3" x 36" Dedicated N(Y/N)
Bailer# and type 3" x 36" Dedicated N (Y/N) Other SANDED L/ TENOU BAILER # 55 1.5" x 74"
Evacuation Time: Stop 345
Start 320 Formulas/Conversions
Total Evacation Time $\frac{25}{}$ r = well radius in ft.
Ideal Directation for Sampling
Evacuation Rate gal. per minute vol. in cyl. = $\pi r^2 h$
Depth to Water during Evacuation ft time 7.48 gal/ft ³
Depth to Water at Sampling ft time V ₂ " casing = 0.163 gal/ft
Evacuated Dry? After gal. Time V ₃ " casing = 0.367 gal/ft
80% Recovery = V_4 " casing = 0.653 gal/ft
% Recovery at Sample Time Time V _{4.5} " casing = 0.826 gal/ft
V_6 " casing = 1.47 gal/ft
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft
Calibration: 4.0 7.0 10.0
Measured: SC/μmhos pH T°C Time Volume Evacuated (gal.)
118
SAMPLE: Color GREY Odor
Description of matter in sample: CREY Sur
Sampling Method: Decanted / From WA teflon bailer
Sample Port: Rate gpm Totalizer gal.
Time —
of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAB
Cont. ID Type ¹ (specify) Method
3 081-B W/ev 40ml 1 y Hel EAR BOLG/BOIS N CLAYTOIT

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

WATER	SAMPLING	DATA		_						
	me		_ Date_	8/21	191	Time o	f Sampling_	16:1	4	
Job Nar	ne <u>Chav-c</u>	Dukland I	ℤ Job N	lumber	400	418-01	In	itials _	PC	
Sample	Point Descrip	otion	M							ing Well)
Location	n <u>Driveu</u>	ay to	Val	Stro	rugh	Used Ca				
WELL I	DATA: Dep	th to Wate	13,90	<u>)</u> ft (5f	atic, pu	mping)			duct	
Product	Thickness	Wel	l Depth	16,2 f	t (spec)	Well Depth 14	<u>&∥</u> ft(sound	ed) Wel	l Diamet	er <u>2</u> in
	In	itial Heigl	it of Wa	ter in (Casing	2.21	_ft. = volu	me	136	gal.
						vacuated.	Total to be	evacuat	ed <u>40</u>)8 gal.
EVACU	JATION MET						_ Hose # an	d type		
			wn≠ type 8K	142" 8	60% De	dicated N				
	O:	ther Sam	inted	with	Wh	tellon bailes	DD. 1%"	24"		
Evacuat	tion Time: St								•	
Bracaa.		art 12:59					For	nulas/Con	versions	
		otal Evaca		<u> </u>	mih			well radiu		
		otal Evacu				.5			er col in ft.	
		vacuation				gal, per m		in cyl. = 1	_	
Danel +						time		gal/ft ³		
Depin t	o Water durin	ig Evacuat	7 5 70'	10 00	11	time		-	0.163 gal/ft	
	o Water at Sa						_		0.165 gal/ft 0.367 gal/ft	
	ted Dry?		<u>- 0 </u>	gai.	Time _	72.05	-		0.653 gal/ft	
	covery =		19	Tr:-		14:15	•			
% Reco	very at Samp	ie lime	19	_ Tin	ne	10.10		_	= 0.826 gal	j to
	A						-		1.47 gal/ft	
_	CAL DATA:		nd/Nun		/_	100	V8	casing = 2	.or gailte	•
Calibra	·	4.0		_ 7.0 _	/	10.0			4 (1)	
Measure	ed:	SC/µmho:	s pH		T°C	Time	Volume E	vacuate	u (gai.)	
				-	· · ·	-				
			- <i>H [</i>	<u> </u>		<u> </u>				
			_ / _ /							
		/				<u> </u>				
		/								
	•	da.				,		.		
	E: Color	- 4684				Ode	or	serong	/	
Descrip	tion of matte	r in sampl	e: //A	er Si	1.12	teflon bo	1/c # D	D		
Sample	Port: Rate _	— gpm T	otalizer	-	<u> </u>	gal.		•		
	Time									
				9					د 5	TAD
# of	Sample	Cont.	Vol ²	Fil ³	Ref*	Preservative	Analyt Metho		Turn ⁵	LAB
Cont.	ID	Type ¹				(specify)	Metho	a		
3	081-81	w/cu	40m1	N	V	HCL	EPA 8015	8000	N	Clayton
<u> </u>		<u>w/ w</u>					1			
						_				
		· · · · · · · · · · · · · · · · · · ·								
				.——						
			-							

