Alameda County Health Care Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Re: RO #479, Report

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have further questions I may be reached at 925-381-3608.

Sincerely,

Russell Lim

RECEIVED

8:44 am, Jul 31, 2012

Alameda County Environmental Health

July 23, 2012

Mr. Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Alameda, CA 94502-6577

SUBJECT: OZONE-SPARGING AND VAPOR EXTRACTION REMEDIATION

SYSTEMS ANNUAL OPERATION REPORT AND GROUNDWATER MONITORING REPORT

Lim Property, RO #0000479

250 8th Street

Oakland, California

Dear Mr. Wickham:

On behalf of our clients, Alice Ng and May Lee Lim, Aqua Science Engineers, Inc. (ASE) is pleased to submit this report detailing the annual operation of the ozone-sparging and vapor-extraction remediation equipment at the subject site. This report also includes current groundwater monitoring well analytical results. Should this report satisfy your recent request, we respectfully request you contact the USTCF and notify them that the site is once again in compliance.

Should you require any additional information, please feel free to call me at (925) 820-9391.

Respectfully submitted,

AQUA SCIENCE ENGINEERS, INC.

Mauro Ollen

David Allen Vice President

July 9, 2012

REMEDIATION SYSTEMS ANNUAL OPERATION REPORT AND GROUNDWATER MONITORING RESULTS LIM PROPERTY 250 8TH STREET OAKLAND, CALIFORNIA (ASE JOB NO. 2808) (RO #0000479) (USTCF Claim Number 7699)

for

Alice Ng Lim & May Lee Lim c/o Mr. Russell Lim 3111 Diablo Road Lafayette, CA 94549

Submitted by:

Aqua Science Engineers 55 Oak Court, Suite 220 Danville, CA 94526 (925) 820-9391

TABLE OF CONTENTS

SECTION	N .	PAGE							
1.0	INTRODUCTION	1							
2.0	WEEKLY OPERATION AND MAINTENANCE ACTIVITIES	1							
3.0	REMEDIATION SYSTEMS OPERATION	1							
4.0	REMEDIATION SYSTEMS AND SITE MONITORING	3							
5.0	GROUNDWATER MONITORING WELL SAMPLE COLLECTION								
6.0	RECOMMENDATIONS	6							
7.0	SIGNATURES	7							
LIST OF	FIGURES								
FIGURE 1	1 LOCATION MAP								
FIGURE 2	2 SITE PLAN SHOWING ALL VAPOR-EXTRACTION SPARGING WELLS, AND VMPs	AND OZONE							
FIGURE 3	JUNE 2012 GROUNDWATER ELEVATION CONTO	UR MAP							
LIST OF	<u>APPENDICES</u>								
APPENDI	IX A ANALYTICAL REPORTS OF AIR BAG SAMPLES								
APPENDI	IX B FIELD LOGS								
APPENDI	IX C MONITORING WELL SAMPLING FIELD LOGS								
APPENDI	IX D ANALYTICAL REPORTS OF GROUNDWATER SAM	MPLES							

1.0 INTRODUCTION

This report presents Aqua Science Engineers, Inc. (ASE) details of the operation of the ozone-sparging and vapor-extraction remediation systems at the Lim property located at 250 8th Street in Oakland, California since its start-up in early 2011 (Figure 1). This report also provides current groundwater concentrations in the site's on and off-site groundwater monitoring wells. For the installation and first quarter's operation of the remediation systems, see the ASE system installation report dated June 30, 2011.

2.0 WEEKLY OPERATION AND MAINTENANCE ACTIVITIES

ASE personnel visited the site on a regular basis at least 2 times per week to maintain the remediation equipment. During most visits, ASE personnel completes the following:

- Record the flowrate and vacuum influence of the vapor-extraction system,
- Measure and record the influent vapor concentration of each individual vapor-extraction well with ASE's photoionization detector (PID),
- Measure with ASE's PID and record the influent vapor concentration on the positive side
 of the remediation system blower which provides the total hydrocarbon concentration
 entering the remediation system catalytic oxidizer. This concentration is less than the
 sum of the individual vapor-extraction wells due to fresh air that enters the system as a
 safety mechanism by the equipment supply company, Mako Industries (Mako),
- Measure with ASE's PID and record hydrocarbon concentrations in the on and off-site
 utility boxes and the vapor-monitoring points to ensure that hydrocarbon vapors are not
 being forced to the atmosphere due to the sparging activities,
- Record alarms and information on the sparging remediation equipment,
- Inspect site security fencing.

3.0 REMEDIATION SYSTEMS OPERATION

3.1 Ozone-Sparging Remediation System Operation

Since mid May 2011, the ozone-sparging remediation equipment has operated 99% of the time in "air-only" mode with a constant high flow air stream into each of the 10 sparging wells that are located on and off-site (Figure 2). Ozone has yet to be turned on due to the operation of the Mako vapor-extraction system which is using a catalytic oxidizer as its abatement device. Ozone, if injected and sucked out of the ground by the vapor-extraction equipment, could damage the catalytic oxidizer. It is ASE's intent to modify the abatement device of the vapor-extraction system from the catalytic oxidizer to activated carbon, thus allowing for ozone to be injected, which is harmless to the activated carbon. ASE believes that this change-over can occur within the third quarter of 2012 when hydrocarbon vapor concentrations are stable and low.

Downtime for the ozone-sparging system has only occurred for maintenance purposes and an occasional power failure at the site. To date, no major maintenance has been required for the

sparging equipment. A complete tune-up of the sparging system that will include compressor rebuild kits, new filters, new solenoid valves, and general maintenance tasks is scheduled for the third quarter of 2012.

3.2 Vapor-Extraction Remediation System Operation

In mid April 2011, the vapor-extraction system, provided to ASE by Mako, was turned on and has been operating continuously since that time. All existing vapor-extraction wells (VE-1 through VE-9) and monitoring wells that were fitted with vapor-extraction plumbing (MW-3 and MW-4R) have been operating in 100% open mode since mid April 2011. The only exceptions to this are VE-2 was closed on April 25, 2012, and VE-4 was closed on March 6, 2012 due to continued low PID concentrations. ASE closed these vapor-extraction wells to allow for greater vacuum influence on the more polluted vapor-extraction wells.

As shown on the attached Vapor-Extraction System Log, the influent vapor concentrations, when measured using ASE's PID, have been on a slowly declining trend. Note that the total influent concentration measured just prior to the catalytic oxidizer is less than the sum of the individual vapor-extraction wells. This is due to fresh air that enters the system as a safety mechanism by Mako. ASE will continue to reduce the vacuum influence on the various vapor-extraction wells as time goes on in an effort to increase the vacuum influence on the most polluted vapor-extraction wells.

3.21 Periodic Influent Vapor Sampling

Since start-up, ASE has collected five influent vapor samples to determine actual petroleum-hydrocarbon concentrations in the extracted subsurface air. Each influent vapor sample was collected from a sample port on the positive side of the blower (just prior to entering the catalytic oxidizer), and consisted of soil vapors being extracted from the vapor-extraction wells on-site and off-site (VE-1 through VE-9) and monitoring wells MW-3 and MW-4R.

The samples were collected in new 1-liter Tedlar bags, labeled individually, and submitted to McCampbell Anlaytical of Pittsburg, California under chain of custody procedures. The samples were analyzed by McCampbell for TPH-G by EPA Method 8015, and MTBE, benzene, toluene, ethylbenzene, and xylenes (collectively known as MBTEX) by EPA Method 8021. The analytical results are summarized below, and copies of the certified analytical reports from McCampbell are attached in Appendix A.

- The 4/28/11 influent vapor sample contained 4,600 ug/L TPH-G, 38 ug/L benzene, 70 ug/L toluene, 13 ug/L ethylbenzene, 61 ug/L xylenes, and < 50 ug/L MTBE.
- The 5/26/11 influent vapor sample contained 4,100 ug/L TPH-G, 61 ug/L benzene, 93 ug/L toluene, 15 ug/L ethylbenzene, 80 ug/L xylenes, and < 60 ug/L MTBE.
- The 6/30/11 influent vapor sample contained 4,900 ug/L TPH-G, 76 ug/L benzene, 180 ug/L toluene, 36 ug/L ethylbenzene, 190 ug/L xylenes, and < 30 ug/L MTBE.

- The 12/20/11 influent vapor sample contained 3,100 ug/L TPH-G, 21 ug/L benzene, 48 ug/L toluene, 7.5 ug/L ethylbenzene, 90 ug/L xylenes, and < 50 ug/L MTBE.
- The 6/20/12 influent vapor sample contained 38 ug/L TPH-G, < 0.25 ug/L benzene, 0.33 ug/L toluene, < 0.25 ug/L ethylbenzene, 0.87 ug/L xylenes, and < 2.5 ug/L MTBE.

Based on these analytical results, there has been a significant reduction in vadose-zone hydrocarbon concentrations. ASE plans to continue operation of the vapor-extraction system to (a) reduce the final area of free-floating hydrocarbons identified in well MW-3, (b) continue to alleviate the potential for build-up of vapors due to sparging beneath the off-site properties, and (c) to stimulate air-flow through the polluted zone for assistance in bio-remediation. ASE will notify the BAAQMD and the ACHCSA of the potential to replace the current vapor-extraction abatement device (catalytic oxidizer) with activated carbon.

3.22 Estimated TPH-G Extracted from Vadose Zone

Using the analytical results of the influent vapor samples collected from the vapor-extraction remediation system, ASE has calculated the volume of gasoline, in gallons, extracted from the subsurface both on and off-site. As shown on the attached <u>Gasoline Extraction Log</u>, and associated Mass Extraction Calculations, ASE estimates that 814.46 gallons of gasoline, in vapor phase, have been removed from the subsurface vadose zone. These calculations use a typical operating flowrate of 50 cfm, and assume 24/7 operation of the system. For months where actual air bag samples were not collected, ASE estimated the gallons extracted per day by using the actual air bag analytical results of the samples collected prior to and after the months without data, and finding the average between these months. See Appendix B for a copy of the <u>Gasoline Extraction Log</u>.

4.0 REMEDIATION SYSTEMS AND SITE MONITORING

4.1 Remediation Equipment Operating Parameters

ASE visits the site on a regular basis to confirm that the remediation equipment, both sparging and vapor-extraction, are working as designed. As the attached <u>Vapor-Extraction Equipment Log</u> shows, ASE logged/measured the system's operating flow in cfm, the overall influent vapor concentration (using a PID), and the individual well influent vapor concentrations. As the attached <u>Sparging Well Log</u> shows, ASE logged the operating parameters of each sparging well, showing the duration and injection media (low or high-flow air). At this point in time, ASE is operating the sparging equipment in a non-ozone mode to eliminate the potential for ozone to be extracted by the vapor-extraction wells and thus injecting ozone into the Mako equipment. Ozone in the Mako equipment could damage the catalyst. See Appendix B for copies of the <u>Sparging Well Log</u> and <u>Vapor-Extraction System Log</u>.

4.2 Hydrocarbon Vapor Readings from Utility and Well Boxes Using PID

ASE measured for hydrocarbon vapors in the VMP's, remediation well boxes, and sidewalk utility boxes across 8th Street using a PID multiple times per week in an effort to determine if stripped hydrocarbons were being forced to the atmosphere by operation of the sparging wells. As shown on the attached <u>Hydrocarbon Vapor Measurement Log</u>, PID readings have always been "0" since the start-up of the vapor-extraction remediation system. ASE also measured for hydrocarbons in the utility boxes in the sidewalk in front of the subject site and within the well boxes and underground piping manifold box on site. Again, at no time were any PID readings above "0" observed in any sampling point. See Appendix B for a copy of the <u>Hydrocarbon Vapor Measurement Log</u>.

5.0 GROUNDWATER MONITORING WELL SAMPLE COLLECTION

5.1 Water levels, Free-Product Thickness, and Flow Direction

On June 22, 2012, ASE measured the depth to water in monitoring wells MW-1 and MW-2 and MW-5 through MW-8 using an electric water level sounder. The surface of the groundwater was also checked for the presence of free-floating hydrocarbons or sheen. Free-floating hydrocarbon measurements were taken on vapor-extraction wells MW-3 and MW-4R using an interface probe due to the occasional historic presence of free-floating hydrocarbons. No free-floating hydrocarbons or sheen were present in any of the wells described above except for well MW-3 which contained 0.69-feet of free-floating hydrocarbons. Groundwater elevation data is presented in Table One.

A groundwater elevation (potentiometric surface) contour map is shown as Figure 3. The groundwater flow direction at the site is generally to the south with an approximate gradient of 0.01 feet/foot during this sampling period. The gradient and flow direction are generally consistent with previous findings.

5.2 Groundwater Sample Collection

On June 22, 2012, ASE collected groundwater samples from all monitoring wells except well MW-3 for analysis. The free-floating hydrocarbons in well MW-3 were removed with a bailer, and the product/water mixture was stored on site in a drum for later disposal. Prior to sampling, the remaining wells were purged of three well casing volumes of groundwater using disposable polyethylene bailers. The pH, temperature and conductivity of the purge water were monitored during evacuation, and samples were not collected until these parameters stabilized. Samples were collected from each well using disposable polyethylene bailers. The groundwater samples were decanted from the bottom of the bailers using low-flow emptying devices into 40-ml volatile organic analysis (VOA) vials, preserved with hydrochloric acid, sealed without headspace and labeled. All samples were stored on ice for transport to Kiff Analytical, LLC, (KIFF) of Davis, California under appropriate chain of custody documentation. Well sampling purge water was contained in a sealed and labeled 55-gallon steel drum for temporary storage until off-site disposal can be arranged. See Appendix C for copies of the well sampling field logs.

5.3 Analytical Results for Groundwater Samples

All groundwater samples were analyzed by KIFF for total petroleum hydrocarbons as gasoline (TPH-G), benzene, toluene, ethyl benzene, total xylenes (collectively known as BTEX), fuel oxygenates including methyl tertiary butyl ether (MTBE), and lead scavengers by EPA Method 8260B, and total petroleum hydrocarbons as diesel (TPH-D) by modified EPA Method 8015. The analytical results are tabulated in Table Two, and copies of the certified analytical report and chain of custody form are included in Appendix D. The groundwater analytical results are summarized below:

- MW-1 contained 750 parts per billion (ppb) TPH-G, 23 ppb benzene, 1.1 ppb ethylbenzene, 2.3 ppb total xylenes, 0.80 ppb DIPE, and 12 ppb TBA. These concentrations are similar to the results from 2001. The current detectable concentrations are likely due to the sparging at the site and represents a slight shift in the water table from mounding.
- MW-2 contained 1,200 ppb TPH-G, 140 ppb TPH-D, 50 ppb benzene, 56 ppb toluene, 4.0 ppb ethylbenzene, 160 ppb xylenes, 1.6 ppb DIPE, 17 ppb TBA and 1.1 EDC. These concentrations represent historic lows for this well.
- 0.69-feet of free-floating hydrocarbons were detected in monitoring well MW-3. This product was bailed and stored within a drum. The thickness of product is similar to previous measurements.
- MW-4R contained 4,500 ppb TPH-G, 31 ppb benzene, 53 ppb toluene, 5.0 ppb ethylbenzene, 500 ppb xylenes, 6.3 ppb MTBE, 6.1 ppb DIPE, 180 ppb TBA and 21 EDC. A majority of these concentrations represent historic lows for this well.
- No hydrocarbons or oxygenates were detected in groundwater samples collected from monitoring well MW-5.
- No hydrocarbons or oxygenates were detected in groundwater samples collected from monitoring well MW-6.
- MW-7 contained 10,000 ppb TPH-G, 120 ppb benzene, 52 ppb toluene, 1,100 ppb ethylbenzene, 310 ppb xylenes, and 43 ppb TBA. These concentrations are similar to but lower than the last sampling event in 2011.
- No hydrocarbons were detected in groundwater samples collected from monitoring well MW-8, indicating that the contamination has not reached the deeper water-bearing zones.

Concentrations of various chemicals in groundwater samples collected from wells MW-1, MW-2, MW-3, MW-4R and MW-7 exceeded Environmental Screening Levels (ESLs) for drinking water as presented in the "Screening For Environmental Concerns at Sites With Contaminated Soil and Groundwater" document prepared by the California Regional Water Quality Control Board, San Francisco Bay Region dated May 2008.

Current groundwater concentrations are much lower than in previous sampling events; this is obviously do to the ongoing soil vapor and groundwater remediation activities. ASE believes that continuation of the remediation systems will have an even greater affect on decreasing the hydrocarbon concentrations in groundwater over the next 12 to 18 months.

6.0 RECOMMENDATIONS

Based on the findings and the details reported within, ASE recommends the following:

- Continued operation of the remediation systems at the site for a minimum period of 12 months, with some modifications as listed below.
- During the month of August, ASE will turn off the vapor-extraction system for a period
 of two weeks. At the same time, switch the ozone-sparging system to "low-flow ozone
 sparging." During the two weeks, visit the site daily to evaluate and monitor for
 hydrocarbon vapor and ozone concentrations in the off-site street boxes, VMPs, and well
 boxes.
- Once free-product is no longer visible on the surface of well MW-3, contact Mako Industries and have them re-engineer the vapor-extraction system to use activated carbon as the abatement device. ASE believes this can be achieved sometime during the Fall of 2012. ASE will notify the BAAQMD and ACHCSA of this change prior to actual field work.
- Operate the ozone-sparging remediation equipment in ozone mode as soon as the vaporextraction abatement device is switched to activated carbon.
- Collect groundwater samples from monitoring wells MW-1 through MW-8, including wells MW-3 and MW-4R which are now vapor-extraction wells, in January 2013 and June 2013. In July 2013, prepare an annual remediation effectiveness report.

7.0 SIGNATURES

Should you require any additional information, please feel free to contact us at (925) 820-9391.

Respectfully submitted,

AQUA SCIENCE ENGINEERS, INC.

David Allen Vice President

Cc:

Robert Kitay, P.G., R.E.A Senior Geologist

Rm C. Kitny

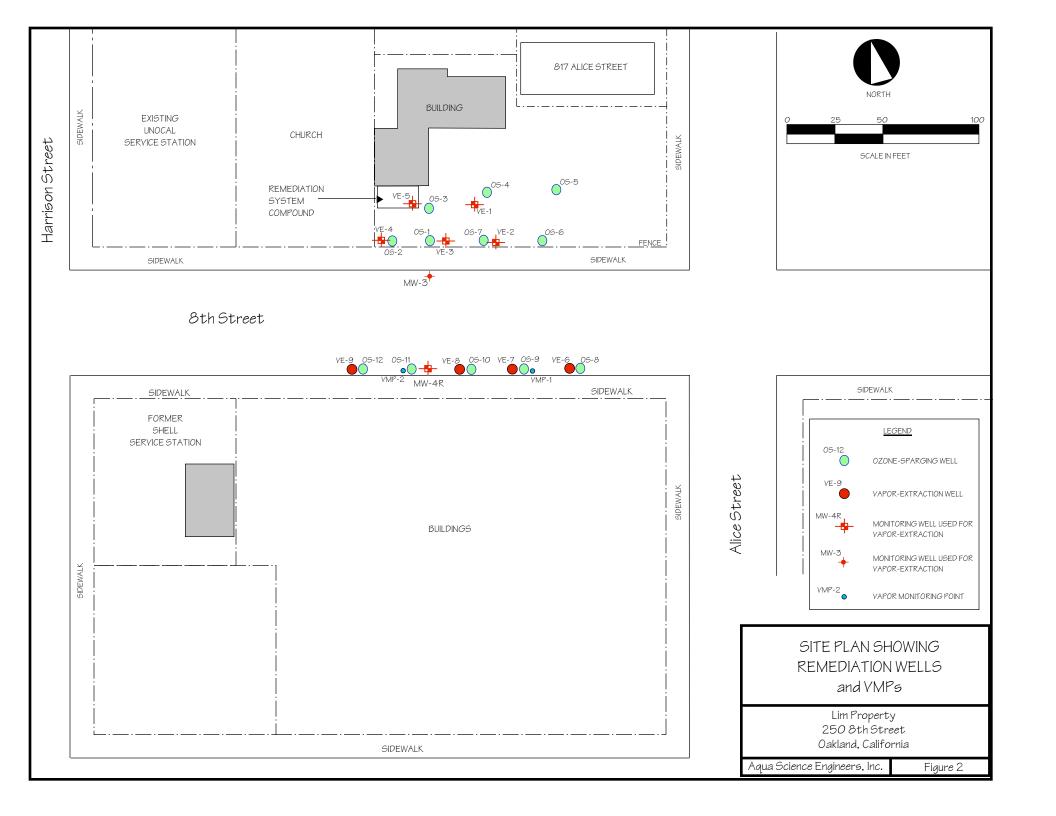
Mr. Jerry Wickhman, ACHCSA, electronically

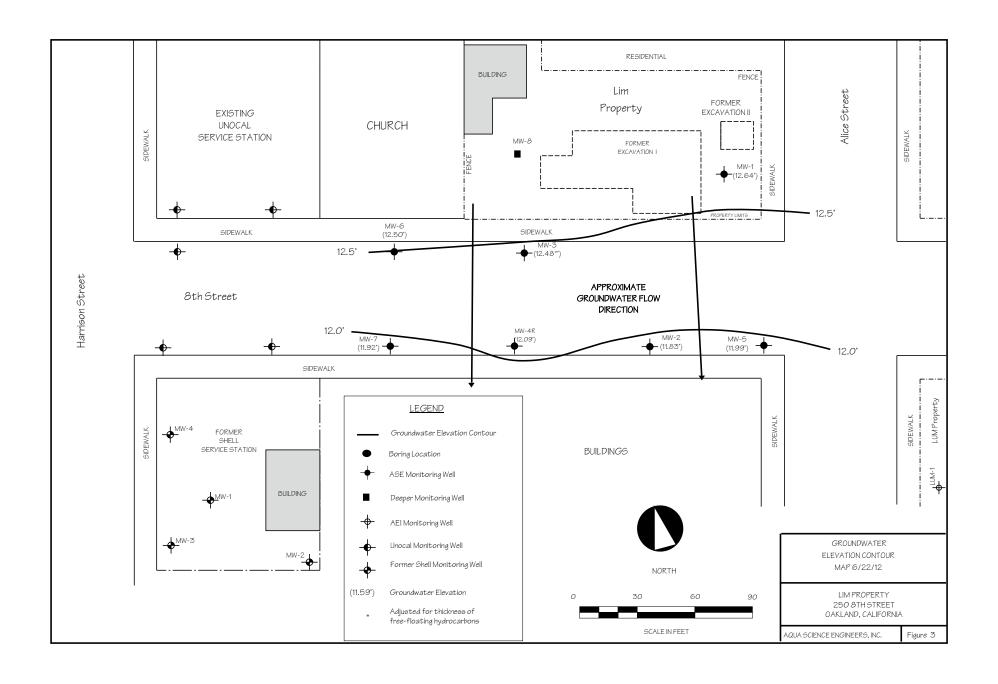
Mr. Russ Lim, responsible party representative, electronically

