

SITE CHARACTERIZATION
REPORT
BUILDING 109-UST
PARKS RESERVE FORCES
TRAINING AREA
DUBLIN, CA

Prepared for

U.S. Army Corps of Engineers Sacramento District 1325 J Street Sacramento, California 95814-2922

June 29, 1995

Woodward-Clyde

500 12th Street Suite 100 Oakland, California 94607-4014

June 29, 1995

CESPK-ED-EC Richard Haavisto Corps of Engineers Sacramento District 1325 J Street Sacramento, CA 95814-2922

Subject: Final Site Characterization Report at Building 109-UST

Camp Parks Reserve Forces Training Area (RFTA), Dublin, CA

Contract DACA05-92-D-0032, D.O. 0037

Dear Mr. Haavisto:

Woodward-Clyde Federal Services (WCFS) respectfully submits this final report of subsurface investigations completed at the location of the former underground storage tank at Building 109, Camp Parks RFTA. Your comments on the draft report have been incorporated into this final version.

A copy of this report is also being sent to Ms. Eva Chu of the Alameda County Health Care Services Agency, Department of Environmental Health for your convenience.

Please do not hesitate to call either of us at (510) 893-3600, if you have any questions or comments regarding this report.

Sincerely,

WOODWARD-CLYDE FEDERAL SERVICES

J. Michael Sartor, P.E.

Project Manager

Jo Beth Folger

Task Manager

Attachment (3 copies)

cc: Marshall Merrick, Parks RFTA (3 copies w/Attachments)

Dennis Stone, AFRC-FM-PWE, Fort McCoy, WI

Eva Chu, Alameda County Department of Environmental Health

CERTIFICATION

SITE CHARACTERIZATION REPORT **BUILDING 109-UST** PARKS RESERVE FORCES TRAINING AREA DUBLIN, CALIFORNIA

June 29, 1995 7197

This report has been prepared by the staff of Woodward-Clyde and has been reviewed and approved by the professional whose signature appears below.

The findings, recommendations, specifications, or professional opinions are presented within the limits prescribed by the client, and prepared in accordance with generally accepted engineering practice in Northern California at the time this work plan was prepared. No other warranty is either expressed or implied.

WOODWARD-CLYDE

ect Manager

Jo Beth Folger Task Manager

to Beth Folger

TABLE OF CONTENTS

Secti	<u>on</u>		Page
CER	TIFICA	TION	
1.0	INTE	RODUCTION	1-1
	1.1	SCOPE OF WORK	1-1
	1.2	SITE CONTACTS	1-1
	1.3	SITE LOCATION AND DESCRIPTION	1-1
	1.4	SITE HISTORY	1-2
2.0	FIEL	D ACTIVITIES	2-1
	2.1		2-1
	2.2	DRILLING AND SUBSURFACE SOIL SAMPLING	
		METHODOLOGY	2-1
	2.3	MONITORING WELL INSTALLATION PROCEDURES	2-2
	2.4	MONITORING WELL DEVELOPMENT PROCEDURES	2-3
	2.5	GROUNDWATER SAMPLING PROCEDURES	2-4
	2.6	DECONTAMINATION PROCEDURES	2-5
	2.7	HEALTH AND SAFETY	2-6
	2.8	ENGINEERING SURVEY	2-6
3.0	DATA	A EVALUATION	3-1
	3.1	SITE HYDROGEOLOGY	3-1
	3.2	ANALYTICAL RESULTS	3-1
		3.2.1 Subsurface Soils	3-1
		3.2.2 Groundwater	3-2
4.0	SUM	MARY AND CONCLUSIONS	4-1
	4.1	SUMMARY	4-1
	4.2	CONCLUSIONS	4-1
5.0	LIMI	ITATIONS	5-1
6.0	REF	ERENCES	6-1

LIST OF TABLES

TABLE 1 LIST OF CONTACTS

TABLE 2 MONITORING WELL CONSTRUCTION DETAILS AND
GROUNDWATER ELEVATION

TABLE 3 ANALYTICAL RESULTS OF SOIL SAMPLES

TABLE 4 ANALYTICAL RESULTS OF GROUNDWATER SAMPLES

LIST OF FIGURES

FIGURE 1 FACILITY LOCATION MAP
FIGURE 2 SITE LOCATION MAP
FIGURE 3 MONITORING WELL LOCATIONS
FIGURE 4 GROUNDWATER ELEVATION CONTOURS - January 25, 1995

LIST OF APPENDICES

APPENDIX A WELL INSTALLATION PERMIT

APPENDIX B BORING LOGS

APPENDIX C WATER SAMPLE LOGS (DEVELOPMENT AND GROUNDWATER SAMPLING)

APPENDIX D CHEMICAL ANALYTICAL DATA

APPENDIX E SURVEY MAP

1.1 SCOPE OF WORK

This report addresses the procedures involved with the investigation and evaluation of an underground storage tank (UST) site located within the Parks Reserve Forces Training Area (PRFTA) in Dublin, CA, at the former Building 109. This work was performed in order to investigate the extent and magnitude of petroleum hydrocarbons in the subsurface soil and groundwater at the site. Specific activities included the collection of soil samples during the drilling and construction of three proposed groundwater monitoring wells at the site, initial monitoring well groundwater sample collection, sample analysis, and waste disposal. This report has been prepared in accordance with the State of California, Regional Water Quality Control Board (RWQCB), Tri-Regional Board Staff Recommendations; WCFS's "Site Characterization Workplan Building 109-UST" which was dated July 8, 1994, and WCFS's November 20, 1994 letter to Eva Chu, Alameda County Department of Environmental Health, which revised the well locations.

1.2 SITE CONTACTS

Woodward-Clyde is providing consulting engineering services for the project to the U.S. Army Corps of Engineers, Sacramento District. Table 1 presents the names and addresses of other important entities involved with the site investigation, including the regulatory agencies who will receive copies of report and correspondence regarding this site investigation.

1.3 SITE LOCATION AND DESCRIPTION

PRFTA is located in Townships 2 and 3 South, Range 1 East on the Dublin 7.5 minute topographic quadrangle in Alameda and Contra Costa Counties, California (Figure 1). PRFTA occupies approximately 2800 acres and is bounded by multiple entities. PRFTA's neighbors include Federal Correctional Institutions, Santa Rita Rehabilitation Center,

Alameda County Santa Rita Jail, Tassajara Creek Regional Park, local businesses, and residential districts.

PRFTA is a multi-use installation that hosts a variety of tenants, both military and civilian. PRFTA organizations utilize the installation for activities which include: fire services, maintenance of buildings, range control, storage facilities, demolition activities, and administration of utilities. Tenant organizations who lease buildings or space at PRFTA include Federal entities (U.S. Army Reserve components and U.S. Border Patrol), private companies, and private and public organizations.

Building 109 was located in the southern portion of the facility (Figure 2).

1.4 SITE HISTORY

Prior to its demolition which is currently underway, Building 109 was a trash incinerator. During building demolition and removal activities in mid-March 1994, a previously unknown 2000-3000 gallon UST was discovered under the building floor and damaged. It is suspected that the tank held fuel oil, possibly as a supplemental fuel for the incinerator. On March 22, 1994, the UST was punctured during the demolition of Building 109, resulting in fuel leakage into a 12 foot deep excavation pit within the perimeter of the incinerator building foundations. Approximately 442 gallons of product were removed from the excavation and another estimated 1,077 gallons removed from the tank. Additional water and fuel was removed from the excavation pit on six subsequent dates from March 28 through April 25, 1994. The recovered liquid was disposed at a licensed disposal facility.

A material which appears to be ash from the incinerator was also discovered during the demolition. It is visible in the excavation walls on the south side of the building as lenses buried about 4 feet deep. Its lateral extent is unknown. The ash material is the subject of a separate investigation, but because MW-1 apparently was drilled through some ash, certain samples collected during this UST investigation were analyzed for ash constituents of concern. The analytical results are included in this report for completeness, but interpretation will be reserved for the report of the ash investigation.

This section describes field activities that were completed to evaluate and delineate petroleum hydrocarbons in the soil and groundwater that may be attributable to the former UST at Building 109.

2.1 DRILLING LOCATIONS

Three boreholes were drilled and sampled on December 12 and 20, 1994, and were completed as groundwater monitoring wells, identified as MW-1, MW-2, and MW-3 (Figure 3). The monitoring wells were located to assess the lateral and vertical extent of fuel constituents within the property and to evaluate the site-specific groundwater flow direction and gradient. Monitoring well MW-3 was installed within ten feet of the former UST per RWQCB guidelines. Monitoring wells MW-2 and MW-3 were installed crossgradient and downgradient of the excavation where the fuel was spilled to intercept groundwater which may have been affected by former UST's contents.

