

February 22, 2000

REPORT
of
ADDITIONAL WELL INSTALLATION
AND
QUARTERLY GROUNDWATER SAMPLING
a t
The Lim Family Property
250 8th Street
Oakland, California

PROTECTION 00 FEB 24 PH 3: 01 Submitted by:
AQUA SCIENCE ENGINEERS, INC.
208 West El Pintado Road
Danville, CA 94526
(925) 820-9391

TABLE OF CONTENTS

SEC	CTION	<u>PAGE</u>
1.0	INTRODUCTION	1
2.0	SITE HISTORY	1
3.0	SCOPE OF WORK	2
4.0	DRILLING SOIL BORINGS AND COLLECTING SAMPLES	3
	4.1 Drilling and Collection of Soil Samples4.2 Site Specific Geology	3 4
5.0	ANALYTICAL RESULTS FOR SOIL	4
6.0	MONITORING WELL CONSTRUCTION AND DEVELOPMENT	4
	6.1 Monitoring Well Construction6.2 Monitoring Well Development	4 5
7.0	QUARTERLY MONITORING WELL SAMPLING	5
8.0	GROUNDWATER ELEVATIONS	5
9.0	ANALYTICAL RESULTS FOR GROUNDWATER	6
10.0	CONCLUSIONS	6
11.0	RECOMMENDATIONS	7
12 () REPORT LIMITATIONS	7

LIST OF TABLES

TABLE ONE ANALYTICAL RESULTS FOR SOIL

TABLE TWO GROUNDWATER ELEVATION DATA

TABLE THREE ANALYTICAL RESULTS FOR PETROLEUM HYDROCARBON

CONCENTRATIONS IN GROUNDWATER SAMPLES

TABLE FOUR ANALYTICAL RESULTS FOR OIL&GREASE AND VOLATILE

ORGANIC COMPOUNDS IN GROUNDWATER SAMPLES

LIST OF FIGURES

FIGURE 1 LOCATION MAP

FIGURE 2 SITE PLAN

LIST OF APPENDICES

APPENDIX A PERMIT

APPENDIX B BORING LOGS AND WELL CONSTRUCTION DETAILS

APPENDIX C ANALYTICAL REPORT AND CHAIN OF CUSTODY FORM FOR

SOIL SAMPLES

APPENDIX D WELL SAMPLING FIELD LOGS

APPENDIX E ANALYTICAL REPORT AND CHAIN OF CUSTODY FORM FOR

GROUNDWATER SAMPLES

1.0 INTRODUCTION

This report presents the methods and findings of Aqua Science Engineers, Inc. (ASE)'s installation of two additional monitoring wells and the results of the quarterly groundwater monitoring at the Lim family property located at 250 8th Street in Oakland, California (Figure 1). The additional monitoring wells were installed to assist in delineating the thickness and extent of free floating hydrocarbons southwest of well IW-5 (Figure 2).

2.0 SITE HISTORY

A gasoline service station previously occupied the site. In May 1992, ASE removed ten underground fuel storage tanks from the site. The tanks consisted of one (1) 10,000-gallon gasoline tank, one (1) 5,000-gallon diesel tank, three (3) 2,000-gallon gasoline tanks, one (1) 2,000-gallon diesel tank, three (3) 500-gallon gasoline tanks and one (1) 250-gallon waste oil tank. Up to 10,000 parts per million (ppm) total petroleum hydrocarbons as gasoline (TPH-G) and 5,900 ppm total petroleum hydrocarbons as diesel (TPH-D) were detected in soil samples collected during the tank removal.

Between December 1992 and March 1993, All Environmental of Lafayette, California overexcavated 1,762 cubic yards of soil from the site and off-hauled the soil to the BFI Landfill in Livermore, California. Analytical results show that all on-site soil with hydrocarbon concentrations greater than 10 ppm was removed from the site with the exception of soil along the 8th Street shoring. Up to 1,800 ppm TPH-G and 120 ppm TPH-D were detected in soil samples collected along the shoring indicating that contamination likely extends below 8th Street. This contamination left in place may still be a source for groundwater contamination.

In January 1995, ASE installed monitoring wells MW-1 and MW-2 at the site. High hydrocarbon concentrations were detected in monitoring well MW-2, downgradient of the site. Moderate hydrocarbon concentrations were detected in on-site monitoring well MW-1.

Since April 1995, the site has been on a groundwater monitoring program. Analytical results for these sampling periods are presented in Tables Three and Four.

In February 1999, ASE installed a five-well hydrogen peroxide injection system to assist in the bioremediation of hydrocarbons detected in the groundwater downgradient of the subject site. For complete details

regarding this system, see the ASE Report, titled "Report of Remediation System Installation," dated March 17, 1999.

On June 24, 1999, free-floating hydrocarbons were discovered in hydrogen peroxide injection well IW-5. As a result, the Alameda County Health Care Services Agency (ACHCSA) requested that the extent of free-floating hydrocarbons southwest of the site be defined. Since its discovery, the product thickness has been measured and bailed every two weeks. Results are reported in Table Two.

3.0 SCOPE OF WORK

Due to the presence of free-floating hydrocarbons in injection well IW-5, ASE prepared the following scope of work (SOW) to delineate the thickness and extent of floating product southwest of well IW-5.

- 1) Prepare a workplan for approval by Mr. Seto of the ACHCSA.
- 2) Obtain a drilling permit from the Alameda County Public Works Agency (ACPWA). Obtain excavation and encroachment permits from the City of Oakland.
- 3) Drill two (2) soil borings to 25-feet below ground surface (bgs) at the site.
- 4) Analyze one soil sample collected from each soil boring at a CAL-EPA certified environmental laboratory for TPH-G by modified EPA Method 5030/8015M, TPH-D by modified EPA Method 3510/8015M, benzene, toluene, ethylbenzene and total xylenes (collectively known as BTEX) and methyl tertiary butyl ether (MTBE) by EPA Method 8020, oil and grease (O&G) by Standard Method 5520, and volatile organic compounds (VOCs) by EPA Method 8240.
- 5) Install 2-inch diameter groundwater monitoring wells in each boring described in task 3.
- 6) Develop the monitoring wells.
- 7) Collect groundwater samples from each monitoring well for analyses.
- 8) Analyze the groundwater samples at a CAL-EPA certified analytical laboratory for TPH-G, TPH-D, BTEX, MTBE, O&G and VOCs.

-2-

- 9) Survey the top of casing elevation of each well, and determine the groundwater flow direction and gradient beneath the site.
- 10) Prepare a report detailing the methods and findings of this assessment.

Details of the assessment are presented below.

4.0 DRILLING SOIL BORING AND COLLECTING SAMPLES

4.1 Drilling and Collection of Soil Samples

Prior to drilling, ASE obtained an Alameda County Public Works Agency (ACPWA) drilling permit and an excavation and encroachment permit from the City of Oakland (Appendix A). ASE also notified Underground Service Alert (USA) to have underground public utilities in the vicinity of the site marked prior to drilling.

On January 3, 2000, West Hazmat Drilling of Rancho Cordova, California drilled soil borings MW-3 and MW-4 at the site using a Mobile B-61 drill rig equipped with 8-inch diameter hollow-stem augers (Figure 2). Groundwater monitoring wells MW-3 and MW-4, were subsequently constructed in these borings. The drilling was directed by ASE associate geologist Ian Reed.

Undisturbed soil samples were collected at 5-foot intervals as drilling progressed for lithologic and hydrogeologic description and for possible The samples were collected by driving a split-barrel chemical analyses. drive sampler lined with 2-inch diameter brass tubes ahead of the auger tip with successive blows from a 140-lb. hammer dropped 30-inches. tube from each sampling interval was immediately trimmed, sealed with Teflon tape, plastic end caps and duct tape, labeled, sealed in a plastic bag and stored on ice for transport to Chromalab, Inc. of Pleasanton, California (ELAP #1094) under chain of custody. Soil from the remaining tubes was described by an ASE geologist using the Unified Soil Classification System and was screened for volatile compounds with an Organic Vapor Meter The soil was screened by emptying soil from one of the sample (OVM). tubes into a plastic bag. The bag was then sealed and placed in the sun for approximately 10 minutes. After the hydrocarbons were allowed to volatilize, the OVM measured the vapor in the bag through a small hole punched in the bag. OVM readings are used as a screening tool only, since the procedures are not as rigorous as those used in the laboratory.

-3-

Drilling equipment was steam-cleaned prior to use and sampling equipment was washed with a TSP solution between sampling intervals to prevent cross-contamination. Drill cuttings were contained in sealed and labeled 55-gallon steel drums and left on-site for temporary storage until off-site disposal can be arranged.

4.2 Site Specific Geology

Sediments encountered during drilling generally consisted of silty sand and sandy silt from 1-foot bgs to the total depth explored of 30-feet bgs. The boring logs and well construction details are included as Appendix B.

5.0 ANALYTICAL RESULTS FOR SOIL

The soil samples collected from 16-feet bgs in both borings MW-3 and MW-4 were submitted to Chromalab, Inc. for analysis. The samples were analyzed for TPH-G by modified EPA Method 5030/8015M, TPH-D by modified EPA Method 3510/8015M, BTEX and MTBE by EPA Method 8020, O&G by Standard Method 5520, and VOCs by EPA Method 8240. The analytical results for soil are included in Table One and a copy of the certified analytical report and chain of custody form are included in Appendix C.

The soil sample analyzed from monitoring well MW-3 contained 0.016 ppm benzene, 0.0084 ppm toluene and 0.012 ppm total xylenes. No other compounds were detected above laboratory reporting limits in either of the soil samples analyzed.

6.0 MONITORING WELL CONSTRUCTION AND DEVELOPMENT

6.1 Monitoring Well Construction

Groundwater monitoring wells MW-3 and MW-4 were constructed in borings MW-3 and MW-4, respectively. These wells were constructed with 2-inch diameter, 0.020-inch factory slotted, flush-threaded, schedule 40 PVC well screen and blank casing. Both wells are screened between 7-feet bgs and 27-feet bgs to monitor the first water bearing zone encountered. Lonestar #3 Monterey sand occupies the annular space between the borehole and the casing from the bottom of the boring to approximately 1-foot above the well screen. A 1-foot thick hydrated bentonite layer separates the sand from the overlying cement surface seal. The wellhead is secured with a locking wellplug beneath an at-grade, traffic-rated vault.

6.2 Monitoring Well Development

On January 6, 2000, ASE associate geologist Ian Reed developed monitoring wells MW-3 and MW-4. The wells were developed using multiple episodes of surge-block agitation and submersible pumping. Well development purge water was contained in sealed and labeled 55-gallon steel drums and left on-site for temporary storage until off-site disposal can be arranged.

7.0 QUARTERLY MONITORING WELL SAMPLING

On January 12, 2000, ASE associate geologist Ian Reed collected groundwater samples from all four site monitoring wells for analysis. Prior to sampling, the wells were purged of four well casing volumes of The pH, temperature and conductivity of the purge water were monitored during evacuation, and samples were not collected until these parameters stabilized. Samples were collected from each well using dedicated polyethylene bailers. The groundwater samples analyzed for volatile compounds were decanted from the bailers into 40-ml volatile organic analysis (VOA) vials, preserved with hydrochloric acid, labeled, placed in protective foam sleeves. The samples to be analyzed for extractable range hydrocarbons were contained in 1-liter amber glass bottles. All samples were stored on ice for transport to Chromalab, Inc. of Pleasanton, California under chain of custody. Well sampling purge water was contained in sealed and labeled 55-gallon steel drums and left on-site for temporary storage until off-site disposal can be arranged. Appendix D for a copy of the Field Logs.

8.0 GROUNDWATER ELEVATIONS

On February 2, 2000, ASE surveyed the top of casing elevation of the two new wells relative to the existing site wells. ASE measured the depth to water in all site wells on January 12, 2000 using an electric water level sounder. Top of casing elevations, depth to groundwater measurements and groundwater elevations are presented below in Table Two.

A groundwater elevation (potentiometric surface) contour map is shown as Figure 2. The groundwater flow direction at the site is generally to the west at a gradient of 0.015 feet/foot.

Lim Family Property - January 2000

9.0 ANALYTICAL RESULTS FOR GROUNDWATER

The groundwater samples were analyzed by Chromalab for TPH-G by modified EPA Method 5030/8015M, TPH-D by modified EPA Method 3510/8015M, BTEX and MTBE by EPA Method 8020, O&G by Standard Method 5520, and VOCs by EPA Method 8240. The analytical results are tabulated in Tables Three, and Four and copies of the certified analytical report and chain of custody form are included in Appendix E.

The groundwater samples collected from monitoring well MW-1 contained 300 ppb TPH-G, 1,000 ppb TPH-D, 22 ppb benzene, 36 ppb toluene, 5.5 ppb ethyl benzene, 24 ppb total xylenes, 0.8 ppb tetrachloroethene (PCE) and 3.2 ppb chloroform. The groundwater samples collected from monitoring well MW-2 contained 63,000 ppb TPH-G, 11,000 ppb TPH-D, 10,000 ppb benzene, 12,000 ppb toluene, 1,800 ppb ethyl benzene, 7,800 ppb total xylenes, and 8.8 ppb 1,2-dichloroethane (1,2-DCA). groundwater samples collected from monitoring well MW-3 contained 140,000 ppb TPH-G, 13,000 ppb TPH-D, 22,000 ppb benzene, 19,000 ppb toluene, 2,400 ppb ethyl benzene, 11,000 ppb total xylenes, 120 ppb 1,2-DCA, 25,000 ppb acetone, 550 ppb naphthalene, and 120 ppb isopropyl The groundwater samples collected from monitoring well MW-4 contained 99,000 ppb TPH-G, 7,900 ppb TPH-D, 16,000 ppb benzene, 20,000 ppb toluene, 2,100 ppb ethyl benzene, 12,000 ppb total xylenes, 140 ppb 1,2-DCA, 6,400 ppb acetone, 540 ppb naphthalene, and 89 ppb isopropyl benzene.

The benzene concentration in groundwater samples collected from monitoring well MW-1 exceeded the Department of Health Services (DHS) maximum contaminant level (MCL) for drinking water. The BTEX and 1,2-DCA concentrations in groundwater samples collected from monitoring wells MW-2, MW-3, and MW-4 all exceeded DHS MCLs for drinking water.

10.0 CONCLUSIONS

The soil samples analyzed from monitoring well MW-3 contained 0.016 ppm benzene, 0.0084 ppm toluene, and 0.012 ppm MTBE. No other compounds were detected above the laboratory reporting limit in the soil samples analyzed.

The BTEX and 1,2-DCA concentrations in groundwater samples collected from monitoring wells MW-2, MW-3, and MW-4 all exceeded the DHS MCLs for drinking water. In addition, the benzene concentration in

groundwater samples collected from monitoring well MW-1 exceeded the DHS MCL for drinking water.

11.0 RECOMMENDATIONS

Due to the consistent presence of free-floating hydrocarbons in injection well IW-5 and elevated hydrocarbon concentrations in monitoring wells MW-3 and MW-4, it appears that further plume definition is needed.

ASE recommends that further assessment be done to assist in defining the extent of hydrocarbons west of the site. After further definition of the hydrocarbon extent is complete, ASE will discuss more effective treatment system options. ASE also recommends that this site be sampled on a quarterly basis.

12.0 REPORT LIMITATIONS

The results of this assessment represent conditions at the time of the soil and groundwater sampling, at the specific locations where the samples were collected, and for the specific parameters analyzed by the laboratory.

It does not fully characterize the site for contamination resulting from unknown sources, or for parameters not analyzed by the laboratory. All of the laboratory work cited in this report was prepared under the direction of an independent CAL-EPA certified laboratory. The independent laboratory is solely responsible for the contents and conclusions of the chemical analysis data.

-7-

Aqua Science Engineers appreciates the opportunity to provide environmental consulting services for this project. Should you have any questions or comments, please feel free to call us at (925) 820-9391.

Respectfully submitted,

AQUA SCIENCE ENGINEERS, INC.

Ian T. Reed

Associate Geologist

Robert E. Kitay, R.G., R.E.A.

Senior Geologist

cc: Mr. Russell Lim

601 Brush Street

Oakland, CA 94607

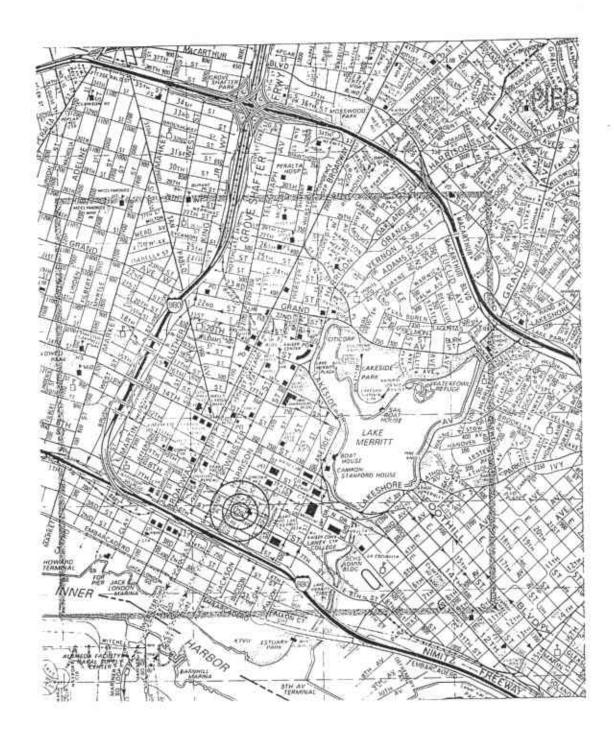
Alameda County Health Care Services Agency (ACHCSA)

1131 Harbor Bay Parkway, Suite 250

Alameda, CA 94502

Attn.: Mr. Larry Seto

California Regional Water Quality Control Board (RWQCB),


San Francisco Bay Region

1515 Clay Street, Suite 1400

Oakland, CA 94612

Attn.: Mr. Chuck Headlee

-8-

SITE LOCATION MAP

Lim Property 250 8th Street Oakland, California

Aqua Science Engineers

Figure

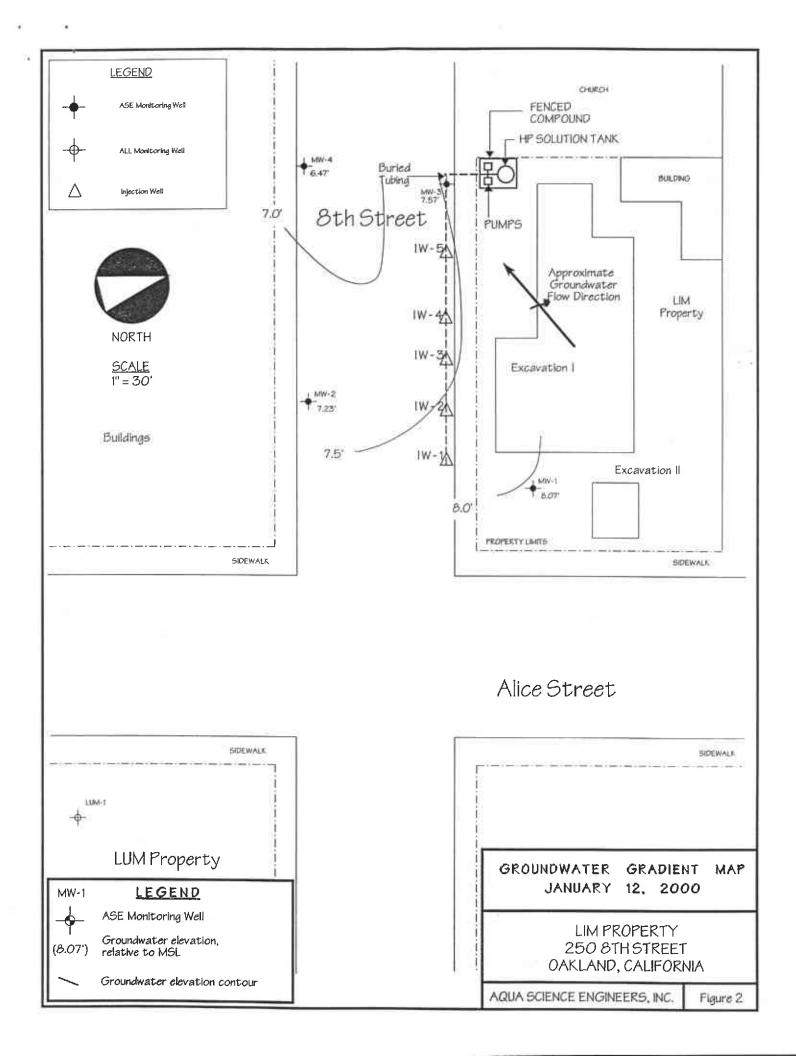


TABLE ONE
Summary of Chemical Analysis of SOIL Samples
All results are in parts per million

									TPH		
	Depth	TPH			Ethyl	Total		TPH	Motor	Oil and	Fuel
Boring	(feet)	Gasoline	Benzene	Toluene	Benzene	Xylenes	MTBE	Diesel	Oil	Grease	Oxygenates
MW-3	16.01	< 1.0	0.016	0.0084	< 0.005	0.012	< 0.005	< 1.0	< 50	< 50	< 0.005 - < 0.01
MW-4	16.0'	< 1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 1.0	< 50	< 50	< 0.005 - < 0.01
SERVICE DESCRIPTION DE MEMORINA LA LIGHTANIA		ALLEMAN AND AND AND AND AND AND AND AND AND A	NAMES OF THE OWNERS OF THE PARTY OF THE OWNERS OF THE OWNE	CONTRACTOR		a CPC a sauc line encommunication to out a day a c a	+ () () +) + () (DELA CORRESCIONADE DE LA CORRESCIONA DEL CORRESCIONA DE LA CORRESC	to to comparating a faction and the comparation of	Transferance on Compression and the second of the Salandarous	nakatan ka ku kabatata ka ka mana kanta ka
PRG - 1	general en en en en	NE S	0.62	520	230	210	NE	NE	NB	NE.	varies

Notes:

Detectable concentrations are in bold.

