

HAZMAT 94 FEB 14 PM 3: 32

February 10, 1994

Alameda County Health Care Services 80 Swan Way, Room 200 Oakland, CA 94621

Attention: Mr. Scott Seery

RE: Unocal Service Station #5367

500 Bancroft Avenue San Leandro, California

Per the request of the Project Manager, Ms. Tina R. Berry of Unocal Corporation, enclosed please find our report (MPDS-UN5367-01) dated January 27, 1994, for the above referenced site.

Should you have any questions regarding the reporting of data, please feel free to call our office at (510) 602-5120. Any other questions may be directed to the Project Manager at (510) 277-2321.

Sincerely,

MPDS Services, Inc.

Deanna dihrdeng
Deanna L. Harding
Technical Assistant

/dlh

Enclosure

cc: Ms. Tina R. Berry

MPDS-UN5367-01 January 27, 1994

Unocal Corporation 2000 Crow Canyon Place, Suite 400 P.O. Box 5155 San Ramon, California 94583

Attention: Ms. Tina R. Berry

RE: Quarterly Data Report

Unocal Service Station #5367 500 Bancroft Avenue San Leandro, California

Dear Ms. Berry:

This data report presents the results of the most recent quarter of monitoring and sampling of the monitoring wells at the referenced site by MPDS Services, Inc.

RECENT FIELD ACTIVITIES

The monitoring wells that were monitored and sampled during this quarter are indicated in Table 1. Prior to sampling, the wells were checked for depth to water and the presence of free product or sheen. The monitoring data and the ground water elevations are summarized in Table 1. The ground water flow direction during the most recent quarter is shown on the attached Figure 1.

Ground water samples were collected on December 13, 1993. Prior to sampling, the wells were each purged of between 2 and 42 gallons of water. During purging operations, the field parameters pH, temperature, and electrical conductivity were recorded and are presented in Table 2. Once the field parameters were observed to stabilize, and where possible, a minimum of approximately four casing volumes had been removed from each well, samples were then collected using a clean Teflon bailer. The samples were decanted into clean VOA vials and/or one-liter amber bottles, as appropriate, which were then sealed with Teflon-lined screw caps, labeled, and stored in a cooler, on ice, until delivery to a state-certified laboratory.

ANALYTICAL RESULTS

The ground water samples were analyzed at Sequoia Analytical Laboratory and were accompanied by properly executed Chain of Custody documentation. The analytical results of the ground water samples collected to date are summarized in Table 3. The concentrations of Total Petroleum Hydrocarbons (TPH) as gasoline and

2401 Stanwell Drive, Suite 400 Concord, California 94520 Tel: (510) 602-5120 Fax: (510) 689-1918 MPDS-UN5367-01 January 27, 1994 Page 2

benzene detected in the ground water samples collected this quarter are shown on the attached Figure 2. Copies of the laboratory analytical results and the Chain of Custody documentation are attached to this report.

DISTRIBUTION

A copy of this report should be sent to Mr. Scott Seery of the Alameda County Health Care Services Agency, Mr. Mike Bakaldin of the San Leandro Fire Department, and to Mr. Eddy So of the Regional Water Quality Control Board, San Francisco Bay Region.

If you have any questions regarding this report, please do not hesitate to call at (510) 602-5120.

ERED GEOLOG

Sincerely,

MPDS Services, Inc.