2.2 DRILLING AND SUBSURFACE SOIL SAMPLING METHODOLOGY

The boreholes were drilled using truck mounted Mobile B-61 and B-53 drill rigs equipped with 10-inch outside diameter, hollow-stem, continuous flight augers. The drilling subcontractor was Kvilhaug Well Drilling and Pump Company, Inc., of Concord, California. The wells were constructed in accordance with a permit issued by the Alameda County Flood Control and Water Conservation District Zone 7 (Appendix A).

Soil samples were collected using a split-spoon drive sampler capable of holding three 2.5-inch diameter, 6-inch long brass liners. Samples were collected by advancing the hollow-stem auger flights to the specified depth and then driving the sampler within the augers to obtain the sample. A 140-pound hammer with 30-inch drop was used to drive the sampler. Subsurface soil samples were collected for chemical analysis and lithologic logging during drilling at each borehole location. Soil samples were described in accordance with the Unified Soil Classification System (USCS). A boring log was completed by the WCC

hydrogeologist for each borehole. Boring logs are provided in Appendix B. Cuttings generated during drilling were placed in drums for eventual proper disposal by the Army.

Following collection, the soil sample liner designated for chemical analysis was sealed with teflon sheeting, plastic end caps, and duct tape and labeled. Each sample was sealed in a plastic ziplock bag and placed in a chilled cooler containing ice for transport to the analytical laboratory. The soil samples were shipped for analysis under chain-of-custody protocol to Anametrix Laboratories of San Jose, California. All samples were transported, extracted and analyzed within the method-prescribed holding times. The soil samples submitted to the laboratory were analyzed for total extractable hydrocarbons as kerosene, motor oil and diesel (TPHd) by modified EPA Method 8015, and benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 8010/8020. In addition, one sample which appeared to be ash (MW-1-4) was analyzed for STLC Lead. The samples from the bottom of each well were analyzed for a suite of metals to see if underlying soil had been impacted by leaching from overlying ash.

2.3 MONITORING WELL INSTALLATION PROCEDURES

After reaching total depth, the boreholes were completed as groundwater monitoring wells. All well construction materials were emplaced through the center of the hollow-stem auger flights. Prior to construction, well casing materials were decontaminated by steam cleaning. The monitoring wells were constructed using 4-inch diameter, flush threaded, Schedule 40 polyvinylchloride (PVC) well casing. The screened portion of each well consisted of 0.02-inch factory slotted PVC of the same diameter and grade as the solid pipe. The wells were screened approximately from 12 to 22 feet below ground surface. The screen intervals were selected to straddle the uppermost groundwater zone encountered and to allow for monitoring seasonal fluctuations of the water table. Water was first encountered at depths of 13.5 to 16 feet below ground surface.

After installing the well casing and screen in the borehole, a sand filter pack consisting of Lonestar No. 2/12 sand was poured down the annulus of the augers. As the sand was added, the augers were pulled to allow the sand filter pack to fill the borehole annulus. The bottom of the augers was not pulled above the level of the sand during sand placement to help

ensure a complete and continuous sand filter pack around the well screen. The sand filter pack extended from the bottom of the boring to one foot above the top of the well screen.

Following installation of the sand filter pack, approximately one to two feet of bentonite was placed on top of the sand filter pack as a seal. The seal consisted of 3/8-inch bentonite pellets hydrated in place with approximately five-gallons of water. The seal was allowed to hydrate for a minimum of 30-minutes before grouting was performed. Wells were capped with water-tight locking caps secured with keyed-alike locks.

A neat cement grout mixture was used to seal the borehole annulus from the top of the bentonite seal to just below ground surface. The neat cement grout consisted of a mixture of Type I and II Portland cement (94-lbs per bag), bentonite powder (up to 5 percent), and potable water (approximately 7 gallons per bag of cement).

After grouting, surface completions were performed at each monitoring well location. The surface completion consisted of a grouted in-place traffic rated utility box mounted nearly flush with the surrounding grade. Table 2 summarizes monitoring well construction details.

2.4 MONITORING WELL DEVELOPMENT PROCEDURES

Following construction, each monitoring well was developed to remove sediment from well construction, so that the well would yield representative groundwater samples. The wells were developed on January 24, 1995. The monitoring wells were developed according to the following procedures:

- All downhole equipment (with the exception of new suction hose) was cleaned with a solution of laboratory grade soap (Alconox) and potable water before each use.
- Prior to development, an Oil/Water Interface probe was used to measure the
 presence of a floating immiscible layer in each well. The water level and total
 depth of each well was measured and recorded.

- The screened interval of each well was swabbed for a maximum of 10-minutes to agitate the sand pack and loosen formational sand and silt.
- Each well was then purged dry until 10 casing volumes had been removed.
- Purging of each monitoring well was accomplished using a centrifugal pump.
- During well purging, general water quality parameters (pH, specific conductance, temperature, turbidity) were periodically measured and recorded, water color and odor were periodically observed and recorded.

Water removed from the wells during well development was contained in 55-gallon drums and stored on-site. Water Sample Logs used to document monitoring well development are provided in Appendix C.

2.5 GROUNDWATER SAMPLING PROCEDURES

Groundwater monitoring wells MW-1, MW-2, and MW-3 were sampled on January 25, 1995. Groundwater samples were collected from each monitoring well according to the following procedures:

- Purging and sampling equipment was cleaned in a solution of laboratory soap (Alconox) and potable water; rinsed with potable water; and finally rinsed with distilled water.
- Prior to sampling, an Oil/Water Interface probe was used to measure the presence of a floating immiscible layer in each well.
- At each well, the water level and total depth were measured.
- Wells MW-1, MW-2, and MW-3 were purged using a centrifugal pump.

- During purging, general water quality parameters (pH, specific conductance, temperature, turbidity) were periodically measured and recorded. Water color and odor were periodically observed and recorded.
- Purging continued until a minimum of 4-casing volumes of water were removed and water quality parameters stabilized.
- Groundwater samples were collected at each well with a new disposable bailer and
 were poured into appropriate sample containers provided by the analytical
 laboratory. Sample containers were sealed, labeled, wrapped in cushioned
 wrapping, and then placed in a chilled cooler containing ice for shipment to the
 analytical laboratory.
- An equipment blank sample was collected, given the fictitious name MW-4 and analyzed along with the other samples.
- After sampling was complete, general water quality parameters, water level, and total depth were again measured and recorded.

Immediately following sample collection, the sample bottles were placed in a chilled cooler for storage and transport to the analytical laboratory. All groundwater samples collected were recorded on chain-of-custody forms prior to shipment to the laboratory. Groundwater samples collected were submitted to a state certified laboratory for analysis. All samples were transported, extracted and analyzed within the method-prescribed holding times. The samples collected for this project were submitted to Anametrix Laboratories of San Jose, California. The groundwater samples were analyzed for TPHd by modified EPA Method 8015, and BTEX by EPA Method 8010/8020. MW-1 (the suspected ash area) was also analyzed for lead by Method 6010A and by Method 8290 for PCDD/PCDF.

Water removed from the wells during purging was contained in 55-gallon drums for disposal. Water Sample Logs used to document monitoring well purging and sampling are provided in Appendix C.

2.6 DECONTAMINATION PROCEDURES

Down-hole drilling equipment such as augers were steam-cleaned prior to use between wells. The California split-spoon sampler, brass tube liners, oil-water interface probe and water level indicators were cleaned before each use by washing in a laboratory grade solution followed by two tap water rinses and one rinse with distilled water.

2.7 HEALTH AND SAFETY

Field activities at PRFTA were conducted in accordance with the provisions of the site specific Health and Safety Plan. The plan was prepared to comply with state, federal and COE occupational health and safety regulations to ensure health and safety of all workers, regulators, and public at the site.

2.8 ENGINEERING SURVEY

After installation, the three monitoring wells were surveyed by Hunter Surveying, Inc., of Orangevalle, California, a state licensed engineering surveyor. Each well location was surveyed to an accuracy of 0.01 foot for the following points:

- The north rim of the top of well casing (with cap off) was surveyed for elevation and location.
- The ground surface at the well was surveyed for elevation.

The survey data for the newly installed monitoring wells are provided in Table 2. The survey map is included in Appendix E.

This section describes hydrogeologic conditions for the PRFTA facility and provides an assessment of the vertical and horizontal extent of contamination at the Building 109 site.