Non-detectable concentrations are noted by the less than sign (<) followed by the detection limit.

PRG = The US EPA Region IX Preliminary Remediation Goal for Residential Soil.

NE = PRG has not been established.

TABLE TWO
Groundwater Elevation Data

Well I.D.	Date of	Top of Casing Elevation	Depth to Water	Product Thickness	Groundwater Elevation
	Measurement	(msl)	(feet)	(feet)	(msl)
IW-3	07/13/99	23.93	15.00		8.93
IW-4	07/13/99	23.83	Unknown		Unknown
IW-5	07/13/99	24.00	15.50	1.00	8.50*
	07/23/99		15.52	1.05	9.32*
	08/03/99		15.58	0.64	8.93*
	08/17/99		15.62	0.86	9.07*
	08/27/99		15.92	0.77	8.70*
	09/10/99		15.82	0.56	8.63*
	09/24/99		15.57	0.26	8.64*
	10/08/99		15.56	0.23	8.62*
	11/02/99		15.59	0.22	8.59*
	11/19/99		15.64	0.07	8.42*
	12/16/99		16.12	0.64	8.39*
	01/12/00		16.54	0.28	7.68*
LUM-1	07/14/95	23.42	Unknown		Unknown
	10/17/95		18.21	1.53	6.43*
	01/12/96		18.15	1.35	6.35*
	07/25/96		18.08	2.36	7.23*
	01/06/97		Unknown		Unknown
	07/08/97		Unknown		Unknown
	02/20/98		10.03	2.19	15.13*
	01/05/99		16.71	1.09	7.58*
LUM-2	07/14/95	23.98	17.21		6.77
	10/17/95		17.67		6.31
	01/12/96		17.89	0.01	6.10*
	07/25/96		16.94	3.01	7.04
	01/06/97		14.35		9.63
	07/08/97		17.32		6.66
.*	02/20/98		10.84		13.14
	01/05/99		16.51		7.47

^{* =} Adjusted for the presence of free-floating oil by the equation: Top of Casing Elevation - Depth to Water + (0.8 x Floating Hydrocarbon Thickness) = Groundwater Elevation (Adjusted).

TABLE TWO
Groundwater Elevation Data

	Date	Top of Casing	Depth to	Product	Groundwater
	of	Elevation	Water	Thickness	Elevation
Well I.D.	Measurement	(msl)	(feet)	(feet)	(msl)
MW-1	01/30/95	25.51	16.21		9.30
	04/12/95		15.71		9.80
	07/14/95		16.71		8.80
	10/17/95		17.72		7.79
	01/12/96		18.03		7.48
	07/25/96		16.82		8.69
	01/06/97		15.60		9.91
	07/08/97		17.31		8.20
	01/26/98		15.21		10.30
	07/23/98		15.38		10.13
	01/05/99		16.82		8.69
	07/13/99		15.89		9.62
	01/12/00		17.44		8.07
MW-2	01/30/95	23.99	15.02		8.97
212 11 2	04/12/95	23.77	14.75		9.24
	07/14/95		16.02		7.97
	10/17/95		16.94		7.97
	01/12/96		17.05		6.94
	07/25/96		16.02		7.97
	01/06/97		14.34		9.65
	07/08/97		16.52		7.47
	01/26/98		14.10		9.89
	07/23/98		14.70		9.29
	01/05/99		16.01		7.98
	07/13/99		15.40		8.59
	01/12/00		16.76		7.23
MW-3	01/12/00	24.25	16.68	0.01	7.57
MW-4	01/12/00	23.71	17.24		6.47
IW-1	07/13/99	24.05	14.75		9.30
IW-2	07/13/99	24.21	15.10		9.11

TABLE THREE

Summary of Chemical Analysis of Groundwater Samples

Petroleum Hydrocarbon Concentrations

All results are in parts per billion

Well/							
Date	TPH	TPH			Ethyl-	Total	
Sampled	Gasoline	Diesel	Benzene	Toluene	benzene	Xylenes	MTBE
				·	·	·	
<u>MW-1</u>							
01/30/95	740	200	3	5	1	4	
04/12/95	400	500	< 0.5	< 0.5	3	< 2	
07/14/95	520	400	1	< 0.5	2	3	
10/17/95	400	200	0.5	1	3	< 2	
01/12/96	120	890	< 0.5	< 0.5	< 0.5	< 1.0	< 2.0
07/08/96	320	300	0.52	2.7	1.2	2.3	< 5.0
01/06/97	110	75	< 0.5	0.68	< 0.5	< 0.5	< 5.0
07/08/97	380	290	< 0.5	1.5	1.4	1.9	< 5.0
01/26/98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
07/23/98	190	< 50	0.54	2.8	2	1.8	< 5.0
01/05/99	200	< 50	1.8	1.6	3.3	< 0.5	< 5.0
07/13/99	340	< 50	< 0.5	< 0.5	2.6	< 0.5	< 5.0
01/12/00	300	1,000	22	36	5.5	2 4	< 5.0
LW A							
<u>MW-2</u>	00 055						
01/30/95	88,000	800	19,000	18,000	2,400	10,000	
04/12/95	110,000	990	21,000	28,000	2,800	14,000	
07/14/95	120,000	5,000	20,000	25,000	3,200	15,000	
10/17/95	190,000	4,000	15,000	26,000	4,900	23,000	
01/12/96	32,000	2,600	10,000	8,000	1,100	4,800	< 2
07/08/96	110,000	2,500	20,000	18,000	2,500	12,000	< 500
01/06/97	230,000	37,000	11,000	19,000	4,300	20,000	< 1,200
07/08/97	91,000	35,000	16,000	20,000	2,700	13,000	< 1,000
01/26/98	50,000	11,000	12,000	12,000	1,600	6,700	< 250
07/23/98	50,000	8,100#	11,000	8,300	1,800	7,000	1,100
01/05/99	50,000	7,600#	12,000	12,000	2,300	9,600	1,300
07/13/99	73,000	8,500	11,000	13,000	2,200	9,800	< 500
01/12/00	63,000	11,000	10,000	12,000	1,800	7,800	< 500

TABLE THREE

Summary of Chemical Analysis of Groundwater Samples Petroleum Hydrocarbon Concentrations All results are in parts per billion

Well/							
Date	TPH	TPH			Ethyl-	Total	
Sampled	Gasoline	Diesel	Benzene	Toluene	benzene	Xylenes	MTBE
MW-3 01/12/00	140,000	13,000*	22,000	19,000	2,400	11,000	< 500
MW-4 01/12/00	99,000	7,900*	16,000	20,000	2,100	12,000	< 2,500
DH8 MCL	: NE	ne 🥍	≕era l	150	7.00	1,750	1.413
EPA METHOD	5030/ 8015M	3550/ 8015M	8020	8020	8020	8020	8020

Notes:

Non-detectable concentrations noted by the less than sign (<) followed by the detection limit Most recent data in bold.

^{* =} Hydrocarbon reported is in the early diesel range, and does not match the laboratory standard.

^{# =} Estimated concentration reported due to overlapping fuel patterns.

TABLE FOUR
Groundwater Analytical Results
Oil & Grease and Volatile Organic Compounds

All results are in parts per billion

Date Sampled &		· · · · · · · · · · · · · · · · · · ·	** - \$ =	·
Compound Analyzed	MW-1	MW-2	MW-3	MW-4
7/8/97				
Hydrocarbon Oil and Grease		< 1,000		
-	0.0	•	-	-
Tetrachloroethane (PCE)	0.9	< 0.5	-	-
Other VOCs	< 0.5 - < 3	< 0.5 - < 3	-	-
1/26/98				
Hydrocarbon Oil and Grease		< 1,000	-	-
Trichloroethene	0.7	< 5.0	-	-
Tetrachloroethene	10	< 5.0	-	-
1,2-Dichloroethane	< 0.5	1 1	•	-
Other VOCs	< 0.5 - < 50	< 0.5 - < 50	-	-
7/23/98				
Hydrocarbon Oil and Grease		< 1,000	-	-
Tetrachloroethene	4	4.6	-	-
1,2-Dichloroethane	< 2	9.9	-	-
Other VOCs	< 2 - < 10	< 0.5 - < 5.0	-	•
1/5/99				
Hydrocarbon Oil and Grease	***	< 1,000	-	-
Tetrachloroethene	5.1	< 50		-
Trichloroethene	0.52	< 50	-	-
1,1,2,2-Tetrachloroethane	0.58	< 50	•	•
Chloroform	8.2	< 50	•	-
Other VOCs	< 0.5 - < 5	< 50 - < 500	•	-

TABLE FOUR

Groundwater Analytical Results Oil & Grease and Volatile Organic Compounds All results are in parts per billion

Date Sampled &				
Compound Analyzed	MW-1	MW-2	MW-3	MW-4
7/13/99				
Hydrocarbon Oil and Grease		< 1,000	-	•
Tetrachloroethene	1.5	0.68	-	-
Trichloroethene	< 0.5	< 50	-	-
1,1,2,2-Tetrachloroethane	< 0.5	< 50	-	•
Chloroform	4.6	< 50	-	-
1,2-Dichloroethane	< 0.50	7.7	-	-
Other VOCs	< 0.5 - < 5	< 0.5 - < 500	-	-
1/12/00				
Hydrocarbon Oil and Grease		< 1,000	< 1,000	< 1,000
Tetrachloroethene	0.8	< 1.0	< 100	< 50
Trichloroethene	< 0.50	< 1.0	< 100	< 50
1,1,2,2 - Tetrachloroethane	< 0.50	< 1.0	< 100	< 50
Chloroform	3.2	< 1.0	< 100	< 50
1,2-Dichloroethane	< 0.50	8.8	120	140
Acetone	•••		25,000	6,400
Naphthalene			5 5 0	540
Isopropylbenzene			120	89
Other VOCs	< 0.5 - < 5.0	< 1.0 - < 4.0	< 100 - < 10,000	< 50 - < 5,00

APPENDIX A

Permits

P.02/04

ALAMEDA COUNTY PUBLIC WORKS AGENCY

WATER RESOURCES SECTION

951 TURNER COURT, SUITE 300, HAYWARD, CA 94545-2451

PHONE (\$10) 670-5574 ANDREAS GODFREY FAX (\$10) 670-5262

(\$10) 670-5244 ALVIN KAN

DRILLING PERMIT APPLICATION

for applicant to complete	FOR OFFICE USE
OCATION OF PROJECT 250 - 8th Street	PERMIT NUMBER 49 WC-716
OCATION OF PROJECT 250 - 8th Street	WELL NUMBER
	APN
illionis Coordinatos Source	PERMIT CONDITIONS
n. ccs (II.	Circled Fermit Requirements Apply
LIENT _	(A) GENERAL
ame Russell Wim	LA permit application should be submitted so as to
idiese 3100 in flaga ct Phone	arrive at the ACPWA office five days prior to
ly Laterette up Zlo 94549	proposed starting date.
	2. Bubmit to ACPWA within 60 days after completion of
FFLICANT	permitted work the original Department of Water
ins Agua Screece Bog inches	Resources Water Well Drillers Report or equivalent for
tra- Robert Kitzer Fix	well project, or arilling logs and locadon sketch to:
Idees 200 40-61 Protecto Phone ly Donnell 11- 1-4 Zip	1. Fermit is rold if projects,
19 1100000	approved date.
YPE OF PROJECT	B. WATER SUPPLY WELLS
Veli Construction Geotechnical (overtigation	1. Minimum surface real thickness is two inches of
Cuthodle Protection D. General D	cament grout placed by tromic.
Water Supply D Contamination D	2. Minimum scal depth is 50 feet for municipal and
Monitoring Well Description D	industrial wells or 20 feet for domestic and irrigation
, , , , , , , , , , , , , , , , , , ,	wells unless a lesser depth is specially approved.
rotosed water supply well use	(C. GROUNDWATER MONITORING WELLS
New Domestic C Replacement Domestic U	INCLUDING MEZOMETERS
Municipal O Imigation O	1. Minimum surface seal thickness is two inches of
ludueviel D Other D	tement grout placed by trentie,
	2. Minimum seal depth for monitoring wells is the
rilling method:	maximum depth practicable or 20 feet.
Mud Rotary D Ale Rotary D Auger G	D. GEOTECHNICAL
Cable D Other D	Backfill bare hale with compacted cuttings or heavy
-7 u	benconise and upper two feet with competed graterial.
MILLER'S LICENSE NO. C-57 487000	in areas of known or suspended contemination, transact
	cement grout shall be used to place of comparted sunlings.
ELL PROJECTS	E. CATRODIC
Drill Hole Diometer. X in. Maximum	Fill hole above anode sone with enverse placed by tremis-
Casing Diameter 7 In. Depth 30 (). Surface Seal Depth 10 R. Number 2	F. WELL DESTRUCTION
Surface Seal Depth On. Number 2	See atteched.
EOTECHNICAL PROJECTS	G. SPECIAL CONDITIONS
Number of Barings Maningur	
Hole Diameter in Depth ft.	•
	+ 0 0 0 0 0
TIMATED STARTING DATE 1-3 - 00	Thomas Here III 17-X
TIMATED COMPLETION DATE 1-3-00	APPROVED X ULWY (DOD DATE (2 2)
·	•
ereby agree to comply with all requirements of this permit and	

APPLICANT'S SIGNATURE

BAN C. Kity DATE 12-27-93

EXCAVATION PERMIT

CIVIL ENGINEERING

TO EXCAVATE IN STREETS OR OTHER SPECIFIED WORK PAGE 2 of 2

PERMIT NUMBER	a 00 902	SITE ADDRESS/LOCATION				
17	900983	250 8TH ST.				
APPROX. START DATE	APPROX. END DATE	24-HOUR EMERGENCY PHONE NUMBER				
		(Permit not valid without 24-Hour number)				
CONTRACTOR'S LICENSE # AND	CLASS	CITY BUSINESS TAX #				
ATTENTION:						
State law requires that the inquiry identification number	contractor/owner call Underground Seber issued by USA. The USA telephone	ervice Alert (USA) two working days before excavating. This permit is not valid unless applicant has secured an ne number is 1 (800) 642-2444. UNDERGROUND SERVICE ALERT (USA) #:				
2) 48 hours prior to	starting work, YOU M	UST CALL (510) 238-3651 TO SCHEDULE AN INSPECTION.				
OWNER/BUILDER						
provisions of the Contractor's License alleged exemption. Any violation of S I, as an owner of the property, or n Professions Code: The Contractor's L provided that such improvements are n burden of proving that he did not build I, as owner of the property, am exe be performed prior to sale, (3) I have r structures more than once during any ti I, as owner of the property, am exe does not apply to an owner of property	construct, after, improve, demolish, or repair any structure, prior to its issuance, also requires the applicant for such permit to file a signed statement that he is licensed pursuant to the provisions of the Contractor's License law Chapter 9 (commencing with Sec. 7000) of Division 3 of the Business and Professions Code, or that he is exempt therefrom and the basis for the alleged exemption. Any violation of Section 7031.5 by any applicant for a permit subjects the applicant to a civil penalty of not more than \$500): I, as an owner of the property, or my employees with wages as their sole compensation, will do the work, and the structure is not intended or offered for sale (Sec. 7044, Business Professions Code: The Contractor's License Law does not apply to an owner of property who builds or improves thereon, and who does such work himself or through his own employees, provided that such improvements are not intended or offered for sale. If however, the building or improvement is sold within one year of completion, the owner-builder will have the burden of proving that he did not build or improve for the purpose of sale). I, as owner of the property, am exempt from the sale requirements of the above due to: (1) I am improving my principal place of residence or appurtenances thereto, (2) the work will be performed prior to sale, (3) I have resided in the residence for the 12 months prior to completion of the work, and (4) I have not claimed exemption on this subdivision on more than two structures more than once during any three-year period, (Sec. 7044 Business and Professions Code). I, as owner of the property, am exclusively contracting with licensed contractors to construct the project, (Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of property who builds or improves thereon, and who contracts for such projects with a contractor(s) licensed pursuant to the Contractor's License law). I I am exempt under Sec					
WORKER'S COMPENSATION						
☐ I hereby affirm that I have a certific	cate of consent to self-insure, or a certi-	ificate of Worker's Compensation Insurance, or a certified copy thereof (Sec. 3700, Labor Code).				
Policy #	Conspany Nam	ke				
	the work for which this permit is issue	ed. I shall not employ any person in any manner so as to become subject to the Worker's Compensation I says				
granted upon the express condition that granted upon the express condition that perform the obligations with respect to and employees, from and against any as sustained or arising in the construction	runt shall be deemed revoked. This pe the permittee shall be responsible for street maintenance. The permittee sha and all suits, claims, or actions brought of the work performed under the perm	ou should become subject to the Worker's Compensation provisions of the Labor Code, you must forthwith termit is issued pursuant to all provisions of Title 12 Chapter 12.12 of the Oakland Municipal Code. It is all claims and liabilities arising out of work performed under the permit or arising out of permittee's failure to all, and by acceptance of the permit agrees to defend, indemnify, save and hold harmless the City, its officers by any person for or on account of any bodily injuries, disease or illness or damage to persons and/or property it or in consequence of permittee's failure to perform the obligations with respect to street maintenance. This d by the Director of the Office of Planning and Building.				
I hereby affirm that I am licensed under this permit and agree to its requirement	r provisions of Chapter 9 of Division 3 s, and that the above information is tru	of the Business and Professions Code and my license is in full force and effect (if contractor), that I have read to and correct under penalty of law.				
Signature of Permittee	Asset for the Control of the	11-23-99 11111				
DATE STREET LAST (7)	Agent for D Contractor D Owner SPECIAL PAVING DETAIL	Residence of the control of the cont				
resurfaced & d	REQUIREDY D YES ANG.	(NOV I - JAN I) CES © NO (7AM-9AM & 4PM-6PM) YES © NO				
ISSUED BY	$\sqrt{\frac{1}{4}} \sqrt{\frac{1}{2}}$	DATE ISSUED				

(1 D 2 2 m)

APPENDIX B

Boring Log and Well Construction Details

SOIL BORING LOG AND MONIT	ORING WELL	L COMPLETION DETAILS Well: MW-3
Project Name: Lim Family Property	Project Locati	tion: 250 8th Street, Oakland, CA Page 1 of 1
Driller: West Hazmat Drilling	Type of Rig: I	Hollow-Stem Auger Size of Drill: 8.0" Diameter
Logged By: Ian T. Reed	Date Drilled:	January 3, 2000 Checked By: Robert E. Kitay, R.G.
WATER AND WELL DATA		Total Depth of Well Completed: 27'
Depth of Water First Encountered: 16		Well Screen Type and Diameter: 2" diameter sch. 40 PVC
Static Depth of Water in Well: 16.68'		Well Screen Slot Size: 0.020" diameter
Total Depth of Boring: 30'		Type and Size of Soil Sampler: 2.0" I.D. Split-barrel
<u> </u>	SAMPLE DATA	DESCRIPTION OF LITHOLOGY
Description Interval	Water Level Graphic Log	standard classification, texture, relative moisture, density, stiffness, odor-staining, USCS designation.
Stree Box Locking Well Ca	ар	Concrete Sandy SILT (ML); brown; damp; stiff; 70% silt; 30% fine to medium sand; medium estimated K; non-plastic; no odor olive brown; moist; slight hydrocarbon odor wet
25 Tonestar Sand # 25 35 35 35 35 35 35 35 35 35 35 35 35 35		Silty SAND (SM); olive gray; wet; stiff; 60% fine sand 40% silt; non-plastic; medium estimated K; strong hydrocarbon odor Sandy SILT (ML); olive brown; wet; stiff; 70% silt; 30% fine to coarse sand; trace gravel; non-plastic; medium estimated K; moderate hydrocarbon odor
		End of boring at 30'
		aqua science engineers, inc.