RWQCB Geotracker Database, electronically

FIGURES

NORTH


NOT TO SCALE


SITE LOCATION MAP

Lim Family Property 250 8th Street Oakland, California

Aqua Science Engineers

Figure 1

TABLES

	Date	Top of Casing	Depth to	Product	Groundwater
	of	Elevation	Water	Thickness	Elevation
Well I.D.	Measurement	(msl)	(feet)	(feet)	(msl)
MW-1	01/30/95	25.51	16.21	()	9.30
,	04/12/95		15.71		9.80
	07/14/95		16.71		8.80
	10/17/95		17.72		7.79
	01/12/96		18.03		7.48
	07/25/96		16.82		8.69
	01/06/97		15.60		9.91
	07/08/97		17.31		8.20
	01/26/98		15.21		10.30
	07/23/98		15.38		10.13
	01/05/99		16.82		8.69
	07/13/99		15.89		9.62
	01/12/00		17.44		8.07
	04/24/00		16.37		9.14
	07/20/00		16.30		9.21
	10/24/00 01/18/01		17.25 17.29		8.26 8.22
	04/05/01		15.88		9.63
	07/17/01		16.54		8.97
	10/25/01		16.89		8.62
	01/21/02		14.92		10.59
	04/11/02		14.02		11.49
	06/11/02	29.72	15.33		14.39
	09/17/02		15.96		13.76
	12/18/02		16.14		13.58
	03/25/03		16.16		13.56
	06/23/03		16.01		13.71
	09/26/03		16.57		13.15
	12/18/03		16.41		13.31
	03/12/04		14.64		15.08
	06/17/04		15.71		14.01
	09/17/04		16.35		13.37
	12/17/04		16.10		13.62
	04/28/05 07/19/05		14.10 15.94		15.62 13.78
	10/03/05		16.34		13.38
	12/06/05		16.21		13.51
	03/15/06		16.21		13.51
	06/28/06		14.92		14.80
	08/31/06		15.60		14.12
	11/21/06		17.20		12.52
	02/12/07		16.12		13.60
	05/02/07		16.92		12.80
	08/09/07		17.58		12.14
	12/06/07		18.60		11.12
	02/26/08		17.13		12.59
	05/30/08		18.17		11.55
	08/28/08		18.47		11.25
	12/11/08		19.19		10.53
	03/31/09		17.59		12.13
	12/31/09		18.57		11.15
	06/03/10 12/20/10		16.94 18.21		12.7 <i>8</i>
	06/30/11		16.21 17.43		11.51 12.29
	06/22/12		17.43 17.08		12.64
	ou ee ie		17.00		ian OT

	Date	Top of Casing	Depth to	Product	Groundwater
	of	Elevation	Water	Thickness	Elevation
Well I.D.	Measurement	(msl)	(feet)	(feet)	(msl)
MW-2	01/30/95	23.99	15.02	(1000)	8.97
	04/12/95	20.00	14.75		9.24
	07/14/95		16.02		7.97
	10/17/95		16.94		7.05
	01/12/96		17.05		6.94
	07/25/96		16.02		7.97
	01/06/97		14.34		9.65
	07/08/97		16.52		7.47
	01/26/98		14.10		9.89
	07/23/98		14.70		9.29
	01/05/99		16.01		7.98
	07/13/99		15.40		8.59
	01/12/00		16.76		7.23 8.32
	04/24/00 07/20/00		15.67 15.7 <i>0</i>		8.29
	10/24/00		16.56		7.43
	01/18/01		16.47		7.52
	04/05/01		15.88		8.11
	07/17/01		15.35		8.64
	10/25/01		15.63		8.36
	01/21/02		13.55		10.44
	04/11/02		13.74		10.25
	06/11/02	28.19	14.06		14.13
	09/17/02		14.67		13.52
	12/18/02		14.88		13.31
	03/25/03		15.11		13.08
	06/23/03		14.94		13.25
	09/26/03		15.49 15.13		12.7 <i>0</i> 13.06
	12/18/03 03/12/04		13.50		14.69
	06/17/04		14.63		13.56
	09/17/04		15.19		13.00
	12/17/04		14.88		13.31
	04/28/05		13.39		14.80
	07/19/05		15.27		12.92
	10/03/05		15.57		12.62
	12/06/05		15.35		12.84
	03/15/06		12.65		15.54
	06/28/06		14.45		13.74
	08/31/06		15.37		12.82
	11/21/06 02/12/07		16.22 16.12		11.97 12.07
	05/02/07		16.12		12.07
	08/09/07		16.85		11.34
	12/06/07		17.95		10.24
	02/26/08		16.15		12.04
	05/30/08		17.33		10.86
	08/28/08		17.53		10.66
	12/11/08		18.28		9.91
	03/31/09		16.63		11.56
	12/31/09		17.46		10.73
	06/03/10		16.00		12.19
	12/20/10		17.25		10.94
	06/30/11		16.55		11.64
	06/22/12		16.36		11.85

	Date	Top of Casing	Depth to	Product	Groundwater	
	of	Elevation	Water	Thickness	Elevation	
Well I.D.	Measurement	(msl)	(feet)	(feet)	(msl)	
MW-5	01/12/00	24.25	16.68	0.01	7.58*	
	04/24/00		15.58	0.15	8.79*	
	07/20/00		16.01	0.41	8.57*	
	10/24/00		16.95	0.21	7.47*	
	01/18/01		16.63	0.21	7.79*	
	04/05/01		15.16	0.23	9.27*	
	07/17/01		15.92	0.39	8.64*	
	10/25/01		16.26	0.38	8.29*	
	01/21/02		14.08	0.16	10.30*	
	04/11/02		14.59	0.54	10.09*	
	06/11/02	28.58	15.16	0.90	14.14*	
	09/17/02		16.04	1.24	13.53*	
	10/01/02		16.14	1.23	13.42*	
	10/25/02		15.80	0.60	13.26*	
	11/12/02		15.87	0.47	13.09*	
	12/18/02		15.42	0.47	13.54*	
	03/25/03		16.11	1.14	13.38*	
	06/23/03		16.58	1.86	13.49*	
	09/26/03		16.11	0.66	13.00*	
	12/18/03		15.83	0.59	13.22*	
	03/12/04		14.51	1.21	15.04*	
	06/17/04		15.25	0.68	13.87*	
	09/17/04		16.14	0.96	13.21*	
	12/17/04		15.05	0.25	13.73*	
	01/13/05		13.40	0.45	15.54*	
	04/28/05		15.31	2.43	15.21*	
	07/19/05			16.29	1.67	13.63*
	10/03/05		16.10	1.47	13.66*	
	12/06/05			15.04	1.17	14.48*
	03/15/06		12.65	2.41	15.49*	
	06/28/06		13.55	2.61	16.16*	
	08/31/06		14.85	2.20	15.49*	
	11/21/06		16.05	1.10	13.41*	
	02/12/07		15.96	0.35	12.90*	
	05/02/07		15.11	0.09	13.54*	
	08/09/07		15.83	0.09	12.82*	
	12/06/07		18.10	0.50	10.88*	
	02/26/08		16.47	0.22	12.29*	
	05/30/08		17.90	0.70	11.24*	
	08/28/08		18.05	0.54	10.96*	
	12/11/08		18.57	0.46	10.38*	
	03/31/09		16.89	0.23	11.87*	
	12/31/09		17.64	sheen	10.94*	
	06/03/10		16.58	0.56	12.45*	
	12/20/10		17.20	0.45	11.74*	
	06/30/11		15.92		12.66	
	06/22/12		15.95	16.64	0.69*	

	Date	Top of Casing	Depth to	Product	Groundwater
	of	Elevation	Water	Thickness	Elevation
Well I.D.	Measurement	(msl)	(feet)	(feet)	(msl)
MW-4	01/12/00	23.71	17.24		6.47
	04/24/00		16.18		7.53
	07/20/00		16.18		7.53
	10/24/00		17.03		6.68
	01/18/01		16.87		6.84
	04/05/01		15.28		8.43
	07/17/01		15.92		7.79
	10/25/01		16.23		7.48
	01/21/01		14.14		9.57
	04/11/02		14.43		9.28
	06/11/02	28.61	14.72		13.89
	09/17/02		15.29		13.32
	12/18/02		15.20		13.41
	03/25/03		15.53		13.08
	06/23/03		15.35		13.26
	09/26/03		15.91		12.70
	12/18/03		15.63		12.98
	03/12/04		13.88		14.73
	06/17/04		15.03		13.58
	09/17/04		15.61		13.00
	12/17/04		15.32		13.29
	04/28/05		13.82		14.79
	07/19/05		15.44		13.17
	10/03/05		15.91 15.71		12.70
	12/06/05		15.71		12.90
	03/15/06 06/28/06		13.05		15.56 14.12
	06/28/06		14.49 15.75		14.12 12.86
	11/21/06		15.75 16.70		12.86
	02/12/07		16.70		12.10
	05/02/07		16.51		12.10
	08/02/07		17.17		12.10
	12/06/07		17.17 18.08		10.53
	02/26/08		16.57		12.04
	05/30/08		17.66		10.95
	08/28/08		17.00		10.63
	12/11/08		18.61		10.00
	03/31/09		18.75	2.00	11.46*
MW-4R	12/31/09	28.78	19.85	2.30	10.77*
	06/03/10		18.67	2.57	12.17*
	12/20/10		18.95	2.00	11.43*
	06/30/11		16.45		12.33
	06/22/12		16.69		Survey

	Date	Top of Casing	Depth to	Product	Groundwater
	of	Elevation	Water	Thickness	Elevation
Well I.D.	Measurement	(msl)	(feet)	(feet)	(msl)
MW-5	06/11/02	28.40	14.23		14.17
	09/17/02		14.80		13.60
	12/18/02		15.08		13.32
	03/25/03		15.31		13.09
	06/23/03		15.16		13.24
	09/26/03		15.72		12.68
	12/18/03		15.47		12.93
	03/12/04		13.44		14.96
	06/17/04		14.90		13.5 <i>0</i>
	09/17/04		15.45		12.95
	12/17/04		15.12		13.28
	04/28/05		13.63		14.77
	07/19/05		15.67		12.73
	10/03/05		15.81		12.59
	12/06/05		15.60		12.80
	03/15/06		12.81		15.59
	06/28/06		15.21		13.19
	08/31/06		15.55		12.85
	11/21/06		17.09		11.31
	02/12/07		16.29		12.11
	05/02/07		16.21		12.19
	08/09/07		16.97		11.43
	12/06/07		18.35		10.05
	02/26/08		16.35		12.05
	05/30/08		17.62		10.78
	08/28/08		17.72		10.68
	12/11/08		18.62		9.78
	03/31/09		16.94		11.46
	12/31/09		17.73		10.67
	06/03/10		16.20		12.20
	12/20/10		17.72		10.68
	06/30/11		16.75		11.65
	06/22/12		16.41		11.99

	Date	Top of Casing	Depth to	Product	Groundwater			
	of	Elevation	Water	Thickness	Elevation			
Well I.D.	Measurement	(møl)	(feet)	(feet)	(msl)			
MW-6	06/11/02	29.20	14.95		14.25			
	09/17/02		15.47		13.73			
	12/18/02		15.43		13.77			
	03/25/03		15.67		13.53			
	06/23/03		15.48		13.72			
	09/26/03	NOT MI	EASURED - S	OUNDER MALF	FUNCTION			
	12/18/03		15.79		13.41			
	03/12/04		14.04		15.16			
	06/17/04		15.13		14.07			
	09/17/04		15.74		13.46			
	12/17/04		15.54		13.66			
	04/28/05		13.91		15.29			
	07/19/05		15.3 <i>0</i>		13.90			
	10/03/05		15.35		13.85			
	12/06/05		15.69		13.51			
	03/15/06		13.14		16.06			
	06/28/06		14.44		14.76			
	08/31/06		16.25		12.95			
	11/21/06		16.69		12.51			
	02/12/07		16.63		12.57			
	05/02/07		16.57		12.63			
	08/09/07		17.19		12.01			
	12/06/07		17.95		11.25			
	02/26/08		16.66		12.54			
	05/30/08		17.64		11.56			
	08/28/08		18.03		11.17			
	12/11/08		18.54		10.66			
	03/31/09		17.10		12.10			
	12/31/09		18.00		11.20			
	06/03/10		16.58		12.62			
	12/20/10		17.40		11.80			
	06/30/11		17.02		12.18			
	06/22/12		16.70		12.50			

Groundwater Elevation Data Lim Family Property 2508thStreet Oakland, CA

	Date	Top of Casing	Depth to	Product	Groundwater				
	of	Elevation	Water	Thickness	Elevation				
Well I.D.	Measurement	(msl)	(feet)	(feet)	(msl)				
MW-7	06/11/02	28.95	15.19	, ,	13.76				
	09/17/02		15.73		13.22				
	12/18/02	NOT ME	EASURED - C	AR PARKED O	VER WELL				
	03/25/03		15.96		12.99				
	06/23/03		15.75		13.20				
	09/26/03		16.29		12.66				
	12/18/03		16.03		12.92				
	03/12/04		14.28		14.67				
	06/17/04		15.42		13.53				
	09/17/04		16.02		12.93				
	12/17/04		15.45		13.5 <i>0</i>				
	04/28/05		14.15		14.80				
	07/19/05		15.30		13.65				
	10/03/05		16.25		12.70				
	12/06/05		16.05		12.90				
	03/15/06		13.36		15.59				
	06/28/06		14.81		14.14				
	08/31/06		16.13		12.82				
	11/21/06		17.06		11.89				
	02/12/07		16.97		11.98				
	05/02/07		16.93		12.02				
	08/09/07		17.56		11.39				
	12/06/07 02/26/08		18.32 16.93		10.63 12.02				
	05/30/08		17.97		12.02				
	08/28/08		18.33		10.62				
	12/11/08		18.86		10.09				
	03/31/09		17.37		11.58				
	12/31/09		18.26		10.69				
	06/03/10		16.86		12.09				
	12/20/10		17.70		11.25				
	06/30/11		17.36		11.59				
	06/22/12		17.05		11.92				
MW-8	02/26/08	30.14	21.50		8.64				
	05/30/08		22.52		7.62				
	08/28/08		23.27		6.87				
	12/11/08		23.15		6.99				
	03/31/09		21.46		8.68				
	12/31/09		22.75		7.39				
	06/03/10		21.06		9.08				
	12/20/10		22.18		7.96				
	06/30/11		21.95		8.19				
	06/22/12		21.25		<i>8.9</i> 1				

Top of casing elevations resurveyed by Mid Coast Engineers on 6/27/02 and 7/11/02.

Notes: $\begin{tabular}{ll} Notes: & Adjusted for the presence of free-floating oil by the equation: Top of Casing Elevation - Depth to Water + $(O.8 \times Floating Hydrocarbon Thickness) = Groundwater Elevation (Adjusted). \end{tabular}$

Well/												
Date	TPH	TPH			Ethyl-	Total				Other		
Sampled	Gasoline	Diesel	Benzene	Toluene	benzene	Xylenes	MTBE	DIPE	TBA	Охуя	EDC	EDB
1.01/4												
<u>MW-1</u> 01/30/95	740	200	3	5	1	4						
04/12/95	400	500	< 0.5	< 0.5	3	< 2						
07/14/95	520	400	1	< 0.5	2	3						
10/17/95	400	200	0.5	1	3	<2						
01/12/96	120	890	< 0.5	< 0.5	< 0.5	< 1.0	< 2.0					
07/08/96	320	300	0.52	2.7	1.2	2.3	< 5.0					
01/06/97	110	75	< 0.5	0.68	< 0.5	< 0.5	< 5.0					
07/08/97	380	290	< 0.5	1.5	1.4	1.9	< 5.0				< 0.5	< 0.5
01/26/98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0				< 0.5	< 0.5
07/23/98	190	< 50	0.54	2.8	2	1.8	< 5.0				< 2	< 2
01/05/99	200	< 50	1.8	1.6	3.3	< 0.5	< 5.0				< 0.5	< 0.5
07/13/99	340	<50	< 0.5	< 0.5	2.6	< 0.5	< 5.0				< 0.5	< 0.5
01/12/00	300	1,000	22	36	5.5	24	< 5.0				< 0.5	< 0.5
04/24/00	360	280*	< 0.5	< 0.5	< 0.5	2.1	< 5.0				< 0.5	< 0.5
07/20/00	290	150*	1.8	< 0.5	< 0.5	< 0.5	< 5.0				< 0.5	< 0.5
10/24/00	170**	280*	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0				< 0.5	< 0.5
01/18/01	170**	150*	< 0.5	< 0.5	< 0.5	2.1	< 5.0				< 0.5	< 0.5
04/05/01	350**	190*	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0				< 0.5	< 0.5
07/17/01	310	570	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0				< 0.5	< 0.5
10/25/01	250	260	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
01/22/02	200	250	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
04/11/02	260	300	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
06/11/02	270	330	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
09/17/02	320	1,700	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
12/18/02	170	320	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
03/25/03	320	< 500	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
06/23/03	240	310	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
09/26/03 12/18/03	11 <i>0</i> 15 <i>0</i>	300 340	< 0.5 < 0.5				< 0.5 < 0.5	< 0.5 < 0.5				
03/12/04	220	510	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				< 0.5	< 0.5
06/17/04	250	490	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				< 0.5	< 0.5
09/17/04	110		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5					
11/10/04***	180	400	0.68	< 0.5	1.7	< 0.5	< 5.0					
12/17/04	77	130	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				< 0.5	< 0.5
04/28/05	250	190	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.67	< 0.5	< 0.5	< 0.5	< 0.5
07/19/05	340	na	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.76	< 5.0	< 0.5	< 0.5	< 0.5
10/03/05	170	< 100	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.50	< 5.0	< 0.5	< 0.5	< 0.5
12/06/05	140	67	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
03/15/06	170	< 80	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
06/28/06	230	130	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
08/31/06	310	< 200	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
11/21/06	220	160	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
02/23/07	140	120	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.2	< 5.0	< 0.50	< 0.50	< 0.50
05/02/07	180	140	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.3	< 5.0	< 0.50	< 0.50	< 0.50
08/09/07	130	120	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.85	< 5.0	< 0.50	< 0.50	< 0.50
12/06/07	53	160	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 5.0	< 0.50	< 0.50	< 0.50
02/26/08	93	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.1	< 5.0	< 0.50	< 0.50	< 0.50
05/30/08	200	240	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.95	< 5.0	< 0.50	< 0.50	< 0.50
08/28/08	150	200	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.2	< 5.0	< 0.50		
12/11/08	110	140	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.92	< 5.0	< 0.50	0.50	0.50
03/31/09	160	< 200	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.8	< 5.0	< 0.50	< 0.50	< 0.50
12/31/09	140	200	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.84	< 5.0	< 0.50	< 0.50	< 0.50
06/03/10	300	140	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.72	< 5.0	< 0.50	< 0.50	< 0.50
12/20/10 06/30/11	140 650	180 < 200	< 0.50 1.9	< 0.50 < 0.50	< 0.50 < 0.50	< 0.50 < 0.50	< 0.50 < 0.50	< 0.50 0.78	< 5.0 < 5.0	< 0.50 < 0.50	< 0.50 < 0.50	< 0.50 < 0.50
06/30/11 06/22/12	7 50	< 200	1.9 25	< 0.50	< 0.50	2.5	< 0.50	0.78	< 5.0 12	< 0.50 < 0.50	< 0.50	< 0.50
vui eei ie	750	1200	20	\ U.UU	ы	2 -0	~ U.UU	0.00	14	\U.UU	~U.UU	\U.DU

Well/												
Date	TPH	TPH			Ethyl-	Total				Other		
Sampled	Gasoline	Diesel	Benzene	Toluene	benzene	Xylenes	MTBE	DIPE	TBA	Охуя	EDC	EDB
MW-2	88.000	800	10.000	18 000	0.400	10.000						
01/30/95	88,000	800	19,000	18,000	2,400	10,000						
04/12/95 07/14/95	110,000 120,000	990 5,000	21,000 20,000	28,000 25,000	2,800 3,200	14,000 15,000						
10/17/95	190,000	4,000	15,000	26,000	4,900	23,000						
01/12/96	32,000	2,600	10,000	8,000	1,100	4,800	< 2					
07/08/96	110,000	2,500	20,000	18,000	2,500	12,000	< 500					
01/06/97	230,000	37.000	11,000	19,000	4,300	20,000	< 1,200					
07/08/97	91,000	35,000	16,000	20,000	2,700	13,000	< 1,000				< 0.5	< 0.5
01/26/98	50,000	11,000	12,000	12,000	1,600	6,700	< 250				11	< 0.5
07/23/98	50,000	8,100#	11,000	8,300	1,800	7,000	1,100				9.9	< 0.5
01/05/99	50,000	7,600#	12,000	12,000	2,300	9,600	1,300				< 50	< 50
07/13/99	73,000	8,500	11,000	13,000	2,200	9,800	< 500				7.7	< 0.5
01/12/00	63,000	11,000	10,000	12,000	1,800	7,800	< 500				8.8	< 1.0
04/24/00	76,000	23,000*	7,100	14,000	2,000	9,400	< 500				5.9	< 5.0
07/20/00	68,000	5,300#	11,000	14,000	2,300	11,000	< 1,000				6.7	< 5.0
10/24/00	48,000	6,400*	11,000	9,400	1,500	7,300	< 500				< 5.0	< 5.0
01/18/01	37,000	4,600*	6,900	5,600	1,200	5,300	< 500				< 5.0	< 5.0
04/05/01	59,000	4,600*	7,100	9,800	1,600	7,600	< 500				4.6	< 5.0
07/17/01 10/25/01	90,000 79,000	< 10,000	9,200 9,200	14,000 14,000	2,700 2,400	11, <i>000</i> 11, <i>000</i>	< 50 < 50				< 50 < 50	< 50
01/22/02	76,000	< 2,300	7,000	13,000	2,200	9,600	< 50				< 50	< 50
04/11/02	76,000	< 1,500	7,800	11,000	2,900	12,000	< 50					
06/11/02	72,000	< 2,500	7,300	9,600	2,500	12,000	< 50					
09/17/02	52,000	< 3,000	5,000	5,400	2,100	9,100	< 20				< 20	< 20
12/18/02	46,000	< 6,000	2,900	3,000	1,800	7,600	22				< 10	< 10
03/25/03	87,000	< 8,000	7,900	9,300	2,900	12,000	< 50				< 50	< 50
06/23/03	46,000	< 3000	7,800	4,000	1,900	6,600	< 50				< 50	< 50
09/26/03	52,000	< 3000	9,100	3,500	1,300	5,000	< 50				< 50	< 50
12/18/03	61,000	< 4,000	13,000	3,500	1,600	5,600	< 20				< 20	< 20
03/12/04	53,000	< 4,000	9,100	3,500	1,700	5,700	< 25				< 25	< 25
06/17/04	59,000	< 3,000	7,100	4,000	1,700	7,300	< 25				< 25	< 25
09/17/04	33,000		9,800	1,200	1,300	4,000	< 20					
11/10/04***	44,000	3,600	13,000	4,400	1,600	6,000	< 1000					45
12/17/04	54,000	< 3,000	7,900	2,200	1,700	3,900	< 15				< 15	< 15
04/28/05 07/19/05	81,000 59,000	< 3,000	7,000 7,900	6,000 4,400	2,100 1,900	8,700 7,000	< 15	90	< 15 77	< 15	< 15	< 15
10/03/05	34,000	na < 800	7,800	4,400 810	1,000	2,800	< 15 < 15	< 15 < 15	< 70	< 15 < 15	< 15 < 15	< 15 < 15
12/06/05	26,000	< 800	6,100	940	770	2,000	< 15					
03/15/06	33,000	< 1,500	7,700	2,600	1,400	4,200	< 15	< 15	< 15	< 15	< 15	< 15
06/28/06	96,000	< 4,000	10,000	14,000	2,900	12,000	< 15	< 15	< 5.0	< 15	33	< 15
8/31/06	47,000	< 3,000	5,800	5,100	2,200	8,700	< 15	< 15	81	< 15	< 15	< 15
11/21/06	51,000	< 1,500	6,800	3,400	1,700	6,200	< 15	< 15	82	< 15	< 15	< 15
02/23/07	38,000	< 1,500	7,800	2,000	1,500	4,600	< 15	< 15	190	< 15	< 15	< 15
05/02/07	55,000	< 3,000	6,500	5,100	2,400	8,600	< 15	< 15	110	< 15	< 15	< 15
08/09/07	39,000	< 3,000	6,600	2,200	1,600	4,900	< 15	< 15	81	< 15	< 15	< 15
12/06/07	20,000	< 1,500	7,400	510	680	1,200	< 15	< 15	120	< 15	< 15	< 15
02/26/08	43,000	< 4,000	8,200	940	1,400	3,700	< 15	< 15	70	< 15	< 15	< 15
05/30/08	31,000	< 1,000	11,000	620	1,100	2,300	< 15	< 15	84	< 15	< 15	< 15
08/28/08	38,000	< 3,000	11,000	630	1,400	3,800	< 25	< 25	< 150	< 25		
12/11/08	32,000	< 2,000	11,000	610	1,000	2,700	< 25	< 25	< 150	< 25	. 0. 0	.00
03/31/09	44,000	< 4,000	6,500 9,700	3,300	1,700	5,600	< 9.0	< 9.0	56 56	< 9.0	< 9.0	< 9.0
12/31/09 06/03/10	36,000 53,000	< 4,000 < 10,000	9,700 8,600	350 2,600	1,600 2,500	3,800 8,000	< 9.0 < 5.0	13 8.9	69	< 9.0 < 5.0	< 9.0 < 5.0	< 9.0 < 5.0
12/20/10	39,000	< 4,000	13,000	530	1,600	3,600	< 15	<i>0.9</i> 21	< 70	< 15	< 15	< 15
06/30/11	65,000	< 6,000	7,300	5,900	2,400	10,000	< 20	< 20	< 90	< 20	< 20	< 20
06/22/12	1,200	140	50	56	4.0	160	< 0.50	1.6	17	< 0.50	1.1	< 0.50
		•••	-	-	- 100				••			

