

5900 Hollis Street, Suite A Emeryville, California 94608

Fax: (510) 420-9170

Telephone: (510) 420-0700 www.CRAworld.com

			TRANS	MITTA						
DATE:	Septem	ber 14, 2010	REFE	RENCE NO.:	240472					
		•	Proj	ECT NAME:	105 Fifth	105 Fifth Street, Oakland				
то:	Jerry W	ickham				RECEIVED				
_	Alamed	la County Environme	ental Health			RECEIVED				
	1131 H	arbor Bay Parkway, S	uite 250			9:16 am, Sep 17, 2010				
, <u> </u>	Alamed	la, California 94502-6	577			Alameda County Environmental Health				
Please find	enclosed	l: Draft Originals Prints		Final Other						
Sent via:		Mail Overnight Co	ourier 🖂	Same Day O Other <u>G</u>		Alameda County FTP uploads				
QUANT	TITY			DESCRII	TION					
1	·	Soil Vapor Probe Ins	stallation and			port				
		,								
				 ,	, '					
	equested our Use		For Review	and Comme	nt					
COMMEN	JTS:									
	e any qu	estions regarding the	e content of th	is document	t, please conta	act Peter Schaefer at				
Copy to:		Denis Brown, Shell O Arthur R. and Mary A				, CA 94024				
.*	S	SF Data Room (electro	nic copy)							
Completed	i by: _I	Peter Schaefer		Signed:	Palin S	SQ.				
Filing: C	Correspor	ndence File								

Denis L. Brown Shell Oil Products US

HSE – Environmental Services 20945 S. Wilmington Ave. Carson, CA 90810-1039 Tel (707) 865 0251 Fax (707) 865 2542 Email denis.1.brown@shell.com

Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re:

Shell-branded Service Station

105 Fifth Street Oakland, California SAP Code 135700 Incident No. 98995757

ACHCSA Case No. RO0000487

Dear Mr. Wickham:

The attached document is provided for your review and comment. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

If you have any questions or concerns, please call me at (707) 865-0251.

Sincerely,

Denis L. Brown Project Manager

SOIL VAPOR PROBE INSTALLATION AND **SAMPLING REPORT**

SHELL-BRANDED SERVICE STATION **105 FIFTH STREET** OAKLAND, CALIFORNIA

SAP CODE

135700

INCIDENT NO.

98995757

AGENCY NO.

RO0000487

SEPTEMBER 14, 2010 REF. NO. 240472 (9) This report is printed on recycled paper. Prepared by: Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, California U.S.A. 94608

Office: (510) 420-0700

(510) 420-9170

web: http://www.CRAworld.com

TABLE OF CONTENTS

			rage
EXEC	CUTIVE S	JMMARY	i
1.0	INTRO	DUCTION	1
2.0	SOIL V. 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11	APOR PROBE INSTALLATION AND SAMPLING PERMIT FIELD DATES DRILING COMPANY PERSONNEL PRESENT DRILLING METHOD NUMBER OF PROBES VAPOR PROBE MATERIALS SCREENED INTERVALS SOIL VAPOR SAMPLING PROCEDURE SOIL VAPOR SAMPLING ANALYSES WASTE DISPOSAL	1 1 2 2 2 2 2
3.0	FINDIN 3.1 3.2	IGS	3
4.0	CONCI	LUSIONS	4
5.0	RECON	MENDATIONS	4

LIST OF FIGURES (Following Text)

FIGURE 1

VICINITY MAP

FIGURE 2

SOIL VAPOR DATA MAP

LIST OF TABLES (Following Text)

TABLE 1

SOIL VAPOR ANALYTICAL DATA

LIST OF APPENDICES

APPENDIX A

PERMIT

APPENDIX B

BORING LOG

APPENDIX C

CERTIFIED ANALYTICAL REPORT

APPENDIX D

SOIL VAPOR PROBE INSTALLATION AND SOIL VAPOR SAMPLING

WORK PLAN

EXECUTIVE SUMMARY

- One nested soil vapor probe (SVP-6) was installed with screens at 3 and 5 fbg.
- Soil vapor samples collected from 3 and 5 fbg in SVP-6 and at 5 fbg in SVP-1 and SVP-3 contained up to $49,000,000 \,\mu\text{g/m}^3$ TPHg (SVP-1), $13,000 \,\mu\text{g/m}^3$ benzene (SVP-3), and $44,000 \,\mu\text{g/m}^3$ ethylbenzene (SVP-3).
- TPHg concentrations exceeded ESLs in SVP-1, SVP-3, and SVP-6; and benzene and ethylbenzene concentrations exceeded ESLs in SVP-3 and SVP-6.
- The laboratory reporting limits were above ESLs for benzene, ethylbenzene, and naphthalene in SVP-1 due to the presence of other hydrocarbons in the soil vapor samples.
- CRA recommends resampling soil vapor probes SVP-1, SVP-3, and SVP-6 to confirm the results from this sampling event. In addition, CRA recommends installing three near sub-slab soil vapor probes (SVP-7 through SVP-9) adjacent to the kiosk.

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) prepared this report on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell) to document the recent soil vapor probe installation and sampling. The purpose of the investigation was to assess the potential for soil gas migration to indoor air. CRA followed the scope of work and procedures presented in our April 22, 2010 work plan, which was approved by Alameda County Environmental Health (ACEH) in their May 24, 2010 letter.

The site is an active Shell-branded service station located on the western corner of Fifth Street and Oak Street in Oakland, California (Figure 1). Currently, the site layout consists of a kiosk, four underground storage tanks (USTs), and two dispenser islands (Figure 2). The area surrounding the site is of mixed commercial and residential use.

A summary of previous work performed at the site and additional background information is contained in CRA's April 22, 2010 *Soil Vapor Probe Installation and Soil Vapor Sampling Work Plan* and is not repeated herein.

2.0 SOIL VAPOR PROBE INSTALLATION AND SAMPLING

2.1 PERMIT

CRA obtained a drilling permit from Alameda County Public Works Agency (Appendix A).

2.2 FIELD DATES

July 26, 2010 (soil vapor probe installation) and August 9, 2010 (soil vapor probe sampling).

2.3 **DRILING COMPANY**

Gregg Drilling & Testing, Inc.

2.4 PERSONNEL PRESENT

Geologist Erin Swan directed the probe installation working under the supervision of California Professional Geologist Peter Schaefer.

2.5 DRILLING METHOD

Air-knife.

2.6 NUMBER OF PROBES

CRA installed one nested soil vapor probe (SVP-6) with screens at 3 and 5 feet below grade (fbg). The probe specifications and soil types encountered are described on the boring log contained in Appendix B. The probe location is shown on Figure 2.

