

August 11, 1998

SEMI-ANNUAL GROUNDWATER MONITORING REPORT JULY 23, 1998 GROUNDWATER SAMPLING

at Lim Family Property 250 8th Street Oakland, California

Submitted by:
AQUA SCIENCE ENGINEERS, INC.
2411 Old Crow Canyon Road, #4
San Ramon, CA 94583
(925) 820-9391

1.0 INTRODUCTION

This report outlines the methods and findings of Aqua Science Engineer's, Inc. (ASE) semi-annual groundwater monitoring at the property located at 250 8th Street in Oakland, California (Figures 1 and 2).

2.0 SITE HISTORY

A gasoline service station previously occupied the site. In May 1992, ASE removed ten underground fuel storage tanks from the site. The tanks consisted of one (1) 10,000-gallon gasoline tank, one (1) 5,000-gallon diesel tank, three (3) 2,000-gallon gasoline tanks, one (1) 2,000-gallon diesel tank, three (3) 500-gallon gasoline tanks and one (1) 250-gallon waste oil tank. Up to 10,000 parts per million (ppm) total petroleum hydrocarbons as gasoline (TPH-G) and 5,900 ppm total petroleum hydrocarbons as diesel (TPH-D) were detected in soil samples collected during the tank removal.

Between December 1992 and March 1993, All Environmental of San Ramon, California overexcavated 1,762 cubic yards of soil from the site and off-hauled the soil to the BFI Landfill in Livermore, California. Analytical results show that all on-site soil with hydrocarbon concentrations greater than 10 ppm was removed from the site with the exception of soil along the 8th Street shoring. Up to 1,800 ppm TPH-G and 120 ppm TPH-D were detected in soil samples collected along the shoring indicating that contamination likely extends below 8th Street. This contamination left in place may still be a source for groundwater contamination.

In January 1995, ASE installed monitoring wells MW-1 and MW-2 at the site. High hydrocarbon concentrations were detected in monitoring well MW-2, downgradient of the site. Moderate hydrocarbon concentrations were detected in on-site monitoring well MW-1.

Since April 1995, the site has been on a groundwater monitoring program. Analytical results for these sampling periods are presented in Tables Two and Three.

-1-

3.0 GROUNDWATER FLOW DIRECTION AND GRADIENT

On July 23, 1998, ASE project manager David Allen measured the depth to water in each site well using an electric water level sounder. The surface of the groundwater was also checked for the presence of free-floating hydrocarbons or sheen. A sheen was present on the surface of the groundwater in monitoring well MW-2. No free-floating hydrocarbons or sheen was present on the surface of water in monitoring well MW-1.

ASE usually samples the monitoring wells at this site, or at least collects depth to groundwater measurements, on the same day that this is done on the LUM property, across the 8th Street/Alice Street intersection from the site. After repeated attempts, ASE was unable to contact the proper personnel at LUM's consultant, All Environmental, to schedule coordinated sampling events. For this reason, ASE was unable to prepare a groundwater gradient map this quarter. Groundwater elevation data is presented below in Table One.

TABLE ONE
Groundwater Elevation Data

Well I.D.	Date of Measurement	Top of Casing Elevation (msl)	Depth to Water (feet)	Product Thickness (feet)	Groundwater Elevation (msl)
MW-1	01-30-95	25.51	16.21		9.30
	04-12-95		15.71		9.80
	07-14-95		16.71		8.80
	10-17-95		17.72		7.79
	01-12-96		18.03		7.48
	07-25-96		16.82		8.69
	01-06-97		15.60		9.91
	07-08-97		17.31		8.20
	01-26-98		15,21		10.30
	07-23-98		15.38		10.13
MW-2	01-30-95	23.99	15.02		8.97
	04-12-95		14.75		9.24
	07-14-95		16.02		7.97
	10-17-95		16.94		7.05
	01-12-96		17.05		6.94
	07-25-96		16.02		7.97
	01-06-97		14.34		9.65
	07-08-97		16.52		7.47
	01-26-98		14.10		9.89
	07-23-98		14.70		9,29

TABLE ONE
(continued)
Groundwater Elevation Data

Well I.D.	Date of Measurement	Top of Casing Elevation (msl)	Depth to Water (feet)	Product Thickness (feet)	Groundwater Elevation (msl)
LUM-1	07-14-95 10-17-95 01-12-96 07-25-96 01-06-97 07-08-97 02-20-98	23.42	Unknown 18.21 18.15 18.08 Unknown Unknown 10.03	1.53 1.35 2.36	Unknown 6.43* 6.35* 7.23* Unknown Unknown 15.13*
LUM-2	07-14-95 10-17-95 01-12-96 07-25-96 01-06-97 07-08-97 02-20-98	23.98	17.21 17.67 17.89 16.94 14.35 17.32 10.84	0.01	6.77 6.31 6.10* 7.04 9.63 6.66 13.14

^{* =} Adjusted for the presence of free-floating oil by the equation: Adjusted Groundwater Elevation = Top of Casing Elevation - Depth to Groundwater + (0.8 x Floating Hydrocarbon Thickness)

The groundwater flow direction has consistently been to the south beneath the site at an approximate gradient of 0.001-feet/foot.

4.0 MONITORING WELL SAMPLING

On July 23, 1998, ASE sampled monitoring wells MW-1 and MW-2 at the site. Prior to sampling, four well casing volumes of water were removed from each well. The pH, temperature and conductivity were monitored during the purging, and samples were not collected until these parameters stabilized. After the water level in each well recovered to at least 80% of the static pre-purge level, groundwater samples were collected with a dedicated polyethylene bailer. The groundwater samples from each well were decanted from the bailer into 40-ml volatile organic analysis (VOA) vials, pre-preserved with hydrochloric acid, and 1-liter amber glass bottles. The samples were labeled, placed in protective foam sleeves, and stored in coolers with wet ice for transport to Chromalab of Pleasanton, California (ELAP #1094) under appropriate chain of During sampling there was a strong hydrocarbon odor documentation. present in groundwater from monitoring well MW-2. No odors were noted during the sampling of monitoring well MW-1.

Well sampling purge water was contained in a 55-gallon steel drum and stored on-site for handling by the client at a later date. See Appendix A for a copy of the well sampling field logs.

5.0 ANALYTICAL RESULTS FOR GROUNDWATER

The groundwater samples were analyzed for TPH-G by EPA Method 5030/8015M, TPH-D by EPA Method 3510/8015M, benzene, toluene, ethylbenzene, and total xylenes (collectively known as BTEX) and methyl tertiary butyl ether (MTBE) by EPA Method 8020 and halogenated volatile organic compounds (HVOCs) by EPA Method 8010. The groundwater sample from monitoring well MW-2 was also analyzed for oil and grease (O&G) by Standard Method 5520BF. The analytical results are presented in Tables Two and Three, and the certified analytical report and chain of custody documentation are included in Appendix B.

TABLE TWO
Groundwater Analytical Results
TPH-G, TPH-D, BTEX and MTBE
All results are in parts per billion

Well/ Date Sampled	TPH Gasoline	TPH Diesel	Benzene	Toluene	Ethyl Benzene	Total Xylenes	МТВЕ
MW-1							
01-30-95	740	200	3	5	1	4	
04-12-95	400	500	< 0.5	< 0.5	3	<2	
07-14-95	520	400	1	< 0.5	2	3	
10-17-95	400	200	0.5	1	3	<2	
01-12-96	120	890	< 0.5	< 0.5	< 0.5	< 1.0	<2
07-08-96	320	300	0.52	2.7	1.2	2.3	<5
01-06-97	110	75	< 0.5	0.68	< 0.5	< 0.5	<5
07-08-97	380	290	< 0.5	1.5	1.4	1.9	<5
01-26-98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5
07-23-98	190	< 50	0.54	2.8	2.0	1.8	< 5

-4-

TABLE TWO Groundwater Analytical Results TPH-G, TPH-D, BTEX and MTBE

All results are in parts per billion

Well/ Date Sampled	TPH Gasoline	TPH Diesel	Benzene	Toluene	Ethyl Benzene	Total Xylenes	MTBE
<u>MW-2</u>							
01-30-95	88,000	800	19,000	18,000	2,400	10,000	
04-12-95	110,000	990	21,000	28,000	2,800	14,000	
07-14-95	120,000	5,000	20,000	25,000	3,200	15,000	
10-17-95	190,000	4,000	15,000	26,000	4,900	23,000	
01-12-96	32,000	2,600	10,000	8,000	1,100	4,800	<2
07 - 08-96	110,000	2,500	20,000	18,000	2,500	12,000	< 500
01-06-97	230,000	37,000	11,000	19,000	4,300	20,000	< 1,200
07-08-97	91,000	35,000	16,000	20,000	2,700	13,000	< 1,000
01-26-98	50,000	11,000	12,000	12,000	1,600	6,700	< 250
07-23-98	50,000	8,100#	11,000	8,300	1,800	7,000	1,100
EPA METHOD	5030/ 8015M	3550/ 8015M	8020	8020	8020	8020	8020

Notes:

Non-detectable concentrations noted by the less than sign (<) followed by the detection limit.

Most recent data in bold.

TABLE THREE

Groundwater Analytical Results Lead, Oil & Grease and Volatile Organic Compounds All results are in parts per billion

Compound	MW-1	MW-2
1-30-95		<u> </u>
Dissolved Lead	< 0.04	< 0.04
Total Oil and Grease	< 500	19,000
Hydrocarbon Oil and Grease	< 500	17,000
Chloroform	0.5	< 30
Tetrachloroethene (PCE)	8	< 30
Other VOCs	< 0.5 - < 2	< 30 - < 100

^{* =} Hydrocarbons uncharacteristic of gasoline found in the gasoline range at 76 ppb.

^{# =} Estimated concentration reported due to overlapping fuel patterns.

TABLE THREE (Continued)

Groundwater Analytical Results
Lead, Oil & Grease and Volatile Organic Compounds
All results are in parts per billion

Compound 4-12-95	<u>MW-1</u>	<u>MW-2</u>
Dissolved Lead Hydrocarbon Oil and Grease	< 0.04 < 500	< 0.04 22,000
Tetrachloroethene (PCE) 1,2-Dichloroethane	6 < 0.5	0.9
Other VOCs	< 0.5 - < 2	43 < 30 - < 100
7-14-95 Total Oil and Green	500	
Total Oil and Grease Hydrocarbon Oil and Grease	< 500 < 500	25,000 23,000
1,2-Dichloroethane	< 0.5	35
Tetrachloroethene (PCE) Other VOCs	4	<5
	< 0.5 - < 2	< 5 - < 20
10-17-95 Total Oil and Grease	~ 1.000	15.000
Hydrocarbon Oil and Grease	< 1,000 < 1,000	15,000 13,000
Tetrachloroethene (PCE)	5	< 0.5
Trichloroethene (TCE) Other VOCs	< 0.5	1
other vocs	< 0.5 - < 2	< 0.5 - < 2
<u>01-12-96</u>		
Hydrocarbon Oil and Grease	< 5,000	< 5,000
<u>07-08-96</u>		
Hydrocarbon Oil and Grease Chloroform	0.0	< 1,000
Tetrachloroethane (PCE)	0.8 6.4	< 0.5 < 0.5
Other VOCs	< 0.5 - < 3	< 0.5 - < 3
01-06-97		
Hydrocarbon Oil and Grease		4,100
07-08-97		
Hydrocarbon Oil and Grease		< 1,000
Tetrachloroethane (PCE) Other VOCs	0.9	< 0.5
other vocs	< 0.5 - < 3	< 0.5 - < 3
01-26-98		
Hydrocarbon Oil and Grease Trichloroethene	0.70	< 1,000
Tetrachloroethene	0.70 10	< 5.0 < 5.0
1,2-Dichloroethane	< 0.5	11
Other VOCs	< 0.5 - < 50	< 0.5 - < 50

Lim Monitoring Report - July 1998 Sampling

-6-

TABLE THREE (Continued)

Groundwater Analytical Results
Lead, Oil & Grease and Volatile Organic Compounds
All results are in parts per billion

Compound	<u>MW-1</u>	<u>MW-2</u>	
07-23-98			
Hydrocarbon Oil and Grease		< 1,000	
Tetrachloroethene	4.0	4.6	
1,2-Dichloroethane	< 2	9.9	
Other VOCs	< 2 - < 10	< 0.5 - < 5.0	

6.0 CONCLUSIONS AND RECOMMENDATION

petroleum hydrocarbon concentrations were groundwater samples collected from monitoring well MW-2, downgradient The benzene, toluene, ethylbenzene of the site. and total xylenes concentrations in these samples exceeded the California Department of Toxic Substances Control (DTSC) maximum contaminant levels (MCLs) for In addition, the MTBE concentration in these samples drinking water exceeded the DTSC interim action level for drinking water. 9.9 parts per billion (ppb) 1,2-dichloroethane and 4.6 ppb tetrachloroethene (PCE) were detected in groundwater samples collected from well MW-2. 4.0 ppb PCE were detected in groundwater samples collected from monitoring well MW-1. Only very low concentrations of petroleum hydrocarbons, below DTSC MCLs, were detected in groundwater samples collected monitoring well MW-1.

The groundwater remediation project outlined in ASE's workplan dated June 5, 1997 has been placed on hold by our client. ASE is uncertain as to when this project will be proceeding. The next semi-annual groundwater sampling is scheduled for January 1999.

7.0 REPORT LIMITATIONS

The results of this investigation represent conditions at the time of the groundwater sampling, at the specific locations where the samples were collected, and for the specific parameters analyzed by the laboratory.

It does not fully characterize the site for contamination resulting from unknown sources, or for parameters not analyzed by the laboratory. All of the laboratory work cited in this report was prepared under the direction

of an independent CA-DHS certified laboratory. The independent laboratory is solely responsible for the contents and conclusions of the chemical analysis data.

Aqua Science Engineers appreciates the opportunity to assist The Lim Family with their environmental needs. Should you have any questions or comments, please feel free to call us at (925) 820-9391.

Respectfully submitted,

AQUA SCIENCE ENGINEERS, INC.

Robert E. Kitay, R.G., R.E.A.

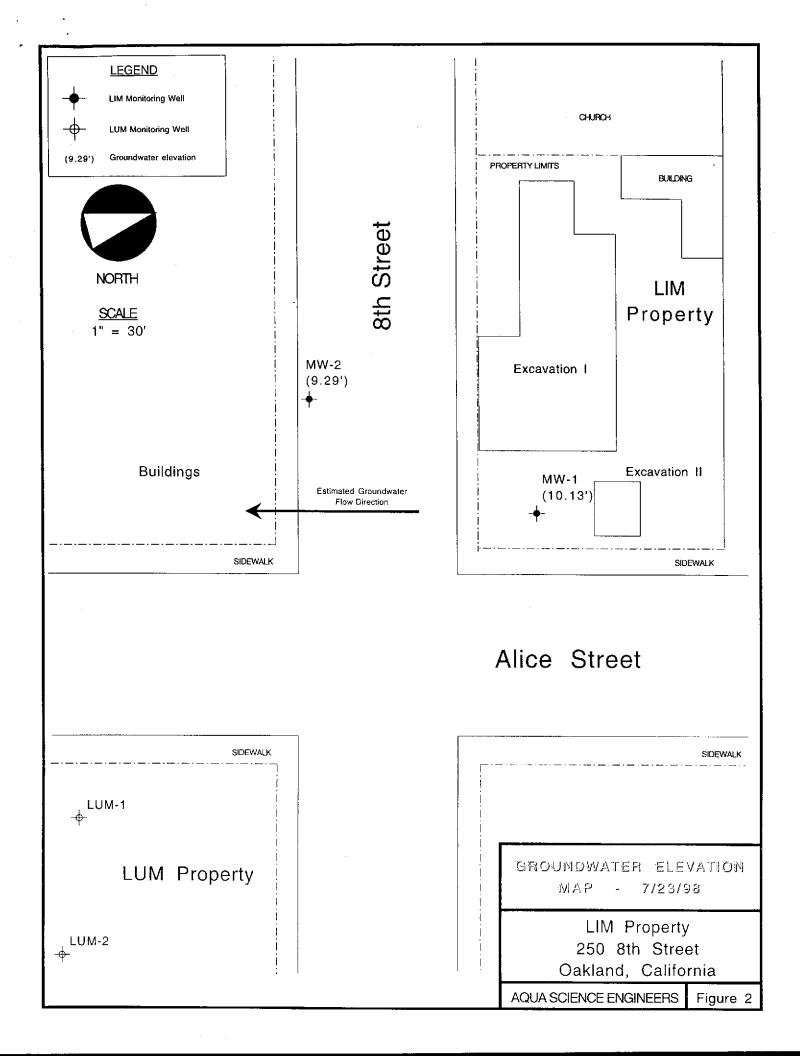
Senior Geologist

Ruhl E. Kitang

Attachments: Figures 1 and 2

Appendices A and B

-8-


SITE LOCATION MAP

Lim Property 250 8th Street Oakland, California

Aqua Science Engineers

Figure 1

BASE: The Thomas Guine, Alameda and Contra Costa Counties Street Guide & Directory, 1990

APPENDIX A

Well Sampling Field Log

WELL SAMPLING FIELD LOG

Project Name and Ade	dress:	UM	
Job #: 2108		Date of s	ampling: 7.23.98
Well Name: MW-1	· · · · · · .		by:
			Well diameter (inches): 2
Depth to water before	sampling	(feet):	ls. 38
Thickness of floating	product if	anv:	A
Depth of well casing	n water (f	eet): 13	2.63
Number of gallons per	well casi	ng volume (gallons): 2.11
Number of well casing			
,	-		pefore sampling (gallons): _8.5
Equipment used to pu	roe the wi	ell. Design	cated Bailer
Time Evacuation Bega	n: 14:50	Tim	e Evacuation Finished: 15:00
			: 9 gals.
	, -		er how many gallons:
Time samples were co			
			46
			} 9
Samples collected wit	h. Ded	icatal Bai	le-1
			Dr: None
Description of sedime			
	in in samp	710	
CHEMICAL DATA			
Volume Purged	Temp	pН	Conductivity
2	70.1	7.66	1020
<u> </u>	71.0	2.68	1040
<u>. </u>	70.8	7.46	1160
8	70.6	<u> 1.75</u>	1080
			
		<u></u>	
SAMPLES COLLECTI	\mathfrak{SD}		
Sample # of containers	Volume & ty	pe container P	res leed? Analysis
MW-1 3		JOX 5	V V 194-6 MIBE / 1878-
1: 2	1.1.40	Assessed to	

WELL SAMPLING FIELD LOG

Project Name and Add	dress:				
Job #: 2808				7.23.98	· ·
Well Name: <u>μω-2</u>		Sampled b	y: <u>DA</u>		
Total depth of well (fe					2_
Depth to water before					<u>-</u>
Thickness of floating					
Depth of well casing i					
Number of gallons per					
Number of well casing					
Req'd volume of groun					_8
Equipment used to pu					
Time Evacuation Bega	n: 14:30	<u> </u>	e Evacuat	ion Finished:	14:40
Approximate volume	of groundy	vater purged:	8	jale.	
Did the well go dry?:_	NO	After	r how ma	any gallons:	-
Time samples were co			·		
Depth to water at time					·
Percent recovery at the	me of san	ipling: 94	9	· · · · · · · · · · · · · · · · · · ·	
Samples collected with	h:be	dicated	Bailer		
	•				
Sample color: _ tu/bi.	d gray	_ Odor	:_ 540.	-s ho	
Description of sedimen	nt in samp	_ Odor ole: <u>gray</u>	:_ 540.	-s ho	
Description of sedimer CHEMICAL DATA	d gray	_ Odor ple: <u>gray</u>	:_ 540.	-s hc	
Description of sedimer	d gray nt in samp	_ Odor ple: <u>gray</u> p <u>H</u>	:_ 540.	-s hc	
Description of sedimer CHEMICAL DATA Volume Purged 2	nt in samp	ole: gray	SIH	rity	
Description of sedimer CHEMICAL DATA Volume Purged 2	nt in samp <u>Temp</u>	pH	Strong Silf Conductive	rity	
Description of sedimer CHEMICAL DATA Volume Purged 2	nt in samp Temp -72-8	pH 7.84	Silt Conductiv	rity	
Description of sedimer CHEMICAL DATA Volume Purged 2	It in samp	pH 1.84 -7.76	Strong S	rity	
Description of sedimer CHEMICAL DATA Volume Purged 2	Temp -72.8 -72.6	pH 1.84 -7.76 7.68	Strong S	rity	
Description of sedimer CHEMICAL DATA Volume Purged 2 4 C 8	Temp	pH 1.84 -7.76 7.68	Strong S	rity	
Description of sedimer CHEMICAL DATA Volume Purged 2	Temp	pH 1.84 -7.76 7.68	Strong S	rity	
Description of sedimer CHEMICAL DATA Volume Purged 2 4 C 8	Temp -72.8 -72.6 -72.2	pH 1.84 -7.76 -7.72 	Conductive 1100 1175	rity	
Description of sedimer CHEMICAL DATA Volume Purged 2 4 C 8 SAMPLES COLLECTE	Temp -72.8 -72.6 -72.2	pH 1.84 7.74 7.72 7.72 pe container Pre	Conductive 1100 1175	rity	
Description of sedimer CHEMICAL DATA Volume Purged 2 4 5 SAMPLES COLLECTE Sample # of containers	Iemp 72.8 72.4 72.6 72.2 D Volume & ty 40.0 vo	pH 1.84 7.76 7.72 pe container Pre	Conductive 1100 1175	Analysis	
Description of sedimer CHEMICAL DATA Volume Purged 2 4 C 8 SAMPLES COLLECTE Sample # of containers MW-2 2	Iemp 72.8 72.4 72.6 72.2 D Volume & ty 40.0 vo	pH 1.84 7.74 7.72 7.72 pe container Pre	Conductive 1100 1175	Analysis TPh. G/BIEX	
Description of sedimer CHEMICAL DATA Volume Purged 2 4 C 8 SAMPLES COLLECTE Sample # of containers MW-2 2	Iemp 72.8 72.4 72.6 72.2 D Volume & ty 40.0 vo	pH 1.84 7.76 7.72 pe container Pre	Conductive 1100 1175	Analysis TPHOG/BIEX 8010	

APPENDIX B

Certified Analytical Report and Chain of Custody Documentation

Environmental Services (SDB)

July 31, 1998

Submission #: 9807374

AQUA SCIENCE ENGINEERS INC

Atten: Dave Allen

Project: LIM

Received: July 24, 1998

Project#: 2808

re: 2 samples for TPH - Diesel analysis.

Method: EPA 8015M

Matrix: WATER

Extracted: July 29, 1998

Sampled: July 23, 1998

Run#: 13981

Analyzed: July 30, 1998

REPORTING BLANK BLANK DILUTION DIESEL LIMIT RESULT SPIKE FACTOR <u> Spl#</u> CLIENT SPL ID (ug/L) (ug/L)(ug/L)(%) 197149 MW-1 N.D. N.D. 102 1 197150 MW-2 8100 50 N.D. 102 1

Note: Estimated concentration reported due to overlapping fuel patterns.

Surrogate high due to matrix interference.

Carolyn House

Analýst

Bruce Havlik

Analyst

Environmental Services (SDB)

July 31, 1998

Submission #: 9807374 :

AQUA SCIENCE ENGINEERS INC

Atten: Dave Allen

Project: LIM

Project#: 2808

Received: July 24, 1998

re: Blank spike and duplicate report for TPH - Diesel analysis.

Method: EPA 8015M

Matrix: WATER

Lab Run#: 13981

Analyzed: July 29, 1998

Spike

Analyte	Spike BSP (ug/L)	Amount Dup		Found Dup	Spike BSP (%)	Dup	Control Limits	-	% RP Li
DIESEL	2500	2500	2560	2460	102	98.4	60-130	3.59	25

BS Smpl #: 197648 BSD Smpl #: 197649

Environmental Services (SDB)

July 31, 1998

Submission #: 9807374 :

AQUA SCIENCE ENGINEERS INC

Atten: Dave Allen

Project: LIM

Project#: 2808

Received: July 24, 1998

 $\it re: {\bf Surrogate}$ report for 2 samples for TPH - Diesel analysis.

Method: EPA 8015M Lab Run#: 13981 Matrix: WATER

Sample#	Client Sample ID	Surrogate	% Recovery Recovery
197149-1	MW-1	O-TERPHENYL	104 60-13
197150-1	MW-2	O-TERPHENYL	147 60-13.
			% Recover
			9 VCCOAGI
Sample#	QC Sample Type	Surrogate	Recovered Limits
<u>Sample#</u> 197647-1	Reagent blank (MDB)	Surrogate O-TERPHENYL	-
	· · · · · · · · · · · · · · · · · · ·		Recovered Limits

\$005 QCSURR:229 CTAH 31 JAH98 17

Environmental Services (SDB)

July 31, 1998

Submission #: 9807374

AQUA SCIENCE ENGINEERS INC

Atten: Dave Allen

Project: LIM

Received: July 24, 1998

Project#: 2808

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW-1

*S*pl#: 197149

Matrix: WATER

Sampled: July 23, 1998 Run#:14026

Analyzed: July 30, 1998

		REPORTING	BLANK	BLANK I	DILUTION
	RESULT	LIMIT	RESULT	SPIKE	FACTOR
ANALYTE	(ug/L)	(ug/L)	(ug/L)	(%)	
GASOLINE	190	50	N.D.	86	1
MTBE	N.D.	5.0	N.D.	84	1
BENZENE	0.54	0.50	N.D.	89	1
TOLUENE	2.8	0.50	N.D.	90	1
ETHYL BENZENE	2.0	0.50	N.D.	91	1
XYLENES	1.8	0.50	N.D.	92	1

Vincent Vancil

Analyst

Michael Veroná

Operations Manager

Environmental Services (SDB)

July 31, 1998

Submission #: 9807374

AQUA SCIENCE ENGINEERS INC

Atten: Dave Allen

Project: LIM

2808 Project#:

Received: July 24, 1998

re: One sample for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Client Sample ID: MW-2

Spl#: 197150

Matrix: WATER

Sampled: July 23, 1998

Run#:14026

Analyzed: July 30, 1998

ANALYTE		RESULT (ug/L)	REPORTING LIMIT (uq/L)	BLANK RESULT (ug/L)	BLANK D SPIKE (%)	FACTOR
GASOLINE MTBE BENZENE TOLUENE ETHYL BENZENE XYLENES	0	50000 1100 11000 8300 1800 7000	5000 500 50 50 50 50 50	N.D. N.D. N.D. N.D. N.D. N.D.	86 84 89 90 91	100 100 100 100 100

Vincent Vancil

Analyst

Michael Verona

Operations Manager

Environmental Services (SDB)

July 31, 1998

Submission #: 9807374

AQUA SCIENCE ENGINEERS INC

Atten: Dave Allen

Project: LIM

Received: July 24, 1998

Project#:

2808

re: Blank spike and duplicate report for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Matrix: WATER Lab Run#: 14026

Analyzed: July 31, 1998

	Spike Spike Amount Amount Found Spike Recov						S _c	
Analyte	BSP Di (ug/L)	ıp	BSP (ug/L)	Dup	BSP (%)	Dup (%)		RI Li
GASOLINE MTBE BENZENE TOLUENE ETHYL BENZENE XYLENES	100 10 100 10 100 10 100 10	00 00 00 00 00	432 83.6 88.8 89.6 90.6 277	433 81.2 90.9 91.8 95.9 286	86.4 83.6 88.8 89.6 90.6 92.3	86.6 81.2 90.9 91.8 95.9 95.3	77-123 2.34 78-122 2.42 70-130 5.68	2(2(2(

Environmental Services (SDB)

July 31, 1998

Submission #: 9807374 : And

AQUA SCIENCE ENGINEERS INC

Atten: Dave Allen

Project: LIM

Project#: 2808

Received: July 24, 1998

re: Surrogate report for 2 samples for Gasoline BTEX MTBE analysis.

Method: SW846 8020A Nov 1990 / 8015Mod

Lab Run#: 14026 Matrix: WATER

			%	Recover
Sample#	Client Sample ID	Surrogate	Recovered	<u>Limit</u> s
197149-2	MW-1	TRIFLUOROTOLUENE	88.6	58-12
197149-2	MW - 1.	4-BROMOFLUOROBENZENE	145	50-15
197150-2	MW-2	TRIFLUOROTOLUENE	83.6	58-12
197150-2	MW-2	4-BROMOFLUOROBENZENE	126	50-15
			8	Recover
Sample#	QC Sample Type	Surrogate	Recovered	Limits
<u>Sample#</u> 198138-1	OC Sample Type Reagent blank (MDB)	Surrogate TRIFLUOROTOLUENE	Recovered 85,2	<u>Limitε</u> 58-12
198138-1	Reagent blank (MDB)	TRIFLUOROTOLUENE	85.2	58-1 2
198138-1 198138-1	Reagent blank (MDB) Reagent blank (MDB)	TRIFLUOROTOLUENE 4-BROMOFLUOROBENZENE	85.2 124	58-12 50-15
198138-1 198138-1 198139-1	Reagent blank (MDB) Reagent blank (MDB) Spiked blank (BSP)	TRIFLUOROTOLUENE 4-BROMOFLUOROBENZENE TRIFLUOROTOLUENE	85.2 124 84.6	58-12 50-15 58-12

V132 QCSUBR1729 V:INCE 31-Jul-91

Environmental Services (SDB)

July 29, 1998

Submission #: 9807374

AQUA SCIENCE ENGINEERS INC

Atten: Dave Allen

Project: LIM

Received: July 24, 1998

Project#: 2808

re: 1 sample for Oil and Grease analysis.

Method: 5520 B&F

Matrix: WATER

Extracted: July 28, 1998

Sampled: July 23, 1998 Run#: 13953

Analyzed: July 28, 1998

REPORTING BLANK BLANK DILUTION OIL & GREASE LIMIT RESULT SPIKE FACTOR CLIENT SPL ID (mq/L)(mg/L)(mg/L) 197150 MW-2 N.D. 1.0

Operations Manager

Environmental Services (SDB)

August 7, 1998

Submission #: 9808084 .

AQUA SCIENCE ENGINEERS INC

Atten: Robert Kitay

Project: LIM

Project#: 2808

Received: July 24, 1998

re: One sample for Halogenated Volatile Organics by GC/MS analysis.

Method: 8010 Compounds by Method 8240A Nov 1990

Client Sample ID: MW-1

Spl#: 199500

Matrix: WATER Sampled: July 23, 1998

Run#: 14151 Analyzed: August 6, 1998

ANALYTE	RESULT	REPORTING LIMIT	BLANK RESULT	SPIKE	DILUTION FACTOR
	<u>(ਮੌਕ\ੈੱਸ)</u>	(uq/L)	(uq/L)	(%)	
BROMODICHLOROMETHANE BROMOFORM	N.D.	2.0	Ŋ.D.		1
BROMOMETHANE	N.D.	2.0	N.D.		1,
ONDON TEMPROTICATION	N.D.	5.0	N.D.		1
CARBON TETRACHLORIDE	Ŋ.D.	2.0	. N.D.		1
CHLOROBENZENE	Ŋ.D.	2.0	Ŋ.D.	94.1	1
CHLOROETHANE	Ŋ.D.	2.0	Ŋ.D.		ı
2-CHLOROETHYLVINYLETHER	N.D.	10	N.D.		1
CHLOROFORM	N.D.	3.0	N.D.		1.
CHLOROMETHANE	N.D.	5.0	N.D.		1
DIBROMOCHLOROMETHANE	N.D.	2.0	N.D.		1
1,2-DICHLOROBENZENE	N.D.	2.0	N.D.	** -	1
1,3-DICHLOROBENZENE	N.D.	2.0	N.D.		1
1,4-DICHLOROBENZENE	N.D.	2.0	N.D.		1
1,1-DICHLOROETHANE	N.D.	2.0	N.D.		1
1,2-DICHLOROETHANE	N.D.	2.0	N.D.		1
1,1-DICHLOROETHENE	N.D.	2.0	N.D.	88.0	Ĩ
1,2-DICHLOROETHENE (CIS)	N.D.	2.0	N.D.		ī
1,2-DICHLOROETHENE (TRANS)	N.D.	2.0	N.D.		ī
1,2-DICHLOROPROPANE	N.D.	2.0	N.D.		ī
CIS-1,3-DICHLOROPROPENE	N.D.	2.0	N.D.		Ĩ
TRANS-1,3-DICHLOROPROPENE	N.D.	2.0	N.D.		ī
METHYLENE CHLORIDE	N.D.	3.0	N.D.		ī
1,1,2,2-TETRACHLOROETHANE	N.D.	2.0	N.D.		ī
TETRACHLOROETHENE	4.0	2.0	N.D.		า
1,1,1-TRICHLOROETHANE	N.D.	2.0	N.D.		ī
1,1,2-TRICHLOROETHANE	N.D.	2.0	N.D.	·	ร
TRICHLOROETHENE	N,D.	3.0	N.D.	93.6	1
VINYL CHLORIDE	N.D.	2.0	N.D.		1
TRICHLOROTRIFLUOROETHANE	N.D.	2.0	N.D.		1
TRICHLOROFLUOROMETHANE	N.D.	2.0	N.D.		1
		2.0	17.12.		1

Oleg Nemtsov

Analyst

Operations Manager

Environmental Services (SDB)

July 31, 1998

Submission #: 9807374

AQUA SCIENCE ENGINEERS INC

Atten: Dave Allen

Project: LIM

Received: July 24, 1998

Project#: 2808

re: One sample for Volatile Halogenated Organics analysis.

Method: SW846 Method 8010A July 1992

Client Sample ID: MW-2

Spl#: 197150

Matrix: WATER

Sampled: July 23, 1998

Run#: 13960

Analyzed: July 27, 1998

2372 T 37000	RESULT	REPORTING LIMIT	BLANK RESULT	SPIKE	DILUTION FACTOR
ANALYTE VINYL CHLORIDE	(<u>ug/L)</u>	(ug/L)	<u>(ug/L)</u>	(%)	
CHLOROETHANE	N.D. N.D.	0.50	N.D.		-
TRICHLOROFLUOROMETHANE	N.D.	0.50 0.50	N.D. N.D.		-
1,1-DICHLOROETHENE	N.D.	0.50		110	<u></u>
METHYLENE CHLORIDE	N.D.	5.0	N.D. N.D.	TIU	-
TRANS-1,2-DICHLOROETHENE	N.D.	0.50	N.D.		-
CIS-1,2-DICHLOROETHENE	N.D.	0.50	N.D.	·	-
1,1-DICHLOROETHANE	N.D.	0.50	N.D.		Ė
CHLOROFORM	N.D.	3.0	N.D.		-
1,1,1-TRICHLOROETHANE	N.D.	0.50	N.D.		
CARBON TETRACHLORIDE	N.D.	0.50	N.D.		=
1,2-DICHLOROETHANE	9.9	0.50	N.D.		Ī
TRICHLOROETHENE	N.D.	0.50	N.D.	112	-
1,2-DICHLOROPROPANE	N.D.	0.50	N.D.		
BROMODICHLOROMETHANE	N.D.	0.50	N.D.		<u>-</u> -
2-CHLOROETHYL VINYL ETHER	N.D.	0.50	N.D.		-
TRANS-1,3-DICHLOROPROPENE	N.D.	0.50	N.D.		- -
CIS-1,3-DICHLOROPROPENE	N.D.	0.50	N.D.		1
1,1,2-TRICHLOROETHANE	N.D.	0.50	N.D.		-
TETRACHLOROETHENE	4.6	0.50	N.D.		.:
DIBROMOCHLOROMETHANE	N.D.	0.50	N.D.		-
CHLOROBENZENE	Ŋ.D.	0.50	N.D.	108	=
BROMOFORM	N.D.	2.0	N.D.		
1,1,2,2-TETRACHLOROETHANE	N.D.	0.50	N.D.		-
1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE	N.D.	0.50	N.D.		1
1,2-DICHLOROBENZENE	N.D.	0.50	N.D.		1
TRICHLOROTRIFLUOROETHANE	N.D.	0.50	N.D.		-
CHLOROMETHANE	N.D. N.D.	2.0	N.D.		
BROMOMETHANE //	N.D. N.D.	1.0	N.D.	- -	
DICOMONIBITITIVE /	10.12.	1.0	N.D.		

Oleg Nemtsov Analyst

Michael Verona Operations Manager M3/197/99-197150

Aqua Science Engineers, Inc. 2411 Old Crow Canyon Road, #4, San Ramon, CA '94583 (925) 820-9391

SUET 0: 9807374 REP: DM

REF # 41068

41068 PAGE___O

FAX (925) 837-4853 PROJECT NAME _____ SAMPLER (SIGNATURE) (PHONE NO.) 2808 JOB NO. 820.7391 ADDRESS OAKLAND 7.23.78 DATE PURGEABLE HALOCARBONS (EPA 601/8010) ANALYSIS REQUEST ORGANOPHOSPHOBUS. PESTICIDES (EPA 8140) SEMI-VOLATILE ORGANICS (EPA 625/8270) ORGANOCHLORINE HERBICIDES (EPA 8150) PURGEABLE AROMATICS (EPA 602/8020) TPH-GAS / MTBE & BTEX (EPA 5030/8015-8020) PCBs & PESTICIDES (EPA 608/8080) FUEL OXYGENATES (EPA 8260) SPECIAL INSTRUCTIONS: LUFT METALS (5) (EPA 6010+7000) CAM 17 METALS (EPA 6010+7000) COMPOSITE OIL & GREASE (EPA 5520) NO. OF SAMPLE ID. DATE TIME MATRIX SAMPLES UN. - (4 X Hilas + I X RECEIXED BY LABORATORY: COMMENTS: RELINQUISHED BY: RECEIVED BY: RELINQUISHED BY (time) (signature) (time) (signature) (signature) (time) (signature) (printed name) (date) (printed name)

Company- (hrama/a) Company-D 1 1/2 (date) (printed name) (date) (printed name) (printed name) Company- 152 Company-

FAX BEING SENT BY:

Aqua Science Engineers, Inc. 2411 Old Crow Canyon Road, #4 San Ramon, CA 94583 Phone (925) 820-9391 Fax (925) 837-4853

DATE: 8-6-98

TO: Chromalab, Inc.
FROM: Robert Kitay
NUMBER OF PAGES TO FOLLOW:
********Please Phone If This Fax Is Received Incomplete*********
MESSAGE:
Please analyze the sample labeled MW-1 from the
Lim project submission 4 9807-374, For EPA Method 801
The holding time expires today!

Environmental Service (SDB)

Sample Receipt Checklist

Client Name: AQUA SCIENCE ENGINEE	RS INC	Date/Time F	Receized:	07/24/9	B 1044
Reference/Submis: 41068 \\0,9807374	1.1	_Received by	1: 12mg		13 1 325
Checklist completed by:	mlly.	MARK	Reviewed	by Me	2/2/198
Matrix: Matrix	Carrier	name: Clier		Zy. In	itials Date
Shipping container/cooler in good condit	ion?	Ye	s No	No Pr	t esent
Custody seals intact on shipping contain	er/cooler?	Ye	s No	No Pr	t e s ent
Custody seals intact on sample bottles?	***	Ye:	sNo	No Pr	t esent /
Chain of custody present?				Yes _/	No .
Chain of custody signed when relinquished	d and receiv	ed?		Yes /	No
Chain of custody agrees with sample labe				Yes	- Mo
Samples in proper container/bottle?			· · · · · · · · · · · · · · · · · · ·	Yes	
Sample containers intact?	<i>i</i>			Yes /	No —
Sufficient sample volume for indicated to	est?	· .	.	Yes /	 No
All samples received within holding time			2 Ω		
Container/Temp Blank temperature in comp		Temp	2.8	Yes Yes	No
Water - VOA vials have zero headspace?		remp A vials submit			
Water - pH acceptable upon receipt?			Checked by	Jes _	No
Any No and/or NA (not applicable) respons	_			chemis ection be	t for VOAs
Client contacted: Date	contacted:	Per	rson contact	ed:	
Contacted by: Regar	ding:	·			
Comments:					
			-		· · · · · · · · · · · · · · · · · · ·
	·-				
•					
Corrective Action:					
					