Talin Kaloustian Staff Engineer

Joel G. Greger, C.E.G. Senior Engineering Geologist

License No. EG 1633 Exp. Date 6/30/94

Joel 11

/dlh

Attachments: Tables 1, 2 & 3

Location Map Figures 1 & 2

Laboratory Analyses

Chain of Custody documentation

cc: Mr. Keith Romstad, RESNA, Novato Office

TABLE 1
SUMMARY OF MONITORING DATA

<u>Well #</u>	Ground Water Elevation (feet)	Depth to Water (feet)◆	Product Thickness (feet)	Sheen	Water Purged (gallons)	Total Well Depth (feet)◆
	(Monit	ored and Sa	mpled on De	cember 1	3, 1993)	
MW - 1	25.10	32.73	0	No	2	35.00
MW - 2	25.10	33.03	0	No	36.5	46.98
MW-3	25.10	32.82	0	No	42	48.65
MW-4*	25.20	33.09	0		0	48.20
MW-5*	25.11	33.39	0		0	44.54
MW-6*	24.82	32.14	0		0	44.68
MW-7*	24.80	32.45	0		0	44.15
MW - 8	24.96	32.75	0	No	8	44.05
	(Monit	ored and Sa	mpled on Se	ptember	3, 1993)	
MW-1	27.03	30.80	0			
MW-2	27.03	31.10	0			
MW-3	27.04	30.88	0			
MW-4	27.24	31.05	0			
MW - 5	27.05	31.45	0			
MW-6	26.71	30.25	0			
MW-7	26.65	30.60	0			
8 - WM	26.81	30.90	0			

MW - 7

8-WM

31.59

31.71

TABLE 1 (Continued)

SUMMARY OF MONITORING DATA

Total Well
Depth
(feet)◆

Well #	Ground Water Elevation (feet)	Depth to Water (feet)∲	Produ Thickn (feet	ess	<u>She</u>	<u>en</u>	Water Purged (gallons)
	(Mon	itored and	Sampled	on	June	25,	1993)
MW-1	29.47	28.36	0				
MW-2	29.73	28.40	0				
MW-3	29.49	28.43	0				
MW-4	29.69	28.60	0				
MW-5	WELL WAS IN	NACCESSIBLE					
MW-6	29.10	27.86	0				
MW-7	29.00	28.25	0				
MW - 8	29.44	28.27	0				
	(Mon	itored and	Sampled	on	March	13,	1993)
MW-l	31.80	26.03	MM				
MW-2	31.83	26.30	NM				
MW-3	31.81	26.11	MM				
MW-4	31.86	26.43	0				
MW-5	31.88	26.62	0				
MW-6	31.53	25.43	0				

25.66

26.00

0

0

TABLE 1 (Continued)

SUMMARY OF MONITORING DATA

Well #	Well Casing Elevation (feet)**
MW-1	57.83
MW-2	58.13
MW-3	57.92
MW-4	58.29
MW-5	58.50
MW-6	56.96
MW - 7	57.25
MW-8	57.71

- ◆ The depth to water level and total well depth measurements were taken from the top of the well casings.
- * Monitored only.
- ** The elevations of the top of the well casings have been surveyed relative to Mean Sea Level (MSL).
- -- Sheen determination was not performed.

Note: Monitoring data prior to December 13, 1993, were provided by RESNA.

TABLE 2

RECORD OF THE TEMPERATURE, CONDUCTIVITY, AND pH VALUES
IN THE MONITORING WELLS DURING PURGING AND PRIOR TO SAMPLING

(Measured on December 13, 1993)

<u>Well</u> #	Gallons per Casing Volume	<u>Time</u>	Gallons <u>Purged</u>	Casing Volumes <u>Purged</u>	Temper- ature (°F)	Conductivity ([μmhos/cm] <u>x100)</u>	<u>pH</u>
MW-1	0.38	14:20	0.5	1.32	63.7	6.58	6.90
			1	2.63	64.6	6.50	6.71
			1.5	3.95	64.6	6.54	6.62
		14:28	2	5.26	64.8	6.47	6.59
MW-2	9.06	12:22	9	0.99	63.6	4.98	7.03
			18	1.99	64.6	5.08	6.87
			27	2.98	64.7	5.12	6.80
		12:44	36	3.97	64.9	5.13	6.79
			36.5	4.03			
MW-3	10.28	13:20	10.5	1.02	65.0	5.81	6.95
			21	2.04	65.6	5.67	6.72
			31.5	3.06	65.4	5.68	6.66
		13:48	42	4.09	65.3	5.76	6.66
8 - WM	1.92	11:34	2	1.04	62.3	6.38	6.84
			4	2.08	63.0	6.41	6.67
			6	3.13	63.3	6.44	6.59
		11:42	8	4.17	63.4	6.44	6.57