Well/												
Date	TPH	TPH			Ethyl-	Total				Other		
Sampled	Gasoline	Diesel	Benzene	Toluene	benzene	Xylenes	MTBE	DIPE	TBA	Охуя	EDC	EDB
						_				_	_	
<u>MW-3</u>												
01/12/00	140,000		22,000	19,000	2,400	11,000	< 500					
04/24/00	240,000	700,000*				28,000/	< 5,000					
				87,000								
07/20/00						OCARBONS						
10/24/00						OCARBONS						
01/18/01						OCARBONS						
04/05/01						OCARBONS						
07/17/01						OCARBONS						
10/25/01						OCARBONS						
01/22/02						OCARBONS						
04/11/02						OCARBONS						
06/11/02						OCARBONS						
09/17/02						OCARBONS						
12/18/02						OCARBONS						
03/25/03						OCARBONS						
06/23/03	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
09/26/03	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
12/18/03	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
03/12/04	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
06/17/04	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
09/17/04	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
11/10/04	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
12/17/04	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
04/28/05	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
07/19/05	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
10/03/05	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
12/06/05	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
03/15/06	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
06/28/06	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
8/31/06	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
11/21/06	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
02/23/07	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
05/02/07	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
08/09/07	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
12/06/07	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
02/26/08	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
05/30/08	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
08/28/08	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
12/11/08	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
03/31/09						OCARBONS						
12/31/09	60,000	< 25,000	7,500	6,500	1,000	6,600	< 20	< 20	< 90	< 20	< 20	< 20
06/03/10	NO	OT SAMPLE	D DUE TO F	REE-FLOAT	ING HYDR	OCARBONS	,					
12/20/10						OCARBONS						
06/30/11	140,000			21,000	4,000	17,000	< 20	< 20	< 90	< 20	< 20	< 20
06/22/12	NOT SAM	APLED DUE	TO FREE-F	LOATING H	YDROCAR	30NS (0.69	9-feet)					
						`	*					

Well/												
Date	TPH	TPH			Ethyl-	Total				Other		
Sampled	Gasoline	Diesel	Benzene	Toluene	benzene	Xylenes	MTBE	DIPE	TBA	Охуя	EDC	EDB
MW-4	00.05	7.000	10.00-	00.00-	0.405	10.00-	0.50-					
01/12/00	99,000	7,900*	16,000	20,000	2,100	12,000	< 2,500				< 50	< 50
04/24/00	54,000	44,000*	3,400/	13,000/	1,800/	8,800/	< 1,300				< 250	< 250
07/20/00	8 000	3 500	4,500	20,000	2,800	14,000	<1.000				2200	- 200
07/20/00	8,000	3,500	9,200/ 11,000	20,000 22,000	2,500 3,400	12,000/ 13,000	< 1,000				< 200	< 200
10/24/00	98,000	8,000*	21,000	29,000	2,700	15,000	< 1,000				< 250	< 250
01/18/01	91,000	12,000	17,000/	21,000/	2,700	13,000/	<1,000				< 250	< 250
31,10101	51,000	12,000	15,000	21,0007	2,800	11,000	<5.000				. 200	. 200
04/05/01	88,000	7.500*	6,900/	18,000/	2,500/	12,000/	< 1,000				< 50	< 50
		.,000	3,200	9,000	1,300	6,400	< 500				. 55	. 50
07/17/01	95,000	< 3,000	8,000	16,000	2,900	11,000	49				69	
10/25/01	89,000	< 2,200	9,300	18,000	2,400	12,000	66				72	< 50
01/22/02	80,000	< 2,300	4,600	15,000	2,500	11,000	< 50				< 50	< 50
04/11/02	90,000	< 900	6,600	18,000	2,800	12,000	55					
06/25/02	110,000	< 3,000	10,000	20,000	2,900	13,000	< 100				< 100	< 100
09/17/02	110,000	< 3,000	9,600	21,000	2,800	13,000	< 100				< 100	< 100
12/18/02	97,000	< 4,000	8,000	20,000	2,600	12,000	< 50				< 50	< 50
03/25/03	97,000	< 7,500	7,600	22,000	2,500	12,000	< 100				< 100	< 100
06/23/03	100,000	< 3,000	9,600	22,000	3,300	15,000	< 100				< 100	< 100
09/26/03	110,000	< 4,000	9,300	17,000	2,100	10,000	< 50				87	< 50
12/18/03	110,000	< 2,000	8,900	19,000	2,500	12,000	< 25				46	< 25
03/12/04	96,000	< 4,000	6,500	18,000	2,700	12,000	< 40				< 40	< 40
06/17/04	110,000	< 4,000	10,000	20,000	2,900	13,000	< 50				93	< 50
09/17/04	78,000		9,300	15,000	2,400	11,000	<50					
11/10/04***	87,000	4,300	15,000	21,000	3,000	16,000	< 1300					
12/17/04	88,000	< 3,000	8,500	16,000	2,800	12,000	< 25				53	< 25
04/28/05	110,000	< 3,000	7,800	14,000	2,200	10,000	< 25	< 25	< 25	< 25	46	< 25
07/19/05	90,000	na	10,000	13,000	2,300	10,000	< 40	< 20	< 20	< 20	73	< 40
10/03/05	68,000	< 800	9,400	4,000	1,800	8,700	23	23	< 5.0	< 20	62	< 20
12/06/05	81,000	< 1,500	8,900	7,200	2,200	9,500	< 20					
03/15/06	68,000	< 3,000	7,300	14,000	2,500	10,000	< 20	< 20	< 20	< 20	< 20	< 20
06/28/06	61,000	< 3,000	8,500	4,100	2,600	11,000	< 20	< 20	< 5.0	< 20	20	< 20
08/31/06	68,000	< 2,000	9,500	9,600	2,500	12,000	< 20	< 20	< 5.0	< 20	36	< 20
11/21/06	68,000	< 1,500	9,000	5,000	2,000	9,300	< 20	< 20	230	< 20	42	< 20
02/23/07	90,000	< 2,000	11,000	11,000	2,800	12,000	< 20	< 20	290	< 20	36	< 20
05/02/07	56,000	< 2,000	7,300	6,300	2,500	11,000	< 15	< 15	160	< 15	20	< 15
08/09/07	52,000	< 2,000	7,600	2,600	2,100	8,400	< 15	15	170	< 15	31	< 15
12/06/07	60,000	< 2,000	13,000	2,000	2,800	11,000	< 15	22	150	< 15	< 15	< 15
02/26/08	42,000	< 2,000	3,700	2,300	2,300	8,900	< 15	< 15	90 83	< 15	< 15	< 15
05/30/08	64,000 73,000	< 3,000	9,200	5,100 5,500	3,000	12,000	< 15	< 15	83 - 70	< 15	19	< 15
08/28/08	73,000	< 5,000	9,700	5,500	3,300	12,000	< 15	< 15	< 70	< 15		
12/11/08				12,000	4,400	19,000	< 25	< 25	< 150	< 25		
03/31/09	N	OT SAMPLEI	.V VUE 10 F	NEE-FLOAT	ING HYDR	ULAKDUNE	7					
MW-4R												
12/31/09	No	OT SAMPLEI	D DUE TO F	REE-FLOAT	ING HYDRO	OCARBONS	ñ					
06/03/10		OT SAMPLEI										
12/20/10		OT SAMPLEI										
06/30/11		< 30,000		11,000	2,900	20,000	< 25	< 25	< 150	< 25	< 25	< 25
06/22/12	4,500	<200	51	55	5.0	500	6.5	6.1	180	< 0.5	21	< 0.5

Well/												
Date	TPH	TPH			Ethyl-	Total				Other		
Sampled	Gasoline	Diesel	Benzene	Toluene	benzene	Xylenes	MTBE	DIPE	TBA	Охуя	EDC	EDB
											<u> </u>	<u> </u>
MW-5	50	F.0	0.5	0.5	0.5	0.5	0.0				0.5	0.5
06/11/02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	28				< 0.5	< 0.5
09/17/02	< 50	110	< 0.5	< 0.5	< 0.5	< 0.5	4.8				< 0.5	< 0.5
12/18/02	< 50	140	< 0.5	< 0.5	< 0.5	< 0.5	1.8				< 0.5	< 0.5
03/25/03	< 50	130	< 0.5	< 0.5	< 0.5	< 0.5	7.4				< 0.5	< 0.5
06/23/03	< 50	390	< 0.5	< 0.5	< 0.5	< 0.5	17				< 0.5	< 0.5
09/26/03	< 50	700	< 0.5	< 0.5	< 0.5	< 0.5	21				< 0.5	< 0.5
12/18/03	< 50	550	< 0.5	< 0.5	< 0.5	< 0.5	16				< 0.5	< 0.5
03/12/04	< 50	490	< 0.5	< 0.5	< 0.5	< 0.5	9.1				< 40	< 40
06/17/04	< 50	510	< 0.5	< 0.5	< 0.5	< 0.5	9.8				< 0.5	< 0.5
09/17/04	< 50		< 0.5	< 0.5	< 0.5	< 0.5	5.5					
11/10/04***	< 50	370	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
12/17/04	< 50	120	< 0.5	< 0.5	< 0.5	< 0.5	9.2				< 0.5	< 0.5
04/28/05	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
07/19/05	< 50	na	< 0.5	< 0.5	< 0.5	< 0.5	6.1	2.1	< 5.0	< 0.5	< 0.5	< 0.5
10/03/05	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.4	1.7	< 5.0	< 0.5	< 0.5	< 0.5
12/06/05	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
03/15/06	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	3.3	< 0.5	< 5.0	< 0.5	< 0.5	< 0.5
06/28/06	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	1.8	< 0.5	< 5.0	< 0.5	< 0.5	< 0.5
08/31/06	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	3.4	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
12/05/06	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	5.2	1.7	5.4	< 0.50	< 0.50	< 0.50
02/23/07	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	6.0	1.4	< 5.0	< 0.50	< 0.50	< 0.50
05/02/07	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	3.8	1.3	< 5.0	< 0.50	< 0.50	< 0.50
08/09/07	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	5.5	1.3	< 5.0	< 0.50	< 0.50	< 0.50
12/06/07	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1.8	1.5	< 5.0	< 0.50	< 0.50	< 0.50
02/26/08	260	< 50	32	1.3	0.62	0.92	3.4	5.6	7.7	< 0.50	0.60	< 0.50
05/30/08	71	< 50	1.8	< 0.50	< 0.50	< 0.50	2.4	3.1	< 5.0	< 0.50	< 0.50	< 0.50
08/28/08	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	2.1	2.2	< 5.0	< 0.50		
12/11/08	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	2.2	2.5	< 5.0	< 0.50		
03/31/09	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1.2	1.3	< 5.0	< 0.50	< 0.50	< 0.50
12/31/09	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1.9	1.5	< 5.0	< 0.50	< 0.50	< 0.50
06/03/10	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	0.56	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
12/20/10	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	0.61	0.67	< 5.0	< 0.50	< 0.50	< 0.50
06/30/11	< 50	< 50	1.6	< 0.50	< 0.50	< 0.50	< 0.50	1.0	< 5.0	< 0.50	< 0.50	< 0.50
06/22/12	<50	<50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	< 5.0	< 0.50	<0.50	<0.50

Well/												
Date	TPH	TPH			Ethyl-	Total				Other		
Sampled	Gasoline	Diesel	Benzene	Toluene	benzene	Xylenes	MTBE	DIPE	TBA	Охуя	EDC	EDB
												
MW-6	F.0	50	0.5	0.5	0.5	0.5	4.0				0.5	0.5
06/11/02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	1.2				< 0.5	< 0.5
09/17/02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	1.0				< 0.5	< 0.5
12/18/02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	0.90				< 0.5	< 0.5
03/25/03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0				< 0.5	< 0.5
06/23/03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				< 0.5	< 0.5
09/26/03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				< 0.5	< 0.5
12/18/03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				< 0.5	< 0.5
03/12/04	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				< 0.5	< 0.5
06/17/04	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				< 0.5	< 0.5
09/17/04	< 50		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5					
11/10/04***	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
12/17/04	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				< 0.5	< 0.5
04/28/05	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
07/19/05	< 50	na	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5	< 0.5	< 0.5
10/03/05	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5	< 0.5	< 0.5
12/06/05	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
03/15/06	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
06/28/06	< 50	< 50	< 0.5	< 0.5	< 0.5	0.65	< 0.5	< 0.5	< 5.0	< 0.5	< 0.5	< 0.5
08/31/06	< 50	< 50	< 0.50	2.4	0.90	4.0	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
11/21/06	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
02/23/07	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
05/02/07	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
08/09/07	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
12/06/07	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
02/26/08	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
05/30/08	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
08/28/08	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50		
12/11/08	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50		
03/31/09	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
12/31/09	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
06/03/10	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
12/20/10	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
06/30/11	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
06/22/12	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<5.0	< 0.50	< 0.50	< 0.50

Summary of Chemical Analysis of Groundwater Samples Petroleum Hydrocarbon Concentrations All results are in parts per billion

Well/												
Date	TPH	TPH			Ethyl-	Total				Other		
Sampled	Gasoline	Diesel	Benzene	Toluene	benzene	Xylenes	MTBE	DIPE	TBA	Oxys	EDC	EDB
,												
<u>MW-7</u>												
06/25/02	38,000	< 2,000	890	5,100	1,200	5,200	< 20				< 20	< 20
09/17/02	26,000	< 2,000	590	3,600	880	4,000	< 20				< 20	< 20
12/18/02	70.000		SAMPLED -				F 0				0.5	0.5
03/25/03	39,000	< 2,900	410	7,700	1,000	6,400	< 5.0				< 2.5	< 2.5
06/23/03	17,000 17,000	< 1,000	440	2,600	630	2,600	< 10 < 5.0				< 10	< 10
09/26/03 12/18/03	20,000	< 1,000	230 290	1,800 2,500	470 590	2,200 2,900	< 5.0				< 5.0	< 5.0 < 5.0
03/12/04	20,000	< 1,000 < 1,500	300	3,000	760	3,200	< 10				< 5.0 < 10	< 10
06/17/04	12,000	< 800	250	1,800	450	1,900	< 5.0				< 5.0	< 5.0
09/17/04	9,900		200	1,500	450	1,800	< 5.0					
11/10/04***	20,000	1,900	550	4,200	920	4,000	< 500					
12/17/04	14,000	< 800	220	1,700	530	2,000	< 3.0				< 3.0	< 3.0
04/28/05	13,000	< 300	84	1,000	660	2,200	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5
07/19/05	16,000	na	170	1,800	540	2,200	< 2.5	< 2.5	< 5.0	< 2.5	< 2.5	< 2.5
10/03/05	7,400	< 200	140	710	350	1,100	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
12/06/05	22,000	< 600	240	2,300	800	3,400	< 5.0					
03/15/06	3,800	< 200	4.6	160	120	620	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
06/28/06	6,400	< 500	19.0	340	490	940	< 0.90	< 0.50	< 5.0	< 0.50	< 0.90	< 0.90
08/31/06	20,000	< 600	160	2,200	1,300	3,500	< 2.5	1.4	< 15	< 5.0	< 2.5	< 2.5
11/21/06	21,000	< 1,000	240	2,500	880	3,400	< 5.0	< 5.0	< 25	< 5.0	< 5.0	< 5.0
02/23/07	10,000	< 200	150	1,300	580	2,400	< 2.5	< 2.5	< 15	< 2.5	< 2.5	< 2.5
05/02/07	26,000	< 1,000	300	2,400	1,800	6,700	< 2.5	< 2.5	< 50	< 2.5	< 2.5	< 2.5
08/09/07	13,000	< 800	250	800	1,000	3,000	< 2.5	< 2.5	< 15	< 2.5	< 2.5	< 2.5
12/06/07	9,600	< 1,000	160	850	530	2,000	< 2.5	< 2.5	45	< 2.5	< 2.5	< 2.5
02/26/08	14,000	< 800	190	1,000	740	3,000	< 2.5	< 2.5	69	< 2.5	< 2.5	< 2.5
05/30/08	9,900	< 200	160	620	590	2,300	< 2.5	< 2.5	< 15	< 2.5	< 2.5	< 2.5
08/28/08	11,000	< 800	180	500	650	2,400	< 2.5	< 2.5	< 15	< 2.5		
12/11/08	8,000	< 500	160	300	540	1,600	< 2.5	< 2.5	< 15	< 2.5		
03/31/09	5,600	< 300	82	190	360	1,000	< 1.5	< 1.5	< 7.0	< 1.5	< 1.5	< 1.5
12/31/09	16,000	< 800	140	1,200	750	2,800	< 0.5	< 0.50	10	< 0.50	< 0.50	< 0.50
06/03/10	22,000	< 2,000	160	1,000	1,300	3,500	< 5.0	< 5.0	< 25	< 5.0	< 5.0	< 5.0
12/20/10	23,000	< 1,000	230	820	1,500	4,900	< 5.0	< 5.0	< 25	< 5.0	< 5.0	< 5.0
06/30/11	26,000	< 4,000	190	310	1,800	3,900	< 5.0	< 5.0	< 25	< 5.0	< 5.0	< 5.0
06/22/12	10,000	<600	120	52	1100	510	<20	<20	45	<20	<20	<2.0
MW-8												
02/26/08	< 50	< 50	0.51	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
05/30/08	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
08/28/08	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50		
12/11/08	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50		
03/31/09	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
12/31/09	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
06/03/10	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
12/20/10	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
06/30/11	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
06/22/12	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
ESL	100	100	1	40	30	20	5					

Most recent data in bold.

ESL = Environmental screening levels presented in the "Screening For Environmental Concerns at Sites With Contaminated Soil and Groundwater (May 2008)" document prepared by the California Regional Water Quality Control Board, San Francisco Day Region.

TPH = Total petroleum hydrocarbons EDC = 1,2-Dichloroethane MTBE = Methyl tertiary butyl ether EDB = 1,2-Dibromoethane

DIPE = Diisopropyl ether TBA = Tery-butanol Oxy = Oxygenates

 $[\]sp{*}$ = Hydrocarbons reported are in the early diesel range, and do not match the laboratory standards.

^{** =} Hydrocarbone reported do not match the laboratory gasoline standard.

***= Grab eample - Not purged

 $^{\# = \}texttt{Estimated concentration reported due to overlapping fuel patterns}.$

^{/ =} Results separated by a slash represent results from two different laboratory methods (8020/8260) na = not analyzed

Non-detectable concentrations noted by the less than sign (<) followed by the detection limit.

APPENDIX A

CERTIFIED ANALYTICAL REPORT AND CHAIN OF CUSTODY DOCUMENTATION FOR AIR BAG SAMPLES

McCampbell Analytical,	Inc.
"When Quality Counts"	

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Aqua Science Engineers, Inc.	Client Project ID: #2808; LIM, 250 8th St	Date Sampled: 04/28/11
55 Oak Court Suite 220		Date Received: 04/28/11
55 Guit Gourt Buile 226	Client Contact: Dave Allen	Date Reported: 05/03/11
Danville, CA 94526	Client P.O.:	Date Completed: 05/02/11

WorkOrder: 1104821

May 03, 2011

D	D
I lear	Dave:

Enclosed within are:

- 1) The results of the 2 analyzed samples from your project: #2808; LIM, 250 8th St,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

Aqua Science Engineers, Inc. 55 Oak Court, Suite 220 Danville, CA 94526 (925) 820-9391 FAX (925) 837-4853

Chain of Custody

TAX (920) 607-4000																	PAGI	= <u> </u>	06	·(
SAMPHER (SIGNATURE)					Т	PRO	JECT	NAME		IM	-1		4.1	,				NO		
Varior alle	_					ADD	RESS	12	0 8	77	st.	Oa	Han	-04	Ct					
ANALYSIS REQUEST													SN		ICA					
SPECIAL INSTRUCTIONS:					X		9		NICS	VED)			ARBO		TH SII					
ф . Ш					TPH-GAS / MTBE & BTEX (EPA 5030/8015-8020)	3EL 0/8015)	TPH-DIESEL & MOTOR OIL (EPA 3510/8015)	CAM 17 METALS (EPA 6010+7000)	SEMI-VOLATILE ORGANICS (EPA 625/8270)	Pb (TOTAL or DISSOLVED) (EPA 6010)	DES 31)	FUEL OXYGENATES (EPA 8260)	PURGEABLE HALOCARBONS (EPA 601/8010)	(EPA METHOD 8260)	MULTI-RANGE HYDROCARBONS WITH SILICA GEL CLEANUP (EPA 8015)	VOLATILE ORGANICS (EPA 624/8240/8260)	LUFT METALS (5) (EPA 6010+7000)	SITE 4:1		
SAMPLE ID.	DATE	TIME	MATRIX	QUANTITY	TPH-GAS (EPA 503(TPH-DIESEL (EPA 3510/8015)	TPH-DIES (EPA 3510	CAM 17 (EPA 60	SEMI-VO (EPA 625	Pb (TOT (EPA 601	PESTICIDES (EPA 8081)	FUEL O) (EPA 826	PURGE (EPA 60	TPH-G/E (EPA ME	MULTI-R HYDROG GEL CLE	VOLATIL (EPA 624	LUFT ME (EPA 601	COMPOSITE 4:1	EDF	
VE-INF-04-28-11	4/28	1235	Air	1	X														y	
					/															
VE-EFF-04.28.11	11	1240	Air	1	X													+	2	
					1															
	1 24																			
2																				
				5																
RELINQUISHED BY: (Signature) (time)	RECEIVED BY:			1	inquis	HED B		7/5 ⁻	RECEIVED BY LABORATORY:					OMMEN'	TS:					
DAVID ALLEN 4/28/11	Ben 1	\$195	6	4	28/11				4/2	3/11	d	W S	1/2	F	6			IRN AR		
(printed name) (date)	(printed name) (date)		(prin	ted nan	ne)	(da	te)					STANDARD 24Hr 48Hr 72Hr			Hr 72Hr					
Company-ASE, INC.	Company	pany-McCampbal			Company-			Company 4 2/28/11				TEH:								