3.1 SITE HYDROGEOLOGY

The depth to groundwater during drilling and sampling was about 13.5 to 16 feet below grade. Groundwater elevations stabilized in the wells at about 328 feet above mean sea level (MSL). Figure 4 shows the approximate groundwater elevation contours of water elevations measured on January 25, 1995. The groundwater flow direction is towards the west-southwest. The horizontal hydraulic gradient across the site was estimated to be about 0.0014 feet per foot which is quite flat.

3.2 ANALYTICAL RESULTS

3.2.1 Subsurface Soils

Subsurface soil sampling was conducted on December 12 and 20, 1994. Analytical results of soil samples collected are summarized in Table 3. A quality assurance/quality control (QA/QC) review was performed on the analytical data which is included in Appendix D. The results of the review indicate that data are of acceptable quality.

TPH as diesel was not detected in any of the samples. This is as expected since the spill occurred into the central excavation. TPH as motor oil was detected at the low level of 29 mg/kg in MW-1-4' (the ash sample). BTEX was detected only in MW-3-15' at low levels (Benzene - 0.057, Toluene - 0.11, Ethylbenzene - 0.30, and Xylene - 1.0 mg/kg). The levels of metals in the soil are within acceptable background ranges. An elevated concentration of soluble lead was detected in the ash sample, however.

3.2.2 Groundwater

An oil-water interface probe was used to measure the thickness of any floating immiscible layer, if present, prior to purging. No measurable immiscible layer was present in any of the monitoring wells at Building 109.

Groundwater samples were analyzed for TPHd (modified EPA Method 8015) and BTEX (EPA Method 80101/8020). In addition to the groundwater samples collected from the three monitoring wells, one equipment rinsate sample was collected (labelled MW-4 on the chain-of-custody and the analytical data sheets). A QA/QC review was performed on the groundwater data. The groundwater analytical results are presented in Table 4. The water sample from MW-1 (in the suspected ash area) was analyzed for lead by EPA Method 6010A and for PCDD/PCDFs by EPA Method 8290.

TPH as diesel was detected in all three wells, at levels from 62 to 1,200 μ g/L. BTEX was also detected in MW-3 (benzene at 2.5 μ g/L). No lead or PCDD/PCDFs were detected.

polychlorwated diopins / Furans

4.1 SUMMARY

Groundwater elevation at the facility was calculated to be at about 328 feet above mean sea level. The calculated groundwater flow direction was estimated to be towards the west-southwest.

Diesel was not detected in any of the soil samples. Total petroleum hydrocarbons quantified as motor oil and the constituents of benzene, toluene, ethylbenzene, and total xylenes were detected at low levels in soil samples collected from MW-1-4' and MW-3-15', respectively.

An oil/water interface probe was used to detect and measure the presence of an immiscible layer prior to well development and again prior to initiating groundwater sampling. No measurable immiscible layer was detected in any of the wells. TPH quantified as diesel was detected in the groundwater samples collected from all three wells.

4.2 CONCLUSIONS

This report satisfies the requirements for a Preliminary Investigation and Evaluation Report (PIER) and, as noted previously, concludes that the groundwater beneath the site has been impacted by diesel fuel.

The conclusions presented in this report are based on the available data and the professional opinion and experience of WCFS. If additional data are collected, the conclusions presented herein may be revised. WCFS's services were performed with the standard of care and skill commonly used as state of the practice in the profession. No other representation, expressed or implied, and no warranty or guarantee, is included or intended.

Regional Water Quality Control Board - North Coast, San Francisco Bay, and Central Valley Regions (RWQCB). 1990. Tri-Regional Board Staff Recommendation for Preliminary Evaluation and Investigation of Underground Tank Sites. August 10; and Appendix A - Reports, August 30, 1991.

Woodward-Clyde Federal Services, Site Characterization Workplan Building 109-UST Parks Reserve Forces Training Area, Dublin, CA. July 8, 1994.

TABLE 1

LIST OF CONTACTS BUILDING 109-UST PRFTA, DUBLIN, CALIFORNIA

Owner's Representatives:

U.S Army Corps of Engineers Sacramento District 1325 J Street Sacramento, CA 95814-2922 Attn: CESPK-ED-EC Richard Haavisto (916) 557-7440

Parks Reserve Forces Training Area (PRFTA) Building 790 Camp Parks, CA 94568 Bob Cowan (510) 829-8780

I Corps and Fort Lewis Ft. Lewis, WA 98433 Attn: AFZH-DEQ (Steucke) Paul Steucke, Jr.

Environmental Consultants:

Woodward-Clyde Federal Services 500-12th Street, Suite 100 Oakland, California 94607 Michael Sartor (510) 874-3173 Jo Beth Folger (510) 874-3138

Lead Implementing Agency:

Alameda County Health Care Services Agency Department of Environmental Health 80 Swan Way, Room 200 Oakland, CA 94621 Eva Chu (510) 271-4530

Regional Water Quality Control Board:

Regional Water Quality Control Board 2101 Webster Street, Suite 500 Oakland, California 94612 (510) 286-1255

TABLE 2 MONITORING WELL CONSTRUCTION DETAILS AND GROUNDWATER ELEVATION **7197 - PRFTA BUILDING 109**

Y 27 11		Total	Screened Interval	Coordi	nates ⁽⁴⁾	C1	тос	Groundwater	Groundwater
Well ID	Date	Depth (ft)	(ft below ground surface)	Northing	Easting	Ground Elevation ⁽⁵⁾	Elevation ⁽⁵⁾	Depth ⁽³⁾ (ft)	Elevation (ft,MSL) ⁽⁵⁾
MW-1	1/25/95	22	12 to 22	2,083,140.99	6,155,375.64	335.76	338.64	10.60	328.04
MW-2	1/25/95	22	12 to 22	2,083,185.84	6,155,335.54	336,52	340.22	12.23	327.99
MW-3	1/25/95	22	12 to 22	2,083,218.37	6,155,371.77	338.91	341.42	13.36	328.06

NOTES:

⁽¹⁾ TOC, Top of Casing (2) MSL, Mean Sea Level

⁽³⁾ Depth to groundwater is measured from the TOC
(4) Horizontal grid values based on NAD83, California Coordinate System, Zone 3 - Stations PFW2 to PFE4
(5) Vertical Elevations based on NGVD 1929 - Stations PFW2 and PFE4

TABLE 3
SOIL SAMPLES ANALYTICAL RESULTS
BUILDING 109-UST

Sample I.D.		EPA Modified	Method 8015/8020		TPH by	TPH by EPA Modified Method 8015					
(depth)	Benzene	Toluene	Ethylbenzene	Xylenes	Diesel	Motor Oil	Kerosene	CWET Lead			
MW-1 (4')	ND	ND	ND	ND	ND	29	ND	319(1)			
MW-1 (10')	ND	ND	ND	ND	ND	ND	ND				
MW-1 (14')	ND	ND	ND	ND	ND	ND	ND	net .			
MW-2 (5')	ND	ND	ND	ND	ND	ND	ND				
MW-2 (10')	ND	ND	ND	ND	ND	ND	ND				
MW-2 (15')	ND	ND	ND	ND	ND	ND	ND				
MW-3 (5')	ND	ND	ND	ND	ND	ND	ND				
MW-3 (10')	ND	ND	ND	ND	ND	ND	ND	and a			
MW-3 (15')	0.057	0.11	0.30	1.0	ND	ND	ND				

		Total Metals by EPA Method 6010A (7471 for Hg)															
	Sb	As	Ba	Be	Cd	Cr	Co	Cu	Pb	Hg	Mo	Ni	Se	Ag	Tl	v	Zn
MW-1 (14')	ND	5.1	112	ND	ND	19.6	9.0	15.6	5.6	ND	ND	26.5	ND	ND	ND	31.0	32.9
MW-2 (15')	ND	3.9		ND	ND	15.0		10.7	4.3	ND		19.4	ND	ND	ND	-	23,4
MW-3 (15')	ND	4.4	86	ND	ND	16.5	7.5	11.6	4.4	ND	ND	19.3	ND	ND	ND	27.9	28.0

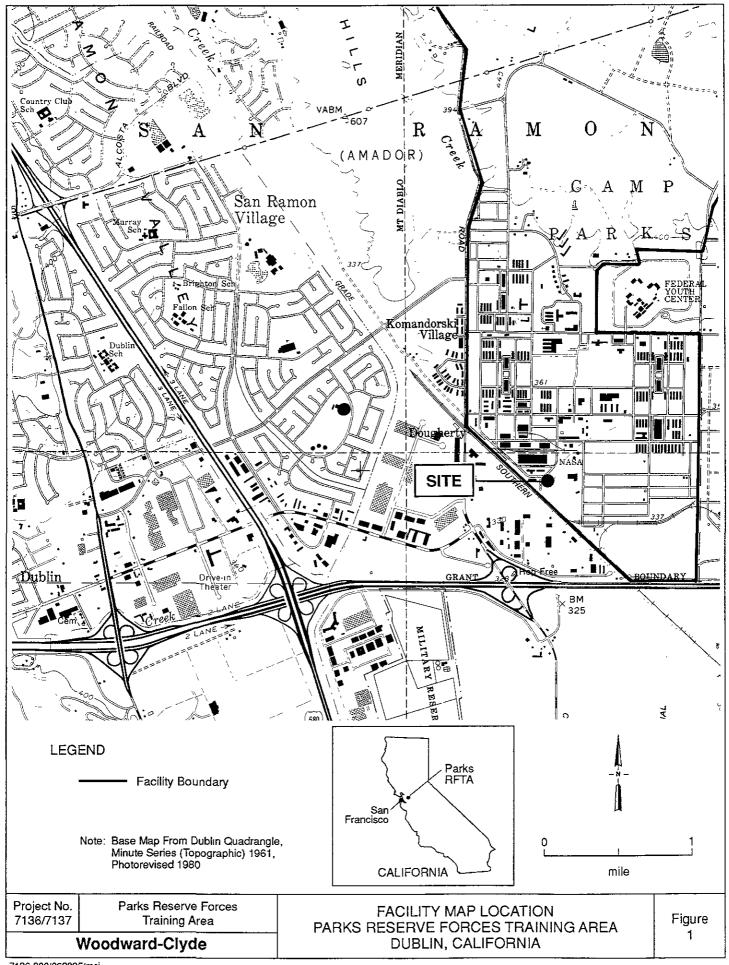
NOTES: All results are in mg/kg

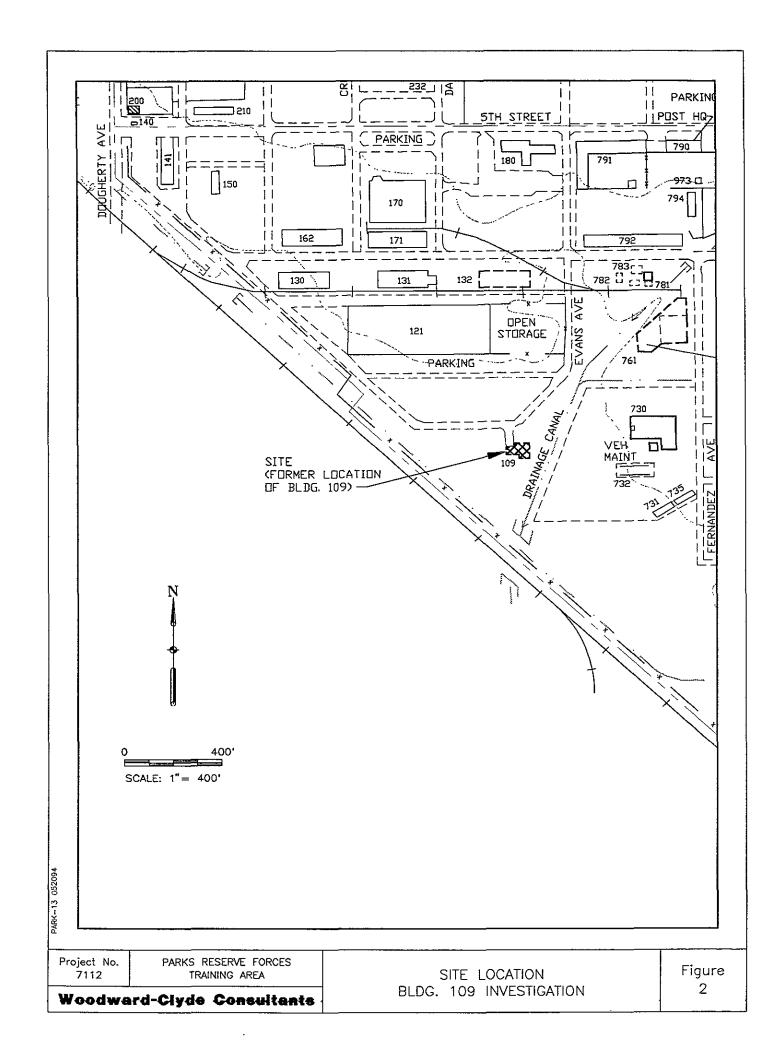
ND = not detected

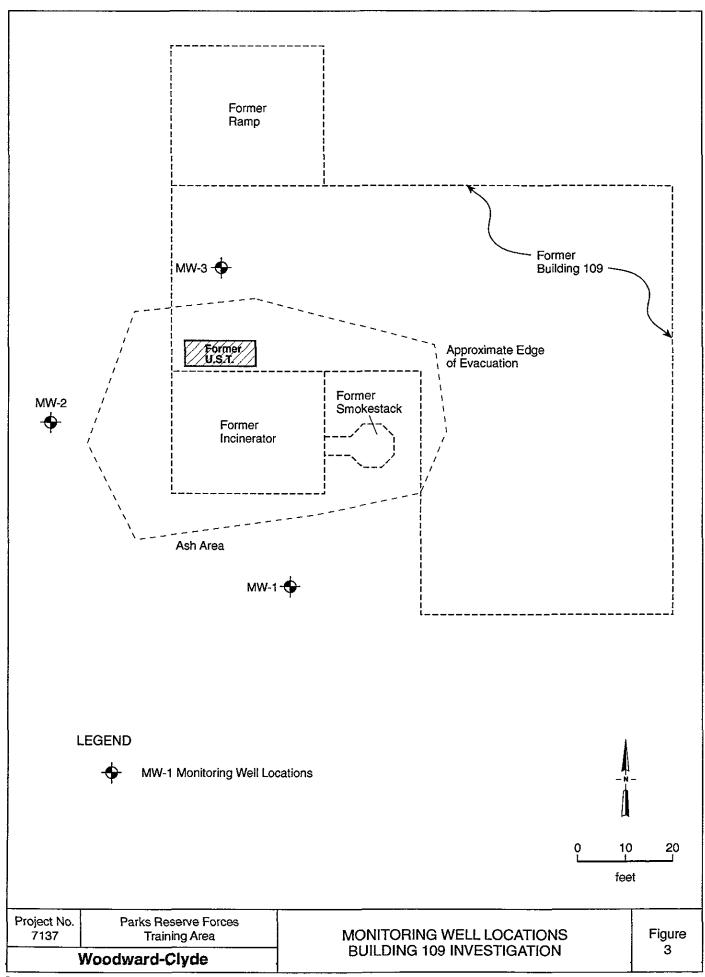
-- = not analyzed

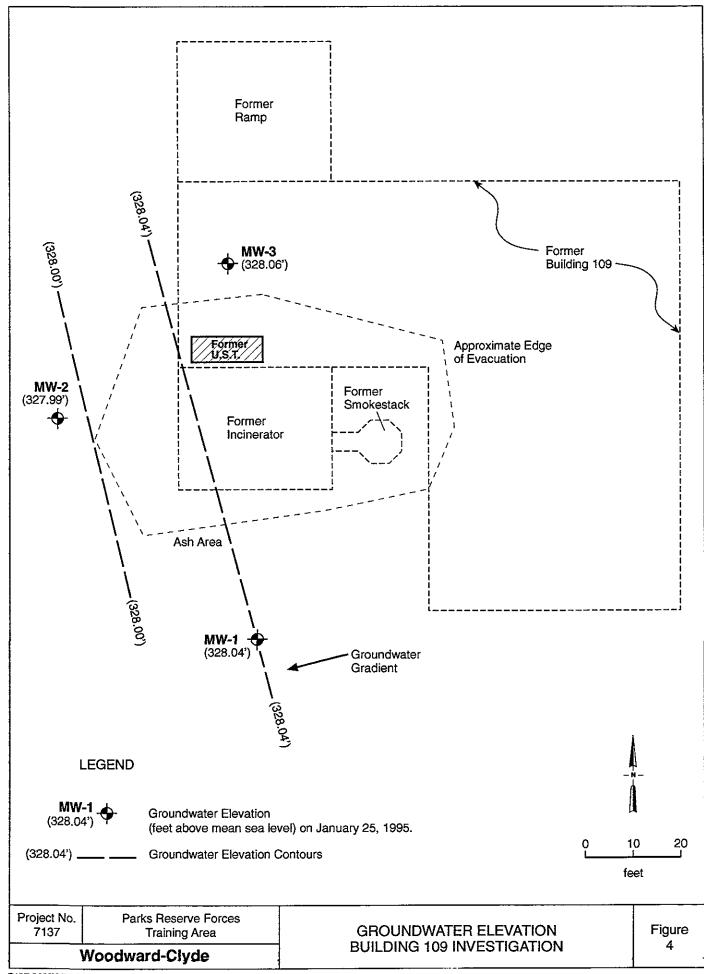
⁽¹⁾ MW-1-4 appeared to be ash, results reported in mg/L

TABLE 4


GROUNDWATER SAMPLES ANALYTICAL RESULTS BUILDING 109-UST


Sample I.D.		I	EPA Modified	Method 8015/802)	TPH by Modifi	ed Method 8015	40.44	8290	
	Date Sampled	Benzene	Toluene	Ethylbenzene	Xylenes	Diesel	Kerosene	6010-A Lead	PCDD/ PCDF	
MW-1	1/25/95	ND	ND	ND	ND	62	ND	ND	ND	
MW-2	1/25/95	ND	ND '	ND	ND	300	ND			
MW-3	1/25/95	2.5	1.2	2.5	8.0	1200	820			


NOTES: All results are in μ g/kg ND = not detected


-- = not analyzed

M0321950948

APPENDIX A WELL INSTALLATION PERMIT

I:\94\24576.17137\iv M0329950853

APPLICANTS Of Borl Dolland

ZONE 7 WATER AGENCY

5997 PARKSIDE DRIVE

PLEASANTON, CALIFORNIA 94588

VOICE (510) 484-2600 FAX (510) 482-3914

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
LOCATION OF PROJECT Building 109 (outside) Camp Parks RFTA Dublin, CA	PERMIT NUMBER 94775 LOCATION NUMBER
	~
CLIENT	
Name Sacramento District Corps of Engineers Address 1325 J Street Volce	PERMIT CONDITIONS
	~ **
City Sacramento, CA Zp 95814	Circled Permit Requirements Apply
APPLICANT Name Sevin Belir/Mike Sartor Woodward-Clyde Cons. Fax 510-874-3258 Address 500 12th Street Ste 160ce 510-874-1788 ChyOakland, CA Zip 94607	A. GENEFIAL 1. A permit application should be submitted so as to arrive at the Zone 7 office five days prior to proposed starting date, 2. Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well
TYPE OF PROJECT Well Construction Geotechnical Investigation Cathodic Protection General Water Supply Contamination Monitoring X Well Destruction	Drillers Report or equivalent for well Projects, or drilling logs and location skotch for geotechnical projects. 3. Permit is void if project not begun within 90 days of approval date. B. WATER WELLS, INCLUDING PIEZOMETERS
PROPOSED WATER SUPPLY WELL USE	Minimum surface seal thickness is two inches of cement group
Domestic Industrial Other Municipal Irrigation DRILLING METHOD:	placed by tremie. 2. Minimum seal depth is 50 feet for municipal and industrial well or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet.
Mud Rotary Air Rotary Auger X	C. GEOTECHNICAL. Backfill bore hole with compacted cuttings or
DRILLER'S LICENSE NO. KV11aug C57-482-390	heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings.
WELL PROJECTS	 D. CATHODIC. Fill hole above anode zone with congrete placed by tremie.
Drill Hote Diameter 10 In. Maximum	E. WELL DESTRUCTION, See atlached.
Casing Diameter 4 in. Depth 20 ft.	- VI I B D I I I I I I I I I I I I I I I I I
Surface Seal Depth 2 ft. Number 3	
GEOTECHNICAL PROJECTS Number of Borings Maximum Hole Diameter In. Depth ft.	
ESTIMATED STARTING DATE 12/12/94 ESTIMATED COMPLETION DATE 12/13/94	Warman Alaysa
hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68.	Approved Nyman Hong Date 8 Dec 94 Wyman Hong

APPENDIX B BORING LOGS

I:\94\24576.17137\v

PROJECT NAME CAMP PAYES USTIDG Woodward-Clyde Consultants NO. 7137-0100 BORING LOCATION - 30 South 9 Incureator from DRILLING AGENCY DATE STARTED DATE FINISHED 12/20/94 COMPLETION DEPTH DRILLING EQUIPMENT B-53 Mobile Drill Hollow Stem Auger DRILL BIT NO. OF SIZE AND TYPE OF CASING 41 PVC FLEST13.5 TYPE OF PERFORATION 0.020 - INCh TO 22 LOGGED BY CHECKED BY: SIZE AND TYPE OF PACKSTON 712 10 SBilin TYPE OF SEAL Partland Gement 0 OVA 9-10 Prezometer Date Bentonite DEPTH (FEET) Control REMARKS Penetra Resist (Blows/ (Oriti Rate, Fluid loss, Odor, etc.) CLANEY GRAVEL-RUBBLE GMI Begin drill 1025 Darkbrown, various color accept GC bricktragments, damp (Rain) medium Hense 2 7 agray with brown, medium dense CL 10 and stift, low plasticity 11 MW-1-4 1040 45 ASH Rubble Rush stains and varous color 6 acciecate, mostly black-bown, glass fragments, pebbies up to 2cm 9 5 15 17 Darkbrown some fine sand/sitle pockets and aggregate, shightly pustic, damp, motion dense becomes light brown to brown 1110 MW-1-10 10 puplicate 25 12 11 19 24 becomes silly and damp 13-MW-1-14 1130 5 \mathbf{Z}

becomes wet

6

Woodward-Clyde Consultants

PROJECT NAME CAMP PARKS 109 UST NO. 7137-0100

		(JRA2)	icroc C	VÁV	_ T	SA	MPCES	1
DEPTH	DESCRIPTION	Lithology		NA X	Prezumen		Penetra Penetra Henni (Blows/ 6 in)	REMARKS (Drili Rate, Fiuid loss Odor etc.)
15 17 19 19 21	Some aggregate	CYML						
22 ++++ -+++ ++++ ++++++++++++++++++++++	TD@22				Ĭ ┩╏┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩┩			TIQ 1145 Monument well protector placed at surface Stick up

FIELD LOG OF BORING NO. MW-1 S-EET 2 of 2

PROJECT NAME Camplanks 109 UST Woodward-Clyde Consultants NO. 7/37-000 BORING LOCATION 20 West of Bldg. 109-Incinerator Room DRILLING AGENCY VILHAUG 12/12/94 COMPLETION DEPTH SAMPLER 2" TO CA Hollow Stem Augo UNDIST. 2 DRILL BIT DIST. Mobile Drill FIRST 145 WATER ELEV. PVC COMPL. Sch. TYPE OF PERFORATION TO22 FT FROM LOGGED BY CHECKED BY: 0.020-Inch SIZE AND TYPE OF PACK Lonestar 2/12 SBILIR TYPE OF SEAL Portland Cement O 9-10 GRAPHIC LOG Bentonite DEPTH (FEET) Piezomei Dala REMARKS DESCRIPTION Litherogy Prezometer (Drill Rate, Fluid loss, Odor, etc.) SILTY ICLAYEY GRAVEZ 6M/ OUA Cal 0730 Eubble. Begin 1120 GC Dark brown with various color aggregate, moist (due to vain) to damp, slight plasticity, loose gravels up to 5 cm 2 5 gravely chay 12 Dark brown to brown various color aggregate, slight to low plusticity, loose >15 becomes light brown with some pebbly gravel up to 2cm. MN-2-5 1135 45 6 6 18 21 8 becomes grayish brown, brown 1205 8 HW-Z-10 stains (organic matter), low plasticity, **4**5 16 damp, mider in dense, medicin stiff (8 30 12 becomes moist

FIELD LOG OF BORING NO ..

