2 1 500 Shellmound Street, Emeryville, CA 94608-2411 Fax: 510 547-5043 Phone: 510-450-6000 March 18, 1994 Jennifer Eberle Alameda County Department of Environmental Health Hazardous Materials Division 80 Swan Way, Room 200 Oakland, CA 94621-1426 Re: ACDEH STID #1107 Shell Service Station WIC #204-6001-0109 29 Wildwood Avenue Piedmont, California WA Job #81-463-104 Dear Ms. Eberle: This letter describes recently completed and anticipated activities at the Shell service station referenced above (Figure 1). This status report satisfies the quarterly reporting requirements prescribed by California Administrative Code Title 23 Waters, Chapter 3, Subchapter 16, Article 5, Section 265.d. Included below are descriptions and results of activities performed in the first quarter 1994 and proposed work for the second quarter 1994. #### First Quarter 1994 Activities: - Blaine Tech Services, Inc. (BTS) San Jose, California measured ground water depths and collected water samples from the site wells. BTS' report describing these activities and the analytic report for the ground water samples are included as Attachment A. - Weiss Associates (WA) compiled the ground water elevation and analytic data (Tables 1 and 2, respectively) and prepared a ground water elevation contour map (Figure 2). - BTS measured dissolved oxygen concentrations in ground water in all site wells (Table 2). The dissolved oxygen concentrations are similar to last quarter and are more than sufficient to support natural hydrocarbon biodegradion. BTS will continue to be measure dissolved oxygen concentrations. # Anticipated Second Quarter 1994 Activities: 84 MVB 53 BM 1: 28 WA will submit a report presenting the results of second author 1994 ground water sampling and ground water depth measurements. The report with include tabulated ground water elevation and analytic data, dissolved oxygen concentrations and a ground water elevation contour map. ## Conclusions and Recommendations The dissolved oxygen concentrations appear adequate for biochemical oxidation. According to Barker et al, 1 approximately 20 μ g of dissolved oxygen are required for complete biochemical oxidization of 1 μ g BETX in naturally occurring ground water. Based on the 3,200 to 4,400 μ g/ ℓ dissolved oxygen measured in ground water beneath the site, biochemical oxidation of about 150 to 220 μ g/ ℓ BETX is possible. Since BETX concentrations in ground water from all site wells fall within this range, there appears to be more than sufficient dissolved oxygen for biochemical oxidation of the hydrocarbons. Therefore, as we discussed in previous reports, WA recommends continued measurement of dissolved oxygen concentrations in ground water to monitor the progress of hydrocarbon biodegradation by naturally occurring microorganisms. Please call if you have any questions. Sincerely, Weiss Associates John Wolf Technical Assistant James W. Carmody, C.E.G. Senior Hydrogeologist JAW/JWC:jaw J:\SHELL\450\QMRPTS\463QMFE4.WP Attachments: A - BTS' Ground Water Monitoring Report cc: Dan Kirk, Shell Oil Company, P.O. Box 5278, Concord, California 94520-9998 John Jang, Regional Water Quality Control Board - San Francisco Bay, 2101 Webster Street, Suite 500, Oakland, California 94612 Barker, J.F., et al, 1987, Natural Attenuation of Aromation Hydrocarbons in a Shallow Sand Aquifer, Ground Water Monitoring Review, 7(1):64-71. Figure 1. Site Location Map - Shell Service Station WIC #204-6001-0109, 29 Wildwood Avenue, Piedmont, California Figure 2. Monitoring Well Locations and Ground Water Elevation Contours - January 20, 1994 - Shell Service Station, WIC #204-6001-0109 29 Wildwood Avenue, Piedmont, California TABLE 1. Ground Water Elevations - Shell Service Station WIC #204-6001-0109, 29 Wildwood Avenue, Piedmont, California | Well
ID | Date | Top-of-Casing Elevation (ft above msl) | Depth to
Water
(ft) | Ground Water
Elevation