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

1534 Willow Pass Rd

Pittsburg (925) 25	g, CA 94565-1701 2-9262				WorkOrder: 1104821				821	21 ClientCode: ASE		SED					
		WaterTrax	WriteOn	✓ EDF		Excel		Fax	E	✓ Email		Hard	lCopy	Thir	rdParty	☐J-f	flag
Report to: Dave Allen	o Engineero Inc		allen@aquas	scienceengineers	s.com			ane Sch	_	ainoor	lno		Req	uested	TAT:	5 (days
55 Oak Cour Danville, CA (925) 820-939	94526	cc: PO: ProjectNo: #2	2808; LIM, 25	50 8th St			21 Ro	qua Scie 7 Wild Foseville, ezthng2	lower [CA 95	Orive 678				e Rece e Prini		04/28/ 04/28/	
									Req	uested	Tests	(See le	gend b	elow)			-
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1104821-001	VE-INF-04-28-1	1	Air	4/28/2011 12:35		Α	Α							I			
1104821-002	VE-EFF-04-28-1	11	Air	4/28/2011 12:40		Α											<u> </u>

Test Legend:

1 G-MBTEX_AIR	2 PREDF REPORT	3	4	5
6	7	8	9	10
11	12			
The following SampIDs: 001A, 00	2A contain testgroup.			Prepared by: Ana Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Sample Receipt Checklist

Client Name:	Aqua Science E	ngineers, Inc.			Date a	and Time Received:	4/28/2011	5:42:08 PM
Project Name:	#2808; LIM, 250	8th St			Check	klist completed and re	eviewed by:	Ana Venegas
WorkOrder N°:	1104821	Matrix <u>Air</u>			Carrie	er: <u>Benjamin Yslas</u>	MAI Courier)
		<u>Chair</u>	n of Cu	stody (CC	OC) Informa	ation_		
Chain of custody	present?		Yes	V	No 🗆			
Chain of custody	signed when relinqu	uished and received?	Yes	V	No 🗆			
Chain of custody	agrees with sample	labels?	Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?		Yes	V	No 🗆			
Date and Time of	collection noted by C	Client on COC?	Yes	✓	No 🗆			
Sampler's name r	noted on COC?		Yes	✓	No 🗆			
		<u>s</u>	ample	Receipt I	nformation	<u>1</u>		
Custody seals int	tact on shipping cont	ainer/cooler?	Yes		No 🗆		NA 🔽	
Shipping containe	er/cooler in good con	dition?	Yes	V	No 🗆			
Samples in prope	er containers/bottles	?	Yes	✓	No 🗆			
Sample container	rs intact?		Yes	✓	No 🗆			
Sufficient sample	e volume for indicated	d test?	Yes	✓	No 🗌			
		Sample Prese	rvatio	n and Hole	d Time (HT) Information		
All samples recei	ived within holding tir	ne?	Yes	✓	No 🗌			
Container/Temp E	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA vial	ls have zero headsp	ace / no bubbles?	Yes		No 🗆	No VOA vials submi	tted 🗹	
Sample labels ch	necked for correct pr	eservation?	Yes	V	No 🗌			
Metal - pH accep	table upon receipt (p	H<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes		No 🗸			
* NOTE: If the "N	No" box is checked, s	see comments below.						
=====	======					======	====	
		.						
Client contacted:		Date contac	ted:			Contacted	by:	
Comments:								

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

When duant, counts		rerephone, o	77 202 7202 Tunt 720	202 /20/
Aqua Science Engineers, Inc.	Client Project ID: #2	2808; LIM, 250 8th	Date Sampled:	04/28/11
55 Oak Court Suite 220	St		Date Received:	04/28/11
	Client Contact: Day	ve Allen	Date Extracted:	04/29/11
Danville, CA 94526	Client P.O.:		Date Analyzed:	04/29/11

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Analytical methods: SW8021B/8015Bm Extraction method: SW5030B Work Order: 1104821 MTBE Lab ID Client ID Matrix TPH(g) Benzene Toluene Ethylbenzene Xylenes DF % SS Comments 001A VE-INF-04-28-11 Α 4600 ND<50 38 70 13 61 20 94 d1 002A VE-EFF-04-28-11 ND ND ND ND ND ND 100 Α 1 Reporting Limit for DF = 1; Α 2.5 0.25 0.25 0.25 0.25 25 μ g/L ND means not detected at or 1.0 0.05 0.005 0.005 0.005 0.005 mg/Kg above the reporting limit

* water and	l vapor sample	es are reported	l in iig/l.	soil/sliidge/solid	l samples in mg/kg	. wipe samp	oles in iig/wine	nroduct/oil/no			
					i sambies in mg/kg		oles in ug/wine		m-aqueous Hauia	sambles in mg/1	

[#] cluttered chromatogram; sample peak coelutes with surrogate peak; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

	Science Engineers	s, Inc.		Client Project II St	D: #2808; LII	Date Sampled: 04/28/11 Date Received: 04/28/11							
55 Oa	k Court Suite 220			Client Contact:	Dave Allen		Date Extracted: 04/29/11						
Danvi	lle, CA 94526			Client P.O.:		Date Analyzed: 04/29/11							
Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with MTBE and BTEX in ppm													
	on method: SW5030B				Analytical methods						1104821		
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments		
001A	VE-INF-04-28-11	A	1300	ND<14	12	18	2.9	14	20	94	d1		
002A	VE-EFF-04-28-11	A	ND	ND	ND	ND	ND	ND	1	100			
	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1		<u> </u>		
	ppm (mg/L	L) to ppm	v (ul/L) con	version for TPH(g)	assumes the m	olecular weigh	t of gasoline to b	e equal to that	of hexa	ne.			
		1						1	1				

	ND means not detected at or	<u> </u>	NA	NA	NA	NA	NΔ	NA	1	mg/Kg
L	above the reporting limit	5	IVA	IVA	IVA	IVA	IVA	IVA	1	mg/Kg
	* vapor samples are reported	in μL/L,	soil/sludge/solid		kg, wipe sampl	es in μg/wipe, p	roduct/oil/non-a	queous liquid sa	mples i	n mg/L, water

0.077

cluttered chromatogram; sample peak coelutes with surrogate peak; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

0.68

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

7.0

Angela Rydelius, Lab Manager

0.057

0.057

0.065

Reporting Limit for DF =1;

uL/L

^{*} vapor samples are reported in $\mu L/L$, soil/studge/soild samples in mg/kg, wipe samples in $\mu g/w$ ipe, product/oil/non-aqueous inquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in $\mu g/L$.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air QC Matrix: Water BatchID: 57991 WorkOrder 1104821

EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 1104823-002A												
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%))
, and y to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	60	99.4	109	9.39	105	98.6	6.48	70 - 130	20	70 - 130	20
MTBE	ND	10	123	118	4.76	119	123	3.13	70 - 130	20	70 - 130	20
Benzene	ND	10	105	109	3.86	106	107	0.633	70 - 130	20	70 - 130	20
Toluene	ND	10	102	108	6.27	108	105	2.28	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	102	107	4.70	102	103	0.680	70 - 130	20	70 - 130	20
Xylenes	ND	30	104	107	3.39	105	105	0	70 - 130	20	70 - 130	20
%SS:	104	10	99	99	0	102	101	1.78	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 57991 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1104821-001A	04/28/11 12:35 PM	04/29/11	04/29/11 11:24 AM	1104821-001A	04/28/11 12:35 PM	04/29/11	04/29/11 11:24 AM
1104821-002A	04/28/11 12:40 PM	04/29/11	04/29/11 12:54 PM	1104821-002A	04/28/11 12:40 PM	04/29/11	04/29/11 12:54 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

	Analytical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Aqua Science Engineers, Inc.	Client Project ID: #2808; LI	M	Date Sampled:	05/26/11				
55 Oak Court Suite 220			Date Received:	05/27/11				
35 Out Court State 225	Client Contact: Dave Allen		Date Reported:	06/02/11				
Danville, CA 94526	Client P.O.:		Date Completed:	06/02/11				

WorkOrder: 1105859

June 02, 2011

D	D
I lear	Dave:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: #2808; LIM,
- 2) A QC report for the above sample,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

Aqua Science Engineers, Inc. 55 Oak Court, Suite 220 Danville, CA 94526 (925) 820-9391 FAX (925) 837-4853

Chain of Custody

OALIBI ED (OLONIATÚRE)					_	_	_				-			_			PAGE			
SAMPLER (SIGNATURE)						PRO	JECT	NAME	L	IM		- 5					JOB I	NO.	281	8
Vario Ul						ADD	RESS	25	0 8	地	5+r	eet,	Oa	klan	2,	CA				
ANALYSIS REQUEST													S		CA				100	
SPECIAL INSTRUCTIONS:					×		등		8	(ED)			RBOI		15) 15)					28.
					BTE 20)		OB OB		3GAI	SOLV		SS	OCA	S/G	WIT)	85				
					BE 8	2)	5) MO	ALS 000)	JO H	Sig		NATE	O) HAL	80X	NO P	GAN	(9)	Ţ.	1 2	
					1/WT	SEL 0/801	SEL 8	MET 10+70	M270	AL or	DES 1)	YGE 0)	ABLE 1/801	TEX/	ANG	E OR 8240	TALS 0+70	SITE		
SAMPLE ID.	DATE	TIME	MATRIX	QUANTITY	TPH-GAS / MTBE & BTEX (EPA 5030/8015-8020)	TPH-DIESEL (EPA 3510/8015)	TPH-DIESEL & MOTOR OIL (EPA 3510/8015)	CAM 17 METALS (EPA 6010+7000)	SEMI-VOLATILE ORGANICS (EPA 625/8270)	Pb (TOTAL or DISSOLVED) (EPA 6010)	PESTICIDES (EPA 8081)	FUEL OXYGENATES (EPA 8260)	PURGEABLE HALOCARBONS (EPA 601/8010)	TPH-G/BTEX/5 OXYS (EPA METHOD 8260)	MULTI-RANGE HYDROCARBONS WITH SILICA GEL CLEANUP (EPA 8015)	VOLATILE ORGANICS (EPA 624/8240/8260)	LUFT METALS (5) (EPA 6010+7000)	COMPOSITE 4:1	EDF	
VE-INF- 05.26.11	5/26/11	12	-	1	Y.											70			1/	
10 11	7-911	1300	recy	4	\wedge													-	X	
- 1																			\vdash	
	-			\vdash				-	-										\vdash	
	_	-		Н					-											
			_			,										20_				
					ICE/to	J/A														
					GOOD HEAD	CONDITI	ON_V		APPRO	PRIATE	/									
					DECHI	ORINAT.	ED IN LA	B	PRESE	NERS_ VED IN	LAB									
					PRESE	RVATIO	VOAS	0&0	METAL	OTHE							\neg	=		
				П											10					
				\vdash								,					-		\vdash	
		/	-			$\overline{}$	1				_					100	MMENT			
RELINQUISHED BY:	RECEIVE	BY:		9		REU	Nouis	HED B			REC	EIVED	BY LAE	BORAT	ORY:		MINIEMI	5.		
(Signature) (time)	Den 64	1		1\$4	45	Dul	1	~	127	7		ature)	in	1/	2/0	1 9	SCE	- 0	+in	reof
(signature) (time)	(signature)			(time	9)	(sign	ature)		(tim		(sign	ature)		(tim	e)	ا ا	amp			-00
DAVIDALEN 05.26.4	Renix	x	4	5/20	2/11	1	1		(3)	27/11	m	aria	Va	noci	al	-2		-	OUND '	TIME
(printed name) (date)	(printed na			(date		(print	ed nam	ne)	(dat							STA	NDAR	D24H	ir 48F	lr 72Hr
Company-ASE, INC.	Company-		0		1 1	Comp		/	1201	7/	M	ted nam AL pany-	5/211		221		HER:			
		_	-			1-04	,				30111	pully 0	101		1					

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

	rg, CA 94565-1701 52-9262				V	Work	Order	: 1105	859	•	Client(Code: A	SED				
		WaterTrax	WriteOn	☐ EDF		Excel		Fax		✓ Email		Hard	dCopy	Thir	rdParty	J-	·flag
Report to: Dave Allen Aqua Scien 55 Oak Cou Danville, CA (925) 820-93	A 94526	Email: d cc: PO: ProjectNo: #		scienceengineer	s.com		Aq 21 Ro	7 Wild seville	ence Er Flower , CA 95				Dat	uested e Rece e Print	ived:	5 (05/27/05/27/	
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	Req 4	uested 5	Tests 6	(See le	gend b	elow)	10	11	12
1105859-001	VE-INF-05.26.1	1	Air	5/26/2011 13:00		Α											Ī
Test Legend:																	
	TEX_AIR 2			3					4				_	5			
11	12			8				_ (9				Į	10			
	mpID: 001A contains testgroup).											Prepa	red by:	Maria	Venega	as

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	Aqua Science Enginee	rs, Inc.			Date a	and Time Received:	5/27/2011	1:26:07 PM
Project Name:	#2808; LIM				Check	dist completed and re	viewed by:	Maria Venegas
WorkOrder N°:	1105859 Matrix	<u>Air</u>			Carrie	r: <u>Benjamin Yslas</u>	(MAI Courie	ח
		Chain of	Cus	stody (CO	C) Informa	<u>ition</u>		
Chain of custody	y present?	Ye	es	V	No 🗆			
Chain of custody	signed when relinquished ar	nd received? Ye	es	V	No \square			
Chain of custody	agrees with sample labels?	Ye	es	✓	No 🗌			
Sample IDs noted	d by Client on COC?	Ye	es	V	No 🗆			
Date and Time of	f collection noted by Client on	COC? Ye	es	V	No \square			
Sampler's name	noted on COC?	Ye	es	✓	No \square			
		Samı	ple l	Receipt In	formation	!		
Custody seals in	tact on shipping container/co	oler? Ye	es		No \square		NA 🔽	
Shipping contain	er/cooler in good condition?	Ye	es	V	No \square			
Samples in prop	er containers/bottles?	Ye	es	✓	No 🗆			
Sample containe	ers intact?	Ye	es	✓	No \square			
Sufficient sample	e volume for indicated test?	Ye	es	✓	No 🗌			
	<u>s</u>	ample Preservat	tion	and Hold	Time (HT)) Information		
All samples rece	ived within holding time?	Ye	es	✓	No 🗌			
Container/Temp	Blank temperature	Co	ooler	Temp:			NA 🗹	
Water - VOA via	ls have zero headspace / no	bubbles? Ye	es		No \square	No VOA vials submit	tted 🗹	
Sample labels ch	necked for correct preservation	on? Ye	es	✓	No 🗌			
Metal - pH accep	otable upon receipt (pH<2)?	Ye	es		No 🗆		NA 🗹	
Samples Receive	ed on Ice?	Ye	es		No 🔽			
* NOTE: If the "I	No" box is checked, see com	ments below.						
=====								======
Client contacted:		Date contacted:				Contacted I	by:	
Comments:								

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

Aqua Science Engineers, Inc.	Client Project ID: #2808; LIM	Date Sampled:	05/26/11
55 Oak Court Suite 220		Date Received:	05/27/11
	Client Contact: Dave Allen	Date Extracted:	05/27/11
Danville, CA 94526	Client P.O.:	Date Analyzed:	05/27/11

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Analytical methods: SW8021B/8015Bm Extraction method: SW5030B Work Order: 1105859 Lab ID Client ID Matrix TPH(g) MTBE Benzene Toluene Ethylbenzene Xylenes DF % SS Comments001A VE-INF-05.26.11 4100 ND<60 61 93 15 80 109 Reporting Limit for DF = 1; 0.25 Α 0.25 0.25 25 2.5 0.25 μg/L ND means not detected at or 1.0 0.05 0.005 0.005 0.005 0.005 mg/Kg

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aquo	ous liqui	d samples in	mg/L
---	-----------	--------------	------

above the reporting limit

[#] cluttered chromatogram; sample peak coelutes with surrogate peak; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

Aqua Science Engineers, Inc.	Client Project ID: #2808; LIN	Л	Date Sample	d: 05/26/11	1		
55 Oak Court Suite 220			Date Receive	ed: 05/27/11	1		
	Client Contact: Dave Allen		Date Extracte	ed: 05/27/1	1		
Danville, CA 94526	Client P.O.:		Date Analyz	ed: 05/27/1	1		
Gasoline Range (C6-0	C12) Volatile Hydrocarbons as	Gasoline with	h MTBE and I	BTEX in ppn	ıv*		
Extraction method: SW5030B	Analytical methods	: SW8021B/801	5Bm		Worl	k Order:	1105859
Lab ID Client ID Matrix TPH(a)	MTRE Banzana	Toluene	Ethylbenzene	Vylanas	DE	0% SG	Comments

Analytea method. 5 w 5050D								11 01	K Order.	1103037	
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	VE-INF-05.26.11	A	1100	ND<20	19	24	3.4	18	4	109	d1

ppm (mg/L	L) to ppn	nv (ul/L) conver	rsion for TPH(g)) assumes the m	olecular weight	of gasoline to b	e equal to that	of hexa	ne.
Reporting Limit for DF =1;	A	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
ND means not detected at or above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

^{*} vapor samples are reported in $\mu L/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in $\mu g/L$.

cluttered chromatogram; sample peak coelutes with surrogate peak; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air QC Matrix: Water BatchID: 58655 WorkOrder 1105859

EPA Method SW8021B/8015Bm	EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 1105857-001A												
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)		
, and y to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex)	ND	60	84.1	87.9	4.50	86.6	82.6	4.70	70 - 130	20	70 - 130	20	
MTBE	ND	10	93.7	92.1	1.73	99.5	95.6	3.99	70 - 130	20	70 - 130	20	
Benzene	ND	10	93.5	101	7.33	91.4	90.8	0.640	70 - 130	20	70 - 130	20	
Toluene	ND	10	84.2	91	7.73	83.5	82	1.83	70 - 130	20	70 - 130	20	
Ethylbenzene	ND	10	86.5	93.3	7.52	85	83.7	1.52	70 - 130	20	70 - 130	20	
Xylenes	ND	30	101	108	7.53	98.9	97	1.94	70 - 130	20	70 - 130	20	
%SS:	102	10	100	102	2.12	98	98	0	70 - 130	20	70 - 130	20	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 58655 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1105859-001A	05/26/11 1:00 PM	M 05/27/11	05/27/11 7:28 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

Analytical Report

Aqua Science Engineers, Inc.	Client Project ID: #2808; LIM, 250 8th St	Date Sampled: 06/30/11
55 Oak Court Suite 220		Date Received: 06/30/11
33 Our Court State 220	Client Contact: Dave Allen	Date Reported: 07/05/11
Danville, CA 94526	Client P.O.:	Date Completed: 07/01/11

WorkOrder: 1106A09

July 05, 2011

Dear Dave:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: #2808; LIM, 250 8th St,
- 2) A QC report for the above sample,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

Aqua Science Engineers, Inc. 55 Oak Court, Suite 220 Danville, CA 94526 (925) 820-9391 FAX (925) 837-4853

Chain of Custody

TAX (920) 007-4030																	PAGE		106	
SAMPLER (SIGNATURE)						PRO	JECT I	NAME 25	0 8	41	1	abl	arl	_ب د	4		JOB			
ANALYSIS REQUEST													NS		ICA					- 4
SPECIAL INSTRUCTIONS:					×		OIL		NICS	(VED)			ARBO		TH SII					
6					TPH-GAS / MTBE & BTEX (EPA 5030/8015-8020)	SEL 0/8015)	TPH-DIESEL & MOTOR OIL (EPA 3510/8015)	CAM 17 METALS (EPA 6010+7000)	SEMI-VOLATILE ORGANICS (EPA 625/8270)	Pb (TOTAL or DISSOLVED) (EPA 6010)	DES 31)	FUEL OXYGENATES (EPA 8260)	PURGEABLE HALOCARBONS (EPA 601/8010)	TPH-G/BTEX/5 OXYS (EPA METHOD 8260)	MULTI-RANGE HYDROCARBONS WITH SILICA GEL CLEANUP (EPA 8015)	VOLATILE ORGANICS (EPA 624/8240/8260)	LUFT METALS (5) (EPA 6010+7000)	COMPOSITE 4:1		
SAMPLE ID.	DATE	TIME	MATRIX	QUANTITY		TPH-DIESEL (EPA 3510/8015)	TPH-DIE	CAM 17 (EPA 60	SEMI-VO (EPA 625	Pb (TOT) (EPA 60)	PESTICIDES (EPA 8081)	FUEL 0) (EPA 826	PURGE (EPA 60	TPH-G/E (EPA ME	MULTI-R HYDROC GEL CLE	VOLATIL (EPA 624	LUFT ME (EPA 60'	сомРо	EDF	
INF-VE-06.30.11	6/30/1	1110	tu	(Ψ														4	
																- 1				
										_										
										_										
						_					Ļ.					_				
RECTNQUISHED BY: (Signature) (time)	RECEIVE DONA (signature	Lla	-	(time	95	1	1	SHED B		730 1e)		EIVED	BYLA	DORAT (tim	S	CC	OMMEN	TS:		
Dero puen e/ro/11	NUNIV	110	Tolo	1	1/2/11				4/	30/11	5	ENE	1/5	345	S		TU	IRN AR	OUND	TIME
(printed name) (date)	(printed na		7 49	(dat		(prin	ted nar	ne)	(da		_					(ST	ANDAR	D 24	dr 48h	lr 72Hr
Company-ASE, INC.	Company		ant B			"	pany-		,50		Con	nted nar npany-	-(6/30	rte) 73 C) OT	HER:			

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

4

9

Page 1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1106A09 ClientCode: ASED ☐ WaterTrax ☐ WriteOn **✓** EDF ☐ Excel ∏Fax ✓ Email HardCopy ☐ ThirdParty ☐ J-flag Report to: Bill to: Requested TAT: 5 days Dave Allen Email: dallen@aquascienceengineers.com Diane Schiell Aqua Science Engineers, Inc. Aqua Science Engineers, Inc. CC: Date Received: 06/30/2011 PO: 55 Oak Court Suite 220 217 Wild Flower Drive Roseville, CA 95678 Danville, CA 94526 ProjectNo: #2808; LIM, 250 8th St Date Printed: 07/01/2011 (925) 820-9391 FAX: (925) 837-4853 deezthng22@yahoo.com Requested Tests (See legend below) 2 3 5 8 10 Lab ID Client ID Matrix Collection Date Hold 1 4 11 12 1106A09-001 INF-VE-06.30.11 Air 6/30/2011 11:10 Α Α Test Legend:

The following SampID: 001A contains testgroup.