Project Name: Lim Family Property Project Location: 250 8th Street, Oakland, CA Page 1 of 1 Driller: West Hazmat Drilling Type of Rig: Hotlow-Stem Auger Size of Drill: 8.0° Diameter Logged By: lan T. Reed Date Drilled: January 3, 2000 Checked By: Robert E. Kitay, R.G. WATER AND WELL DATA Depth of Water First Encountered: 16' Well Scroon Type and Diameter: 2' diameter sch. 40 PVC Static Depth of Water in Well: 17.24' Well Scroon Type and Diameter: 2' diameter Total Depth of Size of Soil Sampler: 2.0" I.D. Split-barrel DESCRIPTION OF LITHCLOGY standard classification, texture, relative moisture, density, sliffness odor-staining, USCS designation. DESCRIPTION OF LITHCLOGY standard classification, texture, relative moisture, density, sliffness. odor-staining, USCS designation. DESCRIPTION OF LITHCLOGY standard classification, texture, relative moisture, density, sliffness. odor-staining, USCS designation. DESCRIPTION OF LITHCLOGY standard classification, texture, relative moisture, density, sliffness. odor-staining, USCS designation. DESCRIPTION OF LITHCLOGY standard classification, texture, relative moisture, density, sliffness. odor-staining, USCS designation. DESCRIPTION OF LITHCLOGY standard classification, texture, relative moisture, density, sliffness. odor-staining, USCS designation. Sandy SILT (ML): orange brown and olive; damp; stiff; 60% fine sand; 40% sit; non-plastic; medium estimated K; sliff; non-plastic; medium estimated K; sliff; non-plastic; medium estimated K; sliff; non-plastic; medium estimated K; strong hydrocarbon odor Sandy SILT (ML): orange brown and olive; damp; stiff; 70% fine sand; 30% slit; non-plastic; high estimated K; moderate hydrocarbon odor End of boring at 30' End of boring at 30' End of boring at 30'	SOIL BORING LOG AND MONITORING WEL	L COMPLETION DETAILS Well: MW-4
Date Drilled: January 3, 2000 Checked By: Robert E. Kitay, R.G. WATER AND WELL DATA Depth of Water First Encountered: 16' Well Screen Type and Diameter: 2' diameter sch. 40 PVC Static Depth of Water in Well: 17.24' Total Depth of Soil: Size: 0.020* diameter Total Depth of Soil: Size: 0.020* diameter Type and Diameter: 2' Diameter sch. 40 PVC Well Screen Siot Size: 0.020* diameter Type and Diameter: 2' Diameter Type and Diameter: 2' Diameter Type and Size of Soil Sampler: 2.0* I.D. Split-barrel DESCRIPTION OF LITHOLOGY Standard classification, texture, relative moisture, density, sitfiness, odor-starring, USCS designation. DESCRIPTION OF LITHOLOGY Standard classification, texture, relative moisture, density, sitfiness, odor-starring, USCS designation. DESCRIPTION OF LITHOLOGY Standard classification, texture, relative moisture, density, sitfiness, odor-starring, USCS designation. DESCRIPTION OF LITHOLOGY Standard classification, texture, relative moisture, density, sitfiness, odor-starring, USCS designation. DESCRIPTION OF LITHOLOGY Standard classification, texture, relative moisture, density, sitfiness, odor-starring, USCS designation. Sandy SILT (ML); orange brown and olive; damp; stiff; 70% fine sand; 30% sit; sight hydrocarbon odor Sandy SILT (ML); orange brown and olive; damp; stiff; 70% fine sand; sitrong hydrocarbon odor Sity SAND (SM); olive; wet; stiff; 70% fine sand; 30% sit; non-plastic; high estimated K; moderate hydrocarbon odor End of boring at 30'	Project Name: Lim Family Property Project Loca	tion: 250 8th Street, Oakland, CA Page 1 of 1
WATER AND WELL DATA Depth of Water First Encountered: 16' Well Screen Type and Diameter: 2" diameter sch. 40 PVC Static Depth of Water First Encountered: 16' Well Screen Stol Size: 0.020* diameter Type and Diameter: 2" diameter sch. 40 PVC Well Screen Stol Size: 0.020* diameter Type and Size of Soil Sampler: 2.0* i.D. Split-barrel DESCRIPTION OF LIM-IOLOGY Standard classification, texture, relative moisture, dansity, stiffness, odor-staining, USCS designation. DESCRIPTION OF LIM-IOLOGY Standard classification, texture, relative moisture, dansity, stiffness, odor-staining, USCS designation. Concrete Sity SAND (SM); orange brown; damp; stiff; 60% fine sand; 40% silt; non-plastic; medium estimated K; no odor Sandy SILT (ML); orange brown and olive; damp; stiff; 70% silt; 30% fine sand; non-plastic; medium estimated K; signi hydrocarbon odor Sandy SILT (ML); orange brown and olive; damp; stiff; 70% silt; 30% fine sand; non-plastic; medium estimated K; strong hydrocarbon odor Silty SAND (SM); olive; welt; stiff; 70% fine sand; 30% silt; non-plastic; high estimated K; moderate hydrocarbon odor End of boring at 30' End of boring at 30'	Driller: West Hazmat Drilling Type of Rig:	Hollow-Stem Auger Size of Drill: 8.0" Diameter
Depth of Water First Encountered: 16' Static Depth of Water in Well: 17:24' Well Screen Type and Diameter: 2' diemeter sch. 40 PVC Static Depth of Water in Well: 17:24' Well Screen Stot Size: 0.020' diameter Total Depth of Boring: 30' Type and Size of Soil Sampler: 2.0* L.D. Split-barrel DESCRIPTION OF LITHOLOGY standard classification, texture, relative moisture, density, stiffness, odor-staining, USCS designation. Site Book Detail Site Book Detail DETAIL Soil Description of Lithology standard classification, texture, relative moisture, density, stiffness, odor-staining, USCS designation. Concrete Sitty SAND (SM); orange brown; damp; stiff; 50% fine sand; 40% silt; non-plastic; medium estimated K; no odor Sandy SILT (ML); orange brown and olive; damp; stiff; 70% silt; 30% fine sand; non-plastic; medium estimated K; strong hydrocarbon odor Sitty SAND (SM); ofive; wet; stiff; 70% fine sand; 30% silt; non-plastic; high estimated K; strong hydrocarbon odor End of boring at 30'	Logged By: Ian T. Reed Date Drilled:	January 3, 2000 Checked By: Robert E. Kitay, R.G.
Static Depth of Water in Well: 17.24' Total Depth of Boring: 30' Total Depth of Boring: 30' Total Depth of Boring: 30' Type and Size of Soil Sampler: 2.0* I.D. Split-barrel DESCRIPTION OF LITHOLOGY standard classification, texture, relative moisture, density, stiffness, odor-staining, USCS designation. Stree Book Description of Locking Well Cap Type and Size of Soil Sampler: 2.0* I.D. Split-barrel DESCRIPTION OF LITHOLOGY standard classification, texture, relative moisture, density, stiffness, odor-staining, USCS designation. Concrete Sitty SAND (SM); orange brown; damp; stiff; 60% fine sand, 40% stit; non-plastic; medium estimated K; no odor Sandy SILT (ML); orange brown and olive; damp; stiff; 70% silt; 30% fine sand; non-plastic; medium estimated K; strong hydrocarbon odor Sitty SAND (SM); ofive; wet; stiff; non-plastic; medium estimated K; strong hydrocarbon odor Silty SAND (SM); olive; wet; stiff; 70% fine sand; 30% silt; non-plastic; high estimated K; moderate hydrocarbon odor End of boring at 30'	WATER AND WELL DATA	Total Depth of Well Completed: 27'
Total Depth of Boring: 30' Type and Size of Soil Sampler: 2.0" I.D. Split-barrel DESCRIPTION OF LITHOLOGY standard classification, texture, relative moisture, density, stiffness, odor-staining. USCS designation. Concrete Sity SAND (SM); orange brown and olive; damp; stiff; 60% fine sand; 40% sit; non-plastic; medium estimated K; no odor Sandy SILT (ML); orange brown and olive; damp; stiff; 70% sit; slight hydrocarbon odor Sandy SILT (ML); orange brown and olive; damp; stiff; 70% sit; slight hydrocarbon odor Sandy SILT (ML); orange brown and olive; damp; stiff; 70% sit; slight hydrocarbon odor Sity SAND (SM); orange brown and olive; damp; stiff; 70% sit; slight hydrocarbon odor Sandy SILT (ML); orange brown and olive; damp; stiff; 70% sit; slight hydrocarbon odor Sity SAND (SM); orange brown and olive; damp; stiff; 70% sit; slight hydrocarbon odor Sity SAND (SM); orange brown and olive; damp; stiff; 50% fine sand; 40% sit; non-plastic; medium estimated K; strong hydrocarbon odor Sity SAND (SM); olive; wet; stiff; 70% fine sand; 30% sit; non-plastic; high estimated K; moderate hydrocarbon odor End of boring at 30'	Depth of Water First Encountered: 16'	Well Screen Type and Diameter: 2" diameter sch. 40 PVC
SOLUTION OF LITHOLOGY Standard classification, texture, relative moisture, density, stiffness, odor-staining, USCS designation. Concrete Sity SAND (SM); orange brown and olive; damp; stiff; 60% fine sand; 40% sit; non-plastic; medium estimated K; no odor Sandy SILT (ML); orange brown and olive; damp; stiff; 70% silt; sight hydrocarbon odor Sandy SILT (ML); orange brown and olive; damp; stiff; 70% silt; sight hydrocarbon odor Sity SAND (SM); orange brown and olive; damp; stiff; 70% silt; sight hydrocarbon odor Sandy SILT (ML); orange brown and olive; damp; stiff; 70% silt; sight hydrocarbon odor Sity SAND (SM); orange brown and olive; damp; stiff; 70% silt; sight hydrocarbon odor Sity SAND (SM); orange brown and olive; damp; stiff; 70% silt; sight hydrocarbon odor Sity SAND (SM); orange brown and olive; damp; stiff; 70% silt; sight hydrocarbon odor Sity SAND (SM); office sand; mon-plastic; medium estimated K; strong hydrocarbon odor Sity SAND (SM); office; wet; stiff; 70% fine sand; 30% silt; non-plastic; high estimated K; moderate hydrocarbon odor End of boring at 30'	Static Depth of Water in Well: 17.24	Well Screen Slot Size: 0.020* diameter
BORNS DETAIL BORNS STEE BC (Applied B) 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
STORING DETAIL STORE BOK Locking Well Cap 10	0 5 0 0	DESCRIPTION OF LITHOLOGY
Concrete Sitty SAND (SM); orange brown; damp; stiff; 60% fine sand; 40% sit; non-plastic; medium estimated K; no odor Sandy SILT (ML); orange brown and olive; damp; stiff; 70% silt; 30% fine sand; non-plastic; medium estimated K; slight hydrocarbon odor Sandy SILT (ML); orange brown and olive; damp; stiff; 70% silt; 30% fine sand; non-plastic; medium estimated K; silght hydrocarbon odor Sitty SAND (SM); olive; molst; stiff; non-plastic; medium estimated K; strong hydrocarbon odor Sitty SAND (SM); olive; wet; stiff; 70% fine sand; 30% silt; non-plastic; high estimated K; moderate hydrocarbon odor End of boring at 30'	Depth in F TIVETAL Slow County OVM (ppm) Vater Leve Graphic	standard classification, texture, relative moisture, density, stiffness, odor-staining, USCS designation.
=30 End of boring at 30'	Cooking Well Cap Locking Well	Silty SAND (SM); orange brown; damp; stiff; 60% fine sand; 40% silt; non-plastic; medium estimated K; no odor Sandy SILT (ML); orange brown and olive; damp; stiff; 70% silt; 30% fine sand; non-plastic; medium estimated K; slight hydrocarbon odor olive; moist; stiff; non-plastic; medium estimated K; strong hydrocarbon odor Silty SAND (SM); olive; wet; stiff; 70% fine sand; 30% silt; non-plastic; high estimated K; moderate
		End of boring at 30'

APPENDIX C

Analytical Report and Chain of Custody Form For Soil Samples Environmental Services (SDB)

Submission #: 2000-01-0048

Date: January 12, 2000

Aqua Science Engineers, Inc. 208 West El Pintado Road Danville, CA 94526

Attn.: Mr. lan T. Reed

Project: 2808

LIM Family Property

Site:

580 8th Street, Oakland, CA

Dear Mr. Reed,

Attached is our report for your samples received on Wednesday January 5, 2000 This report has been reviewed and approved for release. Reproduction of this report is permitted only in its entirety.

Please note that any unused portion of the samples will be discarded after February 4, 2000 unless you have requested otherwise. We appreciate the opportunity to be of service to you. If you have any questions, please call me at (925) 484-1919. You can also contact me via email. My email address is: vvancil@chromalab.com

Sincerely,

Vincent Vancil

Environmental Services (SDB)

Fuel Oxygenates by GC/MS

Aqua Science Engineers, Inc.

208 West El Pintado Road

Danville, CA 94526

Attn: Ian T. Reed

Phone: (925) 820-9391 Fax: (925) 837-4853

Project #: 2808

Project: LIM Family Property

Site: 58

580 8th Street, Oakland, CA

Samples Reported

Sample ID	Matrix	Date Sampled	Lab#
MW-3-16`	Soil	01/03/2000 08:45	1
MVV-4-16`	Soil	01/03/2000 13:35	2

Submission #: 2000-01-0048

Environmental Services (SDB)

To:

Aqua Science Engineers, Inc.

Attn.: Ian T. Reed

Test Method:

8260A

Prep Method:

8260A

Fuel Oxygenates by GC/MS

Sample ID:

MW-3-16

Lab Sample ID: 2000-01-0048-001

Project:

2808

Received:

01/05/2000 16:43

LIM Family Property

Site:

580 8th Street, Oakland, CA

Extracted:

01/11/2000 15:18

Sampled:

01/03/2000 08:45

QC-Batch:

Matrix:

Soil

2000/01/11-02.06

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
tert-Butyl alcohol (TBA) Methyl tert-butyl ether (MTBE) Di-isopropyl Ether (D!PE) Ethyl tert-butyl ether (ETBE) tert-Amyl methyl ether (TAME) Surrogate(s)	ND ND ND ND	5.0 5.0 10 5.0 5.0	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	1.00 1.00 1.00 1.00 1.00	01/11/2000 15:18 01/11/2000 15:18 01/11/2000 15:18 01/11/2000 15:18 01/11/2000 15:18	
1,2-Dichloroethane-d4	102.9	70-121	%	1.00	01/11/2000 15:18	

Submission #: 2000-01-0048

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Attn.: Ian T. Reed

Test Method:

8260A

Prep Method:

8260A

Fuel Oxygenates by GC/MS

Sample ID:

MW-4-16

Lab Sample ID: 2000-01-0048-002

Project:

2808

Received:

LIM Family Property

01/05/2000 16:43

Site:

580 8th Street, Oakland, CA

Extracted:

01/10/2000 17:57

Sampled:

01/03/2000 13:35

QC-Batch:

Matrix:

Soil

2000/01/10-03.06

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
tert-Butyl alcohol (TBA) Methyl tert-butyl ether (MTBE) Di-isopropyl Ether (DIPE) Ethyl tert-butyl ether (ETBE)	ND ND ND ND	5.0 5.0 10 5.0	ug/Kg ug/Kg ug/Kg ug/Kg	1.00 1.00 1.00 1.00	01/10/2000 17:57 01/10/2000 17:57 01/10/2000 17:57 01/10/2000 17:57	
tert-Amyl methyl ether (TAME) Surrogate(s) 1,2-Dichloroethane-d4	ND 102.1	5.0 70-121	ug/Kg	1.00	01/10/2000 17:57	

Submission #: 2000-01-0048

Environmental Services (SDB)

To:

Aqua Science Engineers, Inc.