(ft above msl) | |------------|--|---|--|---| | 10 | Date | (It above msi) | (11) | (It above msi) | | MW-1 | 07/12/89 | 37.96 | 2.76 | 35.20 | | | 01/30/90 | | 3.10 | 34.86 | | | 04/27/90 | | 3.24 | 34.72 | | | 07/31/90 | | 4.26 | 33.70 | | | 10/30/90 | | 4.25 | 33.71 | | | 01/31/91 | | 3.66 | 34.30 | | | 04/30/91 | | 3.46 | 34.50 | | | 07/30/91 | | 4,14 | 33.82 | | | 10/29/91 | | 3.96 | 34.00 | | | 01/20/92 | | 3.59 | 34.37 | | | 04/14/92 | | 3.18 | 31.71 | | | 07/21/92 | | 4.17 | 33.79 | | | 10/02/92 | | 4.29 | 33.67 | | | 01/20/93 | | 2.32 | 35.64 | | | 05/03/93 | | 3.50 | 34.46 | | | 06/28/93 | | 3.76 | 34.20 | | | 07/21/93 | | 4.09 | 33.87 | | | 10/19/93 | | 3.58 | 34.38 | | | 01/20/94 | | | 94.50 | | | 5050 84 14 14 14 14 14 14 14 14 14 14 14 14 14 | D. D. D. Garthi, Laurent annger physics on hydroxy from | ung Japan yang perganyang berhesi berhasi digada bilan-d | | | MW-2 | 07/12/89 | 34.89 | 3.66 | 31.23 | | | 01/30/90 | | 3.49 | 31.40 | | | 04/27/90 | | 3.79 | 31.10 | | | 07/31/90 | | 4.03 | 30.86 | | | 10/30/90 | | 4.21 | 30.68 | | | 01/31/91 | | 4.09 | 30.80 | | | 04/30/91 | | 3.95 | 30.94 | | | 07/30/91 | | 4.07 | 30.82 | | | 10/29/91 | | 4.11 | 30.78 | | | 01/20/92 | | 3.86 | 31.03 | | | 04/14/92 | | 3.66 | 34.30 | | | 07/21/92 | | 3.92 | 30.97 | | | 10/02/92 | | 4.45 | 30.44 | | | 01/20/93 | | 3.74 | 31.15 | | | 05/03/93 | | 3.77 | 31.12 | | | 06/28/93 | | 3.96 | 30.93 | | | 07/21/93 | | 4.39 | 30.50 | | | 10/19/93 | | 3.92 | 30.97 | | | 01/20/94 | | 4.45 | 30.44 | | 1604.2 | 07/15/00 | 45.00 | 4.04 | 4 | | MW-3 | 07/12/89 | 35.00 | 3.83 | 31.17 | | | 01/30/90 | | 3.24 | 31.76 | | | 04/27/90 | | 4.02 | 30.98 | ⁻⁻ Table 2 continues on next page -- TABLE 1. Ground Water Elevations - Shell Service Station WIC #204-6001-0109, 29 Wildwood Avenue, Piedmont, California (continued) | Well | | Top-of-Casing
Elevation | Depth to
Water | Ground Water
Elevation | |-----------|---|--|--|---------------------------| | ID | Date | (ft above msl) | (ft) | (ft above msl) | | | 07/31/90 | | 4.31 | 30.69 | | | 10/30/90 | | 4.52 | 30.48 | | | 01/31/91 | | 4.33 | 30.67 | | | 04/30/91 | | 3.79 | 31.21 | | | 07/30/91 | | 4.37 | 30.63 | | | 10/29/91 | | 4.00 | 31.00 | | | 01/20/92 | | 3.87 | 31.13 | | | 04/14/92 | | 3.15 | 31.85 | | | 07/21/92 | | 4.17 | 30.83 | | | 10/02/92 | | 4.43 | 30.57 | | | 01/20/93 | | 2.20 | 32.80 | | | 05/03/93 | | 3.50 | 31.50 | | | 06/28/93 | | 4.08 | 30.92 | | | 07/21/93 | | 4.12 | 30.88 | | | 10/19/93 | | 4.20 | 30.80 | | | 01/20/94 | | 4.08 | 30.92 | | | in lader tredescher etter behandt til des på 1,2 18 sår | factorior (Color tratalistica) (Color to the Reference Africa. | Site ou contract de contract de la contraction d | | | MW-4 | 01/30/90 | 33.73 | 4.50 | 29.23 | | | 04/27/90 | | 3.62 | 30.11 | | | 07/31/90 | | 4.19 | 29.54 | | | 10/30/90 | | 4.19 | 29.54 | | | 01/31/91 | | 4.49 | 29.24 | | | 04/30/91 | | 4.02 | 29.71 | | | 07/30/91 | | 4.39 | 29.34 | | | 10/29/91 | | 3.75 | 29.98 | | | 01/20/92 | | 3.94 | 29.79 | | | 04/14/92 | | 3.71 | 30.02 | | | 07/21/92 | | 4.02 | 29.71 | | | 10/02/92 | | 4.13 | 29.60 | | | 01/20/93 | | 3.10 | 30.63 | | | 05/03/93 | | 3.70 | 30.03 | | | 06/28/93 | | 3.81 | 29.92 | | | 07/21/93 | | 3.81 | 29.92 | | | 10/19/93 | | 3.94 | 29.79 | | | 01/20/94 | | 4.00 | 29.73 | | MW-5 | 01/30/90 | 31.38 | 7.12 | 24.26 | | 141 II -J | 04/27/90 | 31,30 | 4.19 | 27.19 | | | 07/31/90 | | 4.09 | 27.29 | | | 10/30/90 | | 4.39 | 26.99 | | | 01/31/91 | | 4.49 | 26.89 | | | 04/30/91 | | 4.27 | 27.11 | | | 07/30/91 | | 4.32 | 27.06 | | | 10/29/91 | | 3.79 | 27.59 | | | 01/20/92 | | 4.09 | 27.29 | | | 01/20/92 | | 4.07 | 21.23 | TABLE 1. Ground Water Elevations - Shell Service Station WIC #204-6001-0109, 29 Wildwood Avenue, Piedmont, California (continued) | Well
ID | Date | Top-of-Casing Elevation (ft above msl) | Depth to
Water