2.7 VAPOR PROBE MATERIALS

CRA constructed the vapor probes using ¼-inch diameter Teflon® tubing attached to 1-inch length plastic screen intervals, and #2/12 Monterey sand filter pack. A probe diagram is provided with the boring log in Appendix B.

2.8 SCREENED INTERVALS

2.91 to 3.00 fbg and to 4.91 to 5.00 fbg.

2.9 SOIL VAPOR SAMPLING PROCEDURE

On August 9, 2010, CRA sampled soil vapor probes SVP-1, SVP-3, and SVP-6. All soil vapor samples were collected using a lung box and Tedlar[®] bag.

Prior to sampling, CRA purged at least three tubing volumes of air from each vapor probe using a vacuum pump. Immediately after purging, CRA collected a soil vapor sample using a laboratory-supplied Tedlar[®] bag. During sampling, CRA connected the Teflon[®] tubing for each vapor probe to a lung box containing the Tedlar[®] bag, and the lung box chamber was connected to the vacuum pump. CRA then drew the sample into the Tedlar[®] bag by reducing the pressure in the lung box with the vacuum pump. Each

sample was labeled, documented on a chain-of-custody, and submitted to Calscience Environmental Laboratories, Inc. of Garden Grove, California for analysis within 72 hours.

To check the system for leaks, CRA placed a containment unit (or shroud) over the soil vapor probe surface casing and sampling manifold. Prior to soil vapor probe purging, CRA introduced helium into the containment unit to obtain a minimum 50 percent helium content level. CRA confirmed the helium content within the containment unit using a helium meter. The helium meter readings are presented in Section 3.2. All samples were analyzed by the laboratory for helium, and CRA presents the results in Section 3.2 and on Table 1.

2.10 SOIL VAPOR SAMPLING ANALYSES

Soil vapor samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg) by EPA Method TO-3 (modified); benzene, toluene, ethylbenzene, xylenes (BTEX), and naphthalene by modified EPA Method 8260B; oxygen and argon, carbon dioxide, and methane by ASTM D-1946; and for helium by ASTM D-1946 (M).

2.11 WASTE DISPOSAL

Water-knife sludge generated during field activities was stored on site in a 55-gallon drum, tested, and profiled for disposal. Waste disposal confirmation documentation is pending and will be provided by CRA upon request.

3.0 <u>FINDINGS</u>

3.1 SOIL VAPOR

The soil vapor chemical analytical data are summarized in Table 1, and TPHg and BTEX analytical results are presented on Figure 2. The laboratory analytical report is presented in Appendix C.

3.2 <u>LEAK TESTING</u>

CRA performed leak testing as described above, and helium was not detected in any of the samples. As shown in the following table, the reporting limit for helium (0.0100 percent by volume [%v]) is less than 10 percent of the concentration detected in the shroud, and the samples are considered valid.

Probe ID	Helium concentration in sample (%v)	Helium detected in shroud (%v)	Maximum acceptable helium concentration in sample (%v)
SVP-1	< 0.0100	69.0	6.90
SVP-3	<0.0100	73.7	7.37
SVP-6-3	<0.0100	67.0	6.70
SVP-6-5	< 0.0100	68.0	6.80

The laboratory analytical report for helium is presented in Appendix C, and CRA includes the results on Table 1.

4.0 <u>CONCLUSIONS</u>

TPHg concentrations exceeded San Francisco Bay Regional Water Quality Control Board's environmental screening levels (ESLs) for commercial land use¹ in SVP-1, SVP-3, and SVP-6; and benzene and ethylbenzene exceeded ESLs in SVP-3 and SVP-6. The laboratory reporting limits were above ESLs for benzene, ethylbenzene, and naphthalene in SVP-1 due to the presence of other hydrocarbons in the soil vapor samples.

5.0 RECOMMENDATIONS

CRA recommends resampling soil vapor probes SVP-1, SVP-3, and SVP-6 to confirm the results from this sampling event. In addition, CRA recommends installing three near sub-slab soil vapor probes (SVP-7 through SVP-9) adjacent to the kiosk (Figure 2). A work plan for installing the near sub-slab soil vapor probes is included in Appendix D.

Screening for Environmental Concerns at Site With Contaminated Soil and Groundwater, California Regional Water Quality Control Board, Interim Final - November 2007 [Revised May 2008]

All of which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES

Peter Schaefer, CEG, CHG

Peku Sch J-

Anhey K Corl Aubrey K. Cool, PG

FIGURES

Shell-branded Service Station

105 Fifth Street Oakland, California

Vicinity Map

Soil Vapor

Sample ID	Sample Depth (fbg)	TPHg Benzene (μg/m³)		Toluene (µg/m³)	Ethyl- benzene (µg/m³)	Total Xylenes (µg/m³)	
SVP-1	5	49,000,000	<16,000ª	<19,000ª	<22,000ª	<43,000	

Notes:

Soil vapor sample ID, depth in feet below grade (fbg), and concentrations in micrograms per cubic meter (µg/m³)

a = Reporting limit is elevated due to high levels of non-target hydrocarbons

TPHg = Total petroleum hydrocarbons as gasoline **<X** = Not detected at reporting limit X

- - · · Ethyl-Sample TPHg Toluene Benzene Sample Depth benzene Xylenes (µg/m³) ΙĎ $(\mu g/m^3)$ $(\mu g/m^3)$ (fbg) (µg/m³) $(\mu g/m^3)$ SVP-1 49,000,000 <16,000° <19,000a <22,000° <43,000° SB-9 SB-8 12"Ø SS FL = 9.14 fbg | MH 24"Ø SD 24"Ø SD 24"Ø SD OAK STREET SB-7 @

Juice Appeal

SVP-5

MW-1

SVP-9

SVP-1

STREET

ON-RAMP

880

HWY.

\					
	Cash & Carry Smart Food Service				
		1	4		
MW-	80	40	20	0	

SB-12 •

Scale (ft)

Oakland Inner Harbor

Sample

ID

SVP-6

SVP-6

Sample

ID

SVP-3

Depth

(fbg)

3

Sample

Depth

(fbg)

5

MW-6

Location of Sensitive Receptor Relative to Site

(Oakland Inner Harbor - 1,800 ft, S 29° W)

TPHg

 $(\mu g/m^3)$

9,200,000

8,400,000

(µg/m³)

13,000,000

Ethyl-

benzene

 $(\mu g/m^3)$

8,200

6,400

Ethyl-

benzene

(µg/m³)

44,000

Benzene Toluene

 $(\mu g/m^3)$

<1,900

<1,900

 $(\mu g/m^3)$

5,400

3,900

Benzene | Toluene

(µg/m³)

<9,400

(µg/m³)

13,000

SB-11

Total

Xylenes

(µg/m³)

14,000

4,500

Total

Xylenes

(µg/m³)

<22,000

SB-10 °

(1,800 ft.)

