

September 18, 1997

Tosco Marketing Company Environmental Compliance Department 2000 Crow Canyon Place, Suite 400 San Ramon, California 94583

Attention: Ms. Tina R. Berry

RE: Data Report

Unocal Service Station #7176 7850 Amador Valley Boulevard

Dublin, California

Dear Ms. Berry:

In reference to our report (MPDS-UN7176-08), enclosed find a revised report (MPDS-UN7176-08R) dated September 18, 1997, for the above referenced site. Please discard our previous report dated August 18, 1997. The ground water elevations in wells U-2 and U-3 have been corrected, and the ground water flow direction shown on Figure 1 has been revised accordingly.

Should you have any questions, please do not hesitate to contact me at (510) 602-5120.

Sincerely,

MPDS Services, Inc.

Haig (Gary) Tejirian Senior Staff Geologist

HT:jfc

Enclosure

cc: Ms. Eva Chu, Alameda County Health Care Services

Mr. Keith Romstad, ERI

MPDS-UN7176-08R September 18, 1997

Tosco Marketing Company Environmental Compliance Department 2000 Crow Canyon Place, Suite 400 San Ramon, California 94583

Attention: Ms. Tina R. Berry

RE: Quarterly Data Report

Unocal Service Station #7176 7850 Amador Valley Boulevard

Dublin, California

Dear Ms. Berry:

This data report presents the results of the most recent quarter of monitoring and sampling of the monitoring wells at the referenced site by MPDS Services, Inc.

RECENT FIELD ACTIVITIES

The monitoring wells that were monitored and sampled during this quarter are indicated in Table 1. Oxygen Release Compound (ORC®) filter socks were present in monitoring wells U-1, U-2, and U-3. Prior to sampling, the wells were checked for depth to water and the presence of free product or sheen. The monitoring data and the ground water elevations are summarized in Table 1. The ground water flow direction during the most recent quarter is shown on the attached Figure 1.

Ground water samples were collected on July 17, 1997. Dissolved oxygen concentrations were measured and are presented in Table 3. The samples were collected using a clean Teflon bailer. The samples were decanted into clean VOA vials and/or one-liter amber bottles, as appropriate, which were then sealed with Teflon-lined screw caps, labeled, and stored in a cooler, on ice, until delivery to a state-certified laboratory.

ANALYTICAL RESULTS

The ground water samples were analyzed at Sequoia Analytical Laboratory and were accompanied by properly executed Chain of Custody documentation. The analytical results of the ground water samples collected to date are summarized in Table 2. The concentrations of Total Petroleum Hydrocarbons (TPH) as gasoline, TPH as diesel, and benzene detected in the ground water samples collected this quarter are shown on the attached Figure 2. Copies of the laboratory analytical results and the Chain of Custody documentation are attached to this report.

LIMITATIONS

Environmental changes, either naturally-occurring or artificially-induced, may cause changes in ground water levels and flow paths, thereby changing the extent and concentration of any contaminants.

DISTRIBUTION

A copy of this report should be sent to Ms. Eva Chu of the Alameda County Health Care Services Agency.

If you have any questions regarding this report, please do not hesitate to call Mr. Nubar Srabian at (510) 602-5120.

Sincerely,

MPDS Services, Inc.