(ft) | Ground Water Elevation (ft above msl) | |------------|----------|--|---------------------------------------|---------------------------------------| | | | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | | | | 04/14/92 | | 4.12 | 27.26 | | | 07/21/92 | | 4.13 | 27.25 | | | 10/02/92 | | 4.30 | 27.08 | | | 01/20/93 | | 3.12 | 28.26 | | | 05/03/93 | | 4.07 | 27.31 | | | 06/28/93 | | 4.08 | 27.30 | | | 07/21/93 | | 4.05 | 27.33 | | | 10/19/93 | | 4.20 | 27.18 | | | 01/20/94 | | 4.40 | 26.98 | | E-4 | 07/12/89 | 34.63 | a | >39.13 | | | 01/30/90 | | b | >34.63 | | | 04/27/90 | | b | >34.63 | | | 07/31/90 | | b | >34.63 | | | 10/30/90 | | b | >34.63 | | | 01/31/91 | | b | >34.63 | | | 04/30/91 | | b | >34.63 | | | 07/30/91 | | b | >34.63 | | | 10/29/91 | | b | >34.63 | | | 01/20/92 | | b | >34.63 | | | 04/14/92 | | b | >34.63 | | | 07/21/92 | | b | >34.63 | | | 10/02/92 | | b | >34.63 | | | 01/20/93 | | b | >34.63 | | | 05/03/93 | | b | >34.63 | | | 06/28/93 | | b | >34.63 | | | 07/21/93 | | b | >34.63 | | | 10/19/93 | | b | >34.63 | | | 01/20/94 | | b | >34.63 | a = Well E-4 is a flowing artesian well. The potentiometric surface was greater than 4.5 ft above the top of the well casing. b = Well E-4 potentiometric surface was higher than the top of the well casing. Weiss ⁻⁻ Table 2 continues on next page -- | Table 2. | Analytic Results fo | or Ground Water. | Shell Service 5 | tation WIC #20 | 4-6001-0109, 2 | 9 W11dwood Avenue | Pledmont, Cal | iformia (contin | nued) | |------------|--|------------------------------|---|------------------------------|-------------------------------|------------------------------|------------------------------|----------------------|--| | Well
ID | Date
Sampled | Depth to
Water (ft) | TPH-G
≪ | 8 | E | T
parts per billion | (ug/L) | HVOCs | Dissolved
Oxygen ^a
-> | | | 10/29/91
01/20/92
04/14/92 | 4.00
3.87
3.15 | 1,000
6,900
6,000 | 35
380
480 | 2 9
47
41 | 2.8
18
38 | 8.1 | 200 | 1.12 | | | 07/21/92
07/21/92
10/02/92
01/20/93 | 4.17
4.43
2.20 | 3,700
4,200
4,200 | 330
260
360 | 30
13
32
32 | 13
10 | 48
55
23
12
26 | 107 | 27 | | | 01/20/93 ^{dup}
05/04/93
07/21/93 | 2.20
3.50
4.12 | 3,900
12,000
2,000 | 370
290
170 | 120
<10 | 15
15
520
12 | 26
620
11 | 322 | 630
4.340 | | | 07/21/93 ^{dup} 10/19/93 01/20/94 01/20/94 | 4.12
4.20
4.08
4.08 | 2,000
2,000
4,200
3,800 | 170
240
280
250 | <10
<0.5
<10
<10 | 10
<0.5
<10
<10 | 14
<0.5
<10
<10 | 2000
2000
2000 | 5.740
4.100
4.100 | | MW-4 | 01/31/90
04/27/90 | 4.50
3.62 | <50
130 ^d | <0.5
<0.5 | <0.5
<0.5 | <0 5
<0 5 | <0.5
<0.5 | | | | | 07/31/90
10/30/90
01/31/91
04/30/91 | 4.19
4.19
4.49
4.02 | <50
<50
50 ^d
<50 | <0.5
<0.5
<0.5
<0.5 | <0.5
<0.5
<0.5
<0.5 | <0 5
<0 5
<0 5
<0 5 | <0.5
<0.5
<0.5
<0.5 | | 100 | | | 07/30/91
10/29/91
01/20/92 | 4.39
3.75
3.94 | <50
<50
<30 | <0.5
<0.5
<0.3 | <0.5
<0.5
<0.3 | <0 5
<0 5
<0 3 | <0.5
<0.5
<0.3 | | 72 | | | 04/14/92
07/21/92 | 3.71
4.02
4.13 | <50
<50
<50 | <0.5
<0.5
<0.5 | <0.5
<0.5
<0.5 | <0 5
<0 5
<0 5 | <0.5
<0.5
<0.5 | *** | 127 | | | 01/20/93
05/04/93
07/21/93
10/10/93 | 3.10
3.70
3.81
3.94 | <50
<50
<50
<50 | <0.5
<0.5
0.56 | <0.5
<0.5
<0.50
<0.5 | <0 5
<0 5
<0 50 | <0.5
<0.5
<0.50 | | 1.740
4.510
5.750 | | MW-5 | 01/20/94 | 4.00
7.12 | <50
<50 | <0.5 | <0.5 | <0.5
<0.5
<0.5 | <0.5
<0.5
<0.5 | | 4,400 | | | 04/27/90
07/31/90
10/30/90 | 4.19
4.09
4.39 | 210 ^d
90
100
80 ^d | \$ 5
\$ 5
\$ 5
\$ 5 | <0.5
<0.5
0.6
<0.5 | <0.5
<0.5
0.7
<0.5 | <0.5
<0.5
1.4
<0.5 | | | | | 01/31/91
04/30/91
07/30/91 | 4.49
4.27
4.37
3.79 | 90
90
<50 | Q.5
Q.5
Q.5 | <0.5
<0.5
<0.5
<0.5 | <0.5
<0.5
<0.5
<0.5 | <0.5
<0.5
<0.5 | g | - 50 | | | 10/29/91
01/20/92
04/14/92
07/21/92 | 4.09
4.12
4.13 | <30
<50°
74° | V.3
V.5
V.5 | <0.3
<0.5
<0.5 | <0.3
<0.5
<0.5 | <0.3
<0.5
<0.5 | | 111 | | | 10/02/92
01/20/93
05/04/93 | 4.30
3.12
4.07 | 76 ^d
72 ^d
70 ^d | ₹ 0.5
₹ 0.5 | <0.5
<0.5
<0.5 | <0.5
<0.5
<0.5 | <0.5
<0.5
<0.5 | 1222 | 1620 | ⁻⁻ Table 2 continues on next page -- | Well
ID | Date
Sampled | Depth to
Water (ft) | TPH-G | 8 | Ер | T
arts per billion | X
n (ug/L) | HVOCs | Dissolved
Oxygen ^a | |-----------------|---|--|--|---|---|---|--|-------|--| | | 05/04/93 ^{the}
07/21/93
10/19/93
01/20/94 | 4.07
4.05
4.20
4.40 | 80°
<50
51
90 | <0.5
<0.5
<0.5
<0.5 | <0.5
<0.5
<0.5
<0.5 | <0.5
<0.5
<0.5
<0.5 | <0.5
<0.5
<0.5
<0.5 | | 3.460
3.820
4.200 | | E-4 | 07/12/89 01/31/90 04/27/90 07/31/90 10/30/90 01/31/91 04/30/91 07/30/91 10/29/91 01/20/92 04/14/92 07/21/92 | a(0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0 | \$50
\$50
\$50
\$50
\$50
\$50
\$50
\$50
\$50
\$50 | \$ \$#\$ | 9 66-68666666666666666666666666666666666 | \$1000000000000000000000000000000000000 | \$0.500000000000000000000000000000000000 | | 638
5,440
5,530 | | Trip
Blank | 07/12/89
01/31/90
04/27/90
07/31/90
10/30/90
01/31/91
04/30/91
07/30/91
10/29/91 | | <pre></pre> | \$\$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$ \$\$\$\$\$ | | +
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ | \$ | | 200
200
200
200
200
200
200
200
200
200 | | Bailer
Blank | 04/27/90
01/31/91
10/02/92 | | 110 ^d
<5
ND | <0.5
<0.5
ND | <0.5
<0.5
ND | <0.5
<0.5
ND | <0.5
<0.5
ND | 131 | 849
840
440 | | DTSC | | | NE | 1 | 680 | 100' | 1750 | | NA | iss Associates #### Table 2 Analytic Results for Ground Water, Shell Service Station WIC #204-6001-0109 29 Wildwood Avenue, Piedmont, California (continued) B = Benzene by EPA Method 602 or 8020 E = Eth lbenzene by EPA Method 602 or 8020 T = Tolliene by EPA Method 602 or 8020 X - Xylenes by EPA Method 602 or 8020 HVOCs = Halogenated volatile organic compounds by EPA Method 601 or 624 --- - Not analyzed NE - Not established DTSC MCLs = Galifornia Department of Toxic Substances Control maximum contaminant levels for drinking water <n = Not de letter b detection limit of n cob #### Notes: - a Field measurement of dissolved oxygen concentration (ppb) - b No HVOCs detected - c Well inaccessible, not sampled - d Chromatogram contained discrete peaks; not representative of - e = BETX detected at 410 97 36 and 300 ppb, respectively. by EPA Method 624 - ppb trichloroethere PCE 4 ppb trichloroethene (DCE detected a 20 ppb PCE 22 ppb TCE and 17 ppb DCE detected - h = Artesian well; potentiometric surface above top-of-casing - 1 = DTSC recommended action level for drinking water: McL not - j = DTSE MCLs for PCE = 5 ppb; TCE = 5 ppb; DCE = 10 ppb. # ATTACHMENT A BLAINE TECH'S GROUND WATER MONITORING REPORT # BLAINE TECH SERVICES INC. 985 TIMOTHY DRIVE SAN JOSE, CA 95133 (408) 995-5535 FAX (408) 293-8773 February 14, 1994 Shell Oil Company P.O. Box 5278 Concord, CA 94520-9998 Attn: Daniel T. Kirk SITE: Shell WIC #204-6001-0109 29 Wildwood Avenue Piedmont, California QUARTER: 1st Quarter of 1994 ## QUARTERLY GROUNDWATER SAMPLING REPORT 940120-G-1 This report contains data collected during routine inspection, gauging and sampling of groundwater monitoring wells performed by Blaine Tech Services, Inc. in response to the request of the consultant who is overseeing work at this site on behalf of our mutual client, Shell Oil Company. Data collected in the course of our field work is presented in a TABLE OF WELL GAUGING DATA. The field information was collected during our preliminary gauging and inspection of the wells, the subsequent evacuation of each well prior to sampling, and at the time of sampling. Measurements taken include the total depth of the well and the depth to water. The surface of water was further inspected for the presence of immiscibles which may be present as a thin film (a sheen on the surface of the water) or as a measurable free product zone (FPZ). At intervals during the evacuation phase, the purge water was monitored with instruments that measure electrical conductivity (EC), potential hydrogen (pH), temperature (degrees Fahrenheit), and turbidity (NTU). In the interest of simplicity, fundamental information is tabulated here, while the bulk of the information is turned over directly to the consultant who is making professional interpretations and evaluations of the conditions at the site. ## STANDARD PROCEDURES #### Evacuation Groundwater wells are thoroughly purged before sampling to insure that the sample is collected from water that has been newly drawn into the well from the surrounding geologic formation. The selection of equipment to evacuate each well is based on the physical characteristics of the well and what is known about the performance of the formation in which the well has been installed. There are several suitable devices which can be used for evacuation. The most commonly employed devices are air or gas actuated pumps, electric submersible pumps, and hand or mechanically actuated bailers. Our personnel frequently employ USGS/Middleburg positive displacement pumps