STREET

FOURTH

Conley Consulting

Group

- Cho Kwan, CPA

Sierra Salon

Vacant Office

Residential Use,

Second Floor &

Above

S\240472 SITE PLAN (F2, SOIL

Produce & Food LLC.

W&H Wholesale

Lakeside

Recycling

Planter

SVP-4

Dispenser Islands

00 🗆 🙃

00 🗆 🗀 0

ooUSTs□ □。 T-2

D-3 △

D-4

SB-2 €

Shell Station

105 Fifth St.

SVP-3

VB O

MW-2

SVP-7

SVP-8

SVP-6

SB-4

FOURTH STREET

HIGHWAY 880 (ELEVATED)

FIGURE

105 Fifth Street Oakland, California

TABLE

HISTORICAL SOIL VAPOR ANALYTICAL DATA SHELL-BRANDED SERVICE STATION 105 5TH STREET OAKLAND, CALIFORNIA

Sa	mple ID	Date	Depth (fbg)	ТРНд	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Naphthalene	Methane (%v)	Carbon Dioxide (%v)	Oxygen + Argon (%v)	Helium (%v)
	SVP-1	8/25/2009	5		7,200	<1,500	15,000	<6,900					<0.0100
	SVP-1	10/1/2009	5		3,600	<19,000	7,800	<8,700					< 0.0100
	SVP-1	8/9/2010	5	49,000,000	<16,000 ^{a,b}		<22,000 ^{a,b}		<52,000 ^a	4.11	14.1	2.18	<0.0100
	SVP-2	8/25/2009	5		<3.2	24	<4.3	<17					<0.0100
	SVP-3	8/25/2009	5		20,000	1,200	61,000	<5,200					<0.0100
	SVP-3	10/1/2009	5		22,000	<19,000	66,000	<8,700					< 0.0100
4	SVP-3	8/9/2010	5	13,000,000	13,000 ^b	<9,400 ^b	44,000 ^b	<22,000 ^b	<26,000	0.528	15.9	2.22	<0.0100
!	SVP-4	8/25/2009	5		9.0	24	50	<17					<0.0100
	SVP-5	8/25/2009	5		280	21	1,100	35	·				<0.0100
;	SVP-6	8/9/2010	3	9,200,000	5,400 ^b	<1,900 ^b	8,200 ^b	14,000 ^b	<5,200	0.548	15.8	2.13	< 0.0100
;	SVP-6	8/9/2010	5	8,400,000	3,900 ^b	<1,900 ^b	6,400 ^b	4,500 ^b	<5,200	0.558	16.8	1.80	<0.0100
ESLs c				29,000	280	180,000	3,300	58,000	240	- NA	NA .	NA	NA .

Notes:

All results in micrograms per cubic meter ($\mu g/m^3$) unless otherwise indicated.

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method TO-3M

Benzene, toluene, ethylbenzene, and xylenes (BTEX) by Modified EPA Method TO-15M unless otherwise noted

HISTORICAL SOIL VAPOR ANALYTICAL DATA SHELL-BRANDED SERVICE STATION 105 5TH STREET OAKLAND, CALIFORNIA

Naphthalene analyzed by Modified EPA Method 8260B Methane, carbon dioxide, and oxygen + argon analyzed by ASTM D-1946 Helium analyzed by ASTM D-1946 (M)

fbg = Feet below grade

%v = Percentage by volume

<x = Not detected at reporting limit x

ESL = Environmental screening level

--- = Not analyzed

NA = No applicable ESL

Results in **bold** exceed environmental screening level

- a = Reporting limit is elevated due to high levels of non-target hydrocarbons
- b = BTEX by Modified EPA Method 8260B
- c = San Francisco Bay Regional Water Quality Control Board (RWQCB) shallow soil gas screening level for evaluation of potential vapor intrusion concerns commercial/industrial land use from RWQCB's *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater*, California Regional Water Quality Control Board, Interim Final November 2007 (Revised May 2008).

APPENDIX A

PERMIT

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 07/20/2010 By jamesy

Permit Numbers: W2010-0531

Permits Valid from 07/26/2010 to 07/27/2010

Application Id:

1278547269016

City of Project Site:Oakland

Site Location: **Project Start Date:**

105 5th Street, Oakland, CA 07/26/2010

Completion Date: 07/27/2010

Assigned Inspector:

Contact Vicky Hamlin at (510) 670-5443 or vickyh@acpwa.org

Applicant:

Conestoga Rovers & Associates - Erin Swan

Phone: 510-420-3372

5900 Hollis St, Suite A, Emeryville, CA 94608

Phone: --

Property Owner:

Shell Oil Products US Shell 20945 S. Wilmington Ave, Carson, CA 90810

Client:

Erin Swan

Phone: 510-420-3372

Contact:

5900 Hollis St Suite A, Emeryville, CA 94608

Phone: 510-420-3372 Cell: 510-385-0074

Erin Swan

Total Due:

\$265.00

Receipt Number: WR2010-0251 Total Amount Paid:

265 00

Payer Name: Conestoga Rovers & Paid By: CHECK

PAID IN FULL

Associates

Works Requesting Permits:

Well Construction-Vapor monitoring well-Vapor monitoring well - 2 Wells

Driller: Gregg Drilling and Testing - Lic #: 485165 - Method: other

Work Total: \$265.00

Specifications

Permit #	Issued Date	Expire Date	Owner Well	Hole Diam.	Casing Dlam.	Seal Depth	Max. Depth
W2010- 0531	07/20/2010	10/24/2010	SVP-6	6.00 in.	0.25 in.	2.00 ft	5.00 ft
W2010-	07/20/2010	10/24/2010	SVP-7	6.00 in.	0.25 in.	2.00 ft	5.00 ft

Specific Work Permit Conditions

- Drilling Permit(s) can be voided/ cancelled only in writing. It is the applicant's responsibility to notify Alameda County Public Works Agency, Water Resources Section in writing for an extension or to cancel the drilling permit application. No drilling permit application(s) shall be extended beyond ninety (90) days from the original start date. Applicants may not cancel a drilling permit application after the completion date of the permit issued has passed.
- 2. Compliance with the above well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate state reporting-requirements related to well destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days, including permit number and site map.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters

Alameda County Public Works Agency - Water Resources Well Permit

generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

- 5. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 6. No changes in construction procedures or well type shall change, as described on this permit application. This permit may be voided if it contains incorrect information.
- 7. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.
- 8. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 9. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.
- 10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 11. Vapor monitoring wells above water level constructed with tubing maybe be backfilled with pancake-batter consistency bentonite. Minimum surface seal thickness is two inches of cement grout around well box.

