RECEIVED

By Alameda County Environmental Health at 2:49 pm, Aug 23, 2013

Alameda County Health Care Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Re: RO #479, Report

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have further questions I may be reached at 925-381-3608.

Sincerely

Russell Lim

August 23, 2013

Mr. Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Alameda, CA 94502-6577

SUBJECT: OZONE-SPARGING AND VAPOR EXTRACTION REMEDIATION

SYSTEMS SEMI-ANNUAL OPERATION REPORT AND CURRENT GROUNDWATER MONITORING WELL ANALYTICAL RESULTS

Lim Family Property, RO #0000479

250 8th Street

Oakland, California

Dear Mr. Wickham:

On behalf of our clients, Alice Ng and May Lee Lim, Aqua Science Engineers, Inc. (ASE) is pleased to submit this report detailing the semi-annual operation of the ozone-sparging and vapor-extraction remediation equipment at the subject site. This report also includes current groundwater monitoring well analytical results.

Should you require any additional information, please feel free to call me at (925) 820-9391.

Respectfully submitted,

AQUA SCIENCE ENGINEERS, INC.

Vanil Ollen

David Allen Vice President

August 23, 2013

REMEDIATION SYSTEMS SEMI-ANNUAL OPERATION REPORT AND GROUNDWATER MONITORING RESULTS LIM FAMILY PROPERTY 250 8TH STREET OAKLAND, CALIFORNIA (ASE JOB NO. 2808) (RO #0000479) (USTCF Claim Number 7699)

for

Alice Ng Lim & May Lee Lim c/o Mr. Russell Lim 3111 Diablo View Road Lafayette, CA 94549

Submitted by:

Aqua Science Engineers 55 Oak Court, Suite 220 Danville, CA 94526 (925) 820-9391

TABLE OF CONTENTS

SECTION	ON	PAGE
1.0	INTRODUCTION	1
2.0	WEEKLY OPERATION AND MAINTENANCE ACTIVITIES	1
3.0	REMEDIATION SYSTEMS OPERATION	1
4.0	REMEDIATION SYSTEMS AND SITE MONITORING	3
5.0	GROUNDWATER MONITORING WELL SAMPLE COLLECTION	4
6.0	DISCUSSION OF COST	6
7.0	COMPARISON TO LOW-THREAT CLOSURE POLICY CRITERIA	6
8.0	RECOMMENDATIONS	7
9.0	SIGNATURES	8

LIST OF FIGURES

FIGURE 1	LOCATION MAP
FIGURE 2	SITE PLAN SHOWING ALL VAPOR-EXTRACTION AND OZONE-SPARGING
	WELLS, AND VMPs
FIGURE 3	JUNE 2013 GROUNDWATER ELEVATION CONTOUR MAP
FIGURE 4	JUNE 2013 GROUNDWATER ANALYSIS RESULTS FOR TPH-G AND
	BENZENE

LIST OF APPENDICES

APPENDIX A	ANALYTICAL REPORTS OF AIR BAG SAMPLES
APPENDIX B	REMEDIATION SYSTEMS FIELD LOGS
APPENDIX C	MONITORING WELL SAMPLING FIELD LOGS
APPENDIX D	ANALYTICAL REPORTS OF GROUNDWATER SAMPLES

1.0 INTRODUCTION

This report details Aqua Science Engineers, Inc. (ASE) operation of the ozone-sparging and vapor-extraction remediation systems at the Lim property located at 250 8th Street in Oakland, California since January 2013 (Figure 1). This report also provides current groundwater concentrations in the site's on and off-site groundwater monitoring wells.

2.0 WEEKLY OPERATION AND MAINTENANCE ACTIVITIES

ASE personnel visited the site on a regular basis to maintain the remediation equipment and to comply with Bay Area Air Quality Management District (BAAQMD) permit requirements. During most visits, ASE personnel completes the following:

- Record the vacuum influence of the vapor-extraction system,
- Measure and record the influent vapor concentration of each individual vapor-extraction well with ASE's photoionization detector (PID),
- Measure with ASE's PID and record the influent vapor concentration which provides the total hydrocarbon concentration entering the remediation system. This concentration is less than the sum of the individual vapor-extraction wells due to fresh air that enters the system as a safety mechanism by ASE for the granulated activated carbon canisters (GAC's) installed in November 2012,
- Measure with ASE's PID and record hydrocarbon concentrations in the on and off-site utility boxes and the vapor-monitoring points to ensure that hydrocarbon vapors are not being forced to the atmosphere due to the sparging activities,
- Record alarms and information on the sparging remediation equipment,
- Inspect site security fencing.

3.0 REMEDIATION SYSTEMS OPERATION

3.1 Ozone-Sparging Remediation System Operation

Between January and April 2013, the ozone-sparging remediation equipment operated in "low-flow ozone" mode into each of the ten sparging wells that are located on and off-site (Figure 2). Beginning in May 2013, the ozone-sparging remediation equipment operated in "high-flow ozone" mode into each of the ten sparging wells that are located on and off-site (see the attached Ozone Sparging Log). The difference between the two modes are a greater operating pressure and greater airflow (in cfm) in the high-flow mode. The change from "low-flow ozone" to "high-flow ozone" was made due to the elimination of free-phase hydrocarbons at the site. Downtime for the ozone-sparging system only occurred for maintenance purposes and an occasional power failure at the site.

3.2 Vapor-Extraction Remediation System Operation

Since January 2013, the ASE vapor-extraction system has operated continuously. The ASE fixed vapor-extraction system consists of a 100 cfm Rotron blower piped to a moisture knock-out drum. The negative-pressure side of the ASE vapor-extraction system is plumbed to the manifold of vapor-extraction wells. The positive-pressure side of the ASE vapor-extraction system is plumbed to two 200 pound GAC

canisters filled with virgin, vapor-phase GAC supplied to ASE by Baker Corporation. These GAC canisters are plumbed in series, and are approved for used by Bay Area Air Quality Management District (BAAQMD) Permit To Operate - Plant Number 18100. The ASE vapor-extraction system, plumbed to two 200 pound GAC canisters (ASE VE System), became fully operational on November 12, 2012.

All existing vapor-extraction wells (VE-1 through VE-9) and monitoring wells that were fitted with vapor-extraction plumbing (MW-3 and MW-4R) have been used for vapor-extraction in various percentages of open mode. For the most part, wells with consistent measureable hydrocarbons, using the PID, are in 50% - 100% open mode, with the remainder of the wells in a 15% - 25% open mode to allow for air movement through the entire vadose zone. As shown on the attached Vapor-Extraction System Log, the influent vapor concentrations, when measured using ASE's PID, have been on a slight gradual increasing trend for the overall influent as well as several vapor-extraction wells (VE-2 through VE-5 and MW-3), see the attached Vapor-Extraction System Log. ASE believes this is in part due to the high-flow ozone-sparging that is now occurring at the site. In all likelihood, the greater air-flow volume and pressure is causing a greater amount of hydrocarbons to be sparged off of the polluted groundwater. Note that the total influent concentration measured just prior to the GAC canisters is far less than the sum of the individual vapor-extraction wells. This is due to fresh air that enters the system as a safety mechanism by ASE. The BAAQMD permit requires ASE to measure the influent and effluent on a weekly basis to determine when breakthrough of hydrocarbons occurs on the first and second GAC canisters.

3.21 Periodic Influent Vapor Sampling

Since January 2013, ASE has collected two influent vapor samples, both on August 8, 2013, to determine petroleum hydrocarbon concentrations in the extracted subsurface air.

- The first sample, collected on August 8, 2013, is an influent vapor sample collected from a sample port on the negative side of the blower, and consisted of soil vapors being extracted from only vapor-extraction well MW-3. This sample (sample Id. INF-8.8.13 @ 1230) was collected to determine the worst-case scenario of vapors beneath the subject site. All other VE wells were 0% open for a brief time while the sample was being collected. Also, this sample was taken at the wellhead, and prior to the dilution air valve that brings fresh-air into the ASE VE System. Once this sample was collected, the remaining VE wells were opened back to their pre-sample position.
- The second sample, collected on August 8, 2013, is an influent vapor sample collected from a sample port on the negative side of the blower (on the VE subsurface piping manifold and before the fresh-air dilution point) and consisted of soil vapors being extracted from all the vapor-extraction wells on-site and off-site (VE-1 through VE-9) and monitoring wells MW-3 and MW-4R. This sample (sample Id. INF-8.8.13 @ 1245) was used to calculate the pounds of hydrocarbons removed from the site during the consistent operating parameters of the VE system.

The samples were collected in new 1-liter Tedlar bags, labeled individually, and submitted to McCampbell Anlaytical of Pittsburg, California under chain of custody procedures. These samples were analyzed by McCampbell for total petroleum hydrocarbons as gasoline (TPH-G) by EPA Method 8015, and MTBE, benzene, toluene, ethylbenzene, and xylenes (collectively known as MBTEX) by EPA Method 8021. The analytical results are summarized below, and copies of the certified analytical reports from McCampbell are attached in Appendix A.

-2-

- The INF-8.8.13 @ 1230 influent vapor sample contained 20,000 ug/L TPH-G, 250 ug/L benzene, 340 ug/L toluene, 12 ug/L ethylbenzene, 480 ug/L xylenes, and < 350 ug/L MTBE.
- The INF-8.8.13 @ 1245 influent vapor sample contained 1,400 ug/L TPH-G, 12 ug/L benzene, 23 ug/L toluene, 1.3 ug/L ethylbenzene, 47 ug/L xylenes, and < 15 ug/L MTBE.

The influent vapor sample collected when only MW-3 was open is very similar to the January 2013 air bag sample. However, the influent vapor sample collected during typical operating parameters is one order of magnitude higher for TPH-G, and two orders of magnitude higher for benzene when compared to the January 2013 results. This indicates that there still exists moderate levels of hydrocarbons within the vadose zone that require continued removal with the VE system. The higher concentrations are likely related to additional sparging volumes since the system was swithed from low-flow to high-flow.

ASE plans to continue operation of the ASE VE System to (a) reduce the elevated concentration of hydrocarbons identified in well MW-3, (b) continue to alleviate the potential for build-up of vapors due to sparging beneath the off-site properties, and (c) to stimulate air-flow through the polluted zone for assistance in bio-remediation.

3.22 Estimated TPH-G Extracted from Vadose Zone

Using an average of the analytical results of the influent vapor samples collected on January 29, 2013, and August 8, 2013 (the 1245 air bag sample representing typical operating parameters), ASE has calculated the volume of gasoline, in gallons, extracted from the subsurface both on and off-site. As shown on the attached Gasoline Extraction Log, and associated Mass Extraction Calculations, ASE estimates that 90.72 gallons of gasoline, in vapor phase, have been removed from the subsurface vadose zone between the time of January 2013 and August 2013. This volume is over 9-times greater than in the previous period (which was 10.15 gallons). Since start-up of the VE System, ASE estimates that 915.33 gallons of gasoline, in vapor phase, have been removed from the subsurface vadose zone. These calculations used a typical operating flowrate of 50 cfm (based on the blower curve supplied with the regenerative blower), and used actual days of operation of the system. An average of the two sample concentrations was calculated and used as the daily concentration for calculating the total hydrocarbons removed for the period. For months of operation where actual air bag samples were not collected, ASE estimated the gallons extracted per day by using the actual air bag analytical results of the samples collected prior to and after the months without data, and finding the average between these months. See Appendix B for a copy of the Gasoline Extraction Log.

4.0 REMEDIATION SYSTEMS AND SITE MONITORING

4.1 Remediation Equipment Operating Parameters

ASE visits the site on a regular basis to confirm that the remediation equipment, both sparging and vapor-extraction, are working as designed. As the attached Vapor-Extraction Equipment Log shows, ASE logged/measured the system's operating flow in cfm, the overall influent vapor concentration (using a PID), and the individual well influent vapor concentrations. As the attached Sparging Well Log shows, ASE logged the operating parameters of each sparging well, showing the duration and injection media low or high-flow air/ozone). See Appendix B for copies of the Sparging Well Log and Vapor-Extraction System Log.

-3-

4.2 Hydrocarbon Vapor Readings from Utility and Well Boxes Using PID

ASE measured for hydrocarbon vapors in the VMP's, remediation well boxes, and sidewalk utility boxes across 8th Street using a PID multiple times per month in an effort to determine if stripped hydrocarbons were being forced to the atmosphere by operation of the sparging wells. As shown on the attached Hydrocarbon Vapor Measurement Log, PID readings have always been "0" ppmv since the start-up of the vapor-extraction remediation system. ASE also measured for hydrocarbons in the utility boxes in the sidewalk in front of the subject site and within the well boxes and underground piping manifold box on site. Again, at no time were any PID readings above "0" observed in any sampling point. See Appendix B for a copy of the Hydrocarbon Vapor Measurement Log.

5.0 GROUNDWATER MONITORING WELL SAMPLE COLLECTION

5.1 Water levels, Free-Product Thickness, and Flow Direction

On June 18, 2013, ASE measured the depth to water in monitoring wells MW-1 and MW-2 and MW-5 through MW-8 using an electric water level sounder. The surface of the groundwater was also checked for the presence of free-floating hydrocarbons or sheen. Free-floating hydrocarbon measurements were taken on vapor-extraction wells MW-3 and MW-4R using an interface probe due to the occasional historic presence of free-floating hydrocarbons. No free floating hydrocarbons were present in any of the wells this sampling period. Groundwater elevation data is presented in Table One.

A groundwater elevation (potentiometric surface) contour map is shown as Figure 3. The groundwater flow direction at the site is generally to the south with an approximate gradient of 0.01 feet/foot during this sampling period. The gradient and flow direction are generally consistent with previous findings.

5.2 Groundwater Sample Collection

On June 18, 2013, ASE collected groundwater samples from all monitoring wells for analysis. Prior to sampling, the wells were purged of three well casing volumes of groundwater using disposable polyethylene bailers. The pH, temperature and conductivity of the purge water were monitored during evacuation, and samples were not collected until these parameters stabilized. Samples were collected from each well using disposable polyethylene bailers. The groundwater samples were decanted from the bottom of the bailers using low-flow emptying devices into 40-ml volatile organic analysis (VOA) vials, preserved with hydrochloric acid, sealed without headspace and labeled. All samples were stored on ice for transport to Kiff Analytical, LLC, (KIFF) of Davis, California under appropriate chain of custody documentation. Well sampling purge water was contained in a sealed and labeled 55-gallon steel drum for temporary storage until off-site disposal can be arranged. See Appendix C for copies of the well sampling field logs.

5.3 Analytical Results for Groundwater Samples

All groundwater samples were analyzed by KIFF for TPH-G, benzene, toluene, ethylbenzene, total xylenes (collectively known as BTEX), fuel oxygenates including methyl tertiary butyl ether (MTBE), and lead scavengers by EPA Method 8260B, and total petroleum hydrocarbons as diesel (TPH-D) by modified EPA Method 8015. The analytical results are tabulated in Table Two, and copies of the certified

analytical report and chain of custody form are included in Appendix D. The groundwater analytical results are summarized below:

- Groundwater samples collected from monitoring well MW-1 contained 370 parts per billion (ppb) TPH-G, 84 ppb TPH-D, 1.5 ppb benzene, and 0.52 ppb diisopropyl ether (DIPE). These concentrations are very similar to the previous sampling event and significantly lower than concentrations from one year ago in June 2012.
- Groundwater samples collected from monitoring well MW-2 contained 5,300 ppb TPH-G, 88 ppb total petroleum hydrocarbons as diesel (TPH-D), 2,400 ppb benzene, 7.8 ppb toluene, 80 ppb ethylbenzene, 31 ppb xylenes, 7.8 ppb DIPE, and 17 ppb TBA. Hydrocarbon concentrations in groundwater samples collected from monitoring well MW-2 increased noticeable from the two previous sampling events in 2012, but continue to represent a significant decrease of up to several orders of magnitude from pre-remediation conditions.
- Groundwater samples collected from monitoring well MW-3 <u>did not</u> contain a measurable thickness of free-floating hydrocarbons, nor were free-phase hydrocarbons visible when a bailer was retrieved from the well. The samples collected from MW-3 contained 100,000 ppb TPH-G, 220,000 ppb TPH-D, 6,700 ppb benzene, 7,900 ppb toluene, 2,000 ppb ethylbenzene, and 15,000 ppb xylenes. Although these concentrations are still very high, the fact that free-phase hydrocarbons were not present for a second consecutive sampling event is a positive indicator of the remediation effectiveness.
- Groundwater samples collected from monitoring well MW-4R contained 3,800 ppb TPH-G, 110 ppb TPH-D, 37 ppb benzene, 33 ppb toluene, 10 ppb ethylbenzene, 400 ppb xylenes, 1.5 ppb MTBE, 2.5 ppb DIPE, and 120 ppb TBA. These concentrations are similar to the previous sampling event and continue to represent a significant decrease of up to several orders of magnitude from pre-remediation conditions. The toluene and total xylenes concentrations decreased to a historic low.
- No hydrocarbons or oxygenates were detected in groundwater samples collected from monitoring well MW-5. These concentrations represent a decrease since the previous sampling event.
- No hydrocarbons or oxygenates were detected in groundwater samples collected from monitoring well MW-6.
- Groundwater samples collected from monitoring well MW-7 contained 6,000 ppb TPH-G, 250 ppb TPH-D, 19 ppb benzene, 22 ppb toluene, 310 ppb ethylbenzene, 390 ppb xylenes, and 6.3 ppb TBA. These concentrations represent a significant decrease from the previous sampling event with most compounds at or near historic lows.
- No hydrocarbons or oxygenates were detected in groundwater samples collected from monitoring well MW-8 other than 83 ppb TPH-D. These results continue to indicate that no significant hydrocarbon concentrations exist in the deeper water-bearing zones.

Concentrations in groundwater samples collected from the following wells exceeded Environmental Screening Levels (ESLs) for drinking water as presented in the "Screening For Environmental Concerns

at Sites With Contaminated Soil and Groundwater" document prepared by the California Regional Water Quality Control Board, San Francisco Bay Region dated May 2008:

Concentrations of TPH-G, benzene, toluene, ethylbenzene, and xylenes in groundwater samples collected from monitoring wells MW-2, MW-3, MW-4R, and MW-7 exceeded ESLs.

Concentrations of TPH-G and benzene in groundwater samples collected from monitoring well MW-1, MW-2, and MW-5 exceeded the ESLs.

Current groundwater concentrations are trending lower than in previous sampling events; this is obviously do to the ongoing soil-vapor and groundwater remediation activities. ASE believes that continuation of the remediation systems will have an even greater affect on decreasing the hydrocarbon concentrations in groundwater over the next 12 months.

6.0 DISCUSSION OF COST

The cost for operation of the ozone-sparging and vapor-extraction systems is the largest portion of the annual operating budget set for this site by the USTCF. Typically, continued operation of such remediation systems is based on multiple factors – one being the cost for operation. At the point where diminishing returns are achieved (cost outweighed by remedial effect on the subsurface soil and groundwater), operation of remediation equipment is typically suspended for a period of time to see if a rebounding effect will occur.

- Based on hydrocarbon concentrations in groundwater, it appears that the remedial effect has eliminated free-phase hydrocarbons in wells MW-3 and MW-4R, and total hydrocarbon concentrations on the remaining monitoring wells are showing a decreasing trend due to the ozone-sparging.
- Based on the rising hydrocarbon concentrations in the vadose-zone, it appears that the remedial effect continues to remove hydrocarbons in both soil and groundwater that are being stripped by ozone-sparging.

It is the opinion of ASE that the data within this report supports the continued operation of both the ozone-sparging and vapor-extraction systems until the end of the 2013 fiscal year or until diminishing returns appears to have been achieved. ASE believes that at that time, it may be prudent to shut off the VE system for a period of time to determine if the build-up of stripped hydrocarbons from the groundwater no longer have an effect on the businesses above and adjacent to the plume. If that is found to be true, ASE will recommend shutting off the ASE VE system for a period of time to determine if a rebounding effect occurs.

7.0 COMPARISON TO LOW-THREAT CLOSURE POLICY CRITERIA

A full evaluation on how the current site conditions compare to the California Regional Water Quality Control Board Low-Threat Closure Policy has not been made; however, based on recent groundwater sample analysis data, it is clear that the site does not meet the criteria at this time. In particular, the benzene concentration of 6,700 ppb in groundwater samples collected recently from monitoring well

MW-3 is over twice what the low-threat closure policy allows for sites with a groundwater plume over 100-feet in length without land use conditions.

8.0 RECOMMENDATIONS

Based on the findings and the details reported within, ASE recommends the following:

Continued operation of the remediation systems at the site. Re-evaluate the need for vapor-extraction remediation in 6 months. Maintain the current remediation system's operating parameters, adjusting the VE wells as necessary based on periodic influent air sampling with the ASE PID. Collect groundwater samples from monitoring wells MW-1 through MW-5 and MW-7in December 2013 ASE recommends removing monitoring wells MW-6 and MW-8 from the monitoring program since neither has contained a hydrocarbon concentration exceeding an ESL for at least 5 years. Prepare a Remediation Effectiveness and Groundwater Results report within the first quarter of 2014.

-7-

9.0 **SIGNATURES**

Should you require any additional information, please feel free to contact us at (925) 820-9391.

Respectfully submitted,

AQUA SCIENCE ENGINEERS, INC.

David Allen

Vice President

Robert Kitay, P.G.