Attn.: lan T. Reed

Test Method:

8260A

Prep Method:

8260A

Batch QC Report Fuel Oxygenates by GC/MS

Method Blank

Soil

QC Batch # 2000/01/10-03.06

MB:

2000/01/10-03.06-001

Date Extracted: 01/10/2000 13:00

Compound	Result	Rep.Limit	Units	Analyzed	Flag
tert-Butyl alcohol (TBA)	ND	5.0	ug/Kg	01/10/2000 13:00	
Methyl tert-butyl ether (MTBE)	ND	5.0	ug/Kg	01/10/2000 13:00	
Di-isopropyl Ether (DIPE)	ND	10.0	ug/Kg	01/10/2000 13:00	
Ethyl tert-butyl ether (ETBE)	ND	5.0	ug/Kg	01/10/2000 13:00	
tert-Amyl methyl ether (TAME)	ND	5.0	ug/Kg	01/10/2000 13:00	
Surrogate(s)					
1,2-Dichloroethane-d4	100.6	70-121	%	01/10/2000 13:00	

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Attn.: Ian T. Reed

Test Method:

8260A

Prep Method:

8260A

Batch QC Report Fuel Oxygenates by GC/MS

Method Blank

Soil

QC Batch # 2000/01/11-02.06

Submission #: 2000-01-0048

MB:

2000/01/11-02.06-001

Date Extracted: 01/11/2000 13:03

Compound	Result	Rep.Limit	Units	Analyzed	Flag
tert-Butyl alcohol (TBA) Methyl tert-butyl ether (MTBE) Di-isopropyl Ether (DIPE) Ethyl tert-butyl ether (ETBE) tert-Amyl methyl ether (TAME) Surrogate(s)	ND ND ND ND	5.0 5.0 10.0 5.0 5.0	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	01/11/2000 13:03 01/11/2000 13:03 01/11/2000 13:03 01/11/2000 13:03 01/11/2000 13:03	- rag
1,2-Dichloroethane-d4	99.0	70-121	%	01/11/2000 13:03	

۲

Environmental Services (SDB)

To:

Aqua Science Engineers, Inc.

Attn: Ian T. Reed

Test Method:

8260A

Submission #: 2000-01-0048

Prep Method:

8260A

Batch QC Report

Fuel Oxygenates by GC/MS

Laboratory Control Spike (LCS/LCSD)

Soil

QC Batch # 2000/01/10-03.06

LCS:

2000/01/10-03.06-002

Extracted: 01/10/2000 12:33

Analyzed: 01/10/2000 12:33

LCSD: 2000/01/10-03.06-003

Extracted: 01/10/2000 14:16

Analyzed: 01/10/2000 14:16

Compound	Conc. [ug/Kg]		Exp.Conc.	[ug/Kg]	Recovery [%]		RPD	Ctrl. Limits [%]		Flags	
	LCS	LCSD	LCS	LCSD	LCS	LCSD	[%]	Recovery	, 	LCS	LCSD
Methyl tert-butyl ether Surrogate(s)	128	121	100.0	100.0	128.0	121.0	-	65-165	20		-
1,2-Dichloroethane-d4	490	484	500	500	98.0	96.8		70-121			

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Attn: Ian T. Reed

Test Method:

8260A

Submission #: 2000-01-0048

Prep Method:

8260A

Batch QC Report

Fuel Oxygenates by GC/MS

Laboratory Control Spike (LCS/LCSD)

Soil

QC Batch # 2000/01/11-02.06

LCS:

2000/01/11-02.06-002

Extracted: 01/11/2000 13:42

Analyzed: 01/11/2000 13:42

LCSD: 2000/01/11-02.06-003

Extracted: 01/11/2000 12:36

Analyzed: 01/11/2000 12:36

Compound	Conc. [ug/Kg]		Exp.Conc.	[ug/Kg]	Recovery [%]		RPD	Ctrl. Lim	its [%]	[%] Flags	
	LCS	LCSD	LCS	LCSD	LCS	LCSD	[%]	Recovery	RPD	LCS	LCSD
Methyl tert-butyl ether Surrogate(s)	115	120	100.0	100.0	115.0	120.0	4.3	65-165	20		
1,2-Dichloroethane-d4	464	493	500	500	92.8	98.6		70-121			

Environmental Services (SDB)

Aqua Science Engineers, Inc.

Attn.: Ian T. Reed

Test Method: 8260A

Prep Method: 8260A

Batch QC Report

Fuel Oxygenates by GC/MS

Matrix Spike (MS / MSD)

Soil

QC Batch # 2000/01/10-03.06

Submission #: 2000-01-0048

Sample ID: MW-4-16`

Lab Sample ID: 2000-01-0048-002

MS:

2000/01/10-03.06-004 Extracted: 01/10/2000 18:23 Analyzed: 01/10/2000 18:23 Dilution: 1.0

MSD:

2000/01/10-03.06-005 Extracted: 01/10/2000 18:50 Analyzed: 01/10/2000 18:50 Dilution: 1.0

	Conc. [ug/Kg]			Exp.Conc	Exp.Conc. [ug/Kg] Recovery [%				Ctrl. Limi	te [%]	 lags
	MS	MSD	Sample	MS	MSD	MS	MSD		Recovery		 MSD
Methyl tert-butyl ether Surrogate(s)	107	116	ND	88.3	100.0	121.2	116.0		65-165	20	 105
1,2-Dichloroethane-d4	518	505		500	500	103.6	101.0		70-121		

Environmental Services (SDB)

Submission #: 2000-01-0048

Gas/BTEX and MTBE

Aqua Science Engineers, Inc.

208 West El Pintado Road

Danville, CA 94526

Phone: (925) 820-9391 Fax: (925) 837-4853

Project #: 2808

Attn: Ian T. Reed

Project: LIM Family Property

Site:

580 8th Street, Oakland, CA

Samples Reported

Sample ID	Matrix	Date Sampled	Lab#
MW-3-16`	Soil	01/03/2000 08:45	1 2
MW-4-16`	Soil	01/03/2000 13:35	

Submission #: 2000-01-0048

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Test Method:

8020

8015M

Attn.: Ian T. Reed

Prep Method:

5030

Gas/BTEX and MTBE

Sample ID:

MW-3-16

Lab Sample ID: 2000-01-0048-001

Project:

2808

Received:

01/05/2000 16:43

LIM Family Property

Site:

580 8th Street, Oakland, CA

Extracted:

01/10/2000 18:48

Sampled:

01/03/2000 08:45

QC-Batch:

2000/01/10-01.04

Matrix:

Soil

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Gasoline	ND	1.0	mg/Kg	1.00	01/10/2000 40:40	
Benzene	0.016	Į.			01/10/2000 18:48	
Toluene	I	0.0050	mg/Kg	1.00	01/10/2000 18:48	
	0.0084	0.0050	mg/Kg	1.00	01/10/2000 18:48	
Ethyl benzene	ND	0.0050	mg/Kg	1.00	01/10/2000 18:48	
Xylene(s)	0.012	0.0050	mg/Kg	1.00	01/10/2000 18:48	
MTBE	ND	0.0050	mg/Kg	1.00	01/10/2000 18:48	
Surrogate(s)						
Trifluorotoluene	67.8	53-125	%	1.00	01/10/2000 18:48	
4-Bromofluorobenzene-FID	61.5	58-124	%	1.00	01/10/2000 18:48	

Submission #: 2000-01-0048

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Test Method:

8020

8015M

Attn.: Ian T. Reed

Prep Method:

5030

Gas/BTEX and MTBE

Sample ID:

MW-4-16`

Lab Sample ID: 2000-01-0048-002

Project:

2808

LIM Family Property

Received:

01/05/2000 16:43

Site:

580 8th Street, Oakland, CA

Extracted:

01/10/2000 20:10

Sampled:

01/03/2000 13:35

Matrix:

Soil

QC-Batch:

2000/01/10-01.04

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Gasoline Benzene Toluene Ethyl benzene Xylene(s) MTBE Surrogate(s)	ND ND ND ND ND	1.0 0.0050 0.0050 0.0050 0.0050 0.0050	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	1.00 1.00 1.00 1.00 1.00 1.00	01/10/2000 20:10 01/10/2000 20:10 01/10/2000 20:10 01/10/2000 20:10 01/10/2000 20:10 01/10/2000 20:10	
Trifluorotoluene Trifluorotoluene-FID	63.2 68.7	53-125 53-125	%	1.00 1.00	01/10/2000 20:10 01/10/2000 20:10	

Submission #: 2000-01-0048

Environmental Services (SDB)

To:

Aqua Science Engineers, Inc.

Test Method:

8020

8015M

Attn.: Ian T. Reed

Prep Method:

5030

Batch QC Report Gas/BTEX and MTBE

Method Blank

Soil

QC Batch # 2000/01/10-01.04

MB:

2000/01/10-01.04-001

Date Extracted: 01/10/2000 06:48

Compound	Result	Rep.Limit	Units	Analyzed	Flag
Gasoline	ND	1.0	mg/Kg	01/10/2000 06:48	· iag
Benzene	ND	0.0050	mg/Kg	01/10/2000 06:48	
Toluene	ND	0.0050	mg/Kg	01/10/2000 06:48	
Ethyl benzene	ND	0.0050	mg/Kg	01/10/2000 06:48	
Xylene(s)	ND	0.0050	mg/Kg	01/10/2000 06:48	
MTBE	ND	0.0050	mg/Kg	01/10/2000 06:48	
Surrogate(s)				0 11 10/2000 00:48	
Trifluorotoluene	98.2	53-125	%	01/10/2000 06:48	
4-Bromofluorobenzene-FID	82.2	58-124	%	01/10/2000 06:48	

Submission #: 2000-01-0048

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Test Method:

8020

8015M

Prep Method:

5030

Batch QC Report

Gas/BTEX and MTBE

Laboratory Control Spike (LCS/LCSD)

Soil

QC Batch # 2000/01/10-01.04

LCS:

Attn: Ian T. Reed

2000/01/10-01.04-002

Extracted: 01/10/2000 07:15

Analyzed: 01/10/2000 07:15

LCSD:

2000/01/10-01.04-003

Extracted: 01/10/2000 07:43

Analyzed: 01/10/2000 07:43

Compound	Conc.	[mg/Kg]	Exp.Conc.	[mg/Kg]] Recovery [%]		BBD	Ctrl. Limits [%] Flags			
				r9.1.81		J., [70]	RPU	Cui. Lim	18 [%]	Flags	
	LCS	LCSD	LCS	LCSD	LCS	LCSD	[%]	Recovery	RPD	LCS	LCSD
Gasoline	0.523	0.547	0.500	0.500	104.6	109.4	4.5	75-125	35		
Benzene	0.0947	0.0890	0.1000	0.1000	94.7	89.0		77-123	35		
Toluene	0.0944	0.0881	0.1000	0.1000	94.4	88.1	6.9	78-122	35		
Ethyl benzene	0.0942	0.0892	0.1000	0.1000	94.2	89.2	5.5	70-122	35		
Xylene(s)	0.281	0.268	0.300	0.300	93.7	89.3	4.8	75-125	35		
Surrogate(s)		1		0.000	00.7	05.5	4.0	75-125	35		
Trifluorotoluene	442	421	500	500	88.4	84.2		53-125			
4-Bromofluorobenzene-Fl	434	434	500	500	86.8	86.8		58-124			

Petroleum Oil & Grease

Aqua Science Engineers, Inc.

208 West El Pintado Road

Danville, CA 94526

Attn: Ian T. Reed

Phone: (925) 820-9391 Fax: (925) 837-4853

Project #: 2808

Project: LIM Family Property

Site:

580 8th Street, Oakland, CA

Samples Reported

Sample ID	Matrix	Date Sampled	Lab#
MW-3-16`	Soil	01/03/2000 08:45	1 2
MW-4-16`	Soil	01/03/2000 13:35	

Environmental Services (SDB)

Aqua Science Engineers, Inc.

Attn.: Ian T. Reed

Test Method:

5520 E & F

Submission #: 2000-01-0048

Prep Method:

5520 E & F

Petroleum Oil & Grease

Rep.Limit

50

Sample ID:

MW-3-16`

Lab Sample ID: 2000-01-0048-001

Project:

2808

Received:

01/05/2000 16:43

To:

LIM Family Property

Site:

580 8th Street, Oakland, CA

Result

ND

Extracted:

01/06/2000

01/07/2000

Sampled:

01/03/2000 08:45

QC-Batch:

1.00

mg/Kg

2000/01/06-02.23

Matrix:

Compound

Oil & Grease (Petroleum)

Soil

Units	Dilution	Analyzed	Flag

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Attn.: Ian T. Reed

Test Method:

5520 E & F

Submission #: 2000-01-0048

Prep Method:

5520 E & F

Petroleum Oil & Grease

Sample ID:

MW-4-16

Lab Sample ID: 2000-01-0048-002

Project:

2808

Received:

01/05/2000 16:43

Site:

LIM Family Property

Extracted:

580 8th Street, Oakland, CA

01/06/2000

Sampled:

01/03/2000 13:35

QC-Batch:

2000/01/06-02.23

Matrix:

Soil

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Oil & Grease (Petroleum)	ND	50	mg/Kg	1.00	01/07/2000	

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Attn.: Ian T. Reed

Test Method:

5520 E & F

Prep Method:

5520 E & F

Batch QC Report
Petroleum Oil & Grease

Method Blank

Soil

QC Batch # 2000/01/06-02.23

Submission #: 2000-01-0048

MB:

2000/01/06-02.23-001

Date Extracted: 01/06/2000

Compound	Result	Rep.Limit	Units	Analyzed	Flag
Oil & Grease (Petroleum)	ND	50	mg/Kg	01/07/2000	

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Attn: Ian T. Reed

Test Method:

5520 E & F

Submission #: 2000-01-0048

Prep Method:

5520 E & F

Batch QC Report

Petroleum Oil & Grease

Laboratory Control Spike (LCS/LCSD)

Soil

QC Batch # 2000/01/06-02.23

LCS:

2000/01/06-02.23-002

Extracted: 01/06/2000

Analyzed:

01/07/2000

LCSD:

2000/01/06-02.23-003

Extracted: 01/06/2000

Analyzed:

01/07/2000

Compound	Conc.	[mg/Kg]	Exp.Conc.	[mg/Kg]	Recov	егу [%]	RPD	Ctrl. Lim	its [%]	Flag	ıs
	LCS	LCSD	LCS	LCSD	LCS	LCSD	[%]	Recovery	RPD	LCS	LCSD
Oil & Grease (Petroleum)	350	386	400	400	87.5	96.5	9.8	80-120	20		

Total Extractable Petroleum Hydrocarbons (TEPH)

Aqua Science Engineers, Inc.

208 West El Pintado Road

Danville, CA 94526

Attn: Ian T. Reed

Phone: (925) 820-9391 Fax: (925) 837-4853

Project #: 2808

Project: LIM Family Property

Site: 5

580 8th Street, Oakland, CA

Samples Reported

Sample ID	Matrix	Date Sampled	Lab#
MW-3-16`	Soil	01/03/2000 08:45	1
MW-4-16`	Soil	01/03/2000 13:35	2

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Test Method:

8015M

Submission #: 2000-01-0048

Attn.: Ian T. Reed

Prep Method:

3550/8015M

Total Extractable Petroleum Hydrocarbons (TEPH)

Sample ID:

MW-3-16`

Lab Sample ID: 2000-01-0048-001

Project:

2808

Received:

01/05/2000 16:43

LIM Family Property

Extracted:

01/07/2000 09:00

Sampled:

580 8th Street, Oakland, CA

Site:

01/03/2000 08:45

QC-Batch:

2000/01/06-02.10

Matrix:

Soil

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Diesel Motor Oil	ND ND	1.0 50	mg/Kg mg/Kg	1.00 1.00	01/07/2000 23:06 01/07/2000 23:06	
Surrogate(s) o-Terphenyl	84.1	60-130	%	1.00	01/07/2000 23:06	

Submission #: 2000-01-0048

Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Test Method:

8015M

Attn.: Ian T. Reed

Prep Method:

3550/8015M

Total Extractable Petroleum Hydrocarbons (TEPH)

Sample ID:

MW-4-16`

Lab Sample ID: 2000-01-0048-002

Project:

2808

Received:

01/05/2000 16:43

LIM Family Property

Site:

580 8th Street, Oakland, CA

Extracted:

01/06/2000 09:00

Sampled:

01/03/2000 13:35

QC-Batch:

2000/01/06-02.10

Matrix:

Soil

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Diesel	ND	1.0	mg/Kg	1.00	01/07/2000 23:43	*
Motor Oil	ND	50	mg/Kg	1.00	01/07/2000 23:43	
Surrogate(s) o-Terphenyl	79.6	60-130	%	1.00	01/07/2000 23:43	

Printed on: 01/12/2000 15:40

Page 3 of 6

Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Attn.: Ian T. Reed

Test Method:

8015M

Prep Method:

3550/8015M

Submission #: 2000-01-0048

Batch QC Report

Total Extractable Petroleum Hydrocarbons (TEPH)

Method Blank

Soil

QC Batch # 2000/01/06-02.10

MB:

2000/01/06-02.10-001

Date Extracted: 01/06/2000 09:00

Compound	Result	Rep.Limit	Units	Analyzed	Flag
Diesel	ND	1	mg/Kg	01/06/2000 23:04	
Motor Oil	ND	50	mg/Kg	01/06/2000 23:04	
Surrogate(s)					
o-Terphenyl	89.5	60-130	%	01/06/2000 23:04	

Printed on: 01/12/2000 15:40

Page 4 of 6

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Test Method:

8015M

Attn: Ian T. Reed

Prep Method:

3550/8015M

Submission #: 2000-01-0048

Batch QC Report

Total Extractable Petroleum Hydrocarbons (TEPH)

Laboratory Control Spike (LCS/LCSD)

Soil

QC Batch # 2000/01/06-02.10

LCS:

2000/01/06-02.10-002

Extracted: 01/06/2000 09:00

Analyzed: 01/07/2000 09:00

2000/01/06-02.10-003

Extracted: 01/06/2000 09:00

LCSD:

Analyzed: 01/07/2000 09:45

Compound	Conc.	[mg/Kg]	Exp.Conc.	[mg/Kg]	Recovery [%]		Recovery [%]		Recovery [%]		Recovery [%		RPD	Ctrl. Lim	its [%]	Flag	js
	LCS	LCSD	LCS	LCSD	LCS	LCSD	[%]	Recovery	RPD	LCS	LCSD						
Diesel Surrogate(s)	31.3	32.4	41.7	41.7	75.1	77.7	3.4	60-130	25								
o-Terphenyl	19.0	20.0	20.0	20.0	95.0	100.0		60-130									

Printed on: 01/12/2000 15:40

Page 5 of 6

Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Test Method: 8015M

Prep Method: 3550/8015M

Attn.: Ian T, Reed

Batch QC Report

Total Extractable Petroleum Hydrocarbons (TEPH)

Matrix Spike (MS / MSD)

Soil

QC Batch # 2000/01/06-02.10

Submission #: 2000-01-0048

Sample ID: MW-3-16

Lab Sample ID: 2000-01-0048-001

MS:

2000/01/06-02.10-004 Extracted: 01/06/2000 09:00 Analyzed: 01/07/2000 17:51 Dilution: 1.0

MSD:

2000/01/06-02.10-005 Extracted: 01/06/2000 09:00 Analyzed: 01/07/2000 18:38 Dilution: 1.0

Compound	Conc	[[ng/Kg]	Exp.Conc.	[mg/Kg]	Recov	ery [%]	RPD	Ctrl. Limi	ts [%]	FI	ags
	MS	MSD	Sample	MS	MSD	MS	MSD	[%]	Recovery	RPD	MS	MSD
Diesel	33.2	33.2	ND	41.7	41.7	79.6	79.6	0.0	60-130	25		
Surrogate(s)	18.8	20.7		20.0	20.0	94.0	103.5		60-130			

Printed on: 01/12/2000 15:40

Page 6 of 6

2001-01-0048

Aqua Science Engineers, Inc. 208 W. El Pintado Road

Chain of Custody

Danville, CA 94526 (925) 820-9391 FAX (925) 837-4853	Ché		O T		9 L	, () ()	1y			PAGE		OF	<u>/_</u>
	ONE NO.)	PROJECT ADDRESS	NAME	L1M 250			repertions.			JOB N DATE	_	1808 1.5.0	0
ANALYSIS REQUEST SPECIAL INSTRUCTIONS: 5- day TAT NO. OF	TPH-GAS / MTBE & BTEX (EPA 5030/8015-8020) TPH-GASOLINE (EPA 5030/8015)	(ETA 3510/8015) (EPA 3510/8015) PURGEABLE HALOCARBONS (EPA 601/8010)	PURGEABLE AROMATICS (EPA 602/8020)	VOLATILE ORGANICS (EPA 624/8240) SEMI-VOLATILE ORGANICS (EPA 625/8270)	OIL & GREASE (EPA 5520)	(EPA 6010+7000)	(EPA 6010+7000) PCBs & PESTICIDES (EPA 608/8080)	ORGANOPHOSPHORUS PESTICIDES (EPA 8140) (EPA 608/8080)	ORGANOCHLORINE HERBICIDES (EPA 8150)	FUEL OXYGENATES (EPA 8260)			COMPOSITE
SAMPLE ID. DATE TIME MATRIX SAMPLES MW-3-16' 1-3-00 0845 Soil 1 MW-4-16' 1-3-00 1335 Soil 1	(EPA	TPH FURCEPA	PUR.	VOL (EP)	OIL (EPP	11 de) 3	Z = 2 = 2	2 H	N H				
RELINQUISHED BY: (signature) (time) (signature) (printed name) (date) RECEIVED BY: (signature) (printed name)	(time) (date)	RELINQUIS (signature)		(time) 12:	REC (sig	EIVED BY Lusic nature) Havvi nted name	LABORATO Have (tin ngton) (da	DRY: reft 125 te/5/2	50	omment 5 d		AT 2°C	
Company- AS E		Company-			Cor	npany-	alab				5.	2°C	

APPENDIX D

Well Sampling Field Logs

ETTS engineers inc.

