

December 10, 1997

Alameda County Health Care Services 1131 Harbor Bay Parkway Alameda, CA 94502

Attention: Mr. Scott Seery

RE: Unocal Service Station #5367

500 Bancroft Avenue San Leandro, California

Dear Mr. Seery:

Per the request of the Tosco Marketing Company Project Manager, Ms. Tina R. Berry, enclosed please find our data report (MPDS-UN5367-13) dated October 29, 1997, for the above referenced site.

Should you have any questions regarding the reporting of data, please feel free to call our office at (510) 602-5120. Any other questions may be directed to the Project Manager at (510) 277-2321.

Sincerely,

MPDS Services, Inc.

Jarrel F. Crider

/dr

Enclosure

cc: Ms. Tina R. Berry

BLOCCIS WICHOLD

2401 Stanwell Drive, Suite 300, Concord, CA 94520 TEL: (510) 602-5120 FAX: (510) 689-1918



PROTECTION 97 JUL 25 PM 2: 26

July 18, 1997 Project 311-127.1A

Mr. Richard Hiett Regional Water Quality Control Board San Francisco Bay Region 2101 Webster Street, Suite 500 Oakland, California 94612

Re: Unocal Station 5367

Quarterly Summary Report Second Quarter 1997

Dear Mr. Hiett:

As directed by Ms. Tina Berry of Tosco Marketing Company, Pacific Environmental Group, Inc. is forwarding the quarterly summary report for the following location:

## Service Station

## Location

5367

500 Bancroft Avenue, San Leandro

Should you have questions or comments, please do not hesitate to contact our office at (408) 441-7500.

Sincerely,

Pacific Environmental Group, Inc.

Joséph Muzzio

Project Geologist

Enclosure

cc: Ms. Tina Berry, Tosco Marketing Company

Ms. Amy Leech, Alameda County Health Care Services

## Quarterly Summary Report Second Quarter 1997

Unocal Service Station 5367 500 Bancroft Avenue San Leandro, California

City/County ID #: None

County: Alameda

#### BACKGROUND

The site is an active Unocal service station. In 1987, limited soil excavation was performed at the site during the replacement of underground storage tanks, product lines and product dispensers. One groundwater monitoring well was installed following these activities. Between 1988 and 1994, eight monitoring wells were installed, aquifer testing was performed and a remedial action plan was prepared. In 1995, one additional monitoring well was installed, and a soil vapor extraction (SVE) and groundwater extraction remediation system was constructed. During the first quarter of 1996, remedial system start up and operation were performed. During the third quarter 1996, Unocal submit revisions to the groundwater monitoring program requesting a sampling reduction from quarterly to semiannually. During February and March 1997, the SVE system was operated in pulsed mode to increase petroleum hydrocarbon vapor recovery. However, influent concentrations remained at non-detectable levels. Therefore, the SVE and dewatering system was shut down on March 13, 1997.

#### RECENT QUARTER ACTIVITIES

No activities were performed.

#### **NEXT QUARTER ACTIVITIES**

Semiannual groundwater monitoring will be performed.

#### CHARACTERIZATION/REMEDIAL STATUS

Soil contamination delineated? Yes.

Dissolved groundwater delineated? Yes.

Free product delineated? Not applicable:

Total amount of groundwater contaminant recovered? Approximately 108 pounds.

Soil remediation in progress? No. System shut down in March 1997

Start? March 1996.

Completion date? March 1997.

Dissolved/free product remediation in progress? No. System shut down in March 1997

Start? March 1996.

Completion? March 1997.

CONSULTANT: Pacific Environmental Group, Inc.



MPDS-UN5367-13 October 29, 1997

Tosco Marketing Company Environmental Compliance Department 2000 Crow Canyon Place, Suite 400 San Ramon, California 94583

Attention: Ms. Tina R. Berry

RE: Semi-Annual Data Report

Unocal Service Station #5367

500 Bancroft Avenue San Leandro, California

Dear Ms. Berry:

This data report presents the results of the most recent monitoring and sampling of the monitoring wells at the referenced site by MPDS Services, Inc.

## RECENT FIELD ACTIVITIES

The monitoring wells that were monitored and sampled are indicated in Table 1. Oxygen Release Compound (ORC) filter socks were present in monitoring well MW-8. Prior to sampling, the wells were checked for depth to water and the presence of free product or sheen. The monitoring data and the ground water elevations are summarized in Table 1. The ground water flow direction during the most recent semi-annual period is shown on the attached Figure 1.

Ground water samples were collected on September 27, 1997. Prior to sampling, the wells were each purged of between 2 and 34 gallons of water. In addition, dissolved oxygen concentrations were measured and are presented in Table 3. During purging operations, the field parameters pH, temperature, and electrical conductivity were recorded on the purging/sampling data sheets which are attached to this report. Once the field parameters were observed to stabilize, and where possible, a minimum of approximately three casing volumes had been removed from each well, samples were then collected using a clean Teflon bailer. The samples were decanted into clean VOA vials and/or one-liter amber bottles, as appropriate, which were then sealed with Teflon-lined screw caps, labeled, and stored in a cooler, on ice, until delivery to a state-certified laboratory. MPDS Services, Inc. transported the purged ground water to the Tosco Refinery located in Rodeo, California, for treatment and discharge to San Pablo Bay under NPDES permit.

#### **ANALYTICAL RESULTS**

The ground water samples were analyzed at Sequoia Analytical Laboratory and were accompanied by properly executed Chain of Custody documentation. The analytical results of the ground water samples collected to date are summarized in Table 2. The concentrations of Total Petroleum Hydrocarbons (TPH) as gasoline and benzene detected in the ground water samples collected this semi-

MPDS-UN5367-13 October 29, 1997 Page 2

annual period are shown on the attached Figure 2. Copies of the laboratory analytical results and the Chain of Custody documentation are attached to this report.

## **LIMITATIONS**

Environmental changes, either naturally-occurring or artificially-induced, may cause changes in ground water levels and flow paths, thereby changing the extent and concentration of any contaminants.

#### **DISTRIBUTION**

A copy of this report should be sent to Mr. Scott Seery of the Alameda County Health Care Services Agency, and to Mr. Mike Bakaldin of the San Leandro Fire Department.

If you have any questions regarding this report, please do not hesitate to call Mr. Nubar Srabian at (510) 602-5120.

Sincerely,

MPDS Services, Inc.

Haig (Gary) Tejirian Senior Staff Geologist

11 0010

Hagop Kevork, P.E. Senior Staff Engineer

License No. C55734

Exp. Date December 31, 2000

Attachments: Tables 1, 2 & 3

Location Map Figures 1 & 2

Laboratory Analyses

Chain of Custody documentation Purging/Sampling Data Sheets

cc: Mr. Joe Muzzio, Pacific Environmental Group, Inc.

Table 1
Summary of Monitoring Data

|        | Ground Water<br>Elevation                     | Depth to<br>Water | Total Well<br>Depth | Product<br>Thickness |       | Water<br>Purged |  |  |
|--------|-----------------------------------------------|-------------------|---------------------|----------------------|-------|-----------------|--|--|
| Well # | (feet)                                        | water<br>(feet)+  | (feet)+             | (feet)               | Sheen | (gailons)       |  |  |
|        | (Monitored and Sampled on September 27, 1997) |                   |                     |                      |       |                 |  |  |
| MW-1   | 25.97                                         | 31.86             | 35.14               | 0                    | No    | 2               |  |  |
| MW-2   | 27.06                                         | 31.07             | 46.91               | 0                    | No    | 31              |  |  |
| MW-3   | 27.16                                         | 30.76             | 48.20               | 0                    | No    | 34              |  |  |
| MW-4   | 26.61                                         | 31.68             | 48.52               | 0                    | No    | 33              |  |  |
| MW-5   | 26.85                                         | 31.65             | 44.38               | 0                    | No    | 7               |  |  |
| MW-6   | 26.44                                         | 30.52             | 44,62               | 0                    | No    | 8               |  |  |
| MW-7   | 26.41                                         | 30.84             | 43.96               | 0                    | No    | 7               |  |  |
| MW-8   | 26.56                                         | 31.15             | 43.88               | 0                    | No    | 7               |  |  |
| MW-9   | 26.09                                         | 30.38             | 44.63               | 0                    | No    | 8               |  |  |
| MW-10  | 26.14                                         | 32.80             | 42.65               | 0                    | No    | 5               |  |  |
|        |                                               | (Monitored and    | d Sampled on Mar    | rch 31, 1997)        |       |                 |  |  |
| MW-1   | 33.65                                         | 24.18             | 35.15               | 0                    | No    | 6               |  |  |
| MW-2   | 33.93                                         | 24.20             | 46.90               | 0                    | No    | 45              |  |  |
| MW-3   | 34.06                                         | 23.86             | 48.22               | 0                    | No    | 48              |  |  |
| MW-4   | 33.57                                         | 24.72             | 48.50               | 0                    | No    | 46.5            |  |  |
| MW-5   | 33.70                                         | 24.80             | 44.40               | 0                    | No    | 10              |  |  |
| MW-6   | 33.24                                         | 23.72             | 44.60               | 0                    | No    | 11              |  |  |
| MW-7   | 33.23                                         | 24.02             | 43.97               | 0                    | No    | 10.5            |  |  |
| MW-8   | 33.36                                         | 24.35             | 43.90               | 0                    | No    | 10              |  |  |
| MW-9   | 32.99                                         | 23.48             | 44.65               | 0                    | No    | 11              |  |  |
| MW-10  | 32.89                                         | 26.05             | 42.68               | 0                    | No    | 9               |  |  |
|        |                                               | (Monitored and    | Sampled on Septer   | mber 21, 1996)       |       |                 |  |  |
| MW-1   | 28.39                                         | 29.44             | 35.15               | 0                    | No    | 3               |  |  |
| MW-2*  | 28.66                                         | 29.47             | 46.89               | 0                    | -     | 0               |  |  |
| MW-3   | 28.77                                         | 29.15             | 48.23               | 0                    |       | §               |  |  |
| MW-4   | 28.41                                         | 29.88             | 48.51               | 0                    | No    | 36              |  |  |
| MW-5   | 28.55                                         | 29.95             | 44.42               | 0                    | No    | 7.5             |  |  |
| MW-6   | 28.24                                         | 28.72             | 44.61               | 0                    | No    | 9               |  |  |
| MW-7   | 28.18                                         | 29.07             | 43.98               | 0                    | No    | 8               |  |  |
| MW-8   | 28.37                                         | 29.34             | 43.91               | 0                    | No    | 8               |  |  |
| MW-9   | 28.42                                         | 28.05             | 44.65               | 0                    | No    | 9               |  |  |
| MW-10  | 28.17                                         | 30.77             | 42.70               | 0                    | No    | 6               |  |  |

Table 1
Summary of Monitoring Data

| Well# | Ground Water<br>Elevation<br>(feet) | Depth to<br>Water<br>(feet)+ | Total Well<br>Depth<br>(feet)* | Product<br>Thickness<br>(feet) | Sheen | Water<br>Parged<br>(gallous) |
|-------|-------------------------------------|------------------------------|--------------------------------|--------------------------------|-------|------------------------------|
|       |                                     | (Monitored and               | l Sampled on Mar               | rch 27, 1996)                  |       |                              |
| MW-1  | 35.54                               | 22.29                        | 35.18                          | 0                              | No    | 9                            |
| MW-2* | 35.83                               | 22.30                        | 46.90                          | 0                              |       | 0                            |
| MW-3* | 35.93                               | 21.99                        | 48.25                          | 0                              |       | 0                            |
| MW-4  | 35.58                               | 22.71                        | 48.52                          | 0                              | No    | 67.5                         |
| MW-5  | 35.75                               | 22.75                        | 44.40                          | 0                              | No    | 15                           |
| MW-6  | 35.37                               | 21.59                        | 44.53                          | 0                              | No    | 16                           |
| MW-7  | 35.31                               | 21.94                        | 43.80                          | 0                              | No    | 15                           |
| MW-8  | 35.51                               | 22.20                        | 43.92                          | 0                              | No    | 15                           |
| MW-9  | 35.56                               | 20.91                        | 44.52                          | 0                              | No    | 16.5                         |
| MW-10 | 35.32                               | 23.62                        | 42.60                          | 0                              | No    | 13                           |

|              | Well Casing           |
|--------------|-----------------------|
| Well#        | Elevation<br>(feet)** |
| MW-1         | 57.83                 |
| MW-2         | 58.13                 |
| MW-3         | 57.92                 |
| MW-4         | 58.29                 |
| MW-5         | 58.50                 |
| MW-6         | 56.96                 |
| MW-7         | 57.25                 |
| MW-8         | 57.71                 |
| MW- 9        | 56.47                 |
| MW-10        | 58.94                 |
| TAT AA - T O | 30.94                 |

- The depth to water level and total well depth measurements were taken from the top of the well casings.
- § Well is connected to remediation system. Sampled from valve on well head.
- \* Monitored only.
- \*\* The elevations of the top of the well casings have been surveyed relative to Mean Sea Level.
- Sheen determination was not performed.