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

Well Name B2 Date 8 21.91 Time of Sampling /640
Job Name OAKLAND II Job Number 4-418-01 Initials OC
Sample Point Description // (M = Monitoring Well
Location WERK COCKER OF VAL STEOSCH LOT MCHETHUR Y BROADNAY
WELL DATA: Depth to Water 16.31 ft (static, pumping) Depth to Product ft
Product Thickness Well Depth/900 ft (spec) Well Depth/911 ft(sounded) Well Diameter 2 in
Initial Height of Water in Casing 2.80 ft. = volume 0.46 ga
Casing Volumes to be Evacuated. Total to be evacuated 1.36 ga
EVACUATION METHOD: Pump # and type Hose # and type
Bailer# and type tellon Dedicated Y (Y/N)
Other
Evacuation Time: Stop 1302
Start 1250 Formulas/Conversions
Total Evacation Time 12 min r = well radius in ft.
Total Evacuated Prior to Sampling 1, 5 gal. h = ht of water col in ft.
Evacuation Rate gal. per minute vol. in cyl. = $\pi r^2 h$
Depth to Water during Evacuation ft time 7.48 gal/ft ³
Depth to Water at Sampling 18.40 ft. 16.40 time V_2 " casing = 0.163 gal/ft
Evacuated Dry? After _/_ gal. Time $/302$
80% Recovery =
% Recovery at Sample Time Time V _{4.5} " casing = 0.826 gal/ft
V ₆ " casing = 1.47 gal/ft
CHEMICAL DATA: Meter Brand/Number
Calibration: 4.0 7.0 10.0
Cantifation. ————————————————————————————————————
Macoured: SC/umbos nH T/C Time Volume Evacuated (931)
Measured: SC/μmhos pH T/C Time Volume Evacuated (gal.)
Measured: SC/μmhos pH T/C Time Volume Evacuated (gal.)
Measured: SC/μmhos pH T/C Time Volume Evacuated (gal.)
Measured: SC/μmhos pH T/C Time Volume Evacuated (gal.)
Measured: SC/μmhos pH T/C Time Volume Evacuated (gal.)
Measured: SC/μmhos pH T/C Time Volume Evacuated (gal.)
SAMPLE: Color Geet Odor
SAMPLE: Color Grey OdorOdorOdor
SAMPLE: Color Grey Odor
SAMPLE: Color Grey OdorOdorOdor
SAMPLE: Color Grey Odor Description of matter in sample: Crey Product Sampling Method: Decarted From terion dedicated bailer Sample Port: Rate — gpm Totalizer — gal. Time—
SAMPLE: Color Grey Odor Description of matter in sample: Cray Preservative Analytic Turn ⁵ LAB
SAMPLE: Color
SAMPLE: Color Grey Odor Description of matter in sample: Cray Preservative Analytic Turn ⁵ LAB
SAMPLE: Color

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

WATER SAMPLING DATA
Well Name B3 Date B. 21. 91 Time of Sampling 1615 1110
Job Name CAKLAND III . Job Number 4- 418-01 Initials CP
Sample Point Description (M = Monitoring Well)
Location = 40 Pt NORTH OF MARKETHUR BROMONTY CORNE
WELL DATA: Depth to Water 15.61 ft (static, pumping) Depth to Product ft.
Product Thickness Well Depth 1890ft (spec) Well Depth 1900 ft (sounded) Well Diameter 2 in
Initial Height of Water in Casing 3.39 ft. = volume 0.55 gal.
Casing Volumes to be Evacuated. Total to be evacuated 1.66 gal.
EVACUATION METHOD: WATER Pump # and type Hose # and type
Bailer# and type $\frac{\sqrt{.5''} \times 60''}{}$ Dedicated $\frac{N}{}$ (Y/N)
Other SAMPLED W/ WA PERON BAILER # AA
Evacuation Time: Stop 1226 421
Start 1220 412 Formulas/Conversions
Total Evacation Time $\frac{6+9=15}{}$ r = well radius in ft.
· · · · · · · · · · · · · · · · · · ·
Evacuation Rate 0.07 gal. per minute vol. in cyl. = $\pi r^2 h$
Depth to Water during Evacuation 16.68 ft. 1720 time 7.48 gal/ft ³
Depth to Water at Sampling ft time V_2 " casing = 0.163 gal/ft
Evacuated Dry? 15 After gal. Time 1276 V ₃ " casing = 0.367 gal/ft
80% Recovery =
% Recovery at Sample Time Time V _{4.5} " casing = 0.826 gal/ft
V_6 " casing = 1.47 gal/ft
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft
Calibration: 4.0 7.0 10.0
Measured: SC/μmhos pH The Volume Evacuated (gal.)
SAMPLE: Color GREY COLOR Odor
Description of matter in sample: GREY PARTICLE
Sampling Method: WA#? TERLOW
Sample Port: Rate gpm Totalizer gal.
Time —
of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAB
Cont. ID Type ¹ (specify) Method
3 081-B3 W/cV 40 ml N Y HeL EM 6015/8020 N CLAYION

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

WATER SAMPLING DATA
Well Name <u>B4</u> Date <u>B.21.91</u> Time of Sampling
Job Name OAKLAND II Job Number 4-418-01 Initials CC
Sample Point Description (M = Monitoring Well)
Location 2 10 ft OFF SIDENALL ON BROADWAY ENFRENCE TO VAL STROUGHS USED CAR
WELL DATA: Depth to Water 1700 ft (static, pumping) Depth to Product ft.
Product Thickness — Well Depth 185/ft (spec) Well Depth 20.5/ft (sounded) Well Diameter 2 in
Initial Height of Water in Casing 3.57 ft. = volume 0.58 gal.
Casing Volumes to be Evacuated. Total to be evacuated 1.75 gal.
EVACUATION METHOD: WAH Pump # and type Hose # and type
Bailer# and type PVC Dedicated (Y/N)
Other SAMPLED WILL UNMARKED TEFLOW BAILER
Evacuation Time: Stop <u>116</u>
Start 204 Formulas/Conversions
Total Evacation Time /2 r = well radius in ft.
Total Evacuated Prior to Sampling / gal. h = ht of water col in ft.
Depth to Water at Sampling $\frac{14.49}{ft}$ ft time V_2 " casing = 0.163 gal/ft
Evacuated Dry? /S After gal. Time 216 V ₃ " casing = 0.367 gal/ft
80% Recovery = V_4 " casing = 0.653 gal/ft
% Recovery at Sample Time Time V _{4.5} " casing = 0.826 gal/ft
V_6 " casing = 1.47 gal/ft
CHEMICAL DATA: Meter Brand/Number
Calibration: 4.0 7.0 10.0
Measured: SC/μmhos pH T Time Volume Evacuated (gal.)
SAMPLE: Color Cloud Odor — Odor —
Description of matter in sample: buttone Co FLACY MATEGIAL
Sampling Method: WAH TEFLON DNMARKED
Sample Port: Rate — gpm Totalizer — gal. Time — gal.
of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAB
Cont. ID Type ¹ (specify) Method
2 ADE OF WAY IN IN I HAVE CON RECEIBAGE IN PLAYON
3 081-84 W/CV 40ml N 4 HCL EVA BOIS/BOZO IN CLAYTON