Vapor monitoring wells above water level constructed with pvc pipe shall have a minimum seal depth (Neat Cement Seal) of 2 feet below ground surface (BGS). Minimum surface seal thickness is two inches of cement grout around well box. All other conditions for monitoring well construction shall apply.

APPENDIX B

BORING LOG

BORING / WELL LOG

Conestoga-Rovers & Associates 5900 Hollis Street Suite A

~ <u> </u>	Jaco Ficilia Gileet, Guite A	
1 / /	Emeryville, CA 94608	
	Telephone: 510-420-0700	
Sec.	Fax: 510-420-9170	

CLIENT NAME	Shell Oil Products US	BORING/WELL NAMESVP	-6		
JOB/SITE NAME	Shell-Branded Service Station	DRILLING STARTED 26-J	ul-10		
LOCATION	105 Fifth Street, Oakland, California	DRILLING COMPLETED 26-J	ul-10		
PROJECT NUMBER	240472	WELL DEVELOPMENT DATE (YI	ELD) _N	IA	
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION	N _N	IA	
DRILLING METHOD	Airknife	TOP OF CASING ELEVATION	<u> </u>	IA	
BORING DIAMETER	6"	SCREENED INTERVALS	_ N	IA	
LOGGED BY	E. Swan	DEPTH TO WATER (First Encou	ntered)	NA	Δ
REVIEWED BY	P. Schaefer	DEPTH TO WATER (Static)		NA	Ţ
REMARKS					

REMAR										—
PID (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM	ļ
		•				144	CONCRETE	0.6	Flush-grade 6" well t	box
			1		-		Silty SAND (SM); very dark brown (10YR 2/2); dry; 45% silt, 55% fine to medium grained sand.		Portland Type I/II	
	-		1	-	-				Bentonite Seal	
			1	_	- SM				Monterey Sand #2/1 1" vapor well screen	12
									Bontonite Soal	
			1	-	•					
				- 5 -				5.0	Monterey Sand #2/1 1 "vapor well screen Bottom of B @ 5 fbg	;² Boring
		-							@ 5 fbg	
3										
	-									
Š										:
<u>.</u>										
200										
7112		·								
,										
NA N										
WELL LOG (T'IJ) I. STIELL GOOTH STANDARD STANDAR										
1300										
<u> </u>						ļ				
₫		1						1		

APPENDIX C CERTIFIED ANALYTICAL REPORT

August 16, 2010

Peter Schaefer Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Subject:

Calscience Work Order No.: 10-08-0756

Client Reference:

105 5th St., Oakland, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 8/10/2010 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental Laboratories, Inc.

Xuan H. Dang

Project Manager

Case Narrative

Work Order # 10-08-0756 Modified EPA 8260 in Air

This method is used to determine the concentration of BTEX/Oxygenates/Naphthalene having a vapor pressure greater than 10⁻¹ torr at 25°C at standard pressure in an air matrix. The method is similar to EPA TO-15 and uses air standards for calibration. Method specifics are listed in the table below. A known volume of sample is directed from the container (Summa® canister or Tedlar™ bag) through a solid multi-module (glass beads, tenex, cryofocuser) concentrator. Following concentration, the VOCs are thermally desorbed onto a gas chromatographic column for separation and then detected on a mass selective detector.

Comparison of CalscienceTO-15(Modified) versus EPA 8260 (Modified) in Air

	<u></u>	
Reophicamant	((M))ch-Oir concincias	nik nii (MMOKS AYEleanelaals?)
BFB Acceptance Criteria	SW846 Protocol	SW846 Protocol
Initial Calibration	Allowable % RSD for each Target Analyte <= 30%, 10% of analytes allowed <=40%	Allowable % RSD for each Target Analyte <= 30%, 10% of analytes allowed <= 40%
Initial Calibration Verification (ICV) - Second Source Standard (LCS)	Analytes contained in the LCS standard evaluated against historical control limits for the LCS	BTEX and MTBE only - <= 30%D
Daily Calibration Verification (CCV)	Full List Analysis: Allowable % Difference for each CCC analyte is <= 30%	BTEX and MTBE only - <= 30%D
	Target List Analysis: Allowable % Difference for each target analytes is <= 30%	
Daily Calibration Verification (CCV) - Internal Standard Area Response	Allowable +/- 50% (Range: 50% to 150%)	Allowable +/- 50% (Range: 50% to 150%)
Method Blank, Laboratory Control Sample and Sample - Internal Standard Area Response	Allowable +/- 50% of the mean area response of most recent Calibration Verification (Range: 50% to 150%)	Allowable +/- 50% of the mean area response of the most recent Calibration Verification (Range: 50% to 150%)
Surrogates	1,4-Bromoflurobenzene, 1,2-Dichloroethane-d4 and Toluene-d8 - % Recoveries based upon historical control limits +/-3S	1,4-Bromoflurobenzene, 1,2-Dichloroethane-d4 and Toluene-d8 - % Recoveries based upon historical control limits +/-3S

Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

Work Order No:

Preparation: Method:

Units:

08/10/10

10-08-0756

N/A

ASTM D-1946

%v

Project: 105 5th St., Oakland, CA

Page 1 of 1

Client Sample Number				b Sample Number 0756-1-A	Date/Time Collected	Matrix Air	Instrument	Date Prepared N/A	Date/ Anal	yzed	QC Batch ID
377-0-3			10-06-	7/30-11-A	10:06	All	GC 38	NA M	13	33	
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		*	Result	<u>RL</u>	<u>DF</u>	Qual
Methane	0.548	0.500	1		Oxygen + Argo	n		2.13	0.500	1	
Carbon Dioxide	15.8	0.500	1	rainweathurainean		agas makka and na	Market Strategy				
SVP-6-51			10-08-	0756-2-A	08/09/10 10:17	Air	GC 36	N/A	08/1 13		100810L01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Methane	0.558	0.500	1		Oxygen + Argo	n		1.80	0.500	1	•
Carbon Dioxide	16.8	0.500	1	iikas bassuusevas mutraisiks	dana samu salam salam sa	eroenia manifolisi eri sü	hef sing molecularity and company of hear co	e dan a rayên den nemenana	in heisen av versamisanske	un léaguel than d'an a	medi Kilongiyaharina Alberio dinak
SVP-3	1940 Various Grea	9.00000.000	10-08-	0756-3-A	08/09/10 - 11:29	Air	GC 36	N/A	08/1 14		100810L01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Methane	0.528	0.500	1		Oxygen + Argo	on		2.22	0.500	1	
Carbon Dioxide	15.9	0.500	1	BDISSER PROBLEM AND	response de la companyación	8088*5.22 5080 at 2	April 10. HTsp://despression.org/despression.	mentani salah seri dan bermanian Pentanian	e Carlos de cuestado cario resta	ezhouser corone	anii antis in assaluukka saana ni sekatuusuu
SVP-1			10-08-	0756-4-A	08/09/10 10:45	Air	GC 36	N/A	.08/1 .14	0/10 :25	.100810L01
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	<u>DF</u>	Qual
Methane	4.11	0.500	1		Oxygen + Argo	on		2.18	0.500	1	
Carbon Dioxide	14.1	0.500	- 1	Audinatus - advictoria - 122		ar no for star forms for my flor		and the same and and believe being			
Method Blank			099-03	3-002-1,109	N/A	Air	GC 36	N/A .		0/10 :50	100810L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Methane	ND	0.500	1		Oxygen + Argo	on		ND	0.500	- 1	
Carbon Dioxide	ND	0.500	1								

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 08/10/10 10-08-0756 N/A EPA TO-3M

Project: 105 5th St., Oakland, CA

Page 1 of 1

Troject. Too oth ot., Oakland,	<u>-</u>						1 6	ige i oi i
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVP-6-3		10-08-0756-1-A	08/09/10 10106	Air	GC 13	N/A	/08/10/10 13:28	100810L01
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	9200000	57000	10		ug/m3			
SVP-6-5		10-08-0756-2-A	08/09/10 10:17	- Air	GC 13	N/A	08/10/10 13:41	100810L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	8400000	57000	10		ug/m3			
SVP-3		10-08-0756-3-A	08/09/10 11:29	Air	GC 13	N/A	08/10/10	100810L01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>		•	
TPH as Gasoline	13000000	57000	10		ug/m3			
SVP-1		10-08-0756-4-A	08/09/10 10:45	Air	GC 13	NA ***	08/10/10 13.52	100810101
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	49000000	290000	50		ug/m3			
Method Blank		. 098-01-005-2:50	os WA	Air	. GC 13	NA .	08/(0/(0 08:45	100810101
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	5700	1		ug/m3	3		

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation:

08/10/10 10-08-0756 N/A

Method:

ASTM D-1946 (M)

Project: 105 5th St., Oakland, CA

Page 1 of 1

Troject. Too oth ot., Oakland	1, 0/1						1 6	ige i oi i
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
SVP'6-3'		:-10-08-0756-1-A	08/09/10 10:06	Air	GC 55	N/A	08/10/10 00:00	100810L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Helium	ND	0.0100	· 1		%v	•		
SVP-6-5'		10-08-0756-2-A	08/09/10 10:17	Alf	GC 55	N/A	08/10/10 :00:00	100810L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>		•	
Helium	ND	0.0100	1		%v			
SVP-3		10-08-0756-3-A	08/09/10 111:29	Air	GC 55	N/A	08/10/10 00:00	100810E01
Parameter	Result	RL	DF	<u>Qual</u>	<u>Units</u>			
Helium	ND	0.0100	1		%v			
SVP-1		10-08-0756-4-A	08/09/10 10:45	Air	GC 55	NA.	08/10/10	100810101
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	√ <u>Units</u>			
Helium	ND	0.0100	. 1		. %v			
Method Blank		099-12-872-40	N/A	Air	GC 55	N/A	08/10/10	100810101
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Helium	ND	0.0100	1		. %v			
		,						

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A

Date Received:

08/10/10

Emeryville, CA 94608-2008

Work Order No:

10-08-0756

Preparation:

N/A

Method:

EPA 8260B (M)

Units:

ug/m3

Project: 105 5th St., Oakland, CA

Page 1 of 2

Project. 100 Still St., Oakia	ind, OA					·				· age	7 01 2
Client Sample Number	· · · · · · · · · · · · · · · · · · ·			Sample umber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz	_	C Batch ID
SVP-6-3'			10-08-07	/58-1-A	08/09/10 10:06	Air	GC/MS HH	N/A	08/10 20/0	5	00810L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter		٠	Result	RL	DF	Qual
Benzene		1600	100		Xylenes (total)			14000	4300	100	
Toluene		1900	100		Naphthalene			ND	5200	100	
Ethylbenzene	8200	2200	100								
Surrogates:		<u>Control</u>	Qual		Surrogates:			REC (%)	Control	<u>Qu</u>	<u>al</u>
A A Day and Burkey		Limits		•	4.0.05-1-1			on	<u>Limits</u>		
1,4-Bromofluorobenzene		47-156		2	1,2-Dichloroeth	iane-d4		89	47-156		
Toluene-d8	01	47-156	las saus saudand		the same states are server	107. 10.00042.0000	Molecular and a substitute of the substitute of	7 - 1001533504526	argenterandons		(acroide agriculturali in
SVP-6-5'			10-08-0	756-2-A	08/09/10 10:17	Air	GC/MS HH	N/A i	08/10 20:8	/10 1 5	00810101
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene		1600	100		Xylenes (total)			4500	4300	100	
Toluene		1900	100		Naphthalene			ND	5200	100	
Ethylbenzene		2200	100								
Surrogates:		Control Limits	<u>Qual</u>		Surrogates:			REC (%)	Control Limits	Qu	<u>al</u>
1,4-Bromofluorobenzene	161	47-156		2	1,2-Dichloroeth	nane-d4		83	47-156		
Toluene-d8		47-156	- City Carrier	_						DITTO	
SVP-3		AMB SAC	10-08-0	756-3-A	08/09/10 11:29	Air	GC/MS HH	N/A	08/10 18:2	/10 4 3	00810L01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	<u>D</u> E	Qual
Benzene		8000	500		Xylenes (total)			ND	22000	500	
Toluene	ND	9400	500		Naphthalene			ND .	26000	500	
Ethylbenzene	44000	11000	500						•		
Surrogates:	REC (%)	Control Limits	Qual		Surrogates:			<u>REC (%)</u>	Control Limits	Qu	<u>al</u>
1,4-Bromofluorobenzene	128	47-156			1,2-Dichloroeth	nane-d4		95	47-156		
Toluene-d8	103	47-156			.,						
SVP-1			10-08-0	756-4-A	08/09/10 10:45	Air	GC/MS HH	NA.	08/10 19:		100810L01
Comment(s): -Reporting limit is eleva	ited due to hi	gh levels	of non-ta	rget hvdro	carbons.						,
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	<u>DF</u>	Qual
Benzene	ND	16000	1000		Xylenes (total)			ND	43000	1000	
Toluene	ND ·	19000	1000	•	Naphthalene			ND	52000	1000	
Ethylbenzene	ND	22000	1000					,			
Surrogates:	REC (%)	Control Limits	<u>Qual</u>		Surrogates:			REC (%)	Control Limits	Qu	<u>ıal</u>
1,4-Bromofluorobenzene	120	47-156			1.2-Dichloroetl	nane-d4		90	47-156		
Toluene-d8	103	47-156			i, a Diomoroeu	iano um			11 100		
TOMORIO-MO		., 100									