G-MBTEX AIR

2

7

12

PREDF REPORT

Comments:

1

6

11

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

3

8

5

10

Prepared by: Ana Venegas

Sample Receipt Checklist

Client Name:	Aqua Science	Engineers, Inc.			Date a	ina Time Receivea:	6/30/2011 :	5:50:20 PW
Project Name:	#2808; LIM, 2	50 8th St			Check	list completed and re	eviewed by:	Ana Venegas
WorkOrder N°:	1106A09	Matrix: <u>Air</u>			Carrier	r: <u>Derik Cartan (I</u>	MAI Courier)	
		<u>C</u>	hain of C	ustody	(COC) Informat	ion		
Chain of custody	present?		Yes	✓	No 🗌			
Chain of custody	signed when re	elinquished and received?	Yes	✓	No 🗌			
Chain of custody	agrees with sa	mple labels?	Yes	✓	No 🗌			
Sample IDs note	ed by Client on C	COC?	Yes	✓	No 🗆			
Date and Time o	of collection note	ed by Client on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC		Yes	✓	No 🗆			
			Sample	e Rece	ipt Information			
Custody seals in	tact on shipping	container/cooler?	Yes		No 🗆		NA 🗸	
Shipping contain	er/cooler in goo	d condition?	Yes	✓	No 🗌			
Samples in prope	er containers/bo	ottles?	Yes	✓	No 🗌			
Sample containe	ers intact?		Yes	✓	No 🗌			
Sufficient sample	e volume for ind	icated test?	Yes	✓	No 🗌			
		Sample Pi	eservatio	n and	Hold Time (HT)	<u>Information</u>		
All samples rece	ived within hold		Yes	✓	No 🗆			
Container/Temp	Blank temperat	ure	Coole	er Tem	p:		NA 🗸	
Water - VOA via	ls have zero he	adspace / no bubbles?	Yes		No 🗌	No VOA vials subm	itted 🗹	
Sample labels ch	necked for corre	ct preservation?	Yes	✓	No 🗌			
Metal - pH accep	otable upon rece	eipt (pH<2)?	Yes		No 🗌		NA 🗹	
Samples Receive	ed on Ice?		Yes		No 🗸			
* NOTE: If the "N	No" box is check	red, see comments below.						
=====		=======						
Client contacted:	:	Date con	acted:			Contacted	by:	
Comments:								

Aqua	Aqua Science Engineers, Inc.			Client Project ID: #2808; LIM, 250				Date Sampled: 06/30/11					
55 Oa	ık Court Suite 220		8th St				Date Receiv	ed: 06/30	0/11				
			Client (Contact: Da	ve Allen		Date Extracted: 07/01/11						
Danvi	ille, CA 94526		Client I	2.0.:		Date Analyzed: 07/01/11							
	Gas	oline Ra	nge (C6-C12)	Volatile Hy	drocarbons	s as Gasoli	ne with BTE	X and MTI	BE*				
Extraction	on method: SW5030B			Analyt	ical methods:	SW8021B/8015	Bm		Wor	rk Order:	1106A09		
Extraction Lab ID		Matrix	TPH(g)	Analyt MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	Wor DF	rk Order: % SS	Comments		
		Matrix A	TPH(g) 4900		1			Xylenes					
Lab ID	Client ID		-	MTBE	Benzene	Toluene	Ethylbenzene		DF	% SS	Comments		

Reporting Limit for DF =1; ND means not detected at or	A	25	2.5	0.25	0.25	0.25	0.25	μg/L
above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

 $^{\#\} cluttered\ chromatogram;\ sample\ peak\ coelutes\ with\ surrogate\ peak;\ \%SS = Percent\ Recovery\ of\ Surrogate\ Standard;\ DF = Dilution\ Factor$

Aqua Science Engineers, Inc.	Client Project ID: #2808; LIM, 250	Date Sampled: 06/30/11
55 Oak Court Suite 220	8th St	Date Received: 06/30/11
	Client Contact: Dave Allen	Date Extracted: 07/01/11
Danville, CA 94526	Client P.O.:	Date Analyzed: 07/01/11

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with MTBE and BTEX in ppmv*

Extraction method: SW5030B Analytical me						SW8021B/801	15Bm		Wo	rk Order:	1106A09
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	INF-VE-06.30.11	A	1400	ND<10	23	48	8.3	44	4	122	d1

ppm (ı	ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.											
Reporting Limit for DF =1; ND means not detected at or	A	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L			
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg			

^{*} vapor samples are reported in μ L/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in μ g/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

[#] cluttered chromatogram; sample peak coelutes with surrogate peak; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air QC Matrix: Water BatchID: 59407 WorkOrder: 1106A09

EPA Method: SW8021B/8015Bm Extraction: SW5030B Spiked Sample ID: 11											1106A37-0)02A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	CSD Acceptance Criteria (%			
, way to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	60	114	119	3.69	110	108	1.63	70 - 130	20	70 - 130	20
MTBE	ND	10	107	110	3.42	113	112	1.30	70 - 130	20	70 - 130	20
Benzene	ND	10	85.9	90.5	5.16	89.2	88.3	1.09	70 - 130	20	70 - 130	20
Toluene	ND	10	86.7	90	3.75	88.2	87.6	0.642	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	88.9	92	3.40	89.2	88.8	0.464	70 - 130	20	70 - 130	20
Xylenes	ND	30	89.2	91.6	2.66	89.1	88.5	0.661	70 - 130	20	70 - 130	20
%SS:	114	10	92	95	2.23	98	97	0.892	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 59407 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1106A09-001A	06/30/11 11:10 AM	07/01/11	07/01/11 7:41 AM	1106A09-001A	06/30/11 11:10 AM	07/01/11	07/01/11 7:41 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

Analytical Report

Aqua Science Engineers, Inc.	Client Project ID: #2808; LIM	Date Sampled:	12/20/11
55 Oak Court Suite 220		Date Received:	12/20/11
33 Out Court State 220	Client Contact: Dave Allen	Date Reported:	12/27/11
Danville, CA 94526	Client P.O.:	Date Completed:	12/27/11

WorkOrder: 1112600

December 27, 2011

Dear Dave:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: #2808; LIM,
- 2) QC data for the above sample, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

Page 2 of 7

Aqua Science Engineers, Inc. 55 Oak Court, Suite 220 Danville, CA 94526 (925) 820-9391 FAX (925) 837-4853

Chain of Custody

1112600

																	PAGE	<u> </u>	06		
SAMPLER (SIGNATURE)					\top					- (N	(•	,				JOB N	10	28	08	
Cherca alle					Ш,	ADD	RESS	2	50	8-4	1 5	tree	t,	oak	la	0			_		
ANALYSIS REQUEST							100		ισ.				SNO		ILICA						
SPECIAL INSTRUCTIONS:					TEX		ROIL		SANIC	OLVED			CARB	00	WITH S (8015)	ού					
					BE & B 5-8020)	(9	MOTO 5)	ALS 2000)	LE ORC	Pb (TOTAL or DISSOLVED) (EPA 6010)		NATES	PURGEABLE HALOCARBONS (EPA 601/8010)	(EPA METHOD 8260)	MULTI-RANGE HYDROCARBONS WITH SILICA GEL CLEANUP (EPA 8015)	VOLATILE ORGANICS (EPA 624/8240/8260)	S (5)	1.4			
		_	_	>	S / MT 30/801	SEL 10/801	SEL 8	7 MET	OLATII 5/8270	OTAL OI	SIDES 381)	XYGE 260)	EABLE 01/801	/ВТЕХ ЛЕТНО	PANG	ILE OF 24/824	METAL 010+7	COMPOSITE 4:1			1
SAMPLE ID.	DATE	TIME	MATRIX	QUANTITY	TPH-GAS / MTBE & BTEX (EPA 5030/8015-8020)	TPH-DIESEL (EPA 3510/8015)	TPH-DIESEL & MOTOR OIL (EPA 3510/8015)	CAM 17 METALS (EPA 6010+7000)	SEMI-VOLATILE ORGANICS (EPA 625/8270)	Pb (TC (EPA 6)	PESTICIDES (EPA 8081)	FUEL OXYGENATES (EPA 8260)	PURG (EPA 6	TPH-G (EPA N	MULTI- HYDR(GEL CI	VOLAT (EPA 6;	LUFT METALS (5) (EPA 6010+7000)	COMP	EDF		-
																					+
INF-VE-12-20-11	12/20/	093	4,	1	X							-									-
*			_	Ш	/														\vdash		1
	_		-						_						-						1
	_	-	\vdash	Н							,								\vdash		-
	+-									105.11	n/a					_			\vdash		
										GOOD HEAD		ON_ BSENT	AF	PROPR	NERS	-					_
,											ORINA	ED IN L	AB_ [0&G]	METHUD	OTHER !	LAB_	_				-
										PRES			1								-
		/									Ļ					Ļ					\dashv
RELINQUISHED BY:	RECEIVE	6 ву:				REL	INQUIS	SHED B	BY:		REC	CEIVED	BY LA	BORAT	ORY:	CC	OMMEN	TS:			
(signature) (time)	15-6	b_	/		145	6	-1/2	>	- 1	443	9	2d (U	13	543 ne)						
See	(signature			(time	, 1	(sigr	navure)		(tim	ie)	(sig	nature)		(tin	ne)						-
David kiekod 12/20/10	B Ysl	25		12/2	0/1		-		12	120	u	ovoid	a cor-	102 (2-20	11			ROUND		-Ir
(printed name) (date)	(printed n	ame)	1	(dat	e)	(prin	ted nar	ne)	(da	te)	(prin	nted nar	ne)	(da	ate)		TANDAF	24	HI 48	nr ,	
Company-ASE, INC.	Company	- M	clar	npa	41/	Com	pany-				Con	npany-	MA	1_							

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1112600 ClientCode: ASED □WaterTrax ☐ WriteOn □ EDF □ Excel □ Fax **✓** Email HardCopy ☐ ThirdParty ☐ J-flag Report to: Bill to: Requested TAT: 5 days Dave Allen Email: dallen@aquascienceengineers.com Diane Schiell Aqua Science Engineers, Inc. Aqua Science Engineers, Inc. cc: Date Received: 12/20/2011 PO: 55 Oak Court Suite 220 217 Wild Flower Drive ProjectNo: #2808; LIM Roseville, CA 95678 Danville, CA 94526 Date Printed: 12/20/2011 (925) 820-9391 FAX: (925) 837-4853 deezthng22@yahoo.com Requested Tests (See legend below) 2 3 5 8 10 Lab ID Client ID Matrix Collection Date Hold 1 4 11 12 1112600-001 INF-VE-12-20-11 Air 12/20/2011 9:30 Α

Test Legend:

1	G-MBTEX_AIR	2	3	4	5
6		7	8	9	10
11		12			

The following SampID: 001A contains testgroup.

Prepared by: Zoraida Cortez

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

808; LIM 12600 Matrix: Air Cha sent? ned when relinquished and received? nees with sample labels? v Client on COC?	Yes Yes Yes Yes Yes Yes	ustody (COC	Checklist Carrier: C) Information No	completed and reviewed by: <u>Benjamin Yslas (MAI Couried</u>	Zoraida Cortez
Cha sent? ned when relinquished and received? ees with sample labels? r Client on COC?	Yes Yes Yes	✓	C) Information	,	מ
sent? ned when relinquished and received? ees with sample labels? Client on COC?	Yes Yes Yes	✓	No 🗌	1	
ned when relinquished and received? ees with sample labels? Client on COC?	Yes Yes	✓			
ees with sample labels?	Yes		No 🗌		
Client on COC?		✓			
	Yes		No 🗌		
llection noted by Client on COC?		✓	No 🗌		
	Yes	✓	No 🗌		
ed on COC?	Yes	✓	No 🗌		
	Sample	Receipt In	<u>formation</u>		
on shipping container/cooler?	Yes		No 🗌	NA 🗹	
ooler in good condition?	Yes	✓	No 🗌		
ontainers/bottles?	Yes	✓	No 🗌		
ntact?	Yes	✓	No 🗌		
ume for indicated test?	Yes	✓	No \square		
Sample Pres	servatio	n and Hold	Time (HT) Info	<u>ormation</u>	
within holding time?	Yes	✓	No 🗆		
nk temperature	Coole	r Temp:		NA 🗸	
ave zero headspace / no bubbles?	Yes		No 🗌 No	VOA vials submitted 🗹	
ed for correct preservation?	Yes	✓	No 🗌		
e upon receipt (pH<2)?	Yes		No 🗆	NA 🗸	
n Ice?	Yes		No 🗸		
nt lu \nk	me for indicated test? Sample Pres within holding time? temperature re zero headspace / no bubbles? d for correct preservation? upon receipt (pH<2)?	sact? Yes me for indicated test? Yes Sample Preservation within holding time? Yes temperature Coole re zero headspace / no bubbles? Yes d for correct preservation? Yes upon receipt (pH<2)? Yes	act? Yes ✓ me for indicated test? Yes ✓ Sample Preservation and Hold within holding time? Yes ✓ temperature Cooler Temp: re zero headspace / no bubbles? Yes ✓ d for correct preservation? Yes ✓ upon receipt (pH<2)? Yes ✓	act? Yes ✓ No ☐ me for indicated test? Yes ✓ No ☐ Sample Preservation and Hold Time (HT) Inferentiation in the Harmonic form of the	act? Yes ✓ No ☐ me for indicated test? Yes ✓ No ☐ Sample Preservation and Hold Time (HT) Information within holding time? Yes ✓ No ☐ stemperature Cooler Temp: NA ✓ re zero headspace / no bubbles? Yes ☐ No ☐ No VOA vials submitted ✓ d for correct preservation? Yes ✓ No ☐ upon receipt (pH<2)? Yes ☐ No ☐ NA ✓

Aqua Science Engineers, Inc.	Client Project ID: #2808; LIM	Date Sampled:	12/20/11
55 Oak Court Suite 220		Date Received:	12/20/11
	Client Contact: Dave Allen	Date Extracted:	12/21/11
Danville, CA 94526	Client P.O.:	Date Analyzed:	12/21/11

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

SW8021B/8015Bm Extraction method: SW5030B Analytical methods: Work Order: 1112600 Ethylbenzene Lab ID Client ID Matrix TPH(g) MTBE Benzene Toluene Xylenes DF % SS Comments 90 001A INF-VE-12-20-11 Α 3100 ND<50 21 48 7.5 20 109 d1

Reporting Limit for DF =1; ND means not detected at or	A	25	2.5	0.25	0.25	0.25	0.25	μg/L
above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

[#] cluttered chromatogram; sample peak coelutes with surrogate peak; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

Aqua Science Engineers, Inc.	Client Project ID: #2808; LIM	Date Sampled:	12/20/11
55 Oak Court Suite 220		Date Received:	12/20/11
	Client Contact: Dave Allen	Date Extracted:	12/21/11
Danville, CA 94526	Client P.O.:	Date Analyzed:	12/21/11
Casalina Danas (CC C)	(2) Volotila Hudus aarbana aa Casalina w	4L MTDE and D	FEV :*

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with MTBE and BTEX in ppmv*

Extracti	on method: SW5030B			I	Analytical methods:	SW8021B/801	5Bm		Wo	rk Order:	1112600
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	INF-VE-12-20-11	A	870	ND<14	6.3	13	1.7	20	20	109	d1

ppm (i	ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.											
Reporting Limit for DF =1; ND means not detected at or	1 c 7 11 7.0 0.00 0.007 0.007 1 uE/E											
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg			

^{*} vapor samples are reported in μ L/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in μ g/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

[#] cluttered chromatogram; sample peak coelutes with surrogate peak; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

OC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air QC Matrix: Water BatchID: 63553 WorkOrder: 1112600

EPA Method: SW8021B/8015Bm Extraction: S	W5030B					;	Spiked Sam	ple ID:	1112615-007A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	20 70 - 130 20 70 - 130 20 70 - 130		
, wally c	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS		
TPH(btex) [£]	ND	60	119	114	3.84	126	70 - 130	20	70 - 130		
MTBE	ND	10	85.4	83	2.78	82.4	70 - 130	20	70 - 130		
Benzene	ND	10	107	100	6.38	106	70 - 130	20	70 - 130		
Toluene	ND	10	108	100	7.75	106	70 - 130	20	70 - 130		
Ethylbenzene	ND	10	108	101	6.35	107	70 - 130	20	70 - 130		
Xylenes	ND	30	111	104	6.95	111	70 - 130	20	70 - 130		
%SS:	104	10	97	98	0.303	97	70 - 130	20	70 - 130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 63553 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
1112600-001A	12/20/11 9:30 AM	12/21/11	12/21/11 12:42 AM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

Analytical Report

Aqua Science Engineers, Inc.	Client Project ID: #2088; Lim Family Property	Date Sampled: 06/20/12
55 Oak Court Suite 220		Date Received: 06/20/12
33 Ouk Court State 220	Client Contact: Dave Allen	Date Reported: 06/25/12
Danville, CA 94526	Client P.O.:	Date Completed: 06/22/12

WorkOrder: 1206612

June 25, 2012

Dear Dave:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: #2088; Lim Family Property,
- 2) QC data for the above sample, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

1206612

Aqua Science Engineers, Inc. 55 Oak Court, Suite 220 Danville, CA 94526 (925) 820-9391 FAX (925) 837-4853

Chain of Custody

SAMPLER (SIGNATURE) FAMILY PROPERTYJOBNO. 2808 PROJECT NAME ADDRESS 250 DAKLAND ANALYSIS REQUEST PURGEABLE HALOCARBONS (EPA 601/8010) MULTI-RANGE HYDROCARBONS WITH SILI GEL CLEANUP (EPA 8015) SEMI-VOLATILE ORGANICS (EPA 625/8270) Pb (TOTAL or DISSOLVED) (EPA 6010) SPECIAL INSTRUCTIONS: 등 PH-GAS / MTBE & BTEX EPA 5030/8015-8020) VOLATILE ORGANICS (EPA 624/8240/8260) FUEL OXYGENATES (EPA 8260) CAM 17 METALS (EPA 6010+7000) (EPA 6010+7000) COMPOSITE 4:1 (EPA 8081) SAMPLE ID. VE-INF-06.20-12 1130 COMMENTS: RELINQUISHED BY: RECEIVED BY: RELINQUISHED BY: RECEIVED BY LABORATORY: (signature) 6-20-12 6-20-12 TURN AROUND TIME 13:21 20rabacortez 6/201 STANDARD 24Hr 48Hr 72Hr (printed name) (printed name) (date) (printed name) (date) (printed name) (date) OTHER: Company-ASE, INC. Company-Company-Company-

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

9

Page 1 of 1

5

10

Prepared by: Zoraida Cortez

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

(925) 25	2-9262					WorkO)rder:	12066	512	(Client	Code: A	ASED				
		WaterTrax	WriteOn	EDF		Excel		EQuis	3	✓ Email		Har	dCopy	Thi	irdParty	J-	flag
Report to:						В	Bill to:						Req	uested 1	TAT:	5	days
Dave Allen Aqua Scienc 55 Oak Coul Danville, CA (925) 820-939	94526	cc: PO:		cienceengineers.	.com)/2012)/2012			
									R	equested	d Tests	s (See le	gend be	low)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1206612-001	VE-INF-06.20.	12	Air	6/20/2012 11:30		Α											
Test Legend:																	

The following SampID: 001A contains testgroup.

2

7

12

G-MBTEX_AIR

Comments:

1

6

11

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

3

8

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	Aqua Science Engin	eers, Inc.			Date a	and Tin	ne Received:	6/20/2012 8	:19:55 PM
Project Name:	#2088; Lim Family P	roperty			LogIn F	Reviev	wed by:		Zoraida Cortez
WorkOrder N°:	1206612	Matrix: <u>Air</u>			Carrier	r: <u>(</u>	Courier		
		<u>Cha</u> i	in of Cu	ustody (COC)) Informat	<u>tion</u>			
Chain of custody	present?		Yes	✓	No 🗌				
Chain of custody	signed when relinquis	hed and received?	Yes	✓	No 🗌				
Chain of custody	agrees with sample la	bels?	Yes	✓	No 🗌				
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗌				
Date and Time of	collection noted by C	lient on COC?	Yes	✓	No 🗌				
Sampler's name	noted on COC?		Yes	✓	No \square				
		;	Sample	Receipt Info	ormation				
Custody seals int	act on shipping contai	ner/cooler?	Yes		No \square			NA 🗹	
Shipping containe	er/cooler in good cond	ition?	Yes	✓	No 🗌				
Samples in prope	er containers/bottles?		Yes	✓	No \square				
Sample container	rs intact?		Yes	✓	No \square				
Sufficient sample	volume for indicated t	test?	Yes	✓	No \square				
		Sample Pres	<u>ervatio</u>	n and Hold T	ime (HT)	Inforn	<u>nation</u>		
All samples recei	ved within holding time	e?	Yes	✓	No 🗌				
Container/Temp I	Blank temperature		Coole	er Temp:				NA 🗸	
Water - VOA vials	s have zero headspace	e / no bubbles?	Yes		No 🗌	No V	OA vials submi	tted 🗹	
Sample labels ch	ecked for correct pres	ervation?	Yes	✓	No 🗌				
Metal - pH accept	table upon receipt (pH	<2)?	Yes		No 🗌			NA 🗹	
Samples Receive	ed on Ice?		Yes		No 🗹				
* NOTE: If the "N	lo" box is checked, see	e comments below.							

Aqua Science Engineers, Inc.	Client Project ID: #2088; Lim Family	Date Sampled:	06/20/12
55 Oak Court Suite 220	Property	Date Received:	06/20/12
	Client Contact: Dave Allen	Date Extracted:	06/21/12
Danville, CA 94526	Client P.O.:	Date Analyzed:	06/21/12

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

SW8021B/8015Bm Extraction method: SW5030B Analytical methods: Work Order: 1206612 Ethylbenzene Lab ID Client ID Matrix TPH(g) MTBE Benzene Toluene Xylenes DF % SS Comments 001A VE-INF-06.20.12 Α 38 ND ND 0.33 ND 0.87 102 d1

Reporting Limit for DF =1; ND means not detected at or	A	25	2.5	0.25	0.25	0.25	0.25	μg/L
above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples in mg/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

[#] cluttered chromatogram; sample peak coelutes with surrogate peak; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

Aqua Science Engineers, Inc.	Client Project ID: #2088; Lim Family	Date Sampled:	06/20/12
55 Oak Court Suite 220	Property	Date Received:	06/20/12
	Client Contact: Dave Allen	Date Extracted:	06/21/12
Danville, CA 94526	Client P.O.:	Date Analyzed:	06/21/12

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with MTBE and BTEX in ppmv*

Extracti	on method: SW5030B			1	Analytical methods:	SW8021B/801	5Bm		Wo	rk Order:	1206612	
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments	
001A	VE-INF-06.20.12	A	11	ND	ND	0.085	ND	0.20	1	102	d1	

ppm (i	ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.										
Reporting Limit for DF =1; ND means not detected at or	A	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L		
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg		

^{*} vapor samples are reported in μ L/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in μ g/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

Angela Rydelius, Lab Manager

[#] cluttered chromatogram; sample peak coelutes with surrogate peak; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air QC Matrix: Water BatchID: 68506 WorkOrder: 1206612

EPA Method: SW8021B/8015Bm Extraction: S	W5030B					;	Spiked San	ple ID:	1206563-001A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	ance Criteria (%) PD LCS 20 70 - 130 1/A 70 - 130 20 70 - 130 20 70 - 130		
, that ye	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS		
TPH(btex) [£]	ND	60	109	103	5.84	89	70 - 130	20	70 - 130		
MTBE	220	10	NR	NR	NR	96.6	N/A	N/A	70 - 130		
Benzene	ND	10	98	95	3.10	77.8	70 - 130	20	70 - 130		
Toluene	ND	10	97.4	93.4	4.25	77.3	70 - 130	20	70 - 130		
Ethylbenzene	ND	10	96.3	92.6	3.97	79.1	70 - 130	20	70 - 130		
Xylenes	ND	30	93.2	89.1	4.41	80.6	70 - 130	20	70 - 130		
%SS:	85	10	98	97	1.14	91	70 - 130	20	70 - 130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 68506 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1206612-001A	06/20/12 11:30 AM	I 06/21/12	06/21/12 4:35 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

Aqua Science Engineers, Inc. 55 Oak Court, Suite 220, Danville, CA 94526 (925) 820-9391 - Fax (925) 837-4853 - www.aquascienceengineers.com

APPENDIX B

FIELD LOGS

GASOLINE EXTRACTION LOG

LIM FAMILY PROPERTY

250 8th Street, Oakland, California

	TPH-G CONCENTRATION (ug/l)	GALLONS OF GASOLINE	NUMBER OF DAYS VE SYSTEM	GALLONS OF GASOLINE
DATE	IN INFLUENT VAPOR SAMPLE	EXTRACTED, PER DAY	OPERATED IN MONTH	EXTRACTED IN MONTH
4/28/11	4600	2.75	30	82.50
5/26/11	4100	2.45	31	75.95
6/30/11	4900	2.93	30	87.90
7/31/11	NA	2.75*	31	85.25
8/31/11	NA	2.57*	31	79.67
9/30/11	NA	2.39*	30	71.70
10/31/11	NA	2.21*	31	68.51
11/30/11	NA	2.03*	30	60.90
12/20/11	3100	1.85	31	57.38
1/31/12	NA	1.55*	31	48.05
2/29/12	NA	1.25*	29	36.25
3/31/12	NA	0.95*	31	29.45
4/30/12	NA	0.65*	30	19.50
5/31/12	NA	0.35*	31	10.85
6/20/12	38	0.02	30	0.60

TOTAL GALLONS OF GASOLINE REMOVED FROM VADOSE ZONE SINCE SYSTEM START-UP

814.46

NOTES:

NA means "not applicable." This is due to the fact that an air bag sample of the influent vapor stream was not collected on a monthly basis.