TABLE 3
SUMMARY OF LABORATORY ANALYSES
WATER

Date	Well #	TPH as <u>Gasoline</u>	Dongone	<u>Toluene</u>	Ethyl- <u>benzene</u>	<u>Xylenes</u>					
<u>Date</u>	Metr. H	Gasorine.	<u>Benzene</u>	TOTAGHE	Denzene	AYTEMES					
12/13/93	MW-1	140,000	3,600	37,000	7,100	40,000					
	MW-2	260	7.7	0.83	17	23					
	MW-3 .	49,000	1,300	360	2,300	9,200					
	MW - 4	SAMPLED SEM	I-ANNUALLY								
	MW - 5	SAMPLED SEMI-ANNUALLY									
	MW - 6	SAMPLED SEMI-ANNUALLY									
	MW - 7	SAMPLED SEMI-ANNUALLY									
	8 - WM	6,900	180	ND	240	550					
9/3/93	MW-1	160,000°	3,900	41,000	6,800	38,000					
• •	MW-2	1,400	31	4.3	99	53					
	MW-3	82,000	2,400	3,400	4,200	21,000					
	MW - 4	86	14	13	1.4	7.1					
	MW-5	ND	ND	1.5	ND	7.9					
	MW-6	ND	ND	ND	ND	ND					
	MW - 7	ND	ND	ND	ND	ND					
	8 - WM	9,800	180	ND	580	700					
6/25/93	MW-1	160,000	4,300	36,000	5,800	34,000					
	MW-2	4,000	110	ND	320	280					
	MW-3	27,000	1,200	980	1,700	6,900					
	MW - 4	NOT SAMPLED									
	MW -5	WELL WAS IN	ACCESSIBLE								
	MW - 6	NOT SAMPLED									
	MW - 7	NOT SAMPLED									
	8 - WM	8,100	160	ND	580	740					

TABLE 3 (Continued)
SUMMARY OF LABORATORY ANALYSES

WATER

		TPH as			Eth y l-					
<u>Date</u>	Well #	<u>Gasoline</u>	<u>Benzene</u>	<u>Toluene</u>	<u>benzene</u>	<u>Xylenes</u>				
3/03/93	MW-1	330,000	3,800	21,000	4,200	24,000				
	MW-2	4,200	62	2.9	97	120				
	MW-3	96,000*	1,400	1,900	1,400	8,400				
	MW - 4	68	0.9	0.6	ND	1.9				
	MW - 5	ND	ND	ND	ND	ND				
	MW - 6	ND*	ND	ND	ND	ND				
	MW - 7	ND	ND	ND	ND	ND				
	MW - 8	13,000	33	ND	160	290				
11/18/92	MW - 1	WELL WAS D	RY							
	MW-2	65	1.2	ND	2.8	1.4				
	MW-3	24,000*	430	160	640	2,800				
	MW - 4	NOT SAMPLE	D							
	MW - 5	NOT SAMPLED								
	MW-6	NOT SAMPLED								
	MW - 7	NOT SAMPLED								
	8 - WM	1,100	6.1	ND	13	5.6				
10/16/92	MW-1	WELL WAS D	RY							
	MW-2									
	MW-3									
	MW-4	ND	ND	ND	ND	ND				
	MW - 5	ND	ND	ND	ND	ND				
	MW - 6	ND	ND	ND	ND	ND				
	MW-7	ND	ND	ND	ND	ND				
	MW-8	300	0.96	ND	4.0	3.5				
9/30/92	MW - 2	820	21	ND	42	25				
	MW-3	36,000	730	200	1,000	4,400				