Table 2
Summary of Laboratory Analyses
Water

|                                 |          | TPH as      |             |                | Ethyl-       |            |      |
|---------------------------------|----------|-------------|-------------|----------------|--------------|------------|------|
| Well                            | Date     | Gasoline    | Benzene     | Toluene        | Benzene      | Xylenes    | MTBE |
| MW-1                            | 9/27/97  | 81,000      | ND          | 1,000          | 5,900        | 31,000     | ND   |
|                                 | 3/31/97  | 82,000      | 240         | 8,700          | 3,800        | 23,000     | ND   |
|                                 | 9/21/96  | 110,000     | 270         | 3,500          | 5,900        | 16,000     | 260  |
|                                 | 3/27/96  | 120,000     | 920         | 17,000         | 7,100        | 41,000     | 180  |
|                                 | 12/29/95 | 110,000     | 990         | 22,000         | 8,300        | 47,000     | 100  |
|                                 | 9/28/95  | 100,000     | 810         | 21,000         | 6,500        | 37,000     |      |
|                                 | 6/26/95  | 130,000     | 1,000       | 23,000         | 5,600        | 33,000     |      |
|                                 | 3/27/95  | 88,000      | 1,500       | 20,000         | 4,200        | 25,000     |      |
|                                 | 12/19/94 | 200,000     | 2,400       | 28,000         | 6,600        | 37,000     | -    |
|                                 | 9/21/94  | 110,000     | 2,500       | 23,000         | 4,500        | 25,000     |      |
|                                 | 6/23/94  | 150,000     | 2,500       | 33,000         | 6,400        | 37,000     |      |
|                                 | 3/18/94  | 99,000      | 3,800       | 37,000         | 6,800        | 36,000     |      |
|                                 | 12/13/93 | 140,000     | 3,600       | 37,000         | 7,100        | 40,000     |      |
|                                 | 9/3/93   | 160,000     | 3,900       | 41,000         | 6,800        | 38,000     |      |
|                                 | 6/25/93  | 160,000     | 4,300       | 36,000         | 5,800        | 34,000     |      |
| 3<br>1<br>1<br>6<br>3<br>9<br>5 | 3/3/93   | 330,000     | 3,800       | 21,000         | 4,200        | 24,000     |      |
|                                 | 11/18/92 | WELL WAS DI |             | 21,000         | 4,200        | 24,000     |      |
|                                 | 10/16/92 | WELL WAS DI |             |                |              |            |      |
|                                 | 6/18/92  | 680,000     | 9,000       | 40,000         | 7,600        | 44,000     |      |
|                                 | 3/31/92  | 330,000     | 8,200       | 33,000         | 6,800        | 36,000     |      |
|                                 | 9/27/91  | WELL WAS DI |             | 33,000         | 0,000        | 30,000     |      |
|                                 | 5/6/91   | WEEL WAS DI | X.I         |                | 20           | 722        | 100  |
|                                 | 2/6/91   | WELL WAS DI | ev -        | -              |              |            |      |
|                                 | 11/30/90 | WELL WAS DI |             |                |              |            |      |
|                                 | 8/24/90  | WELL WAS DI |             |                |              |            |      |
|                                 | 7/19/90  | WELL WAS DI |             |                |              |            |      |
|                                 | 2/16/90  | WELL WAS DI |             |                |              |            |      |
|                                 | 1/27/89  | WELL WAS DI |             |                |              |            |      |
|                                 | 10/3/88  | WELL WAS DI |             |                |              |            |      |
|                                 | 9/7/88   | WELL WAS DI |             |                |              |            |      |
|                                 | 4/27/88  |             |             | PRESENCE       | F FREE PRODU | CT         |      |
|                                 | 11/19/87 |             |             |                | F FREE PRODU |            |      |
|                                 | 11/13/87 |             |             |                | F FREE PRODU |            |      |
|                                 | 11/5/87  |             |             |                | F FREE PRODU |            |      |
|                                 | 10/6/87  |             |             |                | F FREE PRODU |            |      |
|                                 | 9/24/87  |             |             |                | F FREE PRODU |            |      |
|                                 | 9/23/87  |             |             |                | F FREE PRODU |            |      |
|                                 | 2. 20.01 | 1.01 DIMILE |             | A RECEIPTED U. | I INDLINODO  |            |      |
| MW-2                            | 9/27/97  | ND          | ND          | ND             | ND           | ND         | ND   |
|                                 | 3/31/97  | ND          | ND          | ND             | ND           | ND         | ND   |
|                                 | 9/21/96  |             | •           |                | ATION SYSTEM | •          |      |
|                                 | 3/27/96  |             | D (CONNECTE | D TO REMEDL    | ATION SYSTEM | <u>(1)</u> |      |
|                                 | 12/29/95 | 860         | 4.3         | 1.0            | 27           | 50         |      |
|                                 | 9/28/95  | 730         | 2.9         | ND             | 41           | 29         | **   |

Table 2
Summary of Laboratory Analyses
Water

|         |           | TPH as     |             |             | Ethyl-       | 11.2       |       |
|---------|-----------|------------|-------------|-------------|--------------|------------|-------|
| Well    | Date      | Gasoline   | Benzene     | Toluene     | Benzene      | Xylenes    | MTBI  |
|         |           |            |             |             |              |            |       |
| MW-2    | 6/26/95   | ND         | ND          | 0.93        | 0.88         | 3.4        |       |
| (Cont.) | 3/27/95** | ND         | ND          | 0.55        | 1.2          | 2.5        |       |
|         | 12/19/94  | 190        | 1.9         | ND          | 15           | 6.8        |       |
|         | 9/21/94   | ND         | ND          | ND          | ND           | ND         | - 10  |
|         | 6/23/94   | 420        | 3.9         | 0.66        | 23           | 11         | ++1   |
|         | 3/18/94   | 250        | 6.4         | 0.64        | 28           | 24         |       |
|         | 12/13/93  | 260        | 7.7         | 0.83        | 17           | 23         |       |
|         | 9/3/93    | 1,400      | 31          | 4.3         | 99           | 53         |       |
|         | 6/25/93   | 4,000      | 110         | ND          | 320          | 280        | 447   |
|         | 3/3/93    | 4,200      | 62          | 2.9         | 97           | 120        | -     |
|         | 11/18/92  | 65         | 1.2         | ND          | 2.8          | 1.4        | 721   |
|         | 10/16/92  |            |             |             |              | 246        | **    |
|         | 9/30/92   | 820        | 21          | ND          | 42           | 25         | 440   |
|         | 6/18/92   | 1,200      | 35          | 1.6         | 56           | 26         |       |
|         | 12/27/91  | 170        | 3.9         | ND          | 7.3          | 60         |       |
|         | 9/27/91   | 110        | 2.6         | ND          | 5.6          | 5.1        |       |
|         | 5/6/91    | 2,300      | 150         | 10          | 52           | 110        |       |
|         | 2/7/91    | 510        | 40          | ND          | 29           | 44         |       |
|         | 11/30/90  | 400        | 41          | ND          | 39           | 37         |       |
|         | 8/24/90   | 330        | 17          | ND          | 19           | 20         |       |
|         | 7/19/90   |            |             |             |              |            |       |
|         | 2/16/90   | 840        | 50          | 0.5         | 28           | 44         |       |
|         | 1/27/89   | 510        | 58          | 8.7         | 22.6         | 20.3       |       |
|         | 10/3/88   | 1,760      | 47.8        | 7.4         | 20.9         | 81.6       |       |
|         | May-90    | 1,000      | 39          | ND          | 32           | 52         |       |
|         |           |            |             |             |              |            |       |
| MW-3    | 9/27/97   | 11,000     | 19          | ND          | 850          | 420        | 140   |
|         | 3/31/97   | 17,000     | 58          | 110         | 530          | 1,500      | ND    |
|         | 9/21/96   | 34,000     | 140         | ND          | 2,200        | 6,600      | 1,800 |
|         | 3/27/96   | NOT SAMPLE | D (CONNECTE | D TO REMEDI | ATION SYSTEM | <b>(1)</b> |       |
|         | 12/29/95  | 55,000     | 700         | ND          | 4,900        | 16,000     | ††    |
|         | 9/28/95   | 17,000     | 730         | 30          | 4,000        | 8,800      | †     |
|         | 6/26/95   | 14,000     | 300         | ND          | 1,300        | 3,900      | -     |
|         | 3/27/95** | 33,000     | 410         | 66          | 1,600        | 6,500      |       |
|         | 12/19/94  | 100,000    | 1,200       | 2,900       | 4,200        | 23,000     |       |
|         | 9/21/94   | 24,000     | 890         | 110         | 2,200        | 8,800      |       |
|         | 6/23/94   | 37,000     | 1,300       | 670         | 3,100        | 14,000     |       |
|         | 3/18/94   | 22,000     | 1,200       | 430         | 2,200        | 9,700      |       |
|         | 12/13/93  | 49,000     | 1,300       | 360         | 2,300        | 9,200      |       |
|         | 9/3/93    | 82,000     | 2,400       | 3,400       | 4,200        | 21,000     |       |
|         | 6/25/93   | 27,000     | 1,200       | 980         | 1,700        | 6,900      |       |
|         | 3/3/93    | 96,000*    | 1,400       | 1,900       | 1,400        | 8,400      |       |
|         | 11/18/92  | 24,000*    | 430         | 160         | 640          | 2,800      | **    |
|         | 10/16/92  |            |             | 10.5        | 1241         |            |       |

Table 2
Summary of Laboratory Analyses
Water

|        |          | TPH as           |            |         | Ethyl-   | TIL TESTICE    |      |
|--------|----------|------------------|------------|---------|----------|----------------|------|
| Well   | Date     | Gasoline         | Benzene    | Toluene | Benzene  | Xylenes        | MTBI |
| MWA    | 0/20/02  | 36 000           | 720        | 200     | 1 000    | 4.400          |      |
| MW-3   | 9/30/92  | 36,000           | 730        | 200     | 1,000    | 4,400<br>1,100 | -    |
| Cont.) | 6/18/92  | 180,000          | 2,200      | 1,700   | 2,300    |                |      |
|        | 3/31/92  | 100,000          | 1,900      | 1,900   | 2,300    | 9,400          |      |
|        | 12/27/91 | 31,000           | 240        | 280     | 400      | 1,600          | **   |
|        | 9/27/91  | 4,000            | 160        | 84      | 180      | 560            | **   |
|        | 5/6/91   | 39,000           | 1,000      | 570     | 930      | 3,900          | ***  |
|        | 2/6/91   | 13,000           | 310        | 150     | 380      | 1,200          | 1.00 |
|        | 11/30/90 | 13,000           | 390        | 81      | 410      | 1,000          |      |
|        | 8/24/90  | 19,000           | 480        | 160     | 510      | 1,500          |      |
|        | 7/19/90  |                  | *          |         |          |                |      |
|        | 2/16/90  | 22,000           | 710        | 4,100   | 6,900    | 33,000         |      |
|        | 1/27/89  | 39,000           | 1,570      | 2,830   | 1,250    | 7,070          |      |
|        | 10/3/88  | 61,000           | 1,060      | 3,380   | 1,520    | 8,720          |      |
|        | May-90   | 19,000           | 330        | 170     | 310      | 1,500          | -    |
| MW-4   | 9/27/97  | ND               | ND         | ND      | ND       | ND             | ND   |
|        | 3/31/97  | ND               | ND         | ND      | ND       | ND             | ND   |
|        | 9/21/96  | ND               | ND         | ND      | ND       | ND             | ND   |
|        | 3/27/96  | ND               | ND         | 0.70    | ND       | 0.79           | ND   |
|        | 12/29/95 | SAMPLED SEM      |            |         |          |                |      |
|        | 9/28/95  | ND               | ND         | ND      | ND       | ND             | +    |
|        | 6/26/95  | SAMPLED SEM      |            |         | 112      |                |      |
|        | 3/27/95  | ND               | ND         | 0.79    | 0.5      | 3.1            |      |
|        | 12/19/94 | SAMPLED SEM      |            |         | 0.0      | 2.1            |      |
|        | 9/21/94  | ND               | ND         | 0.78    | ND       | 0.81           |      |
|        | 3/18/94  | ND               | ND         | ND      | ND       | ND             | -    |
|        | 12/13/93 |                  | MI-ANNUALL |         | ND       | 110            |      |
|        | 9/3/93   | 86               | 14         | 13      | 1.4      | 7.1            |      |
|        | 6/25/93  | NOT SAMPLE       |            | 15      | 1.4      | 7.1            |      |
|        | 3/3/93   | 68               | 0.9        | 0.6     | ND       | 1.9            | 100  |
|        | 11/18/92 | NOT SAMPLE       |            | 0.0     | 1415     | 1.7            |      |
|        | 10/16/92 | NOI SAMPLE<br>ND | ND         | ND      | ND       | ND             |      |
|        | 6/18/92  | ND<br>ND         | ND         | ND      | ND       | ND             |      |
|        | 3/31/92  | ND               | ND         | ND      | ND<br>ND | ND             |      |
|        | 12/27/91 | ND<br>ND         | ND<br>ND   | ND      | ND       | ND             |      |
|        | 9/27/91  | ND               |            |         | ND<br>ND | ND             |      |
|        | 5/6/91   | ND               | ND         | ND      | ND       |                |      |
|        |          | AITS             | NID        | NID     | NID      | NID            |      |
|        | 2/6/91   | ND               | ND         | ND      | ND       | ND<br>1.2      |      |
|        | 11/30/90 | ND               | ND         | ND      | ND       | 1.2<br>ND      | -    |
|        | 8/24/90  | ND               | ND         | ND      | ND       | ND             | **   |
|        | 7/19/90  | NIP.             | ATD.       | AUD.    | 0.60     | 1.4            | -    |
|        | May-90   | ND               | ND         | ND      | 0.68     | 1.4            |      |
|        | 2/16/90  | ND               | ND         | ND      | ND       | ND             | -    |
|        | 1/27/89  | ND               | ND         | ND      | ND       | ND             |      |
|        | 10/3/88  | ND               | ND         | ND      | ND       | ND             |      |

Table 2
Summary of Laboratory Analyses
Water

|      | Date     | TPH as<br>Gasoline | Danzana     | Toluene    | Ethyl-<br>Benzene | Xylenes | мтві  |
|------|----------|--------------------|-------------|------------|-------------------|---------|-------|
| Well | Date     | Casonne            | Benzene     | 1 Official | Delizene          | Aylenes | BIIDI |
| MW-5 | 9/27/97  | ND                 | ND          | ND         | ND                | ND      | ND    |
|      | 3/31/97  | ND                 | ND          | ND         | ND                | ND      | ND    |
|      | 9/21/96  | ND                 | ND          | ND         | ND                | ND      | ND    |
|      | 3/27/96  | ND                 | ND          | 1.7        | ND                | 2.4     | ND    |
|      | 12/29/95 | SAMPLED SEM        | II-ANNUALLY |            |                   |         |       |
|      | 9/28/95  | ND                 | ND          | ND         | ND                | ND      | -     |
|      | 6/26/95  | SAMPLED SEM        |             |            |                   |         |       |
|      | 3/27/95  | ND                 | ND          | 0.66       | ND                | 2.9     |       |
|      | 12/19/94 | SAMPLED SEM        |             |            |                   |         |       |
|      | 9/21/94  | ND                 | ND          | 0.98       | ND                | 1.6     | 544   |
|      | 3/18/94  | ND                 | ND          | ND         | ND                | ND      | 7.22  |
|      | 12/13/93 | SAMPLED SEM        |             |            |                   |         |       |
|      | 9/3/93   | ND                 | ND          | 1.5        | ND                | 7.9     | ***   |
|      | 6/25/93  | WELL WAS IN        |             | . •        |                   |         |       |
|      | 3/3/93   | ND                 | ND          | ND         | ND                | ND      | 744   |
|      | 11/18/92 | NOT SAMPLED        |             |            |                   |         |       |
|      | 10/16/92 | ND                 | ND          | ND         | ND                | ND      |       |
|      | 6/18/92  |                    | 117         |            |                   | -       |       |
|      | 3/31/92  | ND                 | ND          | ND         | ND                | 1.1     |       |
|      | 12/27/91 | ND                 | ND          | ND         | ND                | ND      |       |
|      | 9/27/91  | ND                 | ND          | ND         | ND                | ND      | -     |
|      | 5/6/91   | =                  |             |            |                   |         | 200   |
|      | 2/6/91   | ND                 | ND          | ND         | ND                | ND      | -     |
|      | 11/30/90 | ND                 | ND          | 0.7        | ND                | ND      |       |
|      | 8/24/90  | ND                 | ND          | ND         | ND                | ND      | 0.64  |
|      | 7/19/90  |                    |             |            |                   |         | -     |
|      | 2/16/90  | 67                 | 0.51        | 1.6        | 2.9               | 7.5     |       |
|      | May-90   | ND                 | ND          | ND         | ND                | ND      |       |
|      | may 50   | 112                | 110         | 112        | 112               |         |       |
| MW-6 | 9/27/97  | ND                 | ND          | ND         | ND                | ND      | ND    |
|      | 3/31/97  | 73                 | 0.67        | 0.82       | ND                | ND      | ND    |
|      | 9/21/96  | ND                 | ND          | ND         | ND                | ND      | ND    |
|      | 3/27/96  | 50                 | ND          | 0.92       | ND                | 0.96    | ND    |
|      | 12/29/95 | SAMPLED SEN        | II-ANNUALLY |            |                   |         |       |
|      | 9/28/95  | ND                 | ND          | ND         | ND                | ND      | -     |
|      | 6/26/95  | SAMPLED SEN        | II-ANNUALLY |            |                   |         |       |
|      | 3/27/95  | 56                 | ND          | 0.65       | ND                | 3.3     | **    |
|      | 12/19/94 | SAMPLED SEN        | II-ANNUALLY |            |                   |         |       |
|      | 9/21/94  | ND                 | ND          | ND         | ND                | ND      | -     |
|      | 3/18/94  | ND                 | ND          | 0.93       | ND                | 1.4     | **    |
|      | 12/13/93 | SAMPLED SEN        | MI-ANNUALLY |            |                   |         |       |
|      | 9/3/93   | ND                 | ND          | ND         | ND                | ND      | **    |
|      | 6/25/93  | NOT SAMPLE         | D           |            |                   |         |       |
|      | 3/3/93   | ND*                | ND          | ND         | ND                | ND      | **    |
|      | 11/18/92 | NOT SAMPLE         | D.          |            |                   |         |       |

Table 2
Summary of Laboratory Analyses
Water

|         |          | TPH as      |             | ter     | Ethyl-    |          |           |
|---------|----------|-------------|-------------|---------|-----------|----------|-----------|
| Well    | Date     | Gasoline    | Benzene     | Toluene | Benzene   | Xylenes  | MTBE      |
| 74.531  | Date     | CHAMITIE    | Dencia      | Tordere | Detabolic | 21 years | 114 2 274 |
| MW-6    | 10/16/92 | ND          | ND          | ND      | ND        | ND       |           |
| (Cont.) | 6/18/92  | ND          | ND          | ND      | ND        | ND       |           |
| (/      | 3/31/92  | ND          | ND          | 1.3     | ND        | 2        | 40        |
|         | 12/27/91 | ND          | ND          | ND      | ND        | ND       | -         |
|         | 9/27/91  | ND          | ND          | ND      | ND        | ND       |           |
|         | 5/6/91   |             |             |         | ++        |          |           |
|         | 2/6/91   | ND          | ND          | ND      | ND        | ND       |           |
|         | 11/30/90 | ND          | ND          | ND      | ND        | ND       |           |
|         | 8/24/90  | ND          | ND          | ND      | ND        | ND       | ••        |
|         | 7/19/90  | ND          | ND          | ND      | ND        | ND       |           |
|         | 2/16/90  | ND          | ND          | ND      | ND        | ND       | 764       |
|         | May-90   | ND          | ND          | ND      | ND        | ND       |           |
|         |          |             |             |         |           |          |           |
| MW-7    | 9/27/97  | ND          | ND          | ND      | ND        | ND       | ND        |
|         | 3/31/97  | ND          | ND          | ND      | ND        | ND       | ND        |
|         | 9/21/96  | ND          | ND          | ND      | ND        | ND       | ND        |
|         | 3/27/96  | ND          | ND          | 1.1     | ND        | 1.7      | ND        |
|         | 12/29/95 | SAMPLED SEM | II-ANNUALLY |         |           |          |           |
|         | 9/28/95  | ND          | ND          | ND      | ND        | ND       | †         |
|         | 6/26/95  | SAMPLED SEM | II-ANNUALLY |         |           |          |           |
|         | 3/27/95  | ND          | ND          | 0.54    | ND        | 1.9      | **        |
|         | 12/19/94 | SAMPLED SEM | II-ANNUALLY |         |           |          |           |
|         | 9/21/94  | ND          | 0.5         | ND      | ND        | 0.89     | 22        |
|         | 3/18/94  | ND          | ND          | ND      | ND        | ND       |           |
|         | 12/13/93 | SAMPLED SEN | MI-ANNUALLY | 7       |           |          |           |
|         | 9/3/93   | ND          | ND          | ND      | ND        | ND       | +47       |
|         | 6/25/93  | NOT SAMPLE  | D           |         |           |          |           |
|         | 3/3/93   | ND          | ND          | ND      | ND        | ND       | 77.       |
|         | 11/18/92 | NOT SAMPLE  | D           |         |           |          |           |
|         | 10/16/92 | ND          | ND          | ND      | ND        | ND       |           |
|         | 6/18/92  |             | ***         | 255     |           |          | -         |
|         | 3/31/92  | ND          | ND          | ND      | ND        | 0.9      |           |
|         | 12/27/91 | ND          | ND          | ND      | ND        | ND       |           |
|         | 9/27/91  | ND          | ND          | ND      | ND        | ND       | 220       |
|         | 5/6/91   | ND          | ND          | ND      | ND        | ND       | -         |
|         | 2/6/91   | ND          | ND          | ND      | ND        | ND       | 7         |
|         | 11/30/90 | ND          | ND          | ND      | 0.6       | 1.5      |           |
|         | 8/24/90  | ND          | ND          | ND      | ND        | ND       |           |
|         | 7/19/90  |             |             |         |           |          |           |
|         | 2/16/90  | ND          | ND          | ND      | ND        | ND       |           |
|         | May-90   | 24          | ND          | ND      | 0.74      | 1.7      |           |

Table 2
Summary of Laboratory Analyses
Water

|      |           | TPH as      |         |         | Ethyl-  |         |       |
|------|-----------|-------------|---------|---------|---------|---------|-------|
| Well | Date      | Gasoline    | Benzene | Toluene | Benzene | Xylenes | MTB   |
| MW-8 | 9/27/97   | 78          | 0.90    | ND      | 12      | ND      | ND    |
|      | 3/31/97   | ND          | ND      | ND      | ND      | ND      | ND    |
|      | 9/21/96   | 3,800       | 27      | ND      | 46      | 45      | ND    |
|      | 3/27/96   | 970         | 29      | 0.77    | 82      | 85      | ND    |
|      | 12/29/95  | 7,500       | 260     | ND      | 580     | 870     | ††    |
|      | 9/28/95   | 10,000      | 250     | ND      | 760     | 910     | †     |
|      | 6/26/95   | 11,000      | 320     | ND      | 680     | 2,000   |       |
|      | 3/27/95** | 9,200       | 240     | ND      | 200     | 1,400   |       |
|      | 12/19/94  | 6,200       | 91      | ND      | 230     | 210     |       |
|      | 9/21/94   | 6,900       | 190     | ND      | 460     | 510     |       |
|      | 6/23/94   | 12,000      | 210     | ND      | 610     | 860     |       |
|      | 3/18/94   | 6,100       | 85      | ND      | 260     | 260     |       |
|      | 12/13/93  | 6,900       | 180     | ND      | 240     | 550     |       |
|      | 9/3/93    | 9,800       | 180     | ND      | 580     | 700     |       |
|      | 6/25/93   | 8,100       | 160     | ND      | 580     | 740     |       |
|      | 3/3/93    | 13,000      | 33      | ND      | 160     | 290     |       |
|      | 11/18/92  | 1,100       | 6.1     | ND      | 13      | 5.6     |       |
|      | 10/16/92  | 300         | 0.96    | ND      | 4.0     | 3.5     |       |
|      | 6/18/92   | WELL WAS IN |         | ND      | 4.0     | 5.5     |       |
|      | 3/31/92   | 15,000      | 120     | 1.0     | 430     | 530     |       |
|      | 12/27/91  | 1,600       | 15      | 2.9     | 40      | 49      |       |
|      | 9/27/91   | 720         | 13      | 4.3     | 26      | 26      |       |
|      | 5/6/91    | 14,000      | 80      | ND      | 250     | 550     |       |
|      | 2/6/91    | 630         | 9.6     | ND      | 35      | 36      |       |
|      | 11/30/90  | 570         | 13      | ND      | 45      | 36      |       |
|      | 8/24/90   | 990         | 13      | ND      | 48      | 66      | 1 - 1 |
|      | 7/19/90   |             |         |         |         |         |       |
|      | 2/16/90   | 1,900       | 11      | ND      | 52      | 55      | _     |
|      | May-90    | 770         | 6.5     | ND      | 20      | 32      |       |
| MW-9 | 9/27/97   | ND          | ND      | ND      | ND      | ND      | NE    |
|      | 3/31/97   | ND          | ND      | ND      | ND      | ND      | NE    |
|      | 9/21/96   | ND          | ND      | ND      | ND      | ND      | NI    |
|      | 3/27/96   | ND          | ND      | 0.68    | ND      | 0.51    | NI    |
|      | 12/29/95  | ND          | ND      | 0.58    | ND      | 0.52    | _     |
|      | 9/28/95   | ND          | ND      | ND      | ND      | ND      | _     |
|      | 6/26/95   | ND          | ND      | ND      | ND      | 3.9     | _     |
|      | 3/27/95   | ND          | ND      | 0.61    | ND      | 2.8     |       |
|      | 12/19/94  | ND          | ND      | 1.6     | 1.5     | 8.4     |       |

Table 2
Summary of Laboratory Analyses
Water

|       |          | TPH as   |         |         | Ethyl-  |         |       |
|-------|----------|----------|---------|---------|---------|---------|-------|
| Well  | Date     | Gasoline | Benzene | Toluene | Benzene | Xylenes | MTBE  |
| MW-10 | 9/27/97  | ND       | ND      | ND      | ND      | ND      | ND    |
|       | 3/31/97  | ND       | ND      | ND      | ND      | ND      | ND    |
|       | 9/21/96  | ND       | ND      | ND      | ND      | ND      | ND    |
|       | 3/27/96  | ND       | ND      | 0.68    | ND      | 0.69    | ND    |
|       | 12/29/95 | ND       | ND      | 0.65    | ND      | 1.1     |       |
|       | 10/24/95 | ND       | ND      | ND      | ND      | ND      |       |
|       | 7/28/95  | ND       | ND      | ND      | ND      | ND      | and . |

- † Sequoia Analytical Laboratory has potentially identified the presence of MTBE at reportable levels in the ground water sample collected from this well.
- †† Sequoia Analytical Laboratory has identified the presence of MTBE at a level above or equal to the taste and odor threshold of  $40 \mu g/L$  in the ground water sample collected from this well.
- Chromatogram contains early eluting peak.
- On March 27, 1995, total dissolved solid concentrations were as follows: MW-2 at 410 mg/L; MW3 at 450 mg/L; MW8 at 490 mg/L.

ND = Non-detectable.

-- Indicates analysis was not performed.

Results are in micrograms per liter (µg/L), unless otherwise indicated.

- Note The detection limit for results reported as ND by Sequoia Analytical Laboratory is equal to the stated detection limit times the dilution factor indicated on the laboratory analytical sheets.
  - Prior to August 1, 1995, the total purgeable petroleum hydrocarbon (TPH as gasoline)
     quantification range used by Sequoia Analytical Laboratory was C4 C12. Since August 1,
     1995, the quantification range used by Sequoia Analytical Laboratory is C6 C12.
  - Laboratory analyses data prior to December 13, 1993, were provided by RESNA.

Table 3
Summary of Monitoring Data
Dissolved Oxygen Concentration Measurements

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | olved Oxvgen |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
| Diss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
| Carrier and the Carrier Carrie |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
| Well # Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |

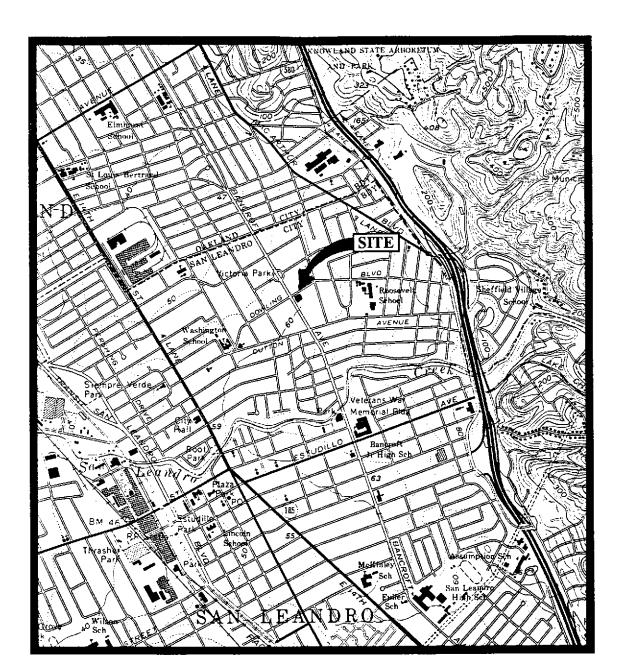
|       |         | Before Purging | After Purging |
|-------|---------|----------------|---------------|
| MW-8  | 9/27/97 | 3.11           |               |
| MW-1  | 3/31/97 | 1.47           | 1.49          |
| MW-2  |         | 2.18           | 2.12          |
| MW-3  | •       | 1.95           | 2.06          |
| MW-4  |         | 2.66           | 2.63          |
| MW-5  |         | 2.98           | 3.11          |
| MW-6  |         | 3.21           | 3.11          |
| MW-7  |         | 2.29           | 2.16          |
| MW-8  |         | 2.81           | 2.91          |
| MW-9  |         | 3.36           | 3.27          |
| MW-10 |         | 4.48           | 4.83          |
| MW-1  | 9/21/96 |                | 1.01          |
| MW-2  |         |                |               |
| MW-3  |         |                |               |
| MW-4  |         | <del></del>    | 2.82          |
| MW-5  |         | <del></del>    | 4.12          |
| MW-6  |         | <del></del>    | 3.74          |
| MW-7  |         |                | 1.19          |
| MW-8  |         | <b></b>        | 2.16          |
| MW-9  |         |                | 4.13          |
| MW-10 |         |                | 5.38          |
| MW-1  | 3/27/96 | 1.48           | 1.02          |
| MW-2  |         |                |               |
| MW-3  |         |                |               |
| MW-4  |         | 4.32           | 3.91          |
| MW-5  |         | 4.03           | 4.71          |
| MW-6  |         | 5.94           | 4.96          |
| MW-7  |         | 6.63           | 5.23          |
| MW-8  |         | 11.73          | 9.76          |
| MW-9  |         | 5.62           | 5.23          |
| MW-10 |         | 4.38           | 4.57          |

Table 3
Summary of Monitoring Data
Dissolved Oxygen Concentration Measurements

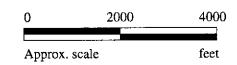
| Dissolved Oxygen  |    |
|-------------------|----|
| Well# Date (mg/L) | ** |

|          |           | Before Purging | After Purging |
|----------|-----------|----------------|---------------|
| 3.6337.4 | 12/20/05  |                | 1.74          |
| MW-1     | 12/29/95  |                | 8.71          |
| MW-2     |           | <del></del>    | 6.97          |
| MW-3     |           | <del></del>    |               |
| MW-4     |           | up ma          | <del></del>   |
| MW-5     |           |                |               |
| MW-6     |           | <del></del>    | <del></del>   |
| MW-7     |           | <del></del>    | 2.02          |
| MW-8     |           |                | 2.03          |
| MW-9     |           |                | 5.32          |
| MW-10    |           |                | 5.11          |
| 2 (177.4 | 0.100.405 |                | 1.22          |
| MW-1     | 9/28/95   |                | 1.22          |
| MW-2     |           |                | 3.00          |
| MW-3     |           | <del></del>    | 1.63          |
| MW-4     |           |                | 6.29          |
| MW-5     |           |                | 1.96          |
| MW-6     |           |                | 4.19          |
| MW-7     |           |                | 2.04          |
| MW-8     |           |                | 1.85          |
| MW-9     |           |                | 5.76          |
| MW-1     | 6/26/95   |                | 1.60          |
| MW-2     |           |                | 4.55          |
| MW-3     |           |                | 1.55          |
| MW-4     |           | <del></del>    | <del></del>   |
| MW-5     |           |                | <del></del>   |
| MW-6     |           |                | <del></del>   |
| MW-7     |           |                | <del></del>   |
| MW-8     |           |                | 3.86          |
| MW-9     |           | <del></del>    | 4.61          |
|          |           |                |               |
| MW-1     | 3/27/95*  |                | 1.5           |
| MW-2     |           |                | 1.7           |
| MW-3     |           |                | 0.90          |
| MW-4     |           |                | 4.90          |
| MW-5     |           | april.         | 5.20          |
| MW-6     |           |                | 7.4           |
| MW-7     |           | <del></del>    | 8.4           |
| MW-8     |           | <b></b>        | 2.2           |
| MW-9     |           |                | 7.8           |
|          |           |                |               |

MPDS-UN5367-13 October 29, 1997 Page 12 of 12

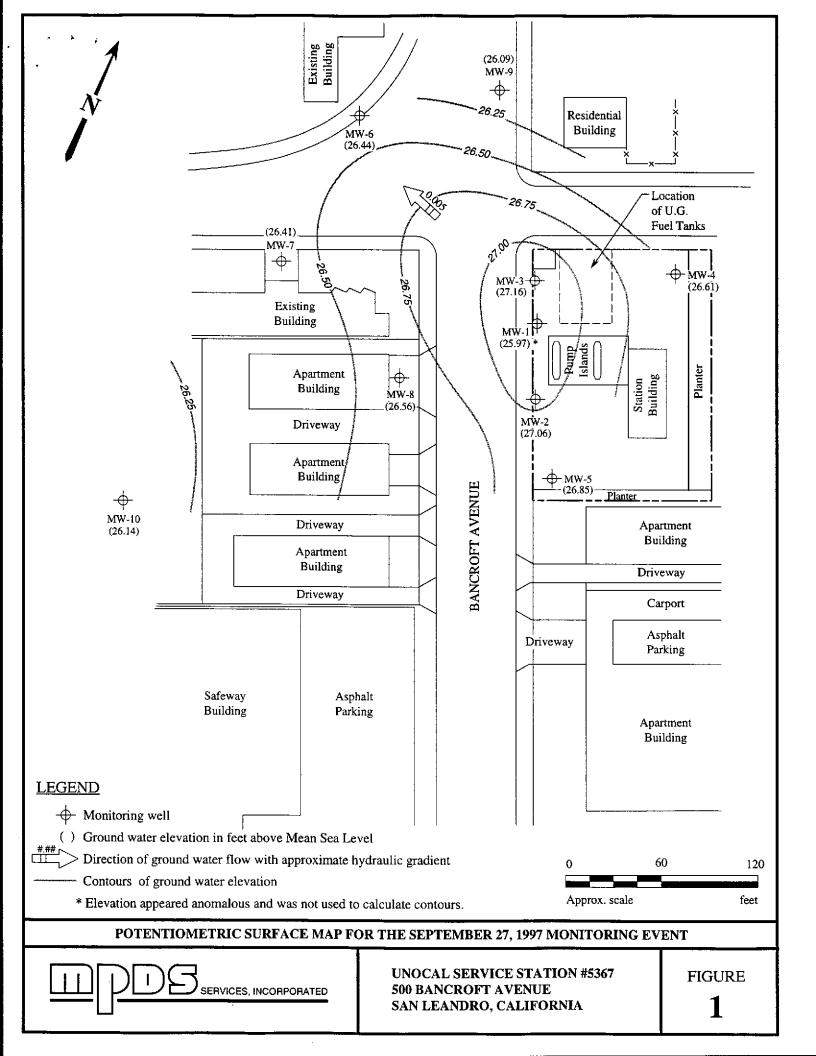

## Table 3

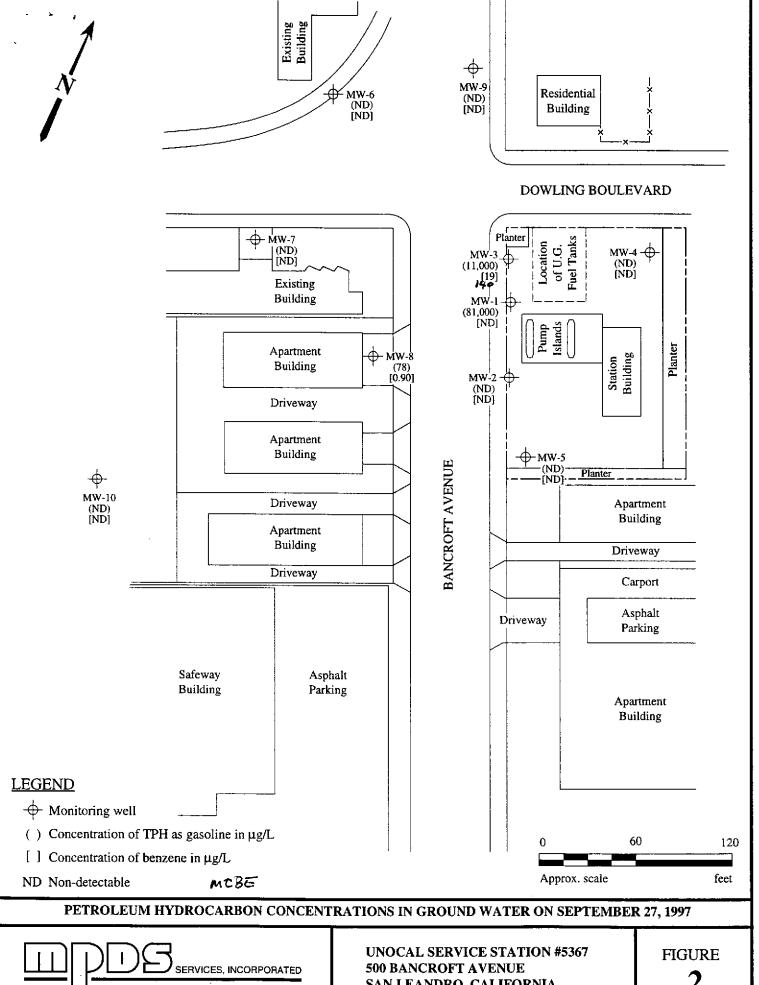
# Summary of Monitoring Data Dissolved Oxygen Concentration Measurements


- \* On March 3, 1995, the measurements were taken at Sequoia Analytical Laboratory.
- -- Indicates measurement was not taken.

mg/L = milligrams per liter.

Note: In the field, measurements were taken using a LaMotte DO4000 dissolved oxygen meter.