The asterisk symbol (*) means this number is an estimate. Actual air bag TPH-G concentrations were not available due to lack of sampling.

A Flowrate of 50 cubic feet per minute was used to calculate daily extraction volumes. The VE system operated typically between 45 and 60 cfm. See calculation sheets attached.

MASS EXTRACTION CALCULATIONS LIM PROPERTY VAPOR EXTRACTION SYSTEM 250 8TH STREET, OAKLAND, CALIFORNIA AIR BAG SAMPLE COLLECTED ON 04/28/11

AVERAGE		VOLUME		TIME		TPH-G		MASS		MASS		MASS		MASS
VAPOR		CONVERSION		CONVERSION		CONCENTRATION		CONVERSION		CONVERSION		TPH-G		TPH-G
EXTRACTION		FACTOR		FACTOR		IN		FACTOR		FACTOR		EXTRACTION		EXTRACTION
FLOW			_		7	INFLUENT						RATE		RATE
RATE	1		10		JUV	SAMPLE	7				EC		EC	
CFM	7	I/cu.ft.	7	min/day	<u>4</u>	ug/l	IAIC	ugs/gm	$ \geq$	gms/lb	ΑUS	lbs/day	ΑUS	gallons/day
50	7	28.32	1	1,200	ĽΥ	4,600	DE	1,000,000	DE	454	S	17.22	S	2.75

MASS EXTRACTION CALCULATIONS LIM PROPERTY VAPOR EXTRACTION SYSTEM 250 8TH STREET, OAKLAND, CALIFORNIA AIR BAG SAMPLE COLLECTED ON 05/26/11

AVERAGE		VOLUME		TIME		TPH-G		MASS		MASS		MASS		MASS
VAPOR		CONVERSION		CONVERSION		CONCENTRATION		CONVERSION		CONVERSION		TPH-G		TPH-G
EXTRACTION		FACTOR		FACTOR		IN		FACTOR		FACTOR		EXTRACTION		EXTRACTION
FLOW						INFLUENT						RATE		RATE
RATE	\geq		\leq		\leq	SAMPLE					ш		ш	
CFM] [l/cu.ft.	17	min/day	11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	ug/l	DΙV	ugs/gm	PΙ	gms/lb	QU/	lbs/day	QU/	gallons/day
50] <u> </u>	28.32	X7	1,200	17	4,100	IDE	1,000,000	IDE	454	STY	15.35	15	2.45

MASS EXTRACTION CALCULATIONS LIM PROPERTY VAPOR EXTRACTION SYSTEM 250 8TH STREET, OAKLAND, CALIFORNIA AIR BAG SAMPLE COLLECTED ON 06/30/11

AVERAGE		VOLUME		TIME		TPH-G		MASS		MASS		MASS		MASS
VAPOR		CONVERSION		CONVERSION		CONCENTRATION		CONVERSION		CONVERSION		TPH-G		TPH-G
EXTRACTION		FACTOR		FACTOR		IN		FACTOR		FACTOR		EXTRACTION		EXTRACTION
FLOW						INFLUENT						RATE		RATE
RATE	\leq		\leq		\leq	SAMPLE					ĹП		ĽП	
CFM	77	l/cu.ft.	JL 71/	min/day	11.71	ug/l	DΙV	ugs/gm	DΝ	gms/lb	QU/	lbs/day	QU/	gallons/day
50] [28.32	12	1,200	7	4,900	IDE	1,000,000	<u> </u>	454	150	18.34	15	2.93

MASS EXTRACTION CALCULATIONS LIM PROPERTY VAPOR EXTRACTION SYSTEM 250 8TH STREET, OAKLAND, CALIFORNIA AIR BAG SAMPLE COLLECTED ON 12/20/11

AVERAGE		VOLUME		TIME		TPH-G		MASS		MASS		MASS		MASS
VAPOR		CONVERSION		CONVERSION		CONCENTRATION		CONVERSION		CONVERSION		TPH-G		TPH-G
EXTRACTION		FACTOR		FACTOR		IN		FACTOR		FACTOR		EXTRACTION		EXTRACTION
FLOW						INFLUENT						RATE		RATE
RATE	\leq		\leq		\leq	SAMPLE					ĒΠ		ĒП	
CFM	77.77	l/cu.ft.	JL TF	min/day	JL TF	ug/l	DΙV	ugs/gm	DΝ	gms/lb	QU/	lbs/day	QU/	gallons/day
50	7	28.32	17	1,200	17	3,100	IDE	1,000,000	IDE	454	57	11.60	5	1.85

MASS EXTRACTION CALCULATIONS LIM PROPERTY VAPOR EXTRACTION SYSTEM 250 8TH STREET, OAKLAND, CALIFORNIA AIR BAG SAMPLE COLLECTED ON 6/20/12

AVERAGE		VOLUME		TIME		TPH-G		MASS		MASS		MASS		MASS
VAPOR		CONVERSION		CONVERSION		CONCENTRATION		CONVERSION		CONVERSION		TPH-G		TPH-G
EXTRACTION		FACTOR		FACTOR		IN		FACTOR		FACTOR		EXTRACTION		EXTRACTION
FLOW						INFLUENT						RATE		RATE
RATE	\leq		\leq		\leq	SAMPLE					Ш		ш	
CFM	17	l/cu.ft.	77	min/day	11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	ug/l	DΙV	ugs/gm	DΙV	gms/lb	QU/	lbs/day	QU/	gallons/day
50	7	28.32	7	1,200	17	38	IDE	1,000,000	IDE	454	15	0.14	15	0.02

LIM PROPERTY - 250 8TH STREET, OAKLAND, CALIFORNIA VAPOR-EXTRACTION SYSTEM LOG

	CAT-OX	(SYSTEM				VAPOR-EX	TRACTION W	ELLS PID CO	NCENTRATIO	ON IN PPMV			
	FLOW IN	INFLUENT											
DATE	CFM	IN PPMV	VE-1	VE-2	VE-3	VE-4	VE-5	VE-6	VE-7	VE-8	VE-9	MW-3	MW-4
4/22/11	130	1096	240	34	119	125	440	•		•	•	465	570
4/25/11	130	986	185	28	95	130	400					390	565
4/25/11	100	923	210	26	100	100	350					450	442
4/26/11	90	912	230	25	98	86	410					422	388
4/27/11	78	747	210	32	112	56	360					364	224
4/29/11	65	790	320	30	90	45	320					320	312
5/2/11	58	879	350	28	88	66	400					420	246
5/4/11	52	916	520	25	98	48	365					310	300
5/6/11	52	892	590	26	119	30	328					263	265
5/9/11	52	1079	610	22	234	45	290	85	80	140	15	200	240
5/12/11	50	1016	556	40	185	40	265	80	84	135	11	216	235
5/16/11	48	1155	764	32	156	36	213	75	70	124	10	310	310
5/20/11	52	1158	810	26	164	38	312	92	88	156	14	186	220
5/23/11	50	1013	564	26	242	28	286	94	102	140	9	165	186
5/25/11	46	1169	686	28	310	42	310	90	95	125	15	220	205
5/27/11	52	1031	712	35	126	58	268	110	115	120	22	165	143
5/30/11	50	923	572	34	164	29	345	102	99	133	13	120	68
6/3/11	48	948	660	30	135	20	320	86	95	144	11	110	112
6/6/11	43	981	742	25	133	14	285	95	90	126	8	123	142
6/8/11	48	983	762	26	142	25	246	84	84	139	7	120	152
6/10/11	48	944	688	22	139	28	288	116	96	120	8	105	106
6/13/11	52	1152	884	24	115	32	296	125	102	144	9	134	229
6/16/11	50	1183	920	24	135	18	305	102	114	152	5	130	245
6/20/11	46	1277	1122	28	128	22	308	96	84	132	11	125	266
6/22/11	42	1180	952	18	130	24	264	85	98	130	6	128	310
6/24/11	55	1105	878	20	134	26	277	118	102	148	5	106	195
6/27/11	52	1141	765	26	127	26	263	102	100	122	6	144	393
7/8/11	49	926	555	25	130	18	298	99	90	130	9	132	222
7/12/11	45	788	500	24	125	15	287	101	89	133	8	124	252
7/18/11	46	745	541	21	124	14	302	85	88	125	8	142	244
7/25/11	47	688	488	22	124	17	278	87	95	126	7	133	232

LIM PROPERTY - 250 8TH STREET, OAKLAND, CALIFORNIA VAPOR-EXTRACTION SYSTEM LOG

	CAT-OX	SYSTEM				VAPOR-EXT	TRACTION W	ELLS PID CO	NCENTRATIO	ON IN PPMV			
	FLOW IN	INFLUENT											
DATE	CFM	IN PPMV	VE-1	VE-2	VE-3	VE-4	VE-5	VE-6	VE-7	VE-8	VE-9	MW-3	MW-4
8/1/11	52	655	600	26	132	12	273	96	93	144	6	125	235
8/9/11	51	725	553	21	111	14	263	80	93	112	5	126	226
8/15/11	53	718	523	21	110	13	255	75	92	132	5	131	212
8/24/11	45	802	514	24	141	14	264	68	88	123	6	134	238
8/29/11	46	644	506	21	123	15	270	88	89	130	4	129	230
0/7/11	56	640	488	26	111	11	266	99	96	112	6	111	211
9/7/11 9/12/11	55	636	478	26 25	100	10	255	99	95 95	112 11	5	111	211
9/12/11	52	632	465	23 24	100	12	253 254	88	95 95	123	4	122	212
9/20/11	50	622	412	25	102	14	234	87	95 96	123	6	114	223
9/2//11	30	022	412	23	101	14	232	07	90	120	U	114	223
10/3/11	55	612	400	22	98	9	211	96	90	119	5	100	232
10/10/11	50	621	412	21	114	11	224	92	90	11	3	98	216
10/18/11	51	602	388	23	121	12	222	98	91	114	6	103	222
10/25/11	51	611	377	22	102	15	200	87	91	102	7	110	232
11/1/11	40	F00	266	20	100	0	214	70	00	00		105	200
11/1/11	49	598	366	20	100	8	214	78	88	90	6	105	208
11/7/11	48	588	365	13	98	8	211	74 70	88	90	5	106	214
11/14/11	48	586	385	19	97	7	225	78	88	95	5	105	210
11/22/11	48	574	364	17	106	11	223	89	87	92	5	99	211
11/30/11	47	545	344	22	97	10	208	95	88	81	4	98	219
12/5/11	47	588	355	20	99	9	211	95	85	81	3	100	203
12/12/11	49	541	323	18	111	9	195	90	83	83	4	111	200
12/20/11	48	540	311	17	105	7	196	91	81	75	4	99	201
12/30/11	48	532	302	18	101	7	188	83	76	78	5	92	199
1/5/12	40	405	202	11	00		174	0.0	77	OF		02	100
1/5/12	49 51	485	302	11	99 99	6	174 175	88	77 74	85 77	6	92	199 203
1/10/12	51 50	487	311	14		6		84			5	92 05	
1/16/12	50	465	312	15	98	8	165	85	77	74	3	95	195
1/23/12	48	455	310	14	98	7	166	87	78 75	78	4	94	188
1/31/12	47	444	311	11	95	7	152	78	75	86	5	99	187

LIM PROPERTY - 250 8TH STREET, OAKLAND, CALIFORNIA VAPOR-EXTRACTION SYSTEM LOG

	CAT-OX	SYSTEM				VAPOR-EX	RACTION W	ELLS PID CO	NCENTRATIO	N IN PPMV			
	FLOW IN	INFLUENT											
DATE	CFM	IN PPMV	VE-1	VE-2	VE-3	VE-4	VE-5	VE-6	VE-7	VE-8	VE-9	MW-3	MW-4
2/7/12	47	420	299	9	93	8	140	70	77	85	6	95	177
2/13/12	44	388	290	8	90	7	141	66	71	88	5	96	165
2/20/12	41	355	295	9	77	8	133	62	71	81	4	95	158
2/27/12	45	356	295	9	75	8	132	63	71	84	6	88	145
3/6/12	42	354	288	11	77	OFF	125	61	68	84	6	87	165
	40				77 74	OFF		60	68		5	87 87	157
3/12/12	40 41	338 334	290 290	9 7	74 75	OFF	125 111	55	71	81 78	5 5	85	180
3/19/12				·-	75 77						5 7		
3/26/12	43	321	277	9	//	OFF	105	58	70	77	/	84	174
4/2/12	45	333	255	8	68	OFF	99	61	59	78	5	81	166
4/9/12	41	311	255	8	68	OFF	95	61	59	72	4	80	165
4/16/12	39	310	241	7	74	OFF	95	62	58	71	4	86	184
4/25/12	39	300	243	OFF	73	OFF	96	60	57	74	4	77	177
_ , , , , _													
5/4/12	40	288	225	OFF	71	OFF	88	60	56	74	4	78	174
5/8/12	40	275	233	OFF	65	OFF	87	55	55	75	5	78	175
5/14/12	40	280	241	OFF	58	OFF	95	57	58	74	6	79	181
5/22/12	41	256	211	OFF	55	OFF	75	58	61	69	5	95	166
5/29/12	41	255	205	OFF	54	OFF	77	51	62	69	4	94	158
6/4/12	40	241	195	OFF	54	OFF	81	51	60	63	4	99	144
6/12/12	38	222	188	OFF	52	OFF	66	50	60	62	4	103	158
6/18/12	38	232	175	OFF	51	OFF	63	52	61	60	4	103	180
0/10/12	30	232	1/3	OH	31	OFF	05	32	01	00	4	102	100

LIM PROPERTY - 250 8TH STREET, OAKLAND, CALIFORNIA SPARGING WELL LOG

		SPARGING WELLS											
	OS-1	OS-2	OS-3	OS-4	OS-5	OS-6	OS-7	OS-8	OS-9	OS-10	OS-11	OS-12	
DATE	DURATION/ AIRSTREAM												
1/18/11	30 MIN./HIGH FLOW AIR												
1/19/11	30 MIN./HIGH FLOW AIR												
1/20/11	30 MIN./HIGH FLOW AIR												
1/21/11	30 MIN./HIGH FLOW AIR												
1/22/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF							
1/26/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF							
1/28/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF							
2/2/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF							
2/4/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF							
2/8/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF							
2/11/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF							
2/15/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF							
2/18/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF							
2/22/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF							
2/25/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF							
2/28/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF							

LIM PROPERTY - 250 8TH STREET, OAKLAND, CALIFORNIA SPARGING WELL LOG

						SPARGIN	G WELLS					
	OS-1	OS-2	OS-3	OS-4	OS-5	OS-6	OS-7	OS-8	OS-9	OS-10	OS-11	OS-12
DATE	DURATION/ AIRSTREAM	DURATION/ AIRSTREAM	DURATION/ AIRSTREAM	DURATION/ AIRSTREAM	DURATION/ AIRSTREAM	DURATION/ AIRSTREAM						
3/1/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
3/4/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
3/8/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
3/11/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
3/914/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
3/17/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
3/22/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
3/25/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
3/29/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
4/1/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
4/5/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
4/8/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
4/12/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
4/15/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
4/19/11	OFF	OFF	OFF	OFF	OFF	OFF						
4/25/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
5/2/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						

LIM PROPERTY - 250 8TH STREET, OAKLAND, CALIFORNIA SPARGING WELL LOG

	SPARGING WELLS											
	OS-1	0S-2	OS-3	OS-4	0S-5	OS-6	OS-7	OS-8	OS-9	OS-10	OS-11	OS-12
DATE	DURATION/	DURATION/	DURATION/	DURATION/	DURATION/	DURATION/						
	AIRSTREAM	AIRSTREAM	AIRSTREAM	AIRSTREAM	AIRSTREAM	AIRSTREAM						
5/9/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
5/13/11	30 MIN./HIGH	10 MIN./LOW										
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
5/16/11	30 MIN./HIGH	10 MIN./LOW										
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
5/23/11	30 MIN./HIGH	10 MIN./LOW										
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
5/30/11	30 MIN./HIGH	20 MIN./LOW										
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
6/6/11	30 MIN./HIGH	20 MIN./LOW										
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
6/13/11	30 MIN./HIGH	10 MIN./HIGH	10 MIN./HIGH	10 MIN./HIGH	10 MIN./HIGH	10 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
6/20/11	30 MIN./HIGH	10 MIN./HIGH	10 MIN./HIGH	10 MIN./HIGH	10 MIN./HIGH	10 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
6/27/11	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
8/1/11	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
9/1/11	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
10/1/11	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
11/1/11	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
12/1/11	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
1/1/12	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
2/1/12	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
3/1/12	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
4/1/12	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
5/1/12	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
6/1/12	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						

LIM PROPERTY - 250 8TH STREET, OAKLAND, CALIFORNIA HYDROCARBON VAPOR MEASUREMENT LOG

	HYDROCARBON CONCENTRATIONS IN PPMV* MEASURED WITH ORGANIC VAPOR METER														
	VAPOR MONITO	ORING POINTS	METER BOXES		F 8TH STREET)					XES (OPPOSIT	E SIDE OF 8T	H STREET)			
DATE	VMP-1	VMP-1	PIPING MANIFOLD	PG&E BOX	EBMUD BOX	GAS METER	GAS METER 2	GAS METER 3	EBMUD BOX	EBMUD BOX	OS-8/VE-6 WELL BOX	OS-9/VE-7 WELL BOX	OS-10/VE-8 WELL BOX	OS-11 WELL BOX	OS-12/VE-9 WELL BOX
1/18/11	0	0	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
1/19/11	0	0	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
1/20/11	0	0	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
1/21/11	11	21	NM	NM	NM	10	8	11	5	7	NM	NM	NM	NM	NM
1/22/11	3	7	NM	NM	NM	12	11	8	4	6	NM	NM	NM	NM	NM
1/23/11	0	0	NM	NM	NM	0	0	0	0	0	NM	NM	NM	NM	NM
1/28/11	0	0	NM	NM	NM	0	0	0	0	0	NM	NM	NM	NM	NM
2/15/11	0	0	NM	NM	NM	0	0	0	0	0	NM	NM	NM	NM	NM
2/28/11	0	0	NM	NM	NM	0	0	0	0	0	NM	NM	NM	NM	NM
3/8/11	0	0	NM	NM	NM	0	0	0	0	0	NM	NM	NM	NM	NM
3/29/11	0	0	NM	NM	NM	0	0	0	0	0	NM	NM	NM	NM	NM
4/12/11	0	0	NM	NM	NM	0	0	0	0	0	NM	NM	NM	NM	NM
4/25/11	0	0	NM	NM	NM	0	0	0	0	0	NM	NM	NM	NM	NM
5/13/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/16/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/20/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/23/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/25/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/27/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/30/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/3/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/6/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/8/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/10/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/13/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/16/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/20/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/22/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/24/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/27/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

NM = Not Measured

LIM PROPERTY - 250 8TH STREET, OAKLAND, CALIFORNIA HYDROCARBON VAPOR MEASUREMENT LOG

				н	YDROCARBON CC	NCENTRATIONS	IN PPMV* MF	ASURED WITH	H ORGANIC VA	POR METER					
	VAPOR MONIT	ORING POINTS	METER BOXES		F 8TH STREET)					OXES (OPPOSIT	TE SIDE OF 8T	H STREET)			
			PIPING			GAS METER	GAS METER	GAS METER		EBMUD BOX	OS-8/VE-6	OS-9/VE-7	OS-10/VE-8	OS-11	OS-12/VE-9
DATE	VMP-1	VMP-1	MANIFOLD	PG&E BOX	EBMUD BOX	1	2	3	1	2	WELL BOX	WELL BOX	WELL BOX	WELL BOX	WELL BOX
7/8/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7/12/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7/18/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7/25/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8/1/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8/9/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8/15/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8/24/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8/29/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9/7/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9/12/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9/20/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9/27/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10/3/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10/10/11		0	0	0	0	0	0	0	0	0	0	0	0	0	0
10/18/11		0	0	0	0	0	0	0	0	0	0	0	0	0	0
10/25/11		0	0	0	0	0	0	0	0	0	0	0	0	0	0
11/1/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11/7/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11/14/11		0	0	0	0	0	0	0	0	0	0	0	0	0	0
11/22/11		0	0	0	0	0	0	0	0	0	0	0	0	0	0
11/30/11		0	0	0	0	0	0	0	0	0	0	0	0	0	0
12/5/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12/12/11		0	0 0	0	0	0	0	0 0	0 0	0	0	0 0	0	0 0	0
12/20/11 12/30/11		0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0
1/5/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1/10/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1/16/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1/23/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1/23/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2/7/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2/13/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2/20/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2/27/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3/6/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3/12/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3/19/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3/26/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-, -,															

LIM PROPERTY - 250 8TH STREET, OAKLAND, CALIFORNIA HYDROCARBON VAPOR MEASUREMENT LOG

				Н	YDROCARBON CO	ONCENTRAT	IONS IN PPMV* MI	ASURED WITH	I ORGANIC VA	POR METER					
	VAPOR MONITO	RING POINTS	METER BOXES		F 8TH STREET)					XES (OPPOSIT	E SIDE OF 8T	H STREET)			
			PIPING			GAS ME	TER GAS METER	GAS METER	EBMUD BOX	EBMUD BOX	OS-8/VE-6		OS-10/VE-8	OS-11	OS-12/VE-9
DATE	VMP-1	VMP-1	MANIFOLD	PG&E BOX	EBMUD BOX	1	2	3	1	2	WELL BOX	WELL BOX	WELL BOX	WELL BOX	WELL BOX
4/2/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4/9/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4/16/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4/25/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/4/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/8/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/14/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/22/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/29/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/4/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/12/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/18/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Aqua Science Engineers, Inc. 55 Oak Court, Suite 220, Danville, CA 94526 (925) 820-9391 - Fax (925) 837-4853 - www.aquascienceengineers.com

APPENDIX C

MONITORING WELL SAMPLING LOGS

WELL SAMPLING FIELD LOG

PROJECTNAME LIM FAMILY PRIF	PERTY
JOB NUMBER 2808	DATE OF SAMPLING OL. 22 - 2012
WELLID. MW-1	SAMPLER DA
TOTAL DEPTH OF WELL 26.80	WELL DIAMETER Z
DEPTH TO WATER PRIOR TO PURGING 17.08	TIME OF MEASUREMENT
PRODUCT THICKNESS &	
DEPTH OF WELL CASING IN WATER 9.	72
NUMBER OF GALLONS PER WELL CASING VOLUME	155
NUMBER OF WELL CASING VOLUMES TO BE REMOVED	3
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED PR	RIOR TO SAMPLING 4.6
EQUIPMENT USED TO PURGE WELL NEW	N DISPOSABLE BAILER
TIME EVACUATION STARTED 0626	TIME EVACUATION COMPLETED 0634
TIME SAMPLES WERE COLLECTED 0635	
DID WELL GO DRY	AFTER HOW MANY GALLONS
VOLUME OF GROUNDWATER PURGED	4.6.
SAMPLING DEVICE NEW DISPOSABLE B	AILER
SAMPLE COLOR IX BAN	ODOR/SEDIMENT N. N.
	