DF - Dilution Factor ,

Qual - Qualifiers

Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

08/10/10

Work Order No:

10-08-0756

Preparation:

N/A EPA 8260B (M)

Method:

Units:

ug/m3

Project: 105 5th St., Oakland, CA

Page 2 of 2

Client Sample Number	· ·		Ļ	ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
Method Blank			099-1	3-041-128	NA	Air	GC/MS HH	N/A 3	08/10 12:		100810L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Benzene	ND	16	1		Xylenes (total)			ND	43	1	
Toluene	ND	19	1		Naphthalene			ND	52	1	:
Ethylbenzene	ND	22	1 ·								
Surrogates:	<u>REC (%)</u>	Control Limits	Qu	ıal	<u>Surrogates:</u>			REC (%)	Control Limits	<u>C</u>	Qual
1,4-Bromofluorobenzene	104	47-156			1,2-Dichloroeth	nane-d4		108	47-156		
Toluene-d8	99	47-156									

Quality Control - Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 08/10/10 10-08-0756 N/A EPA TO-3M

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
10-08-0726-1	Aip	GC 13	N/A	08/10/10	100810D01
Parameter	Sample Conc	DUP Conc	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	23000	25000	7	0-20	•

Quality Control - LCS/LCS Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:
Work Order No:
Preparation:
Method:

N/A 10-08-0756 N/A ASTM D-1946

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number	
099-03-002-1;109	Air	GC 36	NA	08/10/10	100810L01	
<u>Parameter</u>	LCS %RE	C LCSD %	REC %RE	<u>C CL</u> RF	PD RPD CL	Qualifiers
Carbon Dioxide	92	92	80-	120 1	0-30	
Oxygen + Argon	88	- 88	80-	120 1	0-30	
Nitrogen	88	89	. 80-	120 1	0-30	

Quality Control - LCS/LCS Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:
Work Order No:
Preparation:
Method:

N/A 10-08-0756 N/A ASTM D-1946 (M)

Quality Control Sample ID	L/ carrement successions described securities	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batc Number	h Tarakanakan
099-12-872-40	Air	GC 55	N/A	08/10/10	100810L01	
Parameter	LCS %RE	C LCSD %F	REC %RE	C CL RPI	RPD CL	Qualifiers
Helium	100	97	80-	120 3	0-30	
Hydrogen	104	102	80-	120 2	0-30	

Quality Control - LCS/LCS Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 10-08-0756 N/A EPA 8260B (M)

Quality Control Sample ID	Matrix	Instrument	Date Prepared		oate alyzed	LCS/LCSD Bat Number	ch
099-13-041-128	Air	SO/MS/HH	N/A	08/	10/10	100810L01	
Parameter	LCS %REG	C LCSD %R	EC %	REC CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	99	97		60-156	1	0-40	
Toluene	105	100		56-146	4	0-43	
Ethylbenzene	111	107		52-154	4	0-38	
p/m-Xylene	115	110		42-156	4	0-41	
o-Xylene	115	110		52-148	4	0-38	

Glossary of Terms and Qualifiers

Work Order Number: 10-08-0756

	<u> </u>
Qualifier *	<u>Definition</u> See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
E	Concentration exceeds the calibration range.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