Senior Geologist

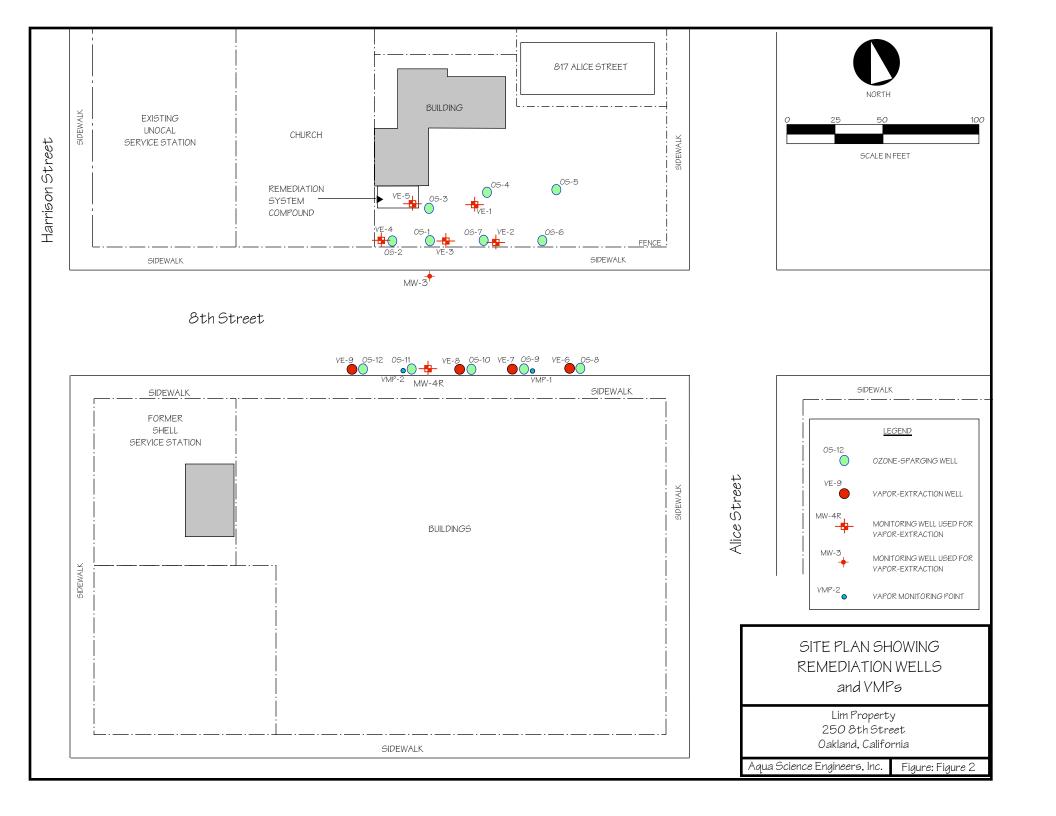
Cc: Mr. Jerry Wickhman, ACHCSA, electronically

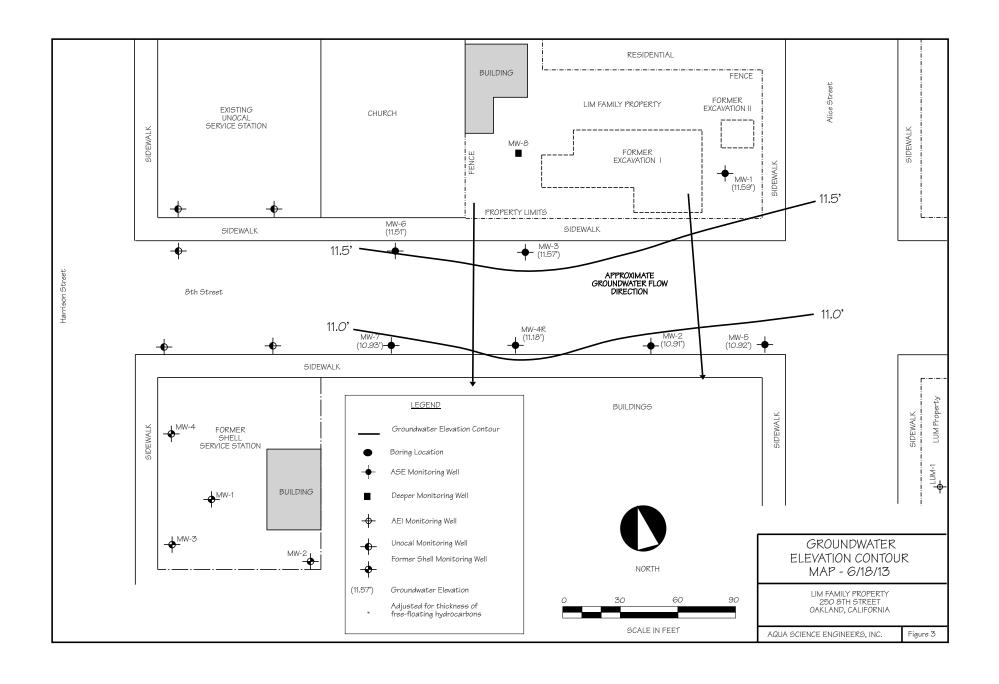
Mr. Russ Lim, responsible party representative, electronically

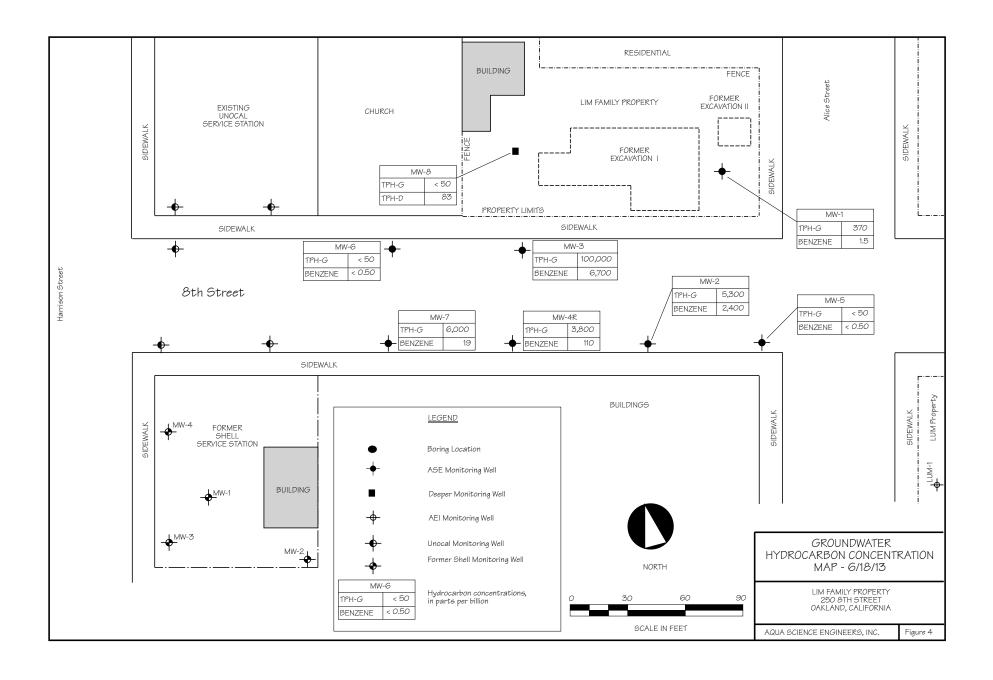
RWQCB Geotracker Database, electronically

FIGURES

NORTH


NOT TO SCALE


SITE LOCATION MAP


Lim Family Property 250 8th Street Oakland, California

Aqua Science Engineers

Figure 1

TABLES

	Date	Top of Casing	Depth to	Product	Groundwater
	of	Elevation	Water	Thickness	Elevation
Well I.D.	Measurement	(msl)	(feet)	(feet)	(msl)
MW-1	01/30/95	25.51	16.21		9.30
	04/12/95		15.71		9.80
	07/14/95		16.71		8.80
	10/17/95		17.72		7.79
	01/12/96		18.03		7.48
	07/25/96		16.82		8.69
	01/06/97		15.60		9.91
	07/08/97		17.31		8.20
	01/26/98		15.21		10.30
	07/23/98		15.38		10.13
	01/05/99		16.82		8.69
	07/13/99		15.89		9.62
	01/12/00		17.44		8.07
	04/24/00		16.37		9.14
	07/20/00		16.30		9.21
	10/24/00		17.25		8.26
	01/18/01		17.29		8.22
	04/05/01		15.88		9.63
	07/17/01		16.54		8.97
	10/25/01		16.89		8.62
	01/21/02		14.92		10.59
	04/11/02	29.72	14.02 15.33		11.49
	06/11/02 09/17/02	29.72	15.33 15.96		14.39 13.76
	12/18/02		16.14		13.58
	03/25/03		16.16		13.56
	06/23/03		16.01		13.71
	09/26/03		16.57		13.15
	12/18/03		16.41		13.31
	03/12/04		14.64		15.08
	06/17/04		15.71		14.01
	09/17/04		16.35		13.37
	12/17/04		16.10		13.62
	04/28/05		14.10		15.62
	07/19/05		15.94		13.78
	10/03/05		16.34		13.38
	12/06/05		16.21		13.51
	03/15/06		16.21		13.51
	06/28/06		14.92		14.80
	08/31/06		15.60		14.12
	11/21/06		17.2 <i>0</i>		12.52
	02/12/07 05/02/07		16.12 16.92		13.60 12.80
	08/09/07		17.58		12.74
	12/06/07		18.60		11.12
	02/26/08		17.13		12.59
	05/30/08		18.17		11.55
	08/28/08		18.47		11.25
	12/11/08		19.19		10.53
	03/31/09		17.59		12.13
	12/31/09		18.57		11.15
	06/03/10		16.94		12.78
	12/20/10		18.21		11.51
	06/30/11		17.43		12.29
	06/22/12		17.08		12.64
	12/13/12		17.32		12.40
	06/18/13		18.13		11.59

	Date	Top of Casing	Depth to	Product	Groundwater
	of	Elevation	Water	Thickness	Elevation
Well I.D.	Measurement	(msl)	(feet)	(feet)	(msl)
		` /	` /	` '	` /
MW-2	01/30/95	23.99	15.02		8.97
	04/12/95		14.75		9.24
	07/14/95		16.02		7.97
	10/17/95		16.94		7.05
	01/12/96		17.05		6.94
	07/25/96		16.02		7.97
	01/06/97		14.34		9.65
	07/08/97		16.52		7.47
	01/26/98		14.10		9.89
	07/23/98		14.70		9.29
	01/05/99		16.01		7.98
	07/13/99		15.40		8.59
	01/12/00		16.76		7.23
	04/24/00		15.67		8.32
	07/20/00		15.70 16.56		8.29 7.43
	10/24/00				7.43 7.52
	01/18/01 04/05/01		16.47 15.88		7.52 8.11
	07/17/01		15.35		8.64
	10/25/01		15.63		8.36
	01/21/02		13.55		10.44
	04/11/02		13.74		10.25
	06/11/02	28.19	14.06		14.13
	09/17/02	20.10	14.67		13.52
	12/18/02		14.88		13.31
	03/25/03		15.11		13.08
	06/23/03		14.94		13.25
	09/26/03		15.49		12.70
	12/18/03		15.13		13.06
	03/12/04		13.5 <i>0</i>		14.69
	06/17/04		14.63		13.56
	09/17/04		15.19		13.00
	12/17/04		14.88		13.31
	04/28/05		13.39		14.80
	07/19/05		15.27		12.92
	10/03/05		15.57		12.62
	12/06/05		15.35		12.84
	03/15/06		12.65		15.54
	06/28/06		14.45		13.74
	08/31/06		15.37		12.82
	11/21/06		16.22		11.97
	02/12/07		16.12		12.07
	05/02/07		16.12		12.07
	08/09/07 12/06/07		16.85		11.34
	02/26/08		17.95 16.15		10.24 12.04
	05/30/08		17.33		10.86
	08/28/08		17.53		10.66
	12/11/08		18.28		9.91
	03/31/09		16.63		11.56
	12/31/09		17.46		10.73
	06/03/10		16.00		12.19
	12/20/10		17.25		10.94
	06/30/11		16.55		11.64
	06/22/12		16.36		11.83
	12/13/12		16.24		11.95
	06/18/13		17.28		10.91
	20110110				10.01

	Date	Top of Casing	Depth to	Product	Groundwater
	of	Elevation	Water	Thickness	Elevation
Well I.D.	Measurement	(msl)	(feet)	(feet)	(msl)
		()	()	()	()
MW-3	01/12/00	24.25	16.68	0.01	7.58*
	04/24/00		15.58	0.15	8.79*
	07/20/00		16.01	0.41	8.57*
	10/24/00		16.95	0.21	7.47*
	01/18/01		16.63	0.21	7.79*
	04/05/01		15.16	0.23	9.27*
	07/17/01		15.92	0.39	8.64*
	10/25/01		16.26	0.38	8.29*
	01/21/02		14.08	0.16	10.30*
	04/11/02		14.59	0.54	10.09*
	06/11/02	28.58	15.16	0.90	14.14*
	09/17/02		16.04	1.24	13.53*
	10/01/02		16.14	1.23	13.42*
	10/25/02		15.80	0.60	13.26*
	11/12/02		15.87	0.47	13.09*
	12/18/02		15.42	0.47	13.54*
	03/25/03		16.11	1.14	13.38*
	06/23/03		16.58	1.86	13.49*
	09/26/03		16.11	0.66	13.00*
	12/18/03		15.83	0.59	13.22*
	03/12/04		14.51	1.21	15.04*
	06/17/04		15.25	0.68	13.87*
	09/17/04		16.14	0.96	13.21*
	12/17/04		15.05	0.25	13.73*
	01/13/05		13.40	0.45	15.54*
	04/28/05		15.31	2.43	15.21*
	07/19/05		16.29	1.67	13.63*
	10/03/05		16.10	1.47	13.66*
	12/06/05		15.04	1.17	14.48*
	03/15/06		12.65	2.41	15.49*
	06/28/06		13.55	2.61	16.16*
	08/31/06		14.85	2.20	15.49*
	11/21/06		16.05	1.10	13.41*
	02/12/07		15.96	0.35	12.90*
	05/02/07		15.11	0.09	13.54*
	08/09/07		15.83	0.09	12.82*
	12/06/07		18.10	0.50	10.88*
	02/26/08		16.47	0.22	12.29*
	05/30/08		17.90	0.70	11.24*
	08128108		18.05	0.54	10.96*
	12/11/08		18.57	0.46	10.38*
	03/31/09		16.89	0.23	11.87*
	12/31/09		17.64	sheen	10.94*
	06/03/10		16.58	0.56	12.45*
	12/20/10		17.20	0.45	11.74*
	06/30/11		15.92		12.66
	06/22/12		16.64	0.69	12.48*
	12/13/12		16.24	None	12.34
	06/18/13		17.01		11.57

	Date	Top of Casing	Depth to	Product	Groundwater
Wallin	of Magazinamana	Elevation	Water (fast)	Thickness (feet)	Elevation
Well I.D.	Measurement	(msl)	(feet)	(теег)	(msl)
MW-4	01/12/00	23.71	17.24		6.47
	04/24/00	20171	16.18		7.53
	07/20/00		16.18		7.53
	10/24/00		17.03		6.68
	01/18/01		16.87		6.84
	04/05/01		15.28		8.43
	07/17/01		15.20		7.79
	10/25/01		16.23		7.79 7.48
	01/21/01				
			14.14		9.57
	04/11/02	00.64	14.43		9.28
	06/11/02	28.61	14.72		13.89
	09/17/02		15.29		13.32
	12/18/02		15.20		13.41
	03/25/03		15.53		13.08
	06/23/03		15.35		13.26
	09/26/03		15.91		12.70
	12/18/03		15.63		12.98
	03/12/04		13.88		14.73
	06/17/04		15.03		13.58
	09/17/04		15.61		13.00
	12/17/04		15.32		13.29
	04/28/05		13.82		14.79
	07/19/05		15.44		13.17
	10/03/05		15.91		12.70
	12/06/05		15.71		12.90
	03/15/06		13.05		15.56
	06/28/06		14.49		14.12
	08/31/06		15.75		12.86
	11/21/06		16.70		11.91
	02/12/07		16.51		12.10
	05/02/07		16.51		12.10
	08/09/07		17.17		11.44
	12/06/07		18.08		10.53
	02/26/08		16.57		12.04
	05/30/08		17.66		10.95
	08/28/08		17.98		10.63
	12/11/08		18.61		10.00
	03/31/09		18.75	2.00	11.46*
	10.171.105	00.70	10.05	0.70	10 771
MW-4R	12/31/09	28.78	19.85	2.30	10.77*
	06/03/10		18.67	2.57	12.17*
	12/20/10		18.95	2.00	11.43*
	06/30/11		16.45		12.33
	06/22/12		16.69		12.09
	12/13/12		16.61		12.17
	06/18/13		17.60		11.18

	Date	Top of Casing	Depth to	Product	Groundwater		
	of	Elevation	Water	Thickness	Elevation		
Well I.D.	Measurement	(msl)	(feet)	(feet)	(msl)		
WOII I.D.	MICABUI CITICITE	(11151)	(1000)	(1001)	(11191)		
MW-5	06/11/02	28.40	14.23		14.17		
	09/17/02		14.80		13.60		
	12/18/02		15.08		13.32		
	03/25/03		15.31		13.09		
	06/23/03		15.16		13.24		
	09/26/03		15.72		12.68		
	12/18/03		15.47		12.93		
	03/12/04		13.44		14.96		
	06/17/04		14.90		13.50		
	09/17/04		15.45		12.95		
	12/17/04		15.12		13.28		
	04/28/05		13.63		14.77		
	07/19/05		15.67		12.73		
	10/03/05		15.81		12.59		
	12/06/05		15.60		12.80		
	03/15/06		12.81		15.59		
	06/28/06		15.21		13.19		
	08/31/06		15.55		12.85		
	11/21/06		17.09		11.31		
	02/12/07		16.29		12.11		
	05/02/07		16.21		12.19		
	08/09/07		16.97		11.43		
	12/06/07		18.35		10.05		
	02/26/08		16.35		12.05		
	05/30/08		17.62		10.78		
	08/28/08		17.72		10.68		
	12/11/08		18.62		9.78		
	03/31/09		16.94		11.46		
	12/31/09		17.73		10.67		
	06/03/10		16.20		12.20		
	12/20/10		17.72		10.68		
	06/30/11		16.75		11.65		
	06/22/12		16.41		11.99		
	12/13/12		16.46		11.94		
	06/18/13		17.48		10.92		

	Date	Top of Casing	Depth to	Product	Groundwater
	of	Elevation	Water	Thickness	Elevation
Well I.D.	Measurement	(msl)	(feet)	(feet)	(msl)
		()	()	()	()
MW-6	06/11/02	29.20	14.95		14.25
	09/17/02		15.47		13.73
	12/18/02		15.43		13.77
	03/25/03		15.67		13.53
	06/23/03		15.48		13.72
	09/26/03	NOT ME	EASURED - S	OUNDER MALF	FUNCTION
	12/18/03		15.79		13.41
	03/12/04		14.04		15.16
	06/17/04		15.13		14.07
	09/17/04		15.74		13.46
	12/17/04		15.54		13.66
	04/28/05		13.91		15.29
	07/19/05		15.30		13.90
	10/03/05		15.35		13.85
	12/06/05		15.69		13.51
	03/15/06		13.14		16.06
	06/28/06		14.44		14.76
	08/31/06		16.25		12.95
	11/21/06		16.69		12.51
	02/12/07		16.63		12.57
	05/02/07		16.57		12.63
	08/09/07		17.19		12.01
	12/06/07		17.95		11.25
	02/26/08		16.66		12.54
	05/30/08		17.64		11.56
	08/28/08		18.03		11.17
	12/11/08		18.54		10.66
	03/31/09 12/31/09		17.10 18.00		12.1 <i>0</i> 11.2 <i>0</i>
	12/31/09 06/03/10		16.58		11.20
	12/20/10		17.40		12.62
	06/30/11				12.18
	06/22/12		17.02 16.70		12.10
	12/13/12		16.77		12.43
	06/18/13		17.69		12.43 11.51
	00110113		17.05		11:01

Groundwater Elevation Data Lim Family Property 2508thStreet Oakland, CA

	Date	Top of Casing	Depth to	Product	Groundwater
	of	Elevation	Water	Thickness	Elevation
Well I.D.	Measurement	(msl)	(feet)	(feet)	(msl)
		,	, ,	,	. ,
MW-7	06/11/02	28.95	15.19		13.76
	09/17/02		15.73		13.22
	12/18/02	NOT ME	EASURED - C	AR PARKED O	/ER WELL
	03/25/03		15.96		12.99
	06/23/03		15.75		13.20
	09/26/03		16.29		12.66
	12/18/03		16.03		12.92
	03/12/04		14.28		14.67
	06/17/04		15.42		13.53
	09/17/04		16.02		12.93
	12/17/04		15.45		13.5 <i>0</i>
	04/28/05		14.15		14.80
	07/19/05		15.30		13.65
	10/03/05		16.25		12.70
	12/06/05		16.05		12.90
	03/15/06		13.36		15.59
	06/28/06		14.81		14.14
	08/31/06		16.13		12.82
	11/21/06		17.06		11.89
	02/12/07		16.97		11.98
	05/02/07		16.93		12.02
	08/09/07		17.56		11.39
	12/06/07		18.32		10.63
	02/26/08		16.93		12.02
	05/30/08		17.97		10.98
	08/28/08		18.33		10.62
	12/11/08		18.86		10.09
	03/31/09		17.37		11.58
	12/31/09		18.26		10.69
	06/03/10		16.86		12.09
	12/20/10		17.70		11.25
	06/30/11		17.36		11.59
	06/22/12 12/13/12		17.03 17.01		11.92 11.94
	06/18/13		17.01 18.02		10.93
	00/10/13		10.02		10.93
MW-8	02/26/08	30.14	21.50		8.64
	05/30/08		22.52		7.62
	08/28/08		23.27		6.87
	12/11/08		23.15		6.99
	03/31/09		21.46		8.68
	12/31/09		22.75		7.39
	06/03/10		21.06		9.08
	12/20/10		22.18		7.96
	06/30/11		21.95		8.19
	06/22/12		21.23		8.91
	12/13/12		21.89		8.25
	06/18/13		22.44		7.70

Top of casing elevations resurveyed by Mid Coast Engineers on 6/27/02 and 7/11/02.

 $[\]frac{\text{Notes:}}{^*} = \text{Adjusted for the presence of free-floating oil by the equation: Top of Casing Elevation - Depth to Water + } \\ (0.8 \times \text{Floating Hydrocarbon Thickness}) = Groundwater Elevation (Adjusted).}$

Well/												
Date	TPH	TPH			Ethyl-	Total				Other		
Sampled	Gasoline	Diesel	Benzene	Toluene	benzene	Xylenes	MTBE	DIPE	TBA	Oxys	EDC	EDB
MW-1												
01/30/95	740	200	3	5	1	4						
04/12/95	400	500	< 0.5	< 0.5	3	< 2						
07/14/95	520	400	1	< 0.5	2	3						
10/17/95	400	200	0.5	1	3	< 2						
01/12/96	120	890	< 0.5	< 0.5	< 0.5	< 1.0	< 2.0					
07/08/96	320	300	0.52	2.7	1.2	2.3	< 5.0					
01/06/97	110	75	< 0.5	0.68	< 0.5	< 0.5	< 5.0					
07/08/97	380	290	< 0.5	1.5	1.4	1.9	< 5.0				< 0.5	< 0.5
01/26/98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0				< 0.5	< 0.5
07/23/98	190	< 50	0.54	2.8	2	1.8	< 5.0				< 2	< 2
01/05/99	200	< 50	1.8	1.6	3.3	< 0.5	< 5.0				< 0.5	< 0.5
07/13/99	340	<50	< 0.5	< 0.5	2.6	< 0.5	< 5.0				< 0.5	< 0.5
01/12/00	300	1,000	22	36	5.5	24	< 5.0				< 0.5	< 0.5
04/24/00	360	280*	< 0.5	< 0.5	< 0.5	2.1	< 5.0				< 0.5	< 0.5
07/20/00	290	150*	1.8	< 0.5	< 0.5	< 0.5	< 5.0				< 0.5	< 0.5
10/24/00	170**	280*	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0				< 0.5	< 0.5
01/18/01	170**	150*	< 0.5	<0.5	< 0.5	2.1	< 5.0				< 0.5	< 0.5
04/05/01	350**	190*	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0				< 0.5	< 0.5
07/17/01	310	570	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0				< 0.5	< 0.5
10/25/01	250	260	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
01/22/02	200	250	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
04/11/02	260	300	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
06/11/02	270	330	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
09/17/02	320	1,700	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
12/18/02	170	320	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
03/25/03	320	< 500	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
06/23/03	240	310	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
09/26/03	110	300	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				< 0.5	< 0.5
12/18/03	150	340	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				< 0.5	< 0.5
03/12/04	220	510	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				< 0.5	< 0.5
06/17/04	250	490	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				< 0.5	< 0.5
09/17/04	110		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5					
11/10/04***	180	400	0.68	< 0.5	1.7	< 0.5	< 5.0					
12/17/04	77	130	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				< 0.5	< 0.5
04/28/05	250	190	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.67	< 0.5	< 0.5	< 0.5	< 0.5
07/19/05	340	na	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.76	< 5.0	< 0.5	< 0.5	< 0.5
10/03/05	170	< 100	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.50	< 5.0	< 0.5	< 0.5	< 0.5
12/06/05	140	67	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
03/15/06	170	< 80	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
06/28/06	230	130	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
08/31/06	310	< 200	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
11/21/06	220	160	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
02/23/07	140	120	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.2	< 5.0	< 0.50	< 0.50	< 0.50
05/02/07	180	140	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.3	< 5.0	< 0.50	< 0.50	< 0.50
08/09/07	130	120	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.85	< 5.0	< 0.50	< 0.50	< 0.50
12/06/07	53	160	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 5.0	< 0.50	< 0.50	< 0.50
02/26/08	93	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.1	< 5.0	< 0.50	< 0.50	< 0.50
05/30/08	200	240	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.95	< 5.0	< 0.50	< 0.50	< 0.50
08/28/08	150	200	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.2	< 5.0	< 0.50		
12/11/08	110	140	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.92	< 5.0	< 0.50		***
03/31/09	160	< 200	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.8	< 5.0	< 0.50	< 0.50	< 0.50
12/31/09	140	200	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.84	< 5.0	< 0.50	< 0.50	< 0.50
06/03/10	300	140	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.72	< 5.0	< 0.50	< 0.50	< 0.50
12/20/10	140	180	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
06/30/11	650	< 200	1.9	< 0.50	< 0.50	< 0.50	< 0.50	0.78	< 5.0	< 0.50	< 0.50	< 0.50
06/22/12	750	< 200	23	< 0.50	1.1	2.3	< 0.50	0.76	12	< 0.50	< 0.50	< 0.50
12/13/12	180	90	2.6	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
06/18/13	370	84	1.5	< 0.50	< 0.50	< 0.50	< 0.50	<i>0.</i> 52	< 5.0	< 0.50	< 0.50	< 0.50
00/10/10	3/0	04	1.0	\0.50	\0.50	\0.50	\0.50	0.52	3.0	\0.00	\0.50	\ U.5U