CHEMICAL DATA

VOLUME PURGED	TEMPERATURE	PH Set of Section	CONDUCTIVITY".
	19.0	7-1	700
2	14.0	7-1	710
3	18.9	7.0	روما

SAMPLE	# OF CONTAINERS	SIZE AND TYPE OF CONTAIN	JER ANALYSIS	PRESERVED
nw-1	5	40ML VOA	8015 / 8260	
				,

WELL SAMPLING FIELD LOG

PROJECT NAME LIM FAMILY PRO	PERTY
JOB NUMBER 2808	DATE OF SAMPLING OG . 22 - 2012
WELLID. MW-2	SAMPLER DA
TOTAL DEPTH OF WELL 26.80	WELL DIAMETER Z
DEPTH TO WATER PRIOR TO PURGING 16.36	TIME OF MEASUREMENT
PRODUCT THICKNESS	
DEPTH OF WELL CASING IN WATER	0.44
NUMBER OF GALLONS PER WELL CASING VOLUME	1.67
NUMBER OF WELL CASING VOLUMES TO BE REMOVED	3
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED F	PRIOR TO SAMPLING 5
EQUIPMENT USED TO PURGE WELL NE	W DISPOSABLE BAILER
TIME EVACUATION STARTED 0730	TIME EVACUATION COMPLETED 0738
TIME SAMPLES WERE COLLECTED 0740	
DID WELL GO DRY	AFTER HOW MANY GALLONS
VOLUME OF GROUNDWATER PURGED	5
SAMPLING DEVICE NEW DISPOSABLE	BAILER
SAMPLE COLOR 17. BM	ODOR/SEDIMENT MOD HC/SUCHT

CHEMICAL DATA

Ž VOLUME PURĢED.	TEMPERATURE	PHT William	CONDUCTIVITY
1	18.4	7.1	710
2	18.4	U470	70
3	18.5	7.1	700

SAMPLE	# OF CONTAINERS'	SIZE AND TYPE OF CONTAINER	ANALY515	PRESERVED
MW-2	5	40ML VOA	8015 /8260	~

WELL SAMPLING FIELD LOG

PROJECT NAME LIM FAMILY PROP	hery
JOB NUMBER 2808	DATE OF SAMPLING O6 . 22 - 2012
WELLID. MW-3	SAMPLER DA
TOTAL DEPTH OF WELL 30.0	WELL DIAMETER 2
DEPTH TO WATER PRIOR TO PURGING 15: 95	TIME OF MEASUREMENT
PRODUCT THICKNESS 0,69'	
DEPTH OF WELL CASING IN WAYER	
NUMBER OF GALLONS PER WELL ASING VOLUME	
NUMBER OF WELL CASING VOLUMES TO BE REMOVED	3
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED PR	KIOR TO SAMPLING
EQUIPMENT USED TO PURGE WELL NEW	V DISPOSABLE BAILER
TIME EVACUATION STARTED	TIME EVACUATION COMPLETED
TIME SAMPLES WERE COLLECTED	
DID WELL GO DRY	AFTER HOW MANY GALLONS
VOLUME OF GROUNDWATER PURGED	
SAMPLING DEVICE NEW DISPOSABLE B.	LER
SAMPLE COLOR	ODOR/SEDIMENT
CHEMICAL DATA	
VOLUME PURGED TEMPERATURE	RH CONDUCTIVITY"
2	
3	
SAMPLES COLLECTED	
SAMPLE # OF CONTAINERS*	SIZE AND TYPE OF CONTAINER ANALYSIS PRESERVED
MW-3 5	40m von 80x/8260 r

BAILED PRODUCT TO SHEEN

WELL SAMPLING FIELD LOG

PROJECT NAME LIM FAMILY PRIP	ERTY
JOB NUMBER 2808	DATE OF SAMPLING O6:22 - 2-12
WELLID. MW-4P	SAMPLER DA
TOTAL DEPTH OF WELL 28.0	WELL DIAMETER Z
DEPTH TO WATER PRIOR TO PURGING 16.69	TIME OF MEASUREMENT
PRODUCT THICKNESS &	
DEPTH OF WELL CASING IN WATER (1.3	(
NUMBER OF GALLONS PER WELL CASING VOLUME	(.8/
NUMBER OF WELL CASING VOLUMES TO BE REMOVED	3
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED PR	IOR TO SAMPLING 5.4
EQUIPMENT USED TO PURGE WELL NEW	DISPOSABLE BAILER
TIME EVACUATION STARTED 0815	TIME EVACUATION COMPLETED 0824
TIME SAMPLES WERE COLLECTED 0826	
DID WELL GO DRY	AFTER HOW MANY GALLONS
VOLUME OF GROUNDWATER PURGED	5.5
SAMPLING DEVICE NEW DISPOSABLE BA	AILER
SAMPLE COLOR 4 6 M.	ODOR/SEDIMENT MOD HE SUCHT

CHEMICAL DATA

YOLUME PURGED	TEMPERATURE	PH SE SUE	CONDUCTIVITY .
	18.2	7.0	1040
2	18.3	7.1	1080
3	18-3	7.0	1093

SAMPLE	# OF CONTAINERS	SIZE AND TYPE OF CONTAINE	R ANALYSIS	PRESERVED
MW- 4R	5	fore von	8015 / 8260	_

WELL SAMPLING FIELD LOG

PROJECT NAME LIM FAMILY PRIP	hery
JOB NUMBER 2808	DATE OF SAMPLING O6 . 22 - 2012
WELLID. MW-5	SAMPLER DA
TOTAL DEPTH OF WELL 29.6	WELL DIAMETER 2
DEPTH TO WATER PRIOR TO PURGING 16.41	TIME OF MEASUREMENT
PRODUCT THICKNESS 6	
DEPTH OF WELL CASING IN WATER 13.1	9
NUMBER OF GALLONS PER WELL CASING VOLUME	2.1(
NUMBER OF WELL CASING VOLUMES TO BE REMOVED	3
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED PR	OR TO SAMPLING 6.3
EQUIPMENT USED TO PURGE WELL NEW	DISPOSABLE BAILER
TIME EVACUATION STARTED 0610	TIME EVACUATION COMPLETED 0621
TIME SAMPLES WERE COLLECTED OLV	
DID WELL GO DRY	AFTER HOW MANY GALLONS
VOLUME OF GROUNDWATER PURGED	6.5
SAMPLING DEVICE NEW DISPOSABLE BA	NLER
SAMPLE COLOR UTBAN	ODOR/SEDIMENT NO /NO

CHEMICAL DATA

#YOLUME PURGED	TEMPERATURE	PH THE WAR	CONDUCTIVITY
	18.2	7.1	610
2	18.0	7.3	540
3	18.0	7-3	570

SAMPLE	# OF CONTAINERS	SIZE AND TYPE OF CONTAI	NER ANALYSIS	PRESERVED
MW-5	5	40ML VOA	8015 / 8260	_

WELL SAMPLING FIELD LOG

PROJECT NAME LIM FAMILY PRIP	exty
JOB NUMBER 2808	DATE OF SAMPLING OL . 22 - 2012
WELLID. MW-6	SAMPLER DA
TOTAL DEPTH OF WELL 29.5	WELL DIAMETER Z
DEPTH TO WATER PRIOR TO PURGING 16.70	TIME OF MEASUREMENT
PRODUCT THICKNESS .	
DEPTH OF WELL CASING IN WATER 12.8	
NUMBER OF GALLONS PER WELL CASING VOLUME	2
NUMBER OF WELL CASING VOLUMES TO BE REMOVED	3
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED PR	IOR TO SAMPLING 6
EQUIPMENT USED TO PURGE WELL NEW	/ DISPOSABLE BAILER
TIME EVACUATION STARTED WATER OF 10	TIME EVACUATION COMPLETED 6721
TIME SAMPLES WERE COLLECTED 0722	
DID WELL GO DRY	AFTER HOW MANY GALLONS
VOLUME OF GROUNDWATER PURGED	6
SAMPLING DEVICE NEW DISPOSABLE BA	Aller ,
SAMPLE COLOR LT BRW	ODOR/SEDIMENT NO NO

CHEMICAL DATA

¥ YOLUME PURGED	TEMPERATURE	PH 发光。	CONDUCTIVITY
	18.4	7.4	320
2	(8.3	7.5	360
3	(8.3	7.6	370

SAMPLE	# OF CONTAINERS	SIZE AND TYPE OF CONTA	INER ANALYSIS	PRESERVED
Mw- b	5	40 ML VOA	8015 / 8260	

WELL SAMPLING FIELD LOG

PROJECTNAME LIM FAMILY PR	upagy
JOB NUMBER 2808	DATE OF SAMPLING O6 . 22 - 2012
WELLID. MW-1	SAMPLER DA
TOTAL DEPTH OF WELL 28.0	WELL DIAMETER Z
DEPTH TO WATER PRIOR TO PURGING 17.0	TIME OF MEASUREMENT
PRODUCT THICKNESS &	
DEPTH OF WELL CASING IN WATER	10.97
NUMBER OF GALLONS PER WELL CASING VOLUME	0.75
NUMBER OF WELL CASING VOLUMES TO BE REMOVED	3
REQUIRED VOLUME OF GROUNDWATER TO BE PURGE	DPRIOR TO SAMPLING 5.25
EQUIPMENT USED TO PURGE WELL	NEW DISPOSABLE BAILER
TIME EVACUATION STARTED 8755	TIME EVACUATION COMPLETED 0804
TIME SAMPLES WERE COLLECTED 0805	
DID WELL GO DRY	AFTER HOW MANY GALLONS
VOLUME OF GROUNDWATER PURGED	5.5
SAMPLING DEVICE NEW DISPOSABL	EBAILER
SAMPLE COLOR CT. CRUY	ODOR/SEDIMENT MED HE/ SULLY
	/

CHEMICAL DATA

VOLUME PURGED	TEMPERATURE :	PH PH	CONDUCTIVITY:
	18.2	710	1090
2	18.2	7.2	1140
3	18.3	7. (1160

SAMPLE	# OF CONTAINERS	SIZE AND TYPE OF CONTAIN	ER ANALYSIS	PRESERVED
MW-7	5	40ML VOA	8015 / 8260	-

WELL SAMPLING FIELD LOG

PROJECT NAME LIM FAMILY PRIF	kery
JOB NUMBER 2808	DATE OF SAMPLING OG: 22 - 2-12
WELLID. MW-8	SAMPLER JA
TOTAL DEPTH OF WELL 49.0	WELL DIAMETER Z
DEPTH TO WATER PRIOR TO PURGING 21,23	TIME OF MEASUREMENT
PRODUCT THICKNESS &	
DEPTH OF WELL CASING IN WATER 17.77	
NUMBER OF GALLONS PER WELL CASING VOLUME	4.44
NUMBER OF WELL CASING VOLUMES TO BE REMOVED	3
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED PR	RIOR TO SAMPLING (3.3
EQUIPMENT USED TO PURGE WELL NEI	V DISPOSABLE BAILER
TIME EVACUATION STARTED 06 45	TIME EVACUATION COMPLETED 0659
TIME SAMPLES WERE COLLECTED 6702	
DID WELL GO DRY NO	AFTER HOW MANY GALLONS
VOLUME OF GROUNDWATER PURGED	13-3
SAMPLING DEVICE (NEW DISPOSABLE B	AILER
SAMPLE COLOR CLAAR	ODOR/SEDIMENT No / No

CHEMICAL DATA

VOLUMEPURGED	TEMPERATURE	的。 PHT语言的数据	CONDUCTIVITY
	21.0	7.7	dgo
2	21.0	7.8	490
3	21.4	7.7	490

SAMPLE	# OF CONTAINERS	SIZE AND TYPE OF CONTAINER	ANALÝ515	PRESERVED
MW-8	5	40me von	8015 /8260	

Aqua Science Engineers, Inc. 55 Oak Court, Suite 220, Danville, CA 94526 (925) 820-9391 - Fax (925) 837-4853 - www.aquascienceengineers.com

APPENDIX D

CERTIFIED ANALYTICAL REPORT AND CHAIN OF CUSTODY DOCUMENTATION FOR GROUNDWATER SAMPLES

Date: 07/02/2012

Laboratory Results

David Allen Aqua Science Engineers, Inc. 55 Oak Court, Suite 220 Danville, CA 94526

Subject: 7 Water Samples Project Name: LIM Project Number: 2808

Dear Mr. Allen,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed. Testing procedures comply with the 2003 NELAC and TNI 2009 standards. Laboratory results relate only to the samples tested. This report may be freely reproduced in full, but may only be reproduced in part with the express permission of Kiff Analytical, LLC. Kiff Analytical, LLC is certified by the State of California under the National Environmental Laboratory Accreditation Program (NELAP), lab # 08263CA. If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Troy Turpen

Troy D. Turpen

Date: 07/02/2012

Subject: 7 Water Samples

Project Name: LIM Project Number: 2808

Case Narrative

Matrix Spike/Matrix Spike Duplicate results associated with samples MW-2, MW-4R, and MW-7 for the analyte Tert-Butanol were affected by the analyte concentrations already present in the un-spiked sample.

Matrix Spike/Matrix Spike Duplicate results associated with samples MW-1 and MW-5 for the analyte Benzene were outside of control limits. This may indicate a bias for the sample that was spiked. Since the LCS recoveries were within control limits, no data are flagged.

Date: 07/02/2012

Project Name : LIM
Project Number : 2808

Sample: MW-1 Matrix: Water Lab Number: 81716-01

Campio Bato 100/22/2012		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	23	0.50	ug/L	EPA 8260B	06/27/12 03:31
Toluene	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 03:31
Ethylbenzene	1.1	0.50	ug/L	EPA 8260B	06/27/12 03:31
Total Xylenes	2.3	0.50	ug/L	EPA 8260B	06/27/12 03:31
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 03:31
Diisopropyl ether (DIPE)	0.80	0.50	ug/L	EPA 8260B	06/27/12 03:31
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 03:31
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 03:31
Tert-Butanol	12	5.0	ug/L	EPA 8260B	06/27/12 03:31
TPH as Gasoline	750	50	ug/L	EPA 8260B	06/27/12 03:31
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 03:31
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 03:31
1,2-Dichloroethane-d4 (Surr)	98.1		% Recovery	EPA 8260B	06/27/12 03:31
Toluene - d8 (Surr)	98.3		% Recovery	EPA 8260B	06/27/12 03:31
TPH as Diesel (Silica Gel) (Note: MRL increased due to interference	< 200 e from Gasoline-	200 range hydrod	ug/L carbons.)	M EPA 8015	06/27/12 18:20
Octacosane (Silica Gel Surr)	111		% Recovery	M EPA 8015	06/27/12 18:20

Date: 07/02/2012

Project Name : LIM
Project Number : 2808

Sample: MW-2 Matrix: Water Lab Number: 81716-02

	Magazinad	Method		Amalyaia	Data/Times
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	50	0.50	ug/L	EPA 8260B	07/02/12 12:50
Toluene	56	0.50	ug/L	EPA 8260B	07/02/12 12:50
Ethylbenzene	4.0	0.50	ug/L	EPA 8260B	07/02/12 12:50
Total Xylenes	160	0.50	ug/L	EPA 8260B	07/02/12 12:50
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	07/02/12 12:50
Diisopropyl ether (DIPE)	1.6	0.50	ug/L	EPA 8260B	07/02/12 12:50
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	07/02/12 12:50
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	07/02/12 12:50
Tert-Butanol	17	5.0	ug/L	EPA 8260B	07/02/12 12:50
TPH as Gasoline	1200	50	ug/L	EPA 8260B	07/02/12 12:50
1,2-Dichloroethane	1.1	0.50	ug/L	EPA 8260B	07/02/12 12:50
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	07/02/12 12:50
1,2-Dichloroethane-d4 (Surr)	96.5		% Recovery	EPA 8260B	07/02/12 12:50
Toluene - d8 (Surr)	101		% Recovery	EPA 8260B	07/02/12 12:50
TPH as Diesel (Silica Gel)	140	50	ug/L	M EPA 8015	06/27/12 23:50
Octacosane (Silica Gel Surr)	111		% Recovery	M EPA 8015	06/27/12 23:50

Date: 07/02/2012

Project Name : LIM Project Number: 2808

Sample: MW-4R Matrix: Water Lab Number: 81716-03

Campio Bato :00/22/2012		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	31	0.50	ug/L	EPA 8260B	07/02/12 13:22
Toluene	53	0.50	ug/L	EPA 8260B	07/02/12 13:22
Ethylbenzene	5.0	0.50	ug/L	EPA 8260B	07/02/12 13:22
Total Xylenes	500	0.50	ug/L	EPA 8260B	07/02/12 13:22
Methyl-t-butyl ether (MTBE)	6.3	0.50	ug/L	EPA 8260B	07/02/12 13:22
Diisopropyl ether (DIPE)	6.1	0.50	ug/L	EPA 8260B	07/02/12 13:22
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	07/02/12 13:22
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	07/02/12 13:22
Tert-Butanol	180	5.0	ug/L	EPA 8260B	07/02/12 13:22
TPH as Gasoline	4500	50	ug/L	EPA 8260B	07/02/12 13:22
1,2-Dichloroethane	21	0.50	ug/L	EPA 8260B	07/02/12 13:22
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	07/02/12 13:22
1,2-Dichloroethane-d4 (Surr)	98.7		% Recovery	EPA 8260B	07/02/12 13:22
Toluene - d8 (Surr)	102		% Recovery	EPA 8260B	07/02/12 13:22
TPH as Diesel (Silica Gel) (Note: MRL increased due to interference	< 200 ce from Gasoline-	200 -range hydrod	ug/L carbons.)	M EPA 8015	06/27/12 21:22
Octacosane (Silica Gel Surr)	114		% Recovery	M EPA 8015	06/27/12 21:22

Date: 07/02/2012

Project Name : LIM
Project Number : 2808

Sample: MW-5 Matrix: Water Lab Number: 81716-04

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 04:05
Toluene	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 04:05
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 04:05
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 04:05
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 04:05
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 04:05
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 04:05
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 04:05
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	06/27/12 04:05
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	06/27/12 04:05
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 04:05
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 04:05
1,2-Dichloroethane-d4 (Surr)	99.4		% Recovery	EPA 8260B	06/27/12 04:05
Toluene - d8 (Surr)	98.6		% Recovery	EPA 8260B	06/27/12 04:05
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	06/27/12 21:51
Octacosane (Silica Gel Surr)	109		% Recovery	M EPA 8015	06/27/12 21:51

Date: 07/02/2012

Project Name : LIM
Project Number : 2808

Sample: MW-6 Matrix: Water Lab Number: 81716-05

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 13:28
Toluene	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 13:28
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 13:28
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 13:28
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 13:28
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 13:28
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 13:28
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 13:28
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	06/27/12 13:28
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	06/27/12 13:28
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 13:28
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 13:28
1,2-Dichloroethane-d4 (Surr)	98.7		% Recovery	EPA 8260B	06/27/12 13:28
Toluene - d8 (Surr)	96.6		% Recovery	EPA 8260B	06/27/12 13:28
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	06/27/12 22:21
Octacosane (Silica Gel Surr)	106		% Recovery	M EPA 8015	06/27/12 22:21

Date: 07/02/2012

Project Name : **LIM**Project Number : **2808**

Sample: MW-7 Matrix: Water Lab Number: 81716-06

- Campie Bate :00/22/2012	Measured	Method Reporting		Analysis	Date/Time
Parameter	Value	Limit	Units	Method	Analyzed
Benzene	120	2.0	ug/L	EPA 8260B	07/02/12 13:55
Toluene	52	2.0	ug/L	EPA 8260B	07/02/12 13:55
Ethylbenzene	1100	5.0	ug/L	EPA 8260B	06/30/12 22:39
Total Xylenes	310	2.0	ug/L	EPA 8260B	07/02/12 13:55
Methyl-t-butyl ether (MTBE)	< 2.0	2.0	ug/L	EPA 8260B	07/02/12 13:55
Diisopropyl ether (DIPE)	< 2.0	2.0	ug/L	EPA 8260B	07/02/12 13:55
Ethyl-t-butyl ether (ETBE)	< 2.0	2.0	ug/L	EPA 8260B	07/02/12 13:55
Tert-amyl methyl ether (TAME)	< 2.0	2.0	ug/L	EPA 8260B	07/02/12 13:55
Tert-Butanol	43	9.0	ug/L	EPA 8260B	07/02/12 13:55
TPH as Gasoline	10000	200	ug/L	EPA 8260B	07/02/12 13:55
1,2-Dichloroethane	< 2.0	2.0	ug/L	EPA 8260B	07/02/12 13:55
1,2-Dibromoethane	< 2.0	2.0	ug/L	EPA 8260B	07/02/12 13:55
1,2-Dichloroethane-d4 (Surr)	101		% Recovery	EPA 8260B	07/02/12 13:55
Toluene - d8 (Surr)	104		% Recovery	EPA 8260B	07/02/12 13:55
TPH as Diesel (Silica Gel) (Note: MRL increased due to interference	< 600 e from Gasoline-	600 range hydro	ug/L carbons.)	M EPA 8015	06/27/12 22:50
Octacosane (Silica Gel Surr)	110		% Recovery	M EPA 8015	06/27/12 22:50

Date: 07/02/2012

Report Number: 81716

Project Name : LIM Project Number: 2808

Sample: MW-8 Matrix : Water Lab Number: 81716-07

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 03:54
Toluene	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 03:54
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 03:54
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 03:54
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 03:54
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 03:54
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 03:54
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 03:54
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	06/27/12 03:54
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	06/27/12 03:54
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 03:54
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	06/27/12 03:54
1,2-Dichloroethane-d4 (Surr)	99.3		% Recovery	EPA 8260B	06/27/12 03:54
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	06/27/12 03:54
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	06/27/12 23:20
Octacosane (Silica Gel Surr)	113		% Recovery	M EPA 8015	06/27/12 23:20

Date: 07/02/2012

QC Report : Method Blank Data

Project Name : LIM

Project Number: 2808

_	Measured	Method Reportir		Analysis	Date		Measured	Method Report	ing	Analysis	Date
<u>Parameter</u>	Value	Limit	Units	Method	Analyzed	<u>Parameter</u>	Value	Limit	Units	Method	<u>Analyzed</u>
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	06/27/2012	Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	06/30/2012
Octacosane (Silica Gel Surr)	119		%	M EPA 8015	06/27/2012	_					
						Benzene	< 0.50	0.50	ug/L	EPA 8260B	07/02/2012
Benzene	< 0.50	0.50	ug/L	EPA 8260B	06/27/2012	Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	07/02/2012
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	06/27/2012	Toluene	< 0.50	0.50	ug/L	EPA 8260B	07/02/2012
Toluene	< 0.50	0.50	ug/L	EPA 8260B	06/27/2012	Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	07/02/2012
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	06/27/2012	Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	07/02/2012
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	06/27/2012	Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	07/02/2012
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	06/27/2012	Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	07/02/2012
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	06/27/2012	Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	07/02/2012
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	06/27/2012	Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	07/02/2012
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	06/27/2012	TPH as Gasoline	< 50	50	ug/L	EPA 8260B	07/02/2012
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	06/27/2012	1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	07/02/2012
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	06/27/2012	1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	07/02/2012
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	06/27/2012	1,2-Dichloroethane-d4 (Surr)	100		%	EPA 8260B	07/02/2012
1,2-Dichloroethane-d4 (Surr)	100		%	EPA 8260B	06/27/2012	Toluene - d8 (Surr)	102		%	EPA 8260B	07/02/2012
Toluene - d8 (Surr)	98.4		%	EPA 8260B	06/27/2012						
						Benzene	< 0.50	0.50	ug/L	EPA 8260B	06/26/2012
Benzene	< 0.50	0.50	ug/L	EPA 8260B	06/26/2012	Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	06/26/2012
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	06/26/2012	Toluene	< 0.50	0.50	ug/L	EPA 8260B	06/26/2012
Toluene	< 0.50	0.50	ug/L	EPA 8260B	06/26/2012	Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	06/26/2012
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	06/26/2012	Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	06/26/2012
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	06/26/2012	Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	06/26/2012
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	06/26/2012	Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	06/26/2012
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	06/26/2012	Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	06/26/2012
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	06/26/2012	Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	06/26/2012
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	06/26/2012	TPH as Gasoline	< 50	50	ug/L	EPA 8260B	06/26/2012
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	06/26/2012	1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	06/26/2012
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	06/26/2012	1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	06/26/2012
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	06/26/2012	1,2-Dichloroethane-d4 (Surr)	98.9		%	EPA 8260B	06/26/2012
1,2-Dichloroethane-d4 (Surr)	101		%	EPA 8260B	06/26/2012	Toluene - d8 (Surr)	99.0		%	EPA 8260B	06/26/2012
Toluene - d8 (Surr)	101		%	EPA 8260B	06/26/2012						