or similar air actuated pumps which do not agitate the water standing in the well. Normal evacuation removes three case volumes of water from the well. More than three case volumes of water are removed in cases where more evacuation is needed to achieve stabilization of water parameters and when requested by the local implementing agency. Less water may be removed in cases where the well dewaters and does not recharge to 80% of its original volume within two hours and any additional time our personnel have reason to remain at the site. In such cases, our personnel return to the site within twenty four hours and collect sample material from the water which has recharged into the well case. #### Decontamination All apparatus is brought to the site in clean and serviceable condition. The equipment is decontaminated after each use and before leaving the site. Effluent water from purging and on-site equipment cleaning is collected and transported to Shell's Martinez Manufacturing Complex in Martinez, California. #### Free Product Skimmer The column headed VOLUME OF IMMISCIBLES REMOVED (ml) is included in the TABLE OF WELL GAUGING DATA to cover situations where a free product skimming device must be removed from the well prior to gauging. Skimmers are installed in wells with a free product zone on the surface of the water. The skimmer is a free product recovery device which often prevents normal well gauging and free product zone measurements. The 2.0" and 3.0" PetroTraps fall into the category of devices that obstruct normal gauging In cases where the consultant elects to have our personnel pull the skimmers out of the well and gauge the well, our personnel perform the additional task of draining the accumulated free product out of the PetroTrap before putting it back in the well. This recovered free product is measured and logged in the VOLUME OF IMMISCIBLES REMOVE column. Gauging at such sites is performed in accordance with specific directions from the professional consulting firm overseeing work at the site on Shell's behalf. ## Sample Containers Sample material is collected in specially prepared containers which are provided by the laboratory that performs the analyses. ## Sampling Sample material is collected in stainless steel bailer type devices normally fitted with both a top and a bottom check valve. Water is promptly decanted into new sample containers in a manner which reduces the loss of volatile constituents and follows the applicable EPA standard for handling volatile organic and semi-volatile compounds. Following collection, samples are promptly placed in an ice chest containing pre-frozen blocks of an inert ice substitute such as Blue Ice or Super Ice. The samples are maintained in either an ice chest or a refrigerator until delivered into the custody of the laboratory. #### Sample Designations All sample containers are identified with a site designation and a discrete sample identification number specific to that particular groundwater well. Additional standard notations (e.g. time, date, sampler) are also made on the label. ## Chain of Custody Samples are continuously maintained in an appropriate cooled container while in our custody and until delivered to the laboratory under a standard Shell Oil Company Chain of Custody. If the samples are taken charge of by a different party (such as another person from our office, a courier, etc.) prior to being delivered to the laboratory, appropriate release and acceptance records are made on the Chain of Custody (time, date, and signature of the person releasing the samples followed by the time, date and signature of the person accepting custody of the samples). # Hazardous Materials Testing Laboratory The samples obtained at this site were delivered to Sequoia Analytical Laboratory in Redwood City, California. Sequoia Analytical Laboratory is a California Department of Health Services certified Hazardous Materials Testing Laboratory and is listed as DOHS HMTL #1210. # **Objective Information Collection** Blaine Tech Services, Inc. performs specialized environmental sampling and documentation as