Base modified from 7.5 minute U.S.G.S. San Leandro Quadrangle (photorevised 1980)





UNOCAL SERVICE STATION #5367 500 BANCROFT AVENUE SAN LEANDRO, CALIFORNIA LOCATION MAP





SAN LEANDRO, CALIFORNIA



680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 300

Concord, CA 94520 Attention: Jarrel Crider Client Project ID: Matrix Descript:

: Unocal #5367, 500 Bancroff, San Leandro

Water

EPA 5030/8015 Mod./8020

Sampled: Received:

Sep 27, 1997 Sep 29, 1997

Analysis Method: First Sample #: 709-2352 Reported:

Oct 20, 1997

#### TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

| Sample<br>Number | Sample<br>Description | Purgeable Hydrocarbons $\mu \mathrm{g}/\mathrm{L}$ | <b>Benzene</b><br>μg/L | <b>Toluene</b><br>μg/L | Ethyl<br>Benzene<br>μg/L | Total<br>Xylenes<br>μg/L |
|------------------|-----------------------|----------------------------------------------------|------------------------|------------------------|--------------------------|--------------------------|
| 709-2352         | MW-1                  | 81,000                                             | ND                     | 1,000                  | 5,900                    | 31,000                   |
| 709-2353         | MW-2                  | ND                                                 | ND                     | ND                     | ND                       | ND                       |
| 709-2354         | MW-3                  | 11,000                                             | 19                     | ND                     | 850                      | 420                      |
| 709-2355         | MW-4                  | ND                                                 | ND                     | ND                     | ND                       | ND                       |
| 709-2356         | MW-5                  | ND                                                 | ND                     | ND                     | ND                       | ND                       |
| 709-2357         | MW-6                  | ND                                                 | ND                     | ND                     | ND                       | ND                       |
| 709-2358         | MW-7                  | ND                                                 | ND                     | ND                     | ND                       | ND                       |
| 709-2359         | MW-8                  | 78                                                 | 0.90                   | ND                     | 12                       | ND                       |
| 709-2360         | MW-9                  | ND                                                 | ND                     | ND                     | ND                       | ND                       |
| 709-2361         | MW-10                 | ND                                                 | ND                     | ND                     | ND                       | ND                       |

| Detection Limits: | 50 | 0.50 | 0.50 | 0.50 | 0.50 |  |
|-------------------|----|------|------|------|------|--|
|                   |    |      |      |      |      |  |

Total Purgeable Petroleum Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as ND were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager







680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063 Walnut Creek, CA 94598 (415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider

Matrix Descript:

Services Client Project ID: Unocal #5367, 500 Bancroft, San Leandro Sampled:

Water

Analysis Method: EPA 5030/8015 Mod./8020 First Sample #: 709-2352 

Sep 27, 1997 Received:

Reported:

Sep 29, 1997 Oct 20, 1997

## TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

| Sample<br>Number | Sample<br>Description | Chromatogram<br>Pattern | DL Mult.<br>Factor | Date<br>Analyzed | Instrument<br>ID | Surrogate<br>Recovery, %<br>QC Limits:<br>70-130 |
|------------------|-----------------------|-------------------------|--------------------|------------------|------------------|--------------------------------------------------|
| 709-2352         | MW-1                  | Gasoline                | 400                | 10/10/97         | HP-2             | 108                                              |
| 709-2353         | MW-2                  |                         | 1.0                | 10/9/97          | HP-9             | 90                                               |
| 709-2354         | MW-3                  | Gasoline                | 20                 | 10/9/97          | HP-9             | 93                                               |
| 709-2355         | MW-4                  |                         | 1.0                | 10/9/97          | HP-9             | 92                                               |
| 709-2356         | MW-5                  |                         | 1.0                | 10/9/97          | HP-9             | 93                                               |
| 709-2357         | MW-6                  |                         | 1.0                | 10/9/97          | HP-9             | 92                                               |
| 709-2358         | MW-7                  |                         | 1.0                | 10/9/97          | HP-9             | 91                                               |
| 709-2359         | MW-8                  | Gasoline                | 1.0                | 10/10/97         | HP-4             | 93                                               |
| 709-2360         | MW-9                  |                         | 1.0                | 10/9/97          | HP-9             | 93                                               |
| 709-2361         | MW-10                 |                         | 1.0                | 10/9/97          | HP-9             | 93                                               |

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager





680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider Client Project ID:

Sample Descript:

Unocal #5367, 500 Bancroft, San Leandro Water

MTBE (Modified EPA 8020)

Analysis for: MTBE (M First Sample #: 709-2352 Sampled: Sep 27, 1997 Received: Sep 29, 1997

Analyzed: Reported: Oct 9 - 10, 97 Oct 20, 1997

### LABORATORY ANALYSIS FOR:

## MTBE (Modified EPA 8020)

| Sample<br>Number | Sample<br>Description | Detection Limit $\mu$ g/L | Sample<br>Result<br>µg/L |
|------------------|-----------------------|---------------------------|--------------------------|
| 709-2352         | MW-1                  | 1,000                     | N.D.                     |
| 709-2353         | MW-2                  | 5.0                       | N.D.                     |
| 709-2354         | MW-3                  | 50                        | 140                      |
| 709-2355         | MW-4                  | 5.0                       | N.D.                     |
| 709-2356         | MW-5                  | 5.0                       | N.D.                     |
| 709-2357         | MW-6                  | 5.0                       | N.D.                     |
| 709-2358         | MW-7                  | 5.0                       | N.D.                     |
| 709-2359         | MW-8                  | 5.0                       | N.D.                     |
| 709-2360         | MW-9                  | 5.0                       | N.D.                     |
| 709-2361         | MW-10                 | 5.0                       | N.D.                     |

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager





Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider Client Project ID:

Unocal #5367, 500 Bancroft, San Leandro

Matrix: Liquid

QC Sample Group: 7092352-361

Reported:

Oct 20, 1997

### **QUALITY CONTROL DATA REPORT**

| ANALYTE           | D          | <del></del> |                     |                     |  |
|-------------------|------------|-------------|---------------------|---------------------|--|
| ANALTIE           | Benzene    | Toluene     | Ethyl               | Xylenes             |  |
|                   |            |             | Benzene             |                     |  |
| Method:           | EPA 8020   | EPA 8020    | EPA 8020            | EPA 8020            |  |
| Analyst:          | D. Newcomb | D. Newcomb  | D. Newcomb          | D. Newcomb          |  |
|                   |            |             | <u>-</u>            |                     |  |
| MS/MSD            |            |             |                     |                     |  |
| Batch#:           | 7100438    | 7100438     | 7100438             | 7100438             |  |
| Date Prepared:    | 10/10/97   | 10/10/97    | 10/10/97            | 10/10/97            |  |
| Date Analyzed:    | 10/10/97   | 10/10/97    | 10/10/97            | 10/10/97            |  |
| Instrument l.D.#: | HP-2       | ,<br>HP-2   | HP-2                | HP-2                |  |
| Conc. Spiked:     | 20 μg/L    | 20 μg/L     | $20\mu\mathrm{g/L}$ | $60\mu\mathrm{g/L}$ |  |
| Matrix Spike      |            |             |                     |                     |  |
| % Recovery:       | 80         | 80          | 85                  | 85                  |  |
|                   |            |             |                     |                     |  |
| Matrix Spike      |            |             |                     |                     |  |
| Duplicate %       |            |             |                     |                     |  |
| Recovery:         | 100        | 100         | 105                 | 107                 |  |
| Relative %        |            |             |                     |                     |  |
| Difference:       | 22         | 22          | 21                  | 23                  |  |
|                   |            |             |                     |                     |  |
|                   |            |             |                     |                     |  |
| LCS Batch#:       | 2LCS101097 | 2LC\$101097 | 2LCS101097          | 2LCS101097          |  |
| Date Prepared:    | 10/10/97   | 10/10/97    | 10/10/97            | 10/10/97            |  |
| Date Analyzed:    | 10/10/97   | 10/10/97    | 10/10/97            | 10/10/97            |  |
| Instrument l.D.#: | HP-2       | HP-2        | HP-2                | HP-2                |  |
| LCS %             |            |             |                     |                     |  |
| Recovery:         | 105        | 105         | 110                 | 112                 |  |
| % Recovery        |            | <u> </u>    |                     | <u></u>             |  |
| Control Limits:   | 70-130     | 70-130      | 70-130              | 70-130              |  |

## SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.





Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider Client Project ID:

Unocal #5367, 500 Bancroft, San Leandro

Matrix: Liquid

QC Sample Group: 7092352-361

Reported:

Oct 20, 1997

#### **QUALITY CONTROL DATA REPORT**

| ANALYTË                     | Benzene             | Toluene    | Ethyl      | ХуІепеѕ    |   |
|-----------------------------|---------------------|------------|------------|------------|---|
|                             |                     |            | Benzene    |            | • |
| Method:                     | EPA 8020            | EPA 8020   | EPA 8020   | EPA 8020   |   |
| Analyst:                    | D. Newcomb          | D. Newcomb | D. Newcomb | D. Newcomb |   |
| MS/MSD                      |                     |            |            |            |   |
| Batch#:                     | 7092366             | 7092366    | 7092366    | 7092366    |   |
| Date Prepared:              | 10/9/97             | 10/9/97    | 10/9/97    | 10/9/97    |   |
| Date Analyzed:              | 10/9/97             | 10/9/97    | 10/9/97    | 10/9/97    |   |
| Instrument Í.D.#:           | HP-9                | HP-9       | HP-9       | HP-9       |   |
| Conc. Spiked:               | $20\mu\mathrm{g/L}$ | 20 μg/L    | 20 μg/L    | 60 μg/L    |   |
| Matrix Spike<br>% Recovery: | 105                 | 110        | 110        | 112        |   |
| •                           |                     | 110        | 110        | 112        |   |
| Matrix Spike                |                     |            |            |            |   |
| Duplicate %                 |                     |            |            |            |   |
| Recovery:                   | 100                 | 105        | 110        | 112        |   |
| Relative %                  |                     |            |            |            |   |
| Difference:                 | 4.9                 | 4.7        | 0.0        | 0.0        |   |
|                             |                     |            |            |            |   |
| LCS Batch#:                 | 9LCS100997          | 9LCS100997 | 9LCS100997 | 9LCS100997 |   |
| Date Prepared:              | 10/9/97             | 10/9/97    | 10/9/97    | 10/9/97    |   |
| Date Analyzed:              | 10/9/97             | 10/9/97    | 10/9/97    | 10/9/97    |   |
| nstrument l.D.#:            | HP-9                | HP-9       | HP-9       | HP-9       |   |
| LCS %                       |                     |            |            |            |   |
| Recovery:                   | 100                 | 110        | 110        | 112        |   |
| % Recovery                  | <del></del>         | <u> </u>   |            | -          |   |
| Control Limits:             | 70-130              | 70-130     | 70-130     | 70-130     |   |

#### The

Signature on File

**SEQUOIA ANALYTICAL, #1271** 

Alan B. Kemp Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.





Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider Client Project ID:

Unocal #5367, 500 Bancroft, San Leandro

Matrix: Liquid

QC Sample Group: 7092352-361

Reported:

Oct 20, 1997

## **QUALITY CONTROL DATA REPORT**

| ANALYTE           | Benzene    | Toluene     | Ethyl               | Xylenes             |  |
|-------------------|------------|-------------|---------------------|---------------------|--|
|                   |            |             | Benzene             |                     |  |
| Method:           | EPA 8020   | EPA 8020    | EPA 8020            | EPA 8020            |  |
| Analyst:          | D. Newcomb | D. Newcomb  | D. Newcomb          | D. Newcomb          |  |
| MS/MSD            |            |             |                     |                     |  |
| Batch#:           | 7100440    | 7100440     | 7100440             | 7100440             |  |
| Date Prepared:    | 10/10/97   | 10/10/97    | 10/10/97            | 10/10/97            |  |
| Date Analyzed:    | 10/10/97   | 10/10/97    | 10/10/97            | 10/10/97            |  |
| Instrument I.D.#: | HP-4       | HP-4        | HP-4                | HP-4                |  |
| Conc. Spiked:     | 20 μg/L    | 20 μg/L     | $20\mu\mathrm{g/L}$ | $60\mu\mathrm{g/L}$ |  |
| Matrix Spike      |            |             |                     |                     |  |
| % Recovery:       | 95         | 95          | 90                  | 95                  |  |
| Matrix Spike      |            |             |                     |                     |  |
| Duplicate %       |            |             |                     |                     |  |
| Recovery:         | 95         | 95          | 90                  | 93                  |  |
| Relative %        |            |             |                     |                     |  |
| Difference:       | 0.0        | 0.0         | 0.0                 | 1.8                 |  |
|                   |            |             |                     |                     |  |
| LCS Batch#:       | 4LCS101097 | 4LCS101097  | 4LCS101097          | 4LCS101097          |  |
| Date Prepared:    | 10/10/97   | 10/10/97    | 10/10/97            | 10/10/97            |  |
| Date Analyzed:    | 10/10/97   | 10/10/97    | 10/10/97            | 10/10/97            |  |
| Instrument I.D.#: | HP-4       | HP-4        | HP-4                | HP-4                |  |
| LCS %             |            |             |                     |                     |  |
| Recovery:         | 100        | 100         | 95                  | 98                  |  |
| % Recovery        |            | <del></del> |                     |                     |  |

## SEQUOIA ANALYTICAL, #1271

70-130

Signature on File

Control Limits:

Alan B. Kemp Project Manager Please Note:

70-130

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

70-130



70-130

## CHAIN OF CUSTODY

| JOE A              | T-0010  |               | TOS(                  | CO<br># _5 | 367   | CITY: Sau Le                  | andro                | >         |           | AN                                                   | ALYSES     | REQUESTED    |            |              | TURN AROUND TIME:           |
|--------------------|---------|---------------|-----------------------|------------|-------|-------------------------------|----------------------|-----------|-----------|------------------------------------------------------|------------|--------------|------------|--------------|-----------------------------|
| VYLINESSING AGENCY |         | 17            | ADDR                  | ESS: _     | 500   | city: <u>Saule</u><br>Banciel |                      | 10 0      | CHAL      | 70G                                                  | 8010       |              |            |              | Regular                     |
| SAMPLE ID NO.      | DATE    | TIME          | WATER                 | *GRĀB      | СОМР  | NO. OF CONT.                  | SAMPLING<br>LOCATION | HAT       | 77        | 1                                                    | 9          |              |            |              | REMARKS                     |
| Mu İ               | 6,21-1  | 3:45<br>8.N   | Emmi .                |            |       | 2001                          | Ww (lg               | 400       | p-        | 092                                                  | 352        |              |            |              | MTBE: Sppb.                 |
| evil 2             |         | 10;40<br>n.l. |                       |            |       |                               |                      | /         | 7         | 092                                                  | 353        |              |            |              |                             |
| mw 3               | ,       | 3:30<br>P.W   |                       | ,          |       |                               | ,                    |           |           | 092                                                  | 354        |              |            |              |                             |
| vive st            | /       | 11,30<br>A.m  |                       |            |       |                               |                      | _         | ,<br>,    | 7092                                                 | 355        |              |            |              |                             |
| Meta, S            | ,       | 12:05<br>P.w  |                       | ,,,,,,     |       |                               | ,                    |           |           | 709                                                  | 2356       |              |            |              |                             |
| ju wiji            |         | 2:52          |                       | ,,         |       | •                             | , i                  |           |           | 709;                                                 | 2357       |              |            |              |                             |
| 11.W 7             | /       | 17,30         | -*                    |            |       |                               | *                    | _         |           | 703                                                  | 2358       | }            |            |              |                             |
| , N. S.            | 1       | 1:08          |                       | ,          |       | ٠ معني                        | -                    |           |           | 7092                                                 | 2359       |              |            |              |                             |
| 14W.9              | ,       | ):4°<br>Cw    |                       | · ·        |       |                               |                      | 1         |           | <b>709</b> ;                                         | 2360       |              |            |              |                             |
| unci. 10           | ,       | 2:70          |                       |            |       |                               |                      | _         |           | 70 <b>92</b>                                         |            |              |            |              |                             |
| RELINOUISI         | IED BY: | DATE/TI       | ME                    |            | RE    | CEIVED BY:                    | DA                   | TE/TIME   | THE FOL   | LOWING M                                             | AUST BE CO | MPLETED BY   | THE LABOR  | ATORY ACCE   | PTING SAMPLES FOR ANALYSES: |
|                    |         | 5 6           | ن<br>مر <sub>ام</sub> |            |       | <b>1</b>                      | •                    |           | 1. HAVE A | NLL SAMPL                                            | es heceivi | D FOR ANALY  | SIS BEEN S | TORED ON ICI | F7 <u>905</u>               |
| (SIGNATURE)        | ٠.( ٥ ) | 4-17          | 77                    | \          | TURE) |                               | (1/2                 | 7/12 1701 | )         |                                                      |            | RIGERATED UN |            |              | 5                           |
| 111 1 15           | Medan   |               |                       | •          |       |                               |                      | Ç         |           |                                                      |            |              |            | •            | U.,                         |
| (SIGNATURE)        |         |               |                       | 1/1        | TURE) | 1116                          | <u> </u>             | 1327      | signatt   | $\left( \begin{array}{c} 1 \\ 1 \end{array} \right)$ | N APPROPE  | IATE CONTAIN | EKS AND P  | TITLE: 1     | DATE:                       |
|                    |         |               |                       |            |       |                               |                      |           |           | $\nabla \emptyset$                                   | ns Uh      | \            |            | $A_{V_0}$    | 4/2+57                      |

Note: All water containers to be sampled for TPHG/BTEX, 8010 & 8240 are preserved with HCL. All water containers to be sampled for Lead or Metals are preserved with HN03. All other containers are unpreserved.

## MPDS Services Inc.

2401 Stanwell Drive Concord, California 94520

Tel: (510) 602-5120 Fax: (510) 689-1918

| SAMPLING<br>LOCATION: #5367 - S. Leandro | DATE & A.M. TIME SAMPLED 9-27-97 3:45 F.M. |
|------------------------------------------|--------------------------------------------|
| 500 Buncioft                             | FIELD TECHNICIAN                           |
| PURGE METHOD Bail                        | DATE(S) PURGED 9 77 97                     |
| WELL NUMBER _Mw 1                        | -                                          |
| WATER LEVEL-INITIAL 37.86                | SAMPLING METHOD Rail                       |
| WATER LEVEL-FINAL 38.02                  | CONTAINERS                                 |
| WELL DEPTH                               | PRESERVATIVES                              |
| WELL CASING VOLUME                       | tCASING DIAMETER 2 /                       |

| TIME  | GALLONS<br>PURGED | TEMPERATURE<br>(°F) | ELECTRICAL<br>CONDUCTIVITY<br>(µmhos/cmx100♂) or<br>µS/cm | рН   |
|-------|-------------------|---------------------|-----------------------------------------------------------|------|
| 3'35  | . 0               | 66.5                | 1.48                                                      | 7.60 |
|       | 0.5               | 66.8                | 1.51                                                      | 7.32 |
|       | 1                 | 67.0                | 1,56                                                      |      |
| 31.40 | 2                 | 67.2                | 1.53                                                      | 7.25 |
|       |                   |                     |                                                           |      |
|       |                   |                     |                                                           |      |
|       |                   |                     |                                                           |      |
|       |                   |                     |                                                           |      |
|       |                   |                     |                                                           |      |

| † Conversion Factors: | Well Diameter | Factor | S = Siemens = mhos                |
|-----------------------|---------------|--------|-----------------------------------|
|                       | 2"            | 0.17   | Stabilization Criteria:           |
|                       | 3"            | 0.37   | Temperature = ± 1 °F              |
|                       | 4"            | 0.65   | Conductivity = $\pm$ 10% of total |
|                       | 4.5"          | 0.82   | $pH = \pm 0.2$                    |
|                       | 6"            | 1.46   |                                   |
|                       | 8"            | 2.60   |                                   |
|                       | 12"           | 5.87   |                                   |

2401 Stanwell Drive Concord, California 94520

Tel: (510) 602-5120 Fax: (510) 689-1918

| SAMPLING<br>LOCATION: # 5367 San Leandro | DATE & 7- 27-97 10:40 F.M. |
|------------------------------------------|----------------------------|
| 500 BaucrofV                             | FIELD TECHNICIAN _ Joe     |
| PURGE METHOD Pump                        | DATE(S) PURGED 9-27-47     |
| WELL NUMBER                              |                            |
| WATER LEVEL-INITIAL 31.07                | SAMPLING METHOD Bail       |
| WATER LEVEL-FINAL 32-11                  | CONTAINERS2                |
| WELL DEPTH                               | PRESERVATIVES              |
| WELL CASING VOLUME /0.30                 | tCASING DIAMETER #         |

| TIME  | GALLONS<br>PURGED | TEMPERATURE<br>(°F) | ELECTRICAL CONDUCTIVITY (    ( | рН   |
|-------|-------------------|---------------------|--------------------------------|------|
| 10:15 | 0                 | 68.7                | 4.38                           | 7,52 |
|       | 10                | 69.5                | 4.36                           | 7-27 |
|       | 20                | 71.2                | 4.29                           | 7.20 |
| 10:30 | 31                | 70.8                | 4.32                           | 7.10 |
|       |                   |                     |                                |      |
|       |                   |                     |                                |      |
|       |                   |                     |                                |      |
|       |                   |                     |                                |      |
|       |                   |                     |                                |      |

| † Conversion Factors: | Well Diameter | <u>Factor</u> | S = Siemens = mhos                |
|-----------------------|---------------|---------------|-----------------------------------|
|                       | 2"            | 0.17          | Stabilization Criteria:           |
|                       | 3"            | 0.37          | Temperature $= \pm 1$ °F          |
|                       | 4"            | 0.65          | Conductivity = $\pm$ 10% of total |
|                       | 4.5"          | 0.82          | $pH = \pm 0.2$                    |
|                       | 6"            | 1.46          |                                   |
|                       | 8"            | 2.60          |                                   |
|                       | 12"           | 5.87          |                                   |

## MPDS Services Inc.

2401 Stanwell Drive Concord, California 94520 Tel: (510) 602-5120 Fax: (510) 689-1918

/P&S

|                           | DATE & A.M. TIME SAMPLED 9-27-97 3:30 (P.M. |
|---------------------------|---------------------------------------------|
| 500 Boursoft              | FIELD TECHNICIAN Joe                        |
| PURGE METHOD              |                                             |
| WELL NUMBER               |                                             |
| WATER LEVEL-INITIAL 30.76 | SAMPLING METHOD Bail                        |
| WATER LEVEL-FINAL 31.43   | CONTAINERS                                  |
| WELL DEPTH                | PRESERVATIVES                               |
| WELL CASING VOLUME        | tCASING DIAMETER 4                          |

| TIME | GALLONS<br>PURGED | TEMPERATURE<br>(°F)  | ELECTRICAL<br>CONDUCTIVITY<br>(µmhos/cmx100Ӌ or<br>µS/cm | рН   |
|------|-------------------|----------------------|----------------------------------------------------------|------|
| 3:05 | 0                 | 70.1                 | 1. 80                                                    | 7.53 |
|      | 12                | 70.4                 | 1.75                                                     | 7.21 |
|      | 239               | 70.4<br>70.5<br>70.5 | 1.75                                                     | 7.12 |
| 3,20 | 34                | 70.5                 | 1.72                                                     | 7.17 |
|      |                   |                      |                                                          |      |
|      |                   |                      |                                                          |      |
|      |                   |                      |                                                          |      |
|      |                   |                      |                                                          |      |
|      |                   |                      |                                                          |      |

| † Conversion Factors: | Well Diameter | <u>Factor</u> | S = Siemens = mhos                |
|-----------------------|---------------|---------------|-----------------------------------|
|                       | 2"            | 0.17          | Stabilization Criteria:           |
|                       | 3"            | 0.37          | Temperature = ± 1 °F              |
|                       | 4"            | 0.65          | Conductivity = $\pm$ 10% of total |
|                       | 4.5"          | 0.82          | $pH = \pm 0.2$                    |
|                       | 6"            | 1.46          |                                   |
|                       | 8".           | 2.60          |                                   |
|                       | 12"           | 5.87          |                                   |

2401 Stanwell Drive Concord, California 94520

Tel: (510) 602-5120 Fax: (510) 689-1918

| SAMPLING<br>LOCATION: \$5367 - 5. Leandis | DATE & TIME SAMPLED | 7-27-91 | /1:30 P.M.   |
|-------------------------------------------|---------------------|---------|--------------|
| 500 Bancroft                              | FIELD TECHNICIAN    | Joe     | <del>.</del> |
| WELL NUMBER NW 4                          | DATE(S) PURGED      | 9-27-97 |              |
| WELL NUMBER NW-4                          |                     |         |              |
| WATER LEVEL-INITIAL 31.68                 | SAMPLING METHO      | Bail    |              |
| WATER LEVEL-FINAL 31.88                   | CONTAINERS          | 1       |              |
| WELL DEPTH                                | PRESERVATIVES       |         |              |
| WELL CASING VOLUME 10.95                  | TCASING DIAMETER    | 4       |              |

| TIME  | GALLONS<br>PURGED | TEMPERATURE<br>(°F) | ELECTRICAL CONDUCTIVITY (µmhos/cmx100 ) or µS/cm | рН   |
|-------|-------------------|---------------------|--------------------------------------------------|------|
| 11:00 | Ò                 | 70-4                | 5118                                             | 8.02 |
|       | 11                | 70-4<br>70-6        | 5.10                                             | 7-38 |
|       | 22                | 70.7                | 5,41                                             | 7-49 |
| 11:15 | 33                | 70.3                | 5.46                                             | 7.50 |
|       |                   |                     |                                                  |      |
|       |                   |                     |                                                  |      |
|       |                   |                     |                                                  |      |
|       |                   |                     |                                                  |      |
|       |                   |                     |                                                  |      |

| † Conversion Factors: | Well Diameter | Factor | S = Siemens = mhos                |
|-----------------------|---------------|--------|-----------------------------------|
|                       | 2"            | 0.17   | Stabilization Criteria:           |
|                       | 3"            | 0.37   | Temperature = ± 1 °F              |
|                       | 4"            | 0.65   | Conductivity = $\pm$ 10% of total |
|                       | 4.5"          | 0.82   | $pH = \pm 0.2$                    |
|                       | 6"            | 1.46   |                                   |
|                       | 8"            | 2.60   |                                   |
|                       | 12"           | 5.87   |                                   |

2401 Stanwell Drive Concord, California 94520 Tel: (510) 602-5120 Fax: (510) 689-1918

| SAMPLING<br>LOCATION: #5367 D. Leandro | DATE & A.M. TIME SAMPLED 9-27-97 12:05 R.M. |
|----------------------------------------|---------------------------------------------|
| 500 Bancroft                           | FIELD TECHNICIAN Joe                        |
| PURGE METHOD Jump                      | DATE(S) PURGED 9-27-97                      |
| WELL NUMBER _ MW-5                     |                                             |
| WATER LEVEL-INITIAL 37.65              | SAMPLING METHOD Bail                        |
| WATER LEVEL-FINAL 32-/0                | CONTAINERS                                  |
| WELL DEPTH 44.33                       | PRESERVATIVES                               |
| WELL CASING VOLUME 2.16                | tCASING DIAMETER 2                          |

| TIME   | GALLONS<br>PURGED | TEMPERATURE<br>(°F) | ELECTRICAL<br>CONDUCTIVITY<br>(μmhos/cmx100 ) or<br>μS/cm | рН   |
|--------|-------------------|---------------------|-----------------------------------------------------------|------|
| 11:45  | 0                 | 70.4                | 6.32                                                      | 7-63 |
|        | 2.5               | 70.9                | 6.30                                                      | 7-27 |
|        | 5                 | 71.0                | 5.98                                                      | 7-20 |
| 11:155 | 7                 | 71-5                | 6-04                                                      | 7-23 |
|        | Į.                |                     |                                                           |      |
|        |                   |                     |                                                           |      |
|        |                   |                     |                                                           |      |
|        |                   |                     |                                                           |      |
|        |                   |                     |                                                           |      |

| † Conversion Factors: Well Diameter | <u>Factor</u> | S = Siemens = mhos                |
|-------------------------------------|---------------|-----------------------------------|
| 2"                                  | 0.17          | Stabilization Criteria:           |
| 3"                                  | 0.37          | Temperature = ± 1 °F              |
| 4"                                  | 0.65          | Conductivity = $\pm$ 10% of total |
| 4.5"                                | 0.82          | $pH = \pm 0.2$                    |
| 6"                                  | 1.46          | ·                                 |
| 8"                                  | 2.60          |                                   |
| 12"                                 | 5.87          |                                   |