Date: 07/02/2012

Project Name : LIM

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Number: 2808

	Spiked	Sample	Spike	Spike Dup.	Spiked Sample	Duplicate Spike Sample	e ed	Analysis	Date	Spiked Sample Percent	Duplicat Spiked Sample Percent	Relative	Spiked Sample Percent Recov.	Relative Percent Diff.
Parameter	Sample	Value	Level	Level	Value	Value	Units	Method	Analyzed		Recov.	Diff.	Limit	Limit
TPH-D (Si Gel)														
	BLANK	<50	1000	1000	816	873	ug/L	M EPA 8015	6/27/12	81.6	87.3	6.71	70-130	25
1,2-Dibromoeth	nane													
	81712-01	<0.50	39.9	39.9	40.3	40.4	ug/L	EPA 8260B	6/27/12	101	101	0.401	80-120	25
1,2-Dichloroeth	ane													
	81712-01	2.5	40.0	40.0	43.6	43.0	ug/L	EPA 8260B	6/27/12	103	101	1.49	75.7-122	25
Benzene														
	81712-01	<0.50	40.0	40.0	39.1	38.6	ug/L	EPA 8260B	6/27/12	97.9	96.5	1.40	80-120	25
Diisopropyl eth	er													
	81712-01	1.3	39.5	39.5	40.4	39.9	ug/L	EPA 8260B	6/27/12	98.8	97.6	1.17	80-120	25
Ethyl-tert-butyl	ether													
	81712-01	<0.50	39.8	39.8	35.2	37.8	ug/L	EPA 8260B	6/27/12	88.5	95.0	7.10	76.5-120	25
Ethylbenzene														
	81712-01	0.89	40.0	40.0	41.8	42.3	ug/L	EPA 8260B	6/27/12	102	104	1.12	80-120	25
Methyl-t-butyl e	ether													
	81712-01	8.8	40.0	40.0	42.0	46.9	ug/L	EPA 8260B	6/27/12	82.8	95.1	13.8	69.7-121	25
P + M Xylene														
	81712-01	<0.50	40.0	40.0	40.1	40.6	ug/L	EPA 8260B	6/27/12	100	102	1.28	76.8-120	25

Date: 07/02/2012

Project Name : LIM

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Number: 2808

				Spike	Spiked	Duplicate Spike	ed			Spiked Sample	Duplicat Spiked Sample		Spiked Sample Percent	Relative Percent
Parameter	Spiked Sample	Sample Value	Spike Level	Dup. Level	Sample Value	Sample Value	Units	Analysis Method	Date Analyzed	Percent	Percent Recov.	Percent Diff.	Recov. Limit	Diff. Limit
Tert-Butanol														_
	81712-01	<5.0	202	202	199	200	ug/L	EPA 8260B	6/27/12	98.6	99.4	0.761	80-120	25
Tert-amyl-methy	yl ether													
	81712-01	<0.50	39.9	39.9	36.9	38.9	ug/L	EPA 8260B	6/27/12	92.5	97.4	5.22	78.9-120	25
Toluene														
	81712-01	<0.50	40.0	40.0	39.4	39.3	ug/L	EPA 8260B	6/27/12	98.5	98.2	0.332	80-120	25
1,2-Dibromoeth	ane													
	81707-04	<0.50	39.9	39.9	42.3	42.4	ug/L	EPA 8260B	6/26/12	106	106	0.164	80-120	25
1,2-Dichloroeth	ane													
	81707-04	<0.50	40.0	40.0	40.3	40.3	ug/L	EPA 8260B	6/26/12	101	101	0.204	75.7-122	25
Benzene														
	81707-04	<0.50	40.0	40.0	39.5	39.1	ug/L	EPA 8260B	6/26/12	98.8	97.8	1.04	80-120	25
Diisopropyl ethe	er													
	81707-04	<0.50	39.5	39.5	40.9	41.0	ug/L	EPA 8260B	6/26/12	104	104	0.198	80-120	25
Ethyl-tert-butyl	ether													
	81707-04	<0.50	39.8	39.8	39.8	40.4	ug/L	EPA 8260B	6/26/12	99.9	101	1.43	76.5-120	25
Ethylbenzene														
	81707-04	<0.50	40.0	40.0	40.2	39.1	ug/L	EPA 8260B	6/26/12	100	97.6	2.80	80-120	25

Date: 07/02/2012

Project Name : **LIM**Project Number : **2808**

QC Report : Matrix Spike/ Matrix Spike Duplicate

D	Spiked	Sample	Spike	Spike Dup.	Spiked Sample	Duplicate Spike Sample	d	Analysis	Date	Percent	Percent	Relative Percent	Spiked Sample Percent Recov.	Relative Percent Diff.
Parameter Mathed to be studied	Sample	Value	Lèvel	Level	Valuė	Valuė	Units	Method	Analyzed	Recov.	Recov.	Diff.	Limit	Limit
Methyl-t-butyl e														
	81707-04	<0.50	40.0	40.0	39.9	40.2	ug/L	EPA 8260B	6/26/12	99.7	100	0.837	69.7-121	25
P + M Xylene														
	81707-04	<0.50	40.0	40.0	40.3	39.2	ug/L	EPA 8260B	6/26/12	101	98.1	2.58	76.8-120	25
Tert-Butanol							-							
	81707-04	<5.0	202	202	194	193	ug/L	EPA 8260B	6/26/12	96.2	95.9	0.309	80-120	25
Tert-amyl-meth		-0.0	202	202	101	100	ug/L	L. 7. 0200B	0/20/12	00.2	00.0	0.000	00 120	20
Tort arriyi mour	•	<0.E0	20.0	20.0	44.4	44.0	/1	EDA 0000D	6/06/40	100	105	1.00	70.0.400	25
Taluana	81707-04	<0.50	39.9	39.9	41.1	41.9	ug/L	EPA 8260B	6/26/12	103	105	1.98	78.9-120	25
Toluene														
	81707-04	<0.50	40.0	40.0	40.8	40.3	ug/L	EPA 8260B	6/26/12	102	101	1.30	80-120	25
Ethylbenzene														
	81729-05	<0.50	40.0	40.0	39.8	38.4	ug/L	EPA 8260B	6/30/12	99.6	95.9	3.77	80-120	25
1,2-Dibromoeth	ane													
	81763-01	<0.50	39.9	39.9	42.0	41.7	ug/L	EPA 8260B	7/2/12	105	104	0.587	80-120	25
1,2-Dichloroeth		٧٥.٥٥	00.0	00.0	72.0	71.7	ug/L	LI A 0200B	112112	100	104	0.507	00-120	20
1,2-Diciliorocti		-0.50	40.0	40.0	00.4	00.0	/1	EDA 0000D	7/0/40	07.0	00.0	4.40	75 7 400	05
Б	81763-01	<0.50	40.0	40.0	39.1	38.6	ug/L	EPA 8260B	7/2/12	97.8	96.6	1.18	75.7-122	25
Benzene														
	81763-01	<0.50	40.0	40.0	39.3	38.3	ug/L	EPA 8260B	7/2/12	98.4	95.6	2.80	80-120	25

Date: 07/02/2012

Project Name : **LIM**Project Number : **2808**

QC Report : Matrix Spike/ Matrix Spike Duplicate

Duplicate Spiked Duplicate Sample Relative Spiked Spiked Spike Spiked Spiked Sample Sample Relative Percent Percent Spiked Sample Spike Dup. Sample Sample Analysis Date Percent Percent Recov. Diff. Parameter Value Method Sample Lėvel Level Value Value Units Analyzed Recov. Recov. Limit Diff. Limit Diisopropyl ether 81763-01 < 0.50 39.5 39.5 38.9 38.9 EPA 8260B 7/2/12 98.4 98.3 0.0355 80-120 25 ug/L Ethyl-tert-butyl ether 81763-01 < 0.50 39.8 39.8 35.9 35.7 ug/L **EPA 8260B** 7/2/12 90.1 89.7 0.475 76.5-120 25 Ethylbenzene 81763-01 < 0.50 40.0 40.0 39.8 38.4 EPA 8260B 7/2/12 99.4 95.9 3.62 80-120 25 ug/L Methyl-t-butyl ether 81763-01 8.2 40.0 40.0 41.2 41.8 EPA 8260B 82.7 84.2 1.81 69.7-121 25 ug/L 7/2/12 P + M Xylene 40.0 39.6 38.3 98.9 95.8 3.22 25 81763-01 < 0.50 40.0 EPA 8260B 7/2/12 76.8-120 ug/L **Tert-Butanol** 81763-01 1800 202 202 1900 1890 EPA 8260B 7/2/12 48.5 43.2 11.6 80-120 25 ug/L Tert-amyl-methyl ether 81763-01 < 0.50 39.9 39.9 38.4 38.5 EPA 8260B 7/2/12 96.0 96.3 0.314 78.9-120 25 ug/L Toluene 81763-01 < 0.50 40.0 40.0 40.9 7/2/12 102 99.7 2.50 80-120 25 39.9 ug/L EPA 8260B 1.2-Dibromoethane 81707-05 < 0.50 39.9 39.9 40.7 39.8 **EPA 8260B** 6/26/12 102 99.8 2.17 80-120 25 ug/L

Date: 07/02/2012

Project Name : **LIM**Project Number : **2808**

QC Report : Matrix Spike/ Matrix Spike Duplicate

	Spiked	Sample	Spike	Spike Dup.	Spiked Sample	Duplicate Spike Sample	e d	Analysis	Date	Spiked Sample Percent	Duplicate Spiked Sample Percent	Relative	Spiked Sample Percent Recov	Relative Percent Diff.
Parameter	Sample	Value	Level	Level	Value	Value	Units	Method	Analyzed	Recov.	Recov.	Diff.	Limit	Limit
1,2-Dichloroeth	ane													
	81707-05	<0.50	40.0	40.0	41.4	40.1	ug/L	EPA 8260B	6/26/12	103	100	3.11	75.7-122	25
Benzene														
	81707-05	14	40.0	40.0	40.6	39.5	ug/L	EPA 8260B	6/26/12	65.5	62.7	4.41	80-120	25
Diisopropyl ethe	er						J							
	81707-05	<0.50	39.5	39.5	39.0	38.6	ug/L	EPA 8260B	6/26/12	98.7	97.6	1.12	80-120	25
Ethyl-tert-butyl	ether						J							
	81707-05	<0.50	39.8	39.8	37.0	35.9	ug/L	EPA 8260B	6/26/12	92.8	90.2	2.85	76.5-120	25
Ethylbenzene							9. –							
,	81707-05	< 0.50	40.0	40.0	39.5	38.3	ug/L	EPA 8260B	6/26/12	98.8	95.7	3.20	80-120	25
Methyl-t-butyl e		0.00				55.5	~g/ =		00	00.0	•••	0.20		
,	81707-05	<0.50	40.0	40.0	38.2	36.9	ug/L	EPA 8260B	6/26/12	95.4	92.3	3.34	69.7-121	25
P + M Xylene	01707 00	10.00	40.0	40.0	00.2	00.0	ug/L	LI 7 (0200B	0/20/12	JU.4	02.0	0.04	00.7 121	20
	81707-05	<0.50	40.0	40.0	39.6	38.3	ug/L	EPA 8260B	6/26/12	99.0	95.8	3.29	76.8-120	25
Tert-Butanol	01707-03	\0.50	40.0	40.0	33.0	30.3	ug/L	LI A 0200B	0/20/12	33.0	33.0	5.25	70.0-120	20
Tort Batarior	81707-05	∠ 5.0	202	202	202	204	ug/L	EPA 8260B	6/26/12	100	101	0.877	80-120	25
Tert-amyl-meth		\ 5.0	202	202	202	204	ug/L	LFA 0200B	0/20/12	100	101	0.677	00-120	25
ren-amyr-meur	•	-0 F0	20.0	20.0	20.0	27.5	/1	EDA 0260D	6/06/40	05.0	00.0	0.04	70.0.400	25
Toluene	81707-05	~ 0.50	39.9	39.9	38.2	37.5	ug/L	EPA 8260B	6/26/12	95.8	93.8	2.01	78.9-120	25
roluerie	0.4=0=.0=	0.50	40.0				,	ED4 0000	0/00/46				00.400	0=
	81707-05	<0.50	40.0	40.0	39.8	38.5	ug/L	EPA 8260B	6/26/12	99.5	96.2	3.35	80-120	25

Date: 07/02/2012

Project Name : **LIM**Project Number : **2808**

QC Report : Laboratory Control Sample (LCS)

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
1,2-Dibromoethane	40.1	ug/L	EPA 8260B	6/27/12	97.4	80-120
1,2-Dichloroethane	40.2	ug/L	EPA 8260B	6/27/12	99.7	75.7-122
Benzene	40.2	ug/L	EPA 8260B	6/27/12	94.6	80-120
Diisopropyl ether	39.7	ug/L	EPA 8260B	6/27/12	96.9	80-120
Ethyl-tert-butyl ether	40.0	ug/L	EPA 8260B	6/27/12	84.4	76.5-120
Ethylbenzene	40.2	ug/L	EPA 8260B	6/27/12	100	80-120
Methyl-t-butyl ether	40.2	ug/L	EPA 8260B	6/27/12	81.5	69.7-121
P + M Xylene	40.2	ug/L	EPA 8260B	6/27/12	97.9	76.8-120
TPH as Gasoline	506	ug/L	EPA 8260B	6/27/12	98.6	70.0-130
Tert-Butanol	202	ug/L	EPA 8260B	6/27/12	97.3	80-120
Tert-amyl-methyl ether	40.1	ug/L	EPA 8260B	6/27/12	90.6	78.9-120
Toluene	40.2	ug/L	EPA 8260B	6/27/12	95.0	80-120
1,2-Dibromoethane	40.0	ug/L	EPA 8260B	6/26/12	105	80-120
1,2-Dichloroethane	40.1	ug/L	EPA 8260B	6/26/12	103	75.7-122
Benzene	40.1	ug/L	EPA 8260B	6/26/12	99.9	80-120
Diisopropyl ether	39.6	ug/L	EPA 8260B	6/26/12	102	80-120
Ethyl-tert-butyl ether	39.9	ug/L	EPA 8260B	6/26/12	101	76.5-120
Ethylbenzene	40.1	ug/L	EPA 8260B	6/26/12	97.7	80-120
Methyl-t-butyl ether	40.1	ug/L	EPA 8260B	6/26/12	99.4	69.7-121
P + M Xylene	40.1	ug/L	EPA 8260B	6/26/12	98.2	76.8-120
TPH as Gasoline	507	ug/L	EPA 8260B	6/26/12	91.1	70.0-130
Tert-Butanol	202	ug/L	EPA 8260B	6/26/12	95.7	80-120

Date: 07/02/2012

Project Name : **LIM**Project Number : **2808**

QC Report : Laboratory Control Sample (LCS)

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
Tert-amyl-methyl ether	40.0	ug/L	EPA 8260B	6/26/12	101	78.9-120
Toluene	40.1	ug/L	EPA 8260B	6/26/12	100	80-120
Ethylbenzene	39.9	ug/L	EPA 8260B	6/30/12	100	80-120
1,2-Dibromoethane	40.1	ug/L	EPA 8260B	7/2/12	104	80-120
1,2-Dichloroethane	40.2	ug/L	EPA 8260B	7/2/12	97.5	75.7-122
Benzene	40.2	ug/L	EPA 8260B	7/2/12	98.4	80-120
Diisopropyl ether	39.7	ug/L	EPA 8260B	7/2/12	98.4	80-120
Ethyl-tert-butyl ether	40.0	ug/L	EPA 8260B	7/2/12	89.5	76.5-120
Ethylbenzene	40.2	ug/L	EPA 8260B	7/2/12	99.6	80-120
Methyl-t-butyl ether	40.2	ug/L	EPA 8260B	7/2/12	81.8	69.7-121
P + M Xylene	40.2	ug/L	EPA 8260B	7/2/12	99.6	76.8-120
TPH as Gasoline	502	ug/L	EPA 8260B	7/2/12	97.1	70.0-130
Tert-Butanol	202	ug/L	EPA 8260B	7/2/12	96.8	80-120
Tert-amyl-methyl ether	40.1	ug/L	EPA 8260B	7/2/12	96.1	78.9-120
Toluene	40.2	ug/L	EPA 8260B	7/2/12	102	80-120
4.0 Dibaaaaathaaa	20.0	//	EDA 0000D	6/06/40	00.5	00.400
1,2-Dibromoethane	39.8	ug/L	EPA 8260B	6/26/12	98.5	80-120
1,2-Dichloroethane	39.9	ug/L	EPA 8260B	6/26/12	102	75.7-122
Benzene	39.9	ug/L	EPA 8260B	6/26/12	97.6	80-120
Diisopropyl ether	39.4	ug/L	EPA 8260B	6/26/12	96.0	80-120

Date: 07/02/2012

QC Report : Laboratory Control Sample (LCS)

Project Name : **LIM**Project Number : **2808**

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
Ethyl-tert-butyl ether	39.7	ug/L	EPA 8260B	6/26/12	89.1	76.5-120
Ethylbenzene	39.9	ug/L	EPA 8260B	6/26/12	96.0	80-120
Methyl-t-butyl ether	39.9	ug/L	EPA 8260B	6/26/12	90.6	69.7-121
P + M Xylene	39.9	ug/L	EPA 8260B	6/26/12	95.4	76.8-120
TPH as Gasoline	504	ug/L	EPA 8260B	6/26/12	94.0	70.0-130
Tert-Butanol	201	ug/L	EPA 8260B	6/26/12	98.3	80-120
Tert-amyl-methyl ether	39.8	ug/L	EPA 8260B	6/26/12	92.1	78.9-120
Toluene	39.9	ug/L	EPA 8260B	6/26/12	97.2	80-120

Agua S	Science Engineers, Inc	c.
55 Oal	Court, Suite 220	
Danvill	e, CA 94526	
(025)	320-9391	
	25) 83 7-4 853	

Chain of Custody 81716

	TAX (323) 001 -4000																	PAGE		1 of		
3	SAMPLER (SIGNATURE)	-					PRO	JECT I	NAME	L	IM							JOB N	NO	280	5	
	Vana der							RESS	<u> </u>	50	8 759	<u> </u>	· O	qui.	4-100					ī		
Ì	ANALYSIS REQUEST						45			S				SNOS	\$ 5.	SILICA						
	SPECIAL INSTRUCTIONS:					TPH-GAS / MTBE & BTEX (EPA 5030/8015-8020)	M/511164	TPH-DIESEL & MOTOR OIL (EPA 3510/8015)	ETALS 7000)	SEMI-VOLATILE ORGANICS (EPA 625/8270)	Pb (TOTAL or DISSOLVED) (EPA 6010)	ပ္လ	GENATES	PURGEABLE HALOCARBONS (EPA 601/8010)	TPH-G/BTEX/5 OXYS $ Pb $ (EPA METHOD 8260) $\zeta_{CAV}\dot{s}$	MULTI-RANGE HYDROCARBONS WITH SILICA GEL CLEANUP (EPA 8015)	ORGANICS 240/8260)	ALS (5) +7000)	TE 4:1			
-	SAMPLE ID.	DATE	TIME	MATRIX	QUANTITY	TPH-GAS / N (EPA 5030/80	TPH-DIESEL (EPA 3510/6015)	TPH-DIESEL (EPA 3510/8	CAM 17 METALS (EPA 6010+7000)	SEMI-VOLA (EPA 625/82	Pb (TOTAL (EPA 6010)	PESTICIDES (EPA 8081)	FUEL OXYGENATES (EPA 8260)	PURGEAE (EPA 601/	TPH-G/BT (EPA MET	MULTI-RA HYDROCA GEL CLEA	VOLATILE (EPA 624/8	LUFT METALS (5) (EPA 6010+7000)	COMPOSITE 4:1	EDF		01
I	MW-1	4/22/1	10035	1	5		0		<u> </u>		-	<u> </u>			1					4		02
	MW-2 MW-4P MW-5		0740	\Box	44		8		 -		-		_	-	4		-	 	 	10		03
١	MW-4R	11	0826		11		4	<u> </u>	 	-	 		_	-	4				-	4		04
I	MW-5	+	062	+ /	11		14		-	+	-	\vdash	_	-	1	-		 	 	6		04
١	MW-6 MW-7	$\perp \perp \perp$	072	1/-	+		1	-	<u> </u>	┼		╀	_	-	9	-			 	8		06
I	MW-7	+ 4	0805	11	+/,	 	Y	-	╂	-	-	╁	+	+-		1	+-	+	+	0		O.
I	MV-8	$+^{\vee}$	0702	1	1	-	4	┼	<u> </u>	-	-	+			0			-	 	 		
				╂—	+	-	-	-	-		-	+	_	+-	+		+	\dagger				1
				╁	+-	┼	-		-	+	+-	+		+-			 		1			
				╁	+		-	-	-	+	+	+	_	+		1						
	REHNQUISHED BY:	RECEIV	/ED BY:			->	RE	LINQU	ISHED	BY:		F	RECEIVE Jaar signatur	D BY L	ABORA	TORY:		OMME	NTS:			
age	(signature) (time)	(signatu	re)		(tir	ne)	(siç	nature)	(11	me)	─ {	signatur	e) (e	(11)	me)	\dashv					
19 of :	DANIO MUKA 6/24/2							_~					f/Arc	1d E	reine			_		ROUNI	TIME BHr 72Hr	
20	(printed name) (date)	(printed	name)		(da	ate)	(pr	inted n	ame)	(c	iate)		printed r		10.2	· < 19	1	OTHER:				1
	Company-ASE, INC.	Compa	ny				Co	mpany					Compan	1- Kiff	Curl	lun				-		ļ

SAMPLE RECEIPT CHECKLIST

S1716

Date: 062512

RECEIVER	
NB	
Initials	

Project ID: Method of Receipt: Courier Over-the-counter Shipper COC Inspection Is COC present? Custody seals on shipping container? Is COC Signed by Relinquisher? Yes No Dated? Yes No No
COC Inspection Is COC present? Custody seals on shipping container? ☐ Intact ☐ Broken ☐ Not present ☐ N/A
Is COC present?
Is sampler name legibly indicated on COC? Is analysis or hold requested for all samples? Is the turnaround time indicated on COC? Is COC free of whiteout and uninitialed cross-outs? Yes No No, Whiteout No, Cross-outs
Sample Inspection Coolant Present: 2
Quicklog Are the Sample ID's indicated: □ On COC □ On sample container(s) ☒ On Both □ Not indicated If Sample ID's are listed on both COC and containers, do they all match? ☒ Yes □ No □ N/A Is the Project ID indicated: □ On COC □ On sample container(s) ☒ On Both □ Not indicated If project ID is listed on both COC and containers, do they all match? ☒ Yes □ No □ N/A Are the sample collection dates indicated: □ On COC □ On sample container(s) ☒ On Both □ Not indicated If collection dates are listed on both COC and containers, do they all match? ☒ Yes □ No □ N/A Are the sample collection times indicated: ☒ On COC □ On sample container(s) □ On Both □ Not indicated If collection times are listed on both COC and containers, do they all match? □ Yes □ No ☒ N/A
COMMENTS: