GETTLER-RYAN INC.

TRANSMITTAL

TO: Mr. Thomas Bauhs

Chevron Products Company

P.O. Box 6004

San Ramon, CA 94583

DATE: November 2, 2000

PROJECT #: 346448.03

SUBJECT: Soil Sampling During Wester

Oil UST and Product Line Removal Report for Chevron

Service Station #9-1924.

FROM:

Barbara Sieminski

Project Geologist

Gettler-Ryan Inc.

6747 Sierra Court, Suite G

Dublin, California 94568

WE ARE SENDING YOU:

COPIES	DATED	DESCRIPTION
1	10/24/00	Soil Sampling During Waste Oil UST and Product
		Line Removal Report for Chevron Service Station
		#9-1924, 4904 Southfront Road, Livermore,
		California.

THESE ARE TRANSMITTED as checked below:

- [] For review and comment
- [] Approved as submitted
- [] Resubmit _ copies for approval

- [X] As requested
- [] Approved as noted
- [] Submit _ copies for distribution

- [] For approval
- [] Return for corrections
- [] Return __ corrected prints

[X] For your files

cc: Ms. Eva Chu, Alameda County Health Care Services Agency

- Ms. Danielle Stefani, Livermore-Pleasanton Fire Department
- Ms. Betty Owens, Chevron Products Company
- Mr. James Brownell, Delta Environmental Consultants, Inc.
- GR File

COMMENTS: Attached is a report for your use. Copies of this report have been submitted to the above listed parties. Please call if you have questions.

3164 Gold Camp Drive Suite 200 Rancho Cordova, CA 95670-6021 U.S.A. 916/638-2085 FAX: 916/638-8385

October 24, 2000

Mr. Tom Bauhs Chevron Products Company P.O. Box 6004 San Ramon, California 94583

Subject:

Soil Sampling During Waste Oil UST and Product Line Removal at Chevron Service

Station #9-1924-4904 Southfront Road, Livermore, California.

Mr. Bauhs:

At the request of Chevron Products Company (Chevron), Delta Environmental Consultants/Gettler-Ryan Inc. (GR) conducted a soil investigation during removal of a waste oil underground storage tank (UST) and product lines at Chevron Service Station #9-1924. The purpose of this investigation was to evaluate soil condition in the area of the former UST and product lines. The scope of work included: observing removal of the former waste oil UST and product lines; collecting and analyzing soil samples from the UST excavation, product line trenches and from the soil stockpiles; and preparing a report documenting the work.

SITE DESCRIPTION

The subject site is a service station located on the southeastern corner of the intersection of Southfront Lane and First Street in Livermore (Figure 1). Recently, the site has been reconstructed. The former site configuration consisted of a station building located in the northern portion of the site, two service islands located in front of the station building, and a former waste oil UST located near the southern corner of the station building. Three gasoline USTs located in the common pit in the southern portion of the site were not removed during this phase of work. Pertinent site features are shown on Figure 2.

FIELD WORK

Construction work associated with UST and product line removal was conducted by Savidge Construction Inc. (Savidge). Soil sampling was performed by GR in accordance with the GR Field Methods and Procedures (attached), and the GR Site Safety Plan. Soil samples collected during this investigation were delivered under chain-of-custody to Sequoia Analytical in Walnut Creek (ELAP #1271). Analytical methods and results are summarized in Table 1. Copies of the laboratory analytical reports and chain-of-custody records are attached.

346448.03

Waste Oil UST Removal and Soil Sampling

On April 6, 2000, one 1,000-gallon fiberglass waste oil UST, was uncovered and removed by Savidge. Upon removal, the UST was visually inspected by a GR geologist for evidence of failure. Holes were not observed in the UST. The UST was removed from the site and disposed of by Ecology Control Industries (ECI). Ms. Danielle Stefani of the Livermore-Pleasanton Fire Department (L-PFD) was present at the site to observe UST removal and sample collection.

The waste oil UST excavation limits are shown on Figure 2. The excavation was approximately 9 feet deep. The former waste oil UST pit backfill material consisted of pea gravel. Native soil in the vicinity of the waste oil UST consisted of gravelly clay with no discoloration or hydrocarbon odor. Groundwater was not encountered in the waste oil UST excavation. Two soil samples (WOTI-10 and WOT2-10) were collected from native soil beneath the ends of the waste oil UST, upon tank removal. These samples were collected at an approximate depth of 10 feet below ground surface (bgs). The soil samples were submitted for analyses of total petroleum hydrocarbons as gasoline (TPHg), benzene, toluene, ethylbenzene and xylenes (BTEX), methyl tertiary butyl ether (MtBE), total petroleum hydrocarbons as diesel (TPHd), oil and grease (O&G), volatile organic compounds (VOs), semivolatile organic compounds (SVOs), and the metals cadmium, chromium, lead, nickel and zinc. Samples WOT1-10 and WOT2-10 contained O&G at concentrations of 100 parts per million (ppm) and 150 ppm, respectively, but did not contain TPHge BTEX; MtBE, or VOs. SVQs were not detected in these samples with the exception of bis(2ethylhexyl)phtalate present in sample WOT1-10 at a concentration of 0.71 ppm. TPHd was not detected in sample WOT1-10 but was detected at a low concentration (1.5 ppm) in sample WOT2=10. Cadmium was not detected in either sample but chromium (up to 47 ppm), lead (up to 11 ppm), nickel (up to 67 ppm), and zinc (up to 55 ppm) were detected in both samples.

Product Lines Removal and Soil Sampling

On April 6, 2000, the former product lines, consisting of 2-inch-diameter fiberglass piping were removed. The product line trenches are shown on Figure 2. The trenches were approximately 2.5 feet deep. Native soil in the vicinity of the product line trenches consisted of gravelly clay. Soil in the vicinity of the southern trench exhibited slight hydrocarbon odor.

On April 7, 2000, six soil samples (PL1-3 through PL4-3, PL3-6, and PL4-6) were collected from native soil beneath the product lines at each dispenser. Mr. Randy Griffith of the L-PFD was present at the site to observe sample collection. Samples PL1-3 through PL4-3 were collected at the approximate depth of 3 feet bgs. Samples PL3-6 and PL4-6 were collected beneath locations of samples PL3-3 and PL4-3, respectively, at the approximate depth of 6 feet bgs. The samples were submitted for analysis of TPHg, BTEX, MtBE, and total lead. TPHg (up to 3.6 ppm) were detected in samples PL3-3, PL3-6, and PL4-6. Benzene (0.0051 ppm) was detected only in sample PL3-6. Samples PL1-3, PL2-3, and PL4-3 did not contain TPHg or BTEX. MtBE (up to 0.57 ppm) was detected in all product line trench samples except sample PL4-6. Lead was present in all samples at concentrations ranging from 8.8 ppm to 40 ppm.

346448.03

Stockpile Sampling, Excavation Backfilling, and Soil Disposal

Soil generated during waste oil UST and product line removal was stockpiled at the site in two separate stockpiles (SP1 and SP2). Stockpile SP1 contained approximately 30 cubic yards of material removed from the former waste oil UST pit. Stockpile SP2 contained approximately 30 cubic yards of soil removed from the former product line trenches. Additional soil stockpiles were generated at the site during well destruction (SP3) and site grading (SP4 and SP5) activities. Soil stockpile SP3 contained approximately 1 cubic yard of drill cuttings generated during destruction of wells C-2 and C-6 (see GR report #346448.04). Stockpiles SP4 and SP5 contained approximately 80 and 70 cubic yards of excess soil generated during site grading, respectively.

Soil stockpile SP1 was sampled on April 6, 2000. Four soil samples (SP1-A through SP1-D) were collected from arbitrary locations on this stockpile. These samples were submitted to the laboratory for compositing into one sample [SP1-(A-D)] and analysis of TPHg, TPHd, BTEX, MtBE, VOs, SVOs, O&G, and metals (CAM 17). In addition, sample SP1-(A-D) was analyzed for soluble selenium. TPHd (310 ppm), O&G (210 ppm), xylenes (0.0080 ppm) and various metals were detected in composite soil stockpile sample SP1-(A-D). TPHg, benzene, ethylbenzene, toluene, MtBE, VOCs, and SVOs were not detected in this sample. Soil stockpile SP1 was removed from the site on May 16, 2000, and transported to the Republic Services landfill in Livermore by Allwaste Transportation and Remediation Inc. Stockpile SP3 was disposed of with stockpile SPI

30 cy(spi) + 1 cy(sps)

Soil stockpile SP2 was sampled on April 7, 2000. Four soil samples (SP2-A through SP2-D) were collected from arbitrary locations on this soil stockpile. These samples were submitted to the laboratory for compositing into one sample [SP2-(A-D)] and analysis of TPHg, BTEX, MtBE, and total lead. Composite soil sample SP2-(A-D) did not contain TPHg, BTEX, MtBE, or lead. The soil stockpiled in 30 4 SP2 was used at the site to backfill the waste oil UST excavation.

Soil stockpiles SP4 and SP5 were sampled on April 21, 2000. Four soil samples were collected from arbitrary locations on each soil stockpile and submitted to the laboratory for compositing into samples SP4-(A-D) and SP5-(A-D). The composite soil samples were analyzed for TPHg, BTEX, and total lead. TPHg or BTEX were not detected in these samples with the exception of low concentration of xylenes (0.017 ppm) in sample SP4-(A-D). Lead was detected in samples SP4-(A-D) and SP5-(A-D) at concentrations of 25 ppm and 8.8 ppm, respectively. The soil stockpiled in SP4 and SP5 was removed from the site under direction of Savidge.

80 04 + 70 CY

where disposed?

If you should have any questions please call us in Dublin at (925) 551-7555.

Sincerely,

Gettler-Ryan Inc.

Barbara Sieminski Project Geologist

R.G. 6676

Stephen J. Carter

Senior Geologist

R.G. 5577

Attachments:

Table 1. Soil Analytical Results

Figure 1. Vicinity Map

Figure 2. Soil Concentration Map GR Field Methods and Procedures

Laboratory Analytical Reports and Chain-of-Custody Records

No. 6676

ATTACHMENTS

Soil Analytical Results - Chevron Service Station #9-1924, 4904 Southfront Road, Livermore, California. Table 1.

Sample ID	Depth	Date	ТРНд	Benzene	Toluene	Ethylbenzene	-	TPHd	MtBE	O&G	VOs	SVOs		Chromium		Lead	Zinc
	(feet)		<			····				ppm							>
Product Lines																	
PL1-3	3	04/07/00	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050		0.086	_	_	_	_	_	_	11	_
PL2-3	3	04/07/00	< 1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050		0.11	-		_	_		_	8.8	_
PL3-3	3	04/07/00	1.1	< 0.0050	0.0056	< 0.0050	< 0.0050	_	0.54		-	_	_		_	11	_
PL3-6	6	04/07/00	3.6	0.0051	< 0.0050	0.079	0.029		0.45	_	_	_	_		_	9.1	_
PL4-3	3	04/07/00	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	_	0.57	_	-	_	_	_	_	40	_
PL4-6	6	04/07/00	2.8	< 0.0050	< 0.0050	0.0091	0.033	_	< 0.050	_	_	_	_	_	_	10	_
Waste Oil UST Pi	it																
WOT1-10	10	04/06/00	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	< 0.050	100	ND	ND^{t}	< 0.50	40	67	11	55
WOT2-10	10	04/06/00	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	1.5	< 0.050	150	ND	ND	< 0.50	47	62	9.5	49
Waste Oil UST Pi	it Stockpile																
SP1-(A-D) ²	_	04/06/00	<1.0	< 0.0050	< 0.0050	< 0.0050	0.0080	310	< 0.050	210	ND	ND	< 2.5	4 0	46	< 2.5	52
Product Line Tre	ach Stockp								_								
SP2-(A-D)	_	04/07/00	<1.0	< 0.0050	< 0.0050	< 0.0050	0.010	_	< 0.050							< 5.0	_
													14				
Well Destruction	Stockpile												`			-10	
SP3-(A-D)	_	04/12/00	39	< 0.025	0.086	0.21	0.31	_								<1.0	-
a																	
Site Grading Stoc	<u>kpues</u>	04/01/00	<1.0	<0.0050	<0.0050	<0.0050	0.017									2.5	
SP4-(A-D)		04/21/00	<1.0	< 0.0050	< 0.0050	< 0.0050	0.017	_								2.5 8.8	_
SP5-(A-D)	_	04/21/00	<1.0	< 0.0050	< 0.0050	< 0.0050	< 0.0050	-						***		0.0	_

EXPLANATION:

TPHg = Total Petroleum Hydrocarbons as gasoline

TPHd = Total Petroleum Hydrocarbons as diesel

MtBE = Methyl t-Butyl Ether

O&G = Oil and Grease

VOs = Volatile Organics

SVOs = Semivolatile Organics

ppm = Parts per million

--- = Not analyzed/not applicable

ND = Not detected

ANALYTICAL METHODS:

TPHg, benzene, toluene, ethylbenzene, xylenes and MtBE =

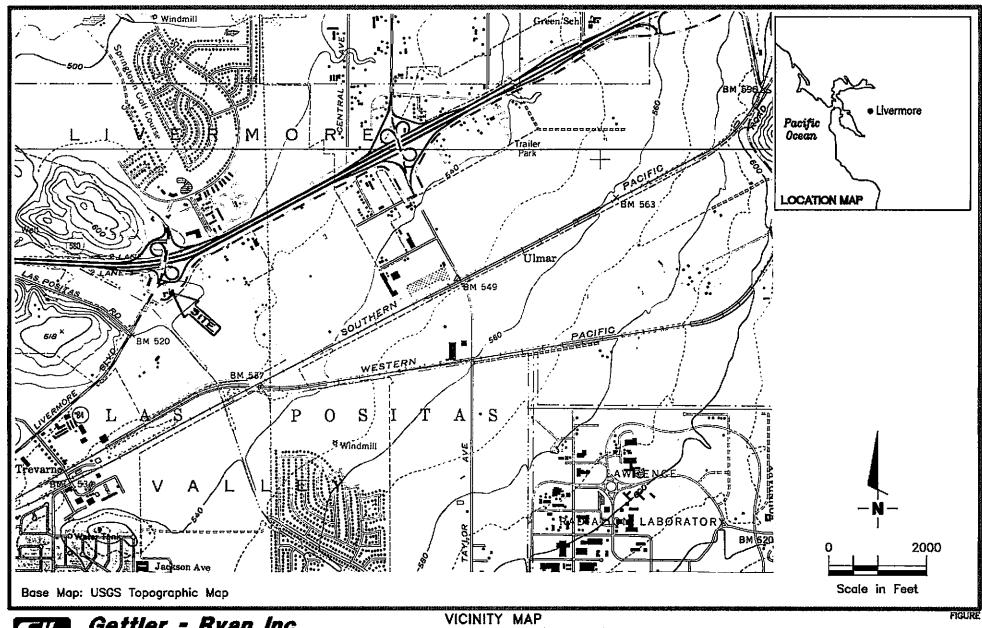
DHS LUFT Method

TPHd = DHS LUFT Method

O&G = Standard Method 5520 E/F

VOs = EPA Method 8010B

SVOs = EPA Method 8270B


Metals = ICP Scan

ANALYTICAL LABORATORY: Sequoia Analytical (ELAP #1271)

NOTES

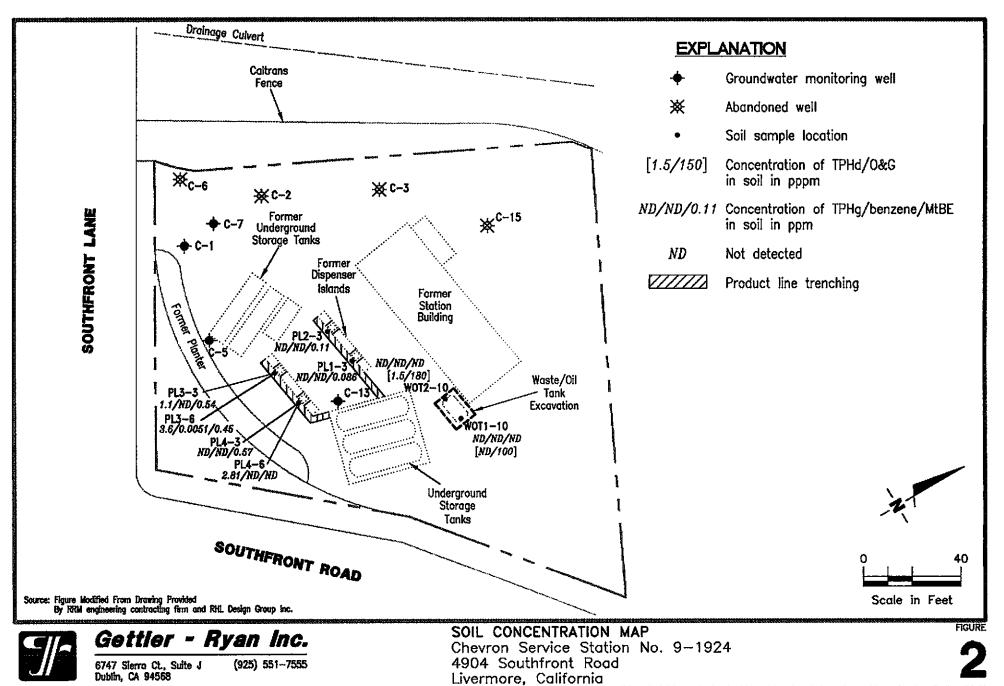
 \overline{I} = All compounds were not detected with the exception of bis(2-ethylhexyl)phtalate (0.71 ppm).

² = Sample was also analyzed for acetone (<0.50 ppm), 2-butanone (<0.50 ppm), mercury (0.031 ppm), antimony (23 ppm), arsenic (<5.0 ppm), barium (230 ppm), beryllium (<0.50 ppm), cobalt (9.1 ppm), copper (24 ppm), molybdenum (<0.50 ppm), selenium (64 ppm total, <1.0 ppm soluble), silver (2.3 ppm), thallium (<5.0 ppm), vanadium (110 ppm), and zinc (52 ppm).

Gettler - Ryan Inc.

6747 Sierra Ct., Suite J Dublin, CA 94568

(925) 551-7555


Chevron Service Station No. 9-1924 4904 Southfront Road Livermore, California

DATE 5/00

JOB NUMBER 346448

REVIEWED BY

REVISED DATE

JOB NUMBER 346448.03

REVIEWED BY

DATE

5/00

REVISED DATE

GETTLER-RYAN INC.

FIELD METHODS AND PROCEDURES

Site Safety Plan

Field work performed by Gettler-Ryan Inc. (GR) is conducted in accordance with GR's Health and Safety Plan and the Site Safety Plan. GR personnel and subcontractors who perform work at the site are briefed on the contents of these plans prior to initiating site work. The GR geologist or engineer at the site when the work is performed acts as the Site Safety Officer. GR utilizes a photoionization detector (PID) to monitor ambient conditions as part of the Health and Safety Plan.

Collection of Samples

Soil samples are collected from the wall or base of the excavation with a hand-driven sampling device fitted with a 2-inch-diameter, clean brass tube or stainless steel liner. If safety considerations preclude collection of the samples with the drive sampler, the excavating equipment is used to bring soil from the pit wall to the surface, where a sample tube is filled by driving it into the soil in the excavator's bucket. After removal from the sampling device, sample tubes are covered on both ends with teflon sheeting, capped, labeled, and place in a cooler with blue ice for preservation. A chain-of-custody form is initiated in the field and accompanies the selected soil samples to the analytical laboratory.

If it is necessary to collect a sample of groundwater standing in the UST pit, the sample is collected by lowering a new, clean teflon bailer into the pit from a safe position along the pit wall. Once filled and retrieved, the groundwater in the bailer is carefully decanted into the appropriate containers supplied by the analytical laboratory. If required, preservative is added to the sample bottles by the laboratory prior to delivery. The samples are then labelled and place in a cooler with blue ice for preservation. A chain-of-custody form is initiated in the field and accompanies the selected soil samples to the analytical laboratory.

Field Screening of Soil Samples

A PID is used to perform head-space analysis in the field for the presence of organic vapors from soil samples. This test procedure involves placing a small amount of the soil to be screened in a sealable plastic bag. The bag is warmed in the sun to allow organic compounds in the soil sample to volatilize. The PID probe is inserted through the wall of the bag and into the headspace inside, and the meter reading is recorded in the field notes. An alternative method involves placing a plastic cap over the end of the sample tube. The PID probe is placed through a hole in the plastic cap, and vapors with the covered tube measured. Head-space screening is performed and results recorded as reconnaissance data only. GR does not consider field screening techniques to be verification of the presence or absence of hydrocarbons.

Storing and Sampling of Soil Stockpiles

Excavated material is stockpiled on and covered with plastic sheeting. Stockpile samples are collected and analyzed for disposal classification on the basis of one composite sample per 100 cubic yards of soil. Stockpile samples are composed of four discrete soil samples, each collected from an arbitrary location on the stockpile. The four discrete samples are then composited in the laboratory prior to analysis.

Each discrete stockpile sample is collected by removing the upper 12 to 18 inches of soil, and them driving the stainless steel or brass sample tube into the stockpiled material with a mallet or drive sampler. The sample tubes are then covered on both ends with teflon sheeting, capped, labeled, and placed in a cooler with blue ice for preservation. A chain-of-custody form is initiated in the field and accompanies the selected soil samples to the analytical laboratory. Stockpiled soils are covered with plastic sheeting after completion of sampling.

20 April, 2000

Barbara Sieminski Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin, CA 94568

RE: Chevron Sequoia Report: W004182 RECREATE

Enclosed are the results of analyses for samples received by the laboratory on 07-Apr-00 17:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

≺Alan B. Kemp ՝

Laboratory Director

CA ELAP Certificate #1271

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 20-Apr-00 07:50

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
PL1-3	W004182-01	Soil	07-Apr-00 10:30	07-Apr-00 17:15
PL2-3	W004182-02	Soil	07-Apr-00 10:35	07-Apr-00 17:15
PL3-3	W004182-03	Soil	07-Apr-00 10:40	07-Apr-00 17:15
PL4-3	W004182-04	Soil	07-Apr-00 10:45	07-Apr-00 17:15
PL3-6	W004182-05	Soil	07-Apr-00 10:55	07-Apr-00 17:15
PL4-6	W004182-06	Soil	07-Apr-00 11:05	07-Apr-00 17:15

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Alan B. Kemp, Laboratory Director

Gettler Ryan, Inc. - Dublin

Project: Chevron

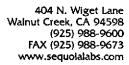
6747 Sierra Court Suite J Dublin CA, 94568 Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 20-Apr-00 07:50

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PL1-3 (W004182-01) Soil	Sampled: 07-Apr-00 10:30	Received:	07-Apr-0	0 17:15					
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0D13002	13-Apr-00	14-Apr-00	EPA 8015/8020	
Benzene	ND	0.0050	н	"	Ti Ti	n	"	41	
Toluene	ND	0.0050	н	**	"	n	*	**	
Ethylbenzene	ND	0.0050	19	n	n	н	и	11	
Xylenes (total)	ND	0.0050	If	**	**	н	•	11	
Methyl tert-butyl ether	0.086	0.050	н	**	**	и	"	14	
Surrogate: a,a,a-Trifluoroto	oluene	96.3 %	40-	140	"	n	"	"	
PL2-3 (W004182-02) Soil	Sampled: 07-Apr-00 10:35	Received:	07-Apr-0	0 17:15					
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0D13002	13-Арг-00	14-Apr-00	EPA 8015/8020	
Benzene	ND	0.0050	0	**	**	н	"	**	
Toluene	ND	0.0050	"	**	"	n	•	**	
Ethylbenzene	ND	0.0050	п	**	er	IJ	**	•	
Xylenes (total)	ND	0.0050	п	**	u	н	**	**	
Methyl tert-butyl ether	0.11	0.050	ıı .	**	**	U	11	**	
Surrogate: a,a,a-Trifluoroto	oluene	98.0 %	40-	140	"	n	n	"	
PL3-3 (W004182-03) Soil	Sampled: 07-Apr-00 10:40	Received:	07-Арг-0	0 17:15					P-01
Purgeable Hydrocarbons	1.1	1.0	mg/kg	20	0D13002	13-Apr-00	14-Apr-00	EPA 8015/8020	
Benzene	ND	0.0050	н	**	**	II .	н	**	
Toluene	0.0056	0.0050	Ħ	*	**	II	н	••	
Ethylbenzene	ND	0.0050	H	**		u	"		
Xylenes (total)	ND	0.0050	16	"	**	u	II	**	
Methyl tert-butyl ether	0.54	0.050	**	11	**	II	п	"	
Surrogate: a,a,a-Trifluoroto	oluene	87.7 %	40-	140	"	"	"	"	

Gettler Ryan, Inc. - Dublin

Project: Chevron


6747 Sierra Court Suite J Dublin CA, 94568

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski

Reported: 20-Apr-00 07:50

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PL4-3 (W004182-04) Soil	Sampled: 07-Apr-00 10:45	Received:	07-Apr-0	0 17:15					
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0D13002	13-Apr-00	14-Арг-00	EPA 8015/8020	
Benzene	ND	0.0050	Ħ	•	**	н	14	. "	
Toluene	ND	0.0050		**	*	H	н	**	
Ethylbenzene	ND	0.0050	U	**	Ħ	II .	19	**	
Xylenes (total)	ND	0.0050	n	*	**	н	n	H	
Methyl tert-butyl ether	0.057	0.050	ii .	**	**	II	**	**	
Surrogate: a,a,a-Trifluoroto	luene	97.3 %	40-	140	"	н	"	"	
PL3-6 (W004182-05) Soil	Sampled: 07-Apr-00 10:55	Received:	07-Apr-0	0 17:15					P-01
Purgeable Hydrocarbons	3.6	1.0	mg/kg	20	0D13002	13-Apr-00	14-Apr-00	EPA 8015/8020	-
Benzene	0.0051	0.0050	**	**	***	п	н	II .	
Toluene	ND	0.0050	**	**	н	31		II .	
Ethylbenzene	0.079	0.0050	••	**	н	41	н	II .	
Xylenes (total)	0.029	0.0050	21	**	H	11	11	п	
Methyl tert-butyl ether	0.45	0.050	*	٠	11	"	17	"	
Surrogate: a,a,a-Trifluoroto	luene	78.0 %	40-	140	n	p	"	11	
PL4-6 (W004182-06) Soil	Sampled: 07-Apr-00 11:05	Received:	07-Apr-0	0 17:15					P-04
Purgeable Hydrocarbons	2.8	1.0	mg/kg	20	0D13002	13-Арг-00	1 4 -Apr-00	EPA 8015/8020	
Benzene	ND	0.0050	11	н	II	**	*	"	
Toluene	ND	0.0050	**	n	11	"	"	"	
Ethylbenzene	0.0091	0.0050	"	II.	н	••		"	
Xylenes (total)	0.033	0.0050		u	11	u		**	
Methyl tert-butyl ether	ND	0.050	**	u	11	**	āt .	"	
Surrogate: a,a,a-Trifluoroto	Juana	78.0 %	40	140	"	"	,,	"	

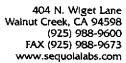
Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski

Reported: 20-Apr-00 07:50

Total Metals by EPA 6000/7000 Series Methods Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
PL1-3 (W004182-01) Soil	Sampled: 07-Apr-00 10:30	Received:	07-Apr-0	0 17:15				<u> </u>	
Lead	11	5.0	mg/kg	1	0D17009	17-Apr-00	17-Apr-00	EPA 6010A	
PL2-3 (W004182-02) Soil	Sampled: 07-Apr-00 10:35	Received:	07-Apr-0	0 17:15					
Lead	8.8	5.0	mg/kg	1	0D17009	17-Apr-00	17-Apr-00	EPA 6010A	 -
PL3-3 (W004182-03) Soil	Sampled: 07-Apr-00 10:40	Received:	07-Apr-0	0 17:15					
Lead	11	5.0	mg/kg	1	0D17009	17-Apr-00	17-Apr-00	EPA 6010A	
PL4-3 (W004182-04) Soil	Sampled: 07-Apr-00 10:45	Received: (07-Apr-00	0 17:15					
Lead	40	5.0	mg/kg	1	0D17009	17-Apr-00	17-Арг-00	EPA 6010A	
PL3-6 (W004182-05) Soil	Sampled: 07-Apr-00 10:55	Received: (07-Apr-00	0 17:15					
Lead	9.1	5.0	mg/kg	1	0D17009	17-Apr-00	17-Apr-00	EPA 6010A	
PL4-6 (W004182-06) Soil	Sampled: 07-Apr-00 11:05	Received: (07-Apr-00	0 17:15					
Lead	10	5.0	mg/kg	1	0D17009	17-Apr-00	17-Apr-00	EPA 6010A	

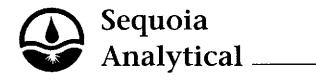

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 20-Apr-00 07:50

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D13002 - EPA 5030B [MeOH]				-						
Blank (0D13002-BLK1)				Prepared of	& Analyze	:d: 13-Api	r-00			
Purgeable Hydrocarbons	ND	1.0	mg/kg							
Benzene	ND	0.0050	n							
Гоіцепе	ND	0.0050	н							
Ethylbenzene	ND	0.0050	н							
Xylenes (total)	ND	0.0050	н							
Methyl tert-butyl ether	ND	0.050	н							
Surrogate: a, a, a-Trifluorotoluene	0.612		н	0.600		102	40-140			
LCS (0D13002-BS1)				Prepared a	& Analyze	:d: 13-Api	r-00			
Benzene	0.680	0.0050	mg/kg	0.800		85.0	50-150			
Toluene	0.750	0.0050	"	0.800		93.7	50-150			
Ethylbenzene	0.830	0.0050		0.800		104	50-150			
Yylenes (total)	2.46	0.0050	#	2.40		102	50-150			
Surrogate: a,a,a-Trifluorotoluene	0.552		<i>"</i>	0.600		92.0	40-140			
Matrix Spike (0D13002-MS1)	So	urce: W0042	65-03	Prepared &	& Analyze	:d: 13-Apr	:-00			
Benzene	0.716	0.0050	mg/kg	0.800	ND	89.5	50-150			
Foluene	0.756	0.0050		0.800	ND	94.5	50-150			
Ethylbenzene	0.794	0.0050	"	0.800	ND	99.3	50-150			
Kylenes (total)	2,33	0.0050	**	2.40	ND	97.1	50-150			
Surrogate: a,a,a-Trifluorotoluene	0.606	-	"	0.600		101	40-140			
Matrix Spike Dup (0D13002-MSD1)	So	urce: W0042	65-03	Prepared &	& Analyze	:d: 13- A pr	-00			
Benzene	0.722	0.0050	mg/kg	0.800	ND	90.2	50-150	0.834	20	
Toluene	0.772	0.0050	u	0.800	ND	96.5	50-150	2.09	20	
Ethylbenzene	0.818	0.0050	μ	0.800	ND	102	50-150	2.98	20	
(ylenes (total)	2.39	0.0050	п	2.40	ND	99.6	50-150	2.54	20	
urrogale: a,a,a-Trifluorotoluene	0.610		"	0.600		102	40-140			



Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski **Reported:** 20-Apr-00 07:50

Total Metals by EPA 6000/7000 Series Methods - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D17009 - EPA 3050B							***************************************			
Blank (0D17009-BLK1)				Prepared	& Analyz	ed: 17-Ap	r-00			
Lead	ND	5.0	mg/kg	.						
LCS (0D17009-BS1)				Prepared	& Analyz	ed: 17-Ap	r-00			
Lead	59.5	5.0	mg/kg	50.0		119	80-120		·	
LCS Dup (0D17009-BSD1)				Prepared	& Analyz	ed: 17-Ap	r-00			
Lead	56.4	5.0	mg/kg	50.0		113	80-120	5.35	20	
Matrix Spike (0D17009-MS1)	So	urce: W0043	30-01	Prepared	& Analyz	ed: 17-Ap	г-00			
Lead	90.0	5.0	mg/kg	50.0	26	128	80-120			Q-0
Matrix Spike Dup (0D17009-MSD1)	So	urce: W0043	30-01	Prepared	& Analyz	ed: 17 -A p	r-00			
Lead	90.0	5.0	mg/kg	50.0	26	128	80-120	0	20	O-0

404 N. Wiget Lane Wainut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 20-Apr-00 07:50

Notes and Definitions

P-01	Chromatogram Pattern: Gasoline C6-C12
P-04	Chromatogram Pattern: Gasoline C6-C12 + Unidentified Hydrocarbons C6-C12
Q-01	The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit

NR

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Not Reported

Fax copy of La	ıb R	ерс	ort d	and	COC to	Che	vron	Со	ntac	t: 👿	I No)			C	hain	<u>-of</u>	-C	<u>ust</u>	ody-Record
Chevron U.S.A. Inc.	hevron F Fronsultant onsultant	acility acility Proj Nom	y Number Addressisch Number Gr	9- 490 nbor 31 ettle Sie		frow 2 . In Stell	Roas	i, Li ubliv	Jerm J.CA	ove 9456	- 1001 s	aborutar	y Name y Releas	(Phone) Se W Numb	92°	45 N 5)842 1444. Bart	lativi 2-91- WC	18 18 200	715	32
Sample Number Lob Sample Number	Metric S = Soil A = Air	W = Water C = Charcool	Type G = Grab C = Composite D = Discrete	IIne	Sample Preservation	load (Yes or No.)	(8020 + 3015) /tt 8E			· 			s To B	Mercie Cd.Cr.Ps.Zn.Ni (CAP or Ak)	med					Remarku
PLI-3 OIA	5		G	10:30		Yes	X								X					
PL2-3 OZA 1	1		1	10:35			x		<u> </u>						7					
P13-3 03A 1				10:40			Х								x					
PL4-3 04A 1				10:45			X			!					Х					
PL3-6 05A 1			\top	10:55			X								×					
P24-6 OGA 1		\Box		11:05		1	×		-						×					
0071	- `	+				 _		<u> </u>												
		_					1	 	 											
	_	\dashv				 	-		 			1								
						<u> </u>	1	 	 	 		+	 -	 		1				
		}				 	1	 	-	 		 	 	 	 	-				
				ļ			 	 	 				 	├	 	 				
	.	-			<u> </u>	<u> </u>	1-		 			-	 	 						
		_		<u> </u>		 			ļ			 	 -	 	ļ	 				
				<u> </u>	<u> </u>	<u> </u>		<u> </u>		L			<u></u>	<u> </u>	<u> </u>				4 =	o (Mada Chalas)
Belinquiched By (Signature) Derboris Silm	in a	-	FR		04/07/ <i>0</i> 0		oelved B W.	y (Sign			- 1	Organizai <i>A</i>		Date Y	e/time 7 ₂₃ (6:21	Tu	tub Wor		e (Circle Choloe) Hre:
Relinquished By (Signature)	1	Organ	dzatlon		Octo/Time 17;		celved B					Organizat	llon		•/Time				5 (Hra. Daye Daye
Relinquished By (Signature)			nizotion		Oate/Time		cleved F					w	C	Date 4	(学)	00			~	ntracted

20 April, 2000

Barbara Sieminski Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin, CA 94568

RE: Chevron Sequoia Report: W004183 RECREATE

Enclosed are the results of analyses for samples received by the laboratory on 07-Apr-00 17:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

z√ Alan B. Kemp Laboratory Director

CA ELAP Certificate #1271

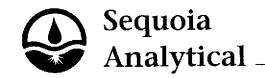
404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski **Reported:** 20-Apr-00 07:54

ANALYTICAL REPORT FOR SAMPLES


Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
WOT1-10	W004183-01	Soil	06-Apr-00 13:30	07-Apr-00 17:15
WOT2-10	W004183-02	Soil	06-Apr-00 13:35	07-Apr-00 17:15

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Alan B. Kemp, Laboratory Director

Dublin CA, 94568

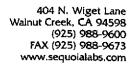
Project: Chevron

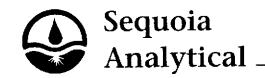
Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 20-Apr-00 07:54

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
WOT1-10 (W004183-01) Soil	Sampled: 06-Apr-00 1	3:30 Receiv	ed: 07-A	pr-00 17:1:	5			<u>.</u>	
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0D13002	13-Apr-00	14-Apr-00	EPA 8015/8020	
Benzene	ND	0.0050	**	••	н	19	,,	n	
Toluene	ND	0.0050	Ħ	n	**	*	-	11	
Ethylbenzene	ND	0.0050	p	"	н	*	••	**	
Xylenes (total)	ND	0.0050	H	**	**	**	••	ш	
Methyl tert-butyl ether	ND	0.050	H	n	11	#	"	ш	
Surrogate: a,a,a-Trifluorotoluen	e	90.0 %	40-	140	#	"	"	п	
WOT2-10 (W004183-02) Soil	Sampled: 06-Apr-00 1	3:35 Receive	ed: 07-A	pr-00 17:1:	5				
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0D13002	13-Apr-00	14-Apr-00	EPA 8015/8020	
Benzene	ND	0.0050	ıı .	11	**	п	**	и	
Toluene	ND	0.0050	II .	II	**	II .	*	n .	
Ethylbenzene	ND	0.0050	п	"	••	u	11	11	
Xylenes (total)	ND	0.0050		п	••	п	u	н	
Methyl tert-butyl ether	ND	0.050	п	п	77	п	п	н	
Surrogate: a,a,a-Trifluorotoluen	e	90.3 %	40-	140	,,	"	,,	"	

Gettler Ryan, Inc. - Dublin


6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron


Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski **Reported:** 20-Apr-00 07:54

Diesel Hydrocarbons (C9-C24) by DHS LUFT

Sequoia Analytical - Walnut Creek

Analyte	Re Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
WOT1-10 (W004183-01) Soil	Sampled: 06-Apr-00 13:30	Receiv	ed: 07-Apr	-00 17:1:	5				
Diesel Range Hydrocarbons	ND	1.0	mg/kg	1	0D10020	10-Арг-00	12-Apr-00	DHS LUFT	•
Surrogate: n-Pentacosane		147 %	50-13	50	#	,,	p	#	
WOT2-10 (W004183-02) Soil	Sampled: 06-Apr-00 13:35	Receiv	ed: 07-Apr	-00 17:1:	5				
Diesel Range Hydrocarbons	1.5	1.0	mg/kg	1	0D10020	10-Apr-00	13-Apr-00	DHS LUFT	D-12
Surrogate: n-Pentacosane		159 %	50-13	50	"	"	-	и	D-07

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 20-Apr-00 07:54

Metals Scan by ICP

Sequoia Analytical - Walnut Creek

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
WOT1-10 (W004183-01) Soil	Sampled: 06-Apr-00 13:30	Receiv	ed: 07-A	pr-00 17:1:	5				
Cadmium	ND	0.50	mg/kg	1	0D17009	17-Apr-00	17-Apr-00	ICP Scan	
Chromium	40	0.50	**	**	11	**	17-Apr-00	**	
Lead	11	5.0	H	**	Н		17-Apr-00	19	
Nickel	67	1.0	"	**	н	n	17-Apr-00	•	
Zinc	55	5.0	•	"	11	"	17-Apr-00	**	
WOT2-10 (W004183-02) Soil	Sampled: 06-Apr-00 13:35	Receive	ed: 07-A]	pr-00 17:15	5				
Cadmium	ND	0.50	mg/kg	1	0D17009	17-Apr-00	17-Apr-00	ICP Scan	
Chromium	47	0.50	"	**	**	н	17-Apr-00	*	
Lead	9.5	5.0	•	**	17	n	17-Apr-00	**	
Nickel	62	1.0	**	н	*1	If	17-Арг-00		
Zinc	49	5.0	**	н	**	п	17-Apr-00	14	

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 20-Apr-00 07:54

Volatile Organic Compounds by EPA Method 8010B Sequoia Analytical - Walnut Creek

		porting				_			
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
WOT1-10 (W004183-01) Soil	Sampled: 06-Apr-00 13:30	Receiv	ed: 07-A	pr-00 17:1:	5				
Chloromethane	ND	0.050	mg/kg	100	0D10005	13-Apr-00	13-Apr-00	EPA 8010B	
Vinyl chloride	ND	0.050	•	"	"	•	"	"	
Bromomethane	ND	0.050	**	*	"	н	**	**	
Chloroethane	ND	0.050		"	"	"	"	n	
Trichlorofluoromethane	ND	0.025	••		**	*	•	Ħ	
1,1-Dichloroethene	ND	0.025		*	u		H	n	
Methylene chloride	ND	0.25	**	**	•	17	**	II.	
trans-1,2-Dichloroethene	ND	0.025	**	*	•	**	•	n	
1,1-Dichloroethane	ND	0.025	**		"	11	"	н	
cis-1,2-Dichloroethene	ND	0.025	**	"	"	"	"	"	
Chloroform	ND	0.025	**	**	**	**	*	п	
1,1,1-Trichloroethane	ND	0.025	••	**	**	w	**	u	
Carbon tetrachloride	ND	0.025	"	"	,,	"	••	"	
1,2-Dichloroethane	ND	0.025	••	**	•	••	++	II .	
Trichloroethene	ND	0.025	"	**	11	**	"	I.	
1,2-Dichloropropane	ND	0.025	**	74	"	**	**	н	
Bromodichloromethane	ND	0.025	**	"	11	**	*	н	
cis-1,3-Dichloropropene	ND	0.025	IF.	#	**	**	**	**	
trans-1,3-Dichloropropene	ND	0.025	Ħ	"	"	"	,,	**	
1,1,2-Trichloroethane	ND	0.025	78	"	"	**	**	••	
Tetrachloroethene	ND	0.025	#	19	n n	11	н		
Dibromochloromethane	ND	0.025	"	17	,,	"	"	**	
1,2-Dibromoethane	ND	0.025				n	**	**	
Chlorobenzene	ND	0.025	**	н	II .	н	II	14	
Bromoform	ND	0.025	••		u u	H	п	**	
1,1,2,2-Tetrachloroethane	ND	0.025	"			**	п	14	
1,3-Dichlorobenzene	ND	0.025	н	10	и		U	19	
1,4-Dichlorobenzene	ND	0.025	. "	,,		••	п		
1,2-Dichlorobenzene	ND	0.025	ly .	30	"	**	п	ш	
Surrogate: Dibromodifluoromet	hane	68.0 %	50-	150	"	"	"	,,	
Surrogate: 4-Bromofluorobenze	ne	62.0 %	50-	150	"	"	"	"	

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 20-Apr-00 07:54

Volatile Organic Compounds by EPA Method 8010B

Sequoia Analytical - Walnut Creek

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
WOT2-10 (W004183-02) Soil	Sampled: 06-Apr-00 13:35	Receiv	ed: 07-A	pr-00 17:1:	5				
Chloromethane	ND	0.050	mg/kg	100	0D10005	13-Apr-00	13-Apr-00	EPA 8010B	
Vinyl chloride	ND	0.050	*		**	n	"	н	
Bromomethane	ND	0.050	**	"	"	n	"	п	
Chloroethane	ND	0.050	•	•	"	•	**	17	
Trichlorofluoromethane	ND	0.025	4	**	н	н	•	п	
1,1-Dichloroethene	ND	0.025	"	"	n	tt	**	Ħ	
Methylene chloride	ND	0.25	•	**	11	++	*	**	
trans-1,2-Dichloroethene	ND	0.025	"	**	II	"	**	п	
1,1-Dichloroethane	ND	0.025	**	"	11	*	"	II .	
cis-1,2-Dichloroethene	ND	0.025	**	**	11	**	**	**	
Chloroform	ND	0.025	•	**	μ		**	**	
1,1,1-Trichloroethane	ND	0.025	11	**	IJ	**	**	"	
Carbon tetrachloride	ND	0.025	**	н	11	"	**	n	
1,2-Dichloroethane	ND	0.025	17	**	и	**	**	H	
Trichloroethene	ND	0.025	п	"		**	**	ч	
1,2-Dichloropropane	ND	0.025	.,	**	"	•	"	**	
Bromodichloromethane	ND	0.025	ш	••	II .	•	н	**	
cis-1,3-Dichloropropene	ND	0.025	п	•	"	n	19	**	
trans-1,3-Dichloropropene	ND	0.025	n	•	II .	"	**	"	
1,1,2-Trichioroethane	ND	0.025	ш	**	н	17	**	**	
Tetrachloroethene	ND	0.025	п	**	e	н	•	11	
Dibromochloromethane	ND	0.025		19		n	••	1**	
1,2-Dibromoethane	ND	0.025	ш	11	**	**	•	117	
Chlorobenzene	ND	0.025	U	н	*	N	**	11	
Bromoform	ND	0.025	**	н	•	••	**		
1,1,2,2-Tetrachloroethane	ND	0.025	tt	и	17	**	**		
1,3-Dichlorobenzene	ND	0.025	**	п	**	•	н		
1,4-Dichlorobenzene	ND	0.025	**	"	10	"	п	**	
1,2-Dichlorobenzene	ND	0.025	••	п		"	II .	*	
Surrogate: Dibromodifluoromet	hane	77.0 %	50-	150	"	"	"	"	
Surrogate: 4-Bromofluorobenze	ne	68.0 %	50-	150	"	"	"	,,	

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 20-Apr-00 07:54

Semivolatile Organic Compounds by EPA Method 8270B Sequoia Analytical - Walnut Creek

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
WOT1-10 (W004183-01) Soil	Sampled: 06-Apr-00 13:30	Receive	ed: 07-A]	pr-00 17:15	5				-
Acenaphthene	ND	0.10	mg/kg	1	0D10014	10-Apr-00	14-Apr-00	EPA 8270B	
Acenaphthylene	ND	0.10	n	₩	"	п	Ħ	19	
Anthracene	ND	0.10	11	**	H	II	и	*	
Aniline	ND	0.10	19	19	H	н	**	10	
Benzoic acid	ND	0.50	19	**	n	H	77	**	
Benzo (a) anthracene	ND	0.10	19	**	11	н	**	**	
Benzo (b) fluoranthene	ND	0.10	17	"	п	"	17		
Benzo (k) fluoranthene	ND	0.10	#	**	11	н	**	•	
Benzo (ghi) perylene	ND	0.10	**	11	п	и	**	**	
Benzo[a]pyrene	ND	0.10	**	**	u	11	17	"	
Benzyl alcohol	ND	0.10	**	**	n	*	**	(r	
Bis(2-chloroethoxy)methane	ND	0.10	"	**	11	н	•	ø	
Bis(2-chloroethyl)ether	ND	0.10	**	**	11	•		u	
Bis(2-chloroisopropyl)ether	ND	0.10	**	u u	н		*	и	
Bis(2-ethylhexyl)phthalate	0.71	0.50	**	u	U	*		u	
4-Bromophenyl phenyl ether	ND	0.10	*	**	11	*	**	u	
Butyl benzyl phthalate	ND	0.10		**	11	**	7.0	и	
4-Chloroaniline	ND	0.50	**	н	**	**	**	IJ	
2-Chloronaphthalene	ND	0.10		**	n	**	**	u	
4-Chloro-3-methylphenol	ND	0.10		Tr.	"	**	,,	a	
2-Chlorophenol	ND	0.10	**	H	н	**	**	п	
4-Chlorophenyl phenyl ether	ND	0.10	**	"	**	**		n .	
Chrysene	ND	0.10	**	**	**	**		u	
Dibenz (a,h) anthracene	ND	0.10	**	**	•	**		п	
Dibenzofuran	ND	0.10	**	••	**	**	•	ıı .	
Di-n-butyl phthalate	ND	0.50	"	77	n	**		н	
1,2-Dichlorobenzene	ND	0.10	**	**	н	*	**	и.	
1,3-Dichlorobenzene	ND	0.10	,,	**	"	**	,,	п	
1,4-Dichlorobenzene	ND	0.10	"	**	**	**	**	ш	
3,3'-Dichlorobenzidine	ND	0.50	,,	**	19	#		п	
2,4-Dichlorophenol	ND	0.10	17	"	***	**		п	
Diethyl phthalate	ND	0.10	**		**	**	**	н	
2,4-Dimethylphenol	ND	0.10	17	H	п	17	**	II.	
Dimethyl phthalate	ND	0.10	**		**	*	17	o	
4,6-Dinitro-2-methylphenol	ND	0.50	"	**	11	17	"	II.	
2,4-Dinitrophenol	ND	0.50	17	**	n	#	,,	II.	
2,4-Dinitrotoluene	ND	0.10	**	**	н	**	*	n .	
2,6-Dinitrotoluene	ND	0.10	11	"	n	**		n	

Sequoia Analytical - Walnut Creek

Dublin CA, 94568 .

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 20-Apr-00 07:54

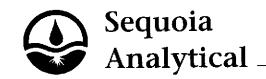
Semivolatile Organic Compounds by EPA Method 8270B Sequoia Analytical - Walnut Creek

Analyte	Re Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
						Ticparca	7 mary 200	Wedlod	110103
WOT1-10 (W004183-01) Soil				r-00 17:15	<u> </u>				
Di-n-octyl phthalate	ND	0.10	mg/kg	1	0D10014	10-Apr-00	14-Apr-00	EPA 8270B	
Fluoranthene	ND	0.10	*	•	"	н	**	**	
Fluorene	ND	0.10	#	"	#	н	11	п	
Hexachlorobenzene	ND	0.10	п	"	**	**	**	п	
Hexachlorobutadiene	ND	0.10	*	**	**	"	"	•	
Hexachlorocyclopentadiene	ND	0.10	**	"	+r	Ħ	*	•	
Hexachloroethane	ND	0.10	79	"	10	Ħ	41	H	
Indeno (1,2,3-cd) pyrene	ND	0.10	**	**	**	н	"	**	
Isophorone	ND	0.10	"	11	11	н	**	**	
2-Methylnaphthalene	ND	0.10	**	11	**	H	11	**	
2-Methylphenol	ND	0.10	**	н	11	*1	••	"	
4-Methylphenol	ND	0.10	н	п	Ħ	н	77	•	
Naphthalene	ND	0.10	v	н	4	н	*1	N	
2-Nitroaniline	ND	0.50	D.	11	**	**	11	**	
3-Nitroaniline	ND	0.50	D	п	н	**	**	10	
4-Nitroaniline	ND	0.50	"	п	"	**	11	**	
Nitrobenzene	ND	0.10		"	*	**	H	**	
2-Nitrophenol	ND	0.10	,,	II	,,	**	н	*	
N-Nitrosodimethylamine	ND	0.10	n n	п		**	н	н	
4-Nitrophenol	ND	0.50	п	н		**	μ	n	
N-Nitrosodiphenylamine	ND	0.10	ц	ч	"	**	н	н	
N-Nitrosodi-n-propylamine	ND	0.10	D	11	*		n	n n	
Pentachlorophenol	ND	0.50		**	11	•			
Phenanthrene	ND	0.10	•		**	+		II.	
Phenol	ND	0.10	*	**	н	#	n	n	
Pyrene	ND	0.10	"		11		17	11	
1,2,4-Trichlorobenzene	ND	0.10	••			n	16	II .	
2,4,5-Trichlorophenol	ND	0.50	**	**	п	**	19	n .	
2,4,6-Trichlorophenol	ND	0.10	**	"		78	••	n .	
Surrogate: 2-Fluorophenol		63.2 %	25-1	121	и	"	"	n	
Surrogate: Phenol-d6		66.0 %	24-1		"	"	"	"	
Surrogate: Nitrobenzene-d5		73.9 %	23-1		"	"	"	"	
Surrogate: 2-Fluorobiphenyl		80.5 %	30-1		"	н	"	п	
Surrogate: 2,4,6-Tribromophen	ol	2.54 %	19-1		"	v		m	S-03
Surrogate: p-Terphenyl-d14		108 %	18-1		"	,,	"	"	- **
San again p Torphonyi ara		100 /0	10-1	, ,					

Sequoia Analytical - Walnut Creek

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron


Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski **Reported:** 20-Apr-00 07:54

Semivolatile Organic Compounds by EPA Method 8270B Sequoia Analytical - Walnut Creek

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
WOT2-10 (W004183-02) Soil	Sampled: 06-Apr-00 13:35	Receive	ed: 07-A	pr-00 17:15	5				
Acenaphthene	ND	0.10	mg/kg	1	0D10014	10-Apr-00	14-Apr-00	EPA 8270B	
Acenaphthylene	ND	0.10	11	**	W	44	10	H	
Anthracene	ND	0.10	H	•	*	**	••	n	
Aniline	ND	0.10	•	**			**	II .	
Benzoic acid	ND	0.50	H	*		••	er e	н	
Benzo (a) anthracene	ND	0.10	n .			**	**	ji .	
Benzo (b) fluoranthene	ND	0.10	II	н	19	**	**	п	
Benzo (k) fluoranthene	ND	0.10	11	Ħ	77	**	**	II	
Benzo (ghi) perylene	ND	0.10	п	•	*	**	**	н	
Benzo[a]pyrene	ND	0.10	п		n	"	••	п	
Benzyl alcohol	ND	0.10	п	-	**	**	••	u	
Bis(2-chloroethoxy)methane	ND	0.10	n		"	**		n	
Bis(2-chloroethyl)ether	ND	0.10	ч	14	n	**	**	n	
Bis(2-chloroisopropyl)ether	ND	0.10	ii		n	H	**	n.	
Bis(2-ethylhexyl)phthalate	ND	0.50		**	**	n	**	u u	
4-Bromophenyl phenyl ether	ND	0.10	ш	11	11	н	U-	n	
Butyl benzyl phthalate	ND	0.10	п	н	**	**	u-	II.	
4-Chloroaniline	ND	0.50	n		,,	**	**	11	
2-Chloronaphthalene	ND	0.10	п	а		**	**	n	
4-Chloro-3-methylphenol	ND	0.10	и	**	"	n	••	,,	
2-Chlorophenol	ND	0.10	11	17	•				
4-Chlorophenyl phenyl ether	ND	0.10	п	**	"	**	**	н	
Chrysene	ND	0.10	н	**	11	**	**	U	
Dibenz (a,h) anthracene	ND	0.10	и	.,	17		**	п	
Dibenzofuran	ND	0.10	III	*	It	**	11	n	
Di-n-butyl phthalate	ND	0.50	ft	,,	11	,,	**	"	
1,2-Dichlorobenzene	ND	0.10	11		**	**	••	п	
1,3-Dichlorobenzene	ND	0.10	u		**	**	**	п	
1,4-Dichlorobenzene	ND	0.10	n		n	**	4	п	
3,3'-Dichlorobenzidine	ND	0.50	Ir		ır	**	**	ч	
2,4-Dichlorophenol	ND	0.10	н	**	н	,,	••	u	
Diethyl phthalate	ND	0.10	**	**	**	**	**	н	
2,4-Dimethylphenol	ND	0.10		**	,,	••		u	
Dimethyl phthalate	ND	0.10	**	#	**	"		u	
4,6-Dinitro-2-methylphenol	ND	0.10	**	**		19	и	п	
2,4-Dinitrophenol	ND	0.50		**		11	**	п	
2.4-Dinitrotoluene	ND ND	0.30		#	,,	n.		e	
2,6-Dinitrotoluene	ND ND	0.10		#	**	н	**	u	
2,0-Difficultieffe	ND	0.10							

Sequoia Analytical - Walnut Creek

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 20-Apr-00 07:54

Semivolatile Organic Compounds by EPA Method 8270B Sequoia Analytical - Walnut Creek

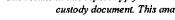
Analyte	Re Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
WOT2-10 (W004183-02) Soil	Sampled: 06-Apr-00 13:35	Receive	ed: 07-Ap	r-00 17:15	5				
Di-n-octyl phthalate	ND	0.10	mg/kg	1	0D10014	10-Apr-00	14-Apr-00	EPA 8270B	
Fluoranthene	ND	0.10	п	**	•	II .	If	11	
Fluorene	ND	0.10	п		•	н	н		
Hexachlorobenzene	ND	0.10	Iţ	"	**	rŧ	If	98	
Hexachlorobutadiene	ND	0.10	н	"		Ħ	It	"	
Hexachlorocyclopentadiene	ND	0.10	H	*		н	H	*	
Hexachloroethane	ND	0.10	H	a		Ħ	н	19	
Indeno (1,2,3-cd) pyrene	ND	0.10	II.	"		II	n	*	
Isophorone	ND	0.10	n	"	"	II .	H	**	
2-Methylnaphthalene	ND	0.10	It	34	*1	tt	n	**	
2-Methylphenol	ND	0.10	IF.	н	11	н	ч	"	
4-Methylphenol	ND	0.10	n	"	n	***	n	"	
Naphthalene	ND	0.10	rt .	н	H	H	II	19	
2-Nitroaniline	ND	0.50	u	ч	11	11	n.	11	
3-Nitroaniline	ND	0.50	4		"	**	n .	н	
4-Nitroaniline	ND	0.50	u		μ	H	II	н	
Nitrobenzene	- ND	0.10	**	н	n	**	II	н	
2-Nitrophenol	ND	0.10	**	u	ıı.	**	II .	D	
N-Nitrosodimethylamine	ND	0.10	**	tr	II	**	U	н	
4-Nitrophenol	ND	0.50	**	**	μ	"	R	n	
N-Nitrosodiphenylamine	ND	0.10	**	**	ıı	**	10	11	
N-Nitrosodi-n-propylamine	ND	0.10	H	**	п	**	18	н	
Pentachlorophenol	ND	0.50	**	**	"	"	"	п	
Phenanthrene	ND	0.10	17	10	II	н	**	u u	
Phenol	ND	0.10	**	и	п	**	**	n .	
Pyrene	ND	0.10	"	n	IF.	н	**	и	
1,2,4-Trichlorobenzene	ND	0.10	**	п	11*	**	71	н	
2,4,5-Trichlorophenol	ND	0.50	**	п	10	•	90	u	
2,4,6-Trichlorophenol	ND	0.10	**	u	"	**	**	11	
Surrogate: 2-Fluorophenol	,	67.4%	25-1	121	"	"	n	"	
Surrogate: Phenol-d6		68.0 %	24-1		"	"	,,	u	
Surrogate: Nitrobenzene-d5		76.9 %	23-1		"	"	μ.	"	
Surrogate: 2-Fluorobiphenyl		84.4 %	30-1		"	ų	μ	"	
Surrogate: 2,4,6-Tribromophene		7.86 %	19-1		"	11	,,	"	S-03
Surrogate: p-Terphenyl-d14		103 %	18-1		"	"	"	"	

Sequoia Analytical - Walnut Creek

Dublin CA, 94568

Project: Chevron

Project Number: Chevron #9-1924 Project Manager: Barbara Sieminski

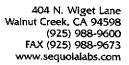

Reported: 20-Apr-00 07:54

Conventional Chemistry Parameters by APHA/EPA Methods

Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
WOT1-10 (W004183-01) Soil	Sampled: 06-Apr-00 13:3	0 Receiv	ed: 07-A	pr-00 17:1:	5			- · · · · ·	
TRPH	100	50	mg/kg	1	0D10013	10-Apr-00	10-Apr-00	SM 5520E/F	
WOT2-10 (W004183-02) Soil	Sampled: 06-Apr-00 13:3	S Receiv	ed: 07-A	pr-00 17:1:	5				
TRPH	150	50	mg/kg	1	0D10013	10-Apr-00	10-Apr-00	SM 5520E/F	

Sequoia Analytical - Walnut Creek



Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski **Reported:** 20-Apr-00 07:54

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D13002 - EPA 5030B [MeOH]							•		<u></u>	
Blank (0D13002-BLK1)				Prepared	& Analyze	ed: 13-Ap	г-00			
urgeable Hydrocarbons	ND	1.0	mg/kg	_						
Benzene	ND	0.0050	**							
l'oluene	ND	0.0050								
Ethylbenzene	ND	0.0050	**							
Kylenes (total)	ND	0.0050	**							
Methyl tert-butyl ether	ND	0.050								
Surrogate: a.a,a-Trifluorotoluene	0.612		"	0.600	·	102	40-140			
LCS (0D13002-BS1)				Prepared	& Analyze	ed: 13- A p:	r-00			
Benzene	0.680	0.0050	mg/kg	0.800		85.0	50-150			
l'oluene	0.750	0.0050	**	0.800		93.7	50-150			
Ethylbenzene	0.830	0.0050		0.800		104	50-150			
Kylenes (total)	2.46	0.0050	u	2.40		102	50-150			
Surrogate: a.a.a-Trifluorotoluene	0.552		"	0.600		92.0	40-140			
Matrix Spike (0D13002-MS1)	So	urce: W0042	65-03	Prepared .	& Analyze	ed: 13-Apr	r-00			
Benzene	0.716	0.0050	mg/kg	0.800	ND	89.5	50-150			
l'oluene	0.756	0.0050	п	0.800	ND	94.5	50-150			
Ethylbenzene	0.794	0.0050	U	0.800	ND	99.3	50-150			
ýylenes (total)	2.33	0.0050		2.40	ND	97.1	50-150			
urrogate: a.a,a-Trifluorotoluene	0.606	 		0.600		101	40-140			
Matrix Spike Dup (0D13002-MSD1)	So	urce: W0042	65-03	Prepared	& Analyze	ed: 13-Api	r-00			
Benzene	0.722	0.0050	mg/kg	0.800	ND	90.2	50-150	0.834	20	
Toluene	0.772	0.0050	11	0.800	ND	96.5	50-150	2.09	20	
Ethylbenzene	0.818	0.0050	14	0.800	ND	102	50-150	2.98	20	
(ylenes (total)	2.39	0.0050	*1	2.40	ND	99.6	50-150	2.54	20	
Surrogate: a,a,a-Trifluorotoluene	0.610		,,	0.600		102	40-140			

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski

Reported: 20-Apr-00 07:54

Diesel Hydrocarbons (C9-C24) by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D10020 - EPA 3550A	*									
Blank (0D10020-BLK1)	· · ·		7	Prepared:	10-Apr-0) Analyze	d: 11-Apr-	-00		
Diesel Range Hydrocarbons	ND	1.0	mg/kg			•				
Surrogate: n-Pentacosane	1.31		μ	I.II		118	50-150			•
LCS (0D10020-BS1)				Prepared:	10-Apr-0) Analyze	d: 11 -A pr-	-00		
Diesel Range Hydrocarbons	16.5	1.0	mg/kg	15.0		110	60-140			
7 2										

			Prepared: 10-A	Apr-00 Analyz	ed: 11-Apr	-00		
ND	1.0	mg/kg						
1.31		μ	1.11	118	50-150		· .	
			Prepared: 10-A	Apr-00 Analyz	ed: 11-Apr	-00		
16.5	1.0	mg/kg	15.0	110	60-140		··	
1.43		"	1.11	129	50-150	• • • • • • • • • • • • • • • • • • • •		
			Prepared: 10-A	Apr-00 Analyz	ed: 11-Apr	-00		
18.4	1.0	mg/kg	15.0	123	60-140	10.9	40	
1.51		"	1.11	136	50-150			
	1.31 16.5 1.43	1.31 16.5 1.0 1.43	1.31 " 16.5 1.0 mg/kg 1.43 " 18.4 1.0 mg/kg	ND 1.0 mg/kg 1.31 " 1.11 Prepared: 10-A 16.5 1.0 mg/kg 15.0 1.43 " 1.11 Prepared: 10-A 18.4 1.0 mg/kg 15.0	ND 1.0 mg/kg 1.31 " 1.11 118 Prepared: 10-Apr-00 Analyz 16.5 1.0 mg/kg 15.0 110 1.43 " 1.11 129 Prepared: 10-Apr-00 Analyz 18.4 1.0 mg/kg 15.0 123	ND 1.0 mg/kg 1.31 " 1.11 118 50-150 Prepared: 10-Apr-00 Analyzed: 11-Apr 16.5 1.0 mg/kg 15.0 110 60-140 1.43 " 1.11 129 50-150 Prepared: 10-Apr-00 Analyzed: 11-Apr 18.4 1.0 mg/kg 15.0 123 60-140	1.31 " 1.11 118 50-150 Prepared: 10-Apr-00 Analyzed: 11-Apr-00 16.5 1.0 mg/kg 15.0 110 60-140 1.43 " 1.11 129 50-150 Prepared: 10-Apr-00 Analyzed: 11-Apr-00 18.4 1.0 mg/kg 15.0 123 60-140 10.9	ND 1.0 mg/kg 1.31 " 1.11 118 50-150 Prepared: 10-Apr-00 Analyzed: 11-Apr-00 16.5 1.0 mg/kg 15.0 110 60-140 1.43 " 1.11 129 50-150 Prepared: 10-Apr-00 Analyzed: 11-Apr-00 18.4 1.0 mg/kg 15.0 123 60-140 10.9 40

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski

Reported: 20-Apr-00 07:54

Metals Scan by ICP - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D17009 - EPA 3050B	-		<u>.</u>				· · · · · · · · · · · · · · · · · · ·			
Blank (0D17009-BLK1)				Prepared	& Analyze	ed: 17-Ap	r-00	•		
Cadmium	ND	0.50	mg/kg							
Chromium	ND	0.50	r							
Lead	ND	5.0	tt							
Nickel	ND	1.0	п							
Zinc	ND	5.0	II							
LCS (0D17009-BS1)				Prepared	& Analyze	ed: 17-Ap:	r-00			
Cadmium	57.6	0.50	mg/kg	50.0		115	80-120			
Chromium	53.5	0.50	*	50.0		107	80-120			
Lead	59.5	5.0	"	50.0		119	80-120			
Nickel	56.4	1.0	#	50.0		113	80-120			
Zine	60.0	5.0	"	50.0		120	80-120			
LCS Dup (0D17009-BSD1)				Prepared	& Analyze	ed: 17-Api	r-00			
Cadmium	55.2	0.50	mg/kg	50.0		110	80-120	4.26	20	
Chromium	52.8	0.50	**	50.0		106	80-120	1.32	20	
Lead	56.4	5.0	п	50.0		113	80-120	5.35	20	
Nickel	53.9	1.0	п	50.0		108	80-120	4.53	20	
Zine	55.0	5.0	ч	50.0		110	80-120	8.70	20	

Gettler Ryan, Inc. - Dublin

Project: Chevron

6747 Sierra Court Suite J Dublin CA, 94568

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski **Reported:** 20-Apr-00 07:54

Volatile Organic Compounds by EPA Method 8010B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D10005 - EPA 5030B [MeOH]								•		
Blank (0D10005-BLK1)		<u> </u>	·	Prepared	& Analyza	ed: 10-Ap	r-00		<u> </u>	
Chloromethane	ND	0.050	mg/kg	-						
Vinyl chloride	ND	0.050	"							
Bromomethane	ND	0.050	•							
Chloroethane	ND	0.050	**							
Trichlorofluoromethane	ND	0.025	*							
1,1-Dichloroethene	ND	0.025	•							
Methylene chloride	ND	0.25	P							
rans-1,2-Dichloroethene	ND	0.025	**							
1,1-Dichloroethane	ND	0.025	II .							
sis-1,2-Dichloroethene	ND	0.025	"							
Chloroform	ND	0.025	"							
,1,1-Trichloroethane	ND	0.025	н							
Carbon tetrachloride	ND	0.025	**							
,2-Dichloroethane	ND	0.025	**							
Trichloroethene	ND	0.025	**							
,2-Dichloropropane	ND	0.025	1*							
Bromodichloromethane	ND	0.025	**							
is-1,3-Dichloropropene	ND	0.025	**							
rans-1,3-Dichloropropene	ND	0.025	**							
,1,2-Trichloroethane	ND	0.025	н							
Tetrachloroethene	ND	0.025	n							
Dibromochloromethane	ND	0.025	II .							
,2-Dibromoethane	ND	0.025	и							
Chlorobenzene	ND	0.025	μ							
Bromoform	ND	0.025	"							
,1,2,2-Tetrachloroethane	ND	0.025	н							
,3-Dichlorobenzene	ND	0.025	"							
,4-Dichtorobenzene	ND	0.025	*							
,2-Dichlorobenzene	ND	0.025	н							
urrogate: 1-Chloro-2-fluorobenzene	0.445		,,	0.500		89.0	50-150	··········		•
Surrogate: 4-Bromofluoroberzene	0.455		"	0.500		91.0	50-150			

Dublin CA, 94568

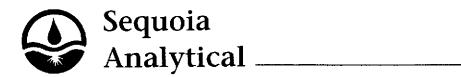

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski **Reported:** 20-Apr-00 07:54

Volatile Organic Compounds by EPA Method 8010B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Dagult	Reporting	Unita	Spike	Source	WDEC	%REC	מממ	RPD	Motos
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (0D10005-BLK2)				Prepared & An	alyzed: 13-Ap	r-00	
hloromethane	ND	0.025	mg/kg				
inyl chloride	ND	0.025	п				
romomethane	ND	0.050	II .				
hloroethane	ND	0.025	ш				
richlorofluoromethane	ND	0.025	ш				
,1-Dichloroethene	ND	0.025	**				
lethylene chloride	ND	0.25	н				
ans-1,2-Dichloroethene	ND	0.025	11				
,1-Dichloroethane	ND	0.025	U				
is-1,2-Dichloroethene	ИD	0.025	**				
hloroform	ND	0.025	**				
,1,1-Trichloroethane	ND	0.025	**				
Carbon tetrachloride	ND	0.025	**				
,2-Dichloroethane	ND	0.025	**				
richloroethene	ND	0.025	**				
,2-Dichloropropane	ND	0.025	17				
Bromodichloromethane	ND	0.025	н				
is-1,3-Dichloropropene	ND	0.025	**				
rans-1,3-Dichloropropene	ND	0.025	**				
,1,2-Trichloroethane	ND	0.025	"				
etrachloroethene	ND	0.025	**				
Dibromochloromethane	ND	0.025	**				
,2-Dibromoethane	ND	0.025	**				
Chlorobenzene	ND	0.025	н				
Bromoform	ND	0.025	"				
,1,2,2-Tetrachloroethane	ND	0.025	п				
,3-Dichlorobenzene	ND	0.025	п				
,4-Dichlorobenzene	ND	0.025	n				
,2-Dichlorobenzene	ND	0.025	**				
urrogate: Dibromodifluoromethane	0.700		#	0.500	140	50-150	
urrogate: 4-Bromofluorobenzene	0.550		"	0.500	110	50-150	



6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 20-Apr-00 07:54

Volatile Organic Compounds by EPA Method 8010B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D10005 - EPA 5030B [MeOH]										
LCS (0D10005-BS1)				Prepared	& Analyz	ed: 10-Ap	т-00			
1,1-Dichloroethene	1.05	0.025	mg/kg	1.00	<u> </u>	105	65-135			
Trichloroethene	1.15	0.025	н	1.00		115	70-130			
Chlorobenzene	1.20	0.025	II	1.00		120	70-130			
Surrogate: 1-Chloro-2-fluorobenzene	0.475		"	0.500		95.0	50-150			
Surrogate: 4-Bromofluorobenzene	0.400		**	0.500		80.0	50-150			
LCS (0D10005-BS2)	905-BS2) Prepared & Analyzed: 13-Apr-00									
1,1-Dichloroethene	1.00	0.025	mg/kg	1.00		100	65-135			
Trichloroethene	1.00		•	1.00		100	70-130			
Chlorobenzene	1.05		••	1.00		105	70-130			
Surrogate: Dibromodifluoromethane	0.490		,,	0.500		98.0	70-130			
Surrogate: 4-Bromofluoroberzene	0.395		,,	0.500		79.0	70-130			
Matrix Spike (0D10005-MS1)	So	urce: W0041	73-01	Prepared	& Analyz	ed: 10-Ap.	r-00			
1,1-Dichloroethene	1.05	0.025	mg/kg	1.00	ND	105	60-140			
Trichloroethene	1.10	0.025	**	1.00	ND	110	60-140			
Chlorobenzene	1.05	0.025		1.00	ND	105	60-140			
Surrogate: 1-Chloro-2-fluorobenzene	0.360	·	"	0.500		72.0	50-150			
Surrogate: 4-Bromofluoroberzene	0.340		"	0.500		68.0	50-150			
Matrix Spike Dup (0D10005-MSD1)	So	urce: W0041	73-01	Prepared	& Analyz	ed: 10-Ap:	r-00			
1,1-Dichloroethene	1.00	0.025	mg/kg	1.00	ND	100	60-140	4.88	25	
Trichloroethene	1.10	0.025	"	1.00	ND	110	60-140	0	25	
Chlorobenzene	1.05	0.025	**	1.00	ND	105	60-140	0	25	
Surrogate: 1-Chloro-2-fluoroberzene	0.390		"	0.500		78.0	50-150			
Surrogate: 4-Bromofluorobenzene	0.330		"	0.500		66.0	50-150			

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 20-Apr-00 07:54

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control

Sequoia Analytical - Walnut Creek

											-
		Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

Ratch	nn i	10014	- FPA	3550A
13411111		11/17 1 😘		J. 1. 111 /A

Blank (0D10014-BLK1)				Prepared & Analyzed: 10-Apr-00
Acenaphthene	ND	0.10	mg/kg	
Acenaphthylene	ND	0.10	•	
Anthracene	ND	0.10	10	
Aniline	ND	0.10	•	
Benzoic acid	ND	0.50	•	
Benzo (a) anthracene	ND	0.10	••	
Benzo (b) fluoranthene	ND	0.10	**	
Benzo (k) fluoranthene	ND	0.10	**	
Benzo (ghi) perylene	ND	0.10	10	
Benzo[a]pyrene	ND	0.10	**	
Benzyi alcohol	ND	0.10	**	
Bis(2-chloroethoxy)methane	ND	0.10	**	
Bis(2-chloroethyl)ether	ND	0.10		
Bis(2-chloroisopropyl)ether	ND	0.10	19	
Bis(2-ethylhexyl)phthalate	ND	0.50	"	
-Bromophenyl phenyl ether	ND	0.10	**	
Butyl benzyl phthalate	ND	0.10	**	
-Chloroaniline	ND	0.50	••	
-Chloronaphthalene	ND	0.10	n	
-Chloro-3-methylphenol	ND	0.10	**	
-Chlorophenol	ND	0.10	"	
-Chlorophenyl phenyl ether	ND	0.10	**	
Chrysene	ND	0.10	**	
Dibenz (a,h) anthracene	ND	0.10	••	
Dibenzofuran	ND	0.10	**	
Di-n-butyl phthalate	ND	0.50	••	
.2-Dichlorobenzene	ND	0.10	•	
,3-Dichlorobenzene	ND	0.10	••	
,4-Dichlorobenzene	ND	0.10	**	
,3´-Dichlorobenzidine	ND	0.50	**	
.4-Dichlorophenol	ND	0.10	**	
Diethyl phthalate	ND	0.10	"	
t,4-Dimethylphenol	ND	0.10	-	
Dimethyl phthalate	ND	0.10	н	

Sequoia Analytical - Walnut Creek

Dublin CA, 94568

Analyte

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 20-Apr-00 07:54

RPD

Limit

Notes

%REC

Limits

RPD

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control

Units

Reporting

Limit

Result

ND

ND

ND

ND

ND

ND

3.57

0.10

0.10

0.10

0.10

0.50

0.10

Sequoia Analytical - Walnut Creek

Spike

Level

Source

Result

%REC

Batch 0D10014 - EPA 3550A				
Blank (0D10014-BLK1)				Prepared & Analyzed: 10-Apr-00
4,6-Dinitro-2-methylphenol	ND	0,50	mg/kg	**************************************
2,4-Dinitrophenol	ND	0.50	"	
2,4-Dinitrotoluene	ND	0.10	•	
2,6-Dinitrotoluene	ND	0.10	*	
Di-n-octyl phthalate	ND	01.0	••	
luoranthene	ND	0.10		
luorene	ND	0.10	•	
lexachlorobenzene	ND	0.10		
lexachlorobutadiene	ND	0.10	**	
lexachlorocyclopentadiene	ND	0.10	*1	
exachloroethane	ND	0.10	**	
deno (1,2,3-cd) pyrene	ND	0.10	17	
ophorone	ND	0.10	••	
Methylnaphthalene	ND	0.10	"	
Methylphenol	ND	0.10	н	
Methylphenol	ND	0.10	11	
aphthalene	ND	0.10	17	
Nitroaniline	ND	0.50	19	
-Nitroaniline	ND	0.50	**	
-Nitroaniline	ND	0.50	**	
litrobenzene	ND	0.10	••	
-Nitrophenol	ND	0.10	16	
-Nitrosodimethylamine	ND	0.10	"	
Nitrophenol	ND	0.50	**	
-Nitrosodiphenylamine	ND	0.10	**	
-Nitrosodî-n-propylamine	ND	0.10	••	
entachlorophenol	ND	0.50	**	

Sequoia Analytical - Walnut Creek

Phenanthrene

1,2,4-Trichlorohenzene

2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

Surrogate: 2-Fluorophenol

Phenol

Pyrene


The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

25-121

71.4

5.00

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski **Reported:** 20-Apr-00 07:54

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D10014 - EPA 3550A										
Blank (0D10014-BLK1)				Prepared	& Analyz	ed: 10-Ap	r-00			
Surrogate: Phenol-d6	3.43		mg/kg	5.00	,	68.6	24-113			
Surrogate: Nitrobenzene-d5	2.35		"	3.33		70.6	23-120			
Surrogate: 2-Fluorobiphenyl	2.59		"	3.33		77.8	30-115			
Surrogate: 2,4,6-Tribromophenol	3.57		**	5.00		71.4	19-122			
Surrogate: p-Terphenyl-dl4	2 .77		"	3.33		83.2	18-137			
LCS (0D10014-BS1)				Prepared	& Analyz	ed: 10 -A p	r-00			
Acenaphthene	2.68	0.10	mg/kg	3.33		80.5	31-137			
4-Chloro-3-methylphenol	3.80	0.10	**	5.00		76.0	26-103			
2-Chlorophenol	3.70	0.10	ţŦ	5.00		74.0	25-102			
1,4-Dichlorobenzene	2.42	0.10	**	3.33		72.7	28-104			
2,4-Dinitrotoluene	2.59	0.10	**	3.33		77.8	28-89			
4-Nitrophenol	3.67	0.50	н	5.00		73.4	11-114			
N-Nitrosodi-n-propylamine	2.61	0.10		3.33		78.4	41-126			
Pentachlorophenol	4.00	0.50		5.00		80.0	17-109			
Phenol	3.31	0.10		5.00		66.2	26-90			
Pyrene	2.74	0.10	u	3,33		82.3	35-142			
1,2,4-Trichlorobenzene	2.64	0.10	•	3.33		79.3	38-107			
Surrogate: 2-Fluorophenol	3.26		#	5.00		65.2	25-121			
Surrogate: Phenol-d6	3.10		"	5.00		62.0	24-113			
Surrogate: Nitrobenzene-d5	2.27		,,	3.33		68.2	23-120			
Surrogate: 2-Fluorobiphenyl	2,50		,,	3.33		75. I	30-115			
Surrogate: 2,4,6-Tribromophenol	3.47		"	5.00		69.4	19-122			
Surrogate: p-Terphenyl-dl4	2.51		ft	3.33		75.4	18-137			
LCS Dup (0D10014-BSD1)				Prepared	& Analyz	ed: 10-Ap	r-00			· · •
Acenaphthene	2.84	0.10	mg/kg	3.33		85.3	31-137	5.80	40	
4-Chloro-3-methylphenol	4.13	0.10	п	5.00		82.6	26- 103	8.32	40	
2-Chlorophenol	3.97	0.10	"	5.00		79.4	25-102	7.04	40	
1,4-Dichlorobenzene	2.56	0.10	**	3.33		76 .9	28-104	5.62	40	
2,4-Dinitrotoluene	2.86	0.10	n	3.33		85.9	28-89	9.91	40	
4-Nitrophenol	4.13	0.50	"	5.00		82.6	11-114	11.8	40	
N-Nitrosodi-n-propylamine	2.64	0.10	н	3.33		79.3	41-126	1.14	40	
Pentachlorophenol	4.30	0.50	**	5.00		86.0	17-109	7.23	40	
Phenol	3.60	0.10		5.00		72.0	26-90	8.39	40	
Pyrene	2.83	0.10	7	3.33		85.0	35-142	3.23	40	

Sequoia Analytical - Walnut Creek

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported:

RPD

%REC

20-Apr-00 07:54

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Spike

Source

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0D10014 - EPA 3550A										
LCS Dup (0D10014-BSD1)				Prepared	& Analyz	ed: 10-Ap	r-00			
1,2,4-Trichlorobenzene	2.84	0.10	mg/kg	3.33		85.3	38-107	7.30	40	•
Surrogate: 2-Fluorophenol	3.77		"	5.00		75.4	25-121			
Surrogate: Phenol-d6	3.50		n	5.00		70.0	24-113			
Surrogate: Nitrobenzene-d5	2.53		"	3.33		76.0	23-120			
Surrogate: 2-Fluorobiphenyl	2.75		rr r	3.33		82.6	30-115			
Surrogate: 2,4,6-Tribromophenol	3.97		rt	5.00		79.4	19-122			
Surrogate: p-Terphenyl-dl 4	2.61		*	3.33		78.4	18-137			

Project: Chevron

6747 Sierra Court Suite J Dublin CA, 94568 Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 20-Apr-00 07:54

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D10013 - EPA 3550A			- · -							,
Blank (0D10013-BLK1)				Ртерагед	& Analyz	ed: 10-Ap	г-00			
TRPH	ND	50	mg/kg				··			
LCS (0D10013-BS1)				Prepared	& Analyz	ed: 10-Ap	r-00			
TRPH	4570	50	mg/kg	5000		91.4	70-130			
LCS Dup (0D10013-BSD1)				Prepared	& Analyz	ed: 10-Ap	r-00			
TRPH	4980	50	mg/kg	5000		99.6	70-130	8.59	30	

ux CC	ру от	_				LUL 10	Che	VION	CO	ntac	ili l¥	1 140	J			<u>الا</u> مار	riuiii Z ki	7 to 14	1.4.2	<u> </u>	odž – Kacorc
1		ł	F 741		49	A4 7611	th fro	ruf R	oad	رزيا .	ermor	و ا	Chevron (Contact	(Nome)	4	45 No (925)	843	2-917	8	
Chevron U		Cone	ultant Pr	olect Nu	nber	<u> 346448</u>	102			1		_ ,	Laborator	y Name	<u>. Sei</u>	11201	م		WE	204	² 183 inski
P.O. BOX San Ramon,		A		(•	~ +H 0.	r- Kuan	- m	<i>•</i>			A	<u>.</u> 1	Loborator	y Relea	e Humb	4 <u>9 1</u>	1444.	88			
FAX (415)8		/	ddress_(5747	Sig	na Ct,	<u>Ste</u> (42	<u>abliv</u>	<u> </u>	4456	ة ن	Samples	Collecte	d by (No	ime)	<u>Bart</u>	ومدو	L.S	<u>iem</u>	nski
		F	Project Contact (Name) Barbara Siewinski (Phone) (925) 551-7555 (Fax Number) (925) 551-7888 Signature Bient										44	<u> </u>							
	1											= 1.									
			B					 33	ı 	Ι		R	-1	1	• Perfon	meg					
Sample Number	Lob Sample Number	Number of Containers	Metric S = Sol A = Air W = Weter C = Charcool	Type G = Grab C = Composite ' D = Discrate	Thre	Somple Preseration	load (Yes or No)	BIEX + TPH CAS//HEBE (8020 + 8015)	TPH Cless (8015)	Oil and Grease (5520)	Purpedie Haloarbon (8010)	Purpedble Aramotic (8020)	Purpeoble Organics (8240)	Extractable Organics (8270)	Metals CA.Cr.Pb.Zn.M (CUP or AX)						Remorke
140T1-10		1	5	G	13:30		Yes	X	Х	X	X			X	X						
WOT2-10			5	G	13:35		Yes	X	X	X	X			X	8						
													<u> </u>							<u> </u>	
-													Ī								
			-																		
						-		l													
																				<u> </u>	<u></u>
														1							•
					 				 	-											
		J				 				1		-									
Relinquished By	(Signgjure)		Orgo	nization		ale/Time		elyed B					Organizai	llon		/Time		1	um Ar	ound Thr	ne (Circle Cholee)
Derbari	Lei	uin	R G	-R		ole/Ilme		لكمين				_ _	4,.	4		7.00	16:00				Hre.
Retinguished By	(Signeture)			intzallan	1	ale/Ilme	Ci Rec	elved By	(Signa	iture)		_	Organizat	llon	Dote	/Time				5	Hre. Daye
W-24	(Steect)	·	5 ₂	inization		ate/Time	Rec	leved F	r Labor	ratory B	y (Sland	ture)			Date	/Tlyne			,	_	Doys ntrooted
Relinquished By	(signature)		Orga			are\ inne		DO	27.79		120		wc res	,	141	173	15		(
	 						<u>l`</u>		Hille		,	- 11									

11 April, 2000

Barbara Sieminski Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin, CA 94568

RE: Chevron Sequoia Report: W004173

Enclosed are the results of analyses for samples received by the laboratory on 07-Apr-00 17:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Laboratory Director

CA ELAP Certificate #1271

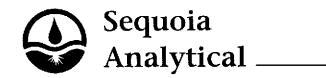
404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Gettler Ryan, Inc. - Dublin

Project: Chevron

6747 Sierra Court Suite J Dublin CA, 94568

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 11-Apr-00 12:04


ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled Date Received
SPI-(A-D)	W004173-01	Soil	06-Apr-00 13:50 07-Apr-00 17:15

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Alan B. Kemp, Laboratory Director

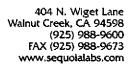
Project: Chevron

6747 Sierra Court Suite J Dublin CA, 94568

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 11-Apr-00 12:04

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP1-(A-D) (W004173-01) Soil	Sampled: 06-Apr-00 1	3:50 Receiv	ed: 07-A	pr-00 17:1	.5	•			
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0D10003	10-Apr-00	10-Apr-00	EPA 8015/8020	
Benzene	ND	0.0050	**			11	11	**	
Toluene	ND	0.0050			n	"	"	u	
Ethylbenzene	ND	0.0050	••	17	n	•	**	m	
Xylenes (total)	ND	0.0050	*	44	11	77	"	н	
Methyl tert-butyl ether	ND	0.050	71	**	н	er e	"	и	
Surrogate: a,a,a-Trifluorotoluen	16	88.0 %	40-	140	"	"	"	н	



Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski **Reported:** 11-Apr-00 12:04

Diesel Hydrocarbons (C9-C24) by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes				
SP1-(A-D) (W004173-01) Soil Sampled: 06-Apr-00 13:50 Received: 07-Apr-00 17:15													
Diesel Range Hydrocarbons	310	10	mg/kg	10	0D10020	10-Apr-00	11-Apr-00	DHS LUFT	D-06,D-12				
Surrogate: n-Pentacosane		280 %	50-	150	"	ď	"	"	D-07				

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 11-Apr-00 12:04

Metals Scan by ICP

Sequoia Analytical - Walnut Creek

Analyte	Reg Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP1-(A-D) (W004173-01) Soil	Sampled: 06-Apr-00 13:50	Receiv	ed: 07-A	pr-00 17:1	5				
Cadmium	ND	2.5	mg/kg	1	0D10018	10-Apr-00	10-Apr-00	ICP Scan	
Chromium	40	2.5	"	11*	tł	н	n	**	
Lead	ND	2.5	*	*	"	••	*	н	
Nickel	46	2.5	Ħ	-	**	**		*	
Zinc	52	2.5	14	*	n	11	*	#	

Sequoia Analytical - Walnut Creek

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski **Reported:** 11-Apr-00 12:04

Volatile Organic Compounds by EPA Method 8010B Sequoia Analytical - Walnut Creek

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP1-(A-D) (W004173-01) Soil	Sampled: 06-Apr-00 13:50	Receiv	ed: 07-A	pr-00 17:1	5				
Chloromethane	ND	0.050	mg/kg	100	0D10005	10-Apr-00	10-Apr-00	EPA 8010B	
Vinyl chloride	ND	0.050		H	H	W	"	**	
Bromomethane	ND	0.050	•	rt	**	*	17	••	
Chloroethane	ND	0.050	"	17	**	**	11	**	
Trichlorofluoromethane	ND	0.025	**	**	**	**	H	•	
1,1-Dichloroethene	ND	0.025	"	"	77	"	H	•	
Methylene chloride	ND	0.25	77	rt	*	,,	н	н	
trans-1,2-Dichloroethene	ND	0.025	**	**	*	"	н	**	
1,1-Dichloroethane	ND	0.025	41	*	*	"	н	"	
cis-1,2-Dichloroethene	ND	0.025	11	"	**	**	II		
Chloroform	ND	0.025	#	**	*	11	ıı	**	
1,1,1-Trichloroethane	ND	0.025	**	**	**	H	II .	••	
Carbon tetrachloride	ND	0.025	19	**	**	77	и	**	
1,2-Dichloroethane	ND	0.025	**	*	*	н	ıı	**	
Trichloroethene	ND	0.025	++	**	**	"	"	**	
1,2-Dichloropropane	ND	0.025	18	•		н	II	**	
Bromodichloromethane	ND	0.025	,,	•	**	н	ıı	"	
cis-1,3-Dichloropropene	ND	0.025	**	"	10	n	D	**	
trans-1,3-Dichloropropene	ND	0.025	**	**	н	п	If	"	
1,1,2-Trichloroethane	ND	0.025	**	"	н	**	17	"	
Tetrachloroethene	ND	0.025	"	11	н	**	v	*1	
Dibromochloromethane	ND	0.025	н	**	н	**	n	11	
1,2-Dibromoethane	ND	0.025	н	11	н	**	*	11	
Chlorobenzene	ND	0.025	,,	17	11	*	*	11	
Bromoform	ND	0.025	"	#		**	**	11	
1,1,2,2-Tetrachloroethane	ND	0.025	"	**	u	**		"	
1,3-Dichlorobenzene	ND	0.025		"	ч	**		11	
1,4-Dichlorobenzene	ND	0.025	п		n n	**	**	н	
1,2-Dichlorobenzene	ND	0.025	1)	•	II .	"	"	n .	
Surrogate: 1-Chloro-2-fluorober	ızene	61.0 %	50-	150	11	и	"	· · ·	
Surrogate: 4-Bromofluorobenze	ne	66.0 %	50-	150	"	n	"	r r	

Project: Chevron

6747 Sierra Court Suite J Project Number: Chevron # 9-1924
Dublin CA, 94568 Project Manager: Barbara Sieminski

Reported: 11-Apr-00 12:04

Semivolatile Organic Compounds by EPA Method 8270B Sequoia Analytical - Walnut Creek

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP1-(A-D) (W004173-01) Soil	Sampled: 06-Apr-00 13:50	Receiv	ed: 07-A	pr-00 17:1:	5		<u> </u>	<u> </u>	77.
Acenaphthene	ND	0.10	mg/kg	1	0D10014	10-Apr-00	10-Apr-00	EPA 8270B	
Acenaphthylene	ND	0.10	н	•	11	**	H	**	
Anthracene	ND	0.10		n	11	**	IŢ	n	
Aniline	ND	0.10	н	н	**	**	н	"	
Benzoic acid	ND	0.50	н	47	**	"	11	n	
Benzo (a) anthracene	ND	0.10	и	н	**	n	**		
Benzo (b) fluoranthene	ND	0.10	и	Ħ	"	"	11	n	
Benzo (k) fluoranthene	ND	0.10	11	₩	•	"	**	"	
Benzo (ghi) perylene	ND	0.10	**	**	**	n	ų	rr	
Benzo[a]pyrene	ND	0.10	и	**	н	11	**	· ·	
Benzyl alcohol	ND	0.10	**	**	"	п	••	п	
Bis(2-chloroethoxy)methane	ND	0.10	11	**	**	li	**	п	
Bis(2-chloroethyl)ether	ND	0.10	**	**	**	II	**	II.	
Bis(2-chloroisopropyl)ether	ND	0.10		**	78	ч	**	п	
Bis(2-ethylhexyl)phthalate	ND	0.50	**	**	11	n		ıı	
4-Bromophenyl phenyl ether	ND	0.10	,,	**	**	n n		п	
Butyl benzyl phthalate	ND	0.10	"		**		,,	n .	
4-Chloroaniline	ND	0.50	**	**	**	n n		п	
2-Chloronaphthalene	ND	0.10		ч	"			н	
4-Chloro-3-methylphenol	ND	0.10		**	**	"		"	
2-Chlorophenol	ND	0.10	**	n	**	н	**	н	
4-Chlorophenyl phenyl ether	ND	0.10		**	**	н		и	
Chrysene	ND	0.10		Ħ	**	,,	**	n	
Dibenz (a,h) anthracene	ND	0.10		u	•	н	**	**	
Dibenzofuran	ND	0.10	**	**	**	н	**	н	
Di-n-butyl phthalate	ND	0.50	**	п	**	19	**	н	
1,2-Dichlorobenzene	ND	0.10		н	**	15	17	**	
1,3-Dichlorobenzene	ND	0.10	**	II.	H	н	н	11	
1,4-Dichlorobenzene	ND	0.10		u	**	11	17	,,	
3,3'-Dichlorobenzidine	ND	0.50		11	rr ·	н	**	"	
2,4-Dichlorophenol	ND	0.10		н		н	17	и	
Diethyl phthalate	ND	0.10		п	**	н		n	
2,4-Dimethylphenol	ND	0.10		H,	H	14	a	#	
Dimethyl phthalate	ND	0.10		Ħ	н	14	*	**	
4,6-Dinitro-2-methylphenol	ND	0.50	11	. n		н	**	**	
2,4-Dinitrophenol	ND	0.50	"	п	**	н	**	"	
2,4-Dinitrotoluene	ND	0.10	ø	u	**	н	#	"	
2,6-Dinitrotoluene	ND	0.10		п	**	н		"	

Sequoia Analytical - Walnut Creek

Dublin CA, 94568

Project: Chevron

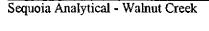
Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 11-Apr-00 12:04

Semivolatile Organic Compounds by EPA Method 8270B Sequoia Analytical - Walnut Creek

Analyte	Rej Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP1-(A-D) (W004173-01) Soil									
Di-n-octyl phthalate	ND	0.10	mg/kg	1	0D10014	10-Арг-00	10-Apr-00	EPA 8270B	
Fluoranthene	ND	0.10	n	н	17	4	n	н	
Fluorene	ND	0.10	19	IT	ır	**	77	11	
Hexachlorobenzene	ND	0.10	**	п	If	11	n		
Hexachlorobutadiene	ND	0.10	, #	11	0	**	*	н	
Hexachlorocyclopentadiene	ND	0.10	11	п	II	**	77	**	
Hexachloroethane	ND	0.10	rr	н	ш	**	77	п	
Indeno (1,2,3-cd) pyrene	ND	0.10	**	н	tł.	**	*		
Isophorone	ND	0.10	17	II	h	**	**	•	
2-Methylnaphthalene	ND	0.10	H	н	ш	19	Ħ	**	
2-Methylphenol	ND	0.10	**	н	ш	**	•	**	
4-Methylphenol	ND	0.10	**	a a	ш	н	••	**	
Naphthalene	ND	0.10	**	п	щ	"	••	**	
2-Nitroaniline	ND	0.50	**	II .	II .	11	**	**	
3-Nitroaniline	ND	0.50	••	ч		н	"	"	
4-Nitroaniline	ND	0.50	tr	ij	ц	19	H	**	
Nitrobenzene	ND	0.10	**		"	н	**	**	
2-Nitrophenol	ND	0.10	••			**	••	**	
N-Nitrosodimethylamine	ND	0.10	**	ц	н	н	•	**	
4-Nitrophenol	ND	0.50	**	н	*	н	••	**	
N-Nitrosodiphenylamine	ND	0.10	••	u	17		••	**	
N-Nitrosodi-n-propylamine	ND	0.10	••	н	*	н	•	**	
Pentachlorophenol	ND	0.50	••	tt		н	•	**	
Phenanthrene	ND	0.10	**	**	**	n	••		
Phenol	ND	0.10	19	tř	**	н	"	**	
Pyrene	ND	0.10	**	**	*	н	**	**	
1,2,4-Trichlorobenzene	ND	0.10	17	"	•	n	"	14	
2,4,5-Trichlorophenol	ND	0.50	n	"		n n	"	18	
2,4,6-Trichlorophenol	ND	0.10	"			н	**	14	
Surrogate: 2-Fluorophenol		66.2 %	25-	121	"	"	и	н	
Surrogate: Phenol-d6		66.6 %	24-		,,	"	"	"	
Surrogate: Nitrobenzene-d5		75.4 %	23-		"	"	11	"	
Surrogate: 2-Fluorobiphenyl		88.6 %	30-		đ	"	**	tt	
Surrogate: 2,4,6-Tribromophen		78.0 %	19-		"	"	"	u	
Surrogate: p-Terphenyl-d14		92.5%	18		"	"	"	"	

Sequoia Analytical - Walnut Creek

Dublin CA, 94568


Project: Chevron

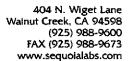
Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 11-Apr-00 12:04

Conventional Chemistry Parameters by APHA/EPA Methods

Sequoia Analytical - Walnut Creek

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
SP1-(A-D) (W004173-01) Soil Sampled: 06-Apr-00 13:50 Received: 07-Apr-00 17:15											
TRPH	250	50	mg/kg	1	0D10013	10-Apr-00	10-Apr-00	SM 5520E/F			

Page 8 of 19



Project: Chevron

6747 Sierra Court Suite J Dublin CA, 94568 Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 11-Apr-00 12:04

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D10003 - EPA 5030B [P/T]				"			<u> </u>		-	
Blank (0D10003-BLK1)				Prepared	& Analyze	ed: 10-Ap	т-00			
Purgeable Hydrocarbons	ND	1.0	mg/kg							-
Benzene	ND	0.0050	II .							
Foluene	ND	0.0050	n							
Ethylbenzene	ND	0.0050	н							
Xylenes (total)	ND	0.0050	н							
Methyl tert-butyl ether	ND	0.050	'n							
Surrogate: a, a, a-Trifluorotoluene	0.580		"	0.600		96.7	40-140			
LCS (0D10003-BS1)				Prepared	& Analyze	ed: 10-Ap	г-00			
Benzene	0.760	0.0050	mg/kg	0.800		95.0	50-150			
Toluene	0.808	0.0050	"	0.800		101	50-150			
Ethylbenzene	0.834	0.0050	11	0.800		104	50-150			
Xylenes (total)	2.45	0.0050	н	2.40		102	50-150			
Surrogate: a, a, a-Trifluorotoluene	0.638		"	0.600		106	40-140			
Matrix Spike (0D10003-MS1)	So	urce: W0041	73-01	Prepared	& Analyze	ed: 10 -A p	r-00			
Benzene	0.786	0.0050	mg/kg	0.800	ND	98.3	50-150			
Toluene	0.832	0.0050	н	0.800	ND	104	50-150			
Ethylbenzene	0.866	0.0050	н	0.800	ND	108	50-150			
Xylenes (total)	2.52	0.0050	н	2.40	ND	105	50-150			
Surrogate: a,a,a-Trifluorotoluene	0.622		щ	0.600		104	40-140			
Matrix Spike Dup (0D10003-MSD1)	So	urce: W0041	73-01	Prepared	& Analyze	ed: 10- A p	r-00			
Benzene	0.854	0.0050	mg/kg	0.800	ND	107	50-150	8.29	20	
Toluene	0.896	0.0050	п	0.800	ND	112	50-150	7.41	20	
Ethylbenzene	0.920	0.0050	н	0.800	ND	115	50-150	6.05	20	
Xylenes (total)	2.69	0.0050	"	2.40	ND	112	50-150	6.53	20	
Surrogate: a, a, a-Trifluorotoluene	0.668		н	0.600		111	40-140			

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 11-Apr-00 12:04

Diesel Hydrocarbons (C9-C24) by DHS LUFT - Quality Control

Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D10020 - EPA 3550A										
Blank (0D10020-BLK1)				Prepared:	10-Apr-0	0 Analyze	d: 11-Apr	-00		
Diesel Range Hydrocarbons	ND	1.0	mg/kg						, .	
Surrogate: n-Pentacosane	1.31	,	"	1.11		118	50-150			
LCS (0D10020-BS1)				Prepared:	10-Apr-0	0 Analyze	:d: 11- A pr-	-00		
Diesel Range Hydrocarbons	16.5	1.0	mg/kg	15.0		110	60-140			
Surrogate: n-Pentacosane	1.43		"	1.11		129	50-150			
LCS Dup (0D10020-BSD1)				Prepared:	10-Apr-0	0 Analyze	:d: 11- A pr-	-00		
Diesel Range Hydrocarbons	18.4	1.0	mg/kg	15.0		123	60-140	10.9	40	
Surrogate: n-Pentacosane	1.51			1.11		136	50-150	• • •		

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 11-Apr-00 12:04

Metals Scan by ICP - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D10018 - EPA 3050B										
Blank (0D10018-BLK1)				Prepared	& Analyz	ed: 10-Ap	r-00			
Cadmium	ND	0.50	mg/kg							
Chromium	ND	0.50	**							
Lead	ND	1.0								
Nickel	ND	1.0	**							
Zinc	ND	1.0	"							
LCS (0D10018-BS1)				Prepared	& Analyz	ed: 10-Ap	r-00			
Cadmium	49.5	2.5	mg/kg	50.0		99,0	80-120		•	
Chromium	49.2	2.5	**	50.0		98.4	80-120			
Lead	48.9	2.5	•	50.0		97.8	80-120			
Nickel	48.9	2.5	**	50,0		97,8	80-120			
Zine	55.7	2.5	"	50.0		111	80-120			
Matrix Spike (0D10018-MS1)	Se	urce: W0041	40-01	Prepared	& Analyz	ed: 10- A p	r-00			
Cadmium	50.1	2.5	mg/kg	50.0	0.71	98.8	80-120			
Chromium	113	2.5	**	50.0	70	86.0	80-120			
Lead	38.9	2.5	••	50.0	0	77.8	80-120			Q-01
Nickel	135	2.5		50.0	91	88.0	80-120			
Zinc	126	2.5	n	50.0	63	126	80-120			Q-01
Matrix Spike Dup (0D10018-MSD1)	Se	ource: W0041	40-01	Prepared	& Analyz	ed: 10-Ap	r-00			
Cadmium	48,8	2.5	mg/kg	50.0	0.71	96.2	80-120	2.63	20	
Chromium	109	2.5	**	50.0	70	78.0	80-120	3.60	20	Q-01
Lead	40.0	2.5		50.0	0	80.0	80-120	2.79	20	
Nickel	135	2.5	••	50.0	91	88.0	80-120	0	20	
Zinc	115	2.5	••	50.0	63	104	80-120	9.13	20	

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski **Reported:** 11-Apr-00 12:04

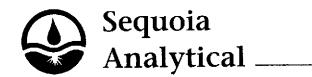
Dublin CA, 94568

Volatile Organic Compounds by EPA Method 8010B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes

Batch 0D10005 - EPA 5030B [MeC							·
Blank (0D10005-BLK1)				Prepared & An	alyzed: 10-Ap:	r-00	
Chloromethane	ND	0.050	mg/kg				
Vinyl chloride	ND	0.050	11				
Bromomethane	ND	0.050	ц				
Chloroethane	ND	0.050	H				
Trichlorofluoromethane	ND	0.025	D				
1,1-Dichloroethene	ND	0.025	••				
Methylene chloride	ND	0.25	**				
trans-1,2-Dichloroethene	ND	0.025	19				
1,1-Dichloroethane	ND	0.025	**				
cis-1,2-Dichloroethene	ND	0.025	14				
Chloroform	ND	0.025	II .				
1,1,1-Trichloroethane	ND	0.025	II				
Carbon tetrachloride	ND	0.025	u				
1,2-Dichloroethane	ND	0.025	**				
Trichloroethene	ND	0.025	18				
1,2-Dichloropropane	ND	0.025	••				
Bromodichloromethane	ND	0.025	"				
cis-1,3-Dichloropropene	ND	0.025	n				
trans-1,3-Dichloropropene	ND	0.025	"				
1,1,2-Trichloroethane	ND	0.025	+1				
Tetrachloroethene	ND	0.025	**				
Dibromochloromethane	ND	0.025	**				
1,2-Dibromoethane	ND	0.025	"				
Chlorobenzene	ND	0.025	•				
Bromoform	ND	0.025	н				
1,1,2,2-Tetrachloroethane	ND	0,025	п				
1,3-Dichlorobenzene	ND	0.025	u				
1,4-Dichlorobenzene	ND	0.025	11				
1,2-Dichlorobenzene	ND	0.025	11				
Surrogate: 1-Chloro-2-fluoroberzene	0.445		"	0.500	89.0	50-150	_
Surrogate: 4-Bromofluorobenzene	0.455		"	0.500	91.0	50-150	

Dublin CA, 94568


Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported:

11-Apr-00 12:04

Volatile Organic Compounds by EPA Method 8010B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D10005 - EPA 5030B [MeOH]					•••					
LCS (0D10005-BS1)			•	Prepared	& Analyz	ed: 10-Ap	r-00			
1,1-Dichloroethene	1.05	0.025	mg/kg	1.00	•	105	65-135			
Trichloroethene	1.15	0.025	11	1.00		115	70-130			
Chlorobenzene	1.20	0.025	н	1.00		120	70-130			
Surrogate: 1-Chloro-2-fluorobenzene	0.475		"	0.500		95.0	50-150			
Surrogate: 4-Bromofluorobenzene	0.400		rr .	0.500		80.0	50-150			
Matrix Spike (0D10005-MS1)	Sc	ource: W0041	73-01	Prepared	& Analyz	ed: 10-Ap	r-00			
1,1-Dichloroethene	1.05	0.025	mg/kg	1.00	ND	105	60-140		-	
Trichloroethene	1.10	0.025	4	1.00	ND	110	60-140			
Chlorobenzene	1.05	0.025	н	1.00	ND	105	60-140			
Surrogate: 1-Chloro-2-fluorobenzene	0.360	,	"	0.500		72.0	50-150			
Surrogate: 4-Bromofluorobenzene	0.340		"	0.500		68.0	50-150			
Matrix Spike Dup (0D10005-MSD1)	Se	ource: W0041	73-01	Prepared	& Analyz	ed: 10-Ap	r-00			
1,1-Dichloroethene	1.00	0.025	mg/kg	1.00	ND	100	60-140	4.88	25	
Trichloroethene	1.10	0.025	п	1.00	ND	110	60-140	O	25	
Chlorobenzene	1.05	0.025	п	1.00	ND	105	60-140	0	25	
Surrogate: 1-Chloro-2-fluorobenzene	0.390		"	0.500		78.0	50-150			
Surrogate: 4-Bromofluorobenzene	0.330		"	0.500		66.0	50-1 5 0			

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 11-Apr-00 12:04

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

		Reporting	•	Spike	Source		%REC		RPD	_
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 0D10014 - EPA 3550A	·		,	D	1 Amm ()()
Blank (0D10014-BLK1)	NID	0.10	A	Prepared & Analyzed: 10	J-Apr-UU
Acenaphthene	ND ND	0.10	mg/kg		
Acenaphthylene Anthracene	ND ND	0.10 0.10	и		
anthracene Aniline	ND ND	0.10	" H		
			 H		
enzoic acid	ND	0.50	и		
enzo (a) anthracene	ND	0.10	" II		
enzo (b) fluoranthene	ND	0.10			
enzo (k) fluoranthene	ND	0.10			
lenzo (ghi) perylene	ND	0.10			
enzo[a]pyrene	ND	0.10	н		
enzyl alcohol	ND	0.10	**		
is(2-chloroethoxy)methane	ND	0.10	er .		
lis(2-chloroethyl)ether	ND	0.10	"		
tis(2-chloroisopropyl)ether	ND	0.10	**		
is(2-ethylhexyl)phthalate	ND	0.50	11		
Bromophenyl phenyl ether	ND	0.10	17		
tył benzył phthalate	ND	0.10	π		
Chloroaniline	ND	0.50	**		
Chloronaphthalene	ND	0.10	**		
Chloro-3-methylphenol	ND	0.10	*		
-Chlorophenol	ND	0.10	**		
Chlorophenyl phenyl ether	ND	0.10	"		
hrysene	ND	0.10	*		
ibenz (a,h) anthracene	ND	0.10	II .		
ibenzofuran	ND	0.10	"		
i-n-butyl phthalate	ND	0.50			
2-Dichlorobenzene	ND	0.10	**		
,3-Dichlorobenzene	ND	0.10	**		
,4-Dichlorobenzene	ND	0.10	"		
,3'-Dichlorobenzidine	ND	0.50	"	•	
2,4-Dichlorophenol	ND	0.10	*		
Diethyl phthalate	ND	0.10	н		
t,4-Dimethylphenol	ND	0,10			
imethyl phthalate	ND	0.10	**		

Sequoia Analytical - Walnut Creek

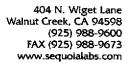
Project: Chevron

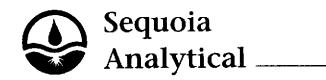
6747 Sierra Court Suite J Dublin CA, 94568 Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 11-Apr-00 12:04

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D10014 - EPA 3550A										
Blank (0D10014-BLK1)				Prenared	& Analyz	ed: 10-An	r-00		,	
4,6-Dinitro-2-methylphenol	ND	0.50	mg/kg	Тторисо	w i Hairy E	ош. 10 1 гр				
2,4-Dinitrophenol	ND	0.50	"							
2,4-Dinitrotoluene	ND	0.10	"							
2,6-Dinitrotoluene	ND	0.10	**							
Di-n-octyl phthalate	ND	0.10	н							
Fluoranthene	ND	0.10	n							
Fluorene	ND	0.10	и							
Hexachlorobenzene	ND	0.10	н							
Hexachlorobutadiene	ND	0.10	н							
Hexachlorocyclopentadiene	ND	0.10	н							
Hexachloroethane	ND	0.10	п							
Indeno (1,2,3-cd) pyrene	ND	0.10	п							
Isophorone	ND	0.10	п							
2-Methylnaphthalene	ND	0.10	u							
2-Methylphenol	ND	0.10	q							
4-Methylphenol	ND	0.10	11							
Naphthalene	ND	0.10	u							
2-Nitroaniline	ND	0.50	•							
3-Nitroaniline	ND	0.50	*							
4-Nitroaniline	ND	0.50								
Nitrobenzene	ND	0.10	**			-				
2-Nitrophenol	ND	0.10	**							
N-Nitrosodimethylamine	ND	0.10	"							
4-Nitrophenol	ND	0.50	ਲ							
N-Nitrosodiphenylamine	ND	0.10	•							
N-Nitrosodi-n-propylamine	ND	0.10	**							
Pentachlorophenol	ND	0.50	"							
Phenanthrene	ND	0.10	**							
Phenol	ND	0.10	#							
Pyrene	ND	0.10	11							
1,2,4-Trichlorobenzene	ND	0.10	н							
2,4,5-Trichlorophenol	ND	0.50	H							
2,4,6-Trichlorophenol	ND	0.10	H .							
Surrogate: 2-Fluorophenol	3.57		#	5.00		71.4	25-121			

Sequoia Analytical - Walnut Creek


Project: Chevron


Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 11-Apr-00 12:04

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D10014 - EPA 3550A										
Blank (0D10014-BLK1)				Prepared	& Analyze	ed: 10-Ap	r-00			
Surrogate: Phenol-d6	3.43		mg/kg	5.00		68.6	24-113			
Surrogate: Nitrobenzene-d5	2.35		"	3.33		70.6	23-120			
Surrogate: 2-Fluorobiphenyl	2.59		"	3.33		77.8	30-115			
Surrogate: 2,4,6-Tribromophenol	3.57		"	5.00		71.4	19-122			
Surrogate: p-Terphenyl-dl 4	2,77		n	3.33		83.2	18-137			
LCS (0D10014-BS1)				Prepared	& Analyz	ed: 10-Ap	r-00			
Acenaphthene	2.68	0.10	mg/kg	3.33		80.5	31-137			
4-Chloro-3-methylphenol	3.80	0.10	a	5.00		76.0	26-103			
2-Chlorophenol	3.70	0.10	п	5.00		74.0	25-102			
1,4-Dichlorobenzene	2.42	0.10	u	3.33		72.7	28-104			
2,4-Dinitrotoluene	2.59	0.10	"	3.33		77.8	28-89			
4-Nitrophenol	3.67	0.50	**	5.00		73.4	11-114			
N-Nitrosodi-n-propylamine	2.61	0.10	"	3.33		78.4	41-126			
Pentachlorophenol	4.00	0.50	•	5.00		80.0	17-109			
Phenol	3.31	0.10	**	5.00		66,2	26-90			
Pyrene	2.74	0.10	**	3.33		82.3	35-142			
1,2,4-Trichlorobenzene	2.64	0.10	11	3.33		79.3	38-107			
Surrogate: 2-Fluorophenol	3.26		"	5.00	··· <u>-</u>	65.2	25-121			
Surrogate: Phenol-d6	3.10		**	5.00		62.0	24-113			
Surrogate: Nitrobenzene-d5	2.27		"	3.33		68.2	23-120			
Surrogate: 2-Fluorobiphenyl	2.50		"	3.33		75.1	30-115			
Surrogate: 2,4,6-Tribromophenol	3.47		"	5.00		69.4	19-122			
Surrogate: p-Terphenyl-d/4	2.51		,,	3.33		75,4	18-137			
LCS Dup (0D10014-BSD1)				Prepared	& Analyz	ed: 10 -A p	r-00			
Acenaphthene	2.84	0.10	mg/kg	3.33		85.3	31-137	5.80	40	
4-Chloro-3-methylphenol	4.13	0.10	n	5.00		82.6	26-103	8.32	40	
2-Chlorophenol	3.97	0.10	"	5.00		79.4	25-102	7.04	40	
I,4-Dichlorobenzene	2.56	0.10	II .	3.33		76.9	28-104	5.62	40	
2,4-Dinitrotoluene	2.86	0.10	Ħ	3.33		85.9	28-89	9.91	40	
4-Nitrophenol	4.13	0.50	*	5.00		82.6	11-114	11.8	40	
N-Nitrosodi-n-propylamine	2.64	0.10	*	3.33		79.3	41-126	1.14	40	
Pentachlorophenol	4.30	0.50		5.00		86.0	17-109	7.23	40	
Phenol	3.60	0.10	**	5.00		72,0	26-90	8.39	40	
Pyrene	2.83	0.10	н	3.33		85.0	35-142	3.23	40	

Sequoia Analytical - Walnut Creek

Project: Chevron

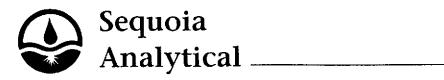

6747 Sierra Court Suite J Dublin CA, 94568 Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 11-Apr-00 12:04

Semivolatile Organic Compounds by EPA Method 8270B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes]
Alialyte	Result	FIIIII	Omes	Level	Resun	70REC	Limus	KPD	Limit	Notes	1

Batch	0D10014 -	LPA	3550A

LCS Dup (0D10014-BSD1)	Prepared & Analyzed: 10-Apr-00									
1,2,4-Trichlorobenzene	2.84	0.10 mg/kg	3.33	85.3	38-107	7.30	40			
Surrogate: 2-Fluorophenol	3.77	"	5.00	75.4	25-121					
Surrogate: Phenol-d6	3.50	"	5.00	70.0	24-113					
Surrogate: Nitrobenzene-dS	2.53	*	3.33	76.0	23-120					
Surrogate: 2-Fluorobiphenyl	2.75	"	3.33	82.6	30-115					
Surrogate: 2,4,6-Tribromophenol	3.97	"	5.00	79.4	19-122					
Surrogate: p-Terphenyl-dl 4	2.61	"	3. 3 3	78.4	18-137					



Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 11-Apr-00 12:04

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D10013 - EPA 3550A				• " •						
Blank (0D10013-BLK1)			•	Prepared	& Analyz	ed: 10-Ap	r-00			
TRPH	ND	50	mg/kg							1,000
LCS (0D10013-BS1)				Prepared	& Analyz	ed: 10- A p	r-00			
ТКРН	4570	50	mg/kg	5000		91.4	70-130			-
LCS Dup (0D10013-BSD1)				Prepared	& Analyz	ed: 10-Ap	r-00			
TRPH	4980	50	mg/kg	5000		99.6	70-130	8.59	30	

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 11-Apr-00 12:04

Notes and Definitions

D-06	Discrete peaks.
D-07	Surrogate out of control limits because of peak coelution with the sample.
D-12	Chromatogram Pattern: Unidentified Hydrocarbons > C16
Q-01	The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

Chain-of-Custody-Record Fax copy of Lab Report and COC to Chevron Contact: M No Cherron Contact (Name) Yess Natividad Cherron Focility Number 9-1924 Footlity Address 4904 South front Road, Livermore (Phone) (925)842-9178 Laboratory Name Sequence W004173

Laboratory Release Number 914448 Chevron U.S.A. Inc. Consultant Project Number 346448.02 consultant Home Gettler-Ryan Inc.
Address 6747 Sierra Cf, Ste G. Dublin, CA 94568 P.O. BOX 5004 San Ramon, CA 94583 Samples Collected by (Name) Barbara Sieminski FAX (415)842-9591 Project Contact (Name) <u>Rarbara</u> Sieminski Collection Date 04/06/00
Signature 6 Course (Phone) (925) 551-7555 (Fax Number) (925) 551-7888 Time

Sample Preservation

load (Yee or No)

BIEX + TPH GAS/Iff BES (8020 + 8015)

Oil and Grecee (8015)

Oil and Grecee (5520)

Purgeable Malocarbons (8010)

Purgeable Aromatics (8010)

Purgeable Organics of (8240)

Extractable Organics of (8270) Number of Containers
Matrix
S = Soil A = Air
W = Water C = Charcool
Type G = Grab
C = Composite
D = Discrete Analyses To Be Performed Remarke 1352 OIA-D SP1-A} 81-8/ E 1352 X 1354 Х 1356 Relinquiahed By (Signosture) Borbora L'euril Organization Received By (Signature) Date/Time Turn Around Time (Circle Choice) Dote/Time Organization G-R Organization 04/07/00 will 1 Date/Time 7:15 Received By (Signature) 4-7-00 24 Hre, 16.20 Relinquished By (Signature) 40 Hrs. Organization Date/Time 5 Days 10 Days Relinquished By (Signature) Realeved For Laboratory By (Signature) Organization As Contracted Lonalde sensen

APP 10 2010

GETTLER-RYAM INC.