MW-2

HEET L OF B

Woodward-Clyde Consultants

PROJECT NAME CAMP PACKS 109 UST NO. 7137 -0100

		1,230	HIC LOG	hu.	1	-WP_ES	TV- , NO. 1121 010
DEP114 (FEE.1)	DESCRIPTION	L the agy	Piezometer Installation	DVA		Pentia B	REMARKS (Ord) Rate, Fluid loss Oddr. etc.)
14 14 14 14 14 14 14 14 14 14 14 14 14 1	SILTY/CLAYEY SANDS light brown, very soft, non plastic, wet, some sand, pockets of clay	MYCL SM/ SC	1 N N N N N N N N N N N N N N N N N N N			3334	MW-2-15 1220
18 20	light to medium brown, medium Stiff dense, sand and suit at top	MY CL			***		
21 + + + + + + + + + + + + + + + + + + +	TD@ Z2'						Monument well protector placed at surface Stick up
***					W-2		SHEET Zof Z

PROJECT NAME CAMP Parks 109 UST Woodward-Clyde Consultants On excausted pile. 12/20/94 KVILH AUG COMPLETION DEPTH SAMPLER 7." CA FO. DRILL BIT NO.OF DIST. Hollon Stem Auber WATER ELEV. SON: 40 FROM 4º ・ ダヤく TYPE OF PERFORATION CHECKED BY: LOGGED BY 0.020-inch SIZE AND TYPE OF PACK FROM Lonester 412 SBILIR TYPE OF SEAL FROM Parland Cement Bentonite 9-10 REMARKS DESCRIPTION (Drill Rate, Fluid loss, Odor, etc.) Begin drill 0815 Clayey grave GM] (Rubble) Dankbrown, various color aggregate, Moist (due to vain), . gravels up to 4cm, shight plastian GC Clay
Dankbrown, pockets of medium
and fine sand (wanty to Not
Colored strung), some gravels MW-3-5 0836 7 becomes Mostly clay, disturbed texture (compacted) 9 Q becomes nottled with gray, low plasticity, nedwor dense and stiff, damp MW-3-10 0850 10 15 17 12

FIELD LOG OF BORING NO. MW-3

Woodward-Clyde Consultants

PROJECT NAME CAMP PARKS 109 UST NO. 7139-0100

becomes mast Silly sand Sm/ Silly sand Sm/	07.07
becomes mast 5 Silly sand Sm/ Sm/	REMARKS
becomes most Sily sand becomes wet, brown to hight orange rust color, medium Sand with fines 17 Clay gray to light brown, medium classe, shight plasticity 19 produce	Fruid loss Odor, etc 1
Silly sand becomes wet, brown to hight orange rust color, medium Sand with fines Clay gray to light brown medium classe, shight plasticity 19 produce produce produce produce	Florid for Odder, etc 1
CINY gray to light boundarion clense, shight plasticity 19 produce produ	3-15 0900 g product
gray to light brown, nedium clense, shight plasticity produce	·
produc	# oday
1 →	4. d
	CT 090V
1 1 Monun	vent well.
protect out sur	
	[

FIELD LOG OF BORING NO. MW-3

N-3 S-EET 2012

APPENDIX C

WATER SAMPLE LOGS (DEVELOPMENT AND GROUNDWATER SAMPLING)

I:\94\24576.17137\vi

	AIEH	ISA	MPLI	E LOG		Samp	le No). MW-/
Project No. :	71	37-	0200			Date:	1-24	1-95
Sample Local	tion:	νιύ-	1-11	15. Dubli VELL DE	SVEL.	PM	ENT.	-
'ell Descript	ion:	31.0	<u> 70</u>					
Weather Con	ditions:	Rain	<u> </u>					
Observations	/ Comment	s: <u></u>	<u>blphin</u>	Key; is	ell b	urni	mde	d by m
Durfale	e mod	ntze	K					d by m
		711		Method:				
Quality	ASSUR	ance	Method t	o Measure Wate	er Level : _	500	INS	<u> </u>
Pump Lines:	(New /		E				
•		2.11.1					,	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
oH Meter No.	•					c	allbrated	4.0017.00
				16588		c	alibrate	Bed-line
								rogals/C
0759 11					· <u>···</u>			
						0/0	····	
Sampli		_						End:
Measu	rement	<u> </u>	Measurin	ng Point (MP):		<u>. (1) </u>	CIM)	
Time	Olscharge (gallons)	рН	Temp. (°C)	Specific Conductance (µmhos / cm)	Turbidity	Color	Odor	Commer
10:18	- 20	7.3	17	1099	7100	BEN	NO	
10:21	40	7.31	17.5	1099	"	"		
10: 25	75	7.31	18.0		()	"	7	Dry@ 75
	0	7 70	17.8	11000099	7700	tin	NO	v. little se
10:36	95	7.29			- Comment			1
10:36	110	7.21 7.4	(8.0	1050	7/00	4.	••	**
					7/00	4.	••	4.
					7/00	1.	**	4.
					7/00	4.	**	4.
10:40	//0	7, <i>1</i> 4	(8.0	1050	7/00	4.		10+
Total Dische	ilo	す. 44 - 110	(8.0	/050 	asing Volum	es Remo		iot
Tatal Dische	flo	す。 リル Ilscharged	(\$.5)	0 - 2 lal	asing Volum	es Remo		iot
Tatal Dische	flo	す。 リル Ilscharged	(\$.5)	/050 	asing Volum	es Remo		iot
Tatal Dische	flo	す。 リル Ilscharged	(\$.5)	0 - 2 lal	7/00 asing Volum	es Remo	lrum	iot

Sample No.		MATER SAMPLE LOG Sample No. 1460-2								
		Project No.:	CAN	<u>11 P</u>	<u> 4RK_</u>		0	ale:	1.24	-95
_1.wbl on MW-2: Lid doesn't fit tight		4" 44 40 PVC.								
- Unymore	Observations / Comments: WELL DEVE LDPMENT									
		Quality			Method to	Method:	er Level :	ઈપ 4	ns.T	
				~~	Cleaned		Bailer Lines:		New	\
		pH Meter No. Specific Conc Comments:	:: ductance Me	ter No.:	OZZO FEFTUL	928 016588 0678	- 24.86	c. c	alibrated alibrated	4.0017.00°25; Ard lined 53= 8.15926/
		1.11			ગનાંગડ,	psup,	1430 51	dime	nic	end (95 ₉ .)
		Sampli Measu	ing rement	s	Water Le	ovel (balow MP) ng Point (MP):	at Start:	2.37 5 (N 1	-(M)	End:
		Time	Discharge (gallons)	pH	Temp. (°C)	Specific Conductance (µmhos / cm)	Turbidity	Color	Odor	Comments
^ ,a-		1105	20 35	750 7.41	17· 17	100	7100	62243	 (:	204@35 6
		11:19	45 lev	7.27 7.27	17.2	980	// //	11	1.	0840456 0840605
		13:45	75 85 05	7.15 7.27 7.13	18.7	920 950 900	N _ / 1	TAU	u (1	DRY @ 855
			<u></u>	95]	Casing Volu	mos Rom	oved: _	
		Total Disch Method of Number ar	to Isaogalh	discharge	d waler: _	2-B	BL's (label	al.)	
		Callected	by: <u></u>	北人			W000	dward 2th Stroot,	I-Cly0 Sulte 100, (415) 80	de Consultants Oakland, CA 94607-4014 3-3600