į Ť

TABLE 3 (Continued)

						era kon osos osos os este este estado estado.
Data	Well #	TPH as Gasoline	Benzene	Toluene	Ethyl- benzene	Xylenes
<u>Date</u>	MCTT H	Gasorrie	вениене	<u> 1010ane</u>	<u>benzene</u>	AYTERES
6/18/92	MW-1	680,000	9,000	40,000	7,600	44,000
	MW - 2	1,200	35	1.6	56	26
	MW-3	180,000	2,200	1,700	2,300	1,100
	MW - 4	ND	ND	ND	ND	ND
	MW-5					
	MW-6	ND	ND	ND	ND	ND
	MW - 7					
	MW-8	WELL WAS I	NACCESSIBLE	3		
3/31/92	MW-1	330,000	8,200	33,000	6,800	36,000
	MW - 2	4,200	110	3	190	250
	MW - 3	100,000	1,900	1,900	2,300	9,400
	MW - 4	ND	ND	ND	ND	ND
	MW - 5	ND	ND	ND	ND	1.1
	MW - 6	ND	ND	1.3	ND	2.0
	MW - 7	ND	ND	ND	ND	0.9
	8 - WM	15,000	120	1.0	430	530
12/27/91	MW - 2	170	3.9	ND	7.3	60
	MW-3	31,000	240	280	400	1,600
	MW - 4	ND	ND	ND	ND	ND
	MW - 5	ND	ND	ND	ND	ND
	MW - 6	ND	ND	ND	ND	ND
	MW-7	ND	ND	ND	ND	ND
	8 - WM	1,600	15	2.9	40	49

, . • • · · · · ·

TABLE 3 (Continued)

.000 000 000 000 000 000 000 000 000 00			**************************************		000000 <u>011</u> 000 92000009 200000000	
<u>Date</u>	Well #	TPH as <u>Gasoline</u>	<u>Benzene</u>	<u>Toluene</u>	Ethyl- <u>benzene</u>	<u>Xylenes</u>
		::::::::::::::::::::::::::::::::::::::			\$25: per l'acce, pagging (1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	
9/27/91	N/T-T - T	WELL WAS D	DV.			
9/2//91	MW-1 MW-2	110		ND	5.6	- 1
			2.6 160	ND 84	180	5.1 560
	MW - 3	4,000			ND	
	MW-4	ND	ND	ND		ND
	MW-5	ND	ND	ND	ND	ND
	MW - 6	ND	ND	ND	ND	ND
	MW - 7	ND	ND	ND	ND	ND
	8 - WM	720	13	4.3	26	26
5/06/91	MW - 1					
	MW - 2	2,300	150	10	52	110
	MW-3	39,000	1,000	570	930	3,900
	MW - 4					
	MW-5	~ ~				- ~
	MW - 6					
	MW - 7	ND	ND	ND	ND	ND
	8 - WM	14,000	80	\mathbf{N} D	250	550
2/07/91	MW - 2	510	40	ИD	29	44
2/06/91	MW-1	WELL WAS D	RY			
	MW – 3	13,000	310	150	380	1,200
	MW - 4	ND	ND	ND	ND	ND
	MW - 5	ND	ND	ND	ND	ND
	MW - 6	ND	ND	ND	ND	ND
	MW - 7	ND	ND	ND	ND	ND
	8 - WM	630	9.6	ND	35	36

TABLE 3 (Continued)

				og en		
<u>Date</u>	Well #	TPH as Gasolin <u>e</u>	Benzene	Toluene	Ethyl- benzene	Xylenes
<u>Date</u>		<u> </u>	<u> </u>		<u>Jona di la como</u>	<u></u>
11/30/90	MW - 1	WELL WAS I	DRY			
	MW-2	400	41	ND	39	37
	MW-3	13,000	390	81	410	1,000
	MW - 4	ND	ND	ND	ND	1.2
	MW-5	ND	ND	0.7	ND	ND
	MW - 6	ND	ND	ND	ND	ND
	MW - 7	ND	ND	ND	0.6	1.5
	MW - 8	570	13	ND	45	36
8/24/90	MW-1	WELL WAS I	Var			
0/24/30	MW-2	330	17	ND	19	20
	MW-3	19,000	480	160	510	1,500
	MW - 4	ND	ND	ND	ND	ND
	MW - 5	ND	ND	ND	ND	ND
	MW-6	ND	ND	ND	ND	ND
	MW - 7	ND	ND	ND	ND	ND
	MW-8	990	13	ND	48	66
7/10/00	NAT. T	LITTE LING F	nnsr.			
7/19/90	MW-1	WELL WAS I)K Y			
	MW-2					
	MW-3			- -		
	MW - 4		- -			
	MW - 5				- ~	
	MW - 6	ND	ND	ND	ND	ND
	MW - 7					
	8 - WM					- -

TABLE 3 (Continued)

		TPH as			D-LL.T	
<u>Date</u>	Well #	Gasoline	<u>Benzene</u>	<u>Toluene</u>	Ethyl- <u>benzene</u>	<u>Xylenes</u>
	r de mérocone d'autre (la de la chimina) municipal de la chimina de la c	in (Minter) and the specification and according to				
5/90	MW-2	1,000	39.0	ND	32.0	52.0
	MW-3	19,000	330	170	310	1,500
	MW - 4	ND	ND	ND	0.68	1.4
	MW-5	ND	ND	ND	ND	ND
	MW-6	ND	ND	ND	ND	ND
	MW - 7	24	ND	ND	0.74	1.7
	MW-8	770	6.5	ND	20	32
2/16/90	MW - 1	WELL WAS D	RY			
-,,	MW-2	840	50.0	0.5	28.0	44.0
	MW-3	22,000	710	4,100	6,900	33,000
	MW - 4	ND	ND	ND	ND	ND
	MW - 5	67	0.51	1.6	2.9	7.5
	MW - 6	ND	ND	ND	ND	ND
	MW - 7	ND	ND	ND	ND	ND
	MW-8	1,900	11	ND	52	55
1/27/89	MW-1	WELL WAS D	DV			
1,2,,03	MW-2	510	58.0	8.7	22.6	20.3
	MW-3	39,000	1,570	2,830	1,250	7,070
	MW - 4	ND	ND	ND	ND	ND
	****	112	NE	110	112	110
10/03/88	MW - 1	WELL WAS D	RY			
	MW-2	1,760	47.8	7.4	20.9	81.6
	MW-3	61,000	1,060	3,380	1,520	8,720
	MW - 4	ND	ND	ND	ND	ND
9/07/88	MW-1	WELL WAS D	RY			

TABLE 3 (Continued)

SUMMARY OF LABORATORY ANALYSES WATER

<u>Date</u>	Well #	ske kirkerrinseerke	l as oline	<u>Benz</u>	zene	2	<u>Toluene</u>		thyl- enzen	
4/27/88	MW-1	NOT	SAMPLED	DUE	TO	THE	PRESENCE	OF	FREE	PRODUCT
11/19/87	MW-1	NOT	SAMPLED	DUE	то	THE	PRESENCE	OF	FREE	PRODUCT
11/13/87	MW-1	NOT	SAMPLED	DUE	то	THE	PRESENCE	OF	FREE	PRODUCT
11/05/87	MW-1	NOT	SAMPLED	DUE	TO	THE	PRESENCE	OF	FREE	PRODUCT
10/06/87	MW-1	NOT	SAMPLED	DUE	то	THE	PRESENCE	OF	FREE	PRODUCT
9/24/87	MW-1	NOT	SAMPLED	DUE	TO	THE	PRESENCE	OF	FREE	PRODUCT
9/23/87	MW-1	NOT	SAMPLED	DUE	TO	THE	PRESENCE	OF	FREE	PRODUCT

Chromatogram contains early eluting peak.

ND = Non-detectable.

Results are in micrograms per liter ($\mu g/L$), unless otherwise indicated.

Note: Laboratory analyses data prior to December 13, 1993, were provided by RESNA.

⁻⁻ Indicates analysis was not performed.

Base modified from 7.5 minute U.S.G.S. San Leandro Quadrangle (photorevised 1980)

MPDS SERVICES, INC. UNOCAL SERVICE STATION #5367 500 BANCROFT AVENUE SAN LEANDRO, CALIFORNIA LOCATION MAP

SERVICES, INC.