17 April, 2000

Barbara Sieminski Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin, CA 94568

RE: Chevron Sequoia Report: W004173

Enclosed are the results of analyses for samples received by the laboratory on 07-Apr-00 17:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alan B. Kemp Laboratory Director

CA ELAP Certificate #1271

404 N. Wiget Lane Wainut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 17-Apr-00 10:28

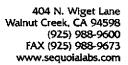
ANALYTICAL REPORT FOR SAMPLES

Sample ID	:	Laboratory ID	Matrix	Date Sampled	Date Received
SP1-(A-D)		W004173-01	Soil	06-Apr-00 13:50	07-Apr-00 17:15

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Alan B. Kemp, Laboratory Director



6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 17-Apr-00 10:28

Total Metals by EPA 6000/7000 Series Methods Sequoia Analytical - Walnut Creek

Analyte	Rep Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP1-(A-D) (W004173-01) Soil	Sampled: 06-Apr-00 13:50	Receiv	ed: 07-A	pr-00 17:1:	5				
Mercury	0.031	0.010	mg/kg	1	0D14020	14-Apr-00	16-Apr-00	EPA 7471A	
Antimony	23	5.0		u	0D10018	10-Apr-00	10-Apr-00	EPA 6010A	
Arsenic	ND	5.0	17	n	н	ŧŧ	71	"	
Barium	230	0.50	**	*	*	н	п	11	
Beryllium	ND	0.50	u	"	Ħ	н	**	11	
Cadmium	ND	2.5	,,	u	Ħ	н	н	11	
Chromium	40	2.5	*	"		n	п	**	
Cobalt	9.1	0.50	**	"	· n	n	#	"	
Copper	24	2.5	**	**	Ħ	н	u	n	
Lead	ND	2.5	**	"	17	n		"	
Molybdenum	ND	0.50		"	n	н		41	
Nickel	46	2.5	**	"	н	н	"	**	
Selenium	64	5.0	17	"	**	Ħ	"	"	
Silver	2.3	0.50	₩.		rt .	н	"	"	
Thallium	ND	5.0	n	•	tf	ti	"	н	
Vanadium	110	0.50		"	tr	н	"	11	
Zinc	52	2.5	**	**	**	H	"	11	

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 17-Apr-00 10:28

Volatile Organic Compounds by EPA Method 8240B

Sequoia Analytical - Walnut Creek

Analyte	I Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP1-(A-D) (W004173-01) Soil S	ampled: 06-Apr-00 13:5	50 Receiv	ed: 07-Ap	эг-00 17:1	5				
Acetone	ND	0.50	mg/kg	100	0D14019	14-Apr-00	14-Apr-00	EPA 8240B	•
2-Butanone	ND	0.50	"	"	**	*	"	"	
Surrogate: Dibromofluoromethane		98.0 %	50-1	150	"	"	#	"	
Surrogate: 1,2-Dichloroethane-d4		88.0 %	50-1	150	#	#	"	"	
Surrogate: Toluene-d8		100 %	50-1	150	"	H	п	"	
Surrogate: 4-Bromofluorobenzene		96.0 %	50-1	150	"	"	"	*	

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 17-Apr-00 10:28

Total Metals by EPA 6000/7000 Series Methods - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D10018 - EPA 3050B					<u></u>	.,.				
Blank (0D10018-BLK1)				Prepared	& Analyz	ed: 10-Ap	r-00			
Cadmium	ND	2.5	mg/kg							
Chromium	ND	2.5	"							
Copper	ND	2.5	**							
Lead	ND	2.5	n							
Nickel	ND	2.5	•							
Vanadium	ND	0.50	**							
Zine	ND	2.5	"							
LCS (0D10018-BS1)				Prepared	& Analyz	ed: 10-Ap	r-00			
Cadmium	49.6	2.5	mg/kg	50.0		99.2	80-120			
Chromium	49.2	2.5	**	50.0		98.4	80-120			
Copper	47.1	2.5		50.0		94.2	80-120			
Lead	49.0	2.5	,,	50.0		98.0	80-120			
Nickel	48.9	2.5	"	50.0		97.8	80-120			
Zine	55.7	2.5	'n	50.0		111	80-120			
LCS Dup (0D10018-BSD1)				Prepared	& Analyz	ed: 10-Ap	r-00			
Cadmium	59.2	2.5	mg/kg	50.0		118	80-120	17.6	20	
Chromium	59.5	2.5	"	50.0		119	80-120	19.0	20	
Copper	56.2	2.5	**	50.0		112	80-120	17.6	20	
Lead	60.0	2.5	*	50.0		120	80-120	20.2	20	
Nickel	59.5	2.5	•	50.0		119	80-120	19.6	20	
Zinc	65.0	2.5	"	50.0		130	80-120	15.4	20	Q-0
Matrix Spike (0D10018-MS1)	S	ource: W0041	40-01	Prepared	& Analyz	ed: 10-Ap	r-00			
Cadmium	50.1	2.5	mg/kg	50.0	ND	100	80-120			
Chromium	115	2.5	•	50.0	70	90.0	80-120			
Copper	77.4	2.5)1	50.0	32	90.8	80-120			
Lead	39.0	2.5	"	50.0	ND	78.0	80-120			Q-0
Nickel	135	2.5		50.0	91	88.0	80-120			
Zine	125	2.5	11	50.0	65	120	80-120			
•										

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 17-Apr-00 10:28

Total Metals by EPA 6000/7000 Series Methods - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D10018 - EPA 3050B									****	
Matrix Spike Dup (0D10018-MSD1)	So	urce: W0041	40-01	Prepared	& Analyz	ed: 10 -A p	r-00			
Cadmium	48.8	2.5	mg/kg	50.0	ND	97.6	80-120	2.63	20	· · ·
Chromium	110	2.5	"	50.0	70	80.0	80-120	4.44	20	
Copper	76.7	2.5	**	50.0	32	89.4	80-120	0.909	20	
Lead	40.0	2.5	**	50.0	ND	80.0	80-120	2.53	20	
Nickel	135	2.5	н	50.0	91	88.0	80-120	0	20	
Zinc	115	2.5	"	50.0	65	100	80-120	8.33	20	
Batch 0D14020 - EPA 7471A										
Blank (0D14020-BLK1)	•			Prepared:	14-Apr-0	0 Analyze	d: 16-Apr	-00	·	··································
Mercury	ND	0.010	mg/kg		•					
LCS (0D14020-BS1)				Prepared:	14-Apr-0	0 Analyze	d: 16-Apr	-00		
Mercury	0,0960	0.010	mg/kg	0.100		96.0	75-125			
LCS Dup (0D14020-BSD1)					Prepared: 14-Apr-00 Analyzed: 16-Apr-00					
Mercury	0.0965	0.010	mg/kg	0.100		96.5	75-125	0.519	20	
Matrix Spike (0D14020-MS1)	Source: W004038-02			Prepared:	14-Apr-0	-00		Q-02		
Mercury	0.279	0.010	mg/kg	0.100	0.10	179	75-125			
Matrix Spike Dup (0D14020-MSD1)	Se	ource: W0040	38-02	Prepared:	14-Apr-0	0 Analyze	:d: 16-Apr	-00		Q-02
Mercury	0.279	0.010	mg/kg	0.100	0.10	179	75-125	Ü	20	

Project: Chevron

6747 Sierra Court Suite J Dublin CA, 94568 Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 17-Apr-00 10:28

Volatile Organic Compounds by EPA Method 8240B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D14019 - EPA 5030B [MeOH]						· · · · ·		·		
Blank (0D14019-BLK2)	Prepared & Analyzed: 14-Apr-00									
Chloromethane	ND	0.10	mg/kg							
Vinyl chloride	ND	0.10	ш							
Bromomethane	ND	0.10	II.							
Chloroethane	ND	0.10	11							
Trichlorofluoromethane	ND	0.10	11							
1,1-Dichloroethene	ND	0.10	υ							
Acetone	ND	0.50	11							
Carbon disulfide	ND	0.10	n							
Methylene chloride	ND	0.50	'n							
rans-1,2-Dichloroethene	ND	0.10	U							
Vinyl acetate	ND	0.10	"							
1,1-Dichloroethane	ND	0.10	11							
cis-1,2-Dichloroethene	ND	0.10	п							
2-Butanone	ND	0.50	"							
Chloroform	ND	0.10	11							
l,l,l-Trichloroethane	ND	0.10	**							
Carbon tetrachloride	ND	0.10	н							
Benzene	ND	0.10	11							
1,2-Dichloroethane	ND	0.10	11							
Trichloroethene	ND	0.10	#1							
1,2-Dichloropropane	ND	0.10	11							
Bromodichloromethane	ND	0.10	11							
eis-1,3-Dichloropropene	ND	0.10	#							
1-Methyl-2-pentanone	ND	0.50	111							
roluene	ND	0.10	11							
rans-1,3-Dichloropropene	ND	0.10	11							
1,1,2-Trichloroethane	ND	0.10	*1							
Tetrachloroethene	ND	0.10	11							
2-Hexanone	ND	0.50	#1							
Dibromochloromethane	ND	0.10	11							
Chlorobenzene	ND	0.10	11							
Ethylbenzene	ND	0.10	11							
Total Xylenes	ND	0.10	11							
Styrene .	ND	0.10	ii							

Sequoia Analytical - Walnut Creek

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 17-Apr-00 10:28

Volatile Organic Compounds by EPA Method 8240B - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D14019 - EPA 5030B [MeOH]										
Blank (0D14019-BLK2)				Prepared	& Analyz	ed: 14-Ap	r-00			
Bromoform	ND	0.10	mg/kg							
1,1,2,2-Tetrachloroethane	ND	0.10	"							
1,3-Dichlorobenzene	ND	0.10	**							
1,4-Dichlorobenzene	ND	0.10	11							
1,2-Dichlorobenzene	ND	0.10	н							
Surrogate: Dibromofluoromethane	2.65		"	2.50		106	50-150			
Surrogate: 1,2-Dichloroethane-d4	2.45		"	2.50		98.0	50-150			
Surrogate: Toluene-d8	2.50		"	2.50		100	50-150			
Surrogate: 4-Bromofluoroberzene	2.30		"	2.50		92.0	50-150			
LCS (0D14019-BS2)				Prepared	& Analyz	ed: 14 -A p	r-00			
1,1-Dichloroethene	2.48	0.10	mg/kg	2.50		99.2	65-135			
Benzene	2.56	0.10	19	2.50		102	70-130			
Trichloroethene	2.47	0.10	н	2.50		98.8	70-130			
Toluene	2.27	0.10	**	2.50		90.8	70-130			
Chlorobenzene	2.45	0.10		2.50		98.0	70-130			
Surrogate: Dibromofluoromethane	2.65		"	2.50		106	50-150			
Surrogate: 1,2-Dichloroethane-d4	2.35		11	2.50		94.0	50-150			
Surrogate: Toluene-d8	2.50		11	2.50		100	50-150			
Surrogate: 4-Bromofluoroberzene	2.30		n	2.50		92.0	50-150			
Matrix Spike (0D14019-MS1)	Source: W004235-07			Prepared: 13-Apr-00 Analyzed: 15-Apr-00				-00		
1,1-Dichloroethene	2.38	0.10	mg/kg	2.50	ND	95.2	60-140			
Benzene	2.44	0.10	**	2.50	ND	97.6	60-140			
Trichloroethene	2.44	0.10	"	2.50	ND	97.6	60-140			
Toluene	2.42	0.10	11	2.50	ND	96.8	60-140			
Chlorobenzene	2.41	0.10	**	2.50	ND	96.4	60-140			
Surrogate: Dibromofluoromethane	2.55		"	2.50		102	50-150		.=	
Surrogate: 1,2-Dichloroethane-d4	2.50		"	2.50		100	50-150			
Surrogate: Toluene-d8	2.45		"	2.50		98.0	50-150			
Surrogate: 4-Bromofluoroberzene	2.45		ri	2.50		28.0	50-150			

Project: Chevron

6747 Sierra Court Suite J Dublin CA, 94568 Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski **Reported:** 17-Apr-00 10:28

Volatile Organic Compounds by EPA Method 8240B - Quality Control Sequoia Analytical - Walnut Creek

Aпаlyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D14019 - EPA 5030B [MeOH]										
Matrix Spike Dup (0D14019-MSD1)	So	urce: W0042	35-07	Prepared:	13-Apr-0	0 Analyze	d: 15-Apr	-00		
1,1-Dichloroethene	2.16	0.10	mg/kg	2.50	ND	86.4	60-140	9.69	25	
Benzene	2.31	0.10	**	2.50	ND	92.4	60-140	5.47	25	
Trichloroethene	2.29	0.10	*	2.50	ND	91.6	60-140	6.34	25	
Toluene	2.26	0.10		2.50	ND	90.4	60-140	6.84	25	
Chlorobenzene	2.26	0.10	**	2.50	ND	90.4	60-140	6.42	25	
Surrogate: Dibromofluoromethane	2.55		,,	2.50		102	50-150			
Surrogate: 1,2-Dichloroethane-d4	2.40		"	2.50		96.0	50-150			
Surrogate: Toluene-d8	2.50		"	2.50		100	50-150			
Surrogate: 4-Bromofluorobenzene	2.40		"	2.50		96.0	50-150			

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski **Reported:** 17-Apr-00 10:28

Notes and Definitions

Q-01	The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the
	recovery for this analyte does not represent an out-of-control condition for the batch.

Q-02 The spike recovery for this QC sample is outside of established control limits due to sample matrix interference.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Chain-ot-Custody-Record Fax copy of Lab Report and COC to Chevron Contact: 127 No Chevron Contact (Name) Yess Natividad Cherron Facility Number 9-1924

Foolilly Address 4904 South front Road, Livermore (Phone) (925)842-9178 Laboratory Name Seymonia WOO4173 Consultant Project Number 346448.02 Chevron U.S.A. Inc. Laboratory Release Number 914488 consultant Nome Gettler-Ryan Inc Address 6747 Sierra Cf, Ste G. Dublin, (A94568 P.O. BOX 5004 Samples Collected by (Name) Barbara Sieminski San Ramon, CA 94583 FAX (415)842-9591 Collection Date 04/06/00
Signature B curl Project contact (Name) Barbara Sieminski (Phone) (925) 551-7555 (Fax Number) (925) 551-7888 Analyses To Be Parformed Purgeable Halocarbons (8010) Purgeable Aromatice (8020) G = Grab C = Composite Decrete Extractable Organics (8270) Purgeoble Organica (8240) Off and Grease (5520) Remarke OIA-D Yes SPI-A k × x1-8(X χ X Organization Received By (Signature) Turn Around Time (Circle Choles) Dole/Time Relinquiated By (signifure)
Boulone Sieumin Date/Time Organization 04/07/03 4412 24 Hrs. Date/Time 7:15 Received By (Signature) 48 Hre. Date/Time Organization Relinguished By (Signature) Organization 5 Days 10 Doye Repleved For Laboratory By (Signature) WC. Organization Dote/Time Relinquished By (Signature) As Contracted

20 April, 2000

Barbara Sieminski Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin, CA 94568

RE: Chevron Sequoia Report W004173

Enclosed are the results of analyses for samples received by the laboratory on 07-Apr-00 17:15. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alan B. Kemp Laboratory Director

CA ELAP Certificate #1271

404 N. Wiget Lane Wainut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 20-Apr-00 16:07

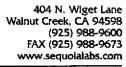
ANALYTICAL REPORT FOR SAMPLES

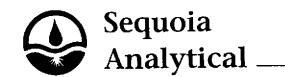
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP1-(A-D)	W004173-01	Soil	06-Apr-00 13:50	07-Apr-00 17:15

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Alan B. Kemp, Laboratory Director


404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com


Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 20-Apr-00 16:07

STLC CAM Metals by EPA 6000/7000 Series Methods

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP1-(A-D) (W004173-01) Soil	Sampled: 06-Apr-00 13:50	Receiv	ed: 07-A	pr-00 17:1:	5				
Selenium	ND	1.0	mg/l	10	0D20019	18-Apr-00	20-Apr-00	EPA 6010A	

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 20-Apr-00 16:07

STLC CAM Metals by EPA 6000/7000 Series Methods - Quality Control Sequoia Analytical - Walnut Creek

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0D20019 - Title 22-STLC										
Blank (0D20019-BLK1)			•	Prepared:	18-Apr-0	0 Analyze	d: 20-Apr	-00		
Selenium	ND	1.0	mg/l							
LCS (0D20019-BS1)				Prepared:	18-Apr-0	0 Analyze	d: 20-Apr	-00		A-01
Selenium	12.5	1.0	mg/l	10.0		125	80-120			
Matrix Spike (0D20019-MS1)	So	urce: W0041	73-01	Prepared:	18-Apr-0	0 Analyze	d: 20-Apr	-00		A-01
Selenium	14.6	1.0	mg/l	10.0	ND	146	80-120			
Matrix Spike Dup (0D20019-MSD1)	So	urce: W0041	73-01	Prepared:	: 18-Apr-0	0 Analyze	ed: 20-Apr	-00		A-01
Selenium	14.8	1.0	mg/l	10.0	ND	148	80-120	1.36	20	

404 N. Wiget Lane Wainut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 20-Apr-00 16:07

Notes and Definitions

A-01 Continuing calibration and spike recoveries indicates a potential high bias for this analyte. This bias is not applicable to

'Non-Detect" values.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Fax copy of l	_ab	Rep	ort (and	COC to	Che	vron	Со	<u>ntac</u>	t: <u>I</u> Y	N	0								<u>ody-Record</u>
Chevron U.S.A. Inc. P.O. BOX 5004 San Ramon, CA 94583 FAX (415)842-9591	Const	ron Facili Facili ultant Pr ultant Na	ity Number ty Address oject Num time (2)	79- 490 100-3 100-		iven	4456.	Chevron (y Name. y Releas Collected	(Phone) Sec Numb by (No	(97 (97) (9me)	HUU Barl	42-6	ルフン	,	173 nski				
Number	Containers	A = Ar C = Charcoal	Grab Composite Discrete		evetion	(Q)	P.C.					*	Organica Lo Be		med			 		
Sample Number	Number of C	Matrix S = Soll W = Water (111 000 8	Jm•	Sample Pres	load (Yes or	BIEX + TPH GAS/HT (8020 + 8015)	TPH Dissel (8015)	Off and Greater (5520)	Purpecible Jk (5010)	Purpecble / (8020)	Purgeable Organics (8240)	Extractable Organica (8270)	Metals C4.Cr.Pb.Zn.M (ICAP or AA)				;		Remarks
SPI-A)	l	Ş	6	1352	OIA-D	Yes	κ	ኦ	۴	χ			γ	×						· · · · · · · · · · · · · · · · · · ·
SP1-B/ =	ľ			1352			4	Å	上	7		-	×	Ϋ́						
spi-cls	1			135Y			1/4	k	X	ኦ			χ	X		<u> </u>			<u> </u>	
SP1-0 8	1	V	1	1356	<u> </u>	\\V	*	Υ	k	x		<u> </u>	χ.	*					ļ	
			<u> </u>				 					_				<u> </u>		<u></u>		
		· · ·	<u> </u>				 	ļ	 			- 	 						 	
					· · · · · · · · · · · · · · · · · · ·		 		<u> </u>											
							 	 				 								
			 				 	ļ <u> </u>	ļ											
			<u> </u>				-	-		 										
			 	 		 	ļ	 												
			<u> </u>		· ·	 	-			-		-							1	
			 -			 	 				<u></u>	-							-	
Relinquished By (Signature) Bischer Seur Relinquished By (Signature)	کاماک	2 6	L snizotion S-R snizotion		1010/Time 24/07/09 1010/Time 72	<u>، (د</u>	selved B	12_				Organizat G-7 Organizat	-00		/Time . <u>20</u> /Time		7	ium Ar	24	he (Circle Choloe)
1/24 W		3.4			4-7.00								<u></u>	_						Daye Daye
Relinquished By (Signature)		Orgo	onization		Date/Time	1				y (Signa		WC		Date	/Ilme 7/0 17:1	0				ntracted

11 April, 2000

Barbara Sieminski Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin, CA 94568

RE: Chevron Sequoia Report W004174

Enclosed are the results of analyses for samples received by the laboratory on 07-Apr-00 17:16. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alan B. Kemp

Laboratory Director

CA ELAP Certificate #1271

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported:

11-Apr-00 10:56

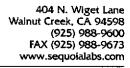
ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP2-(A-D)	W004174-01	Soil	07-Apr-00 11:10	07-Apr-00 17:16

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Alan B. Kemp, Laboratory Director



Project: Chevron

6747 Sierra Court Suite J Dublin CA, 94568 Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski Reported: 11-Apr-00 10:56

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP2-(A-D) (W004174-01) Soil	Sampled: 07-Apr-00 1	1:10 Receiv	ed: 07-A	pr-00 17:1	6				
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0D10003	10-Apr-00	10-Apr-00	EPA 8015/8020	
Benzene	ND	0.0050		н	W	79	Ħ	**	
Toluene	ND	0.0050	"	н	"	11	11	11	
Ethylbenzene	ND	0.0050	**	н	Ħ	11	n	₩	
Xylenes (total)	0.010	0.0050	11	n	н	H	**		
Methyl tert-butyl ether	ND	0.050	н	"	н	н	**	**	
- Surrogate: a,a,a-Trifluorotoluen	e	100 %	40-	140	n	"	#	"	

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin CA, 94568

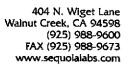
Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski **Reported:** 11-Apr-00 10:56

Total Metals by EPA 6000/7000 Series Methods

		orting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP2-(A-D) (W004174-01) Soil	Sampled: 07-Apr-00 11:10	Receiv	ed: 07-A	pr-00 17:10	5				
Lead	ND	5.0	mg/kg	1	0D10018	10-Apr-00	10-Apr-00	EPA 6010A	

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J


Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski **Reported:** 11-Apr-00 10:56

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D10003 - EPA 5030B [P/T]										
Blank (0D10003-BLK1)				Prepared	& Analyz	ed: 10-Ap	r-00	•		
Purgeable Hydrocarbons	ND	1.0	mg/kg							
Benzene	ND	0.0050	lt.							
Toluene	ND	0.0050	н							
Ethylbenzene	ND	0.0050	н							
Xylenes (total)	ND	0.0050	"							
Methyl tert-butyl ether	ND	0.050	*							
Surrogate: a,a,a-Trifluorotoluene	0.580		"	0.600		96.7	40-140			
LCS (0D10003-BS1)				Prepared	& Analyz	ed: 10-Ap	r-00			
Benzene	0.760	0.0050	mg/kg	0.800		95.0	50-150			
Toluene	808.0	0.0050	**	0.800		101	50-150			
Ethylbenzene	0.834	0.0050	**	0.800		104	50-150			
Xylenes (total)	2.45	0.0050	"	2.40		102	50-150			
Surrogate: a,a,a-Trifluorotoluene	0.638		n	0.600		106	40-140			·
Matrix Spike (0D10003-MS1)	Sc	urce: W0041	73-01	Prepared	& Analyz	ed: 10-Ap	r-00			
Benzene	0.786	0.0050	mg/kg	0.800	ND	98.3	50-150			
Toluene	0.832	0.0050	н	0.800	ND	104	50-150			
Ethylbenzene	0.866	0.0050	H	0.800	ND	108	50-150			
Xylenes (total)	2.52	0.0050	11	2.40	ND	105	50-150			
Surrogate: a, a, a-Trifluorotoluene	0.622		"	0.600		104	40-140			-
Matrix Spike Dup (0D10003-MSD1)	Sc	ource: W0041	73-01	Prepared	& Analyz	ed: 10-Ap	r-00			
Benzene	0.854	0.0050	mg/kg	0,800	ND	107	50-150	8.29	20	
Toluene	0.896	0.0050		0.800	ND	112	50-150	7.41	20	
Ethylbenzene	0.920	0.0050	**	0.800	ND	115	50-150	6.05	20	
Xylenes (total)	2.69	0.0050	"	2.40	ND	112	50-150	6.53	20	
Surrogate: a, a, a-Trifluorotoluene	0.668		4	0.600		111	40-140			

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Chevron

Project Number: Chevron # 9-1924 Project Manager: Barbara Sieminski **Reported:** 11-Apr-00 10:56

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D10018 - EPA 3050B										
Blank (0D10018-BLK1)		,		Prepared	& Analyz	ed: 10-Ap	r-00			
Lead	ND	5.0	mg/kg							
LCS (0D10018-BS1)				Prepared	& Analyz	ed: 10-Ap	r-00			
Lead	48.9	5.0	mg/kg	50.0		97.8	80-120			
Matrix Spike (0D10018-MS1)	Sou	ırce: W0041	40-01	Prepared	& Analyz	ed: 10-Ap	r-00			
Lead	38.9	5.0	mg/kg	50.0	ND	77.8	80-120			Q-0
Matrix Spike Dup (0D10018-MSD1)	Sou	ırce: W0041	40-01	Prepared	& Analyz	ed: 10-Ap	r-00			
Lead	40.0	5.0	mg/kg	50,0	ND	80.0	80-120	2.79	20	

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

Gettler Ryan, Inc. - Dublin

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron # 9-1924

Project Manager: Barbara Sieminski

Reported: 11-Apr-00 10:56

Notes and Definitions

Q-01 The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the

recovery for this analyte does not represent an out-of-control condition for the batch.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Fax co	py of	Lab	Rep	ort o	and	COC to	Che	vron	Со	ntac	t: [<u>Y</u>	ΊNο)			<u>Cl</u>	<u>rain-</u>	<u>-ot-</u>	<u>Cus</u>	lody-Kecord
Chevron U.S P.O. BOX San Ramon, G FAX (415)84	5004 CA 94583	Const	Fooli ultant Pi ultant No	6747	ettle Sie	1924 04 50ml 46448.1 1- Ryan 17a Cf, 30rbara 25)551-75	5+c6 5\e	Z.D.	ubliv Ski	, (A	9456	- 12 s		Name Release Callecte Data	(Phone) Numb by (No. O 4)	07/6	4 Na 125) 8 11444 Barbi	42-91	78 004	-174 inski
Sampie Number	Lab Somple Number	Number of Containers	Matrix S = Soil A = Air W = Water C = Charcool	Type G = Grab C = Composite ' 0 = Discrete	Time	Sample Preservation	iced (You or No.)	BIEX + TPH CAS //HHBE (8020 + 8015)	TPH Dissel (8015)	Oil and Graces (5520)	Puryacible Helocarbons (8010)	Purgeable Aromatics (8020)		_	CACC-PLZn.Ni CACC-PLZn.Ni (ICAP or AA)					Remotka
SP2-A) & 3P2-B(. § 5P2-C(3) SP2-C(3) SP2-D) 9	01A-D		5	G	11:14 11:14 11:16		Yes	x x X								χ χ χ				
																				. 4
Relinquished By Borbovi Relinquished By W. U	Le	uin	or or	ganization S-R ganization	- (Date/Time DY/07/00 Dote/Time 17 4/7/00	7/5 R•	oelved &	y (Slar	natur•)			Organiza Organiza	1	Dol	7 00	11:20	Turr		Time (Circle Chalce) 24 Hrs. 48 Hrs. 5 Daye 0 Days
Retinquished By	(Signoture)		7	genization		Date/Time	Re	_			By (Sign		WC		27	1/37° 17°	70 15		An	Contracted

25 April, 2000

Barbara Sieminski Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J Dublin, CA 94568

RE: Chevron Sequoia Report W004491

Enclosed are the results of analyses for samples received by the laboratory on 21-Apr-00 13:10. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Charlie Westwater Project Manager

CA ELAP Certificate #1271

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Chevron

Project Number: Chevron SS#9-1924 Project Manager: Barbara Sieminski **Reported:** 25-Apr-00 17:48

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP4 (A-D)	W004491-01	Soil	21-Apr-00 11:00	21-Apr-00 13:10
SP5 (A-D)	W004491-02	Soil	21-Apr-00 11:08	21-Apr-00 13:10

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Charlie Westwater, Project Manager

Project: Chevron

6747 Sierra Court Suite J Dublin CA, 94568

Project Number: Chevron SS#9-1924 Project Manager: Barbara Sieminski **Reported:** 25-Apr-00 17:48

Total Purgeable Hydrocarbons (C6-C12) and BTEX by DHS LUFT Sequoia Analytical - Walnut Creek

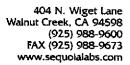
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP4 (A-D) (W004491-01) Soil	Sampled: 21-Apr-00 1	1:00 Receiv	ed: 21-A	pr-00 13:1	0			······································	
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0D24005	24-Apr-00	24-Apr-00	DHS LUFT	
Benzene	ND	0.0050	"	11	**	Ü	-	Ħ	
Toluene	ND	0.0050		44	4	H	я	н	
Ethylbenzene	ND	0.0050			₩	*	**	TT	
Xylenes (total)	0.017	0.0050	*	**	17	n	•	11	
Surrogate: a,a,a-Trifluorotoluen	e	92.7 %	40-	140	"	ų	*	и	
SP5 (A-D) (W004491-02) Soil	Sampled: 21-Apr-00 1	1:08 Receiv	ed: 21-A	pr-00 13:11	0				
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0D24005	24-Apr-00	24-Арг-00	DHS LUFT	-
Benzene	ND	0.0050	"	**	и		, n	14	
Toluene	ND	0.0050	n	**	11		H	**	
Ethylbenzene	ND	0.0050	n	"	14	*	н	**	
Xylenes (total)	ND	0.0050	IF	**	11	я	Ħ	**	
Surrogate: a,a,a-Trifluorotoluen	e	86.3 %	40-	140	. "	"	"	<i>n</i>	

6747 Sierra Court Suite J Dublin CA, 94568 Project: Chevron

Project Number: Chevron SS#9-1924 Project Manager: Barbara Sieminski Reported: 25-Apr-00 17:48

Total Metals by EPA 6000/7000 Series Methods

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SP4 (A-D) (W004491-01) Soil	Sampled: 21-Apr-00 11:00	Receiv	ed: 21-A	pr-00 13:1	0				
Lead	25	1.0	mg/kg	1	0D22001	21-Apr-00	22-Apr-00	EPA 6010A	
SP5 (A-D) (W004491-02) Soil	Sampled: 21-Apr-00 11:08	Receiv	ed: 21-A	pr -00 13:1 0	0				
Lead	8.8	1.0	mg/kg	l	0D22001	21-Арг-00	22-Apr-00	EPA 6010A	


Project: Chevron

6747 Sierra Court Suite J Dublin CA, 94568

Project Number: Chevron SS#9-1924 Project Manager: Barbara Sieminski Reported: 25-Apr-00 17:48

Total Purgeable Hydrocarbons (C6-C12) and BTEX by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D24005 - EPA 5030B [MeOH]		,								
Blank (0D24005-BLK1)				Prepared	& Analyzo	ed: 24-Ap	r-00			
Purgeable Hydrocarbons	ND	1.0	mg/kg							
Benzene	ND	0.0050	н							
Toluene	ND	0.0050	H							
Ethylbenzene	ND	0.0050	н							
Xylenes (total)	ND	0.0050	11							
Surrogate: a,a,a-Trifluorotoluene	0.510		"	0.600		85.0	40-140			•
LCS (0D24005-BS1)				Prepared	& Analyze	ed: 24-Ap	r-00			
Benzene	0.708	0.0050	mg/kg	0.800		88.5	50-150			
Toluene	0.764	0.0050	н	0.800		95.5	50-150			
Ethylbenzene	0.832	0.0050	н	0.800		104	50-150			
Xylenes (total)	2.45	0.0050	H	2.40		102	50-150			
Surrogate: a,a,a-Trifluorotoluene	0.704		. 0	0.600		117	40-140			
Matrix Spike (0D24005-MS1)	Sc	ource: W0044	91-02	Prepared	& Analyze					
Benzene	0.722	0.0050	mg/kg	0.800	ND	90.2	50-150			
Toluene	0.778	0.0050	и	0.800	ND	97.2	50-150			
Ethylbenzene	0.818	0.0050	11	0.800	ND	102	50-150			
Xylenes (total)	2.41	0.0050	11	2.40	ND	100	50-150			
Surrogate: a.a.a-Trifluorotoluene	0.632		"	0.600		105	40-140			
Matrix Spike Dup (0D24005-MSD1)	Se	ource: W0044	91-02	Prepared	& Analyze	ed: 24 -A p	r-00			
Benzene	0.716	0.0050	mg/kg	0.800	ND	89.5	50-150	0.834	20	
Toluene	0.764	0.0050	H	0.800	ND	95.5	50-150	1.82	20	
Ethylbenzene	0.818	0.0050	u	0.800	ND	102	50-150	0	20	
Xylenes (total)	2.41	0.0050	Ħ	2.40	ND	100	50-150	0	20	
Surrogate: a.a.a-Trifluorotoluene	0.624		*	0.600		104	40-140			

Gettler Ryan, Inc. - Dublin 6747 Sierra Court Suite J

Dublin CA, 94568

Project: Chevron

Project Number: Chevron SS#9-1924 Project Manager: Barbara Sieminski Reported: 25-Apr-00 17:48

Total Metals by EPA 6000/7000 Series Methods - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0D22001 - EPA 3050B										
Blank (0D22001-BLK1)				Prepared:	21-Apr-0	0 Analyze	:d: 22-Apr	-00		
Lead	1.85	1.0	mg/kg							
LCS (0D22001-BS1)				Prepared:	21-Apr-0	0 Analyze	d: 22-Apr	-00		
Lead	55.2	1.0	mg/kg	50.0		110	80-120			
LCS Dup (0D22001-BSD1)				Prepared:	21-Apr-0	0 Analyze	d: 22-Apr	-00		
Lead	53.6	1.0	mg/kg	50.0		107	80-120	2.94	20	
Matrix Spike (0D22001-MS1)	Sc	Source: W004484-01 Prepared: 21Apr-00 Analyzed: 22-Apr-00								
Lead	1080	1.0	mg/kg	50.0	400	1360	80-120			Q-02
Matrix Spike Dup (0D22001-MSD1)	So	ource: W0044	84-01	Prepared:	21-Apr-0	0 Analyze	ed: 22-Apr	-00		
Lead	503	1.0	mg/kg	50.0	400	206	80-120	72.9	20	Q-02

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Gettler Ryan, Inc. - Dublin

Project: Chevron

6747 Sierra Court Suite J Dublin CA, 94568 Project Number: Chevron SS#9-1924 Project Manager: Barbara Sieminski **Reported:** 25-Apr-00 17:48

Notes and Definitions

Q-02 The spike recovery for this QC sample is outside of established control limits due to sample matrix interference.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Chain-of-Custody-Record Fax copy of Lab Report and COC to Chevron Contact: 12 No Chevron Contact (Nome) 1855 Natividas Cherron Facility Number 9-1924 Facility Address 4904 Southfront Rd, Livermore Laboratory Name Sequels WO04491

Laboratory Release Number Barbara Sieminski

Samples Collected by (Name) Barbara Sieminski Consultant Project Number 346448.03 Chevron U.S.A. Inc. Consultant Hamo Gettler-Ryan Inc.

Address 6747 Sierra Cf, Ste G. Dublin, (A 94568

Project Contact (Name) Barbara Sieminski P.O. BOX 5004 San Ramon, CA 945B3 Collection Date 04/21/00
Signature 22011, 01 FAX (415)842-9591 (Phone) (925) 551-7555 (Fax Number) (925) 551-7888 Number of Containers

Matrix
S = Soil A = Air
W = Water C = Charcool
Type G = Grab
C = Composite
D = Discrite Analysee To Be Performed Purgeable Holocarbons (8010)
Purgeable Aramatice (8240)
Extractable Organica (8270)
Metals CACT-PLZAMI (ICAP or AN)
To tal. (804 BIEX + TPH GAS (8020 + 8015) TPH Diesel (8015) Off and Greate (5520) Remarks ت د. Yes OIAD SP4-A7 11:07 X 594-B 11.04 584-6 SP4-D ll ol (LOX טווו 11:12 SP5-C 11:16 SP5-0 Turn Around Time (Circle Cholee) Date/Time Date/Time 1310 Organization Received By (Signature) Relinquished By (Signotyre) Organization C.24 Hm.) Gorboin Arleusa 04/21/00 48 Hrs. Dale/Ilme Organization Received By (Signature) Date/Time Reilingulahed By (Signature) Organization 5 Doys 10 Days Date/Time 4/2/ /3:10 Realeved For Laboratory By (Signature) As Contracted Date/Time Relinquiched By (Signature) Organization