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined:

^{2 =} Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

WATER SAMPLING DATA	
	Time of Sampling 14/18
Job Name Chay-Oakland III Job Number 4- 418-0	Initials PC
Sample Point Description	(M = Monitoring Well)
Location Median Strip on Mac Arthur.	
WELL DATA: Depth to Water 15.99 ft (static) pumping)	Depth to Product ft.
Product Thickness Well Depth 30.2 ft (spec) Well Dep	oth 30.55 ft(sounded) Well Diameter 4 in
Initial Height of Water in Casing	$\frac{1}{6}$ ft. = volume $\frac{9:5}{}$ gal.
EVACUATION METHOD: Pump # and type	Hose # and type
all melling men	
	7 (1/1/)
Other	· · · · · · · · · · · · · · · · · · ·
Evacuation Time: Stop	
Start <u>13:54</u>	Formulas/Conversions
Total Evacation Time	r = well radius in ft.
Total Evacuated Prior to Sampling2	
Evacuation Rate 2,64 gal.	per minute vol. in cyl. = $\pi r^2 h$
Depth to Water during Evacuation ft	time 7.48 gal/ft ³
Depth to Water at Sampling 14:18 ft. 16:03	time V_2^* casing = 0.163 gal/ft
Evacuated Dry? No After gal. Time	V ₃ " casing = 0.367 gal/ft
80% Recovery =	V ₄ " casing = 0.653 gal/ft
% Recovery at Sample Time Time	V _{4.5} " casing = 0.826 gal/ft
With the state of	V ₆ " casing = 1.47 gal/ft
CURNICAL DATA: Motor Brond (Number	V8 casing = 2.61 gal/ft
CHEMICAL DATA: Meter Brand/Number Calibration: 4.0 7.0 10.0	To casing - 2.01 gai/te
	Volume Evacuated (gal)
Measured: $SC/\mu mhos$ pH $T^{\circ}C$ Time	Volume Evacuated (gal.)
	
<u> </u>	
<i>N</i>	
	<u> </u>
· <u>/</u>	
SAMPLE: Color Tan	Odor None
Description of matter in sample: Fine silt	
	<u>bai</u> ler
Sample Port: Rate gpm Totalizer	gal.
Time	
# of Sample Cont. Vol ² Fil ³ Ref ⁴ Preserve	ative Analytic Turn ⁵ LAB
Cont. ID Type ¹ (specif	
3 081-EAI WEN 40MI N Y HEL	
•••	

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

WATER SAMPLING DATA	
Well Name $FA-2$ Date $8/2//9/$ Time of Sa	ampling 15377
Job Name Chen-Occuland III Job Number 4-4/8-01	Initials PC
Sample Point Description	(M = Monitoring Well)
Location Medican strip on Broadway	
	Depth to Product ft.
Product Thickness Well Depth 30.10 ft (spec) Well Depth 30.14	
Initial Height of Water in Casing	
Casing Volumes to be Evacuated. Tot	al to be evacuated 24.84 gal
EVACUATION METHOD: Pump # and type H	
Bailer# and type 3'x 36" PUC Dedicated V	(1/14)
Other	
Evacuation Time: Stop	
Start	Formulas/Conversions
Total Evacation Time 15 min	r = well radius in ft.
Total Evacuated Prior to Sampling ga	h = ht of water col in ft.
Evacuation Rate gal. per minut	te vol. in cyl. = $\pi r^2 h$
Depth to Water during Evacuation ft. D17-17 time	7.48 gal/ft ³
Depth to Water at Sampling 25.18 ft. 15:176ime	V_2 " casing = 0.163 gal/ft
Evacuated Dry? No After _ gal. Time	V_3 " casing = 0.367 gal/ft
80% Recovery =	V_4 " casing = 0.653 gal/ft
% Recovery at Sample Time Time	V _{4.5} " casing = 0.826 gal/ft
70 1000 vor y at Sample 11me	V ₆ " casing = 1.47 gal/ft
CHEMICAL DATA: Motor Drond/Number	V8 casing = 2.61 gal/ft
CHEMICAL DATA: Meter Brand/Number Calibration: 4.0 7.0 10.0	vo casing - 2.01 gayre
	Aluma Tue everted (gel)
Measured: $SC/\mu mhos$ pH $T^{\circ}C$ Time V	olume Evacuated (gal.)
	
	•
· <u> </u>	
	None
Description of matter in sample: Beauty Sul	
Sampling Method: <u>sampling</u> <u>port</u> on <u>dedicated</u> ban Sample Port: Rate gpm Totalizer gal.	ter .
Sample Port: Rate gpm Totalizer gal.	
THIC	
# of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative	Analytic Turn ⁵ LAB
Cont. ID Type ¹ (specify)	Method
3 081-EAZ W/C4 40M1 N Y HCL	6 AA 80/5/8020 N Clayton