Well/												
Date	TPH	TPH	_		Ethyl-	Total				Other		
Sampled	Gasoline	Diesel	Benzene	Toluene	benzene	Xylenes	MTBE	DIPE	TBA	0xys	EDC	EDB
11111												
MW-2	88.000	800	10.000	18 000	2 400	10.000						
01/30/95	88,000	800	19,000	18,000	2,400	10,000						
04/12/95 07/14/95	110,000	990	21,000	28,000	2,800	14,000						
	120,000	5,000	20,000	25,000	3,200	15,000						
10/17/95	190,000	4,000	15,000	26,000	4,900	23,000						
01/12/96	32,000	2,600	10,000	8,000	1,100	4,800	< 2 < 500					
07/08/96 01/06/97	110,000 230,000	2,500 37,000	20,000 11,000	18,000 19,000	2,500 4,300	12,000 20,000	< 1,200					
07/08/97	91,000	35,000	16,000	20,000	2,700	13,000	< 1,200				< 0.5	< 0.5
01/26/98	50,000	11,000	12,000	12,000	1,600	6,700	< 250				11	< 0.5
07/23/98	50,000	8,100#	11,000	8,300	1,800	7,000	1,100				9.9	< 0.5
01/05/99	50,000	7,600#	12,000	12,000	2,300	9,600	1,300				< 50	< 50.5
07/13/99	73,000	8,500	11,000	13,000	2,200	9,800	< 500				7.7	< 0.5
01/12/00	63,000	11,000	10,000	12,000	1,800	7,800	< 500				8.8	< 1.0
04/24/00	76,000	23,000*	7,100	14,000	2,000	9,400	< 500				5.9	< 5.0
07/20/00	68,000	5,300#	11,000	14,000	2,300	11,000	< 1,000				6.7	< 5.0
10/24/00	48,000	6,400*	11,000	9,400	1,500	7,300	< 500				< 5.0	< 5.0
01/18/01	37,000	4,600*	6,900	5,600	1,200	5,300	< 500				< 5.0	< 5.0
04/05/01	59,000	4,600*	7,100	9,800	1,600	7,600	< 500				4.6	< 5.0
07/17/01	90,000	< 10,000	9,200	14,000	2,700	11,000	< 50				< 50	
10/25/01	79,000	< 3,800	9,200	14,000	2,400	11,000	< 50				< 50	< 50
01/22/02	76,000	< 2,300	7,000	13,000	2,200	9,600	< 50				< 50	< 50
04/11/02	76,000	< 1,500	7,800	11,000	2,900	12,000	< 50					
06/11/02	72,000	< 2.500	7,300	9,600	2,500	12,000	< 50					
09/17/02	52,000	< 3,000	5,000	5,400	2,100	9,100	< 20				< 20	< 20
12/18/02	46,000	< 6,000	2,900	3,000	1,800	7,600	22				< 10	< 10
03/25/03	87,000	< 8,000	7,900	9,300	2,900	12,000	< 50				< 50	< 50
06/23/03	46,000	< 3000	7,800	4,000	1,900	6,600	< 50				< 50	< 50
09/26/03	52,000	< 3000	9,100	3,500	1,300	5,000	< 50				< 50	< 50
12/18/03	61,000	< 4,000	13,000	3,500	1,600	5,600	< 20				< 20	< 20
03/12/04	53,000	< 4,000	9,100	3,500	1,700	5,700	< 25				< 25	< 25
06/17/04	59,000	< 3,000	7,100	4,000	1,700	7,300	< 25				< 25	< 25
09/17/04	33,000		9,800	1,200	1,300	4,000	< 20					
11/10/04***	44,000	3,600	13,000	4,400	1,600	6,000	< 1000					
12/17/04	54,000	< 3,000	7,900	2,200	1,700	3,900	< 15				< 15	< 15
04/28/05	81,000	< 3,000	7,000	6,000	2,100	8,700	< 15	90	< 15	< 15	< 15	< 15
07/19/05	59,000	na	7,900	4,400	1,900	7,000	< 15	< 15	77	< 15	< 15	< 15
10/03/05	34,000	< 800	7,800	810	1,000	2,800	< 15	< 15	<70	< 15	< 15	< 15
12/06/05	26,000	< 800	6,100	940	770	2,000	< 15					
03/15/06	33,000	< 1,500	7,700	2,600	1,400	4,200	< 15	< 15	< 15	< 15	< 15	< 15
06/28/06	96,000	< 4,000	10,000	14,000	2,900	12,000	< 15	< 15	< 5.0	< 15	33	< 15
8/31/06	47,000	< 3,000	5,800	5,100	2,200	8,700	< 15	< 15	81	< 15	< 15	< 15
11/21/06	51,000	< 1,500	6,800	3,400	1,700	6,200	< 15	< 15	82	< 15	< 15	< 15
02/23/07	38,000	< 1,500	7,800	2,000	1,500	4,600	< 15	< 15	190	< 15	< 15	< 15
05/02/07	55,000	< 3,000	6,500	5,100	2,400	8,600	< 15	< 15	110	< 15	< 15	< 15
08/09/07	39,000	< 3,000	6,600	2,200	1,600	4,900	< 15	< 15	81	< 15	< 15	< 15
12/06/07	20,000	< 1,500	7,400	510	680	1,200	< 15	< 15	120	< 15	< 15	< 15
02/26/08	43,000	< 4,000	8,200	940	1,400	3,700	< 15	< 15	70	< 15	< 15	< 15
05/30/08	31,000	< 1,000	11,000	620	1,100	2,300	< 15	< 15	84	< 15	< 15	< 15
08/28/08	38,000	< 3,000	11,000	630	1,400	3,800	< 25	< 25	< 150	< 25		
12/11/08	32,000	< 2,000	11,000	610	1,000	2,700	< 25	< 25	< 150	< 25		
03/31/09	44,000	< 4,000	6,500	3,300	1,700	5,600	< 9.0	< 9.0	56	< 9.0	< 9.0	< 9.0
12/31/09	36,000	< 4,000	9,700	350	1,600	3,800	< 9.0	13	56	< 9.0	< 9.0	< 9.0
06/03/10	53,000	< 10,000	8,600	2,600	2,500	8,000	< 5.0	8.9	69	< 5.0	< 5.0	< 5.0
12/20/10	39,000	< 4,000	13,000	530	1,600	3,600	< 15	21	< 70	< 15	< 15	< 15
06/30/11	65,000	< 6,000	7,300	5,900	2,400	10,000	< 20	< 20	< 90	< 20	< 20	< 20
06/22/12	1,200	140	50	56	4.0	160	< 0.50	1.6	17	< 0.50	1.1	< 0.50
12/13/12	2,400	66	890	4.1	9.6	16	< 0.50	5.4	17	< 0.50	1.4	< 0.50
06/18/13	5,300	88	2,400	7.8	80	31	< 1.5	7.8	17	< 1.5	< 1.5	< 1.5
20,10,10	0,000	50	_, .00	,	20	٥,	`		.,	`	`	`

Well/												
Date	TPH	TPH			Ethyl-	Total				Other		
Sampled	Gasoline	Diesel	Benzene	Toluene	benzene	Xylenes	MTBE	DIPE	TBA	Охуя	EDC	EDB
MW-3	110 000	47 000*	00.000	10.000	0.400	44.000	500					
01/12/00	140,000	,	22,000	19,000	2,400	11,000	< 500					
04/24/00	240,000	700,000				28,000/	< 5,000					
07/20/00	NIC	TCAMPIE		87,000								
<i>07/20/00</i> 10/24/00)T SAMPLEI)T SAMPLEI										
01/18/01		OT SAMPLEI OT SAMPLEI										
04/05/01		OT SAMPLEI										
07/17/01		OT SAMPLEI										
10/25/01		OT SAMPLEI										
01/22/02		OT SAMPLEI										
04/11/02		OT SAMPLEI										
06/11/02		OT SAMPLEI										
09/17/02		OT SAMPLEI										
12/18/02		OT SAMPLEI OT SAMPLEI										
03/25/03		OT SAMPLEI										
06/23/03		OT SAMPLEI OT SAMPLEI										
09/26/03		OT SAMPLEI OT SAMPLEI										
12/18/03		OT SAMPLEI OT SAMPLEI										
03/12/04		OT SAMPLEI										
06/17/04		OT SAMPLEI										
09/17/04		OT SAMPLEI										
11/10/04		OT SAMPLEI										
12/17/04		OT SAMPLEI										
04/28/05		OT SAMPLEI										
07/19/05		OT SAMPLEI										
10/03/05		OT SAMPLEI										
12/06/05		OT SAMPLEI										
03/15/06 06/28/06)T SAMPLEI)T SAMPLEI										
8/31/06		OT SAMPLEI OT SAMPLEI										
11/21/06		OT SAMPLEI OT SAMPLEI										
02/23/07		OT SAMPLEI										
05/02/07		OT SAMPLEI										
08/09/07		OT SAMPLEI										
12/06/07		OT SAMPLEI										
02/26/08		OT SAMPLEI										
05/30/08		OT SAMPLEI										
08/28/08		OT SAMPLEI										
12/11/08												
		OT SAMPLEI										
03/31/09 12/31/09		T SAMPLEI					, <20	< 20	< 90	< 20	< 20	< 20
06/03/10		< 25,000		6,500	1,000	6,600		< 20	< 90	< 20	< 20	< 20
12/20/10		OT SAMPLEI										
06/30/11		T SAMPLEI						< 20	< 90	< 20	< 20	< 20
06/22/12		< 40,000		21,000	4,000	17,000 30NG (0.60	< 20	< 20	< 90	< 20	< 20	< 20
12/13/12		IPLED DUE ' < 12,000		5,800	2,100	11,000	о-теет) < 10	< 10	60	< 10	< 10	< 10
06/18/13			5,800									
00110110	100,000	220,000	6,700	7,900	2,000	15,000	< 10	< 10	< 50	< 10	< 10	< 10

Well/												
Date	TPH	TPH			Ethyl-	Total				Other		
Sampled	Gasoline	Diesel	Benzene	Toluene	benzene	Xylenes	MTBE	DIPE	TBA	Охуя	EDC	EDB
<u>MW-4</u>												
01/12/00	99,000	7,900*	16,000	20,000	2,100		< 2,500				< 50	< 50
04/24/00	54,000	44,000*	3,400/	13,000/	1,800/	8,8001	< 1,300				< 250	< 250
			4,500	20,000	2,800	14,000						
07/20/00	8,000	3,500	9,200/	20,000	2,500	12,000/	< 1,000				< 200	< 200
			11,000	22,000	3,400	13,000						
10/24/00	98,000	8,000*	21,000	29,000	2,700	15,000	< 1,000				< 250	< 250
01/18/01	91,000	12,000	17,000/	21,000/	2,500/	13,000/					< 250	< 250
04/05/04	0.0.000	7.500*	15,000	21,000	2,800	11,000	<5,000				50	
04/05/01	88,000	7,500*	6,900/	18,000/	2,500/	12,000/	< 1,000			***	< 50	< 50
07/17/01	0E 000	. 7 000	3,200	9,000	1,300	6,400	< 500				60	
07/17/01	95,000	< 3,000	8,000	16,000	2,900	11,000	49				69 70	
10/25/01	89,000	< 2,200	9,300	18,000	2,400	12,000	66				72	< 50
01/22/02 04/11/02	80,000	< 2,300	4,600	15,000	2,500	11,000	< 50				< 50	< 50
	90,000	< 900	6,600	18,000	2,800	12,000	55					
06/25/02 09/17/02	110,000	< 3,000	10,000	20,000	2,900	13,000	< 100 < 100				< 100	< 100 < 100
12/18/02	110,000 97,000	< 3,000	9,600	21,000	2,800 2,600	13,000	< 50				< 100	
03/25/03		< 4,000	8,000	20,000		12,000					< 50	< 50
06/23/03	97,000 100,000	< 7,500 < 3,000	7,600 9,600	22,000 22,000	2,500 3,300	12,000 15,000	< 100 < 100				< 100 < 100	< 100 < 100
09/25/03	110,000	< 4,000	9,300	17,000	2,100	10,000	< 50				87	< 50
12/18/03	110,000	< 2,000	8,900	19,000	2,500	12,000	< 25				46	< 25
03/12/04	96,000	< 4,000	6,500	18,000	2,700	12,000	< 40				< 40	< 40
06/17/04	110,000	< 4,000	10,000	20,000	2,900	13,000	< 50				93	< 50
09/17/04	78,000		9,300	15,000	2,400	11,000	<50					
11/10/04***	87,000	4,300	15,000	21,000	3,000	16,000	< 1300					
12/17/04	88,000	< 3,000	8,500	16,000	2,800	12,000	< 25				53	< 25
04/28/05	110,000	< 3,000	7,800	14,000	2,200	10,000	< 25	< 25	< 25	< 25	46	< 25
07/19/05	90,000	na	10,000	13,000	2,300	10,000	< 40	< 20	< 20	< 20	73	< 40
10/03/05	68,000	< 800	9,400	4,000	1,800	8,700	23	23	< 5.0	< 20	62	< 20
12/06/05	81,000	< 1,500	8,900	7,200	2,200	9,500	< 20					
03/15/06	68,000	< 3,000	7,300	14,000	2.500	10,000	< 20	< 20	< 20	< 20	< 20	< 20
06/28/06	61,000	< 3,000	8,500	4,100	2,600	11,000	< 20	< 20	< 5.0	< 20	20	< 20
08/31/06	68,000	< 2,000	9,500	9,600	2,500	12,000	< 20	< 20	< 5.0	< 20	36	< 20
11/21/06	68,000	< 1,500	9,000	5,000	2,000	9,300	< 20	< 20	230	< 20	42	< 20
02/23/07	90,000	< 2,000	11,000	11,000	2,800	12,000	< 20	< 20	290	< 20	36	< 20
05/02/07	56,000	< 2,000	7,300	6,300	2,500	11,000	< 15	< 15	160	< 15	20	< 15
08/09/07	52,000	< 2,000	7,600	2,600	2,100	8,400	< 15	15	170	< 15	31	< 15
12/06/07	60,000	< 2,000	13,000	2,000	2,800	11,000	< 15	22	150	< 15	< 15	< 15
02/26/08	42,000	< 2,000	3,700	2,300	2,300	8,900	< 15	< 15	90	< 15	< 15	< 15
05/30/08	64,000	< 3,000	9,200	5,100	3,000	12,000	< 15	< 15	83	< 15	19	< 15
08/28/08	73,000	< 5,000	9,700	5,500	3,300	12,000	< 15	< 15	< 70	< 15		
12/11/08	120,000	< 40,000		12,000	4,400	19,000	< 25	< 25	< 150	< 25		
03/31/09		OT SAMPLE										
MW-4R												
12/31/09	No	OT SAMPLE	D DUE TO F	REE-FLOAT	TING HYDR	OCARBONS	5					
06/03/10	N	OT SAMPLE	D DUE TO F	REE-FLOAT	TING HYDR	OCARBONS	õ					
12/20/10	N	OT SAMPLE	D DUE TO F	REE-FLOAT	TING HYDR	OCARBONS	ē					
06/30/11		< 30,000	3,800	11,000	2,900	20,000	< 25	< 25	< 150	< 25	< 25	< 25
06/22/12	4,500	< 200	31	53	5.0	500	6.3	6.1	180	< 0.5	21	< 0.5
12/13/12	3,700	< 200	97	76	50	590	< 0.50	1.0	41	< 0.50	2.5	< 0.50
06/18/13	3,800	110	37	33	10	400	1.5	2.5	120	< 0.50	7.2	< 0.50

Well/												
Date	TPH	TPH			Ethyl-	Total				Other		
Sampled	Gasoline	Diesel	Benzene	Toluene	benzene	Xylenes	MTBE	DIPE	TBA	Oxys	EDC	EDB
MM-5												
<u>MW-5</u> 06/11/02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	28				< 0.5	< 0.5
	< 50 < 50	110					28 4.8					< 0.5 < 0.5
09/17/02			< 0.5	< 0.5	< 0.5	< 0.5					< 0.5	
12/18/02	< 50	140	< 0.5	< 0.5	< 0.5	< 0.5	1.8				< 0.5	< 0.5
03/25/03	< 50	130	< 0.5	< 0.5	< 0.5	< 0.5	7.4				< 0.5	< 0.5
06/23/03	< 50	390	< 0.5	< 0.5	< 0.5	< 0.5	17				< 0.5	< 0.5
09/26/03	< 50	700	< 0.5	< 0.5	< 0.5	< 0.5	21				< 0.5	< 0.5
12/18/03	< 50	550	< 0.5	< 0.5	< 0.5	< 0.5	16				< 0.5	< 0.5
03/12/04	< 50	490	< 0.5	< 0.5	< 0.5	< 0.5	9.1				< 40	< 40
06/17/04	< 50	510	< 0.5	< 0.5	< 0.5	< 0.5	9.8				< 0.5	< 0.5
09/17/04	< 50		< 0.5	< 0.5	< 0.5	< 0.5	5.5					
11/10/04***	< 50	370	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
12/17/04	< 50	120	< 0.5	< 0.5	< 0.5	< 0.5	9.2				< 0.5	< 0.5
04/28/05	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
07/19/05	< 50	na	< 0.5	< 0.5	< 0.5	< 0.5	6.1	2.1	< 5.0	< 0.5	< 0.5	< 0.5
10/03/05	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	2.4	1.7	< 5.0	< 0.5	< 0.5	< 0.5
12/06/05	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
03/15/06	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	3.3	< 0.5	< 5.0	< 0.5	< 0.5	< 0.5
06/28/06	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	1.8	< 0.5	< 5.0	< 0.5	< 0.5	< 0.5
08/31/06	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	3.4	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
12/05/06	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	5.2	1.7	5.4	< 0.50	< 0.50	< 0.50
02/23/07	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	6.0	1.4	< 5.0	< 0.50	< 0.50	< 0.50
05/02/07	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	3.8	1.3	< 5.0	< 0.50	< 0.50	< 0.50
08/09/07	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	5.5	1.3	< 5.0	< 0.50	< 0.50	< 0.50
12/06/07	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1.8	1.5	< 5.0	< 0.50	< 0.50	< 0.50
02/26/08	260	< 50	32	1.3	0.62	0.92	3.4	5.6	7.7	< 0.50	0.60	< 0.50
05/30/08	71	< 50	1.8	< 0.50	< 0.50	< 0.50	2.4	3.1	< 5.0	< 0.50	< 0.50	< 0.50
08/28/08	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	2.1	2.2	< 5.0	< 0.50		
12/11/08	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	2.2	2.5	< 5.0	< 0.50		
03/31/09	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1.2	1.3	< 5.0	< 0.50	< 0.50	< 0.50
12/31/09	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1.9	1.5	< 5.0	< 0.50	< 0.50	< 0.50
06/03/10	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	0.56	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
12/20/10	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	0.61	0.67	< 5.0	< 0.50	< 0.50	< 0.50
06/30/11	< 50	< 50	1.6	< 0.50	< 0.50	< 0.50	< 0.50	1.0	< 5.0	< 0.50	< 0.50	< 0.50
06/22/12	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
12/13/12	79	< 50	2.7	< 0.50	0.86	0.74	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
06/18/13	<50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50

Well/												
Date	TPH	TPH			Ethyl-	Total				Other		
Sampled	Gasoline	Diesel	Benzene	Toluene	benzene	Xylenes	MTBE	DIPE	TBA	Oxys	EDC	EDB
MW-6												
06/11/02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	1.2				< 0.5	< 0.5
09/17/02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	1.0				< 0.5	< 0.5
12/18/02	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	0.90				< 0.5	< 0.5
03/25/03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0				< 0.5	< 0.5
06/23/03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				< 0.5	< 0.5
09/25/03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				< 0.5	< 0.5
12/18/03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				< 0.5	< 0.5
03/12/04	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				< 0.5	< 0.5
06/17/04	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				< 0.5	< 0.5
09/17/04	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				< 0.5	< 0.5
11/10/04***	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0					
12/17/04	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5				< 0.5	< 0.5
04/28/05	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
07/19/05	< 50	ra	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5	< 0.5	< 0.5
10/03/05	< 50	ria < 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0	< 0.5	< 0.5	< 0.5
12/06/05	< 50 < 50	< 50 < 50	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 5.0	< 0.5	< 5.0	< 0.5	< 0.5	< 0.5
03/15/06	< 50 < 50	< 50 < 50	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
06/28/06	< 50 < 50	< 50 < 50	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 0.65	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 5.0	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
08/31/06	< 50 < 50	< 50 < 50	< 0.50	< 0.5 2.4	0.90	4.0	< 0.50	< 0.50	< 5.0 < 5.0	< 0.50 < 0.50	< 0.50	< 0.50
11/21/06	< 50 < 50	< 50 < 50	< 0.50	< 0.5	< 0.5	4.0 < 0.5	< 5.0	< 0.50	< 5.0 < 5.0	< 0.50	< 0.50	< 0.50
02/23/07	< 50 < 50	< 50 < 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0 < 5.0	< 0.50	< 0.50	< 0.50
05/02/07	< 50 < 50	< 50 < 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0 < 5.0	< 0.50	< 0.50	< 0.50
08/09/07	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
12/06/07	< 50 < 50	< 50 < 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0 < 5.0	< 0.50	< 0.50	< 0.50
02/26/08	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
05/30/08	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
08/28/08	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
12/11/08	< 50 < 50	< 50 < 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0 < 5.0	< 0.50		
03/31/09	< 50 < 50	< 50 < 50			< 0.50	< 0.50	< 0.50	< 0.50			< 0.50	< 0.50
12/31/09	< 50 < 50	< 50 < 50	< 0.50 < 0.50	< 0.50 < 0.50	< 0.50 < 0.50	< 0.50	< 0.50	< 0.50	< 5.0 < 5.0	< 0.50 < 0.50	< 0.50 < 0.50	< 0.50 < 0.50
06/03/10	< 50 < 50	< 50 < 50			< 0.50 < 0.50		< 0.50	< 0.50			< 0.50 < 0.50	< 0.50 < 0.50
12/20/10	< 50 < 50		< 0.50	< 0.50	< 0.50 < 0.50	< 0.50			< 5.0	< 0.50	< 0.50 < 0.50	< 0.50 < 0.50
		< 50	< 0.50	< 0.50		< 0.50	< 0.50	< 0.50	< 5.0	< 0.50		
06/30/11	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
06/22/12	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
12/13/12	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
06/18/13	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50