an independent third party. In order to avoid compromising the objectivity necessary for the proper and disinterested performance of this work, Blaine Tech Services, Inc. performs no consulting and does not become involved in the marketing or installation of remedial systems of any kind. Blaine Tech Services, Inc. is concerned only with the generation of objective information, not with the use of that information to support evaluations and recommendations concerning the environmental condition of the site. Even the straightforward interpretation of objective analytical data is better performed by interested regulatory agencies and those engineers and geologists who are engaged in the work of providing professional opinions about the site and proposals to perform additional investigation or design remedial systems. # Reportage Submission of this report and the attached laboratory report to interested regulatory agencies is handled by the consultant in charge of the project. Any professional evaluations or recommendations will be made by the consultant under separate cover. Please call if we can be of any further assistance. Richard C. Blaine RCB/lp Attachments: Table of Well Guauging Data Chain of Custody Certified Analytical Report cc: Weiss Associates 5500 Shellmound Street Emeryville, CA 94608-2411 ATTN: Michael Asport # TABLE OF WELL GAUGING DATA | WELL
I.D. | DATA
COLLECTION
DATE | MEASUREMENT
REFERENCED
TO | QUALITATIVE OBSERVATIONS (sheen) | DEPTH TO FIRST IMMISCIBLES LIQUID (FPZ) (feet) | THICKNESS OF
IMMISCIBLES
LIQUID ZONE
(feet) | VOLUME OF
IMMISCIBLES
REMOVED
(ml) | DEPTH
TO
WATER
(feet) | DEPTH
TO WELL
BOTTOM
(feet) | |--------------|----------------------------|---------------------------------|----------------------------------|--|--|---|--------------------------------|--------------------------------------| | MW-1 | 1/20/94 | INACCESSIBLE | | | | | | | | MW-2 | 1/20/94 | TOC | - | NONE | - | •• | 4.45 | 11.52 | | MW-3 * | 1/20/94 | TOC | | NONE | | _ | 4.08 | 8.97 | | MW-4 | 1/20/94 | TOC | •• | NONE | | | 4.00 | 12.66 | | MW-5 | 1/20/94 | TOC | - | NONE | _ | | 4.40 | 16.00 | | E-4 | 1/20/94 | TOC | - | NONE | | _ | 0.00 | 34.16 | ^{*} Sample DUP was a duplicate sample taken from well MW-3. | | | | | * + : | | | | | | | | | | | | | | • • | | • | |---|--|-----------------------|------------|--------------------------|-----------------------------|------------------|------------|----------------|--|-------------|--------------|-----------------------|----------|---------|-----------|----------|-------------|-----------|----------------------------|----------------------------| | | L OII | | | | | ING - | WE | ST | | | СН | A
\$0 | OF | Cl
: | IST
74 | DD
01 | Y F | SEC | 1 1 | Dale: Page (of (| | Sile Address: 29 | Wildwoo | d Avent | ıe, Pi | .edmor | nt | • | | | <u>' </u> | An | alys | ls R | equir | ed | | | ., | | LAB; Sequoia | <u> </u> | | WIC#: 204 | -6001-0 | 109 | • | | | | | | | | | | | T | \top | | | | CHECK ONE (1) TOX ONEA | HIT DRUGSA 118UT | | Shell Englneer:
Dan Kirk | | | | Phono
75-6:
Fax #: | No.:
168 | (510) | | | | | | : | 0 | 14 | 91 | 4 | ij | 2 | Qualisty Manieting X (| 31 hours [_] | | Consultani Namo &
Blaine Tech Se
985 Timothy Dr | <u>ive S</u> | s:
Inc.
an Jose | e, CA | 951 | 33. | | | | | _ | | BTEX 8020 | , | ľ | | | | | Soil Closelly/Disposal () | Frid 1f gods XXIINou | | Consullani Contac
Jim Keller
Commonis: | I: | | - | °hone
195-5!
ax #; | No.:
535
<u>-293-</u> | (408)
8773 | . Gas) | . Diesel) | | (EPA 8240) | | 8015 & BTE | | | , | | | | Sol/Ak tem of Sys. () | \$442
HOFE: Holly Lab a | | · | - | | | | | | Mod. | Mod. | 2020/602 | | 7 | TPH 80 | | | | . | o Acc | ~ | orn . D | 24/44 Am. TAL | | Sampled by: Printed Name: | ٠ <u>٠</u> | 5Fc | زوي. | ر يُ دي | _ | | (EPA 8015 | (EPA 8015 | (EPA SOZ | le Organics | for Disposed | Combination 1 | | | 50 50 | 5 | dion Us | oshe Y/N | MATERIAL | SAMPLE | | Sample ID | Dalo | Sludge | \$oll | Waler | Air | No, of
conts, | TPH (E | TPH G | धार्ट्स | Votatile | Test fo | S
E
S
E
S | | | Aspessos | 1301100 | Preparation | Composite | DESCRIPTION | CONDITION,