500 BANCROFT AVENUE SAN LEANDRO, CALIFORNIA 1

PETROLEUM HYDROCARBON CONCENTRATIONS IN GROUND WATER ON DECEMBER 13, 1993

MPDS SERVICES, INC. UNOCAL SERVICE STATION #5367 500 BANCROFT AVENUE SAN LEANDRO, CALIFORNIA FIGURE

2

2401 Stanwell Dr., Ste. 400

Concord, CA 94520 Attention: Avo Avedessian Client Project ID: Sample Matrix: Unocal 5367, 500 Bancroft Ave., San Leandro

Water

Analysis Method: EPA 5030/8015/8020 First Sample #: 312-0896 Sampled:

Dec 13, 1993 Dec 13, 1993

Received: Reported:

Dec 29, 1993

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 312-0896 MW 1	Sample I.D. 312-0897 MW 2	Sample I.D. 312-0898 MW 3	Sample I.D. 312-0899 MW 8	Sample I.D. Method Blank	
Purgeable Hydrocarbons	50	140,000	260	49,000	6,900		·
Benzene	0.5	3,600	7.7	1,300	180		
Toluene	0.5	37,000	0.83	360	N.D.		
Ethyl Benzene	0.5	7,100	17	2,300	240		
Total Xylenes	0.5	40,000	23	9,200	550		
Chromatogram Pat	tern:	Gasoline	Gasoline	Gasoline	Gasoline		

Quality Control Data

Report Limit Multiplication Factor:	400	1.0	200	20	1.0
Date Analyzed:	12/23/93	12/22/93	12/26/93	12/23/93	12/22/93
Instrument Identification:	HP-4	HP-2	HP-4	HP-4	HP-2
Surrogate Recovery, %: (QC Limits = 70-130%)	95	111	92	89	114

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Alan B. Kemp / Project Manager

2401 Stanwell Dr., Ste. 400

Concord, CA 94520

Client Project ID:

Unocal 5367, 500 Bancroft Ave., San Leandro

Matrix:

Liquid

Attention: Avo Avedessian

QC Sample Group: 3120896-899

Reported:

Jan 6, 1994

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	Xylenes	
			Benzene		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	•
Analyst:	A. Tuzon	A. Tuzon	A. Tuzon	A. Tuzon	
MS/MSD					
Batch#:	3120897	3120897	3120897	3120897	
Date Prepared:	12/22/93	12/22/93	12/22/93	12/22/93	
Date Analyzed:	12/22/93	12/22/93	12/22/93	12/22/93	
Instrument I.D.#:	HP-2	HP-2	HP-2	HP-2	
Conc. Spiked:	20 μg/L	20 μg/L	20 μg/L	60 μg/L	•
Matrix Spike					
% Recovery:	92	100	85	95	
Matrix Spike					
Duplicate %					
Recovery:	101	106	100	107	
Relative %				•	
Difference:	9.3	5.8	16	12	
	9.3	5.8	16	12	

LCS Batch#:	LCS122293	LCS122293	LCS122293	LCS122293		
Date Prepared:	12/22/93	12/22/93	12/22/93	12/22/93	•	
Date Analyzed:	12/22/93	12/22/93	12/22/93	12/22/93	•	
Instrument i.D.#:	HP-2	HP-2	HP-2	HP-2	,	
LCS %						
Recovery:	95	99	105	110		
% Recovery		<u> </u>	· · · · · · · · · · · · · · · · · · ·			
Control Limits:	71-133	72-128	72-130	71-120		

SEQUOIA ANALYTICAL

Alan B Kemp Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

2401 Stanwell Dr., Ste. 400

Concord, CA 94520

Client Project ID:

Unocal 5367, 500 Bancroft Ave., San Leandro

Matrix: Liquid

Attention: Avo Avedessian

QC Sample Group: 3120896-899

Reported:

Jan 6, 1994

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	Xylenes	
			Benzene		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	A. Tuzon	A. Tuzon	A. Tuzon	A. Tuzon	
MS/MSD					
Batch#:	3121374	3121374	3121374	3121374	
Date Prepared:	12/23/93	12/23/93	12/23/93	12/23/93	
Date Analyzed:	12/23/93	12/23/93	12/23/93	12/23/93	
Instrument I.D.#:	HP-4	HP-4	HP-4	HP-4	
Conc. Spiked:	20 μg/L	20 μg/L	20 μg/L	$60\mu\mathrm{g/L}$	
Matrix Spike		•			•
% Recovery:	88	96	99	99	
Matrix Spike Duplicate %					
Recovery:	91	99	100	100	
Relative %					
Difference:	3.3	3.1	1.0	1.0	
LCS Batch#:	LC\$122393	LCS122393	LC\$122393	LCS122393	