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

Well Name \vec{F} Date $8/22/9/$ Time of	not sampled - lact
Well Name \underline{F} Date $8/22/9/$ Time of	of Sampling wester in well
Job Name Char-Oak and The Job Number 4-418-01	Initials PC
Sample Point Description	(M = Monitoring Well)
Location Left lane on MacArthur	
WELL DATA: Depth to Water/9.02 ft (static) pumping)	Depth to Product ft.
Product Thickness Well Depth ft (spec) Well Depth	
	ft. = volume gal.
7 0 = = = = = = = = = = = = = = = = = =	Total to be evacuatedgal.
	-
ω_{B}	Hose # and type
	(Y/N)
Other	
Evacuation Time: Stop 13143	-
Start	Formulas/Conversions
Total Evacation Time mih	$\mathbf{r} = \mathbf{well} \ \mathbf{radius} \ \mathbf{in} \ \mathbf{ft}.$
Total Evacuated Prior to Sampling	gal. h = ht of water col in ft.
Evacuation Rate gal. per m	
Depth to Water during Evacuation ft time	7.48 gal/ft ³
Depth to Water at Sampling ft time	V ₂ " casing = 0.163 gal/ft
Evacuated Dry? Ves After 1 gal. Time 13:43	V ₃ " casing = 0.367 gal/ft
80% Recovery = 19.20	-
	V ₄ " casing = 0.653 gal/ft
% Recovery at Sample Time Time	V _{4.5} " casing = 0.826 gal/ft
	V ₆ " casing = 1.47 gal/ft
CHEMICAL DATA: Meter Brand/Number	V8 casing = 2.61 gal/ft
Calibration: 4.0 7.0 10.0	
Measured: $SC/\mu mhos$ pH $T^{\circ}Q$ Time	Volume Evacuated (gal.)
	·
	
SAMPLE: Color Odd	or
Description of matter in sample:	
Sampling Method:	
Sampling Method:	
Sampling Method:	
Sampling Method: Sample Port: Rate gpm Totalizer gal. Time	Analytic Turn ⁵ LAB
Sampling Method: Sample Port: Rate gpm Totalizer gal. Time gal. # of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative	Analytic Turn ⁵ LAB Method
Sampling Method: Sample Port: Rategpm Totalizergal. # of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative (specify)	Method
Sampling Method: Sample Port: Rate gpm Totalizer gal. Time # of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative	Method
Sampling Method: Sample Port: Rategpm Totalizergal. # of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative (specify)	Method
Sampling Method: Sample Port: Rategpm Totalizergal. # of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative (specify)	Method
Sampling Method: Sample Port: Rategpm Totalizergal. # of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative (specify)	Method
Sampling Method: Sample Port: Rategpm Totalizergal. # of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative (specify)	Method
Sampling Method: Sample Port: Rategpm Totalizergal. # of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative (specify)	Method
Sampling Method: Sample Port: Rategpm Totalizergal. # of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative (specify)	Method

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

WATER SAMPLING DATA
Well Name Date 8/81/91 Time of Sampling 08:00 Job Name Chauser Oakiand III Job Number 4-410-01 Initials PC
Sample Point Description (M = Monitoring Well
Location
WELL DATA: Depth to Water ft (static, pumping) Depth to Product ft
Product Thickness Well Depth ft (spec) Well Depth ft (sounded) Well Diameter in
Initial Height of Water in Casingft. = volumegal
Casing Volumes to be Evacuated. Total to be evacuated gal
EVACUATION METHOD: Pump # and type Hose # and type
Bailer# and type Dedicated(Y/N)
Other
Evacuation Time: Stop
Start
Total Evacation Time r = well radius in ft.
Total Evacuated Prior to Sampling gal. h = ht of water col in ft.
Evacuation Rate $\frac{1}{2}$ and $\frac{1}{2}$ are minute $\frac{1}{2}$ vol in cyl = $\frac{1}{2}$
Depth to Water during Evacuation ft time
Depth to Water at Sampling $f(t)$ time V_2^* casing = 0.163 gal/ft
Evacuated Dry? After gal V Time V ₃ " casing = 0.367 gal/ft
80% Recovery =
% Recovery at Sample Time Time V _{4.5} " casing = 0.826 gal/ft
V_6 " casing = 1.47 gal/ft
CHEMICAL DATA: Meter Brand/Number V8 casing = 2.61 gal/ft
Calibration: 4.0 7.0 10.0
Measured: SC/μmhos pH T°C Time Volume Evacuated (gal.)
·
SAMPLE: Color Odor
Description of matter in sample: Sampling Method:
Sample Port: Rate gpm Totalizer gal.
Time
of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAB
of Sample Cont. Vol ² Fil ³ Ref ⁴ Preservative Analytic Turn ⁵ LAB Cont. ID Type ¹ (specify) Method
3 081-21 W/W 40M/ N 4 HCL EM 8015/8020 N Clayte
<u> </u>

¹ Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

Bailer Blanks

	i	Λ	L
WEISS ASSOCIATES			6

WATER SAMPLING DATA	69
Well Name B Date 8/21/91	Time of Sampling 49 17:43
Job Name Cheuron-Oaklas ATT Job Number 4-418-01	Initials PC
Sample Point Description Com —	
Location	
WELL DATA: Depth to Water ft (static, pumping)	Depth to Product ft.
Product Thickness Well Depth ft (spec) Well De	
	ft. = volumegal.
	i. Total to be evacuated gal.
EVACUATION METHOD: Pump # and type	Hose # and type
Bailer# and type JJ, 18" v24" Dedicated	(1/N)
Otherteflor	
Evacuation Time: Stop	
\Start	Formulas/Conversions
Total Evacation Time	r = well radius in ft.
Total Evacuated Prior to Sampling	gal. h = ht of water col in ft.
Evacuation Rate gal	1. per minute vol. in cyl. = $\pi r^2 h$
Depth to Water during Evacuationft.	time 7.48 gal/ft ³
Depth to Water at Sampling ft.	
Evacuated Dry? After gal. Time	
80% Recovery =	V _A " casing = 0.653 gal/ft
% Recovery at Sample Time	V _{4.5} " casing = 0.826 gal/ft
w Recovery at Sample Time	V ₆ " casing = 1.47 gal/ft
CHEMICAL DATA: Nove Beard of Street	-
CHEMICAL DATA: Meter Brand/Number	V8 casing = 2.61 gal/ft
Calibration: 4.0 7.0 10.0	W. 1. (2)
Measured: $SC/\mu mhos/pH$ T°C Time	Volume Evacuated (gal.)
·/	
	_
SAMPLE: Color Clear	Odor None
Description of matter in sample: None	The four trail alletin container
Sampling Method: Pourch from According Discilled Sample Port: Rate — gpm Totalizer —	gal. MIL EXP 07/16/93
Time — gpin Totatizet —	gal. MIL EXP 07/16/93
# of Sample Cont. Vol ² Fil ³ Ref ⁴ Preserv	
Cont. ID Type ¹ (spec	ify) Method
3 06/ 22 1/ 101/ 11 11	- Hold Churton
3 081-22 w/cv 40n/ N Y HC	1 - Mold - Chayton
	