Haig (Gary) Tejirian

Senior Staff Geologist

Hagop Kevork, P.E. Senior Staff Engineer

License No. C 55734

Exp. Date December 31, 2000

Attachments: Tables 1, 2 & 3

Location Map Figures 1 & 2

Laboratory Analyses

Chain of Custody documentation

cc: Mr. Kieth Romstad, ERI

Table 1
Summary of Monitoring Data

	Ground Water Elevation	Depth to Water	Total Well Depth	Product Thickness		Water Purged
Well#	(feet)	(feet)*	(feet)+	(feet)	Sheen	(gallons)
		(Monitored a	and Sampled on .	July 17, 1997)		
U-1	340.32	15.30	27.95	0		0
U-2	340.63	15.96	26.51	0		0
U-3	340.59	17.54	28.58	0		0
		(Monitored	and Sampled on	April 8, 1997)		
U-1	342.16	13.46	27.98	0		0
U-2	342.52	14.07	26.54	0		0
U-3	342.40	15.73	28.88	0		0
		(Monitored an	d Sampled on Ja	muary 27, 1997)		
U-1	343.42	12.20	28.00	0		0
U-2	343.68	12.91	26.56	0		0
U-3	343.72	14.41	28.90	0		0
		(Monitored an	nd Sampled on O	ctober 30, 1996)		
U-1	339.77	15.85	27.98	0		0
U-2	339.77	16.82	26.55	0	**	0
U-3	339.89	18.24	28.89	0		0

	Well Casing
*******	Elevation
Well #	(feet)*
U-1	355.62
U-2	356.59
U-3	358.13

- The depth to water level and total well depth measurements were taken from the top of the well casings.
- * The elevations of the top of the well casings are relative to Mean Sea Level (MSL), per the Benchmark AM-STW1977 located at the easterly return at the most easterly corner of intersection of Amador Valley Blvd. and Starward Street (Elevation = 344.17 feet MSL).
- -- Sheen determination was not performed.

Table 2
Summary of Laboratory Analyses
Water

		TPH as	TPH as			Ethyl-		
Date	Well#	Diesel	Gasoline	Benzene	Toluene	Etnyi- Benzene	Xylenes	MTBE
		4.5-		_				
7/17/97	U-1	460 ♦ ♦	2,300	30	4.5	140	94	190
	U-2	1,300♦♦	6,200	17	22	410	ND	130
	U-3	ND	ND	ND	ND	ND	ND	ND
4/8/97	U-1	1,300♦	2,800	50	ND	220	140	ND
	U-2	2,000♦	4,300	35	ND	400	16	ND
	U-3	ND	ND	ND	ND	ND	ND	ND
1/27/97	U-1	2,300♦	4,600	98	ND	360	290	150
	U-2	660♦	1,600	14	ND	130	7.0	100
	U-3	ND	ND	ND	ND	ND	ND	ND
10/30/96	U-1	560♦	2,200	67	19	140	150	360
10/30/90	U-2	1,800♦	7,700	67	35	1,000	54	260
	U-3	1,800 √ ND	7,700	ND	ND	1,000 ND	ND	ND
	0-5	ND		ND	ND	ND	ND	ND
7/10/96	U-1	2,200♦	2,600	81	4.4	210	230	510
	U-2	2,300♦	5,600	59	15	610	42	250
	U-3	ND	ND	ND	ND	ND	ND	ND
4/11/96	U-1#	630◆	3,200	110	ND	180	290	790
	U-2 ♦	1,900♦	7,700	130	27	1,100	110	340
	U-3	ND	68★	ND	ND	ND	ND	ND
1/11/96‡	U-1	8,200♦	8,300	690	11	680	1,500	††
2722324	U-2	8,600♦	10,000	210	55	1,400	240	††
	U-3	260 ♦ ♦	230	0.62	0.91	0.97	1.9	
10/10/05	77 1	4 200 4	22 000	1 400	N.D.	1 400	2 100	
10/12/95	U-1	4,200 ♦	33,000	1,400	ND	1,400	3,100	†
	U-2	3,600♦	24,000	310	60	1,900	190	†
	U-3	470♦♦	560	ND	0.87	0.7	1.1	
7/8/95	U-1	9,400*	39,000	1,500	19	1,600	5,200	
	U-2	4,700*	17,000	430	ND	2,200	590	
	U-3	710*	1,100**	0.57	2.1	1.7	2.4	

Table 2 Summary of Laboratory Analyses Water

- ♣ On April 11, 1996, all PNA compounds were non-detectable.
- ‡ On January 11, 1996, PNA compound naphthalene was detected in well U-1 at a concentration of 320 μg/L, and at a concentration of 310 μg/L in well U-2. All other PNA compounds were non-detectable in both wells.
- † Sequoia Analytical Laboratory has potentially identified the presence of MTBE at reportable levels in the ground water sample collected from this well.
- †† Sequoia Analytical Laboratory has identified the presence of MTBE at a level above or equal to the taste and odor threshold of 40 μ g/L in the sample collected from this well.
- Unidentified Hydrocarbon C9-C26
- ** Gas and Unidentified Hydrocarbons > C12
- ★ Sequoia Analytical Laboratory reported that the hydrocarbons detected did not apepar to be gasoline.
- Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a diesel and non-diesel mixture.
- Sequoia Analytical Laboratory reported that the hydrocarbons detected did not appear to be diesel.

PNA = Polynuclear aromatic hydrocarbons (EPA method 8100).

MTBE = methyl tert butyl ether.

ND = Non-detectable.

Results are in micrograms per liter (µg/L), unless otherwise indicated.

Note:

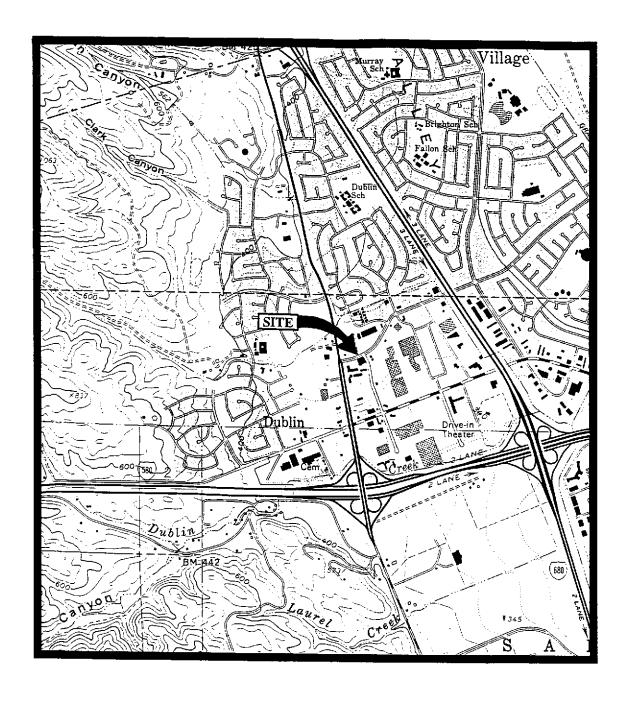
The detection limit for results reported as ND by Sequoia Analytical Laboratory is equal to the stated detection limit times the dilution factor indicated on the laboratory analytical sheets.

Prior to August 1, 1995, the total purgeable petroleum hydrocarbon (TPH as gasoline) quantification range used by Sequoia Analytical Laboratory was C4 - C12. Since August 1, 1995, the quantification range used by Sequoia Analytical Laboratory is C6 - C12.

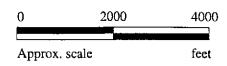
Laboratory analyses data prior to October 12, 1995, were provided by Enviros, Inc.

Table 3
Summary of Monitoring Data

		Dissolved Oxyger	a Concentrations
Date	Well#	Before Purging	After Purging
7/17/97★	U-1	2.00	
	U-2	2.08	
	U-3	2.65	
4/8/97★	U-1	2.09	
	U-2	1.69	
	U-3	3.73	
1/27/97★	U-1	1.34	
	U-2	1.29	
	U-3	2.61	
10/30/96★	U-1	1.41	
	U-2	1.42	
	U-3	2.18	
7/10/96 ★	U-1	1.22	
	U-2	1.01	
	U-3	3.44	
4/11/96	U-1	3.77	3.78
	U-2	3.32	3.41
	U-3	5.16	4.96
1/11/96	U-1		3.41
	U-2		3.99
	U-3		5.05
10/2/95	CC1*	2.83	

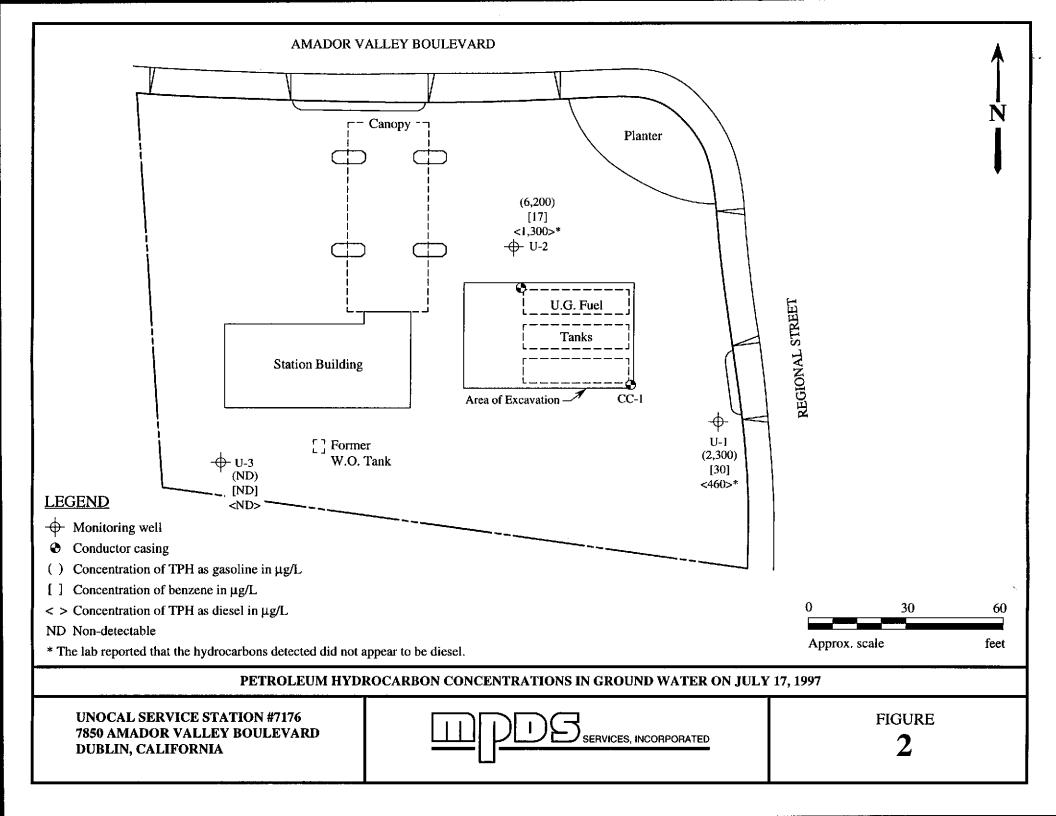

Results are in milligrams per liter (mg/L).

Note: Measurements were taken using a LaMotte DO4000 dissolved oxygen meter.


^{*} For the location of sample point CC1, see Figure 1.

[★] The wells were not purged on this date.

⁻⁻ Measurement was not taken.


Base modified from 7.5 minute U.S.G.S. Dublin Quadrangle (photorevised 1980)

UNOCAL SERVICE STATION #7176 7850 AMADOR VALLEY BOULEVARD DUBLIN, CALIFORNIA LOCATION MAP

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 300 Concord, CA 94520

Client Project ID: Matrix Descript: Tosco #7176, 7850 Amador Vly, Dublin Water Sampled: Received: Jul 17, 1997 Jul 17, 1997

Attention: Jarrel Crider

Analysis Method: First Sample #:

EPA 5030/8015 Mod./8020 707-0921 Reported:

Jul 31, 1997

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Sample Number	Sample Description	Purgeable Hydrocarbons μg/L	Benzene μg/L	Toluene μg/L	Ethyl Benzene μg/L	Total Xylenes $\mu \mathrm{g}/\mathrm{L}$
707-0921	U-1	2,300	30	4.5	140	94
707-0922	U-2	6,200	17	22	410	ND
707-0923	U-3	ND	ND	ND	ND	ND

Detection Limits:	50	0.50	0.50	0.50	0.50	

Total Purgeable Petroleum Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as ND were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager

Page 1 of 2

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider

Client Project ID: Matrix Descript: Analysis Method:

First Sample #:

Tosco #7176, 7850 Amador VIy, Dublin Water

EPA 5030/8015 Mod./8020 707-0921 Sampled: Received: Jul 17, 1997 Jul 17, 1997

Reported: Jul 31, 1997

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Sample Number	Sample Description	Chromatogram Pattern	DL Mult. Factor	Date Analyzed	Instrument ID	Surrogate Recovery, % QC Limits: 70-130
707-0921	U-1	Gasoline	5.0	7/25/97	HP-2	89
707-0922	U-2	Gasoline	10	7/25/97	HP-2	137
707-0923	U-3		1.0	7/24/97	HP-9	90

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 300 Concord, CA 94520

Attention: Jarrel Crider

Client Project ID:

Tosco #7176, 7850 Amador Vly, Dublin

Sample Descript: Water

Analysis for: First Sample #:

MTBE (Modified EPA 8020)

707-0921

Sampled: Received: Jul 17, 1997 Jul 17, 1997

Analyzed: Jul 24-25, 1997 Reported: Jul 31, 1997

LABORATORY ANALYSIS FOR:

MTBE (Modified EPA 8020)

Sample Number	Sample Description	Detection Limit $\mu \mathrm{g/L}$	Sample Result μg/L
707-0921	U-1	13	190
707-0922	U-2	25	130
707-0923	U-3	5.0	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) ,364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 300

Concord, CA 94520 Attention: Jarrel Crider Client Project ID:

Sample Matrix: Water

Tosco #7176, 7850 Amador Vly, Dublin

Analysis Method: EPA 3510/8015 Mod. First Sample #: 707-0921

Sampled: Jul 17, 1997

Received: Jul 17, 1997 Reported: Jul 31, 1997

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

Analyte	Reporting Limit μg/L	Sample i.D. 707-0921 U-1 *	Sample I.D. 707-0922 U-2 *	Sample I.D. 707-0923 U-3	
Extractable Hydrocarbons	50	460	1,300	N.D.	
Chromatogram Pa	ttern:	Unidentified Hydrocarbons <c15>C24</c15>	Unidentified Hydrocarbons <c15>C24</c15>		

Quality Control Data

Report Limit Multiplication Factor:	1.0	1.0	1.0
Date Extracted:	7/24/97	7/24/97	7/24/97
Date Analyzed:	7/25/97	7/25/97	7/25/97
Instrument Identification:	НР-ЗВ	HP-3B	НР-3В

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager

Please Note:

* This sample does not appear to contain diesel. "Unidentified Hydrocarbons < C15" are probably gasoline: "> C24 refers to unidentified peaks in the total oil and grease range.

7070921.MPD <4>

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 300 Concord, CA 94520

Attention: Jarrel Crider

Client Project ID:

Matrix:

Tosco #7176, 7850 Amador Vly, Dublin Liquid

QC Sample Group: 7070921-923

Reported:

Jul 31, 1997

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	Xylenes	
			Benzene	•	
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	K. Nill	K. Nill	K. Nill	K. Nill	
MS/MSD					
Batch#:	7070938	7070938	7070938	7070938	
Date Prepared:	7/25/97	7/25/97	7/25/97	7/25/97	
Date Analyzed:	7/25/97	7/25/97	7/25/97	7/25/97	
nstrument I.D.#:	HP-2	HP-2	HP-2	HP-2	
Conc. Spiked:	20 μg/L	20 μg/L	20 μg/L	$60\mu\mathrm{g/L}$	
Matrix Spike					
% Recovery:	85	105	95	102	
Matrix Spike					
Duplicate %					
Recovery:	80	95	95	92	
Relative %					
Difference:	6.1	10	0.0	10	

LCS Batch#:	2LCS072597	2LC\$072597	2LCS072597	2LCS072597
Date Prepared:	7/25/97	7/25/97	7/25/97	7/25/97
Date Analyzed:	7/25/97	7/25/97	7/25/97	7/25/97
Instrument I.D.#:	HP-2	HP-2	HP-2	HP-2
LCS %				
Recovery:	85	100	95	97
% Recovery	-			
Control Limits:	60-140	60-140	60-140	60-140

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 300

Concord, CA 94520 Attention: Jarrel Crider Client Project ID:

Tosco #7176, 7850 Amador Vly, Dublin Matrix: Liquid

QC Sample Group: 7070921-923

Reported:

Jul 31, 1997

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	Xylenes	Diesel	
			Benzene			
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	EPA 8015	
Analyst:	K. Nill	K. Nill	K. Nili	K. Nill	K. Grubb	
MS/MSD						
Batch#:	7070888	7070888	7070888	7070888	BLK072497	
Date Prepared:	7/24/97	7/24/97	7/24/97	7/24/97	7/24/97	
Date Analyzed:	7/24/97	7/24/97	7/24/97	7/24/97	7/29/97	
nstrument l.D.#:	HP-9	HP-9	HP-9	.,2.,0, HP-9	HP-3A	
Conc. Spiked:	20 μg/L	20 μg/L	20 μg/L	60 μg/L	300 μg/L	
Matrix Spike						
% Recovery:	115	120	120	118	63	
Matrix Spike Duplicate %						
Recovery:	115	120	120	118	63	
Relative %						
Difference:	0.0	0.0	0.0	0.0	0.0	

LCS Batch#:	9LCS072497	9LCS072497	9LCS072497	9LCS072497	LCS072497	
Date Prepared: Date Analyzed: Instrument I.D.#:	7/24/97 7/24/97 HP-9	7/24/97 7/24/97 HP-9	7/24/97 7/24/97 HP-9	7/24/97 7/24/97 HP-9	7/24/97 7/29/97 HP-3A	
LCS % Recovery:	110	115	115	118	. 40	
% Recovery Control Limits:	60-140	60-140	60-140	60-140	60-140	

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

M P D S Services, Inc.

2401 Stanwell Drive, Suite 400, Concord, CA 94520 Tel: (510) 602-5120 Fax: (510) 689-1918

CHAIN OF CUSTODY

9707269

STEVE BALIAN			TOSCO S/S # 7/76 CITY: DUBLIN				ANALYSES REQUESTED							TURN AROUND TIME:		
		ADDRESS: 7850 AMADOR VALLEY 8			1-6/ EX	TPH-D	H-D TBE	0/0	\cdot				REGULAR			
SAMPLE ID NO.	DATE	TIME	WATER	GRAB	сомр	NO. OF CONT.	SAMPLING LOCATION	TPH- BTE	<u> </u>	MTB.	8	-				REMARKS
U- 1	7-17-97	11:05	X	X		3	WELL	X	X	X	7	9703	:1			MTBE 5_PPS
U- 2	"	10:35	X	X		3	11	X	X	X		703	 			5_1998
U- 3	//	10:10	X	X		3	11	X	X	<i>X</i> _	r	7070	923			
																TPH-D
							,				ļ. 					fILTER WITH SILICAGE (
																SILICAGE (
									,							
RELINQUISHED BY: DATE/II 12: STEVE BALIAN 7-17-			10				THE FOLLOWING MUST BE COMPLETED BY THE LABORATORY ACCEPTING SAMPLES FOR ANALYSES 1. HAVE ALL SAMPLES RECEIVED FOR ANALYSIS BEEN STORED ON ICE? 2. WILL SAMPLES REMAIN REFRIGERATED UNTIL ANALYZED?									
(SIGNATURE)			(SIGNATURE)			3. DID ANY SAMPLES RECEIVED FOR ANALYSIS HAVE HEAD SPACE?							N			
(SIGNATURE)				(SIGNATURE)			4. WERE SAMPLES IN APPROPRIATE CONTAINERS AND PROPERLY PACKAGED?							r .		
(SIGNATURE)				(SIGNATURE)						/					7 DATE: 7/17/47	
(SIGNATURE)		(SIGNA	TURE)				SIGNAT	UKE:	New York	n e vi-	<u> </u>	1111.E: <u>-1</u>	 	7 DATE: 7/1.7/		