Project Name and Address:		L 119	·	
Job #:2808	Date of	sampling:	1/12/00	
Well Name:MW-1	Sampled	by:	iTZ'	
Job #: 2808 Well Name: MW-I Total depth of well (feet):	27.99	Well diamet	er (inches):	Z*
Depth to water before sampling	(feet):	17.44		
Depth to water before sampling Thickness of floating product if	any:		֥	
Depth of well casing in water (feet):	10.53	,	
Number of gallons per well cas	ing volume	(gallons):	[, 8	
Number of well casing volumes	to be remo	ived:	 {	
Req'd volume of groundwater to	be purged	beføre sampli	ng (gallons):	7.2
Equipment used to purge the w	ell:	dedicates	d scale	
Time Evacuation Began: 1305	Tir	ne Evacuation	r Finished: I	320
Approximate volume of ground	water purge	d:	7.5	
Did the well go dry? No	Δfi	ter how many	, gallang,	
Time samples were collected: Depth to water at time of samp	13z	<u>5</u>		
Depth to water at time of samp	ling:	17,50		
Percent recovery at time of san	npling:	98%		
Percent recovery at time of san Samples collected with:	d	edicated bail	~	
Sample color: Seculolea Description of sediment in samp	Od	or:mod	. HC odoi	
Description of sediment in samp	ple:	silt		
CHEMICAL DATA				
Volume Purged Temp	<u>pH</u>	Conductivity		. 4
1 77.6 7 91.9 3 72.6 4 73.0	5,76	713		
7 71,9	Cel3	813		
<u> </u>	7.10	927		
<u> </u>	5,44	871		
				
				
SAMPLES COLLECTED				
Sample # of containers Volume & ty	pe container P	res Iced? An	<u>alysis</u>	
<u>MW1 3 40ml</u>	· 	<u> </u>		
	 _	<u> </u>		
	C 			
		·		
	·			

Project Name and Address:		
Job #:2808	Date of sampling:/	112100
Well Name: Hw-Z Total depth of well (feet): Depth to water before compliments.	Sampled by:	TR
Total depth of well (feet):	26.78 Well diameter	(inches): Z"
Depth to water before sampling	(feet): 16.76'	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Thickness of floating product if	any: - shee	'n
Depth of well casing in water (feet): 10.62	
Number of gallons per well cass	ing volume (gallons):	1.7
view or well casing volumes	to be removed.	
Req'd volume of groundwater to	be purged before sampling	(gallons): / P
Equipment used to purge the w	(ell) $O(adiab)$.	r .
Time Evacuation Began: 1548	Time Evacuation F	Sinished 1411
Approximate volume of ground	water nurged: 7	.01
Did the well go dry?: ND Time samples were collected: Donth to water at time 5	After how many o	allons:
Time samples were collected:	14/15	arions
Deput to water at time of camp	dino: // →t `	
Percent recovery at time of sar	npling: 99%,	
Percent recovery at time of sar Samples collected with:	dencated ban	Ler
Sample color:	Odor: mad.	H. Nov
Description of sediment in samp		
CHEMICAL DATA Volume Purged Temp 1 72.3 2 3186 3 40.5 4 72.9	DH 6,73	
SAMPLES COLLECTED Sample # of containers Volume & ty HW-Z 3 464 Z 1-14		iis
Z [-1H		

Project Name and Address:	LIM	
Job #: 2808	Date of sampling:	1/12/00
Well Name: My-3	Sampled by:	ITR
Total depth of well (feet):	76.5 Well dian	meter (inches): Zu
Depth to water before sampling	(feet): 16.68	, ,
Thickness of floating product if	anv: 0,01	
Depth of well casing in water (feet) S.	82
Number of gallons per well cas	ing volume (gallons):	1.5
Number of well casing volumes	to be removed:	4
Req'd volume of groundwater to		
Equipment used to purge the w		
Time Evacuation Began: 1716	Time Evacua	tion Finished: 1238
Approximate volume of ground	water purged:	7.51
Did the well go dry?: No	After how m	anv allons
Time samples were collected:	1245	
Depth to water at time of samp	oling: 16 69	
Percent recovery at time of sai	npling: 99%.	
Samples collected with:		
Sample color: _ gray (leci	Odor: r	ned. HC oder
Description of sediment in sam	nle: hem	silt
F		
CHEMICAL DATA	•	
Volume Purged Temp.	pH Conducti	vity
1 713	16.71	•
2 726	6.81 399	7
3. 71.1	67	3
73.1	7.01 710	
		
SAMPLES COLLECTED.		
Sample # of containers Volume & t	ype container Pres Iced?	Analysis
MU-3 3 40 NE	✓ ✓	
Z Yenl	▼ ▼	
2 1-lite	$\overline{}$	
Z /2/14-		
V.		
		··

Project Name and A	ddress:	L/M			
Job #: 2808		Date of s	sampling: _	1/12/00	
Well Name: 1167	- 4	Sampled	by:	1772	
Total depth of well (feet):	26.6	Well diar	neter (inches): _	2 "
Depth to water before	re sampling	(feet):	17.79		
Thickness of floating	product if	any:			
Thickness of floating Depth of well casing	in water (f	eet):	9.36		
Number of gallons p	er well casi	ng volume	(gallons):	<u> </u>	
Number of well casi	ng volumes	to be remo	ved:	<u> </u>	
Req'd volume of gro					6.4
Equipment used to p	ourge the w	ell:de	carcoled p	aller	
Time Evacuation Beg					1150
Approximate volume					
Did the well go dry?	: <u>PO</u>	Aft	ter how m	any gallons:	
Time samples were	collected:		55		
Depth to water at ti	me of samp	ling:	17.34		
Percent recovery at	time of san	npling:	40 /		
Samples collected w	ith:	de	dicated 1	baller	
Sample color:	remy well as in	ბს∾ Od	or:	Stair FC 6000	
Description of sedim	nent in samp	ole: <u> </u>	<u> </u>		
CHEMICAL DATA			•		
Volume Purged	<u>Temp</u>	<u>рН</u>	<u>Conducti</u>		
	72.1	<u>5,6/</u>		<u> </u>	
	71.6	6.73		<u> </u>	
3	<u> 90 9</u>	6.10	97	4	•
<u> </u>	71,6	3.97	410	2	~
					
SAMPLES COLLEC	TED				
Sample # of containers	s Volume & ty	ne container l	Pres Iced?	Analysis	
MW-4 3		lyok	$\sqrt{}$	TPH-G/BIE	11.48E
2	46 M	L VCA	V V	8 270	
Z		Ambe		774 1)
2		AMBEI		046	

APPENDIX E

Analytical Report and Chain of Custody Form For Groundwater Samples

Submission #: 2000-01-0223

Date: January 25, 2000

Aqua Science Engineers, Inc. 208 West El Pintado Road Danville, CA 94526

Attn.: Mr. Ian T. Reed

Project: 2808

LIM Property

Site:

250 8th Street Oakland, CA

Dear Mr. Reed,

Attached is our report for your samples received on Friday January 14, 2000 This report has been reviewed and approved for release. Reproduction of this report is permitted only in its entirety.

Please note that any unused portion of the samples will be discarded after February 13, 2000 unless you have requested otherwise. We appreciate the opportunity to be of service to you. If you have any questions, please call me at (925) 484-1919. You can also contact me via email. My email address is: vvancil@chromalab.com

Sincerely,

Vincent Vancil

Halogenated Volatile Organic Compounds

Aqua Science Engineers, Inc.

208 West El Pintado Road

Danville, CA 94526

Attn: Ian T. Reed

Phone: (925) 820-9391 Fax: (925) 837-4853

Project #: 2808

Project: LIM Property

Site:

250 8th Street

Oakland, CA

Samples Reported

Sample ID	Matrix	Date Sampled	Lab#
MW-1	Water	01/12/2000 13:25	1
MW-2	Water	01/12/2000 14:05	2

Aqua Science Engineers, Inc. To:

Test Method:

8010

Attn.: Ian T. Reed

Prep Method:

5030

Halogenated Volatile Organic Compounds

Sample ID:

MW-1

Lab Sample ID: 2000-01-0223-001

Project:

2808

Received:

01/14/2000 18:47

LIM Property

Site:

250 8th Street Oakland, CA

Extracted:

01/20/2000 23:26

Sampled:

01/12/2000 13:25

QC-Batch:

2000/01/20-01.25

Matrix:

Water

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Dichlorodifluoromethane	ND	1.0	ug/L	1.00	01/20/2000 23:26	
Vinyl chloride	ND	0.50	ug/L	1.00	01/20/2000 23:26	
Chloroethane	ND	0.50	ug/L	1.00	01/20/2000 23:26	
Trichlorofluoromethane	ND	0.50	ug/L	1.00	01/20/2000 23:26	
1,1-Dichloroethene	ND	0.50	ug/L	1.00	01/20/2000 23:26	
Methylene chloride	ND	5.0	ug/L	1.00	01/20/2000 23:26	
trans-1,2-Dichloroethene	ND	0.50	ug/L	1.00	01/20/2000 23:26	
cis-1,2-Dichloroethene	ND	0.50	ug/L	1.00	01/20/2000 23:26	
1,1-Dichloroethane	ND	0.50	ug/L	1.00	01/20/2000 23:26	
Chloroform	3.2	0.50	ug/L	1.00	01/20/2000 23:26	
1,1,1-Trichloroethane	ND	0.50	ug/L	1.00	01/20/2000 23:26	
Carbon tetrachloride	ND	0.50	ug/L	1.00	01/20/2000 23:26	
1,2-Dichloroethane	ND	0.50	ug/L	1.00	01/20/2000 23:26	
Trichloroethene	ND	0.50	ug/L	1.00	01/20/2000 23:26	
1,2-Dichloropropane	ND	0.50	ug/L	1.00	01/20/2000 23:26	
Bromodichloromethane	ND	0.50	ug/L	1.00	01/20/2000 23:26	
2-Chloroethylvinyl ether	ND	0.50	ug/L	1.00	01/20/2000 23:26	
trans-1,3-Dichloropropene	ND	0.50	ug/L	1.00	01/20/2000 23:26	
cis-1,3-Dichloropropene	ND	0.50	ug/L	1.00	01/20/2000 23:26	
1,1,2-Trichloroethane	ND	0.50	ug/L	1.00	01/20/2000 23:26	
Tetrachloroethene	0.80	0.50	ug/L	1.00	01/20/2000 23:26	
Dibromochloromethane	ND	0.50	ug/L	1.00	01/20/2000 23:26	
Chlorobenzene	ND	0.50	ug/L	1.00	01/20/2000 23:26	
Bromoform	ND	2.0	ug/L	1.00	01/20/2000 23:26	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1.00	01/20/2000 23:26	
1,3-Dichlorobenzene	ND	0.50	ug/L	1.00	01/20/2000 23:26	
1,4-Dichlorobenzene	ND	0.50	ug/L	1.00	01/20/2000 23:26	
1,2-Dichlorobenzene	ND	0.50	ug/L	1.00	01/20/2000 23:26	
Trichlorotrifluoroethane	ND	2.0	ug/L	1.00	01/20/2000 23:26	
Chloromethane	ND	1.0	ug/L	1.00	01/20/2000 23:26	
Bromomethane	ND	1.0	ug/L	1.00	01/20/2000 23:26	
Surrogate(s)						
1-Chloro-2-fluorobenzene	86.0	50-150	%	1.00	01/20/2000 23:26	

Submission #: 2000-01-0223

Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Test Method:

8010

Attn.: Ian T. Reed

Prep Method:

5030

Halogenated Volatile Organic Compounds

Sample ID:

MW-2

Lab Sample ID: 2000-01-0223-002

Project:

2808

Received:

01/14/2000 18:47

Site:

LIM Property

Extracted:

01/20/2000 02:03

250 8th Street Oakland, CA

Sampled:

01/12/2000 14:05

QC-Batch:

2000/01/19-01.26

Matrix:

Water

Sample/Analysis Flag: Irn (See Legend & Note section)

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Dichlorodifluoromethane	ND	2.0	ug/L	2.00	01/20/2000 02:03	
Vinyl chloride	ND	1.0	ug/L	2.00	01/20/2000 02:03	
Chloroethane	ND	1.0	ug/L	2.00	01/20/2000 02:03	
Trichlorofluoromethane	ND	1.0	ug/L	2.00	01/20/2000 02:03	
1,1-Dichloroethene	ND	1.0	ug/L	2.00	01/20/2000 02:03	
Methylene chloride	ND	10	ug/L	2.00	01/20/2000 02:03	
trans-1,2-Dichloroethene	ND	1.0	ug/L	2.00	01/20/2000 02:03	
cis-1,2-Dichloroethene	ND	1.0	ug/L	2.00	01/20/2000 02:03	
1,1-Dichloroethane	ND	1.0	ug/L	2.00	01/20/2000 02:03	
Chloroform	ND	1.0	ug/L	2.00	01/20/2000 02:03	
1,1,1-Trichloroethane	ND	1.0	ug/L	2.00	01/20/2000 02:03	
Carbon tetrachloride	ND	1.0	ug/L	2.00	01/20/2000 02:03	
1,2-Dichloroethane	8.8	1.0	ug/L	2.00	01/20/2000 02:03	
Trichloroethene	ND	1.0	ug/L	2.00	01/20/2000 02:03	
1,2-Dichloropropane	ND	1.0	ug/L	2.00	01/20/2000 02:03	
Bromodichloromethane	ND	1.0	ug/L	2.00	01/20/2000 02:03	l
2-Chloroethylvinyl ether	ND	1.0	ug/L	2.00	01/20/2000 02:03	
trans-1,3-Dichloropropene	ND	1.0	ug/L	2.00	01/20/2000 02:03	
cis-1,3-Dichloropropene	ND	1.0	ug/L	2.00	01/20/2000 02:03	
1,1,2-Trichloroethane	ND	1.0	ug/L	2.00	01/20/2000 02:03	
Tetrachloroethene	ND	1.0	ug/L	2.00	01/20/2000 02:03	
Dibromochloromethane	ND	1.0	ug/L	2.00	01/20/2000 02:03	
Chlorobenzene	ND	1.0	ug/L	2.00	01/20/2000 02:03	
Bromoform	ND	4.0	ug/L	2.00	01/20/2000 02:03	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	2.00	01/20/2000 02:03	
1,3-Dichlorobenzene	ND	1.0	ug/L	2.00	01/20/2000 02:03	
1,4-Dichlorobenzene	ND	1.0	ug/L	2.00	01/20/2000 02:03	
1,2-Dichlorobenzene	ND	1.0	ug/L	2.00	01/20/2000 02:03	ļ
Trichlorotrifluoroethane	ND	4.0	ug/L	2.00	01/20/2000 02:03	
Chloromethane	ND	2.0	ug/L	2.00	01/20/2000 02:03	,
Bromomethane	ND	2.0	ug/L	2.00	01/20/2000 02:03	5
Surrogate(s)	l l					

Submission #: 2000-01-0223

Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Test Method:

8010

Attn.: Ian T. Reed

Prep Method:

5030

Halogenated Volatile Organic Compounds

Sample ID:

MW-2

Lab Sample ID: 2000-01-0223-002

Project:

2808

Received:

01/14/2000 18:47

LIM Property

Extracted:

01/20/2000 02:03

Site:

250 8th Street Oakland, CA

Sampled:

01/12/2000 14:05

QC-Batch:

2000/01/19-01.26

Matrix:

Water

Sample/Analysis Flag: Irn (See Legend & Note section)

Compound	Result	Rep.Limit	Units	Dilution	* Analyzed	Flag
1-Chloro-2-fluorobenzene	91.0	50-150	%	1.00	01/20/2000 02:03	

Submission #: 2000-01-0223

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Test Method:

8010

Attn.: lan T. Reed

Prep Method:

5030

Batch QC Report

Halogenated Volatile Organic Compounds

Method Blank

Water

QC Batch # 2000/01/19-01.26

MB:

Printed on: 01/25/2000 16:47

2000/01/19-01.26-001

Date Extracted: 01/19/2000 18:54

Compound	Result	Rep.Limit	Units	Analyzed	Flag
Dichlorodifluoromethane	ND	1.0	ug/L	01/19/2000 18:54	
Vinyl chloride	ND	0.5	ug/L	01/19/2000 18:54	
Chloroethane	ND	0.5	ug/L	01/19/2000 18:54	
Trichlorofluoromethane	ND	0.5	ug/L	01/19/2000 18:54	
1,1-Dichloroethene	ND	0.5	ug/L	01/19/2000 18:54	
Methylene chloride	ND	5.0	ug/L	01/19/2000 18:54	
trans-1,2-Dichloroethene	ND	0.5	ug/L	01/19/2000 18:54	
cis-1,2-Dichloroethene	ND	0.5	ug/L	01/19/2000 18:54	
1,1-Dichloroethane	ND	0.5	ug/L	01/19/2000 18:54	
Chloroform	ND	0.5	ug/L	01/19/2000 18:54	
1,1,1-Trichloroethane	ND	0.5	ug/L	01/19/2000 18:54	
Carbon tetrachloride	ND	0.5	ug/L	01/19/2000 18:54	
1,2-Dichloroethane	ND	0.5	ug/L	01/19/2000 18:54	
Trichloroethene	ND	0.5	ug/L	01/19/2000 18:54	
1,2-Dichloropropane	ND	0.5	ug/L	01/19/2000 18:54	
Bromodichloromethane	ND	0.5	ug/L	01/19/2000 18:54	
2-Chloroethylvinyl ether	ND	0.5	ug/L	01/19/2000 18:54	
trans-1,3-Dichloropropene	ND	0.5	ug/L	01/19/2000 18:54	
cis-1,3-Dichloropropene	ND	0.5	ug/L	01/19/2000 18:54	
1,1,2-Trichloroethane	ND	0.5	ug/L	01/19/2000 18:54	
Tetrachloroethene	ND	0.5	ug/L	01/19/2000 18:54	
Dibromochloromethane	ND	0.5	ug/L	01/19/2000 18:54	
Chlorobenzene	ND	0.5	ug/L	01/19/2000 18:54	
Bromoform	ND	2.0	ug/L	01/19/2000 18:54	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	01/19/2000 18:54	
1,3-Dichlorobenzene	ND	0.5	ug/L	01/19/2000 18:54	
1,4-Dichlorobenzene	ND	0.5	ug/L	01/19/2000 18:54	
1,2-Dichlorobenzene	ND	0.5	ug/L	01/19/2000 18:54	
Trichlorotrifluoroethane	ND	2.0	ug/L	01/19/2000 18:54	
Chloromethane	ND	1.0	ug/L	01/19/2000 18:54	
Bromomethane	ND	1.0	ug/L	01/19/2000 18:54	
Surrogate(s)					
1-Chloro-2-fluorobenzene	84.5	50-150	%	01/19/2000 18:54	