Well/												
Date	TPH	TPH			Ethyl-	Total				Other		
Sampled	Gasoline	Diesel	Benzene	Toluene	benzene	Xylenes	MTBE	DIPE	TBA	Охуя	EDC	EDB
	_	_	_	_	_	_	_	_	_	_	_	
MW-7	70.000	. 0 000	800	E 100	1000	E 000	.00				.00	.00
06/25/02	38,000	< 2,000	890	5,100	1,200	5,200	< 20				< 20	< 20
09/17/02	26,000	< 2,000	590	3,600	880	4,000	< 20				< 20	< 20
12/18/02	# C		SAMPLED - (a	- ·-
03/25/03	39,000	< 2,900	410	7,700	1,000	6,400	< 5.0				< 2.5	< 2.5
06/23/03	17,000	< 1,000	440	2,600	630	2,600	< 10				< 10	< 10
09/26/03	17,000	< 1,000	230	1,800	470	2,200	< 5.0				< 5.0	< 5.0
12/18/03	20,000	< 1,000	290	2,500	590	2,900	< 5.0				< 5.0	< 5.0
03/12/04	20,000	< 1,500	300	3,000	760	3,200	< 10				< 10	< 10
06/17/04	12,000	< 800	250	1,800	450	1,900	< 5.0				< 5.0	< 5.0
09/17/04	9,900		200	1,500	450	1,800	< 5.0					
11/10/04***	20,000	1,900	550	4,200	920	4,000	< 500					
12/17/04	14,000	< 800	220	1,700	530	2,000	< 3.0				< 3.0	< 3.0
04/28/05	13,000	< 300	84	1,000	660	2,200	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5
07/19/05	16,000	na	170	1,800	540	2,200	< 2.5	< 2.5	< 5.0	< 2.5	< 2.5	< 2.5
10/03/05	7,400	< 200	140	710	350	1,100	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
12/06/05	22,000	< 600	240	2,300	800	3,400	< 5.0					
03/15/06	3,800	< 200	4.6	160	120	620	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
06/28/06	6,400	< 500	19.0	340	490	940	< 0.90	< 0.50	< 5.0	< 0.50	< 0.90	< 0.90
08/31/06	20,000	< 600	160	2,200	1,300	3,500	< 2.5	1.4	< 15	< 5.0	< 2.5	< 2.5
11/21/06	21,000	< 1,000	240	2,500	880	3,400	< 5.0	< 5.0	< 25	< 5.0	< 5.0	< 5.0
02/23/07	10,000	< 200	150	1,300	580	2,400	< 2.5	< 2.5	< 15	< 2.5	< 2.5	< 2.5
05/02/07	26,000	< 1,000	300	2,400	1,800	6,700	< 2.5	< 2.5	< 50	< 2.5	< 2.5	< 2.5
08/09/07	13,000	< 800	250	800	1,000	3,000	< 2.5	< 2.5	< 15	< 2.5	< 2.5	< 2.5
12/06/07	9,600	< 1,000	160	850	530	2,000	< 2.5	< 2.5	45	< 2.5	< 2.5	< 2.5
02/26/08	14,000	< 800	190	1,000	740	3,000	< 2.5	< 2.5	69	< 2.5	< 2.5	< 2.5
05/30/08	9,900	< 200	160	620	590	2,300	< 2.5	< 2.5	< 15	< 2.5	< 2.5	< 2.5
08/28/08	11,000	< 800	180	500	650	2,400	< 2.5	< 2.5	< 15	< 2.5		
12/11/08	8,000	< 500	160	300	540	1,600	< 2.5	< 2.5	< 15	< 2.5		
03/31/09	5,600	< 300	82	190	360	1,000	< 1.5	< 1.5	< 7.0	< 1.5	< 1.5	< 1.5
12/31/09	16,000	< 800	140	1,200	750	2,800	< 0.5	< 0.50	10	< 0.50	< 0.50	< 0.50
06/03/10	22,000	< 2,000	160	1,000	1,300	3,500	< 5.0	< 5.0	< 25	< 5.0	< 5.0	< 5.0
12/20/10	23,000	< 1,000	230	820	1,500	4,900	< 5.0	< 5.0	< 25	< 5.0	< 5.0	< 5.0
06/30/11	26,000	< 4,000	190	310	1,800	3,900	< 5.0	< 5.0	< 25	< 5.0	< 5.0	< 5.0
06/22/12	10,000	< 600	120	52	1,100	310	< 2.0	< 2.0	43	< 2.0	< 2.0	< 2.0
12/13/12	16,000	610	78	80	1,000	940	< 2.5	< 2.5	< 15	< 2.5	< 2.5	< 2.5
06/18/13	6,000	250	19	22	310	390	< 0.90	< 0.90	6.3	< 0.90	< 0.90	< 0.90

Summary of Chemical Analysis of Groundwater Samples Petroleum Hydrocarbon Concentrations All results are in parts per billion

Well/												
Date	TPH	TPH			Ethyl-	Total				Other		
Sampled	Gasoline	Diesel	Benzene	Toluene	benzene	Xylenes	MTBE	DIPE	TBA	Oxys	EDC	EDB
MW-8												
02/26/08	< 50	< 50	0.51	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
05/30/08	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
08/28/08	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50		
12/11/08	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50		
03/31/09	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
12/31/09	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
06/03/10	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
12/20/10	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
06/30/11	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
06/22/12	< 50	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
12/13/12	< 50	56	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
06/18/13	< 50	83	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50
ESL	100	100	1	40	30	20	5					

Non-detectable concentrations noted by the less than sign (<) followed by the detection limit.

Nost recent data in bold.

ESL = Environmental occenting levels presented in the "Screening For Environmental Concerns
at Sites With Contaminated Soil and Croundwater (May 2008)" document prepared by the California Regional Water Quality
Control Board. San Francisco Bay Realon.

TPH = Total petroleum hydrocarbons

MTBE = Methyl tertiary butyl ether

EDC = 1,2-Dibromoethane

DIPE = Diisopropyl ether TBA = Tery-butanol

Oxy = Oxygenates

Notes:

* = Hydrocarbons reported are in the early diesel range, and do not match the laboratory standards.

** = Hydrocarbons reported do not match the laboratory gasoline standard.

** = Chydrocarbons reported do not match the laboratory gasoline standard.

** = Estimated concentration reported due to overlapping fuel patterns.

/ = Results esparated by a slash represent results from two different laboratory methods (8020/8260) na = not analyzed.

APPENDIX A

Certified Analytical Report and Chain of Custody Documentation for Air Bag Samples

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Aqua Science Engineers, Inc.	Client Project ID: #2808; LIM	Date Sampled: 08/08/13
55 Oak Court Suite 220		Date Received: 08/08/13
33 Ouk Court Suite 220	Client Contact: Dave Allen	Date Reported: 08/09/13
Danville, CA 94526	Client P.O.:	Date Completed: 08/09/13

WorkOrder: 1308299

August 09, 2013

Dear Dave:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: #2808; LIM,
- 2) QC data for the above sample, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

1308299

Aqua Science Engineers, Inc. 55 Oak Court, Suite 220 Danville, CA 94526 (925) 820-9391

RUSHChain of Custody

Our CO							ECT I	NAME 2	10	- KM	5	TRE	ET,	OA	+ KC L	-12	JOB N		2808	
ANALYSIS REQUEST SPECIAL INSTRUCTIONS:	SAMPLE ID.			TPH-GAS / MTBE & BTEX (EPA 5030/8015-9020)	EL 3	TPH-DIESEL & MOTOR OIL (EPA 3510/8015)	CAM 17 METALS (EPA 6010+7000)	SEMI-VOLATILE ORGANICS (EPA 625/8270)	Pb (TOTAL or DISSOLVED) (EPA 6010)	DES 1)	FUEL OXYGENATES (EPA 8260)	PURGEABLE HALOCARBONS (EPA 601/8010)	TPH-G/BTEX/5 OXYS (EPA METHOD 8260)	MULTI-RANGE HYDROCARBONS WITH SILICA GEL CLEANUP (EPA 8015)	VOLATILE ORGANICS (EPA 624/8240/8260)	TALS (5) 0+7000)	SITE 4:1			
SAMPLE ID. SAMPL		TPH-GAS (EPA 5030	TPH-DIESEL (EPA 3510/8015)	TPH-DIES (EPA 351	CAM 17 (EPA 60	SEMI-VO (EPA 625	Pb (TOT (EPA 601	PESTICIDES (EPA 8081)	FUEL O) (EPA 826	FUEL OF (EPA 828)	TPH-G/E (EPA ME	MULTI-R HYDROG GEL CLE	VOLATIL (EPA 624	LUFT METALS (5) (EPA 6010+7000)	COMPOSITE 4:1	EDF	,			
											-									
signature) (time) (signature) (time)		145	1	LINOU	SHED	- (1	(850		RECEIVED BY LABORATORY: (signature) (time)		C	COMMENTS:								
(printed name) (date) Company-ASE, INC.	Ben 456 5 8/3/13 (printed name) (date) Company-McCampbell			ate)	(printed name) (date)					- 1"	(printed name) (date) Company-				_	TURN AROUND TIME STANDARD 24Hr 48Hr 72Hr OTHER:				

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

ClientCode: ASED

WorkOrder: 1308299

Page 1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

□WaterTrax WriteOn □ EDF □ Excel **EQuIS** ✓ Email ☐ HardCopy ☐ ThirdParty □ J-flag Report to: Bill to: Requested TAT: 3 days Dave Allen Email: dallen@aguascienceengineers.com Diane Schiell Aqua Science Engineers, Inc. Aqua Science Engineers, Inc. CC: Date Received: 08/08/2013 PO: 55 Oak Court Suite 220 217 Wild Flower Drive ProjectNo: #2808; LIM Roseville, CA 95678 Danville, CA 94526 Date Printed: 08/08/2013 (925) 820-9391 FAX: (925) 837-4853 deezthng22@yahoo.com Requested Tests (See legend below) Lab ID 2 3 5 8 10 12 Client ID Matrix Collection Date Hold 4 11 1308299-001 INF-8.8.13 Air 8/8/2013 12:30 Α Test Legend: 5 1 **G-MBTEX AIR** 2 3 4 7 8 9 10 6 11 12 The following SampID: 001A contains testgroup. Prepared by: Jena Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	Aqua Science Engin	eers, inc.			Date a	and IIm	ne Received:	8/8/2013 7:2	8:38 PW
Project Name:	#2808; LIM				LogIn	Reviev	ved by:		Jena Alfaro
WorkOrder N°:	1308299	Matrix: <u>Air</u>			Carrie	er: <u>E</u>	<u> Benjamin Ysla</u>	s (MAI Courier)
		<u>Cha</u> i	in of Cι	ustody (COC) Informa	<u>ıtion</u>			
Chain of custody	present?		Yes	✓	No 🗌				
Chain of custody	signed when relinquis	hed and received?	Yes	✓	No 🗌				
Chain of custody	agrees with sample la	bels?	Yes	✓	No 🗌				
Sample IDs note	d by Client on COC?		Yes	✓	No 🗌				
Date and Time of	f collection noted by Cl	lient on COC?	Yes	✓	No 🗌				
Sampler's name	noted on COC?		Yes	✓	No 🗌				
		;	Sample	Receipt Info	ormation				
Custody seals int	tact on shipping contai	ner/cooler?	Yes		No 🗌			NA 🗸	
Shipping containe	er/cooler in good condi	ition?	Yes	✓	No 🗌				
Samples in prope	er containers/bottles?		Yes	✓	No 🗌				
Sample containe	rs intact?		Yes	✓	No 🗌				
Sufficient sample	volume for indicated t	test?	Yes	✓	No 🗆				
		Sample Pres	<u>ervatio</u>	n and Hold 1	ime (HT)	Inforn	<u>nation</u>		
All samples recei	ived within holding time	e?	Yes	✓	No 🗌				
Container/Temp	Blank temperature		Coole	er Temp:				NA 🗸	
Water - VOA vial	s have zero headspace	e / no bubbles?	Yes		No \square	No VO	OA vials subm	itted 🗸	
Sample labels ch	ecked for correct pres	ervation?	Yes	✓	No 🗌				
Metal - pH accep	table upon receipt (pH	<2)?	Yes		No \square			NA 🗸	
Samples Receive	ed on Ice?		Yes		No 🗸				
* NOTE: If the "N	lo" box is checked, see	e comments below.				<u> </u>		====	:=====

"When Quality Counts" http://www.								obell.com / E-mail:	main@mccampb	ell.com		
Aqua	Science Engineers,	Inc.		Client I	Project ID:	#2808; LIN	1	Date Sample	ed: 08/08	8/13		
55 Oa	ak Court Suite 220							Date Receiv	red: 08/08	8/13		
	004.10 04.100 220			Client (Contact: Da	ve Allen		Date Extract	ted: 08/09	9/13		
Danv	ille, CA 94526			Client l	P.O.:			Date Analyz	zed: 08/09	9/13		
Extracti	Gas on method: SW5030B	soline Ra	ange (C	C6-C12)	-		s as Gasoli SW8021B/8015	ne with BTE	X and MTI		rk Order:	1308200
Lab ID	Client ID	Matrix	T	PH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	INF-8.8.13	A		0,000	ND<350	250	340	12	480	6.7	#	d1

Reporting Limit for DF =1; ND means not detected at or	A	25	2.5	0.25	0.25	0.25	0.25	μg/L
above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg

^{*} water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples in mg/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

_____Angela Rydelius, Lab Manager

[#] cluttered chromatogram; sample peak coelutes with surrogate peak; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

CDPH ELAP 1644 ♦ NELAP 12283CA

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com/ E-mail: main@mccampbell.com/

-	"When Quality Counts" http://www.mccampocn.com/ 12-man. mamaginecampocn.com												
Aqua	Science Engineer	s, Inc.		Client Project	ID: #2808; I	JM	Date Sampled: 08/08/13						
55 Oa	nk Court Suite 220)					Date Received: 08/08/13						
	AR COURT DUITE 220	,		Client Contact	: Dave Allen		Date Extract	ed: 08/09/1	13				
Danvi	ille, CA 94526			Client P.O.:			Date Analyz	ed: 08/09/1	13				
Extracti	Gasol ion method: SW5030B		ige (C6-C		drocarbons a			th MTBE and BTEX in ppmv* Bm Work Order: 1308299					
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments		
001A	INF-8.8.13	A	5600	ND<90	78	89	2.7	110	6.7	#	d1		
											1		
											1		
											1		
											1		
											1		
											1		
	ppm (mg/L) to p	ppmv (ul/L) c	conversion for TPH(g) assumes the m	olecular weight	of gasoline to be e	equal to that of h	nexane.				
Repor	rting Limit for DF =1;	A	7.0	0.68	0.077	0.065	0.057	0.057	1		uL/L		
ND me	eans not detected at or we the reporting limit	S	NA	NA	NA	NA	NA	NA	1		ng/Kg		
	samples are reported i P & SPLP extracts are			id samples in mg/kg	g, wipe samples i	in μg/wipe, proc	luct/oil/non-aqueou	us liquid sample	s in mg/	L, water	samples and		
# clutter	ed chromatogram; sar	mple peak	coelutes with	ı surrogate peak; %	SS = Percent Rec	covery of Surrog	gate Standard; DF	= Dilution Fact	or				
	owing descriptions of				are and McCampl	bell Analytical i	s not responsible fo	or their interpret	tation:				
ai) wea	kly modified or unmo	diffed gase	oline is signif	icant									

IA Analyst's Initial

Page 6 of 7

Angela Rydelius, Lab Manager

OC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air QC Matrix: Water BatchID: 80379 WorkOrder: 1308299

EPA Method: SW8021B/8015Bm Extraction: SW5030B Spiked Sample ID: N/A												
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)			
, and yet	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS			
TPH(btex) [£]	N/A	60	N/A	N/A	N/A	102	N/A	N/A	70 - 130			
MTBE	N/A	10	N/A	N/A	N/A	94.3	N/A	N/A	70 - 130			
Benzene	N/A	10	N/A	N/A	N/A	103	N/A	N/A	70 - 130			
Toluene	N/A	10	N/A	N/A	N/A	105	N/A	N/A	70 - 130			
Ethylbenzene	N/A	10	N/A	N/A	N/A	105	N/A	N/A	70 - 130			
Xylenes	N/A	30	N/A	N/A	N/A	106	N/A	N/A	70 - 130			
%SS:	N/A	10	N/A	N/A	N/A	99	N/A	N/A	70 - 130			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 80379 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1308299-001A	08/08/13 12:30 PM	1 08/09/13	08/09/13 6:56 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

SA QA/QC Officer

Analytical Report

Aqua Science Engineers, Inc.	Client Project ID: #2808; LIM	Date Sampled: 08/08/13
55 Oak Court Suite 220		Date Received: 08/08/13
33 Our Court Suite 220	Client Contact: Dave Allen	Date Reported: 08/09/13
Danville, CA 94526	Client P.O.:	Date Completed: 08/09/13

WorkOrder: 1308300

August 09, 2013

Dear Dave:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: #2808; LIM,
- 2) QC data for the above sample, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

qua Science Engineers, Inc. 5 Oak Court, Suite 220 Panville, CA 94526 925) 820-9391 PAX (925) 837-4853	JS	H		C	h	ai	n	0	f (Qu	IS	to	d	У			PAGE		of	.(
AMPLER (SIGNATURE)						PRO	ECT N		50	L1	M	EEI	- 04	++	tun				280	8
ANALYSIS REQUEST	NALYSIS REQUEST					ADDI	LOO						100							
ECIAL INSTRUCTIONS:				TPH-GAS / MTBE & BTEX (EPA 5030/8015-8020)	J. 8015)	TPH-DIESEL & MOTOR OIL (EPA 3510/8015)	(EPA 6010+7000)	SEMI-VOLATILE ORGANICS (EPA 625/8270)	Pb (TOTAL or DISSOLVED) (EPA 6010)	DES 11)	FUEL OXYGENATES (EPA 8260)	PURGEABLE HALOCARBONS (EPA 601/8010)	TPH-G/BTEX/S OXYS (EPA METHOD 8260)	MULTI-RANGE HYDROCARBONS WITH SILICA GEL CLEANUP (EPA 8015)	VOLATILE ORGANICS (EPA 624/8240/8260)	LUFT METALS (5) (EPA 6010+7000)	SITE 4:1			
SAMPLE ID.	DATE	TIME	MATRIX	CUANTITY	TPH-GAS (EPA 5030	TPH-DIESEL (EPA 3510/8015)	TPH-DIES (EPA 3510	CAM 17 (EPA 601	SEMI-VO (EPA 625	Pb (TOT (EPA 601	PESTICIDES (EPA 8081)	FUEL OX (EPA 826	PURGE/ (EPA 60'	TPH-G/B (EPA ME	MULTI-R. HYDROG GEL CLE	VOLATILI (EPA 624	LUFT ME (EPA 601	COMPOSITE 4:1	EDF	
INF-8.8.13	8/8	1245	Air	1	6															
											1									
(signature) (time) (signature) (time) QUID ALLEN 8/8/13 Den 15/15 (printed name) (date) (printed name) (date)				145 B) 3 ate)	(SI	LINOM gnature		(1	1850 (me) 8 /8 (date)) (s	eceive		7	atory:		STANDA	TURN A		D TIME	
Company-ASE, INC. Company-						Co	mpany	! -			C	ompan	1-M/	41			O ITTEN			

McCampbell Analytical, Inc.

INF-8.8.13

CHAIN-OF-CUSTODY RECORD

ClientCode: ASED

WorkOrder: 1308300

Page 1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

EQuIS □WaterTrax WriteOn □EDF □ Excel ✓ Email ☐ HardCopy ☐ ThirdParty ☐ J-flag Report to: Bill to: Requested TAT: 3 days Dave Allen Email: dallen@aguascienceengineers.com Diane Schiell Aqua Science Engineers, Inc. Aqua Science Engineers, Inc. CC: Date Received: 08/08/2013 PO: 55 Oak Court Suite 220 217 Wild Flower Drive Roseville, CA 95678 Danville, CA 94526 ProjectNo: #2808; LIM Date Printed: 08/08/2013 (925) 820-9391 FAX: (925) 837-4853 deezthng22@yahoo.com Requested Tests (See legend below) Lab ID 2 3 5 8 10 12 Client ID Matrix 4 11 Collection Date Hold

Α

8/8/2013 12:45

Test Legend:

1308300-001

1 G-MBTEX_AIR	2	3	4	5
6	7	8	9	10
11	12	7		

The following SampID: 001A contains testgroup.

Prepared by: Zoraida Cortez

Air

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	Aqua Science Engine	eers, Inc.			Date a	and Time Received	d: 8/8/2013 7:3 (D:45 PM
Project Name:	#2808; LIM				LogIn	Reviewed by:		Zoraida Cortez
WorkOrder N°:	1308300	Matrix: <u>Air</u>			Carrie	r: <u>Benjamin Ys</u>	slas (MAI Courier)	
		<u>Chai</u>	n of Cu	ıstody (COC)	Informat	<u>tion</u>		
Chain of custody	present?		Yes	•	No 🗌			
Chain of custody	signed when relinquisl	hed and received?	Yes	•	No 🗌			
Chain of custody	agrees with sample la	bels?	Yes	•	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	✓	No \square			
Date and Time of	f collection noted by Cl	lient on COC?	Yes	✓	No \square			
Sampler's name	noted on COC?		Yes	✓	No 🗌			
		<u> </u>	Sample	Receipt Info	ormation			
Custody seals int	tact on shipping contai	ner/cooler?	Yes		No 🗌		NA 🗸	
Shipping containe	er/cooler in good condi	ition?	Yes	•	No 🗌			
Samples in prope	er containers/bottles?		Yes	•	No 🗌			
Sample containe	rs intact?		Yes	•	No 🗌			
Sufficient sample	e volume for indicated t	est?	Yes	•	No \square			
		Sample Prese	ervatio	n and Hold T	ime (HT)	<u>Information</u>		
All samples recei	ived within holding time	e?	Yes	•	No 🗌			
Container/Temp	Blank temperature		Coole	r Temp:			NA 🗸	
Water - VOA vial	s have zero headspace	e / no bubbles?	Yes		No \square	No VOA vials sub	omitted 🗸	
Sample labels ch	necked for correct pres	ervation?	Yes	•	No 🗌			
Metal - pH accep	table upon receipt (pH	<2)?	Yes		No \square		NA 🗸	
Samples Receive	ed on Ice?		Yes		No 🗸			
* NOTE: If the "N	lo" box is checked, see	e comments below.						
		- — — — — — -						

) "W	hen Qua	lity Cou	ints"		http://www.mccampbell.com / E-mail: main@mccampbell.com								
Aqua	Science Engineers, Ir	nc.		Client I	Project ID:	#2808; LIN	ſ	Date Sample	ed: 08/08	3/13				
55 Ωa	k Court Suite 220							Date Receiv	ed: 08/08	3/13				
33 Oa	k Court Suite 220			Client (Contact: Da	ive Allen		Date Extract	ed: 08/09	9/13				
Danvi	lle, CA 94526			Client I	P.O.:			Date Analyz	ed: 08/09	9/13				
		oline Ra	nge (C	C6-C12)	-			ne with BTE	X and MTI	BE*				
Extractio	on method: SW5030B				Analyt	tical methods: S	SW8021B/8015I			Wor	k Order:	1308300		
Lab ID	Client ID	Matrix	TP	PH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments		
001A	INF-8.8.13	A	1	400	ND<15	12	23	1.3	47	1	#	d1		
	orting Limit for DF =1; neans not detected at or	A		25	2.5	0.25	0.25	0.25	0.25		μg/I			
	ve the reporting limit	S	1	1.0	0.05	0.005	0.005	0.005	0.005		mg/K	g		

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

Angela Rydelius, Lab Manager

-	"When Quality Counts" http://www.inccampoch.com/ 12-man. mamagniccampoch.com													
Aqua	Science Engineer	s, Inc.		Client Project 1	ID: #2808; L	IM	Date Sampled: 08/08/13							
55 Qa	ık Court Suite 220)					Date Received: 08/08/13							
22 04	R Court Suite 220			Client Contact:	Dave Allen		Date Extract	ed: 08/09/1	3					
Danvi	ille, CA 94526			Client P.O.:			Date Analyz	ed: 08/09/1	3					
Extracti	Gasol on method: SW5030B		ige (C6-C	- ·	drocarbons a		vith MTBE and BTEX in ppmv* 15Bm Work Order: 1308300							
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments			
001A	INF-8.8.13	A	380	ND<5.0	3.7	6.0	0.30	11	1	#	d1			
	ppm (mg/L) to p	pmv (ul/L) c	conversion for TPH(g	g) assumes the m	olecular weight	of gasoline to be e	qual to that of h	exane.					
	ting Limit for DF =1;	A	7.0	0.68	0.077	0.065	0.057	0.057	1		uL/L			
	eans not detected at or we the reporting limit	S	NA	NA	NA	NA	NA	NA	1	r	ng/Kg			
	samples are reported i P & SPLP extracts are			id samples in mg/kg	, wipe samples i	n μg/wipe, prod	luct/oil/non-aqueou	ıs liquid sample	s in mg/	L, water	samples and			
# clutter	ed chromatogram; san	nple peak	coelutes with	ı surrogate peak; %	SS = Percent Rec	overy of Surrog	gate Standard; DF	= Dilution Facto	or					
	owing descriptions of kly modified or unmod				re and McCampb	oell Analytical is	s not responsible fo	or their interpret	ation:					

IA Analyst's Initial Angela Rydelius, Lab Manager

OC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air QC Matrix: Water BatchID: 80379 WorkOrder: 1308300

EPA Method: SW8021B/8015Bm Extraction: S	W5030B					5	Spiked Sam	ple ID:	N/A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, and yet	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	N/A	60	N/A	N/A	N/A	102	N/A	N/A	70 - 130
MTBE	N/A	10	N/A	N/A	N/A	94.3	N/A	N/A	70 - 130
Benzene	N/A	10	N/A	N/A	N/A	103	N/A	N/A	70 - 130
Toluene	N/A	10	N/A	N/A	N/A	105	N/A	N/A	70 - 130
Ethylbenzene	N/A	10	N/A	N/A	N/A	105	N/A	N/A	70 - 130
Xylenes	N/A	30	N/A	N/A	N/A	106	N/A	N/A	70 - 130
%SS:	N/A	10	N/A	N/A	N/A	99	N/A	N/A	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 80379 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1308300-001A	08/08/13 12:45 PM	1 08/09/13	08/09/13 6:26 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

SH QA/QC Officer

Aqua Science Engineers, Inc. 55 Oak Court, Danville, CA 94526 (925) 820-9391 - Fax (925) 837-4853 - www.aquascienceengineers.com

APPENDIX B

Remediation Systems Field Logs

FLOW IN PPMV*C35 VE-1 VE-2 VE-3 VE-4 VE-5 VE-6 VE-7 VE-8 VE-9 MW-3 MW-4		CAT-O	SYSTEM				VAPOR-EXT	RACTION WE	LLS OVM CO	NCENTRATIO	N IN PPMV*			
DATE CFM PPMV*C35 VE-1 VE-2 VE-3 VE-4 VE-5 VE-6 VE-7 VE-8 VE-9 MW-3 MW-4		ELOVAL TAL				_								
4/22/11 130 1096 240 34 119 125 440 465 570 4/25/11 130 986 185 28 95 130 400 390 565 4/25/11 100 923 210 26 100 100 350 450 442 4/26/11 90 912 230 25 98 86 410 422 388 4/27/11 78 747 210 32 112 56 360 364 224 4/29/11 65 790 320 30 90 45 320 320 312 364 224 4/29/11 65 790 320 30 90 45 320 320 312 320 312 320 312 320 320 312 320 320 312 320 320 312 320 320 312 320 312 320 320 312 </td <td>DATE</td> <td>_</td> <td></td> <td>VE-1</td> <td>VE-2</td> <td>VE-3</td> <td>VE-4</td> <td>VE-5</td> <td>VE-6</td> <td>VE-7</td> <td>VE-8</td> <td>VE-9</td> <td>MW-3</td> <td>MW-4</td>	DATE	_		VE-1	VE-2	VE-3	VE-4	VE-5	VE-6	VE-7	VE-8	VE-9	MW-3	MW-4
4/25/11 130 986 185 28 95 130 400 390 565 4/25/11 100 923 210 26 100 100 350 450 442 424 426/11 90 912 230 25 98 86 410 422 388 4/27/11 78 747 210 32 112 56 360 364 224 4/28/11 65 790 320 30 90 45 320 320 312 320 312 320 320 320 312 320 322 326 546 472 48 355 520 450 456 420 </td <td></td> <td></td> <td><u>. </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>			<u>. </u>								-			
4/25/11 100 923 210 26 100 100 350 450 442 4/26/11 90 912 230 25 98 86 410 422 388 4/27/11 78 747 210 32 112 56 360 364 224 4/29/11 65 790 320 30 90 45 320 320 310 312 312 364 224 4/29/11 65 790 320 30 90 45 320 320 312 320 312 320 312 320 312 320 312 320 312 320 312 320 312 320 312 320 320 312 320 320 312 320	4/22/11	130	1096	240	34	119	125	440					465	570
4/26/11 90 912 230 25 98 86 410 422 388 4/27/11 78 747 210 32 112 56 360 364 224 4/29/11 65 790 320 30 90 45 320 320 312 5/2/11 58 879 350 28 88 66 400 420 246 5/4/11 52 916 520 25 98 48 365 310 300 5/6/11 52 892 590 26 119 30 328 263 265 5/9/11 52 1079 610 22 234 45 290 85 80 140 15 200 240 5/16/11 48 1155 764 32 156 36 213 75 70 124 10 310 310 300 310 310 310 310 310 310 310 310 310 310 310 </td <td>4/25/11</td> <td>130</td> <td>986</td> <td>185</td> <td>28</td> <td>95</td> <td>130</td> <td>400</td> <td></td> <td></td> <td></td> <td></td> <td>390</td> <td>565</td>	4/25/11	130	986	185	28	95	130	400					390	565
4/26/11 90 912 230 25 98 86 410 422 388 4/27/11 78 747 210 32 112 56 360 364 224 4/29/11 65 790 320 30 90 45 320 320 312 5/2/11 58 879 350 28 88 66 400 420 246 5/4/11 52 916 520 25 98 48 365 310 300 5/6/11 52 892 590 26 119 30 328 263 265 5/9/11 52 1079 610 22 234 45 290 85 80 140 15 200 240 5/16/11 48 1155 764 32 156 36 213 75 70 124 10 310 310 300 310 362 213 75 70 124 10 311 116 66 420	4/25/11	100	923	210	26	100	100	350					450	442
4/27/11 78 747 210 32 112 56 360 364 224 4/29/11 65 790 320 30 90 45 320 320 312 5/2/11 58 879 350 28 88 66 400 420 246 5/4/11 52 916 520 25 98 48 365 360 263 265 5/9/11 52 1079 610 22 234 45 290 85 80 140 15 200 240 5/12/11 50 1016 556 40 185 40 265 80 84 135 11 216 235 5/16/11 48 1155 764 32 156 36 213 75 70 124 10 310 310 5/20/11 52 1158 810 26 164 38 312 92														
4/29/11 65 790 320 30 90 45 320 320 312 5/2/11 58 879 350 28 88 66 400 420 246 5/4/11 52 916 520 25 98 48 365 310 300 5/6/11 52 892 590 26 119 30 328 263 265 5/9/11 52 1079 610 22 234 45 290 85 80 140 15 200 240 5/12/11 50 1016 556 40 185 40 265 80 84 135 11 216 235 5/16/11 48 1155 764 32 156 36 213 75 70 124 10 310 310 310 310 310 310 310 310 310 310 310 310 31														
5/2/11 58 879 350 28 88 66 400 420 246 5/4/11 52 916 520 25 98 48 365 310 300 5/6/11 52 892 590 26 119 30 328 263 263 265 5/9/11 52 1079 610 22 234 45 290 85 80 140 15 200 240 5/12/11 50 1016 556 40 185 40 265 80 84 135 11 216 235 5/12/11 50 1016 556 40 185 40 265 80 84 135 11 216 235 5/12/11 48 1155 764 32 156 36 213 75 70 124 10 310 310 5/27/11 52 1158 810														
5/4/11 52 916 520 25 98 48 365 310 300 5/6/11 52 892 590 26 119 30 328 263 265 5/12/11 50 1016 556 40 185 40 265 80 84 135 11 216 235 5/12/11 50 1016 556 40 185 40 265 80 84 135 11 216 235 5/12/11 52 1158 810 26 164 38 312 92 88 156 14 186 220 5/23/11 50 1013 564 26 242 28 286 94 102 140 9 165 186 5/23/11 40 19 165 186 5/23/11 50 1013 712 35 126 58 286 94 102														
5/6/11 52 892 590 26 119 30 328 263 265 5/9/11 52 1079 610 22 234 45 290 85 80 140 15 200 240 5/12/11 50 1016 556 40 185 40 265 80 84 135 11 216 235 5/16/11 48 1155 764 32 156 36 213 75 70 124 10 310 310 5/20/11 50 1013 564 26 164 38 312 92 88 156 14 186 220 5/23/11 50 1013 564 26 242 28 86 94 102 140 9 165 186 5/25/11 46 1169 686 28 310 42 310 90 95 125 15 <td></td>														
5/9/11 52 1079 610 22 234 45 290 85 80 140 15 200 240 5/12/11 50 1016 556 40 185 40 265 80 84 135 11 216 235 5/16/11 48 1155 764 32 156 36 213 75 70 124 10 310 310 310 510 310														
5/12/11 50 1016 556 40 185 40 265 80 84 135 11 216 235 5/16/11 48 1155 764 32 156 36 213 75 70 124 10 311 310 310 310 310 310 310 310 310 310 310 310 310 310 312 310 300 315 320 310 310 312 310 310 312														
5/16/11 48 1155 764 32 156 36 213 75 70 124 10 310 310 5/20/11 52 1158 810 26 164 38 312 92 88 156 14 186 220 5/23/11 50 1013 564 26 242 28 286 94 102 140 9 165 186 5/25/11 46 1169 686 28 310 42 310 90 95 125 15 220 205 5/27/11 52 1031 712 35 126 58 268 110 115 120 22 165 143 5/30/11 50 923 572 34 164 29 345 102 99 133 13 120 68 6/3/11 48 948 660 30 135 20 320 86 95 144 11														
5/20/11 52 1158 810 26 164 38 312 92 88 156 14 186 220 5/23/11 50 1013 564 26 242 28 286 94 102 140 9 165 186 5/25/11 46 1169 686 28 310 42 310 90 95 125 15 220 205 5/27/11 52 1031 712 35 126 58 268 110 115 120 22 165 143 5/30/11 50 923 572 34 164 29 345 102 99 133 13 120 68 6/3/11 48 948 660 30 135 20 320 86 95 144 11 110 112 6/6/11 43 981 742 25 133 14 285 </td <td></td>														
5/23/11 50 1013 564 26 242 28 286 94 102 140 9 165 186 5/25/11 46 1169 686 28 310 42 310 90 95 125 15 220 205 5/27/11 52 1031 712 35 126 58 268 110 115 120 22 165 143 5/30/11 50 923 572 34 164 29 345 102 99 133 13 120 68 6/3/11 48 948 660 30 135 20 320 86 95 144 11 110 112 6/6/11 43 981 742 25 133 14 285 95 90 126 8 123 142 6/8/11 48 983 762 26 142 25 246														
5/25/11 46 1169 686 28 310 42 310 90 95 125 15 220 205 5/27/11 52 1031 712 35 126 58 268 110 115 120 22 165 143 5/30/11 50 923 572 34 164 29 345 102 99 133 13 120 68 6/3/11 48 948 660 30 135 20 320 86 95 144 11 110 112 6/6/11 43 981 742 25 133 14 285 95 90 126 8 123 142 6/8/11 48 983 762 26 142 25 246 84 84 139 7 120 152 6/6/11 48 944 688 22 139 28 288 116 96 120 <td></td>														
5/27/11 52 1031 712 35 126 58 268 110 115 120 22 165 143 5/30/11 50 923 572 34 164 29 345 102 99 133 13 120 68 6/3/11 48 948 660 30 135 20 320 86 95 144 11 110 112 6/6/11 43 981 742 25 133 14 285 95 90 126 8 123 142 6/8/11 48 983 762 26 142 25 246 84 84 139 7 120 152 6/10/11 48 944 688 22 139 28 288 116 96 120 8 105 106 6/13/11 52 1152 884 24 115 32 296														
5/30/11 50 923 572 34 164 29 345 102 99 133 13 120 68 6/3/11 48 948 660 30 135 20 320 86 95 144 11 110 112 6/6/11 43 981 742 25 133 14 285 95 90 126 8 123 142 6/8/11 48 983 762 26 142 25 246 84 84 139 7 120 152 6/10/11 48 944 688 22 139 28 288 116 96 120 8 105 106 6/13/11 52 1152 884 24 115 32 296 125 102 144 9 134 229 6/16/11 50 1183 920 24 135 18 305														
6/3/11 48 948 660 30 135 20 320 86 95 144 11 110 112 6/6/11 43 981 742 25 133 14 285 95 90 126 8 123 142 6/8/11 48 983 762 26 142 25 246 84 84 139 7 120 152 6/10/11 48 944 688 22 139 28 288 116 96 120 8 105 106 6/13/11 52 1152 884 24 115 32 296 125 102 144 9 134 229 6/16/11 50 1183 920 24 135 18 305 102 114 152 5 130 245 6/20/11 46 1277 1122 28 128 22 308 96 84 132 11 125 266 6/22/11 42 1180 952 18 130 24 264 85 98 130 6 128 310 6/24/11 55 1105 878 20 134 26 277 118 102 148 5 106 195 6/27/11 52 1141 765 26 127 26 263 102 100 122 6 144 393 7/8/11 49 926 555 25 130 18 298 99 90 130 9 132 222 7/12/11 45 788 500 24 125 15 287 101 89 133 8 124 252 7/18/11 46 745 541 21 124 14 302 85 88 125 8 142 244	, ,													
6/6/11 43 981 742 25 133 14 285 95 90 126 8 123 142 6/8/11 48 983 762 26 142 25 246 84 84 139 7 120 152 6/10/11 48 944 688 22 139 28 288 116 96 120 8 105 106 6/13/11 52 1152 884 24 115 32 296 125 102 144 9 134 229 6/16/11 50 1183 920 24 135 18 305 102 114 152 5 130 245 6/20/11 46 1277 1122 28 128 22 308 96 84 132 11 125 266 6/22/11 42 1180 952 18 130 24 264 85 98 130 6 128 310 6/24/11 55 1105 878 20 134 26 277 118 102 148 5 106 195 6/27/11 52 1141 765 26 127 26 263 102 100 122 6 144 393 7/8/11 49 926 555 25 130 18 298 99 90 130 9 132 222 7/12/11 45 788 500 24 125 15 287 101 89 133 8 124 252 7/18/11 46 745 541 21 124 14 302 85 88 125 8 142 244	5/30/11	50	923	572	34	164	29	345	102	99	133	13	120	68
6/8/11 48 983 762 26 142 25 246 84 84 139 7 120 152 6/10/11 48 944 688 22 139 28 288 116 96 120 8 105 106 6/13/11 52 1152 884 24 115 32 296 125 102 144 9 134 229 6/16/11 50 1183 920 24 135 18 305 102 114 152 5 130 245 6/20/11 46 1277 1122 28 128 22 308 96 84 132 11 125 266 6/22/11 42 1180 952 18 130 24 264 85 98 130 6 128 310 6/24/11 55 1105 878 20 134 26 277 118 102 148 5 106 195 6/27/11 52 1141 765 26 127 26 263 102 100 122 6 144 393 7/8/11 49 926 555 25 130 18 298 99 90 130 9 132 222 7/12/11 45 788 500 24 125 15 287 101 89 133 8 124 252 7/18/11 46 745 541 21 124 14 302 85 88 125 8 142 244	6/3/11	48	948	660	30	135	20	320	86	95	144	11	110	112
6/10/11 48 944 688 22 139 28 288 116 96 120 8 105 106 6/13/11 52 1152 884 24 115 32 296 125 102 144 9 134 229 6/16/11 50 1183 920 24 135 18 305 102 114 152 5 130 245 6/20/11 46 1277 1122 28 128 22 308 96 84 132 11 125 266 6/22/11 42 1180 952 18 130 24 264 85 98 130 6 128 310 6/24/11 55 1105 878 20 134 26 277 118 102 148 5 106 195 6/27/11 52 1141 765 26 127 26 263 102 100 122 6 144 393 7/8/11 49 926 555 25 130 18 298 99 90 130 9 132 222 7/12/11 45 788 500 24 125 15 287 101 89 133 8 124 252 7/18/11 46 745 541 21 124 14 302 85 88 125 8 142 244	6/6/11	43	981	742	25	133	14	285	95	90	126	8	123	142
6/13/11 52 1152 884 24 115 32 296 125 102 144 9 134 229 6/16/11 50 1183 920 24 135 18 305 102 114 152 5 130 245 6/20/11 46 1277 1122 28 128 22 308 96 84 132 11 125 266 6/22/11 42 1180 952 18 130 24 264 85 98 130 6 128 310 6/24/11 55 1105 878 20 134 26 277 118 102 148 5 106 195 6/27/11 52 1141 765 26 127 26 263 102 100 122 6 144 393 7/8/11 49 926 555 25 130 18 298 99 90 130 9 132 222 7/12/11 45<	6/8/11	48	983	762	26	142	25	246	84	84	139	7	120	152
6/16/11 50 1183 920 24 135 18 305 102 114 152 5 130 245 6/20/11 46 1277 1122 28 128 22 308 96 84 132 11 125 266 6/22/11 42 1180 952 18 130 24 264 85 98 130 6 128 310 6/24/11 55 1105 878 20 134 26 277 118 102 148 5 106 195 6/27/11 52 1141 765 26 127 26 263 102 100 122 6 144 393 7/8/11 49 926 555 25 130 18 298 99 90 130 9 132 222 7/12/11 45 788 500 24 125 15 287 101 89 133 8 124 252 7/18/11 46 <td>6/10/11</td> <td>48</td> <td>944</td> <td>688</td> <td>22</td> <td>139</td> <td>28</td> <td>288</td> <td>116</td> <td>96</td> <td>120</td> <td>8</td> <td>105</td> <td>106</td>	6/10/11	48	944	688	22	139	28	288	116	96	120	8	105	106
6/20/11 46 1277 1122 28 128 22 308 96 84 132 11 125 266 6/22/11 42 1180 952 18 130 24 264 85 98 130 6 128 310 6/24/11 55 1105 878 20 134 26 277 118 102 148 5 106 195 6/27/11 52 1141 765 26 127 26 263 102 100 122 6 144 393 7/8/11 49 926 555 25 130 18 298 99 90 130 9 132 222 7/12/11 45 788 500 24 125 15 287 101 89 133 8 124 252 7/18/11 46 745 541 21 124 14 302 85 88 125 8 142 244	6/13/11	52	1152	884	24	115	32	296	125	102	144	9	134	229
6/22/11 42 1180 952 18 130 24 264 85 98 130 6 128 310 6/24/11 55 1105 878 20 134 26 277 118 102 148 5 106 195 6/27/11 52 1141 765 26 127 26 263 102 100 122 6 144 393 7/8/11 49 926 555 25 130 18 298 99 90 130 9 132 222 7/12/11 45 788 500 24 125 15 287 101 89 133 8 124 252 7/18/11 46 745 541 21 124 14 302 85 88 125 8 142 244	6/16/11	50	1183	920	24	135	18	305	102	114	152	5	130	245
6/24/11 55 1105 878 20 134 26 277 118 102 148 5 106 195 6/27/11 52 1141 765 26 127 26 263 102 100 122 6 144 393 7/8/11 49 926 555 25 130 18 298 99 90 130 9 132 222 7/12/11 45 788 500 24 125 15 287 101 89 133 8 124 252 7/18/11 46 745 541 21 124 14 302 85 88 125 8 142 244	6/20/11	46	1277	1122	28	128	22	308	96	84	132	11	125	266
6/27/11 52 1141 765 26 127 26 263 102 100 122 6 144 393 7/8/11 49 926 555 25 130 18 298 99 90 130 9 132 222 7/12/11 45 788 500 24 125 15 287 101 89 133 8 124 252 7/18/11 46 745 541 21 124 14 302 85 88 125 8 142 244		42	1180						85	98	130	6		
6/27/11 52 1141 765 26 127 26 263 102 100 122 6 144 393 7/8/11 49 926 555 25 130 18 298 99 90 130 9 132 222 7/12/11 45 788 500 24 125 15 287 101 89 133 8 124 252 7/18/11 46 745 541 21 124 14 302 85 88 125 8 142 244		55	1105	878		134	26	277	118	102	148	5	106	195
7/12/11 45 788 500 24 125 15 287 101 89 133 8 124 252 7/18/11 46 745 541 21 124 14 302 85 88 125 8 142 244		52	1141	765	26	127	26	263	102	100	122	6	144	393
7/12/11 45 788 500 24 125 15 287 101 89 133 8 124 252 7/18/11 46 745 541 21 124 14 302 85 88 125 8 142 244	7/8/11	40	926	555	25	130	1.0	208	90	90	130	٥	132	222
7/18/11 46 745 541 21 124 14 302 85 88 125 8 142 244														
	7/16/11	47	688	488	22	124	17	278	87	95	126	7	133	232

	CAT-OX	SYSTEM				VAPOR-EXTR	RACTION WE	LLS OVM CO	NCENTRATIO	N IN PPMV*			
	FLOW IN	INFLUENT											
DATE	FLOW IN CFM	IN PPMV*C84	VE-1	VE-2	VE-3	VE-4	VE-5	VE-6	VE-7	VE-8	VE-9	MW-3	MW-4
8/1/11	52	655	600	26	132	12	273	96	93	144	6	125	235
8/9/11	51	725	553	21	111	14	263	80	93	112	5	126	226
8/15/11	53	718	523	21	110	13	255	75	92	132	5	131	212
8/24/11	45	802	514	24	141	14	264	68	88	123	6	134	238
8/29/11	46	644	506	21	123	15	270	88	89	130	4	129	230
9/7/11	56	640	488	26	111	11	266	99	96	112	6	111	211
9/12/11	55	636	478	25	100	10	255	90	95	11	5	110	212
9/20/11	52	632	465	24	102	12	254	88	95	123	4	122	210
9/27/11	50	622	412	25	101	14	232	87	96	120	6	114	223
10/3/11	55	612	400	22	98	9	211	96	90	119	5	100	232
10/10/11	50	621	412	21	114	11	224	92	90	11	3	98	216
10/18/11	51	602	388	23	121	12	222	98	91	114	6	103	222
10/25/11	51	611	377	22	102	15	200	87	91	102	7	110	232
11/1/11	49	598	366	20	100	8	214	78	88	90	6	105	208
11/7/11	48	588	365	13	98	8	211	74	88	90	5	106	214
11/14/11	48	586	385	19	97	7	225	78	88	95	5	105	210
11/22/11	48	574	364	17	106	11	223	89	87	92	5	99	211
11/30/11	47	545	344	22	97	10	208	95	88	81	4	98	219
12/5/11	47	588	355	20	99	9	211	95	85	81	3	100	203
12/12/11	49	541	323	18	111	9	195	90	83	83	4	111	200
12/20/11	48	540	311	17	105	7	196	91	81	75	4	99	201
12/30/11	48	532	302	18	101	7	188	83	76	78	5	92	199
1/5/12	49	485	302	11	99	6	174	88	77	85	6	92	199
1/10/12	51	487	311	14	99	6	175	84	74	77	5	92	203
1/16/12	50	465	312	15	98	8	165	85	77	74	3	95	195
1/23/12	48	455	310	14	98	7	166	87	78	78	4	94	188
1/31/12	47	444	311	11	95	7	152	78	75	86	5	99	187
2/7/12	47	420	299	9	93	8	140	70	77	85	6	95	177
2/13/12	44	388	290	8	90	7	141	66	71	88	5	96	165
2/20/12	41	355	295	9	77	8	133	62	71	81	4	95	158
2/27/12	45	356	295	9	75	8	132	63	71	84	6	88	145

	CAT-O	SYSTEM				VAPOR-EXT	RACTION WE	LLS OVM CO	NCENTRATIO	ON IN PPMV*			
	FLOW IN	INFLUENT IN											
DATE	CFM	PPMV*C121	VE-1	VE-2	VE-3	VE-4	VE-5	VE-6	VE-7	VE-8	VE-9	MW-3	MW-4
3/6/12	42	354	288	11	77	OFF	125	61	68	84	6	87	165
3/12/12	40	338	290	9	74	OFF	125	60	68	81	5	87	157
3/19/12	41	334	290	7	75	OFF	111	55	71	78	5	85	180
3/26/12	43	321	277	9	77	OFF	105	58	70	77	7	84	174
4/2/12	45	333	255	8	68	OFF	99	61	59	78	5	81	166
4/9/12	41	311	255	8	68	OFF	95	61	59	72	4	80	165
4/16/12	39	310	241	7	74	OFF	95	62	58	71	4	86	184
4/25/12	39	300	243	OFF	73	OFF	96	60	57	74	4	77	177
5/4/12	40	288	225	OFF	71	OFF	88	60	56	74	4	78	174
5/8/12	40	275	233	OFF	65	OFF	87	55	55	75	5	78	175
5/14/12	40	280	241	OFF	58	OFF	95	57	58	74	6	79	181
5/22/12	41	256	211	OFF	55	OFF	75	58	61	69	5	95	166
5/29/12	41	255	205	OFF	54	OFF	77	51	62	69	4	94	158
6/4/12	40	241	195	OFF	54	OFF	81	51	60	63	4	99	144
6/12/12	38	222	188	OFF	52	OFF	66	50	60	62	4	103	158
6/18/12	38	232	175	OFF	51	OFF	63	52	61	60	4	102	180
6/28/12	38	195	170	OFF	46	OFF	51	48	55	58	4	111	165
7/9/12	37	180	150	OFF	36	OFF	44	44	50	55	4	99	144
7/18/12	35	175	144	OFF	41	OFF	43	39	44	54	5	94	128
7/26/12	37	165	143	OFF	29	OFF	29	40	41	49	4	96	180
8/2/12	35	152	129	OFF	44	OFF	32	44	41	48	4	102	119
8/10/12	38	144	111	OFF	34	OFF	25	38	37	44	3	101	120
8/15/12	40	141	113	OFF	38	OFF	19	29	32	47	4	92	87
8/23/12	41	129	109	OFF	29	OFF	21	31	29	36	3	88	83
9/7/12	38	116	65	OFF	33	OFF	13	22	18	28	4	101	81
9/13/12	41	96	71	OFF	28	OFF	11	24	16	22	3	95	75
9/21/12	40	79	58	OFF	26	OFF	9	19	12	20	4	93	73
9/28/12	39	58	44	OFF	24	OFF	10	15	14	18	5	102	68

		E SYSTEM			VA	POR-EXTRA	CTION WELLS	S OVM CONC	ENTRATION	IN PPMV*D1	67		
DATE	FLOW IN CFM	INFLUENT IN PPMV*	VE-1	VE-2	VE-3	VE-4	VE-5	\/F_C	\/_ 7	\/F_0	\/F_0	MW-3	MW-4
11/12/12	50	12	33 VE-1	4 VE-2	20	VE-4 5		VE-6 15	VE-7 11	VE-8 22	VE-9 6	111	75
							8						75 72
11/28/12	50	14	29	4	18	2	6	12	15	19	4	109	/2
12/5/12	50	11	27	6	18	2	7	13	15	17	4	99	64
12/13/12	50	11	23	3	15	2	5	19	18	21	5	87	62
12/20/12	50	9	19	3	11	4	8	12	21	17	4	113	66
1/7/13	50	19	17	2	9	2	7	11	12	16	3	101	71
1/14/13	50	11	16	_ 5	9	3	5	16	13	15	4	99	66
1/24/13	50	8	12	3	10	2	6	18	13	15	4	97	69
1/29/13	50	12	11	4	9	3	5	17	15	12	3	96	70
2/6/13	50	16	12	3	6	3	5	9	9	12	3	94	68
2/15/13	50	18	13	5	6	3	6	7	9	10	4	89	66
2/21/13	50	17	13	4	7	2	6	9	8	12	4	93	62
2/28/13	50	14	14	5	, 7	3	5	8	8	11	3	99	70
						_							
3/4/13	50	15	13	5	12	4	11	8	7	9	5	111	71
3/8/13	50	15	14	5	12	4	14	7	7	10	5	123	74
3/15/13	50	15	11	11	14	5	15	7	7	11	5	128	75
3/19/13	50	16	10	4	14	5	21	6	6	8	6	135	66
3/22/13	50	16	8	7	15	7	28	5	6	7	4	144	68
4/5/13	50	17	8	8	14	9	28	5	3	7	7	175	60
4/12/13	50	14	12	8	16	11	26	6	4	7	5	199	65
4/19/13	50	12	11	9	18	10	24	5	5	6	7	167	64
4/26/30	50	18	11	11	17	9	27	6	4	5	5	188	62
5/3/13	50	18	10	10	20	11	33	5	4	7	6	198	58
5/10/13	50	18	10	8	20	12	33	7	6	7	6	223	65
5/17/13	50	19	9	11	21	14	34	5	3	8	5	245	59
5/24/13	50	12	11	11	24	13	35	5	4	7	5	255	63
5/31/13	50	11	8	12	23	18	33	5	5	7	5	215	66
6/7/13	50	12	8	12	33	18	44	6	4	5	6	222	67
6/14/13	50	13	8	14	33	17	49	4	4	4	5	266	67
6/21/13	50	18	7	12	34	17	41	6	5	6	5	199	66
6/28/13	50	21	8	11	36	19	48	4	6	5	6	228	61

	ASE VE	SYSTEM				VAPOR-EXT	RACTION WE	LLS OVM CO	NCENTRATIO	ON IN PPMV*			
	FLOW IN	INFLUENT											
DATE	CFM	IN PPMV*	VE-1	VE-2	VE-3	VE-4	VE-5	VE-6	VE-7	VE-8	VE-9	MW-3	MW-4
7/5/13	50	22	7	10	44	20	50	4	6	7	6	265	65
7/12/13	50	21	7	11	38	21	57	5	7	5	7	281	62
7/19/13	50	26	5	11	39	24	55	4	8	6	7	244	63
7/26/13	50	24	6	12	49	28	49	6	8	7	7	254	66
7/31/13	50	25	5	11	56	19	50	7	9	6	7	310	59
0/2/12	ГО	27	7	11	F 7	22	ГО	7	7		0	215	CO
8/2/13	50	27	/	11	57	22	59 	/	/	6	8	315	60
8/8/13	50	27	6	13	68	27	55	8	9	7	8	330	67

NOTE:

The asterisk symbol (*) denotes influent vapor concentrations using a photoionization detector.

						SPARGIN	IG WELLS					
	OS-1	OS-2	OS-3	OS-4	OS-5	OS-6	OS-7	OS-8	OS-9	OS-10	OS-11	OS-12
DATE	DURATION/ AIRSTREAM											
1/18/11	30 MIN./HIGH FLOW AIR											
1/19/11	30 MIN./HIGH FLOW AIR											
1/20/11	30 MIN./HIGH FLOW AIR											
1/21/11	30 MIN./HIGH FLOW AIR											
1/22/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
1/26/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
1/28/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
2/2/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
2/4/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
2/8/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
2/11/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
2/15/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
2/18/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
2/22/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
2/25/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
2/28/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						

						SPARGIN	IG WELLS					
	OS-1	OS-2	0S-3	0S-4	OS-5	0S-6	0S-7	OS-8	OS-9	06.10	OS-11	0S-12
	DURATION/	DURATION/	DURATION/	OS-10 DURATION/	DURATION/	DURATION/						
DATE	AIRSTREAM	AIRSTREAM	AIRSTREAM	AIRSTREAM	AIRSTREAM	AIRSTREAM						
3/1/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
3/4/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
3/8/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
3/11/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
3/914/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
3/17/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
3/22/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
3/25/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
3/29/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
4/1/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
4/5/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
4/8/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
4/12/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
4/15/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
4/19/11	OFF	OFF	OFF	OFF	OFF	OFF						
4/25/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
5/2/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						

						SPARGIN	G WELLS					
	OS-1	OS-2	OS-3	OS-4	OS-5	OS-6	OS-7	OS-8	OS-9	OS-10	OS-11	OS-12
DATE	DURATION/	DURATION/	DURATION/	DURATION/	DURATION/	DURATION/						
	AIRSTREAM	AIRSTREAM	AIRSTREAM	AIRSTREAM	AIRSTREAM	AIRSTREAM						
5/9/11	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF						
5/13/11	30 MIN./HIGH	10 MIN./LOW	10 MIN./LOW	10 MIN./LOW	10 MIN./LOW	10 MIN./LOW						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
5/16/11	30 MIN./HIGH	10 MIN./LOW	10 MIN./LOW	10 MIN./LOW	10 MIN./LOW	10 MIN./LOW						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
5/23/11	30 MIN./HIGH	10 MIN./LOW	10 MIN./LOW	10 MIN./LOW	10 MIN./LOW	10 MIN./LOW						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
5/30/11	30 MIN./HIGH	20 MIN./LOW	20 MIN./LOW	20 MIN./LOW	20 MIN./LOW	20 MIN./LOW						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
6/6/11	30 MIN./HIGH	20 MIN./LOW	20 MIN./LOW	20 MIN./LOW	20 MIN./LOW	20 MIN./LOW						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
6/13/11	30 MIN./HIGH	10 MIN./HIGH	10 MIN./HIGH	10 MIN./HIGH	10 MIN./HIGH	10 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
6/20/11	30 MIN./HIGH	10 MIN./HIGH	10 MIN./HIGH	10 MIN./HIGH	10 MIN./HIGH	10 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
6/27/11	30 MIN./HIGH	20 MIN./HIGH	20 MIN./HIGH	20 MIN./HIGH	20 MIN./HIGH	20 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
8/1/11	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
9/1/11	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
10/1/11	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
11/1/11	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
12/1/11	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
1/1/12	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
2/1/12	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
3/1/12	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						
4/1/12	30 MIN./HIGH FLOW AIR		30 MIN./HIGH FLOW AIR	30 MIN./HIGH FLOW AIR	30 MIN./HIGH FLOW AIR	30 MIN./HIGH FLOW AIR						
5/1/12	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH						
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR						

						SPARGIN	IG WELLS					
	0S-1	OS-2	OS-3	OS-4	OS-5	OS-6	OS-7	OS-8	OS-9	OS-10	OS-11	OS-12
DATE	DURATION/	DURATION/	DURATION/	DURATION/	DURATION/	DURATION/	DURATION/	DURATION/	DURATION/	DURATION/	DURATION/	DURATION/
	AIRSTREAM	AIRSTREAM	AIRSTREAM	AIRSTREAM	AIRSTREAM	AIRSTREAM	AIRSTREAM	AIRSTREAM	AIRSTREAM	AIRSTREAM	AIRSTREAM	AIRSTREAM
6/1/12	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR
7/1/12	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR
8/1/12	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR
9/1/12	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH
	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR	FLOW AIR
10/3/12	30 MIN./HIGH FLOW AIR	30 MIN./HIGH FLOW AIR	30 MIN./HIGH FLOW AIR	30 MIN./HIGH FLOW AIR	30 MIN./HIGH FLOW AIR	30 MIN./HIGH FLOW AIR	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF
11/11/12	30 MIN./HIGH FLOW AIR	30 MIN./HIGH FLOW AIR	30 MIN./HIGH FLOW AIR	30 MIN./HIGH FLOW AIR	30 MIN./HIGH FLOW AIR	30 MIN./HIGH FLOW AIR	30 MIN./HIGH FLOW AIR	OFF	OFF	OFF	OFF	OFF
12/1/12	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW
	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE
1/1/13	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW
	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE
2/1/13	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW
	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE
3/1/13	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW
	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE
4/1/13	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW	30 MIN./LOW
	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE
5/1/13	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH
	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE
6/1/13	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH
	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE
7/1/13	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH	30 MIN./HIGH
	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE	FLOW OZONE
8/1/13	, .	30 MIN./HIGH FLOW OZONE	30 MIN./HIGH FLOW OZONE	30 MIN./HIGH FLOW OZONE	30 MIN./HIGH FLOW OZONE	,	30 MIN./HIGH FLOW OZONE					

				Н	YDROCARBON CO	ONCENTRATIONS	S IN PPMV* MF	ASURED WITH	H ORGANIC VA	POR METER					
	VAPOR MONITO	ORING POINTS	METER BOXES		F 8TH STREET)					XES (OPPOSIT	E SIDE OF 8T	H STREET)			
		T 1	PIPING		,	GAS METER	GAS METER	GAS METER	EBMUD BOX	I ` I	OS-8/VE-6	OS-9/VE-7	OS-10/VE-8	OS-11	OS-12/VE-9
DATE	VMP-1	VMP-1	MANIFOLD	PG&E BOX	EBMUD BOX	1	2	3	1	2	WELL BOX	WELL BOX	WELL BOX	WELL BOX	WELL BOX
1/18/11	0	0	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
1/19/11	0	0	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
1/20/11	0	0	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
1/21/11	11	21	NM	NM	NM	10	8	11	5	7	NM	NM	NM	NM	NM
1/22/11	3	7	NM	NM	NM	12	11	8	4	6	NM	NM	NM	NM	NM
1/23/11	0	0	NM	NM	NM	0	0	0	0	0	NM	NM	NM	NM	NM
1/28/11	0	0	NM	NM	NM	0	0	0	0	0	NM	NM	NM	NM	NM
2/15/11	0	0	NM	NM	NM	0	0	0	0	0	NM	NM	NM	NM	NM
2/28/11	0	0	NM	NM	NM	0	0	0	0	0	NM	NM	NM	NM	NM
3/8/11	0	0	NM	NM	NM	0	0	0	0	0	NM	NM	NM	NM	NM
3/29/11	0	0	NM	NM	NM	0	0	0	0	0	NM	NM	NM	NM	NM
4/12/11	0	0	NM	NM	NM	0	0	0	0	0	NM	NM	NM	NM	NM
4/25/11	0	0	NM	NM	NM	0	0	0	0	0	NM	NM	NM	NM	NM
5/13/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/16/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/20/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/23/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/25/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/27/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/30/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/3/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/6/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/8/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/10/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/13/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/16/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/20/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/22/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/24/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/27/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7/8/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7/12/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7/18/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7/25/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8/1/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8/9/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8/15/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8/24/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8/29/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	HYDROCARBON CONCENTRATIONS IN PPMV* MEASURED WITH ORGANIC VAPOR METER														
	VADOR MONIT	ORING POINTS	METER BOVE		F 8TH STREET)	DICENTRATIONS	TIN FFIND INC	ASUKED WITH		XES (OPPOSIT	TE SIDE OF ST	H CTDEET\			
	VAPOR MONIT	OKTING FOTINTS	PIPING	(STIL SIDE C	OIII SIRLEI)	GAS METER	GAS METER	GAS METER		· ·	OS-8/VE-6	OS-9/VE-7	OS-10/VE-8	OS-11	OC 13/4/E 0
DATE	VMP-1	VMP-1	MANIFOLD	PG&E BOX	EBMUD BOX	GAS METER 1	GAS METER 2	GAS METER	1	2 EBMOD BOX	WELL BOX	WELL BOX	WELL BOX	WELL BOX	OS-12/VE-9 WELL BOX
9/7/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9/12/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9/20/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9/27/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10/3/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10/10/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10/18/11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10/25/11		0	0	0	0	0	0	0	0	0	0	0	0	0	0
11/1/11		0	0	0	0	0	0	0	0	0	0	0	0	0	0
11/7/11		0	0	0	0	0	0	0	0	0	0	0	0	0	0
11/14/11		0	0	0	0	0	0	0	0	0	0	0	0	0	0
11/22/11		0	0	0	0	0	0	0	0	0	0	0	0	0	0
11/30/11		0	0	0	0	0	0	0	0	0	0	0	0	0	0
12/5/11		0	0	0	0	0	0	0	0	0	0	0	0	0	0
12/12/11		0	0	0	0	0	0	0	0	0	0	0	0	0	0
12/20/11		0	0	0	0	0	0	0	0	0	0	0	0	0	0
12/30/11		0	0	0 0	0 0	0 0	0 0	0	0	0 0	0 0	0 0	0 0	0 0	0 0
1/5/12 1/10/12		0	0	0	0	0	0	0	0	0	0	0	0	0	0
1/16/12		0	0	0	0	0	0	0	0	0	0	0	0	0	0
1/10/12		0	0	0	0	0	0	0	0	0	0	0	0	0	0
1/31/12		0	0	0	0	0	0	0	0	0	0	0	0	0	0
2/7/12		0	0	0	0	0	0	0	0	0	0	0	0	0	0
2/13/12		0	0	0	0	0	0	0	0	0	0	0	0	0	0
2/20/12		0	0	0	0	0	0	0	0	0	0	0	0	0	0
2/27/12		0	0	0	0	0	0	0	0	0	0	0	0	0	0
3/6/12		0	0	0	0	0	0	0	0	0	0	0	0	0	0
3/12/12		0	0	0	0	0	0	0	0	0	0	0	0	0	0
3/19/12		0	0	0	0	0	0	0	0	0	0	0	0	0	0
3/26/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4/2/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4/9/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4/16/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4/25/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/4/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/8/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/14/12		0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/22/12		0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/29/12		0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/4/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
						Co	ntinued on No	vt Dago							

HYDROCARBON CONCENTRATIONS IN PPMV* MEASURED WITH ORGANIC VAPOR METER															
,	VAPOR MONITO	RING POINTS	METER BOXES		F 8TH STREET)					XES (OPPOSIT	E SIDE OF 8T	H STREET)			
			PIPING		, , , , , , , , , , , , , , , , , , ,	GAS METER	GAS METER	GAS METER		EBMUD BOX	OS-8/VE-6	OS-9/VE-7	OS-10/VE-8	OS-11	OS-12/VE-9
DATE	VMP-1	VMP-1	MANIFOLD	PG&E BOX	EBMUD BOX	1	2	3	1	2	WELL BOX	WELL BOX	WELL BOX	WELL BOX	WELL BOX
6/12/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/18/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/28/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7/9/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7/18/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7/26/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8/2/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8/10/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8/15/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8/23/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9/7/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9/13/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9/21/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9/28/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11/12/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11/28/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12/5/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12/13/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12/20/12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1/7/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1/14/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1/24/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1/29/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2/6/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2/15/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2/21/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2/28/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3/4/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3/8/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3/15/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3/19/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3/22/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4/5/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4/12/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4/19/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4/26/30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/3/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/10/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/17/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	HYDROCARBON CONCENTRATIONS IN PPMV* MEASURED WITH ORGANIC VAPOR METER														
L				H	YDROCARBON CO	ONCENTRATIO	NS IN PPMV* ME	ASURED WITH	i organic va	POR METER					
	VAPOR MONITO	RING POINTS	METER BOXES	(SITE SIDE C	F 8TH STREET)				METER BC	XES (OPPOSIT	E SIDE OF 8T	H STREET)			
			PIPING			GAS MET	ER GAS METER	GAS METER	EBMUD BOX	EBMUD BOX	OS-8/VE-6	OS-9/VE-7	OS-10/VE-8	OS-11	OS-12/VE-9
DATE	VMP-1	VMP-1	MANIFOLD	PG&E BOX	EBMUD BOX	1	2	3	1	2	WELL BOX	WELL BOX	WELL BOX	WELL BOX	WELL BOX
5/24/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5/31/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/7/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/14/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/21/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6/28/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7/5/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7/12/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7/19/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7/26/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7/31/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8/2/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8/8/13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

NOTE:

NM = Not Measured

MASS EXTRACTION CALCULATIONS LIM PROPERTY VAPOR EXTRACTION SYSTEM 250 8TH STREET, OAKLAND, CALIFORNIA

	AIR BAG SAMPLE COLLECTED ON 1/29/13													
AVERAGE VAPOR		VOLUME CONVERSION		TIME CONVERSION		TPH-G CONCENTRATION		MASS CONVERSION		MASS CONVERSION		MASS TPH-G		MASS TPH-G
EXTRACTION		FACTOR		FACTOR		IN		FACTOR		FACTOR		EXTRACTION		EXTRACTION
FLOW RATE	\leq		≤		≤	INFLUENT					Ш	RATE	Щ	RATE
CFM	ULTF	l/cu. ft.		min/day	ULT	SAMPLE ug/l	DIVI	ugs/gm	DZ.	gms/lb	QUA AUA	lbs/day	QUA	gallons/day
50	17 12	28.32	기	1,200	기	1 <u>9</u> 0	DE	1,000,000	DE	454	S	0.71	S	<i>O</i> .11

	AIR BAG SAMPLE COLLECTED ON 8/8/13													
AVERAGE		VOLUME		TIME		TPH-G		MASS		MASS		MASS		MASS
VAPOR		CONVERSION		CONVERSION		CONCENTRATION		CONVERSION		CONVERSION		TPH-G		TPH-G
EXTRACTION		FACTOR		FACTOR		IN		FACTOR		FACTOR		EXTRACTION		EXTRACTION
FLOW	_					INFLUENT						RATE	l	RATE
RATE	1		≧			SAMPLE	D		J		E Q		E Q	
CFM	7	l∕cu.ft.	1 ≒1	min/day	[<u>'</u> '	ug/l	\leq	ugs/gm		gms/lb]∑[lbs/day	5	gallons/day
50	ΊΥ	28.32	딕	1,200	Ϋ́	1,400	E	1,000,000	H	454	S	5.24	S	0.84

USING AN AVERAGE OF THE JANUARY 2013 AND AUGUST 2013 ANALYTICAL RESULTS

	AIR BAG SAMPLE COLLECTED ON 8/8/13													
AVERAGE		VOLUME		TIME		TPH-G		MASS		MASS		MASS		MASS
VAPOR		CONVERSION		CONVERSION		CONCENTRATION		CONVERSION		CONVERSION		TPH-G		TPH-G
EXTRACTION		FACTOR		FACTOR		IN		FACTOR		FACTOR		EXTRACTION		EXTRACTION
FLOW	_		_			INFLUENT						RATE		RATE
RATE						SAMPLE	D		D		N E		N N	
CFM	7	l/cu. ft.	7	min/day	4	ug/l	\leq	ugs/gm	\leq	gms/lb	\forall	lbs/day	\vdash	gallons/day
50	八八	28 . 32	了 了	1,200	۲ آ	795)E	1,000,000	Œ	454	S	2.98	S	0.48

GASOLINE EXTRACTION LOG LIM FAMILY PROPERTY 250 8th Street, Oakland, CA

DATE	TPH-G CONCENTRATION (ug/l) IN INFLUENT VAPOR SAMPLE	GALLONS OF GASOLINE EXTRACTED, PER DAY	NUMBER OF DAYS VE SYSTEM OPERATED IN MONTH	GALLONS OF GASOLINE EXTRACTED IN MONTH	
4/28/11	4600	2.75	30	82.5	
5/26/11	4100	2.45	31	75.95	
6/30/11	4900	2.93	30	87.9	
7/31/11	NA	2.75*	31	85.25	
8/31/11	NA	2.57*	31	79.67	
9/30/11	NA	2.39*	30	71.7	
10/31/11	NA	2.21*	31	68.51	
11/30/11	NA	2.03*	30	60.9	
12/20/11	3100	1.85	31	57.38	
1/31/12	NA	1.55*	31	48.05	
2/29/12	NA	1.25*	29	36.25	
3/31/12	NA	0.95*	31	29.45	
4/30/12	NA	0.65*	30	19.5	
5/31/12	NA	0.35*	31	10.85	
6/20/12	38	0.02	30	0.6	
AL GALLONS O	F GASOLINE REMOVED FROM VADOSE Z	ONE SINCE START-UP TO JUNE 2	2012	814.46	

6/20/12	38	0.02		
1/29/13	190	O.11		
AVERAGE OF 6/20/12 AND 1/29/13 AIR BAG RESULTS	114*	0.07*	145	10.15
TOTAL GALLONS OF G	10.15			

1/29/13	190	O.11		
8/8/13	1400	0.84		
AVERAGE OF 1/29/13 AND 8/8/13 AIR BAG RESULTS	90.72			
TOTAL GALLONS OF G	90.72			

GRAND TOTAL, TO DATE, OF GALLONS OF GASOLINE REMOVED FROM THE VADOSE ZONE	915.33
---	--------

NOTES:

- 1. NA means "not applicable." This is due to the fact that an air bag sample of the influent vapor stream was not collected on a monthly basis.
- $2. The \ asterisk \ symbol\ (*)\ means\ this\ number\ is\ an\ estimate.\ Actual\ air\ bag\ TPH-G\ concentrations\ were\ not\ available\ due\ to\ lack\ of\ sampling$
- 3. A flowrate of 50 cubic feet per minute was used to calculate daily extraction quantities

Aqua Science Engineers, Inc. 55 Oak Court, Danville, CA 94526 (925) 820-9391 - Fax (925) 837-4853 - www.aquascienceengineers.com

APPENDIX C

Monitoring Well Sampling Logs

WELL SAMPLING FIELD LOG

PROJECT NAME LIM	
JOB NUMBER 2808	DATE OF SAMPLING 6. 18.13
WELL ID. MW-	SAMPLER DA
TOTAL DEPTH OF WELL 4-8	WELL DIAMETER $ u$
DEPTH TO WATER PRIOR TO PURGING (8 13	TIME OF MEASUREMENT
PRODUCT THICKNESS	
DEPTH OF WELL CASING IN WATER \$. C.7	
NUMBER OF GALLONS PER WELL CASING VOLUME	1.38
NUMBER OF WELL CASING VOLUMES TO BE REMOVED	3
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED PRIOR	R TO SAMPLING
EQUIPMENT USED TO PURGE WELL	EW DISPOSABLE BAILER
TIME EVACUATION STARTED (()	TIME EVACUATION COMPLETED (122
TIME SAMPLES WERE COLLECTED (125	
DID WELL GO DRY	AFTER HOW MANY GALLONS
VOLUME OF GROUNDWATER PURGED 4	
SAMPLING DEVICE NEW DISPOSABLE	E BAILER)
SAMPLE COLOR IT BAN	ODOR/SEDIMENT SLHZ / SL

CHEMICAL DATA

VOLUME PURGED	TEMPERATURE	PH ^(f)	CONDUCTIVITY
	19.9	6.1	600
2	17.9	6.3	
3	20,0	6.0	640

SAMPLE	# OF CONTAINERS	BIZE AND TYPE OF CONTAINER	ANALÝSIS	PRESERVED
1 MW-1	5	40 ml Vot	82608/8015	

WELL SAMPLING FIELD LOG

DATE OF SAMPLING 6.18.13
SAMPLER DA
WELL DIAMETER 2
TIME OF MEASUREMENT
1.52
3
R TO SAMPLING 4.5
EW DISPOSABLE BAILER
TIME EVACUATION COMPLETED 6957
AFTER HOW MANY GALLONS
E BAILER ,
ODOR/SEDIMENT Nove SLICHT

CHEMICAL DATA

VOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
\	19.1	6.5	590
2	194	6.3	590
3	19.6	6.1	600

SAMPLES COLLECTED

SAMPLE	# OF CONTAINERS	SIZE AND TYPE OF CONTAINER	ANALYSIS	PRESERVED
MW-2	5	L	82608/8015	V
			,	

Brown ovenge vorge waks. No

WELL SAMPLING FIELD LOG

DATE OF SAMPLING 6.18.13
SAMPLER D4
WELL DIAMETER 2
TIME OF MEASUREMENT
9
2.07
3
TO SAMPLING 6, 2
W DISPOSABLE BAILER
TIME EVACUATION COMPLETED 0845
AFTER HOW MANY GALLONS
BAILER
ODOR/SEDIMENT WOLL SCIENT

CHEMICAL DATA

VOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
Ì	18.8	6-5	6/0
2	188	6.4	620
3	18.9	6.4	610

SAMPLE	# OF CONTAINERS	BIZE AND TYPE OF CONTAINER	ANALYSIS	PRESERVED
MW-3	5	40 ul Vot	82608/8015	V

WELL SAMPLING FIELD LOG

DATE OF SAMPLING 6.18.13
SAMPLER DA
WELL DIAMETER 4
TIME OF MEASUREMENT
1.66
3
TO SAMPLING 5
W DISPOSABLE BAILER
TIME EVACUATION COMPLETED 08 25
AFTER HOW MANY GALLONS
BAILER
ODOR/SEDIMENT SU HZ SC.

CHEMICAL DATA

VOLUME PURGED	TEMPERATURE	PH.	CONDUCTIVITY
İ	18.8	6.50	510
2	18.8	6.6	5ro
3	18.8	6.6	Sri

SAMPLE	# OF CONTAINERS	BIZE AND TYPE OF CONTAINER	ANALYSIS	PRESERVED
MW-4R	5	40 ul Vot	82608/8015	
			,	

WELL SAMPLING FIELD LOG

PROJECT NAME LIM	
JOB NUMBER 2808	DATE OF SAMPLING 6.18.13
WELL ID. MW-5	SAMPLER DA
TOTAL DEPTH OF WELL 29.6	WELL DIAMETER 2
DEPTH TO WATER PRIOR TO PURGING 17.48	TIME OF MEASUREMENT
PRODUCT THICKNESS &	
DEPTH OF WELL CASING IN WATER 12 17	
NUMBER OF GALLONS PER WELL CASING VOLUME	1.93
NUMBER OF WELL CASING VOLUMES TO BE REMOVED	3
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED PRIOR	TO SAMPLING 5.8
EQUIPMENT USED TO PURGE WELL	EW DISPOSABLE BAILER
TIME EVACUATION STARTED 0900	TIME EVACUATION COMPLETED 0912
TIME SAMPLES WERE COLLECTED 641	-
DID WELL GO DRY	AFTER HOW MANY GALLONS
VOLUME OF GROUNDWATER PURGED 6	
SAMPLING DEVICE NEW DISPOSABLE	BAILER
SAMPLE COLOR (LEKK	ODOR/SEDIMENT WNO

CHEMICAL DATA

VOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
(18.9	6.7	560
2	18.9	6.5	540
3	۱۶.۹	65	540

SAMPLE	# OF CONTAINERS	BIZE AND TYPE OF CONTAINER	ANALYSIS	PRESERVED
MW-5	5	40 ul Vot	82608/8011	

WELL SAMPLING FIELD LOG

PROJECT NAME LIM	
JOB NUMBER 2808	DATE OF SAMPLING 6: 18.13
WELL ID. MW-6	SAMPLER DA
TOTAL DEPTH OF WELL 29.5	WELL DIAMETER 2
DEPTH TO WATER PRIOR TO PURGING 17.69	TIME OF MEASUREMENT
PRODUCT THICKNESS .	
DEPTH OF WELL CASING IN WATER 1181	
NUMBER OF GALLONS PER WELL CASING VOLUME	1.88
NUMBER OF WELL CASING VOLUMES TO BE REMOVED	3
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED PRIOR	R TO SAMPLING 5. C. C.
EQUIPMENT USED TO PURGE WELL	EW DISPOSABLE BAILER
TIME EVACUATION STARTED (2)	TIME EVACUATION COMPLETED (0 25
TIME SAMPLES WERE COLLECTED (30	
DID WELL GO DRY NO	AFTER HOW MANY GALLONS
VOLUME OF GROUNDWATER PURGED	
SAMPLING DEVICE NEW DISPOSABLE	E BAILER
SAMPLE COLOR YBN	ODOR/SEDIMENT NO /SC
	——————————————————————————————————————

CHEMICAL DATA

VOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
ľ	18.9	6.7	160
2	19.1	6.5	to
3	19.1	6.6	110

SAMPLE	# OF CONTAINERS	BIZE AND TYPE OF CONTAINER	ANALYSIS	PRESERVED
MW-6	5	40 ul Vot	82608/8011	
			,	

WELL SAMPLING FIELD LOG

PROJECT NAME LIM	
JOB NUMBER 2808	DATE OF SAMPLING 6. 18.13
WELLID. MW-7	SAMPLER DA
TOTAL DEPTH OF WELL 18.0	WELL DIAMETER 2
DEPTH TO WATER PRIOR TO PURGING 18.02	TIME OF MEASUREMENT
PRODUCT THICKNESS	
DEPTH OF WELL CASING IN WATER 09 9	. 8
NUMBER OF GALLONS PER WELL CASING VOLUME	(, &
NUMBER OF WELL CASING VOLUMES TO BE REMOVED	3
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED PRIOR	R TO SAMPLING 4.8
EQUIPMENT USED TO PURGE WELL	EW DISPOSABLE BAILER
TIME EVACUATION STARTED 0420	TIME EVACUATION COMPLETED 6932
TIME SAMPLES WERE COLLECTED 0935	
DID WELL GO DRY	AFTER HOW MANY GALLONS
VOLUME OF GROUNDWATER PURGED	
SAMPLING DEVICE NEW DISPOSABLE	BAILER
SAMPLE COLOR 4 GRAY	ODOR/SEDIMENT SL HC SC

CHEMICAL DATA

VOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
(18.9	6.6	770
2	(89	6.5	Tijo
3	18.9	6.5	710

SAMPLES COLLECTED

SAMPLE	# OF CONTAINERS	BIZE AND TYPE OF CONTAINER	ANALYSIS	PRESERVED
MW-7	5	40 rel Vot	82608/8018	
			,	

BLACK, SULFUR OFOR WHILE PURGING

AQUA SCIENCE ENGINEERS

WELL SAMPLING FIELD LOG

PROJECT NAME LIM	
JOB NUMBER 2808	DATE OF SAMPLING 6.18.13
WELL ID. MW - 8	SAMPLER DA
TOTAL DEPTH OF WELL 49.0	WELL DIAMETER WITH 2
DEPTH TO WATER PRIOR TO PURGING 22 44	TIME OF MEASUREMENT
PRODUCT THICKNESS	
DEPTH OF WELL CASING IN WATER 26. 16	
NUMBER OF GALLONS PER WELL CASING VOLUME	4.25
NUMBER OF WELL CASING VOLUMES TO BE REMOVED	3
REQUIRED VOLUME OF GROUNDWATER TO BE PURGED PRIOR	RTO SAMPLING 1275
EQUIPMENT USED TO PURGE WELL	EW DISPOSABLE BAILER
TIME EVACUATION STARTED 1046	TIME EVACUATION COMPLETED 1055
TIME SAMPLES WERE COLLECTED 100	
DID WELL GO DRY	AFTER HOW MANY GALLONS
VOLUME OF GROUNDWATER PURGED 13	
SAMPLING DEVICE NEW DISPOSABLE	BAILER
SAMPLE COLOR CIGHT	ODOR/SEDIMENT No (NO

CHEMICAL DATA

VOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
(21.1	6.8	360
2	21.2	6.7	370
3	U.2	6.7	360

SAMPLES COLLECTED

SAMPLE	# OF CONTAINERS	BIZE AND TYPE OF CONTAINER	ANALYSIS	PRESERVED
MW-8	5	1	82608 8011	
			,	

14

Aqua Science Engineers, Inc. 55 Oak Court, Danville, CA 94526 (925) 820-9391 - Fax (925) 837-4853 - www.aquascienceengineers.com

APPENDIX D

Certified Analytical Report and Chain of Custody Documentation for Groundwater Samples

Date: 06/27/2013

Laboratory Results

David Allen Aqua Science Engineers, Inc. 55 Oak Court, Suite 220 Danville, CA 94526

Subject: 8 Water Samples Project Name: LIM Project Number: 2808

Dear Mr. Allen,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed. Testing procedures comply with the 2003 NELAC and TNI 2009 standards. Laboratory results relate only to the samples tested. This report may be freely reproduced in full, but may only be reproduced in part with the express permission of Kiff Analytical, LLC. Kiff Analytical, LLC is certified by the State of California under the National Environmental Laboratory Accreditation Program (NELAP), lab # 08263CA. If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Troy Turpen

Troy D. Turpen

Date: 06/27/2013

Project Name : **LIM**Project Number : **2808**

Sample: MW-1 Matrix: Water Lab Number: 85194-01

Sample Date .00/10/2013	Measured	Method Reporting		Analysis	Date/Time
Parameter	Value	Limit	Units	Method	Analyzed
Benzene	1.5	0.50	ug/L	EPA 8260B	06/21/13 22:03
Toluene	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 22:03
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 22:03
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 22:03
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 22:03
Diisopropyl ether (DIPE)	0.52	0.50	ug/L	EPA 8260B	06/21/13 22:03
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 22:03
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 22:03
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	06/21/13 22:03
TPH as Gasoline	370	50	ug/L	EPA 8260B	06/21/13 22:03
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 22:03
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 22:03
1,2-Dichloroethane-d4 (Surr)	95.2		% Recovery	EPA 8260B	06/21/13 22:03
Toluene - d8 (Surr)	97.4		% Recovery	EPA 8260B	06/21/13 22:03
TPH as Diesel (Silica Gel)	84	50	ug/L	M EPA 8015	06/27/13 01:07
Octacosane (Silica Gel Surr)	116		% Recovery	M EPA 8015	06/27/13 01:07

Date: 06/27/2013

Project Name : **LIM**Project Number : **2808**

Sample: MW-2 Matrix: Water Lab Number: 85194-02

Sample Date :06/18/2013

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	2400	4.0	ug/L	EPA 8260B	06/26/13 15:51
Toluene	7.8	4.0	ug/L ug/L	EPA 8260B	06/26/13 15:51
Ethylbenzene	7.8 80	4.0	ug/L ug/L	EPA 8260B	06/26/13 15:51
Total Xylenes	31	4.0	ug/L ug/L	EPA 8260B	06/26/13 15:51
Total Aylenes	31	4.0	ug/L	LI A 0200D	00/20/13 13.31
Methyl-t-butyl ether (MTBE)	< 1.5	1.5	ug/L	EPA 8260B	06/25/13 04:59
Diisopropyl ether (DIPE)	7.8	1.5	ug/L	EPA 8260B	06/25/13 04:59
Ethyl-t-butyl ether (ETBE)	< 1.5	1.5	ug/L	EPA 8260B	06/25/13 04:59
Tert-amyl methyl ether (TAME)	< 1.5	1.5	ug/L	EPA 8260B	06/25/13 04:59
Tert-Butanol	17	7.0	ug/L	EPA 8260B	06/25/13 04:59
TPH as Gasoline	5300	150	ug/L	EPA 8260B	06/25/13 04:59
1,2-Dichloroethane	< 1.5	1.5	ug/L	EPA 8260B	06/25/13 04:59
1,2-Dibromoethane	< 1.5	1.5	ug/L	EPA 8260B	06/25/13 04:59
1,2-Dichloroethane-d4 (Surr)	93.9		% Recovery	EPA 8260B	06/25/13 04:59
Toluene - d8 (Surr)	95.8		% Recovery	EPA 8260B	06/25/13 04:59
TPH as Diesel (Silica Gel)	88	50	ug/L	M EPA 8015	06/27/13 01:41
Octacosane (Silica Gel Surr)	92.7		% Recovery	M EPA 8015	06/27/13 01:41

Report Number: 85194

Date: 06/27/2013

Project Name : **LIM**Project Number : **2808**

Sample: MW-3 Matrix: Water Lab Number: 85194-03

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	6700	10	ug/L	EPA 8260B	06/25/13 13:43
Toluene	7900	10	ug/L	EPA 8260B	06/25/13 13:43
Ethylbenzene	2000	10	ug/L	EPA 8260B	06/25/13 13:43
Total Xylenes	15000	25	ug/L	EPA 8260B	06/26/13 00:21
Methyl-t-butyl ether (MTBE)	< 10	10	ug/L	EPA 8260B	06/25/13 13:43
Diisopropyl ether (DIPE)	< 10	10	ug/L	EPA 8260B	06/25/13 13:43
Ethyl-t-butyl ether (ETBE)	< 10	10	ug/L	EPA 8260B	06/25/13 13:43
Tert-amyl methyl ether (TAME)	< 10	10	ug/L	EPA 8260B	06/25/13 13:43
Tert-Butanol	< 50	50	ug/L	EPA 8260B	06/25/13 13:43
TPH as Gasoline	100000	2500	ug/L	EPA 8260B	06/26/13 00:21
1,2-Dichloroethane	< 10	10	ug/L	EPA 8260B	06/25/13 13:43
1,2-Dibromoethane	< 10	10	ug/L	EPA 8260B	06/25/13 13:43
1,2-Dichloroethane-d4 (Surr)	89.6		% Recovery	EPA 8260B	06/25/13 13:43
Toluene - d8 (Surr)	95.9		% Recovery	EPA 8260B	06/25/13 13:43
TPH as Diesel (Silica Gel) (Note: Lower boiling hydrocarbons prese	220000 ent, atypical for D	1000 Diesel Fuel.)	ug/L	M EPA 8015	06/27/13 13:28
Octacosane (Silica Gel Surr)	Diluted Out		% Recovery	M EPA 8015	06/27/13 13:28

Date: 06/27/2013

Project Name : LIM
Project Number : 2808

Sample: MW-4R Matrix: Water Lab Number: 85194-04

Parameter Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	37	0.50	ug/L	EPA 8260B	06/26/13 02:41
Toluene	33	0.50	ug/L	EPA 8260B	06/26/13 02:41
Ethylbenzene	10	0.50	ug/L	EPA 8260B	06/26/13 02:41
Total Xylenes	400	0.50	ug/L	EPA 8260B	06/26/13 02:41
Methyl-t-butyl ether (MTBE)	1.5	0.50	ug/L	EPA 8260B	06/26/13 02:41
Diisopropyl ether (DIPE)	2.5	0.50	ug/L	EPA 8260B	06/26/13 02:41
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	06/26/13 02:41
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	06/26/13 02:41
Tert-Butanol	120	5.0	ug/L	EPA 8260B	06/26/13 02:41
TPH as Gasoline	3800	50	ug/L	EPA 8260B	06/26/13 02:41
1,2-Dichloroethane	7.2	0.50	ug/L	EPA 8260B	06/26/13 02:41
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	06/26/13 02:41
1,2-Dichloroethane-d4 (Surr)	96.3		% Recovery	EPA 8260B	06/26/13 02:41
Toluene - d8 (Surr)	98.0		% Recovery	EPA 8260B	06/26/13 02:41
TPH as Diesel (Silica Gel)	110	50	ug/L	M EPA 8015	06/27/13 02:16
Octacosane (Silica Gel Surr)	105		% Recovery	M EPA 8015	06/27/13 02:16

Date: 06/27/2013

Project Name : **LIM**Project Number : **2808**

Sample: MW-5 Matrix: Water Lab Number: 85194-05

Parameter Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 22:35
Toluene	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 22:35
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 22:35
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 22:35
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 22:35
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 22:35
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 22:35
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 22:35
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	06/21/13 22:35
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	06/21/13 22:35
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 22:35
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 22:35
1,2-Dichloroethane-d4 (Surr)	96.2		% Recovery	EPA 8260B	06/21/13 22:35
Toluene - d8 (Surr)	97.1		% Recovery	EPA 8260B	06/21/13 22:35
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	06/27/13 13:13
Octacosane (Silica Gel Surr)	105		% Recovery	M EPA 8015	06/27/13 13:13

Date: 06/27/2013

Project Name : LIM
Project Number : 2808

Sample: MW-6 Matrix: Water Lab Number: 85194-06

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 23:08
Toluene	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 23:08
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 23:08
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 23:08
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 23:08
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 23:08
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 23:08
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 23:08
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	06/21/13 23:08
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	06/21/13 23:08
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 23:08
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	06/21/13 23:08
1,2-Dichloroethane-d4 (Surr)	96.2		% Recovery	EPA 8260B	06/21/13 23:08
Toluene - d8 (Surr)	97.6		% Recovery	EPA 8260B	06/21/13 23:08
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	06/27/13 13:42
Octacosane (Silica Gel Surr)	87.0		% Recovery	M EPA 8015	06/27/13 13:42

Date: 06/27/2013

Project Name : LIM Project Number: 2808

Sample: MW-7 Matrix : Water Lab Number: 85194-07

Cample Bate .00/10/2010	Measured	Method Reporting		Analysis	Date/Time	
Parameter	Value	Limit	Units	Method	Analyzed	
Benzene	19	0.90	ug/L	EPA 8260B	06/26/13 01:24	
Toluene	22	0.90	ug/L	EPA 8260B	06/26/13 01:24	
Ethylbenzene	310	0.90	ug/L	EPA 8260B	06/26/13 01:24	
Total Xylenes	390	0.90	ug/L	EPA 8260B	06/26/13 01:24	
Methyl-t-butyl ether (MTBE)	< 0.90	0.90	ug/L	EPA 8260B	06/26/13 01:24	
Diisopropyl ether (DIPE)	< 0.90	0.90	ug/L	EPA 8260B	06/26/13 01:24	
Ethyl-t-butyl ether (ETBE)	< 0.90	0.90	ug/L	EPA 8260B	06/26/13 01:24	
Tert-amyl methyl ether (TAME)	< 0.90	0.90	ug/L	EPA 8260B	06/26/13 01:24	
Tert-Butanol	6.3	5.0	ug/L	EPA 8260B	06/26/13 01:24	
TPH as Gasoline	6000	90	ug/L	EPA 8260B	06/26/13 01:24	
1,2-Dichloroethane	< 0.90	0.90	ug/L	EPA 8260B	06/26/13 01:24	
1,2-Dibromoethane	< 0.90	0.90	ug/L	EPA 8260B	06/26/13 01:24	
1,2-Dichloroethane-d4 (Surr)	99.2		% Recovery	EPA 8260B	06/26/13 01:24	
Toluene - d8 (Surr)	99.2		% Recovery	EPA 8260B	06/26/13 01:24	
TPH as Diesel (Silica Gel) 250 50 ug/L M EPA 8015 06/27/13 04: (Note: Some hydrocarbons lower-boiling, some higher-boiling than Diesel.)						
Octacosane (Silica Gel Surr)	110		% Recovery	M EPA 8015	06/27/13 04:00	

Date: 06/27/2013

Project Name : **LIM**Project Number : **2808**

Sample: MW-8 Matrix: Water Lab Number: 85194-08

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date/Time Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	06/24/13 11:38
Toluene	< 0.50	0.50	ug/L	EPA 8260B	06/24/13 11:38
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	06/24/13 11:38
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	06/24/13 11:38
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	06/24/13 11:38
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	06/24/13 11:38
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	06/24/13 11:38
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	06/24/13 11:38
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	06/24/13 11:38
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	06/24/13 11:38
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	06/24/13 11:38
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	06/24/13 11:38
1,2-Dichloroethane-d4 (Surr)	103		% Recovery	EPA 8260B	06/24/13 11:38
Toluene - d8 (Surr)	96.9		% Recovery	EPA 8260B	06/24/13 11:38
TPH as Diesel (Silica Gel)	83	50	ug/L	M EPA 8015	06/27/13 04:34
Octacosane (Silica Gel Surr)	102		% Recovery	M EPA 8015	06/27/13 04:34

Date: 06/27/2013

QC Report : Method Blank Data

Project Name : LIM

Project Number: 2808

Parameter	Measured Value	Method Reporti Limit		Analysis Method	Date Analyzed
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	06/26/2013
Octacosane (Silica Gel Surr)	119		%	M EPA 8015	06/26/2013
TPH as Diesel (Silica Gel)	< 50	50	ug/L	M EPA 8015	06/27/2013
Octacosane (Silica Gel Surr)	107		%	M EPA 8015	06/27/2013
Benzene	< 0.50	0.50	ug/L	EPA 8260B	06/24/2013
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	06/24/2013
Toluene	< 0.50	0.50	ug/L	EPA 8260B	06/24/2013
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	06/24/2013
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	06/24/2013
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	06/24/2013
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	06/24/2013
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	06/24/2013
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	06/24/2013
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	06/24/2013
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	06/24/2013
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	06/24/2013
1,2-Dichloroethane-d4 (Surr)	98.7		%	EPA 8260B	06/24/2013
Toluene - d8 (Surr)	97.0		%	EPA 8260B	06/24/2013

	Measured	Method Reportin	a	Analysis	Date
Parameter	Value	Limit	Units	Method	Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	06/26/2013
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	06/26/2013
Toluene	< 0.50	0.50	ug/L	EPA 8260B	06/26/2013
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	06/26/2013
Benzene	< 0.50	0.50	ug/L	EPA 8260B	06/25/2013
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	06/25/2013
Toluene	< 0.50	0.50	ug/L	EPA 8260B	06/25/2013
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	06/25/2013
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	06/25/2013
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	06/25/2013
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	06/25/2013
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	06/25/2013
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	06/25/2013
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	06/25/2013
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	06/25/2013
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	06/25/2013
1,2-Dichloroethane-d4 (Surr)	99.7		%	EPA 8260B	06/25/2013
Toluene - d8 (Surr)	99.2		%	EPA 8260B	06/25/2013
Benzene	< 0.50	0.50	ug/L	EPA 8260B	06/21/2013
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	06/21/2013
Toluene	< 0.50	0.50	ug/L	EPA 8260B	06/21/2013
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	06/21/2013
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	06/21/2013
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	06/21/2013
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	06/21/2013
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	06/21/2013
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	06/21/2013
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	06/21/2013
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	06/21/2013
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	06/21/2013
1,2-Dichloroethane-d4 (Surr)	95.6		%	EPA 8260B	06/21/2013

Date: 06/27/2013

QC Report : Method Blank Data

Project Name : LIM

Project Number: 2808

		Method			
	Measured	Reportin	0	Analysis	Date
<u>Parameter</u>	Value	Limit	Units	Method	Analyzed
Toluene - d8 (Surr)	97.3		%	EPA 8260B	06/21/2013
Benzene	< 0.50	0.50	ug/L	EPA 8260B	06/25/2013
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	06/25/2013
Toluene	< 0.50	0.50	ug/L	EPA 8260B	06/25/2013
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	06/25/2013
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	06/25/2013
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	06/25/2013
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	06/25/2013
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	06/25/2013
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	06/25/2013
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	06/25/2013
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	06/25/2013
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	06/25/2013
1,2-Dichloroethane-d4 (Surr)	99.4		%	EPA 8260B	06/25/2013
Toluene - d8 (Surr)	99.7		%	EPA 8260B	06/25/2013

		Method	t		
	Measured	Reporti	ing	Analysis	Date
Parameter	Value	Limit	Units	Method	Analyzed

Date: 06/27/2013

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Name : **LIM**Project Number : **2808**

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	e ed Units	Analysis Method	Date Analyzed	Percent	Duplicat Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
TPH-D (Si Gel)														_
	BLANK	<50	1000	1000	1000	1060	ug/L	M EPA 8015	6/26/13	100	106	5.06	70-130	25
1,2-Dibromoeth	ane													
	85194-08	<0.50	40.0	39.9	36.4	38.8	ug/L	EPA 8260B	6/24/13	91.0	97.1	6.45	70.0-130	25
1,2-Dichloroeth	ane													
_	85194-08	<0.50	39.9	39.8	32.7	34.1	ug/L	EPA 8260B	6/24/13	81.9	85.6	4.46	70.0-130	25
Benzene														
Diisaanaa dada	85194-08	<0.50	39.9	39.8	35.1	35.6	ug/L	EPA 8260B	6/24/13	88.0	89.3	1.48	70.0-130	25
Diisopropyl ethe							_							
المنابعة المسلمان المسلمان	85194-08	<0.50	39.9	39.8	35.2	35.4	ug/L	EPA 8260B	6/24/13	88.3	89.0	0.798	70.0-130	25
Ethyl-tert-butyl														
	85194-08	<0.50	39.0	39.0	35.3	35.9	ug/L	EPA 8260B	6/24/13	90.5	92.2	1.83	70.0-130	25
Ethylbenzene	0=404.00	0.50						5D4 0000D	0/04/40		0.4.0		= 0.0.400	0.5
Mathaul t butul a	85194-08	<0.50	39.9	39.8	37.5	37.8	ug/L	EPA 8260B	6/24/13	93.8	94.8	0.975	70.0-130	25
Methyl-t-butyl e		0.50			0.4 -			5D4 0000D	0/04/40			= 00	= 0.0.400	0.5
D + M Vydono	85194-08	<0.50	39.3	39.3	34.7	36.4	ug/L	EPA 8260B	6/24/13	88.2	92.7	5.02	70.0-130	25
P + M Xylene	05404.00	.0.50	00.0	00.0	00.4	00.7		ED4 0000D	0/04/40	05.4	07.4	4 75	70.0.400	0.5
	85194-08	<0.50	39.9	39.8	38.1	38.7	ug/L	EPA 8260B	6/24/13	95.4	97.1	1.75	70.0-130	25

Date: 06/27/2013

Project Name : **LIM**Project Number : **2808**

QC Report : Matrix Spike/ Matrix Spike Duplicate

Duplicate Spiked Duplicate Sample Relative Spiked Spiked Spike Spiked Spiked Sample Sample Relative Percent Percent Spiked Sample Spike Dup. Sample Sample Analysis Date Percent Percent Recov. Diff. Parameter Value Method Sample Lėvel Level Value Value Units Analyzed Recov. Recov. Diff. Limit Limit Tert-Butanol 85194-08 < 5.0 200 200 174 172 EPA 8260B 6/24/13 86.8 85.9 0.948 70.0-130 25 ug/L Tert-amyl-methyl ether 85194-08 < 0.50 39.2 39.1 35.0 36.4 ug/L **EPA 8260B** 6/24/13 89.1 93.1 4.34 70.0-130 25 Toluene 85194-08 < 0.50 39.9 39.8 36.3 36.6 **EPA 8260B** 6/24/13 90.8 92.0 1.23 70.0-130 25 ug/L Benzene 85234-05 5.4 40.0 40.0 42.6 40.8 EPA 8260B 6/26/13 92.8 88.4 4.95 70.0-130 ug/L 25 Ethylbenzene 85234-05 0.76 40.0 40.0 42.4 41.0 EPA 8260B 6/26/13 104 100 3.51 70.0-130 25 ug/L P + M Xylene 85234-05 6.0 40.0 40.0 47.0 45.2 ug/L EPA 8260B 6/26/13 102 97.9 4.62 70.0-130 25 Toluene 85234-05 1.1 40.0 40.0 38.4 36.9 ug/L **EPA 8260B** 6/26/13 93.2 89.4 4.17 70.0-130 25 1,2-Dibromoethane 40.3 8.08 85244-03 < 0.50 40.3 45.3 41.7 ug/L **EPA 8260B** 6/25/13 112 104 70.0-130 25 1.2-Dichloroethane 40.0 99.9 3.29 85244-03 < 0.50 40.0 41.3 40.0 ug/L **EPA 8260B** 6/25/13 103 70.0-130 25

Date: 06/27/2013

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Name : **LIM**Project Number : **2808**

				Spike	Spiked	Duplicate Spike	e d			Spiked Sample	Duplicat Spiked Sample	Relative	Spiked Sample Percent	Relative Percent
Parameter	Spiked Sample	Sample Value	Spike Level	Dup. Level	Sample Value	Samṗle Value	Units	Analysis Method	Date Analyzed	Percent	Percent Recov.	Percent Diff.	Recov. Limit	Diff. Limit
Benzene														_
	85244-03	<0.50	40.0	40.0	40.6	39.8	ug/L	EPA 8260B	6/25/13	101	99.5	1.96	70.0-130	25
Diisopropyl ethe	er													
	85244-03	<0.50	39.3	39.3	42.2	41.8	ug/L	EPA 8260B	6/25/13	107	106	0.910	70.0-130	25
Ethyl-tert-butyl	ether													
	85244-03	<0.50	40.1	40.1	44.9	46.6	ug/L	EPA 8260B	6/25/13	112	116	3.60	70.0-130	25
Ethylbenzene														
	85244-03	<0.50	40.0	40.0	42.2	41.6	ug/L	EPA 8260B	6/25/13	105	104	1.25	70.0-130	25
Methyl-t-butyl e														
D . M.V. Jana	85244-03	<0.50	39.9	39.9	43.0	42.6	ug/L	EPA 8260B	6/25/13	108	107	0.885	70.0-130	25
P + M Xylene							_							
Tant Dutamal	85244-03	<0.50	40.0	40.0	42.4	41.4	ug/L	EPA 8260B	6/25/13	106	104	2.35	70.0-130	25
Tert-Butanol	05044.00	.5.0	000	000	004	0.40	,,	ED4 0000D	0/05/40	440	400	4.50	70.0.400	0.5
Tort amul math	85244-03	<5.0	202	202	221	218	ug/L	EPA 8260B	6/25/13	110	108	1.52	70.0-130	25
Tert-amyl-meth	•	-0.50	40.0	40.0	45.4	45.0	/1	EDA 0000D	0/05/40	440	440	4.45	70.0.400	05
Toluene	85244-03	<0.50	40.3	40.3	45.1	45.6	ug/L	EPA 8260B	6/25/13	112	113	1.15	70.0-130	25
ioluene	05044.00	-0 F0	40.0	40.0	44.0	40 E	/1	EDA 0000D	C/OF/40	102	101	2.02	70.0.420	05
	85244-03	<0.50	40.0	40.0	41.3	40.5	ug/L	EPA 8260B	6/25/13	103	101	2.02	70.0-130	25

Date: 06/27/2013

Project Name : **LIM**Project Number : **2808**

QC Report : Matrix Spike/ Matrix Spike Duplicate

	Spiked	Sample	Spike	Spike Dup.	Spiked Sample	Duplicate Spike Sample	e d	Analysis	Date	Spiked Sample Percent	Duplicat Spiked Sample Percent	Relative	Spiked Sample Percent Recov.	Relative Percent Diff.
Parameter	Sample	Value	Level	Level	Value	Value	Units	Analysis Method	Analyzed	Recov.	Recov.	Diff.	Limit	Limit
1,2-Dibromoeth	nane													
	85191-04	<0.50	40.1	40.1	38.0	38.2	ug/L	EPA 8260B	6/21/13	94.8	95.3	0.574	70.0-130	25
1,2-Dichloroeth	ane													
	85191-04	<0.50	40.0	40.0	38.3	39.4	ug/L	EPA 8260B	6/21/13	95.7	98.4	2.74	70.0-130	25
Benzene														
	85191-04	3.7	40.0	40.0	41.2	41.4	ug/L	EPA 8260B	6/21/13	93.8	94.4	0.583	70.0-130	25
Diisopropyl ethe	er						J							
	85191-04	<0.50	40.0	40.0	34.8	35.5	ug/L	EPA 8260B	6/21/13	87.1	88.8	1.90	70.0-130	25
Ethyl-tert-butyl							9. –							
, ,	85191-04	< 0.50	39.1	39.1	35.8	36.5	ug/L	EPA 8260B	6/21/13	91.5	93.3	1.91	70.0-130	25
Ethylbenzene	0010101	0.00	00.1	00.1	00.0	00.0	ug/ L	2.7102002	0,21,10	0 1.0	00.0	1.01	10.0 100	
,	85191-04	1 0	40.0	40.0	42.4	42.8	ug/L	EPA 8260B	6/21/13	101	102	0.842	70.0-130	25
Methyl-t-butyl e		1.5	40.0	40.0	72.7	72.0	ug/L	LI / 0200B	0/21/10	101	102	0.042	70.0-100	20
mounty: coaty: o	85191-04	5.0	39.4	39.4	40.9	41.7	ug/L	EPA 8260B	6/21/13	88.8	90.9	2.36	70.0-130	25
P + M Xylene	03131-04	5.5	33.4	33.4	40.5	41.7	ug/L	LI A 0200B	0/21/13	00.0	30.3	2.30	70.0-130	25
1 · W Aylene	85191-04	<0.50	40.0	40.0	40.0	40.2	/I	EPA 8260B	6/21/13	100	101	0.759	70.0.120	25
Tert-Butanol	00191-04	<0.50	40.0	40.0	40.0	40.3	ug/L	EPA 0200B	0/21/13	100	101	0.759	70.0-130	25
i eri-bulanoi	0=404.04		004	204	404	100	,		0/04/40		o= 4	0 == 4	= 0.0.400	
Tank amand we ette	85191-04	<5.0	201	201	194	196	ug/L	EPA 8260B	6/21/13	96.9	97.4	0.571	70.0-130	25
Tert-amyl-meth	•													
	85191-04	<0.50	39.3	39.3	37.4	38.0	ug/L	EPA 8260B	6/21/13	95.2	96.8	1.72	70.0-130	25

Date: 06/27/2013

Project Name : LIM

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Number: 2808

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value	ed Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.	Duplicat Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Toluene														
	85191-04	<0.50	40.0	40.0	38.9	39.2	ug/L	EPA 8260B	6/21/13	97.3	97.9	0.556	70.0-130	25
1,2-Dibromoeth	ane													
4.0 Diables - 4b	85183-05	0.58	40.3	40.3	43.8	43.5	ug/L	EPA 8260B	6/25/13	107	106	0.558	70.0-130	25
1,2-Dichloroeth	ane 85183-05	1.0	40.0	40.0	41.7	40.8	ug/L	EPA 8260B	6/25/13	102	99.5	2.05	70.0-130	25
Benzene	00100-00	1.0	40.0	40.0	41.7	40.0	ug/L	LI / 0200D	0/20/10	102	55.5	2.00	70.0-100	25
	85183-05	12	40.0	40.0	53.7	52.9	ug/L	EPA 8260B	6/25/13	103	101	2.05	70.0-130	25
Diisopropyl ethe														
	85183-05	<0.50	39.3	39.3	42.9	42.3	ug/L	EPA 8260B	6/25/13	109	108	1.60	70.0-130	25
Ethyl-tert-butyl														
Ethy dhanasaa	85183-05	<0.50	40.1	40.1	46.0	45.2	ug/L	EPA 8260B	6/25/13	115	112	1.78	70.0-130	25
Ethylbenzene														
Mothyl t butyl o	85183-05	30	40.0	40.0	73.4	72.0	ug/L	EPA 8260B	6/25/13	108	104	3.27	70.0-130	25
Methyl-t-butyl e		2.5	20.0	20.0	47.0	40.0		EDA 0000D	0/05/40	100	400	0.005	70.0.400	05
P + M Xylene	85183-05	3.5	39.9	39.9	47.0	46.6	ug/L	EPA 8260B	6/25/13	109	108	0.925	70.0-130	25
i · wi Ayione	85183-05	70	40.0	40.0	111	109	ug/L	EPA 8260B	6/25/13	103	99.5	3.72	70.0-130	25

Date: 06/27/2013

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Name : **LIM**Project Number : **2808**

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spike Sample Value		Analysis Method	Date Analyzed	Percent	Duplicat Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Tert-Butanol														
	85183-05	<5.0	202	202	221	220	ug/L	EPA 8260B	6/25/13	110	109	0.298	70.0-130	25
Tert-amyl-meth	yl ether													
	85183-05	<0.50	40.3	40.3	44.8	44.8	ug/L	EPA 8260B	6/25/13	111	111	0.0729	70.0-130	25
Toluene														
	85183-05	32	40.0	40.0	73.8	72.3	ug/L	EPA 8260B	6/25/13	105	102	3.64	70.0-130	25
TPH-D (Si Gel)														
	BLANK	<50	1000	1000	890	888	ug/L	M EPA 8015	6/27/13	89.0	88.8	0.175	70-130	25

Date: 06/27/2013

Project Name : **LIM**Project Number : **2808**

QC Report : Laboratory Control Sample (LCS)

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
1,2-Dibromoethane	40.1	ug/L	EPA 8260B	6/24/13	86.8	70.0-130
1,2-Dichloroethane	40.0	ug/L	EPA 8260B	6/24/13	82.2	70.0-130
Benzene	40.0	ug/L	EPA 8260B	6/24/13	91.2	70.0-130
Diisopropyl ether	40.0	ug/L	EPA 8260B	6/24/13	91.5	70.0-130
Ethyl-tert-butyl ether	39.1	ug/L	EPA 8260B	6/24/13	90.5	70.0-130
Ethylbenzene	40.0	ug/L	EPA 8260B	6/24/13	96.9	70.0-130
Methyl-t-butyl ether	39.4	ug/L	EPA 8260B	6/24/13	82.2	70.0-130
P + M Xylene	40.0	ug/L	EPA 8260B	6/24/13	98.7	70.0-130
Tert-Butanol	201	ug/L	EPA 8260B	6/24/13	96.0	70.0-130
Tert-amyl-methyl ether	39.3	ug/L	EPA 8260B	6/24/13	88.0	70.0-130
Toluene	40.0	ug/L	EPA 8260B	6/24/13	93.6	70.0-130
Benzene	40.2	ug/L	EPA 8260B	6/26/13	91.6	70.0-130
Ethylbenzene	40.2	ug/L	EPA 8260B	6/26/13	102	70.0-130
P + M Xylene	40.2	ug/L	EPA 8260B	6/26/13	101	70.0-130
Toluene	40.2	ug/L	EPA 8260B	6/26/13	93.0	70.0-130
1,2-Dibromoethane	40.3	ug/L	EPA 8260B	6/25/13	110	70.0-130
1,2-Dichloroethane	40.0	ug/L	EPA 8260B	6/25/13	99.6	70.0-130
Benzene	40.0	ug/L	EPA 8260B	6/25/13	98.3	70.0-130
Diisopropyl ether	39.3	ug/L	EPA 8260B	6/25/13	104	70.0-130
Ethyl-tert-butyl ether	40.1	ug/L	EPA 8260B	6/25/13	108	70.0-130

Date: 06/27/2013

Project Name : **LIM**Project Number : **2808**

QC Report : Laboratory Control Sample (LCS)

					LCS	LCS Percent
Б	Spike		Analysis	Date .	Percent	Recov.
Parameter	Lėvel	Units	Method	Analyzed	Recov.	Limit
Ethylbenzene	40.0	ug/L	EPA 8260B	6/25/13	102	70.0-130
Methyl-t-butyl ether	39.9	ug/L	EPA 8260B	6/25/13	105	70.0-130
P + M Xylene	40.0	ug/L	EPA 8260B	6/25/13	101	70.0-130
TPH as Gasoline	503	ug/L	EPA 8260B	6/25/13	95.6	70.0-130
Tert-Butanol	202	ug/L	EPA 8260B	6/25/13	104	70.0-130
Tert-amyl-methyl ether	40.3	ug/L	EPA 8260B	6/25/13	107	70.0-130
Toluene	40.0	ug/L	EPA 8260B	6/25/13	100	70.0-130
1,2-Dibromoethane	39.9	ug/L	EPA 8260B	6/21/13	96.9	70.0-130
1,2-Dichloroethane	39.8	ug/L	EPA 8260B	6/21/13	97.1	70.0-130
Benzene	39.8	ug/L	EPA 8260B	6/21/13	96.0	70.0-130
Diisopropyl ether	39.8	ug/L	EPA 8260B	6/21/13	89.2	70.0-130
Ethyl-tert-butyl ether	38.9	ug/L	EPA 8260B	6/21/13	94.4	70.0-130
Ethylbenzene	39.8	ug/L	EPA 8260B	6/21/13	104	70.0-130
Methyl-t-butyl ether	39.2	ug/L	EPA 8260B	6/21/13	90.2	70.0-130
P + M Xylene	39.8	ug/L	EPA 8260B	6/21/13	101	70.0-130
TPH as Gasoline	497	ug/L	EPA 8260B	6/21/13	99.6	70.0-130
Tert-Butanol	200	ug/L	EPA 8260B	6/21/13	99.4	70.0-130
Tert-amyl-methyl ether	39.1	ug/L	EPA 8260B	6/21/13	96.6	70.0-130
Toluene	39.8	ug/L	EPA 8260B	6/21/13	98.7	70.0-130
10100110	00.0	~g, ∟	L. 7. 0200B	5,21,10	00.1	10.0 100
1.2 Dibramaethana	40.4	ua/l	EDA 9260D	6/25/12	105	70.0-130
1,2-Dibromoethane	40.4	ug/L	EPA 8260B	6/25/13	105	
7 1,2-Dichloroethane	40.1	ug/L	EPA 8260B	6/25/13	99.6	70.0-130

Date: 06/27/2013

QC Report : Laboratory Control Sample (LCS)

Project Name : **LIM**Project Number : **2808**

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
Benzene	40.1	ug/L	EPA 8260B	6/25/13	101	70.0-130
Diisopropyl ether	39.4	ug/L	EPA 8260B	6/25/13	107	70.0-130
Ethyl-tert-butyl ether	40.2	ug/L	EPA 8260B	6/25/13	112	70.0-130
Ethylbenzene	40.1	ug/L	EPA 8260B	6/25/13	105	70.0-130
Methyl-t-butyl ether	40.0	ug/L	EPA 8260B	6/25/13	108	70.0-130
P + M Xylene	40.1	ug/L	EPA 8260B	6/25/13	104	70.0-130
TPH as Gasoline	504	ug/L	EPA 8260B	6/25/13	111	70.0-130
Tert-Butanol	202	ug/L	EPA 8260B	6/25/13	107	70.0-130
Tert-amyl-methyl ether	40.4	ug/L	EPA 8260B	6/25/13	108	70.0-130
Toluene	40.1	ug/L	EPA 8260B	6/25/13	102	70.0-130

Aqua Science Engineers, Inc. 55 Oak Court, Suite 220 Danville, CA 94526 (925) 820-9391 FAX (925) 837-4853

Chain of Custody

SAMPLER (SIGNATURE)					·												PAG	F	196	. [
Vand Ole							JECT :	NAME	50	L1,		· † (Oak	len	-C		JOB	NO	280	8
ANALYSIS REQUEST						43							T	T		1	<u> </u>		Т	
SPECIAL INSTRUCTIONS:			-		×	2.0	OIL.		SES	â			BON	28	SILIC 5)					,
					E & BTE 8020)	75i1	ACTOR	%(G)	ORGAN	ISSOLV		TES	ALOCAF	260) S	S WITH	NICS (09				
	`				/ MTB	P. F. € (Sec) (Se	EL & 1/8015)	WETAL 0+700	ATILE 3270)	L or D	Si	GENA	3LE H. 8010)	EX/S C	NE N	ORGA 240/82	ALS (5 7000)	E 4:1		
SAMPLE ID.	DATE	TIME	MATRIX	QUANTITY	TPH-GAS / MTBE & BTEX (EPA 5030/8015-8020)	W/Sili TPH-DIESEL (EPA 3510/8015)	TPH-DIESEL & MOTOR OIL (EPA 3510/8015)	CAM 17 METALS (EPA 6010+7000)	SEMI-VOLATILE ORGANICS (EPA 625/8270)	Pb (TOTAL or DISSOLVED) (EPA 6019)	PEŠTICIDES (EPA 8081)	FUEL OXYGENATES (EPA 8260)	PURGEABLE HALOCARBONS (EPA 601/8010)	TPH-G/BTEX/5 OXYS $/lb$ (EPA METHOD 8260) $\lesssim CaV$	MULTI-RANGE HYDROCARBONS WITH SILICA GEL CLEANUP (EPA 8015)	VOLATILE ORGANICS (EPA 624/8240/8260)	LUFT METALS (5) (EPA 6010+7000)	COMPOSITE 4:1	EDF	
MW-1	6/8/13	1125	W	5		4								4				 		
MW-2		1000		1		4								4			 	 	0	
Mw-3	\rightarrow	0850		Ш		4								7				1.	To	
MW-4P MW-5 MW-7 MW-7		0830		Ш		4								1	<u> </u>	 		 	7	
MW-S	$-\downarrow\downarrow$	0915	[(_	Ц		Y								4			 	 	9	
14W-6		1030	1		ļ	9								Y		1		1	9	· .
MW-7	- (0935		\Box		4								50			 	 	6	
MW-8	V	1100	V	1		0								V		 	 	 		
War		<u> </u>	<u> </u>	<u> </u>												 	 	+	162	
		ļ	ļ	ļ		ļ														
//////////////////////////////////////	RECEIVE	D BY:		<u> </u>	<u></u>	REL	.INQUI	SHED E	BY:	<u></u>			D BY LA			_ A	OMMEN	ITS:	164	
Resignature) (time)	(signature	·)		(tim	e)	(sigi	nature)		(tin	ne)	(Sig	lun f nature)	Pui	in (til	043 ne)	1		CON	ŒNT	RATION
Sprinted name) (date)											Ai	lison	Prem.	2: 1	6201				ROUND	TIME
(printed name) (date)	(printed n	ame)		(da	te)	(prir	ited na	me)	(da	ate)		nted na			ate)		_			Hr 72Hr
Company-ASE, INC.	Company	- '~				Con	pany-				i		KIF	•	•		THER:			

SAMPLE RECEIPT CHECKLIST

SRG #: 85194		TAT: Standar		rd		Rush	☐ Split [None				
Sample Receipt Initials/Date: ABP 062013 Storage Time: 1313 Sample Login Initials/Date: MAS POUZ 13													
Method of Receipt: ☐ Courier ☐ Over-				unter		Shipped	Shippin	g Custo	dy Seals	⊠ N/A	•		
Temp °C 0,4 \(\square\) N/A Therm ID \(\square\) R-3			1 Tim	e Ì	304	Coolant present		⊠ Yes		☐ Water ☐ Te		emp Excursion	
Chain-of-Custody:			Yes No		No	Documented on		COC	Labels	Discrepancies:			
Is COC present?			×			Sample ID		X	X				
Is COC signed by relinquisher?			×		Project ID		X	×					
Is COC dated by relinquisher?			×			Sample Da	ate	X	X		,		
Is the sampler's name on the COC?			×			Sample Ti	me	X	',				
Are there analyses or hold for all samples?			×			Does COC	match	project h	istory?	□ N/A	X Yes	□No	
Samples:			N/A	Yes	No	Commen	ts:				,		
Are sample custody seals intact?			*	103	110	-							
Are sample containers intact?				×									
Is preservation documented?				×									
In-house Analysis:			N/A	Yes	No								
Are preservatives acceptable?				×									
Are samples within holding time?				×									
Are sample container types correct?				×									
Is there adequate sample volume?				×									
Receipt Details:													
Matrix	Containe	er Type	# of Containers										
wa Voa			40										
											CS	Required: [
						Proceed W Client Con			YES [NO Ini	t/Date:		