Tel: (510) 602-5120 Fax: (510) 689-1918

| SAMPLING<br>LOCATION: #5367 S. Lewidro | DATE & A.M. TIME SAMPLED 9-27-97 2152 EM |
|----------------------------------------|------------------------------------------|
| 500 Bancroft                           | FIELD TECHNICIAN Joe                     |
| PURGE METHOD Tump                      | DATE(S) PURGED 9-27-97                   |
| WELL NUMBER                            |                                          |
| WATER LEVEL-INITIAL 30.52              | SAMPLING METHOD Bail                     |
| WATER LEVEL-FINAL 31. 36               | CONTAINERS 2                             |
| WELL DEPTH44.62                        | PRESERVATIVES                            |
| WELL CASING VOLUME 2.40                | tCASING DIAMETER                         |

| TIME | GALLONS<br>PURGED | TEMPERATURE<br>(°F) | ELECTRICAL CONDUCTIVITY (µmhos/cmx100) or µS/cm | рН      |
|------|-------------------|---------------------|-------------------------------------------------|---------|
| 2:30 | 0                 | 71.2                | 4.18                                            | 7.63    |
|      | 2,5               | 72.2                | 4-27                                            | 7.32    |
|      | 5                 | 72-5                | 4.22                                            | 7.16    |
| 2:40 | 8                 | 72.7                | 4.24                                            | 7.17    |
|      |                   |                     |                                                 |         |
|      |                   |                     |                                                 |         |
|      |                   |                     |                                                 |         |
|      |                   |                     |                                                 |         |
|      |                   |                     |                                                 | <b></b> |

| † Conversion Factors: Well D | iameter <u>Factor</u> | S = Siemens = mhos                |
|------------------------------|-----------------------|-----------------------------------|
| 2'                           | " 0.17                | Stabilization Criteria:           |
| 3'                           | " 0.37                | Temperature = $\pm 1$ °F          |
| 4'                           | " O.65                | Conductivity = $\pm$ 10% of total |
| 4.                           | .5" 0.82              | $pH = \pm 0.2$                    |
| 6'                           | " 1.46                | •                                 |
| 8'                           | 2.60                  |                                   |
| 1:                           | 2" 5.87               |                                   |

# PURGING/SAMPLING DATA SHEET

SAMPLING LOCATION: #5367 - S. Leandro TIME SAMPLED 9-27-97 12:30 pm

500 Bancroft FIELD TECHNICIAN TO R

PURGE METHOD Pump DATE(S) PURGED 9-27-97

WELL NUMBER WW 7

WATER LEVEL-INITIAL 30.84 SAMPLING METHOD Band CONTAINERS 1000

WELL DEPTH 43.96 PRESERVATIVES 1000

WELL CASING VOLUME 2-23 TCASING DIAMETER 7

| TIME  | GALLONS<br>PURGED | TEMPERATURE<br>(°F) | ELECTRICAL CONDUCTIVITY (µmhos/cmx100 ) or µS/cm | рН   |
|-------|-------------------|---------------------|--------------------------------------------------|------|
| 12:10 | 0                 | 70.8                | 5113                                             | 7.99 |
|       | 3                 | 70.8                | 5.18                                             | 7.38 |
|       | \$                | 72.0                | 5.14                                             | 7.28 |
| 12:20 | 7                 | 72.0                | 5.16                                             | 7.30 |
|       |                   |                     |                                                  |      |
|       |                   |                     |                                                  |      |
|       |                   |                     |                                                  |      |
|       |                   |                     |                                                  |      |
|       |                   |                     |                                                  |      |

| † Conversion Factors: \( \) | Well Diameter | Factor | S = Siemens = mhos                |
|-----------------------------|---------------|--------|-----------------------------------|
|                             | 2"            | 0.17   | Stabilization Criteria:           |
|                             | 3"            | 0.37   | Temperature = ± 1 °F              |
|                             | 4"            | 0.65   | Conductivity = $\pm$ 10% of total |
|                             | 4.5"          | 0.82   | $pH = \pm 0.2$                    |
|                             | 6"            | 1.46   |                                   |
|                             | 8"            | 2.60   |                                   |
|                             | 12"           | 5.87   |                                   |

Tel: (510) 602-5120

Fax: (510) 689-1918

2401 Stanwell Drive Concord, California 94520 Tel: (510) 602-5120 Fax: (510) 689-1918

| SAMPLING<br>LOCATION: #5367 - S. Leandro | DATE & 7-27-97 1:08 A.M. TIME SAMPLED 9-27-97 1:08 A.M. |
|------------------------------------------|---------------------------------------------------------|
| 500 Bancroff.                            | FIELD TECHNICIAN To e                                   |
| PURGE METHOD Pum                         |                                                         |
| WELL NUMBER Www &                        |                                                         |
| WATER LEVEL-INITIAL 31.15                | SAMPLING METHOD Bail                                    |
| WATER LEVEL-FINAL 31.57                  | CONTAINERS                                              |
|                                          | PRESERVATIVES                                           |
| WELL CASING VOLUME 2.16                  | tCASING DIAMETER 2 1                                    |

| TIME  | GALLONS<br>PURGED | TEMPERATURE<br>(°F) | ELECTRICAL<br>CONDUCTIVITY<br>(μmhos/cmx100 ) or<br>μS/cm | рН   |
|-------|-------------------|---------------------|-----------------------------------------------------------|------|
| 12,45 | 0                 | 71.0                | 5-33                                                      | 7-48 |
|       | 2.5               | 72-8                | 5.47                                                      | 7.40 |
|       | 5                 | 73.2                | 5.51                                                      | 7.32 |
| 12:55 | 7                 | 73.6                | 5.54                                                      | 7.35 |
|       |                   |                     |                                                           |      |
|       |                   |                     |                                                           |      |
|       |                   |                     |                                                           |      |
|       |                   |                     |                                                           |      |
|       |                   |                     |                                                           |      |

| † Conversion Factors: Well Diar | meter <u>Factor</u> | S = Siemens = mhos                |
|---------------------------------|---------------------|-----------------------------------|
| 2"                              | 0.17                | Stabilization Criteria:           |
| 3"                              | 0.37                | Temperature = $\pm$ 1 °F          |
| 4"                              | 0.65                | Conductivity = $\pm$ 10% of total |
| 4.5                             | " 0.82              | $pH = \pm 0.2$                    |
| 6"                              | 1.46                | •                                 |
| 8"                              | 2.60                |                                   |
| 12"                             | 5.87                |                                   |

2401 Stanwell Drive Eoncord, California 94520 Tel: (510) 602-5120 Fax: (510) 689-1918

| SAMPLING<br>LOCATION: #5367- S. Leandro | DATE & 9_ 27.97 1,40 p.m. |
|-----------------------------------------|---------------------------|
| 500 Bancroft.                           | FIELD TECHNICIAN Joe      |
| WELL NUMBER _ MW- 9                     | DATE(S) PURGED            |
| WELL NUMBER                             |                           |
| WATER LEVEL-INITIAL 30.38               | SAMPLING METHOD Bail      |
| WATER LEVEL-FINAL 31.11                 | CONTAINERS 2              |
| WELL DEPTH                              | PRESERVATIVES             |
| WELL CASING VOLUME 2-42                 | tCASING DIAMETER 2 5      |

| TIME | GALLONS<br>PURGED | TEMPERATURE<br>(°F) | ELECTRICAL<br>CONDUCTIVITY<br>(μmhos/cmx100 ) or<br>μS/cm | рН   |
|------|-------------------|---------------------|-----------------------------------------------------------|------|
| 1:20 | 0                 | 71.0                | 4-73                                                      | 7.53 |
|      | 3                 | 720                 | 4.81                                                      | 7.24 |
|      | 5                 | 72.2                | 4,82                                                      | 7-28 |
| 1:32 | 3                 | 72.4                | 4-83                                                      | 7.26 |
| ,    |                   |                     |                                                           |      |
|      |                   |                     |                                                           |      |
|      |                   |                     |                                                           |      |
|      | -                 |                     |                                                           |      |
|      |                   |                     |                                                           |      |

| † Conversion Factors: | Well Diameter | <u>Factor</u> | S = Siemens = mhos                |
|-----------------------|---------------|---------------|-----------------------------------|
|                       | 2"            | 0.17          | Stabilization Criteria:           |
|                       | 3"            | 0.37          | Temperature = ± 1 °F              |
|                       | 4"            | 0.65          | Conductivity = $\pm$ 10% of total |
|                       | 4.5"          | 0.82          | $pH = \pm 0.2$                    |
|                       | 6"            | 1.46          |                                   |
|                       | 8"            | 2.60          |                                   |
|                       | 12"           | 5.87          |                                   |

Tel: (510) 602-5120 Fax: (510) 689-1918

| SAMPLING<br>LOCATION: #5367_ S. Leandre | DATE & 7_ 7.7-97 2:20 P.M. |
|-----------------------------------------|----------------------------|
| 500 Bancroft                            | FIELD TECHNICIAN Joe       |
| PURGE METHOD                            |                            |
| WELL NUMBER WW - 10                     |                            |
| WATER LEVEL-INITIAL 32.80               | SAMPLING METHOD            |
| WATER LEVEL-FINAL 3306                  | CONTAINERS 2               |
| WELL DEPTH                              | PRESERVATIVES              |
| WELL CASING VOLUME                      | tCASING DIAMETER 2         |

| TIME | GALLONS<br>PURGED | TEMPERATURE<br>(°F) | ELECTRICAL CONDUCTIVITY (µmhos/cmx100) or µS/cm | рН           |
|------|-------------------|---------------------|-------------------------------------------------|--------------|
| 2:00 | ₽                 | 71.9                | 5.15                                            | 7.83         |
|      | 1.5               | 72.3                | 5.37                                            | 7-36         |
|      | 3                 | 72.8                | 5.42                                            | 7.30<br>7.26 |
| 2:10 | 5                 | 72.8                | 5.39                                            | 7.26         |
| ·    |                   |                     |                                                 |              |
|      |                   |                     |                                                 |              |
|      |                   |                     |                                                 |              |
|      |                   |                     |                                                 |              |
|      |                   |                     |                                                 |              |

| † Conversion Factors: W | Vell Diameter | Factor | S = Siemens = mhos                |
|-------------------------|---------------|--------|-----------------------------------|
|                         | 2"            | 0.17   | Stabilization Criteria:           |
|                         | 3"            | 0.37   | Temperature = ± 1 °F              |
|                         | 4"            | 0.65   | Conductivity = $\pm$ 10% of total |
|                         | 4.5"          | 0.82   | $pH = \pm 0.2$                    |
|                         | 6"            | 1.46   | •                                 |
|                         | 8" ·          | 2.60   |                                   |
|                         | 12"           | 5.87   |                                   |



680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063 Walnut Creek, CA 94598

(650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite J Dublin, CA 94568

Unocal SS#5367, 180108.85 Client Proj. ID:

Sample Descript: MW-4 Matrix: LIQUID

Analysis Method: 8015Mod/8020 Lab Number: 9803F13-05

Sampled: 03/20/98 Received: 03/23/98

Analyzed: 04/02/98 Reported: 04/08/98

Attention: Deanna Harding QC Batch Number: GC040298802004A

Instrument ID: GCHP04

Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

| Analyte                                                                                              | Detection Limit ug/L                      | Sample Results<br>ug/L                       |
|------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------|
| TPPH as Gas Methyl t-Butyl Ether Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern: | 50<br>2.5<br>0.50<br>0.50<br>0.50<br>0.50 | N.D.<br>N.D.<br>N.D.<br>N.D.<br>N.D.<br>N.D. |
| Surrogates<br>Trifluorotoluene                                                                       | Control Limits % 130                      | % Recovery<br>103                            |

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL -**ELAP #1271** 

Mike Gregory Project Manager



Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(650) 364-9600 (510) 988-9600 (916) 921-9600

FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite J Dublin, CA 94568

Unocal SS#5367, 180108.85 Client Proj. ID:

Sampled: 03/20/98

Sample Descript: MW-5 Matrix: LIQUID

Received: 03/23/98

Attention: Deanna Harding

Analysis Method: 8015Mod/8020 Lab Number: 9803F13-06

Analyzed: 04/02/98 Reported: 04/08/98

QC Batch Number: GC040298802004A

Instrument ID: GCHP04

# Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

| Analyte                                                                                              | Detection Limit ug/L                      | Sample Results<br>ug/L               |
|------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|
| TPPH as Gas Methyl t-Butyl Ether Benzene Toluene Ethyl Benzene Xyienes (Total) Chromatogram Pattern: | 50<br>2.5<br>0.50<br>0.50<br>0.50<br>0.50 | N.D.<br>N.D.<br>N.D.<br>N.D.<br>N.D. |
| Surrogates<br>Trifluorotoluene                                                                       | Control Limits % 70 130                   | % Recovery<br>105                    |

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL -ELAP #1271

Mike Gregory Project Manager



Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies
6747 Sierra Court Suite J Dublin, CA 94568

Attention: Deanna Harding

Unocal SS#5367, 180108.85 Client Proj. ID:

Sample Descript: MW-6

Matrix: LIQUID

Analysis Method: 8015Mod/8020 Lab Number: 9803F13-07

Sampled: 03/20/98 Received: 03/23/98

Analyzed: 04/02/98 Reported: 04/08/98

QC Batch Number: GC040298802004A

instrument ID: GCHP04

# Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

| Analyte                                                                                              | Detection Limit<br>ug/L                   | Sample Results<br>ug/L                       |
|------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------|
| TPPH as Gas Methyl t-Butyl Ether Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern: | 50<br>2.5<br>0.50<br>0.50<br>0.50<br>0.50 | N.D.<br>N.D.<br>N.D.<br>N.D.<br>N.D.<br>N.D. |
| Surrogates<br>Trifluorotoluene                                                                       | Control Limits % 130                      | % Recovery<br>104                            |

Analytes reported as N.D. were not present above the stated limit of detection.