Sample No. WATER SAMPLE LOG Sample No. MW-3 Project No.: 1/37-7200 Date: 1-24-95 Project Reme: CAMP PORK Sample Learlier, MW-3 Wat Describer, 4 Sch POPC Weather Conditions, MW-13 Water Conditions, MW-14 County Assurance Barrying Manus, Pf County Assurance Barrying Manus, Pf County Assurance Barrying Manus, Pf Medical or desiring Parpy 1 Mm-2, Alkanew, Water Level: 20 Lawrett Medical or desiring Parpy 1 Mm-2, Alkanew, Marer Level: 20 Lawrett Medical or desiring Parpy 1 Mm-2, Alkanew, Marer Level: 20 Lawrett Medical or desiring Parpy 1 Mm-2, Alkanew, Marer Level: 20 Lawrett Medical or desiring Parpy 1 Mm-2, Alkanew, Marer Level: 20 Lawrett Medical or desiring Parpy 1 Mm-2, Alkanew, Marer Level: 20 Lawrett Medical or desiring Parpy 1 Mm-2, Alkanew, Marer Level: 20 Lawrett Medical or desiring Parpy 1 Mm-2, Alkanew, Marer Level: 20 Lawrett Medical or desiring Parpy 1 Mm-2, Alkanew, Marer Level: 20 Lawrett Medical or desiring Party 1 Mm-2, Alkanew, Marer Level: 20 Lawrett Medical or desiring Party 1 Mm-2, Alkanew, Marer Level: 20 Lawrett Medical or desiring Party 1 Mm-2, Alkanew, Marer Level: 20 Lawrett Medical or desiring Party 1 Mm-2, Alkanew, Marer Level: 20 Lawrett Medical or desiring Party 1 Mm-2, Alkanew, Marer Level: 20 Lawrett Medical or desiring Party 1 Mm-2, Alkanew, Marer Level: 20 Lawrett Medical or desiring Party 1 Mm-2, Alkanew, Marer Level: 20 Lawrett Medical or desiring Party 1 Mm-2, Alkanew, Marer Level: 20 Lawrett Medical or desiring Party 1 Mm-2, Alkanew, Marer Level: 20 Lawrett Medical or desiring Party 1 Mm-2, Alkanew, Marer Level: 20 Lawrett Medical or desiring Party 1 Mm-2, Alkanew, Marer Level: 20 Lawrett Medical or desiring Party 1 Mm-2, Alkanew, Marer Level: 20 Lawrett Medical or desiring Party 1 Mm-2, Alkanew, Marer Level: 20 Lawrett Medical or desiring Party 1 Mm-2, Alkanew, Marer Level: 20 Lawrett Medical or desiring Party 1 Mm-2, Alkanew, Marer Level: 20 Lawrett Medical or desiring Party 1 Mm-2, Alkanew, Marer Level: 20 Lawrett Medical or desiring Par			A CONTRACTOR OF THE PARTY OF TH									
Project Name: CAMP PREK Sample Normal Content PREK Sample Normal Content PREK Sample Normal Content PREK Sample Normal Content PREM Controllers / Committee PREM Description of Content PREM Sampling Measurements Wase Lord Content PREM Controllers Content PREM Sampling Measurements Wase Lord Content PREM Controllers Content PREM Contro	Sample No.		WA	TER S	SAM	PLE	LOG	1				
Sampling Measurements Measureme			Desired No. 1	7137-か	200			Dat	e: <u> </u>	-2.81	95	
Conservations / Comments: Couldity Assurance		Parallia I	Sample Locatio	n: 1/10	v 3 Ch 4	PVC						
Mathed of Measure Water Lovel:			Weather Condi Observations /	tions: <u>/</u> Comments:	<u>WEL</u>	L DE	veltiphi	ENT				
Method of cleaning Pump / Enlary Albonox Toxing DT ph Marvar No.: D2.50 92 Calibrated Albonox specific Conductance Meter No.: 34			Quality	Assurar	nce	Method to	Measure Water	Level:	5011	NST.		
Sampling Water Level (relow MF) at Start. 3.4 End:							T 57					
Sampling Water Level (below MP) at Stan: 13.41 End: TOC (N 12.1141)		= = = = = = = = = = = = = = = = = =	pH Meter No.: Specific Cond Comments:	uctance Mete	1 No.; 4	13.46=	10,00 k. (/ , 53 = 7 ,53 = 7	1,33 cs	librated C	Rad-lined	
Measurements Measuring Point (MP): TOLL PLIM												
Time Discharge PH Temp. Conductance Color			Sampli Measu	ng rements	S	Water Level (below MP) at Start: 13.10 End:						
1355 YO 7.16 17.8 980 7100 11 11 11 11 11 11			emIT		рН		Conductance		1	1		
1359 60 3.07 (8.0 980 7100 15 17 17 18 19 19 19 19 19 19 19				 					21	''	DIESEL OPUL	
1410 /00 3.12 /8.0 910 7100 fin u v. Hitle sadis Total Discharge: 110 Casing Volumes Removed: 15. Method of disposal of discharged water: 10 3- labeled 55 gal dybirul Number and size of sample containers tilled. N.2145			1359	60	7.07	18.0	980			i I	ally vilitle	
Total Discharge: 110 Casing Volumes Removed: 15. Method of disposal of discharged water: 16 2- In De Icd 55 gal druppol Number and size of sample containers filled. 12245				·\		1-:	1	-	Hin			
Total Discharge: 110 Casing Volumes Removed: 15. Method of disposal of discharged water: 19 2- labeled 55gal dybryd Number and size of sample containers filled									-			
Method of disposal of discharged water: 16 2- Intellect 55 gast dyplyon Number and size of sample containers filledN2NE		,				1/3		Coolea Volu	mes Rem	noved:	<u> </u>	
Tura - Award Chida Consultat			Total Disc	disposal of	discharge	od water; _	70 2-10	abeled	<u>55</u> 2	jal dr	VIVVI	
Collected by: 3LLK 500 12th Street, SUR 100, 023-3600		10	3		Washingt Chide					le Consultants Oakland, CA 94607-4014 3-3600		

Sample No.		W	ATER	SAN	NPLE	LOG	s	Sample No. MW-3			
		Project No. :						ale:	1-25	5-95	
		Project Name	CAM	IP P	<u>arks</u>						
· · · · · · · · · · · · · · · · · · ·		Sample Locat	lon: Mi	v <u>-3</u>							
		Well Descript	lon: 4'	sch	40 PV	<u> </u>					
		Weather Con-	dintons:	overc	ust	 _					
			/ Comments	: Do	lphin	key	<u></u>				
		Sampling Method: DISOUSABLE									
		Quality	Assura	nce	Method to	Measure Wate	r Level :	Solia	ST		
		Pump Lines:		New /	Cleaned	cev. B	ailer Lines:		Now)	/ Cleaned	
		Method of cleaning Pump / Baller:									
	-								KED LINED		
		Specific Conductance Meter No.: 18x.1.53 = 7.3 x 4 = 29.29als Comments: TD= \$524.54; 11.18x.1.53 = 7.3 x 4 = 29.29als								9.2 gals/4cv	
									 .		
		Sampling Water Lovel (below MP) at Start: 13.36 End: 12.3							End: 13.42		
					<u>'</u>	Specific					
		Time	Discharge (gallons)	рН	Temp. (°C)	Conductance (µmhos / cm)	Turbidity	Color	Odor	Commonts	
		10:35		0.98	17	1000	7100	Lt tan	Yes	preser about	
	, T=	10:38				910	tı -	6	*/	mid & sheen	
		10.39	20	1.13		950	u		1	top of Realumn	
			25_	7.16	18.0	1100		L.,		11-0-	
		10:43		7.20	18.0	1010	u		10		
		10.73			17.8	190	70	- v	**		
		10:48 A3 11:00	AS	7.30		900	40	u	И		
				112)	ssing Volum		und!	5.9	
		Total Disch	arge: disposal of c		l water		asing Volun To 1			<u> </u>	
		Number an	nsz la esia h	nnie conta	alnois filled	0				oune); 2-1L	
		[Fvel	oil); 2	voc's	, which	(Byox)					
	中	Collected t	Blank y: JL/	: Ми ЦК	<u> </u>	10:00	Wood 500 121	h Sireel, S	-Clyd uko 100, 9 (415) 803	le Consultants Oakland, CA 94607-4014 3-3600	
		,	7				<u> </u>				

1

*

Sample No.	WATER SAMPLE LOG						Sample No		
	Project Name:	_ <i>CA</i>	mV	<u> </u>	exs	{)ate:	1-55	-95
	Well Description Weather Condit Observations /	ions:	010	CCFS	<u>T</u>				
	Quality A			Method to	Method:	r Level : _	200	<u></u>	
	pH Meter No.: Specilla Candus Comments:	058 ctance Mete 545	ing Pump / Baller: 0586928 Calibrated 7.00/4.0 ance Meter No.: F80/6588 Calibrated RFD //N. 5450 + 136 = 24.86 - 12.23 : /2.63 \ 1.653 = 8.2						7.00/4.00 2 RFD lined 653= 8.241
	Samplin	mpling Water Level (below MP) at Start: 12,23 End: 12.2							
		Olscharge (gallons)	На	Measurin Temp. (°C)	Specific Conductance (jumhos / cm)	Turbldity	Color	Odor	Comments
		10	7.16 7.03 7.11	178	150 990 890	2/00 1	Mrthy (A	ND 11	
	11:43	20	7,10	17.8	900	11	11 11 11 11 11 11 11 11 11 11 11 11 11	/1 /\ h	
	11:47	As	7,34	17.8	910	<u>N</u>	12	"	1 2/4(4.5)
	Total Discharg	posal of dis	ple conta	iners filled	38 G.	FORTE	y	שניינו	by liter
	Keros:		rue K	l eil		WOO(500 12	tward	-Clyde uko 100, O (415) 803-	Consultants akland, CA 94607-4014 3600