Submission #: 2000-01-0223

Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Attn.: Ian T. Reed

Test Method:

8010

Prep Method:

5030

Batch QC Report

Halogenated Volatile Organic Compounds

Method Blank

Water

QC Batch # 2000/01/20-01.25

MB:

2000/01/20-01.25-001

Date Extracted: 01/20/2000 09:22

Compound	Result	Rep.Limit	Units	Analyzed	Flag
Dichlorodifluoromethane	ND	1.0	ug/L	01/20/2000 09:22	
Vinyl chloride	ND	0.5	ug/L	01/20/2000 09:22	
Chloroethane	ND	0.5	ug/ L	01/20/2000 09:22	
Trichlorofluoromethane	ND	0.5	ug/L	01/20/2000 09:22	
1,1-Dichloroethene	ND	0.5	ug/L	01/20/2000 09:22	
Methylene chloride	ND	5.0	ug/L	01/20/2000 09:22	
trans-1,2-Dichloroethene	ND	0.5	ug/L	01/20/2000 09:22	
cis-1,2-Dichloroethene	ND	0.5	ug/L	01/20/2000 09:22	
1,1-Dichloroethane	ND	0.5	ug/L	01/20/2000 09:22	
Chloroform	ND	0.5	ug/L	01/20/2000 09:22	
1,1,1-Trichloroethane	ND	0.5	ug/L	01/20/2000 09:22	
Carbon tetrachloride	ND	0.5	ug/L	01/20/2000 09:22	
1,2-Dichloroethane	ND	0.5	ug/L	01/20/2000 09:22	
Trichloroethene	ND	0.5	ug/L	01/20/2000 09:22	
1,2-Dichloropropane	ND	0.5	ug/L	01/20/2000 09:22	
Bromodichloromethane	ND	0.5	ug/L	01/20/2000 09:22	
2-Chloroethylvinyl ether	ND	0.5	ug/L	01/20/2000 09:22	
trans-1,3-Dichloropropene	ND	0.5	ug/L	01/20/2000 09:22	
cis-1,3-Dichloropropene	ND	0.5	ug/L	01/20/2000 09:22	
1,1,2-Trichloroethane	ND	0.5	ug/L	01/20/2000 09:22	
Tetrachloroethene	ND	0.5	ug/L	01/20/2000 09:22	
Dibromochloromethane	ND	0.5	ug/L	01/20/2000 09:22	
Chlorobenzene	ND	0.5	ug/L	01/20/2000 09:22	
Bromoform	ND	2.0	ug/L	01/20/2000 09:22	•
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	01/20/2000 09:22	
1,3-Dichlorobenzene	ND	0.5	ug/L	01/20/2000 09:22	
1,4-Dichlorobenzene	ND	0.5	ug/L	01/20/2000 09:22	
1,2-Dichlorobenzene	ND	0.5	ug/L	01/20/2000 09:22	
Trichlorotrifluoroethane	ND	2.0	ug/L	01/20/2000 09:22	
Chloromethane	ND	1.0	ug/L	01/20/2000 09:22	
Bromomethane	ND	1.0	ug/L	01/20/2000 09:22	
Surrogate(s)			!		
1-Chloro-2-fluorobenzene	81.5	50-150	%	01/20/2000 09:22	[

Environmental Services (SDB)

To: Aqua Science Engineers, Inc. Test Method:

8010

Submission #: 2000-01-0223

Attn: Ian T. Reed

Prep Method:

5030

Batch QC Report

Halogenated Volatile Organic Compounds

Laboratory Control Spike (LCS/LCSD)

Water

QC Batch # 2000/01/19-01.26

LCS:

2000/01/19-01.26-002

Extracted: 01/19/2000 19:42

Analyzed: 01/19/2000 19:42

LCSD:

2000/01/19-01.26-003

Extracted: 01/19/2000 20:29

Analyzed: 01/19/2000 20:29

Compound	Conc.	[ug/L]	Exp.Conc.	[ug/L]	Recov	ery [%]	RPD	Ctrl. Lim	its [%]	Flag	gs
	LCS	LCSD	LCS	LCSD	LCS	LCSD	[%]	Recovery	RPD	LCS	LCSD
1,1-Dichloroethene	17.3	16.5	20.0	20.0	86.5	82.5	4.7	50-140	20		
Trichloroethene	20.6	21.3	20.0	20.0	103.0	106.5	3.3	50-150	20		
Chlorobenzene	18.6	19.3	20.0	20.0	93.0	96.5	3.7	50-150	20		
Surrogate(s)					i]	İ		
1-Chloro-2-fluorobenzene	19.5	19.1	20	20	97.5	95.5		50-150			

Printed on: 01/25/2000 16:47

Page 7 of 9

Environmental Services (SDB)

To: Aqua Science Engineers, Inc. Test Method:

8010

Attn: Ian T. Reed

Prep Method:

5030

Batch QC Report

Halogenated Volatile Organic Compounds

Laboratory Control Spike (LCS/LCSD)

Water

QC Batch # 2000/01/20-01.25

LCS: LCSD: 2000/01/20-01.25-002 2000/01/20-01.25-003

Extracted: 01/20/2000 10:19 Extracted: 01/20/2000 11:16

Analyzed: 01/20/2000 10:19 Analyzed: 01/20/2000 11:16

Submission #: 2000-01-0223

Compound	Conc.	[ug/L]	Exp.Conc.	[ug/L]	Recov	ery [%]	RPD	Ctrl. Lim	its [%]	Flag	gs
	LCS	LCSD	LCS	LCSD	LCS	LCSD	[%]	Recovery	RPD	LCS	LCSD
1,1-Dichloroethene	19.1	18.8	20.0	20.0	95.5	94.0	1.6	50-140	20		
Trichloroethene	19.5	18.8	20.0	20.0	97.5	94.0	3.7	50-150	20		
Chlorobenzene	19.6	19.5	20.0	20.0	98.0	97.5	0.5	50-150	20		
Surrogate(s)		1									
1-Chloro-2-fluorobenzene	18.9	17.9	20	20	94.5	89.5		50-150			

Printed on: 01/25/2000 16:47

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Test Method: 8010

Attn:lan T. Reed

Prep Method: 5030

Submission #: 2000-01-0223

Legend & Notes

Halogenated Volatile Organic Compounds

Analysis Flags

Irn

Reporting limits raised due to high level of non-target analyte materials.

1220 Quarry Lane * Pleasanton, CA 94566-4756 Telephone: (925) 484-1919 * Facsimile: (925) 484-1096

Printed on: 01/25/2000 16:47

Volatile Organic Compounds

Aqua Science Engineers, Inc.

208 West El Pintado Road

Danville, CA 94526

Phone: (925) 820-9391 Fax: (925) 837-4853

Project #: 2808

Attn: lan T. Reed

Project: LIM Property

Site:

250 8th Street

Oakland, CA

Samples Reported

Sample ID	Matrix	Date Sampled	Lab#
MVV-3	Water	01/12/2000 12:45	3
MW-4	Water	01/12/2000 11:55	4
			1

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Test Method:

8260A

Submission #: 2000-01-0223

Attn.: Ian T. Reed

Prep Method:

5030

Volatile Organic Compounds

Sample ID:

MW-3

Lab Sample ID: 2000-01-0223-003

Project:

2808

Received:

01/14/2000 18:47

LIM Property

Extracted:

Site:

250 8th Street Oakland, CA

01/20/2000 18:02

Sampled:

01/12/2000 12:45

QC-Batch:

2000/01/20-01.27

Matrix:

Printed on: 01/25/2000 16:47

Water

Sample/Analysis Flag: o (See Legend & Note section)

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Acetone	25000	10000	ug/L	200.00	01/20/2000 18:02	
Benzene	22000	100	ug/L	200.00	01/20/2000 18:02	
Bromodichloromethane	ND	100	ug/L	200.00	01/20/2000 18:02	
Bromoform	ND	100	ug/L	200.00	01/20/2000 18:02	
Bromomethane	ND	200	ug/L	200.00	01/20/2000 18:02	
Carbon tetrachloride	ND	100	ug/L	200.00	01/20/2000 18:02	
Chlorobenzene	ND	100	ug/L	200.00	01/20/2000 18:02	
Chloroethane	ND	200	ug/L	200.00	01/20/2000 18:02	
2-Butanone(MEK)	ND	10000	ug/L	200.00	01/20/2000 18:02	
2-Chloroethylvinyl ether	ND	100	ug/L	200.00	01/20/2000 18:02	
Chloroform	ND	100	ug/L	200.00	01/20/2000 18:02	
Chloromethane	ND	200	ug/L	200.00	01/20/2000 18:02	
Dibromochloromethane	ND	100	ug/L	200.00	01/20/2000 18:02	
1,2-Dichlorobenzene	ND	100	ug/L	200.00	01/20/2000 18:02	
1,3-Dichlorobenzene	ND	100	ug/L	200.00	01/20/2000 18:02	
1,4-Dichlorobenzene	ND	100	ug/L	200.00	01/20/2000 18:02	
1,2-Dibromo-3-chloropropane	ND	1000	ug/L	200.00	01/20/2000 18:02	
1,2-Dibromoethane	ND	100	ug/L	200.00	01/20/2000 18:02	
Dibromomethane	ND	100	ug/L	200.00	01/20/2000 18:02	
Dichlorodifluoromethane	ND	100	ug/L	200.00	01/20/2000 18:02	
1,1-Dichloroethane	ND	100	ug/L	200.00	01/20/2000 18:02	
1,2-Dichloroethane	120	100	ug/L	200.00	01/20/2000 18:02	
1,1-Dichloroethene	ND	100	ug/L	200.00	01/20/2000 18:02	
cis-1,2-Dichloroethene	ND	100	ug/L	200.00	01/20/2000 18:02	
trans-1,2-Dichloroethene	ND	100	ug/L	200.00	01/20/2000 18:02	
1,2-Dichloropropane	ND	100	ug/L	200.00	01/20/2000 18:02	
cis-1,3-Dichloropropene	ND	100	ug/L	200.00	01/20/2000 18:02	
trans-1,3-Dichloropropene	ND	100	ug/L	200.00	01/20/2000 18:02	•
Ethylbenzene	2400	100	ug/L	200.00	01/20/2000 18:02	
2-Hexanone	ND	10000	ug/L	200.00	01/20/2000 18:02	
Methylene chloride	ND	1000	ug/L	200.00	01/20/2000 18:02	
4-Methyl-2-pentanone (MIBK)	ND	10000	ug/L	200.00	01/20/2000 18:02	

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Attn.: Ian T. Reed

Test Method:

8260A

Submission #: 2000-01-0223

Prep Method:

5030

Volatile Organic Compounds

Sample ID:

MW-3

Lab Sample ID: 2000-01-0223-003

Project:

2808

Received:

01/14/2000 18:47

LIM Property

Site:

250 8th Street

Extracted:

01/20/2000 18:02

Oakland, CA

01/12/2000 12:45

QC-Batch:

2000/01/20-01.27

Sampled: Matrix:

Water

Sample/Analysis Flag: o (See Legend & Note section)

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Naphthalene	550	200	ug/L	200.00	01/20/2000 18:02	
Styrene	ND	100	ug/L	200.00	01/20/2000 18:02	
1,1,2,2-Tetrachloroethane	ND	100	ug/L	200.00	01/20/2000 18:02	
Tetrachloroethene	ND	100	ug/L	200.00	01/20/2000 18:02	
Toluene	18000	100	ug/L	200.00	01/20/2000 18:02	
1,1,1-Trichloroethane	ND	100	ug/L	200.00	01/20/2000 18:02	
1,1,2-Trichloroethane	ND	100	ug/L	200.00	01/20/2000 18:02	
Trichloroethene	ND	100	ug/L	200.00	01/20/2000 18:02	
1,1,1,2-Tetrachloroethane	ND	100	ug/L	200.00	01/20/2000 18:02	
Vinyl acetate	ND	1000	ug/L	200.00	01/20/2000 18:02	
Vinyl chloride	ND	100	ug/L	200.00	01/20/2000 18:02	
Total xylenes	12000	200	ug/L	200.00	01/20/2000 18:02	
Trichlorotrifluoroethane	ND	100	ug/L	200.00	01/20/2000 18:02	
Carbon disulfide	ND	200	ug/L	200.00	01/20/2000 18:02	
Isopropylbenzene	120	100	ug/L	200.00	01/20/2000 18:02	
Bromobenzene	ND	100	ug/L	200.00	01/20/2000 18:02	
Bromochloromethane	ND	200	ug/L	200.00	01/20/2000 18:02	
Trichlorofluoromethane	ND	400	ug/L	200.00	01/20/2000 18:02	
Surrogate(s)						
4-Bromofluorobenzene	102.0	86-115	%	1.00	01/20/2000 18:02	
1,2-Dichloroethane-d4	103.8	76-114	%	1.00	01/20/2000 18:02	
Toluene-d8	95.0	88-110	%	1.00	01/20/2000 18:02	

Printed on: 01/25/2000 16:47

Submission #: 2000-01-0223

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Test Method:

8260A

Attn.: Ian T. Reed

Prep Method:

5030

Volatile Organic Compounds

Sample ID:

MW-4

Lab Sample ID: 2000-01-0223-004

Project:

2808

Received:

01/14/2000 18:47

LIM Property

Extracted:

01/20/2000 18:40

Site:

250 8th Street Oakland, CA

Sampled:

01/12/2000 11:55

QC-Batch:

2000/01/20-01.27

Matrix:

Water

Sample/Analysis Flag: o (See Legend & Note section)

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Acetone	6400	5000	ug/L	100.00	01/20/2000 18:40	
Benzene	15000	250	ug/L	500.00	01/21/2000 15:44	
Bromodichloromethane	ND	50	ug/L	100.00	01/20/2000 18:40	
Bromoform	ND	50	ug/L	100.00	01/20/2000 18:40	İ
Bromomethane	ND	100	ug/L	100.00	01/20/2000 18:40	
Carbon tetrachloride	ND	50	ug/L	100.00	01/20/2000 18:40	
Chlorobenzene	ND	50	ug/L	100.00	01/20/2000 18:40	
Chloroethane	ND	100	ug/L	100.00	01/20/2000 18:40	
2-Butanone(MEK)	ND	5000	ug/L	100.00	01/20/2000 18:40	
2-Chloroethylvinyl ether	ND	50	ug/L	100.00	01/20/2000 18:40	
Chloroform	ND	50	ug/L	100.00	01/20/2000 18:40	
Chloromethane	ND	100	ug/L	100.00	01/20/2000 18:40	
Dibromochloromethane	ND	50	ug/L	100.00	01/20/2000 18:40	
1,2-Dichlorobenzene	ND	50	ug/L	100.00	01/20/2000 18:40	
1,3-Dichlorobenzene	ND	50	ug/L	100.00	01/20/2000 18:40	
1,4-Dichlorobenzene	ND	50	ug/L	100.00	01/20/2000 18:40	-
1,2-Dibromo-3-chloropropane	ND	500	ug/L	100.00	01/20/2000 18:40	1
1,2-Dibromoethane	ND	50	ug/L	100.00	01/20/2000 18:40	
Dibromomethane	ND	50	ug/L	100.00	01/20/2000 18:40	
Dichlorodifluoromethane	ND	50	ug/L	100.00	01/20/2000 18:40	
1,1-Dichloroethane	ND	50	ug/L	100.00	01/20/2000 18:40	
1,2-Dichloroethane	140	50	ug/L	100.00	01/20/2000 18:40	
1,1-Dichloroethene	ND	50	ug/L	100.00	01/20/2000 18:40	
cis-1,2-Dichloroethene	ND	50	: ug/L	100.00	01/20/2000 18:40	
trans-1,2-Dichloroethene	ND	50	ug/L	100.00	01/20/2000 18:40	
1,2-Dichloropropane	ND	50	ug/L	100.00	01/20/2000 18:40	
cis-1,3-Dichloropropene	ND	50	ug/L	100,00	01/20/2000 18:40	
trans-1,3-Dichloropropene	ND	50	ug/L	100.00	01/20/2000 18:40	
Ethylbenzene	2200	50	ug/L	100.00	01/20/2000 18:40	
2-Hexanone	ND	5000	ug/L	100.00	01/20/2000 18:40	
Methylene chloride	ND	500	ug/L	100.00	01/20/2000 18:40	}
4-Methyl-2-pentanone (MIBK)	ND	5000	ug/L	100.00	01/20/2000 18:40	

1220 Quarry Lane * Pleasanton, CA 94566-4756

Telephone: (925) 484-1919 * Facsimile: (925) 484-1096

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Attn.: lan T. Reed

Test Method:

8260A

Submission #: 2000-01-0223

Prep Method:

5030

Volatile Organic Compounds

Sample ID:

MW-4

Lab Sample ID: 2000-01-0223-004

Project:

2808

Received:

01/14/2000 18:47

LIM Property

Site:

250 8th Street Oakland, CA

Extracted:

01/20/2000 18:40

Sampled:

01/12/2000 11:55

QC-Batch:

2000/01/20-01.27

Matrix:

Water

Sample/Analysis Flag: o (See Legend & Note section)

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Naphthalene	540	100	ug/L	100.00	01/20/2000 18:40	
Styrene	ND	50	ug/L	100.00	01/20/2000 18:40	
1,1,2,2-Tetrachloroethane	ND	50	ug/L	100.00	01/20/2000 18:40	
Tetrachloroethene	ND	50	ug/L	100.00	01/20/2000 18:40	
Toluene	18000	250	ug/L	500.00	01/21/2000 15:44	
1,1,1-Trichloroethane	ND	50	ug/L	100.00	01/20/2000 18:40	
1,1,2-Trichloroethane	ND	50	ug/L	100.00	01/20/2000 18:40	
Trichloroethene	ND	50	ug/L	100.00	01/20/2000 18:40	
1,1,1,2-Tetrachloroethane	ND	50	ug/L	100.00	01/20/2000 18:40	
Vinyl acetate	ND	500	ug/L	100.00	01/20/2000 18:40	
Vinyl chloride	ND	50	ug/L	100.00	01/20/2000 18:40	
Total xylenes	14000	100	ug/L	100.00	01/20/2000 18:40	
Trichlorotrifluoroethane	ND	50	ug/L	100.00	01/20/2000 18:40	
Carbon disulfide	ND	100	ug/L	100.00	01/20/2000 18:40	
Isopropylbenzene	89	50	ug/L	100.00	01/20/2000 18:40	
Bromobenzene	ND	50	ug/L	100.00	01/20/2000 18:40	
Bromochloromethane	ND	100	ug/L	100.00	01/20/2000 18:40	
Trichlorofluoromethane	ND	200	ug/L	100.00	01/20/2000 18:40	
Surrogate(s)						
4-Bromofluorobenzene	100.1	86-115	%	1.00	01/20/2000 18:40	
1,2-Dichloroethane-d4	100.9	76-114	%	1.00	01/20/2000 18:40	
Toluene-d8	96.5	88-110	%	1.00	01/20/2000 18:40	

Printed on: 01/25/2000 16:47

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Attn.: Ian T. Reed

Test Method:

8260A

Prep Method:

5030

Batch QC Report Volatile Organic Compounds

Method Blank

Water

QC Batch # 2000/01/20-01.27

MB:

2000/01/20-01.27-001

Date Extracted: 01/20/2000 13:10

Compound	Result	Rep.Limit	Units	Analyzed	Flag
Acetone	ND	50	ug/L	01/20/2000 13:10	
Benzene	ND	0.5	ug/L	01/20/2000 13:10	
Bromodichloromethane	ND	0.5	ug/L	01/20/2000 13:10	
Bromoform	ND	0.5	ug/L	01/20/2000 13:10	
Bromomethane	ND	1.0	ug/L	01/20/2000 13:10	
Carbon tetrachloride	ND	0.5	ug/L	01/20/2000 13:10	
Chlorobenzene	ND	0.5	ug/L	01/20/2000 13:10	
Chloroethane	ND	1.0	ug/L	01/20/2000 13:10	
2-Butanone(MEK)	ND	50	ug/L	01/20/2000 13:10	
2-Chloroethylvinyl ether	ND	0.5	ug/L	01/20/2000 13:10	
Chloroform	ND	0.5	ug/L	01/20/2000 13:10	1
Chloromethane	ND	1.0	ug/L	01/20/2000 13:10	
Dibromochloromethane	ND	0.5	ug/L	01/20/2000 13:10	
1,2-Dichlorobenzene	ND	0.5	ug/L	01/20/2000 13:10	
1,3-Dichlorobenzene	ND	0.5	ug/L	01/20/2000 13:10	
1,4-Dichlorobenzene	ND	0.5	ug/L	01/20/2000 13:10	
1,2-Dibromo-3-chloropropane	ND	5.0	ug/L	01/20/2000 13:10	
1,2-Dibromoethane	ND	0.5	ug/L	01/20/2000 13:10	
Dibromomethane	ND	0.5	ug/L	01/20/2000 13:10	
Dichlorodifluoromethane	ND	0.5	ug/L	01/20/2000 13:10	
1,1-Dichloroethane	ND	0.5	ug/L	01/20/2000 13:10	
1,2-Dichloroethane	ND	0.5	ug/L	01/20/2000 13:10	
1,1-Dichloroethene	ND	0.5	ug/L	01/20/2000 13:10	
cis-1,2-Dichloroethene	ND	0.5	ug/L	01/20/2000 13:10	
trans-1,2-Dichloroethene	ND	0.5	ug/L	01/20/2000 13:10	
1,2-Dichloropropane	ND	0.5	ug/L	01/20/2000 13:10	
cis-1,3-Dichloropropene	ND	0.5	ug/L	01/20/2000 13:10	
trans-1,3-Dichloropropene	ND	0.5	ug/L	01/20/2000 13:10	
Ethylbenzene	ND	0.5	ug/L	01/20/2000 13:10	
2-Hexanone	ND	50	ug/L	01/20/2000 13:10	
Methylene chloride	ND	5.0	ug/L	01/20/2000 13:10	
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L	01/20/2000 13:10	
Naphthalene	ND	1.0	ug/L	01/20/2000 13:10	
Styrene	ND	0.5	ug/L	01/20/2000 13:10	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	01/20/2000 13:10	
Tetrachloroethene	ND	0.5	ug/L	01/20/2000 13:10	
Toluene	ND	0.5	ug/L	01/20/2000 13:10	

1220 Quarry Lane * Pleasanton, CA 94566-4756

Telephone: (925) 484-1919 * Facsimile: (925) 484-1096

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Attn.: lan T. Reed

Test Method:

8260A

Prep Method:

5030

Batch QC Report

Volatile Organic Compounds

Method Blank

Water

QC Batch # 2000/01/20-01.27

Submission #: 2000-01-0223

MB:

2000/01/20-01.27-001

Date Extracted: 01/20/2000 13:10

Compound	Result	Rep.Limit	Units	Analyzed	Flag
1,1,1-Trichloroethane	ND	0.5	ug/L	01/20/2000 13:10	
1,1,2-Trichloroethane	ND	0.5	ug/L	01/20/2000 13:10	
Trichloroethene	ND	0.5	ug/L	01/20/2000 13:10	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	01/20/2000 13:10	
Vinyl acetate	ND	5.0	ug/L	01/20/2000 13:10	
Vinyl chloride	ND	0.5	ug/L	01/20/2000 13:10	
Total xylenes	ND	1.0	ug/L	01/20/2000 13:10	
Trichlorotrifluoroethane	ND	0.5	ug/L	01/20/2000 13:10	
Carbon disulfide	ND	1.0	ug/L	01/20/2000 13:10	
Isopropylbenzene	ND	0.5	ug/L	01/20/2000 13:10	
Bromobenzene	ND	0.5	ug/L	01/20/2000 13:10	
Bromochloromethane	ND	1.0	ug/L	01/20/2000 13:10	
Trichlorofluoromethane	ND	2.0	ug/L	01/20/2000 13:10	
Surrogate(s)					
4-Bromofluorobenzene	101.0	86-115	%	01/20/2000 13:10	
1,2-Dichloroethane-d4	100.8	76-114	%	01/20/2000 13:10	
Toluene-d8	93.8	88-110	%	01/20/2000 13:10	

1220 Quarry Lane * Pleasanton, CA 94566-4756

Telephone: (925) 484-1919 * Facsimile: (925) 484-1096

Printed on: 01/25/2000 16:47

Page 7 of 12

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Attn.: Ian T. Reed

Test Method:

8260A

Prep Method:

5030

Batch QC Report

Volatile Organic Compounds

Method Blank

Water

QC Batch # 2000/01/21-01.27

MB:

2000/01/21-01.27-001

Date Extracted: 01/21/2000 12:36

Compound	Result	Rep.Limit	Units	Analyzed	Flag
Acetone	ND	50	ug/L	01/21/2000 12:36	
Benzene	ND	0.5	ug/L	01/21/2000 12:36	
Bromodichloromethane	ND	0.5	ug/L	01/21/2000 12:36	
Bromoform	ND	0.5	ug/L	01/21/2000 12:36	
Bromomethane	ND	1.0	ug/L	01/21/2000 12:36	
Carbon tetrachloride	ND	0.5	ug/L	01/21/2000 12:36	
Chlorobenzene	ND	0.5	ug/L	01/21/2000 12:36	
Chloroethane	ND	1.0	ug/L	01/21/2000 12:36	
2-Butanone(MEK)	ND	50	ug/L	01/21/2000 12:36	
2-Chloroethylvinyl ether	ND	0.5	ug/L	01/21/2000 12:36	
Chloroform	ND	0.5	ug/L	01/21/2000 12:36	
Chloromethane	ND	1.0	ug/L	01/21/2000 12:36	
Dibromochloromethane	ND	0.5	ug/L	01/21/2000 12:36	
1,2-Dichlorobenzene	ND	0.5	ug/L	01/21/2000 12:36	
1,3-Dichlorobenzene	ND	0.5	ug/L	01/21/2000 12:36	
1,4-Dichlorobenzene	ND	0.5	ug/L	01/21/2000 12:36	
1,2-Dibromo-3-chloropropane	ND	5.0	ug/L	01/21/2000 12:36	
1,2-Dibromoethane	ND	0.5	ug/L	01/21/2000 12:36	
Dibromomethane	ND	0.5	ug/L	01/21/2000 12:36	
Dichlorodifluoromethane	ND	0.5	ug/L	01/21/2000 12:36	
1,1-Dichloroethane	ND	0.5	ug/L	01/21/2000 12:36	
1,2-Dichloroethane	ND	0.5	ug/L	01/21/2000 12:36	
1,1-Dichloroethene	ND	0.5	ug/L	01/21/2000 12:36	
cis-1,2-Dichloroethene	ND	0.5	ug/L	01/21/2000 12:36	
trans-1,2-Dichloroethene	ND	0.5	ug/L	01/21/2000 12:36	
1,2-Dichloropropane	ND	0.5	ug/L	01/21/2000 12:36	
cis-1,3-Dichloropropene	ND	0.5	ug/L	01/21/2000 12:36	
trans-1,3-Dichloropropene	ND	0.5	ug/L	01/21/2000 12:36	
Ethylbenzene	ND	0.5	ug/L	01/21/2000 12:36	
2-Hexanone	ND	50	ug/L	01/21/2000 12:36	
Methylene chloride	ND	5.0	ug/L	01/21/2000 12:36	
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L	01/21/2000 12:36	
Naphthalene	ND	1.0	ug/L	01/21/2000 12:36	
Styrene	ND	0.5	ug/L	01/21/2000 12:36	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	01/21/2000 12:36	
Tetrachloroethene	ND	0.5	ug/L	01/21/2000 12:36	
Toluene	ИÐ	0.5	ug/L	01/21/2000 12:36	

1220 Quarry Lane * Pleasanton, CA 94566-4756

Telephone: (925) 484-1919 * Facsimile: (925) 484-1096

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Attn.: Ian T. Reed

Test Method:

8260A

Prep Method:

5030

Batch QC Report

Volatile Organic Compounds

Method Blank

Water

QC Batch # 2000/01/21-01.27

Submission #: 2000-01-0223

MB:

2000/01/21-01.27-001

Date Extracted: 01/21/2000 12:36

Compound	Result	Rep.Limit	Units	Analyzed	Flag
1,1,1-Trichloroethane	ND	0.5	ug/L	01/21/2000 12:36	
1,1,2-Trichloroethane	ND	0.5	ug/L	01/21/2000 12:36	
Trichloroethene	ND	0.5	ug/L	01/21/2000 12:36	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	01/21/2000 12:36	
Vinyl acetate	ND	5.0	ug/L	01/21/2000 12:36	
Vinyl chloride	ND	0.5	ug/L	01/21/2000 12:36	
Total xylenes	ND	1.0	ug/L	01/21/2000 12:36	
Trichlorotrifluoroethane	ND	0.5	ug/L	01/21/2000 12:36	
Carbon disulfide	ND	1.0	ug/L	01/21/2000 12:36	
Isopropylbenzene	ND	0.5	ug/L	01/21/2000 12:36	
Bromobenzene	ND	0.5	ug/L	01/21/2000 12:36	
Bromochloromethane	ND	1.0	ug/L	01/21/2000 12:36	
Trichlorofluoromethane	ND	2.0	ug/L	01/21/2000 12:36	
Surrogate(s)					
4-Bromofluorobenzene	102.2	86-115	%	01/21/2000 12:36	
1,2-Dichloroethane-d4	95.0	76-114	%	01/21/2000 12:36	
Toluene-d8	93.8	88-110	%	01/21/2000 12:36	

1220 Quarry Lane * Pleasanton, CA 94566-4756

Telephone: (925) 484-1919 * Facsimile: (925) 484-1096

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Attn: Ian T. Reed

Test Method:

8260A

Submission #: 2000-01-0223

Prep Method:

5030

Batch QC Report

Volatile Organic Compounds

Laboratory Control Spike (LCS/LCSD)

Water

QC Batch # 2000/01/20-01.27

LCS:

2000/01/20-01.27-002

Extracted: 01/20/2000 11:30

Analyzed: 01/20/2000 11:30

LCSD:

2000/01/20-01.27-003

Extracted: 01/20/2000 12:19

Analyzed: 01/20/2000 12:19

Compound	Conc.	[ug/L]	Exp.Conc.	[ug/L]	Recov	Recovery [%]		Recovery [%]		Recovery [%]		Ctrl. Lim	its [%]	Fla	gs
	LCS	LCSD	LCS	LCSD	LCS	LCSD	[%]	Recovery	RPD	LCS	LCSD				
Benzene	47.5	46.5	50.0	50.0	95.0	93.0	2.1	69-129	20						
Chlorobenzene	55.4	57.5	50.0	50.0	110.8	115.0	3.7	61-121	20						
1,1-Dichloroethene	46.5	42.6	50.0	50.0	93.0	85.2	8.8	65-125	20						
Toluene	45.4	46.5	50.0	50.0	90.8	93.0	2.4	70-130	20						
Trichloroethene	43.8	44.6	50.0	50.0	87.6	89.2	1.8	74-134	20						
Surrogate(s)									1						
4-Bromofluorobenzene	493	519	500	500	98.6	103.8		86-115							
1,2-Dichloroethane-d4	550	475	500	500	110.0	95.0		76-114							
Toluene-d8	477	471	500	500	95.4	94.2		88-110							

Printed on: 01/25/2000 16:47

Page 10 of 12

Environmental Services (SDB)

Aqua Science Engineers, Inc.

Attn: Ian T. Reed

To:

Test Method: 8260A

Prep Method: 5030

Batch QC Report

Volatile Organic Compounds

Laboratory Control Spike (LCS/LCSD)

Water

QC Batch # 2000/01/21-01.27

Submission #: 2000-01-0223

2000/01/21-01.27-002 LCS:

Extracted: 01/21/2000 11:09

Analyzed: 01/21/2000 11:09

LCSD: 2000/01/21-01.27-003 Extracted: 01/21/2000 11:57 Analyzed: 01/21/2000 11:57

Compound	Conc.	[ug/L]	Exp.Conc.	[ug/L]	Recovery [%]		_] Recovery [%		Recovery [%]		Recovery [%		RPD	Ctrl. Lim	its [%]	Fla	gs
	LCS	LCS LCSD	LCS	LCSD	LCS	LCSD	[%]	Recovery	RPD	LCS	LCSD						
Benzene	45.0	46.2	50.0	50.0	90.0	92.4	2.6	69-129	20								
Chlorobenzene	59.6	55.4	50.0	50.0	119.2	110.8	7.3	61-121	20								
1,1-Dichloroethene	44.6	45.1	50.0	50.0	89.2	90.2	1.1	65-125	20								
Toluene	44.1	45.6	50.0	50.0	88.2	91.2	3.3	70-130	20								
Trichloroethene	41.2	44.5	50.0	50.0	82.4	89.0	7.7	74-134	20								
Surrogate(s)																	
4-Bromofluorobenzene	516	485	500	500	103.2	97.0		86-115									
1,2-Dichloroethane-d4	533	539	500	500	106.6	107.8		76-114									
Toluene-d8	473	474	500	500	94.6	94.8		88-110									

Printed on: 01/25/2000 16:47

Page 11 of 12

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Attn:lan T. Reed

Test Method:

8260A

Submission #: 2000-01-0223

Prep Method: 5030

Legend & Notes

Volatile Organic Compounds

Analysis Flags

0

Reporting limits were raised due to high level of analyte present in the sample.

1220 Quarry Lane * Pleasanton, CA 94566-4756 Telephone: (925) 484-1919 * Facsimile: (925) 484-1096

Submission #: 2000-01-0223

Environmental Services (SDB)

Diesel

Aqua Science Engineers, Inc.

208 West El Pintado Road

Danville, CA 94526

Attn: Ian T. Reed

Phone: (925) 820-9391 Fax: (925) 837-4853

Project #: 2808

Project: LIM Property

Site:

250 8th Street

Oakland, CA

Samples Reported

Sample ID	Matrix	Date Sampled	Lab#
MW-1	Water	01/12/2000 13:25	1
MW-2	Water	01/12/2000 14:05	2
MW-3	Water	01/12/2000 12:45	3
MW-4	Water	01/12/2000 11:55	4
। प्राप्त व	· rator	5	

Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Attn.: Ian T. Reed

Test Method:

8015m

Submission #: 2000-01-0223

Prep Method:

3510/8015M

Diesel

Sample ID:

MW-1

Lab Sample ID: 2000-01-0223-001

Project:

2808

Received:

01/14/2000 18:47

LIM Property

Site:

250 8th Street

Extracted:

01/19/2000 08:00

Oakland, CA

Sampled:

01/12/2000 13:25

QC-Batch:

2000/01/19-01.10

Matrix:

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Diesel	1000	52	ug/L	1.03	01/19/2000 17:35	edr
Surrogate(s) o-Terphenyl	99.5	60-130	%	1.00	01/19/2000 17:35	

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Attn.: Ian T. Reed

Test Method:

8015m

Submission #: 2000-01-0223

Prep Method:

3510/8015M

Diesel

Sample ID:

MW-2

Lab Sample ID: 2000-01-0223-002

Project:

2808

Received:

01/14/2000 18:47

Site:

LIM Property

250 8th Street Oakland, CA

Extracted:

01/19/2000 08:00

Sampled:

01/12/2000 14:05

QC-Batch:

2000/01/19-01.10

Matrix:

Printed on: 01/25/2000 16:47

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Diesel	11000	51	ug/L	1.01	01/19/2000 18:22	edr
Surrogate(s) o-Terphenyl	101.8	60-130	%	1.00	01/19/2000 18:22	

Submission #: 2000-01-0223

Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Attn.: Ian T. Reed

Test Method:

8015m

Prep Method:

3510/8015M

Diesel

Sample ID:

MW-3

Lab Sample ID: 2000-01-0223-003

Project:

2808

Received:

01/14/2000 18:47

LIM Property

Site:

250 8th Street

01/12/2000 12:45

Extracted:

01/19/2000 08:00

Oakland, CA

Sampled: Matrix:

Water

QC-Batch:

2000/01/19-01.10

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Diesel	13000	51	ug/L	1.01	01/19/2000 19:08	edr
Surrogate(s) o-Terphenyl	94.3	60-130	%	1.00	01/19/2000 19:08	

Submission #: 2000-01-0223

Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Attn.: Ian T. Reed

Test Method:

8015m

Prep Method:

3510/8015M

Diesel

Sample ID:

MW-4

Lab Sample ID: 2000-01-0223-004

Project:

2808

Received:

01/14/2000 18:47

LIM Property

Site:

250 8th Street

Extracted:

01/19/2000 08:00

Oakland, CA

Sampled:

01/12/2000 11:55

QC-Batch:

2000/01/19-01.10

Matrix:

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Diesel	7900	51	ug/L	1.02	01/21/2000 10:10	edr
Surrogate(s) o-Terphenyl	108.1	60-130	%	1.00	01/21/2000 10:10	

Environmental Services (SDB)

Aqua Science Engineers, Inc.

Au Inn T Bood

Attn.: Ian T. Reed

To:

Test Method:

8015m

Prep Method:

3510/8015M

Batch QC Report

Diesel

Method Blank

Water

QC Batch # 2000/01/19-01.10

Submission #: 2000-01-0223

MB:

2000/01/19-01.10-001

Date Extracted: 01/19/2000 09:00

Compound	Result	Rep.Limit	Units	Analyzed	Flag
Diesel	ND	50	ug/L	01/19/2000 22:37	
Surrogate(s) o-Terphenyl	95.5	60-130	%	01/19/2000 22:37	

Printed on: 01/25/2000 16:47

Page 6 of 8

Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Test Method:

8015m

Attn: Ian T. Reed

Prep Method:

3510/8015M

Submission #: 2000-01-0223

Batch QC Report

Diesel

Laboratory Control Spike (LCS/LCSD)

Water

QC Batch # 2000/01/19-01.10

LCS:

2000/01/19-01.10-002

Extracted: 01/19/2000 09:00

Analyzed: 01/20/2000 09:01

LCSD:

2000/01/19-01.10-003

Extracted: 01/19/2000 09:00

Analyzed: 01/20/2000 09:46

Compound	Conc.	[ug/L]	Exp.Conc.	[ug/L]	Recov	егу [%]	RPD	Ctrl. Lim	its [%]	Flag	gs
	LCS	LCSD	LCS	LCSD	LCS	LCSD	[%]	Recovery	RPD	LCS	LCSD
Diesel	871	874	1250	1250	69.7	69.9	0.3	60-130	25		
Surrogate(s)					}						
o-Terphenyl	21.2	21.6	20.0	20.0	106.0	108.0		60-130			

Printed on: 01/25/2000 16:47

Page 7 of 8

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Attn:lan T. Reed

Test Method: 8015m

Prep Method: 3510/8015M

Submission #: 2000-01-0223

Legend & Notes

Diesel

Analyte Flags

edr

Hydrocarbon reported is in the early Diesel range, and does not match our Diesel standard

Printed on: 01/25/2000 16:47

Page 8 of 8

Environmental Services (SDB)

Gas/BTEX and MTBE

Aqua Science Engineers, Inc.

208 West El Pintado Road

Danville, CA 94526

Attn: Ian T. Reed

Phone: (925) 820-9391 Fax: (925) 837-4853

Project #: 2808

Project: LIM Property

Site:

250 8th Street

Oakland, CA

Samples Reported

Sample ID	Matrix	Date Sampled	Lab#
MW-1	Water	01/12/2000 13:25	1
MW-2	Water	01/12/2000 14:05	2
MVV-3	Water	01/12/2000 12:45	3
MW-4	Water	01/12/2000 11:55	4

Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Test Method:

8020

5030

8015M

Attn.: Ian T. Reed

Prep Method:

Gas/BTEX and MTBE

Sample ID:

MW-1

Lab Sample ID: 2000-01-0223-001

Project:

2808

Received:

LIM Property

01/14/2000 18:47

Site:

250 8th Street Oakland, CA

Extracted:

01/24/2000 12:44

Sampled:

01/12/2000 13:25

QC-Batch:

2000/01/24-01.04

Matrix:

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Gasoline	300	50	ug/L	1.00	01/24/2000 12:44	
Benzene	22	0.50	ug/L	1.00	01/24/2000 12:44	
Toluene	36	0.50	ug/L	1.00	01/24/2000 12:44	
Ethyl benzene	5.5	0.50	ug/L	1.00	01/24/2000 12:44	
Xylene(s)	24	0.50	ug/L	1.00	01/24/2000 12:44	
MTBE	ND	5.0	ug/L	1.00	01/24/2000 12:44	
Surrogate(s)						
Trifluorotoluene	98.0	58-124	%	1.00	01/24/2000 12:44	
4-Bromofluorobenzene-FID	88.1	50-150	%	1.00	01/24/2000 12:44	

Submission #: 2000-01-0223

Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Test Method:

8020

8015M

Attn.: Ian T. Reed

Prep Method:

5030

Gas/BTEX and MTBE

Sample ID:

MW-2

Lab Sample ID: 2000-01-0223-002

Project:

2808

Received:

01/14/2000 18:47

Site:

LIM Property

250 8th Street Oakland, CA

Extracted:

01/24/2000 13:12

Sampled:

01/12/2000 14:05

QC-Batch:

2000/01/24-01.04

Matrix:

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Gasoline	63000	5000	ug/L	100.00	01/24/2000 13:12	
Benzene	10000	50	ug/L	100.00	01/24/2000 13:12	
Toluene	12000	50	ug/L	100.00	01/24/2000 13:12	
Ethyl benzene	1800	50	ug/L	100.00	01/24/2000 13:12	
Xylene(s)	7800	50	ug/L	100.00	01/24/2000 13:12	
MTBE	ND	500	ug/L	100.00	01/24/2000 13:12	
Surrogate(s)						
Trifluorotoluene	84.0	58-124	%	1.00	01/24/2000 13:12	
4-Bromofluorobenzene-FID	89.0	50-150	%	1.00	01/24/2000 13:12	

Submission #: 2000-01-0223

Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Test Method:

8020

8015M

Attn.: Ian T. Reed

Prep Method:

5030

Gas/BTEX and MTBE

Sample ID:

MW-3

Lab Sample ID: 2000-01-0223-003

Project:

2808

Received:

01/14/2000 18:47

LIM Property

Site:

250 8th Street

Extracted:

01/24/2000 13:39

Oakland, CA 01/12/2000 12:45

QC-Batch:

2000/01/24-01.04

Sampled: Matrix:

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Gasoline	140000	10000	ug/L	200.00	01/24/2000 13:39	,
Benzene	22000	100	ug/L	200.00	01/24/2000 13:39	
Toluene	19000	100	ug/L	200.00	01/24/2000 13:39	
Ethyl benzene	2400	100	ug/L	200.00	01/24/2000 13:39	
Xylene(s)	11000	100	ug/L	200.00	01/24/2000 13:39	
MTBE	ND	1000	ug/L	200.00	01/24/2000 13:39	
Surrogate(s)						
Trifluorotoluene	87.6	58-124	%	1.00	01/24/2000 13:39	
4-Bromofluorobenzene-FID	88.6	50-150	%	1.00	01/24/2000 13:39	

Submission #: 2000-01-0223

Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Test Method:

8020

5030

8015M

Attn.: Ian T. Reed

Sample ID:

Prep Method:

Gas/BTEX and MTBE

Lab Sample ID: 2000-01-0223-004

Project:

MW-4

2808

Received:

01/14/2000 18:47

Site:

LIM Property

Extracted:

01/25/2000 09:59

250 8th Street Oakland, CA

Sampled:

01/12/2000 11:55

QC-Batch:

2000/01/25-01.04

Matrix:

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Gasoline	99000	25000	ug/L	500.00	01/25/2000 09:59	
Benzene	16000	250	ug/L	500.00	01/25/2000 09:59	
Toluene	20000	250	ug/L	500.00	01/25/2000 09:59	
Ethyl benzene	2100	250	ug/L	500.00	01/25/2000 09:59	
Xylene(s)	12000	250	ug/L	500.00	01/25/2000 09:59	
MTBE	ND	2500	ug/L	500.00	01/25/2000 09:59	
Surrogate(s)		ĺ				
Trifluorotoluene	92.7	58-124	%	1.00	01/25/2000 09:59	
4-Bromofluorobenzene-FID	85.3	50-150	%	1.00	01/25/2000 09:59	

Submission #: 2000-01-0223

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Test Method:

8020

8015M

Attn.: Ian T. Reed

Prep Method:

5030

Batch QC Report
Gas/BTEX and MTBE

Water

Method Blank

QC Batch # 2000/01/24-01.04

MB:

2000/01/24-01.04-001

Date Extracted: 01/24/2000 09:18

Compound	Result	Rep.Limit	Units	Analyzed	Flag
Gasoline	ND	50	ug/L	01/24/2000 09:18	
Benzene	ND	0.5	ug/L	01/24/2000 09:18	
Toluene	ND	0.5	ug/L	01/24/2000 09:18	
Ethyl benzene	ND	0.5	ug/L	01/24/2000 09:18	
Xylene(s)	ND	0.5	ug/L	01/24/2000 09:18	
MTBE	ND	5.0	ug/L	01/24/2000 09:18	
Surrogate(s)					
Trifluorotoluene	92.8	58-124	%	01/24/2000 09:18	
4-Bromofluorobenzene-FID	93.0	50-150	%	01/24/2000 09:18	

Submission #: 2000-01-0223

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Test Method:

8020

8015M

Attn.: Ian T. Reed

Prep Method:

5030

Batch QC Report Gas/BTEX and MTBE

Method Blank

Water

QC Batch # 2000/01/25-01.04

MB:

2000/01/25-01.04-001

Date Extracted: 01/25/2000 05:59

Compound	Result	Rep.Limit	Units	Analyzed	Flag
Gasoline	ND	50	ug/L	01/25/2000 05:59	
Benzene	ND	0.5	ug/L	01/25/2000 05:59	
Toluene	ND	0.5	ug/L	01/25/2000 05:59	
Ethyl benzene	ND	0.5	ug/L	01/25/2000 05:59	
Xylene(s)	ND	0.5	ug/L	01/25/2000 05:59	
MTBE	ND	5.0	ug/L	01/25/2000 05:59	
Surrogate(s)					
Trifluorotoluene	90.0	58-124	%	01/25/2000 05:59	
4-Bromofluorobenzene-FID	86.4	50-150	%	01/25/2000 05:59	

Submission #: 2000-01-0223

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Test Method: 8

8020 8015M

801

Attn: Ian T. Reed

Prep Method:

ethod: 5030

Batch QC Report

Gas/BTEX and MTBE

Laboratory Control Spike (LCS/LCSD)

Water

QC Batch # 2000/01/24-01.04

LCS:

2000/01/24-01.04-002

Extracted: 01/24/2000 10:05

Analyzed: 01/24/2000 10:05

LCSD:

2000/01/24-01.04-003

Extracted: 01/24/2000 10:32

Analyzed: 01/24/2000 10:32

Compound	Conc.	[ug/L]	Exp.Conc.	[ug/L]	Recovery [%]		RPD	Ctrl. Limits [%]		Flags	
	LCS	LCSD	LCS	LCSD	LCS	LCSD	[%]	Recovery	RPD	LCS	LCSD
Gasoline	591	585	500	500	118.2	117.0	1.0	75-125	20		
Benzene	98.7	91.1	100.0	100.0	98.7	91.1	8.0	77-123	20		
Toluene	98.5	89.8	100.0	100.0	98.5	89.8	9.2	78-122	20		
Ethyl benzene	97.6	88.4	100.0	100.0	97.6	88.4	9.9	70-130	20		
Xylene(s)	290	265	300	300	96.7	88.3	9.1	75-125	20		
Surrogate(s)											
Trifluorotoluene	453	408	500	500	90.6	81.6		58-124			
4-Bromofluorobenzene-Fl	468	458	500	500	93.6	91.6		50-150			
4-Bromonuoropenzene-Fi	400	450	300	500	93.0	31.0		30-130			

Environmental Services (SDB)

Aqua Science Engineers, Inc.

Laboratory Control Spike (LCS/LCSD)

8020 Test Method:

8015M

Submission #: 2000-01-0223

Prep Method:

5030

Attn: Ian T. Reed

To:

Batch QC Report

Gas/BTEX and MTBE

Water

QC Batch # 2000/01/25-01.04

LCS:

2000/01/25-01.04-002

Extracted: 01/25/2000 06:35

Analyzed:

01/25/2000 06:35

LCSD:

2000/01/25-01.04-003

Extracted: 01/25/2000 07:02

Analyzed: 01/25/2000 07:02

Compound	Conc.	[ug/L]	Exp.Conc.	[ug/L]	Recovery [%]		RPD	Ctrl. Limits [%]		Flags	
	LCS	LCSD	LCS	LCSD	LCS	LCSD	[%]	Recovery	RPD	LCS	LCSD
Gasoline	577	551	500	500	115.4	110.2	4.6	75-125	20		
Benzene	98.3	88.5	100.0	100.0	98.3	88.5	10.5	77-123	20		
Toluene	97.7	86.7	100.0	100.0	97.7	86.7	11.9	78-122	20		
Ethyl benzene	96.0	85.3	100.0	100.0	96.0	85.3	11.8	70-130	20		
Xylene(s)	284	256	300	300	94.7	85.3	10.4	75-125	20		
Surrogate(s)	i		j								
Trifluorotoluene	453	409	500	500	90.6	81.8		58-124			
4-Bromofluorobenzene-FI	451	432	500	500	90.2	86.4		50-150			

Environmental Services (SDB)

Total Oil & Grease

Aqua Science Engineers, Inc.

≥ 208 West El Pintado Road

Danville, CA 94526

Attn: Ian T. Reed

Phone: (925) 820-9391 Fax: (925) 837-4853

Project #: 2808

Project: LIM Property

Site:

250 8th Street

Oakland, CA

Samples Reported

Matrix	Date Sampled	Lab#
Water	01/12/2000 14:05	2
Water	01/12/2000 12:45	3
Water	01/12/2000 11:55	4
	Water Water	Water 01/12/2000 14:05 Water 01/12/2000 12:45

Environmental Services (SDB)

Aqua Science Engineers, Inc.

Test Method:

5520 B

Submission #: 2000-01-0223

Attn.: Ian T. Reed

To:

Prep Method:

5520 B

Total Oil & Grease

Sample ID:

MW-2

Lab Sample ID: 2000-01-0223-002

Project:

2808

Received:

01/14/2000 18:47

LIM Property

Site:

250 8th Street

Extracted:

01/18/2000

Oakland, CA

Sampled:

01/12/2000 14:05

QC-Batch:

2000/01/18-01.23

Matrix:

Water

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Oil & Grease (total)	ND	1.0	mg/L	1.00	01/19/2000 08:00	

Printed on: 01/25/2000 16:48

Page 2 of 6

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Test Method:

5520 B

Prep Method:

5520 B

Submission #: 2000-01-0223

Total Oil & Grease

Sample ID:

Attn.: Ian T. Reed

MW-3

Lab Sample ID: 2000-01-0223-003

Project:

2808

Received:

01/14/2000 18:47

LIM Property

Site:

Extracted:

01/18/2000

250 8th Street Oakland, CA

Sampled:

01/12/2000 12:45

QC-Batch:

2000/01/18-01.23

Matrix:

Water

Compound		Rep.Limit	Units	Dilution	Analyzed	Flag
Oil & Grease (total)	ND	1.0	mg/L	1.00	01/19/2000 08:00	

Printed on: 01/25/2000 16:48

Page 3 of 6

Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Attn.: Ian T. Reed

Test Method:

5520 B

Prep Method:

5520 B

Submission #: 2000-01-0223

Total Oil & Grease

Sample ID: MW-4

2808

LIM Property

Site:

Project:

250 8th Street

Oakland, CA

Sampled: Matrix:

01/12/2000 11:55

Water

Lab Sample ID: 2000-01-0223-004

Received:

01/14/2000 18:47

Extracted:

01/18/2000

QC-Batch:

2000/01/18-01.23

Compound	Result	Rep.Limit	Units	Dilution	Analyzed	Flag
Oil & Grease (total)	ND	1.0	mg/L	1.00	01/19/2000 08:00	

Submission #: 2000-01-0223

Environmental Services (SDB)

Aqua Science Engineers, Inc. To:

Attn.: Ian T. Reed

Test Method:

5520 B

Prep Method:

5520 B

Batch QC Report Total Oil & Grease

Method Blank

Water

QC Batch # 2000/01/18-01.23

MB:

2000/01/18-01.23-001

Date Extracted: 01/18/2000

Compound	Result	Rep.Limit	Units	Analyzed	Flag
Oil & Grease (total)	ND	1	mg/L	01/19/2000	

Submission #: 2000-01-0223

Environmental Services (SDB)

To: Aqua Science Engineers, Inc.

Attn: Ian T. Reed

Test Method:

5520 B

Prep Method:

5520 B

Batch QC Report

Total Oil & Grease

QC Batch # 2000/01/18-01.23

Water

LCS: 2000/01/18-01.23-002 LCSD: 2000/01/18-01.23-003

Laboratory Control Spike (LCS/LCSD)

Extracted: 01/18/2000 Extracted: 01/18/2000 Analyzed:

01/19/2000

Analyzed:

01/19/2000

Compound	Conc.	[mg/L]	Exp.Conc.	[mg/L]	Recov	егу [%]	RPD	Ctrl. Lim	its [%]	Flags	
	LCS	LCSD	LCS	LCSD	LCS	LCSD	[%]	Recovery	Recovery RPD		LCSD
Oil & Grease (total)	18.7	18.4	20.0	20.0	93.5	92.0	1.6	80-120	20		
	<u>j</u> ,		<u> </u>	<u> </u>	<u></u>		!,	<u></u>			

Telephone: (925) 484-1919 * Facsimile: (925) 484-1096

Printed on: 01/25/2000 16:48

Aqua Science Engineers, Inc. 208 W. El Pintado Road Danville, CA 94526

Chain of Custody

(925) 82 FAX (925)	0-9391 837-4	853												\cup				PAGE	:	<u>t</u>	: _ (
SAMPLER (SIG	NATURE)			(PHO	ONE NO.)	, [PROJECT NAME			LIM Property								JOB N	-	280	8	
Lat	\mathcal{R}_{0}	L	(92	5)820-	9391		ADDR	RESS		$\overline{\Delta}$		50 8	3th S	treet	, 09	kland	CA	DATE		1/12/00		
ANAL	YSIS	RE	QUES	T				S ^r		2240	ာ့					s) (0	6					
SPECIAL INSTR	CUCTIONS.				BTEX 3020			ARBO	ATICS	\\ \tilde{\beta}	SANIC				ES (JORU P14 V	년 1,815	ES				
	5-0	day	TA	Ţ.	TPH-GAS / MTBE & BTEX (EPA 5030/8015-8020)	TPH-GASOLINE (EPA 5030/8015)	TPH-DIESEL (EPA 3510/8015)	PURGEABLE HALOCARBONS (EPA 6,01/8010)	PURGEABLE AROMATICS (EPA 602/8020)	VOLATILE ORGANIES (EPA 624/8240)	SEMI-VOLATILE ORGANICS (EPA 625/8270)	OIL & GREASE (EPA 5520)	LUFT METALS (5) (EPA 6010+7000)	CAM 17 METALS (EPA 6010+7000)	PCBs & PESTICIDES (EPA 608/8080)	ORGANOPHOSPHORUS PESTICIDES (EPA 8140) (EPA 608/8080)	ORGANOCHLORINE HERBICIDES (EPA 8150)	FUEL OXYGENATES (EPA 8260)				COMPOSITE
SAMPLE ID.	DATE	TIME	MATRIX	NO. OF SAMPLES	TPH-G (EPA 5	TPH-G (EPA 5	TPH-D (EPA3	PURGE (EPA 6	PURGE (EPA 6	VOLAT (EPA 6	SEMIN (EPA 6	OIL & (LUFT N (EPA 6	CAM 1 (EPA (PCBs (EPA	ORG, PEST (EPA	ORG/ HERB	FUEL (EPA				8
Mr2-1	1/12/00	1325	water	9	\times		\geq	\times														
MN-2	1/2/00		wher	9	X		\times	\times				\times										ļ
MW-3	1/12/00	1245	woter	d	\times		\geq			\geq		X					ļ			-		<u> </u>
Mw-4	112/0	1155	water	q	\geq		\succeq			\geq		\times			<u> </u>	<u> </u>				1		
					<u> </u>												 					<u> </u>
																!	<u> </u>			-		
	ļ		_													<u> </u>	-					
	 	-			 												 			 		
									-				<u></u> -				<u> </u>					
	-																					
RELINQUISHED I LATROS (signaturo) (on TRO (printed name)	tinr (tim	14/00	(signat	d name)	178		(elgna (print	NQUISHE ature)	Ho.			(sign D. E (prin	Han ted nam	ving:	(tlm fon (dat	/84 7 :e)	7-	MMENTS		ay T	747	- -
Company-	E		Compa	ny.		>		pany-	trne	·/s/	7	Com	pany- hsor	nal	ib	1/14/0	0				5.0	