**SEQUOIA ANALYTICAL** ELAP #1271

Mike Gregory Project Manager



Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(650) 364-9600 (510) 988-9600 (916) 921-9600

FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite J

Unocal SS#5367, 180108.85 Client Proj. ID:

Sampled: 03/20/98 Received: 03/23/98

Dublin, CA 94568

Sample Descript: MW-7 Matrix: LIQUID

Analyzed: 04/02/98

Attention: Deanna Harding

Analysis Method: 8015Mod/8020 Lab Number: 9803F13-08

Reported: 04/08/98

QC Batch Number: GC040298802004A

Instrument ID: GCHP04

# Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

| Analyte                                                                                              | Detection Limit<br>ug/L                   | Sample Hesuits<br>ug/L               |
|------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|
| TPPH as Gas Methyl t-Butyl Ether Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern: | 50<br>2.5<br>0.50<br>0.50<br>0.50<br>0.50 | N.D.<br>N.D.<br>N.D.<br>N.D.<br>N.D. |
| Surrogates<br>Trifluorotoluene                                                                       | Control Limits % 130                      | % Recovery<br>103                    |

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL -ELAP #1271

Mike Gregory Project Manager



680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063 Walnut Creek, CA 94598

(650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite J Dublin, CA 94568

Attention: Deanna Harding

Client Proj. ID: Unocal SS#5367, 180108.85

Sample Descript: MW-8

Matrix: LIQUID Analysis Method: 8015Mod/8020

Lab Number: 9803F13-09

Sampled: 03/20/98

Received: 03/23/98

Analyzed: 04/02/98 Reported: 04/08/98

QC Batch Number: GC040298802004A

Instrument ID: GCHP04

# Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

| Analyte                                                                                              | Detection Limit ug/L                      | Sample Results<br>ug/L                       |
|------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------|
| TPPH as Gas Methyl t-Butyl Ether Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern: | 50<br>2.5<br>0.50<br>0.50<br>0.50<br>0.50 | N.D.<br>N.D.<br>N.D.<br>N.D.<br>N.D.<br>N.D. |
| Surrogates<br>Trifluorotoluene                                                                       | Control Limits % 130                      | <b>% Recovery</b><br>98                      |

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL - ELAP #1271

Mike Gregory

Project Manager



Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite J

Attention: Deanna Harding

Unocal SS#5367, 180108.85 Client Proj. ID:

Sampled: 03/20/98

Dublin, CA 94568

Sample Descript: MW-9 Matrix: LIQUID

Received: 03/23/98

Analysis Method: 8015Mod/8020 Lab Number: 9803F13-10

Analyzed: 04/02/98 Reported: 04/08/98

QC Batch Number: GC040298802004A

Instrument ID: GCHP04

## Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

| Analyte  TPPH as Gas Methyl t-Butyl Ether Benzene Tolugno | Detection Limit ug/L                      | Sample Results<br>ug/L               |
|-----------------------------------------------------------|-------------------------------------------|--------------------------------------|
| Methyl t-Butyl Ether                                      | 50<br>2.5<br>0.50<br>0.50<br>0.50<br>0.50 | N.D.<br>N.D.<br>N.D.<br>N.D.<br>N.D. |
| Surrogates<br>Trifluorotoluene                            | Control Limits % 130                      | % Recovery<br>100                    |

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL -

Mike Gregory Project Manager



Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite J Dublin, CA 94568

Attention: Deanna Harding

Unocal SS#5367, 180108.85 Client Proj. ID:

Sample Descript: MW-10 Matrix: LIQUID

Analysis Method: 8015Mod/8020

Lab Number: 9803F13-11

Sampled: 03/20/98 Received: 03/23/98

Analyzed: 04/02/98 Reported: 04/08/98 QC Batch Number: GC040298802004A

Instrument ID: GCHP04

# Total Purgeable Petroleum Hydrocarbons (TPPH) with BTEX and MTBE

| Analyte                                                                                              | Detection Limit ug/L                      | Sample Results<br>ug/L                       |
|------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------|
| TPPH as Gas Methyl t-Butyl Ether Benzene Toluene Ethyl Benzene Xylenes (Total) Chromatogram Pattern: | 50<br>2.5<br>0.50<br>0.50<br>0.50<br>0.50 | N.D.<br>N.D.<br>N.D.<br>N.D.<br>N.D.<br>N.D. |
| Surrogates<br>Trifluorotoluene                                                                       | Control Limits %<br>70 130                | % Recovery<br>102                            |

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL -ELAP #1271

Mike Gregory Project Manager



Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court Suite J Dublin, CA 94568 Attention: Deanna Harding Client Proj. ID: Unocal SS#5367, 180108.85

Received: 03/23/98

Lab Proj. ID: 9803F13

Reported: 04/08/98

## LABORATORY NARRATIVE

In order to properly interpret this report, it must be reproduced in its entirety. This report contains a total of \( \sqrt{ } \) pages including the laboratory narrative, sample results, quality control, and related documents as required (cover page, COC, raw data, etc.).

SEQUOIA ANALYTICAL

Mike Gregory Project Manager



680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063 Walnut Creek, CA 94598 (650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J Dublin, CA 94568

Attention: Deanna Harding

Client Project ID:

Unocal SS#5367, 180108.85

Matrix:

Liquid

Work Order #:

9803F13 -01-04 Reported:

Apr 9, 1998

## QUALITY CONTROL DATA REPORT

| Analyte:              | Benzene         | Toluene         | Ethyl           | Xylenes         | Gas            |
|-----------------------|-----------------|-----------------|-----------------|-----------------|----------------|
|                       |                 |                 | Benzene         |                 |                |
| QC Batch#:            | GC040198802004A | GC040198802004A | GC040198802004A | GC040198802004A | GC040198802004 |
| Analy. Method:        | EPA 8020        | EPA 8020        | EPA 8020        | EPA 8020        | EPA 8015M      |
| Prep. Method:         | EPA 5030        
|                       |                 |                 |                 |                 | D. Newcomb     |
| Analyst:              | D. Newcomb      | D. Newcomb      | D. Newcomb      | D. Newcomb      | =              |
| MS/MSD #:             | 8032287         | 8032287         | 8032287         | 8032287         | 8032287        |
| Sample Conc.:         | N.D.            | N.D.            | N.D.            | N.D.            | N.D.           |
| Prepared Date:        | 4/1/98          | 4/1/98          | 4/1/98          | 4/1/98          | 4/1/98         |
| Analyzed Date:        |                 | 4/1/98          | 4/1/98          | 4/1/98          | 4/1/98         |
| nstrument I.D.#:      |                 | HP4             | HP4             | HP4             | HP4            |
| Conc. Spiked:         |                 | 20 μg/ <b>L</b> | 20 μg/L         | 60 μg/L         | 270 μg/L       |
| Result:               | 19              | 22              | 21              | 65              | 270            |
| MS % Recovery:        |                 | 110             | 105             | 108             | 100            |
| Dup. Result:          | 22              | 24              | 22              | 72              | 400            |
| MSD % Recov.:         |                 | 120             | 110             | 120             | 148            |
| DDD.                  |                 | · 8.7           | 4.7             | 10              | 39             |
| RPD:                  |                 | <del>-</del>    | 0-20            | 0-20            | 0-50           |
| RPD Limit:            | 0-20            | 0-20            | 0-20            | 0.20            |                |
|                       |                 |                 |                 |                 |                |
| LCS #:                | : LCS040198     | LCS040198       | LCS040198       | LCS040198       | LCS040198      |
| Prepared Date:        | : 4/1/98        | 4/1/98          | 4/1/98          | 4/1/98          | 4/1/98         |
| Analyzed Date:        |                 | 4/1/98          | 4/1/98          | 4/1/98          | 4/1/98         |
| Instrument I.D.#      |                 | HP4             | HP4             | HP4             | HP4            |
| Conc. Spiked          |                 | 20 μg/L         | 20 μg/L         | 60 μg/L         | 270 μg/L       |
| LCS Result            | : 17            | 19              | 18              | 61              | 340            |
| LCS % Recov.          |                 | 95              | 90              | 102             | 126            |
| LUG / NECUV.          | . 60            | 33              | <b>~~</b>       |                 |                |
| 110/1105              | 05.110          | 00 110          | 60-140          | 60-140          | 60-140         |
| MS/MSD                | 60-140          | 60-140          | == ,•           | 70-130          | 70-130         |
| LCS<br>Control Limits | 70-130          | 70-130          | 70-130          | 70-100          | . 5 105        |

**SEQUOIA ANALYTICAL** 

Elap #1271

**E**fegory Project Manager Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

9803F13.GET <1>

<sup>\*\*</sup> MS=Matrix Spike, MSD=MS Duplicate, RPD=Relative % Difference



Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(650) 364-9600 (510) 988-9600 (916) 921-9600 FAX (650) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Gettler Ryan/Geostrategies 6747 Sierra Court, Ste J Dublin, CA 94568

Attention: Deanna Harding

Client Project ID: Matrix:

Unocal SS#5367, 180108.85

Liquid

Work Order #:

9803F13-05-11

Reported:

Apr 9, 1998

## QUALITY CONTROL DATA REPORT

| Analyte:                      | Benzene         | Toluene                | Ethyl           | Xylenes         | Gas             |
|-------------------------------|-----------------|------------------------|-----------------|-----------------|-----------------|
| Analyton                      |                 |                        | Benzene         |                 |                 |
| OC Batch#:                    | GC040298802004A | GC040298802004A        | GC040298802004A | GC040298802004A | GC040298802004A |
| Analy. Method:                | EPA 8020        | EPA 8020               | EPA 8020        | EPA 8020        | EPA 8015M       |
| Prep. Method:                 | EPA 5030        | EPA 5030               | EPA 5030        | EPA 5030        | EPA 5030        |
| rtep. Metrica.                | Li A 3000       |                        |                 |                 |                 |
| Analyst:                      | D. Newcomb      | D. Newcomb             | D. Newcomb      | D. Newcomb      | D. Newcomb      |
| MS/MSD #:                     | 8032397         | 8032397                | 8032397         | 803239 <b>7</b> | 8032397         |
| Sample Conc.:                 | N.D.            | N.D.                   | N.D.            | N.D.            | N.D.            |
| Prepared Date:                | 4/2/98          | 4/2/98                 | 4/2/98          | 4/2/98          | 4/2/98          |
| Analyzed Date:                | 4/2/98          | 4/2/98                 | 4/2/98          | 4/2/98          | 4/2/98          |
| Instrument I.D.#:             | 4) 2) 33<br>HP4 | HP4                    | HP4             | HP4             | HP4             |
| Conc. Spiked:                 | 20 μg/L         | 20 μg/L                | 20 μg/L         | 60 μg/L         | 290 μg/L        |
| Result:                       | 22              | 23                     | 21              | 66              | 280             |
|                               | 110             | 115                    | 105             | 110             | 97              |
| MS % Recovery:                | 110             | 110                    |                 |                 |                 |
| Dan Danults                   | 21              | 21                     | 23              | 64              | 370             |
| Dup. Result:<br>MSD % Recov.: | 105             | 105                    | 115             | 107             | 128             |
| M2D % Recov                   | 105             | 100                    |                 |                 |                 |
| RPD:                          | 4.7             | 9,1                    | 9.1             | 3.1             | 28              |
| RPD Limit:                    |                 | 0-20                   | 0-20            | 0-20            | 0-50            |
| KPD LIIIIL.                   | 0-20            | 0-20                   | <b></b>         |                 |                 |
|                               |                 |                        |                 |                 |                 |
| LCS #:                        | LCS040298       | LCS040298              | LCS040298       | LCS040298       | LCS040298       |
| Dunmared Date:                | 4/2/98          | 4/2/98                 | 4/2/98          | 4/2/98          | 4/2/98          |
| Prepared Date: Analyzed Date: |                 | 4/2/98                 | 4/2/98          | 4/2/98          | 4/2/98          |
| Instrument I.D.#              | • '             | , 2, 3 <b>3</b><br>HP4 | HP4             | HP4             | HP4             |
|                               | =               | 20 μg/L                | 20 μg/L         | 60 μg/L         | 290 μg/L        |
| Conc. Spiked                  | . 20 µg/L       | 20 pg/ L               | -41-91-         | ,               |                 |
| LCS Result                    | : 21            | 22                     | 20              | 63              | 310             |
| LCS % Recov.                  |                 | 110                    | 100             | 105             | 107             |
| LC3 % Necov.                  | . 103           | 110                    | <br>//          |                 |                 |
|                               |                 |                        |                 |                 | 60-140          |
| MS/MSD                        | 60-140          | 60-140                 | 60-140          | 60-140          | 70-130          |
| LCS                           | 70-130          | 70-130                 | 70-130          | 70-130          | 70-130          |
| Control Limits                |                 |                        |                 |                 |                 |

SEQUOIA ANALYTICAL Elap #1271

Mike Gregory **Project Manager**  Please Note:

The LCS is a control sample of known, interferent-free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

\*\* MS=Matrix Spike, MSD=MS Duplicate, RPD=Relative % Difference

9803F13.GET <2>