LCS Batch#:	LCS122393	LCS122393	LCS122393	LCS122393		
Date Prepared:	12/23/93	12/23/93	12/23/93	12/23/93		
Date Analyzed:	12/23/93	12/23/93	12/23/93	12/23/93		
Instrument I.D.#:	HP-4	HP-4	HP-4	HP-4		
LCS %			•		,	
Recovery:	90	96	99	98		
% Recovery					 	
Control Limits:	71-133	72-128	72-130	71-120	 	

Please Note:

SEQUOIA ANALYTICAL

Alan B. Kemp Project Manager The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

2401 Stanwell Dr., Ste. 400

Concord, CA 94520

Client Project ID:

Unocal 5367, 500 Bancroft Ave., San Leandro

Matrix:

Liquid

Attention: Avo Avedessian

QC Sample Group: 3120896-899

Reported:

Jan 6. 1994

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	Xylenes	
			Benzene		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	A. Tuzon	A. Tuzon	A. Tuzon	A. Tuzon	
MS/MSD					
Batch#:	3120977	3120977	3120977	3120977	
Date Prepared:	12/26/93	12/26/93	12/26/93	12/26/93	
Date Analyzed:	12/26/93	12/26/93	12/26/93	12/26/93	
nstrument I.D.#:	HP-4	HP-4	HP-4	HP-4	
Conc. Spiked:	20 μg/L	20 μg/L	20 μg/L	60 μg/L	
Matrix Spike					
% Recovery:	95	100	95	93	•
Matrix Spike					
Duplicate %					
Recovery:	90	100	90	90	
Relative %					
Difference:	5.4	0.0	5.4	3.3	

LCS Batch#:	LCS122693	LC\$122693	LCS122693	LCS122693	
Date Prepared: Date Analyzed:	12/26/93 12/26/93	12/26/93	12/26/93 12/26/93	12/26/93 12/26/93	
Instrument I.D.#:	HP-4	12/26/93 HP-4	HP-4	HP-4	
LCS %	04		22		
Recovery:	91	97	9Ó	91 	
% Recovery Control Limits:	71-133	72-128	72-130	71-120	

SEQUOIA ANALYTICAL

Alan B. Kemp Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

MPDS

Services, Inc.

CHAIN OF CUSTODY

PLER VertKes Uncequ				SITE HAME & ADDRESS # 5367 / San Leandro				ANALYSES REQUESTED						TURN AROUND TIME:			
NESSING		<u>e.</u>						HAVO.		<u>*</u> ×	(o ×						
SAMPLE ID NO.	DATE	TIME	SOIL &	VAIE)	TEAB	сонр	NO. OF CONT,		LING VAION	TPHC							REMARKS
IW 1	12/13/93			X	X	-,	2	Monitorin	quell	X							3120896 AB
W 2	44			X	Х		2_	در	4	Х							0897
1W3				χ	X		2_	4	፞	X							0898
1W8	4			K	X		2	۳	4	X							108991
				1										-			
				·													
									.,								
									<u> </u>								
 							<u></u>				_						
	and by: (Si	gnature)	14/3/	93 2	ime 4:65	5	Hecely	ed/by: Signat		12-13-93 The following MUST BE completed by the laborato for analysis: 1605 1. Have all samples received for analysis been							
tinquish	ed by: (Si	gnature)		ate/11		>		ed by - Signat	; 	2. Vill samples remain refrigerated until analyzed?							
(inquish	ed by R	gnature)		ate/11			Pecel V	red by: (Signer	JULES ALLUS EL	3. Pid any samples received for analysis have head space? 4. User sumples in appropriate containers and properly packs							
linquished by: (Signature) Date/lime						Received by: (Signature)						Ature	- J	<i>'</i>	Q/	12-13-93	

2401 Stanwell Drive, Suite 400 Concord, California 94520 Tel: 510.602.5100 | Eax: 540.647.0502