COMMENTS | | MUD / | 1-20 | | <u> </u> , | × | | 3 | | | | • | : | X | | | |) I | હ | N | OIA-C | | | MU3 | | | | 1 | | (| | _ | | | | $ \overline{i} $ | | _ - | | _ | \prod | 1 | 02 A -C | | | mwa | | | · | 7 | | | | | | - | | \top | | _ | | _ | \parallel | Ť | 03 A - C | | | NW5 | Π | | | | | | | | | | | \prod | | | | 1 | T | T | OTA-C | | | E4 | | | | | | | | | | | | | | | | | | Γ | 05A-C | | | €B | | - | | | | | | | | | • | | | | ╁ | 1 | _ | | 06A-C | | | Dup. | | | | | | 工 | | | | | | | | | _ _ | _ | | ackslash | 07A-C | | | T3: | | | | | | 2 | | | | _ | | 工 | | | | - | 2 | 1 | CR AB | | | Relinguished By (signal) | ×5, | Print | od Nome | -Cy/ | Vir. | Sig | <u>001</u> | o: 1/
o: 0' | 21
245 | Rec | oNec | (10 | valure); | 200 | 1 | | <u> </u> | | gHama;
- HIROTSU | Dale: 1/Z | | | x0): /` | יומותן יי | sa Ngara | ·. | محمد | - Care | POI | o: | ~ | -[Kec | 01/00 | ı (NÖI | iaivie); | ' | | | | | d Name: STENSTRO 5 | Dale: | Blaine Tech Services, Inc. 985 Timothy Drive San Jose, CA 95133 Attention: Jim Keller Project: Shell, 29 Wildwood Ave, Piedmont Enclosed are the results from 8 water samples received at Sequoia Analytical on January 21,1994. The requested analyses are listed below: | SAMPLE # | SAMPLE DESCRIPTION | DATE OF COLLECTION | TEST METHOD | |----------|--------------------|--------------------|-------------------------| | 4AB1201 | Water, MW2 | 1/20/94 | EPA 5030/8015 Mod./8020 | | 4AB1202 | Water, MW3 | 1/20/94 | EPA 5030/8015 Mod./8020 | | 4AB1203 | Water, MW4 | 1/20/94 | EPA 5030/8015 Mod./8020 | | 4AB1204 | Water, MW5 | 1/20/94 | EPA 5030/8015 Mod /8020 | | 4AB1205 | Water, E4 | 1/20/94 | EPA 5030/8015 Mod./8020 | | 4AB1206 | Water, EB | 1/20/94 | EPA 5030/8015 Mod./8020 | | 4AB1207 | Water, Dup | 1/20/94 | EPA 5030/8015 Mod./8020 | | 4AB1208 | Water, TB | 1/20/94 | EPA 5030/8015 Mod./8020 | Please contact me if you have any questions. In the meantime, thank you for the opportunity to work with you on this project. Very truly yours, SEQUOJA ANALYTICAL Peggy A. Penner Project Manager Blaine Tech Services, Inc. 985 Timothy Drive 985 Timothy Drive San Jose, CA 95133 Attention: Jim Keller Client Project ID: Sample Matrix: Shell, 29 Wildwood Ave, Piedmont Water Analysis Method: EPA 5030/8015 Mod./8020 First Sample #: 4AB1201 Sampled: Jan 20, 1994 Jan 21, 1994 Received: Ja Reported: F Feb 1, 1994 # TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION | Analyte | Reporting
Limit
μg/L | Sample
I.D.
4AB1201
MW2 | Sample
I.D.
4AB1202
MW3 | Sample
I.D.
4AB1203
MW4 | Sample
I.D.
4AB1204
MW5 | Sample
I.D.
4AB1205
E4 | Sample
I.D.
4AB1206
EB | |---------------------------|----------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------|---------------------------------| | Purgeable
Hydrocarbons | 50 | N.D. | 4,200 | N.D. | 90 | N.D. | N.D. | | Benzene | 0.50 | 1.5 | 280 | 0.71 | N.D. | N.D. | N.D. | | Toluene | 0.50 | N.D. | N.D. | N.D. | 1.0 | N.D. | N.D. | | Ethyl Benzene | 0.50 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | Total Xylenes | 0.50 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | Chromatogram Pa | ttern: | | Gas | | Discrete
Peak | | | **Quality Control Data** | Report Limit Multiplication Factor: | 1.0 | 20 | 1.0 | 1.0 | 1.0 | 1.0 | |---|---------|---------|---------|---------|---------|---------| | Date Analyzed: | 1/25/94 | 1/24/94 | 1/24/94 | 1/24/94 | 1/24/94 | 1/24/94 | | Instrument Identification: | GCHP-3 | GCHP-17 | GCHP-17 | GCHP-17 | GCHP-17 | GCHP-17 | | Surrogate Recovery, %:
(QC Limits = 70-130%) | 99 | 107 | 90 | 110 | 103 | 101 | Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit. SEQUOIA ANALYTICAL Reggl/A. Penner Project Manager 4AB1201.BLA <1> Blaine Tech Services, Inc. 985 Timothy Drive San Jose, CA 95133 Services, Inc. Client Project ID: Shell, 29 Wildwood Ave, Piedmont Sampled: Received: Jan 20, 1994 Jan 21, 1994 Sample Matrix: Analysis Method: EPA 5030/8015 Mod./8020 Reported: Feb 1, 1994 Attention: Jim Keller First Sample #: 4AB1207 Water # TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION | Analyte | Reporting
Limit
μg/L | Sample
I.D.
4AB1207
Dup | Sample
I.D.