LAB (LOCATION) CALSCIENCE ()				Q.		S	hell	Oi	il P	Proc	duc	ts	Ch	ain	Of	Cu	sto	dy	Red	cor	d						
SPL ()			se Chec			Box:	Ϋ.	Prin	it Bil	ll To (Conte	ct N	ame:).				INC	DENT	# (E	NV.S	ERVI	CESI	Пснес	K IF NO #N	CIDENT # APPLIES	\neg
XENCO ()	ENV.	SERVICES		MOTIVA RET	TAIL	☐ SHELL	L RETAIL	NA.	a vii r	Katz	· ·	Per	ur	- S	JAI	16E	u	a	80	19	5	7 9	5 7	1	8/0	î/(6	7
TEST AMERICA ()	□моп	IVA SD&CM		CONSULTAN	т	LUBES	<u></u>	۳	1,										- 1	SAI		٠٠٠		- DATE	- u	11-	\neg
☑ OTHER ()	☐ SHEU	L PIPELINE		OTHER				1 11			7	. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	J #		- "	1			. Te	- 19 7			+-	PAGI	≅ - 1_	a	_
SAMPLING COMPANY				LOG CODE				SITE	ADDRI	ESS: Stre	el and Ci	lty				1		itale	5 3	7	BAL ON	0		<u> </u>			_
Conestoga-Rovers & Associates				CRAW			•	10	25	ESS: Sire	th :	57	, , (OA	KC	AΛ	10	^{-}C	Ą	7	0	60	1011	02	116		1.
PROJECT CONTACT PRESCRIPTOR FOR PROPERTY OF PROPERTY O	5900 i	Hours	55.00	A Luni	RY VI	4.0	28	EDF DI	ELVERA	ABLE TO (N	lame, Comp	pany, Olfo	o (Acase	0	P	HONE NO		-		E-MAI					CONSIL	TANT PROJECT NO	\exists
PROJECT CONTACT (Hardcopyer POF Report to)		OCA A	160	^ _		94	608	Bren	nda C	arter, (CRA, E	mery	ville			10-420	-3343			shei	ledf@	crawor	ld.com		29	0472-9	15+10
TELEPHONE F3/10420-91	70	EMAL	+ WOR	<u> </u>		7		10		_,,,,				_									LA	IBUSE ON	LY.	10472-9 0756	
TURNAROUND TIME (CALENDAR DAYS):	<u> </u>	PSCHAI	varoc	RAWO	eio.c	om		1	V)	ia	e u	PSE	-66	<u>~</u>		<u> </u>	_						_ 1	90	71	0756	
STANDARD (14 DAY) 5 DAYS 3 DAYS		2 DAYS	□ 24 HO	URS	☐ RES		N WEEKE	1	-	•	4	Į					REQU	ESTE	D AN	LYSI	s						
☐ LA - RWQCB REPORT FORMAT ☐ UST AGENCY:											13			й,	\neg	(8260B)				T			. T	71		TURE ON RECEI	
SPECIAL INSTRUCTIONS OR NOTES:				CONTRACT				<u>a</u>	15M)		म् इ			<u> </u>		(82						ine b		'	ENA!	C ²	[]
Please provide receipt verification. Report				REIMBURS		TE APPLIES		(8260	8				3260	TB,						215		oxide that					
results in eggt M3/M3,				OT NEEDED		l Incres	1.7	aple	table		2 6	30B)	BA (HE E	<u>g</u>		+			βŢ			. 8	-			
MUST BE PRALYZED W	MIHIN	724	PRE RECEI	- VERIFICA	ALION REQ	UESTED		Purgeable (8260B)	TPH-DRO, Extractable (8015M)	اي	BTEX (5260B), NAPHTHAL	BTEX + MTBE (8260B)	=	BTEX + 5 OXYs (MTBE, TBA, DIPE, TAME, ETBE) 8260B	Full VOC list (8260B)	Single Compound:	ĝ	- ;	ğ ğ	sopropyl alcohol by T0-15		Oxygen and Carbon Dloxide ASTM.D1946-90 BTEX, Oxygenates, Napthalene	ASTM1946-90				
	SAMPL				RESERVATI]	ြ ဂို	Ö, E	015M	Z 092	MTB	M M	S OX	is	ď	(8260	(g)	929	alcc	ş	and C	N M				
Field Sample Identification	DATE	TIME	MATRIX			-	NO. OF CONT.	н-аво,	H	TPHg (8015M)	6 X	EX +	+	ME, E	No.	gle C	1,2-DCA (8260B)	EDB (8260B)	Alethanol (8015M)	ropy	TPHg by T0-3	M. D. S.	T0-15 Helium A		Contain	er PID Readings	
	8/1	406- 14	14.0	HCL HNOS	H2SO4 N	ONE OTHER	R	五	르	E 6	2 E	B	<u> </u>	F Z	2	uls	5,			los ios	Ē	oxo Balana	일 분	┷	or Lab	oratory Notes	_
2 508-68-5	99/10 K		k ok				[×	_	- !	^/_	1			_ -	_		\perp		1							
3 3 3		24.46	 		1		<u> </u>	7			XX																
3 SUP-3		129						Y		Ķ	(X																
4 509-1	4 11	045	₩ _				1	14		 >	$\langle \times \rangle$																1
	•	-						П		3	7				7		$\neg \uparrow$	\top		1			+	++			
4						1			-	197		1-1			-	-			+	+	Н	\dashv	+	++			
						+-			\dashv	70		-		-+	-	-+	-+	+	+	+	\vdash	- -	+	┼-			4
					+ +	+	 	\vdash	\dashv	→	+-	+	+		+	\dashv	-	-	4-	-	\vdash	- -	+			· .	_
				_						<u>c</u>	7																
	·		_							13	٤												T				
大型 松下 18									\dashv	454	a		\dashv	\dashv	\top		\dashv	+	+	+		+	+-	++			\dashv
Refinquished by: (Signatuse)		Re	ceived by: (Sign	nature)	 														Da					Time;			_
gutte Sin						_لا (、				1	ر ۱		4							/ C	1/2		1	2 7		
offinitioned by: (Signature)	,-9-11	Re	ceived by: (Sign	nature)			7	$\widehat{}$	_					_					Dai	<u> </u>	7	1/	<u>ノ</u>	Time:	<u> </u>	<u> </u>	_
(21)	125	7					L	A				(co	سنا								10	1 10	1	1	<i>1</i> 2 ·	<u> </u>	
elinquisties by: (Signature)		Rec	ceived by: (Sign	alure)	- Pr	er/		_/\	<u>-</u>	· 		4							Dal	8/	10	70			10:0	ル 	_
(1														J.al	e.				Time:			1
		L_										_															

05/2/06 Revision

O956)

〈WebShip〉>>>>

800-322-5555 www.gso.com

Ship From: ALAN KEMP CAL SCIENCE- CONCORD 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

Ship To: SAMPLE RECEIVING CEL 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00

Reference: CRA, STANTEC

Delivery Instructions:

Signature Type:

ORC

GARDEN GROVE

D92843A

83763113

Print Date : 08/09/10 15:46 PM

NPS

Package 1 of 1

Send Label To Printer

☑ Print All

Edit Shipment

Finish

LABEL INSTRUCTIONS:

Do not copy or reprint this label for additional shipments - each package must have a unique barcode.

STEP 1 - Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer.

STEP 2 - Fold this page in half.

STEP 3 - Securely attach this label to your package, do not cover the barcode.

STEP 4 - Request an on-call pickup for your package, if you do not have scheduled daily pickup service or Drop-off your package at the nearest GSO drop box. Locate nearest GSO dropbox locations using this link.

ADDITIONAL OPTIONS:

Send Label Vla Email

Create Return Label

TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all the service terms and conditions described in this section. Our liability for loss or damage to any package is limited to your actual damages or \$100 whichever is less, unless you pay for and declare a higher authorized value. If you declare a higher value and pay the additional charge, our liability will be the lesser of your declared value or the actual value of your loss or damage. In any event, we will not be liable for any damage, whether direct, incidental, special or consequential, in excess of the declared value of a shipment whether or not we had knowledge that such damage might be incurred including but not limited to loss of income or profit. We will not be liable for your acts or omissions, including but not limited to improper or insufficient packaging, securing, marking or addressing. Also, we will not be liable if you or the recipient violates any of the terms of our agreement. We will not be liable for loss, damage or delay caused by events we cannot control, including but not limited to acts of God, perils of the air, weather conditions, act of public enemies, war, strikes, or civil commotion. The highest declared value for our GSO Priority Letter or GSO Priority Package is \$500. For other shipments the highest declared value is \$10,000 unless your package contains items of "extraordinary value", in which case the highest declared value we allow is \$500. Items of "extraordinary value" include, but or not limited to, artwork, jewelry, furs, preclous metals, tickets, negotiable instruments and other items with intrinsic value.

WORK ORDER #: 10-08-0 7 5 6

SAMPLE RECEIPT FORM

*Bo*X Cooler ∕ of /

CLIENT: <u>GA</u>	DATE:	08/10	/ 10
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C - 6.0 °C, not frozen)		\
Temperature°C + 0.5°C (CF) = °C	Blank	☐ Sample	
☐ Sample(s) outside temperature criteria (PM/APM contacted by:).	•	•	
☐ Sample(s) outside temperature criteria but received on ice/chilled on same da	v of sampli	na.	
☐ Received at ambient temperature, placed on ice for transport by Cou	•		
Ambient Temperature: ☑ Air ☐ Filter ☐ Metals Only ☐ PCBs O		Initial:	RS
CUSTODY SEALS INTACT:			
□ Cooler □ BOX □ No (Not Intact) □ Not Present	□ N/A	Initial:	P
□ Sample □ □ No (Not Intact) ☑ Not Present		Initial:	<u>Ps</u>
SAMPLE CONDITION:	⁄es	No	N/A
Chain-Of-Custody (COC) document(s) received with samples			
COC document(s) received complete			
([2~4]) Collection date/time, matrix, and/or # of containers logged in based on sample labels.		Ų.	<u>.</u>
☐ No analysis requested. ☐ Not relinquished. ☐ No date/time relinquished.			
Sampler's name indicated on COC			П
Sample container label(s) consistent with COC			П
Sample container(s) intact and good condition	•	П	
Proper containers and sufficient volume for analyses requested	•		
Analyses received within holding time	/		
pH / Residual Chlorine / Dissolved Sulfide received within 24 hours			
Proper preservation noted on COC or sample container			<u> </u>
☐ Unpreserved vials received for Volatiles analysis		<u></u>	
Volatile analysis container(s) free of headspace			
Tedlar bag(s) free of condensation			
CONTAINER TYPE:			
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores	® □Terra	Cores [®] □	
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp	□1AGB [⊒1AGB na₂ □	1AGBs
		TEAADD TEA	0DD==
□500AGB □500AGJ □500AGJs □250AGB □250CGBs		1200bR 1720	UPBNa
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □250PB, □250PBn □125PB □125PBznna □100PJ □100PJna₂ □			UPBNA
			·

APPENDIX D

SOIL VAPOR PROBE INSTALLATION AND SOIL VAPOR SAMPLING WORK PLAN

SOIL VAPOR PROBE INSTALLATION AND SOIL VAPOR SAMPLING WORK PLAN

1.0 SOIL VAPOR PROBE INSTALLATION

CRA proposes to install and sample three near sub-slab soil vapor probes (SVP-7 through SVP-9) adjacent to the current station kiosk building as shown on Figure 2. Specific tasks are described below.

1.1 PERMITS

CRA will obtain boring permits to install the soil vapor probes from the Alameda County Public Works Agency (ACPWA).

1.2 HEALTH AND SAFETY PLAN (HASP)

CRA will prepare a HASP to protect site workers. The plan will be kept on site during field activities and will be reviewed and signed by each site worker.

1.3 UTILITY CLEARANCE

CRA will mark the proposed probe locations, and the locations will be cleared by Underground Service Alert and a private utility locator service prior to drilling.

1.4 PROBE INSTALLATION

A rotary hammer drill will be used to drill a "shallow" (approximately 1-inch deep) outer borehole (approximately 7/8-inch diameter) that partially penetrates the sidewalk slab. Cuttings will be removed using a towel moistened with distilled water or a portable vacuum cleaner.

The rotary hammer drill will then be used to drill a smaller diameter inner borehole, within the center of the outer borehole, approximately 3/8-inch diameter through the sidewalk material and approximately 3 inches into the base material to create an open cavity. The outer borehole will be cleaned a second time with a moistened towel or a portable vacuum cleaner.

Stainless steel tubing will be cut to a length that allows the probe to float within the sidewalk thickness to avoid obstruction of the probe with base material. The tubing will be approximately 1/4-inch diameter. Where necessary, the compression fittings will be stainless steel (approximately 1/4-inch outside diameter and 1/8-inch National Pipe Thread) Swagelok® female thread connectors. The probes will be constructed prior to drilling to minimize exposure time, or venting, of the base material through the open borehole.

Each near sub-slab soil vapor probe will be placed in the borehole so that the top of the probe is flush with the top of the sidewalk. The top of the probe will have a recessed stainless steel plug. A quick-drying, Portland cement slurry will be injected or pushed into the annular space between the probe and the outer borehole. The cement will be allowed to dry for at least 24 hours prior to sampling.

The scope of work described in this work plan will be performed under the supervision of a California Professional Geologist or Engineer.

2.0 SOIL VAPOR PROBE SAMPLING

At least 2 weeks following the soil vapor probe installation, CRA will sample the three proposed near sub-slab probes (SVP-7 through SVP-9) and three existing soil vapor probes (SVP-1, SVP-3, and SVP-6).

2.1 PROBE SAMPLING

Sampling is affected by rain. CRA's standard procedure is to allow 2 days or more after a heavy rain event prior to collecting soil vapor samples. CRA will collect the soil vapor samples using a vacuum pump and Tedlar® bags. Prior to sampling, CRA will purge at least three tubing volumes of air from the probes with a vacuum pump. Then CRA will attach a sealed "lung sampler" containing a 1-liter Tedlar® bag to the probe and attach the vacuum pump to the box. The vacuum pump will lower the pressure in the "lung sampler" and draw air from the probe into the Tedlar® bag. To avoid breakage, CRA will fill the bags no more than two-thirds full. Each sample will be labeled, documented on a chain-of-custody, and placed in a protective box at room temperature for transport to a State of California-certified laboratory for analysis within 72 hours.

2.2 LEAK TESTING

To check the system for leaks, CRA will cover the soil gas probe surface casing and sampling equipment with a containment unit (or shroud). Prior to soil vapor probe purging, CRA will introduce helium into the containment unit to obtain a minimum 50 percent helium content level. CRA will confirm the helium content within the containment unit using a helium meter and will record the helium meter readings in our field notes. Helium will continue to be introduced to the containment unit during soil vapor probe purging and sampling.

All samples will be analyzed in a laboratory for helium. In the event that the soil vapor samples contain a helium content of greater than 10 percent of the source concentration (i.e., 10 percent of the helium content measured within the containment unit), the soil vapor sample will be considered invalid.

2.3 CHEMICAL ANALYSIS

Soil vapor samples will be analyzed for total petroleum hydrocarbons as gasoline, benzene, toluene, ethylbenzene, xylenes and naphthalene by EPA Method 8260B and for oxygen plus argon, carbon dioxide, methane, and helium by ASTM D Method 1946 (M).

3.0 REPORT PREPARATION

Following receipt of the analytical results from the laboratory, CRA will prepare a written report, which will include field procedures, tabulated analytical data, boring logs, and analytical laboratory reports.

4.0 SCHEDULE

CRA will implement the near sub-slab soil vapor probe installation activities upon approval of this work plan by the Alameda County Environmental Health and receipt of a drilling permit from ACPWA.