¹ Sample Type Codes: W = Water, S = Soil, Describe Other 1 Sample Type Codes: W = Water, S = Soil, Describe Other
Container Type Codes: V = VOA/Teflon Septa, P = Plastic, C or B = Clear/Brown Glass, Describe Other
Cap Codes: PT = Plastic, Teflon lined;
2 = Volume per container; 3 = Filtered (Y/N); 4 = Refrigerated (Y/N)
5 Turnaround [N = Normal, W = 1 week, R = 24 hour, HOLD (spell)]
ADDITIONAL COMMENTS, CONDITIONS, PROBLEMS:

$\label{eq:attachmentb} \textbf{ANALYTIC REPORT AND CHAIN-OF-CUSTODY FORMS}$

1252 Quarry Lane Pleasanton, CA 94566 (415) 426-2600 Fax (415) 426-0106

September 6, 1991

Ms. Mariette Shin WEISS ASSOCIATES 5500 Shellmound St. Emeryville, CA 94608

> Client Ref. 91026/4-418-01 Clayton Project No. 91082.22

Dear Ms Shin:

Attached is our analytical laboratory report for the samples received on August 22, 1991. A copy of the Chain-of-Custody form acknowledging receipt of these samples is attached.

Please note that any unused portion of the samples will be disposed of 30 days after the date of this report, unless you have requested otherwise.

We appreciate the opportunity to be of assistance to you. If you have any questions, please contact Maryann Gambino, Client Services Supervisor, at (415) 426-2657.

Sincerely,

Ronald H. Peters, CIH

Director, Laboratory Services

Western Operations

RHP/tb

Attachments

Page 2 of 18

Results of Analysis for Chevron U.S.A., Inc./ Weiss Associates

Client Reference: 91026/4-418-01 Clayton Project No. 91082.22

Sample Identification: Lab Number:	081-A 9108222-01A	Date Sampled: Date Received:	08/22/91
Sample Matrix/Media:	WATER	Date Prepared:	
Preparation Method:	EPA 5030	Date Analyzed:	09/03/91
3	PD3 0015/0000		

Analytical Method: EPA 8015/8020

Analyte	CAS #	Concentration (ug/L)	Limit of Detection (ug/L)
BTEX/Gasoline			
Benzene	71-43-2	620	0.4
Toluene	108-88-3	23	0.3
Ethylbenzene	100-41-4	85	0.3
Xylenes	1330-20-7	200	0.4
Gasoline	<u></u>	6,800	50

ND Not detected at or above limit of detection -- Information not available or not applicable

Page 3 of 18

Results of Analysis for Chevron U.S.A., Inc./ Weiss Associates

Client Reference: 91026/4-418-01 Clayton Project No. 91082.22

Sample Identification:	081-B	Date Sampled:	08/21/91
Lab Number:	9108222-02A	Date Received:	08/22/91
Sample Matrix/Media:	WATER	Date Prepared:	08/30/91
Preparation Method:	EPA 5030	Date Analyzed:	08/30/91
Analytical Method:	EPA 8015/8020		

Analyte	CAS #	Concentration (ug/L)	Limit of Detection (ug/L)
BTEX/Gasoline			
Benzene	71-43-2	4,900	20
Toluene	108-88-3	270	20
Ethylbenzene	100-41-4	390	20
Xylenes	1330-20-7	640	20
Gasoline		16,000	3,000

ND Not detected at or above limit of detection -- Information not available or not applicable

Detection limits increased due to dilution necessary for quantitation.

Page 4 of 18

Results of Analysis for Chevron U.S.A., Inc./ Weiss Associates

Client Reference: 91026/4-418-01 Clayton Project No. 91082.22

Sample Identification:081-B1Date Sampled:08/21/91Lab Number:9108222-03ADate Received:08/22/91Sample Matrix/Media:WATERDate Prepared:09/29/91Preparation Method:EPA 5030Date Analyzed:08/29/91

Analytical Method: EPA 8015/8020

Analyte	CAS #	Concentration (ug/L)	Limit of Detection ((ug/L)
BTEX/Gasoline			
Benzene	71-43-2	2,400	40
Toluene	108-88-3	610	30
Ethylbenzene	100-41-4	300	30
Xylenes	1330-20-7	1,800	40
Gasoline		50,000	5,000

ND Not detected at or above limit of detection -- Information not available or not applicable

a Detection limits increased due to dilution necessary for quantitation.

Page 5 of 18

Results of Analysis for Chevron U.S.A., Inc./ Weiss Associates

Client Reference: 91026/4-418-01 Clayton Project No. 91082.22

Sample Identification:081-B2Date Sampled:08/21/91Lab Number:9108222-04ADate Received:08/22/91Sample Matrix/Media:WATERDate Prepared:08/28/91Preparation Method:EPA 5030Date Analyzed:08/28/91

Analytical Method: EPA 8015/8020

Analyte	CAS #	Concentration (ug/L)	Limit of Detection (ug/L)
BTEX/Gasoline			
Benzene	71-43-2	28,000	80
Toluene	108-88-3	2,800	60
Ethylbenzene	100-41-4	2,400	60
Xylenes	1330-20-7	12,000	80
Gasoline		80,000	10,000

ND Not detected at or above limit of detection -- Information not available or not applicable

a Detection limits increased due to dilution necessary for quantitation.

Page 6 of 18

Results of Analysis for Chevron U.S.A., Inc./ Weiss Associates

Client Reference: 91026/4-418-01 Clayton Project No. 91082.22

08/21/91 Sample Identification: 081-B3 Date Sampled: Date Received: 08/22/91 Lab Number: 9108222-05A Date Prepared: 08/29/91 Sample Matrix/Media: WATER 08/29/91 Date Analyzed: Preparation Method: EPA 5030 EPA 8015/8020 Analytical Method:

Analyte	CAS #	Concentration (ug/L)	Limit of Detection (ug/L)
BTEX/Gasoline			
Benzene	71-43-2	28,000	80
Toluene	108-88-3	11,000	60
Ethylbenzene	100-41-4	1,800	60
Xylenes	1330-20-7	11,000	80
Gasoline		70,000	10,000

ND Not detected at or above limit of detection -- Information not available or not applicable

a Detection limits increased due to dilution necessary for quantitation.

of 18 Page 7

Results of Analysis for Chevron U.S.A., Inc./ Weiss Associates

Client Reference: 91026/4-418-01 Clayton Project No. 91082.22

Date Sampled: Sample Identification: 081-B4 08/21/91 Date Received: 08/22/91 Lab Number: 9108222-06A 08/30/91 Sample Matrix/Media: Date Prepared: WATER 08/30/91 Preparation Method: Date Analyzed: EPA 5030 EPA 8015/8020 Analytical Method:

Analyte	CAS #	Concentration (ug/L)	Limit of Detection (ug/L)
Analyce	сло п	(49/2)	
BTEX/Gasoline			
Benzene	71-43-2	11,000	0.4
Toluene	108-88-3	110	0.3
Ethylbenzene	100-41-4	450	0.3
Xylenes	1330-20-7	340	0.4
Gasoline		18,000	50

Not detected at or above limit of detection ND Information not available or not applicable

Page 8 of 18

Results of Analysis for Chevron U.S.A., Inc./ Weiss Associates

Client Reference: 91026/4-418-01 Clayton Project No. 91082.22

Sample Identification:	081-EA1	Date Sampled:	08/21/91
Lab Number:	9108222-07A	Date Received:	08/22/91
Sample Matrix/Media:	WATER	Date Prepared:	08/30/91
Preparation Method:	EPA 5030	Date Analyzed:	08/30/91
Analytical Method:	EPA 8015/8020		

Analyte	CAS #	Concentration (ug/L)	Limit of Detection (ug/L)
BTEX/Gasoline			
Benzene	71-43-2	ND	0.4
Toluene	108-88-3	ND	0.3
Ethylbenzene	100-41-4	ND	0.3
Xylenes	1330-20-7	ND	0.4
Gasoline		ИD	50

ND Not detected at or above limit of detection -- Information not available or not applicable

Page 9 of 18

Results of Analysis for Chevron U.S.A., Inc./ Weiss Associates

Client Reference: 91026/4-418-01 Clayton Project No. 91082.22

Sample Identification:081-EA2Date Sampled:08/21/91Lab Number:9108222-08ADate Received:08/22/91Sample Matrix/Media:WATERDate Prepared:08/28/91Preparation Method:EPA 5030Date Analyzed:08/28/91

Analytical Method: EPA 8015/8020

Analyte	CAS #	Concentration (ug/L)	Limit of Detection (ug/L)
BTEX/Gasoline			
Benzene	71-43-2	0.8	0.4
Toluene	108-88-3	1.4	0.3
Ethylbenzene	100-41-4	ND	0.3
Xylenes	1330-20-7	ND	0.4
Gasoline		70	50

ND Not detected at or above limit of detection -- Information not available or not applicable

Page 10 of 18

0.4

50

Results of Analysis for Chevron U.S.A., Inc./ Weiss Associates

Client Reference: 91026/4-418-01 Clayton Project No. 91082.22

Sample Identification: 081-21 Date Sampled: 08/21/91 Date Received: 08/22/91 Lab Number: 9108222-09A 08/29/91 Sample Matrix/Media: WATER Date Prepared: 08/29/91 Preparation Method: EPA 5030 Date Analyzed: Analytical Method: EPA 8015/8020

Limit of Concentration Detection CAS # (ug/L) (ug/L) Analyte BTEX/Gasoline 0.4 Benzene 71-43-2 ND 0.3 Toluene 108-88-3 ND 0.3 ND Ethylbenzene 100-41-4

1330-20-7

ND

ND

ND Not detected at or above limit of detection -- Information not available or not applicable

Xylenes

Gasoline

Page 11 of 18

Results of Analysis for Chevron U.S.A., Inc./ Weiss Associates

Client Reference: 91026/4-418-01 Clayton Project No. 91082.22

Sample Identification: METHOD BLANK Date Sampled: -Lab Number: 9108222-11A Date Received: --

Sample Matrix/Media: WATER Date Prepared: 08/29/91 Preparation Method: EPA 5030 Date Analyzed: 08/29/91