4AB1208
TB | | |
 | |---------------------------|----------------------------|----------------------------------|---------------------------------|---|---|------| | Purgeable
Hydrocarbons | 50 | 3,800 | N.D. | | · | | | Benzene | 0.50 | 250 | N.D. | | | | | Toluene | 0.50 | N.D. | N.D. | | | | | Ethyl Benzene | 0.50 | N.D. | N.D. | | | | | Total Xylenes | 0.50 | N.D. | N.D. | | | | | Chromatogram Pa | ttern: | Gas | | • | | | #### **Quality Control Data** | Report Limit Multiplication Factor: | 20 | 1.0 | |---|---------|---------| | Date Analyzed: | 1/24/94 | 1/24/94 | | Instrument Identification: | GCHP-17 | GCHP-17 | | Surrogate Recovery, %:
(QC Limits = 70-130%) | 92 | 83 | Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit. SECÚCIÁ ANALYTICAL 🗷. Penner Project Manager 4AB1201.8LA <2> Blaine Tech Services, Inc. 985 Timothy Drive San Jose, CA 95133 Client Project ID: =: Shell, 29 Wildwood Ave, Piedmont Matrix: Water Attention: Jim Keller QC Sample Group: 4AB1201 Reported: Feb 1, 1994 ## QUALITY CONTROL DATA REPORT | ANALYTE | Benzene | Toluene | Ethyl
Benzene | Xylenes | | |-------------------|----------|----------|------------------|----------|-----| | | | | | | · . | | Method: | EPA 8020 | EPA 8020 | EPA 8020 | EPA 8020 | | | Analyst: | M. Nipp | M. Nipp | M. Nipp | M. Nipp | | | MS/MSD | | | | | | | Batch#: | 4A68902 | 4A68902 | 4A68902 | 4A68902 | | | Date Prepared: | • | - | • | - | · | | Date Analyzed: | 1/25/94 | 1/25/94 | 1/25/94 | 1/25/94 | • | | Instrument I.D.#: | GCHP-3 | GCHP-3 | GCHP-3 | GCHP-3 | | | Conc. Spiked: | 10 μg/L | 10 μg/L | 10 μg/L | 30 µg/L | | | Matrix Spike | | | | | | | % Recovery: | 99 | 100 | 100 | 107 | | | Matrix Spike | | | | | | | Duplicate % | | | | | | | Recovery: | 100 | 100 | 100 | 107 | | | Relative % | | | | , | | | Difference: | 1.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | 1.00 B. L. I. W. | | | | | | | LCS Batch#: | • | • | - | - | | | Date Prepared: | • | - | • | • | | | Date Analyzed: | - | - | - | - | | | Instrument I.D.#: | • | - | - | • | | | LCS % | | | | | | | Recovery: | • | - | - | • | | | % Recovery | | <u> </u> | | | | | Control Limits: | 71-133 | 72-128 | 72-130 | 71-120 | | EQUOIA ANALYTICAL /eģģy A. Penner 个roject Manager Please Note: The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch. Blaine Tech Services, Inc. Client Project ID: Shell, 29 Wildwood Ave, Piedmont 985 Timothy Drive San Jose, CA 95133 Matrix: Water Attention: Jim Keller QC Sample Group: 4AB1202-08 Reported: Feb 1, 1994 #### QUALITY CONTROL DATA REPORT | ANALYTE | Benzene | Toluene | Ethyl | Xylenes | | |-------------------|----------|----------|------------|----------|---| | | | | Benzene | | | | Method: | EPA 8020 | EPA 8020 | EPA 8020 | EPA 8020 | | | Analyst: | M, Nipp | M. Nipp | M. Nipp | M. Nipp | | | MC /MCD | | | | | | | MS/MSD
Batch#: | 4A68901 | 4A68901 | 4A68901 | 4A68901 | | | Daton#. | 4A06901 | 4/00301 | 4/100301 | 47.00301 | · | | Date Prepared: | - | • | - | - | | | Date Analyzed: | 1/24/94 | 1/24/94 | 1/24/94 | 1/24/94 | | | Instrument I.D.#: | GCHP-17 | GCHP-17 | GCHP-17 | GCHP-17 | | | Conc. Spiked: | 10 μg/L | 10 μg/L | 10 μg/L | 30 μg/L | | | Matrix Spike | | | | | | | % Recovery: | 97 | 97 | 97 | 100 | | | - | | | | | | | Matrix Spike | | | | · | | | Duplicate % | | | | | | | Recovery: | 95 | 95 | 9 5 | 97 | | | Relative % | | | | | | | Difference: | 2.1 | 2.1 | 2.1 | 3.0 | | | | | | | | | | •••• | | | | | · | | LCS Batch#: | | <u>-</u> | • | | | | 200 211011,71 | | | | | | | Date Prepared: | - | • | • | - | | | Date Analyzed: | • . | • | - | - | | | Instrument I.D.#: | - | - | - | • | | | LCS % | | | | | | | Recovery: | - | | - | | | | % Recovery | | | | | | | Control Limits: | 71-133 | 72-128 | 72-130 | 71-120 | | SEQUOIA ANALYTICAL Fleggly A. Penner Project Manager Please Note: The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.