Analytical Method: EPA 8015/8020

Analyte	CAS #	Concentration (ug/L)	Limit of Detection (ug/L)
BTEX/Gasoline			
Benzene	71-43-2	ND	0.4
Toluene	108-88-3	ND	0.3
Ethylbenzene	100-41-4	ND	0.3
Xylenes	1330-20-7	ND	0.4
Gasoline		ND	50

ND Not detected at or above limit of detection -- Information not available or not applicable

Page 12 of 18

Results of Analysis for Chevron U.S.A., Inc./ Weiss Associates

Client Reference: 91026/4-418-01 Clayton Project No. 91082.22

Sample Identification: 081-B1

Lab Number:

Sample Matrix/Media:

9108222-03D

WATER Analytical Method:

See below

Date Sampled: 08/21/91 Date Received: 08/22/91

Date Analyzed: See below

Date Analyzed	Method No.	00110011		Limit of Detection (mg/L)
Priority Poll	lutant Metals			-
09/03/91	6010	Antimony	<0.02	0.02
09/04/91	7060	Arsenic	<0.005	0.005
09/03/91	6010	Beryllium	<0.005	0.005
09/03/91	6010	Cadmium	<0.005	0.005
09/03/91	6010	Chromium	<0.005	0.005
09/03/91	6010	Copper	<0.02	0.00
09/05/91	7421a	Lead	<0.01	0.01
09/05/91	7470	Mercury	<0.0005	0.0005
09/03/91	6010	Nickel	<0.01	0.0003
09/04/91	7740	Selenium	<0.005	0.005
09/03/91	6010	Silver	<0.01	0.003
09/03/91	6010	Thallium	<0.01	0.05
09/03/91	6010	Zinc	<0.01	0.01

< Less than, below limit of detection

Information not available or not applicable

Sample analyzed by EPA 6010

Page 13 of 18

Results of Analysis for Chevron U.S.A., Inc./ Weiss Associates

Client Reference: 91026/4-418-01 Clayton Project No. 91082.22

Sample Identification: METHOD BLANK

Date Sampled:

Lab Number:

9108222-11A

Date Received:

WATER

Date Analyzed: See below

Sample Matrix/Media: Analytical Method:

See below

Date Analyzed	Method No.	Analyte	Concentration (mg/L)	Limit of Detection (mg/L)
Priority Poll	lutant Metals			
09/03/91	6010	Antimony	<0.02	0.02
09/04/91	7060	Arsenic	<0.005	0.005
09/03/91	6010	Beryllium	<0.005	0.005
09/03/91	6010	Cadmium	<0.005	0.005
09/03/91	6010	Chromium	<0.005	0.005
09/03/91	6010	Copper	<0.02	0.02
09/04/91	7421a	Lead	<0.01	0.01
09/05/91	7470	Mercury	<0.0005	0.0005
09/03/91	6010	Nickel	<0.01	0.01
09/04/91	7740	Selenium	<0.005	0.005
09/03/91	6010	Silver	<0.01	0.01
09/03/91	6010	Thallium	<0.05	0.05
09/03/91	6010	Zinc	<0.01	0.01

< Less than, below limit of detection

Information not available or not applicable

Sample analyzed by EPA 6010

Quality Assurance Results Summary for Clayton Project No. 91082.22

Clayton Lab Number: Ext./Prep, Method;

9108222-07A

Date:

11

Analyst: Std. Source:

V910806-01W

Analytical Method:

EPAB015 8020

Instrument ID: Date:

05587 08/30/91

Analyst:

PF

Sample Matrix/Media: Units:

WATER UG/L

Analyte	· · · · · · · · · · · · · · · · · · ·	Sample Result	Spike Level	Matrix Spike Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
BENZENE	(PID)	ND	7. 37	7. 29	99	7. 42	101	100	83	117	1.8	10
GASOLINE	(FID)	ND	200	197	99 .	200	100	99	65	132	1.5	13
TOLUENE	(PID)	ND	23. 1	22. 5	97	23. 0	100	98	84	118	2. 2	11

Quality Assurance Results Summary for Clayton Project No. 91082, 22

Clayton Lab Number: Ext./Prep. Method: Date:

Analyst:

Std. Source:

9108205-01A EPA3010 HYW

09/03/91

Analytical Method: Instrument ID: Date: Analysi: Sample Matrix/Media: Units:

EPA6010 03891 09/03/91 12F WATER

YHG10140

							Units:				WATEL MG/I
Analyte	Sample Result	Spike Level	Matrix Spike Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery		LCL	ÜCL	RPD	UCL
ALUMINUM	ND					(%)	(% R)	(% R)	(% R)	(%)	(%RPD)
ANTIMONY	HD	2. 00	1.91	96	1. 95	98	97	75	105		·
ARSENIC		2. 00	1. 91	96	1. 93	97	96		125	2. 1	
BARIUM	ND	2.00	1.85	93	1.87	94		74	120	1. 0	15
BERYLLIUM .	ND	2. 00	1.88	94	1. 94		93	75	125	1. 1	20
BORON	ND	2. 00	1. 96	98		97	96	72	121	3. 1	15
	ND	2. 00	1. 66	83	2. 01	101	99	71	114	2. 5	15
CADMIUM	ND	2. 00	1. 89		1. 83	92	B7	75	125	9. 7	20
CALCIUM	19. 6	2. 00		95	1. 92	96	95	78	118	1. 6	15
CHROMALUM	ND		SOR	SOR	SOR	SOR	SOR	75	125	SOR	
COBALT	ND	2. 00	1.89	95	1. 93	97	96	77	123		20
COPPER	•	2. 00	1.88	94	1. 92	96	95			2. 1	15
RON	0. 0300	2. 00	1.89	93	1. 98	98		76	121	2. 1	15
EAD	0. 120	2. 00	2. 06	97	2. 09		95	78	118	4.7	15
	ND	2. 00	1. 91	96		99	98	78	118	1.4	15
THIUM	ND	2. 00	1. 87	94	1. 94	97	96	74	121	1. 6	15
AGNESTUM	4. 06	2. 00	6. 14		1. 94	97	95	75	125	3. 7	20
ANGANE SE	ND	2. 00		104	6. 18	106	105	75	125	0. 7	20
OL YBDE NUM	ND	2. 00	1. 91	96	1. 96	98	97	87	113	2.6	15
CKEL	ND		1. 91	96	1. 95	98	97		125	2. 1	
PTASSIUM	ND	2. 00	1.86	93	1. 91	96	94	-	118		15
LENIUM		20. 0	19. 5	97	20. 2						15
LVER	ND	2. 00	1. 92	96						3. 4	15
	ND	2.00	1. 89	95					125	1. 6	20
			<u> </u>	•	1, 33	97	96	75 1	20	2. 1	15

Clayton Lab Number: Ext./Prep, Method: Date: Analyst: Std. Source:	9108205-01A EPA3010 09/03/91 HYW VHG10140	EPA3010 09/03/91 HYW					Page 16 Analytical Method: Instrument ID: Date: Analyst: Sample Matrix/Media: Units:				EPAS 03891 09/03/91 JSL WATER MG/L	
SODIUM		12.0	2. 00	SOR	ROZ	\$0R	SOR	SOR	75	125	SOR	20
STRONTIUM		0.0800	2. 00	1,85	89.	1. 90	91	90	75	125	2. 7	7 20
THALLIUM		ND	2. 00	1.88	94	1. 91	96	95	63	128	1. 6	5 15
TIN		ND	2. 00	1.95	98	1. 97	99	98	75	125	1.0	0 20
TITANIUM		ND	2.00	1.86	93	1. 91	96	94	75	125	2. 7	7 20
VANAD IUM		ND	2. 00	1.84	92	1. 88	94	93	79	11B	2. 2	2 15
71NC		0.0600	2 00	2 04	99	2 08	101	100	77	193	1 0	15

Quality Assurance Results Summary for Clayton Project No. 91082, 22

Clayton Lab Number: Ext./Prep. Method:

9108222-03D EPA206_2/270_2 09/04/91

Date: Analyst: SUE

Std. Source:

B 426141/404183

Analytical Method: Instrument 1D;

EPA206_2/270_2

07467 09/04/91

Date:

Analyst:

SUE WATER

Sample Matrix/Media: Units:

MG/L

Analyte	Sample Result	Spike Level	Matrix Spike Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
ARSENIC	ND	0. 200	0. 157	79	0. 143	.72	75	67	126	9. 3	15
SELENIUM	ND .	0. 200	0.191	96	0. 186	93	94	47	132	2. 7	20

Quality Assurance Results Summary for Clayton Project No. 91082.22

Clayton Lab Number: Ext./Prep. Method:

9108312-02B EPA245 1 09/05/91

Date: Analyst: Std. Source: SUE EM MX0399-1

Date: Analyst: Units:

EPA245 1 Analytical Method: Instrument ID: 05581 09/05/91 SUE WATER Sample Matrix/Media: MG/L

Analyte	Sample Result	Spike Level	Matrix Spike Result	MS Recovery (%)	Matrix Spike Duplicate Result	MSD Recovery (%)	Average Recovery (% R)	LCL (% R)	UCL (% R)	RPD (%)	UCL (%RPD)
MERCURY	ND .	0. 0100	0.00950	95	0.00960	96	96	74	117	1.0	17

Fax cop	y of l							/ron	Co	ntac	t:										tody-Rec
Chevron U.S P.O. BOX 5 San Ramon, C FAX (415)84	5004 A 94583	Consu Consu Ad	Facility Itant Pro Itant Nan Idress	r Address Ject Num ne <u>& OC</u> ntoct (No	. <u>Ma</u> . Jeiss S. Jenne)	91026 cArthur 4-418- Assoc hell mou Mariet)547-542	1 Bro 01 iate und c 51	is tin	mery	ville,		- L - L - S	aborator aborator amples collection	y Name y Relea Collects)_4 Say ber lome)_1 /21/	15] ton 4 Paul	84 En 0450 Caro	2-9 V1101 D¥3	58 1000	ich otal ris Christenso.
Sample Number	Lob Sample Number	Number of Containers	Matrix S = Soil A = Air W = Water C = Charcoai	Type G = Grab C = Composite D = Discrete	ТІм∙	Sample Preservation	iced (Yes or No)	BTEX + TPH GAS (8020 + 8015)	TPH Diesel (8015)	Oil and Grease (5520)	Purgeable Halocarbons (8010)	Purgeable Aromatics (8020)	7	Ι.	Metals Cd.Cr.Pb.Zn.Ni (ICAP or AA)	8	TCP 60/0				Remarks
081- B1 081- B1 081- B2 081- B3 081- B4 081- EA1 081- EA1	24 25 26 27	33	w	Œ	15:50 16:14 16:46 17:25 17:15 14:18 15:17 08:00		y	X			- H	OL D) - P	endi	ny o	enaly	(5:3	cf	ół		Sie mpla -
	Carlor (Signature)	ser	orgo U	inization Deiss Sciocide Sciocide	des	ote/Time 8/21/9/ 07:/5 pote/Time/9/ 1100 pote/Time 30/1/2/9/	Rec	onac relyed E	y (Signing) (Sig	Jes W	By (Sign	2	Organiza Wee As Graniza Graniza	esc esc esch	00 8/22 00	X te/time te/22/ 0930 te/time te/time	1100			Ao	Time (Circle Choice) 24 Hrs. 48 Hrs. 5 Days 10 Days Contracted UED FRUM LICA