ļ

ì

Project No.: 7137-0200 Da One labeled "Decen" Decen water. Project Name: CAMP PARK Sample Location: MW-1 Well Description: 4" SCH 4D PVC Weather Conditions: Overcust partly &			5-45				
ONE (abeled Decoil Drum for Decoil Water.) Sample Location: A SCHUD PUC	unn	1					
Well Description: 4- SULYO FVC	(nn)						
Well Description: 4 2019 Weather Conditions: Overcust partly &	UNA	/					
Weather Conditions:	7						
		7-					
Observations / Comments:							
Nav. Dic	- 00 5	ماراه	Proiler				
Quality Assurance Sampling Method: NAW OR	uality Assurance Sampling Method: New Disposable B. Method to Measure Water Level: Solinst						
Pump Lines: New / Cleaned Bailer Lines:	(New /	Cleaned				
pH Meter No.: 0280928	Ca	illbrated	4/10 25%				
F8016588	C:	alibrated	<u>lealined</u>				
Specific Conductance Meter No.: Comments: TD = 24, 48 + 36 = 24.84 = 14.24 ×	4.65	,3= C	1.2984=				
1 %7 Mals/Hcv							
DITTO MALLEY							
Sampling Water Level (below MP) at Start:	10.60	N RIV	End: <u>/0,72</u> 1 h)				
		Γ					
Time Discharge (gallons) pH Temp. (Conductance (sumhos / cm)	Color	Odor	Comments				
1322 5 7.31 17.2 1020 7100	122	100					
1324 10 7.27 17.2 (050 "	h.	10					
1325 15 7.20 17.5 1070	1	^	ļ <u></u>				
1326 20 7.16 17.7 1070	14	4					
1327 25 7,19 17.7 1020	64	h-4					
1329 30 7.17 17.8 1080 4	40						
1321 40 722 175 1070	, m						
1351 A.S. 7.25 17.5 1020 MOD	tan	NO	<u> </u>				
			u 52				
Total Discharge: Casing Volum	nos Remo	oved: _	7, 7,5				
Method of disposal of discharged water: To hbl -labeled	2400/1	/ams	; 2-1L/D18882				
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	/-tr	- OTEN POLENCIA	PI)				
+ KEROSENE); 2-1L (FUEL DIN), 1-SLOWN -7F	LOTA		le Consultanta				
Collected by: 1214 WOOD 500 12	CIWARC 2th Stroot, S	1-ClyC Sulte 100, (415) 80	de Consultants Oakland, CA 94607-4014 0-3600				

APPENDIX D CHEMICAL ANALYTICAL DATA

I:\94\24576.17137\vii M0331951356

Inchcape Testing Services Anametrix Laboratories

1961 Concourse Drive Suite E San Jose, CA 95131 Tel: 408-432-8192 Fax: 408-432-8198

MS. JOBETH FOLGER
WOODWARD-CLYDE CONSULTANTS
500 12TH STREET, SUITE 100
OAKLAND, CA 94607-4041

Workorder # : 9412134
Date Received : 12/13/94
Project ID : 7137
Purchase Order: N/A

The following samples were received at Anametrix for analysis:

ANAMETRIX ID	CLIENT SAMPLE ID
9412134- 1	MW-2-5
9412134- 2	MW-2-10
9412134- 3	MW-2-15

This report is organized in sections according to the specific Anametrix laboratory group which performed the analysis(es) and generated the data.

The results contained within this report relate to only the sample(s) tested. Additionally, these data should be considered in their entirety and Anametrix cannot be responsible for the detachment, separation, or otherwise partial use of this report.

Anametrix is certified by the California Department of Health Services (DHS) to perform environmental testing under Certificate Number 1234.

If you have any further questions or comments on this report, please call your project manager as soon as possible. Thank you for using Inchcape Testing Services.

Susan Kraska Yeager

Laboratory Director

Date

This report consists of $\cancel{\cancel{3}}$ pages.

REPORT SUMMARY ANAMETRIX, INC. (408) 432-8192

MS. JOBETH FOLGER WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4041 Workorder # : 9412134
Date Received : 12/13/94
Project ID : 7137
Purchase Order: N/A
Department : GC
Sub-Department: TPH

SAMPLE INFORMATION:

ANAMETRIX SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE SAMPLED	METHOD
9412134- 1	MW-2-5	SOIL	12/12/94	BTEX
9412134- 2	MW-2-10	SOIL	12/12/94	BTEX
9412134-3	MW-2-15	SOIL	12/12/94	BTEX
9412134- 1	MW-2-5	SOIL	12/12/94	TPHd
9412134- 2	MW-2-10	SOIL	12/12/94	TPHd
9412134- 3	MW-2-15	SOIL	12/12/94	TPHd

REPORT SUMMARY ANAMETRIX, INC. (408)432-8192

MS. JOBETH FOLGER WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4041 Workorder # : 9412134
Date Received : 12/13/94
Project ID : 7137
Purchase Order: N/A
Department : GC
Sub-Department: TPH

QA/QC SUMMARY :

- All holding times have been met for the analyses reported in this section.

Cheul Balmen 12/14/17/
Department Supervisor Date

Chémist

12-119194 Date

Organic Analysis Data Sheet Total Petroleum Hydrocarbons as Gasoline with BTEX ITS - Anametrix Laboratories - (408)432-8192

Lab Workorder : 9412134

Client Project ID: 7137

Matrix : SOIL

Units : mg/Kg

		Client ID	Client ID	Client ID	Client ID	Client ID
)	Method	MW-2-5	MW-2-10	MW-2-15		
	Reporting	Lab ID	Lab ID	Lab ID	Lab ID	Lab ID
Compound Name	_Limit*	9412134-01	9412134-02	9412134-03	METHOD BLANK	
Benzene	0.0050	ND	ND	ND	ND	
Toluene	0.0050	ND	ND	ND	ND	
Ethylbenzene	0.0050	ND	ИД	ND	ND	
Total Xylenes	0.0050	ND	ND	ND	ND	
TPH as Gasoline	0.50	•••	_	-	_	
Surrogate Recovery		98%	101%	102%	98%	
Instrument ID		HP12	HP12	HP12	HP12	
Date Sampled		12/12/94	12/12/94	12/12/94	N/A	
Date Analyzed		12/15/94	12/15/94	12/15/94	12/15/94	
RLMF		1	1	1.	1	
Filename Reference		FPD13401.D	FPD13402.D	FPD13403.D	BD1501E1.D	

* The Method Reporting Limit must be multiplied by the Reporting Limit Multiplication Factor (RLMF) to achieve the compound's reporting limit in the analysis.

ND : Not detected at or above the reporting limit for the analysis as performed.

TPHq : Determined by GC/FID following sample purge & trap by EPA Method 5030.

BTEX : Determined by modified EPA Method 8020 following sample purge & trap by EPA Method 5030.

Lab Control Limits for surrogate compound p-Bromofluorobenzene are 53-147%.

All testing procedures follow California Department of Health Services (Cal-DHS) approved methods.

Reggie Dawson 15/19/94
nalyst Date

Supervisor

12/18/84 Di

Issued on 12/16/94 @ 01:35 PM

GCTPH/BTEX - RESULTS - Page 01

Matrix Spike Report

Total Petroleum Hydrocarbons as BTEX ITS - Anametrix Laboratories - (408)432-8192

Project ID

: 7137

Laboratory ID : 9412134-01

Sample ID

: MW-2-5

Analyst : N

Matrix

Supervisor :

: SOIL

Date Sampled : 12/12/94

Instrument ID : HP12

Units : mg/Kg

COMPOUND NAME	SPIKE	SAMPLE	MS	MSD	RECOVERY	RPD	RPD
	TRUOMA	RESULTS	RECOVERY	RECOVERY	LIMITS		LIMITS
Benzene	0.040	ND	68%	65%	45-139	4%	30
Toluene	0.040	ND	63%	60%	51-138	4%	30
Ethylbenzene	0.040	ND	63%	58%	48-146	8%	30
Total Xylenes	0.040	ND	68%	63%	50-139	8%	30
Surrogate Recovery		98%	124%	125%			
Date Analyzed		12/15/94	12/15/94	12/15/94			
Multiplier		1	1	1			
Filename Reference		FPD13401.D	FMD13401.D	FDD13401.D			

^{*} Limits established by Inchcape Testing Services, Anametrix Laboratories.

Laboratory Control Spike Report Total Petroleum Hydrocarbons as BTEX ITS - Anametrix Laboratories - (408)432-8192

Instrument ID : HP12

Analyst : NO

Matrix

: SOLID

Supervisor : ~

Units : mg/Kg

COMPOUND NAME	SPIKE	LCS	RECOVERY
	AMOUNT	RECOVERY	LIMITS
Benzene	0.010	110%	52-133
Toluene	0.010	100%	57-136
Ethylbenzene	0.010	100%	56-139
Total Xylenes	0.010	110%	56-141
Surrogate Recovery		105%	53-147
Date Analyzed		12/15/94	
Multiplier		1	
Filename Reference		MD1501E1.D	

^{*} Limits established by Inchcape Testing Services, Anametrix Laboratories.

ANALYSIS DATA SHEET - TOTAL PETROLEUM HYDROCARBONS AS DIESEL ANAMETRIX, INC. (408) 432-8192

Anametrix W.O.: 9412134
Matrix : SOIL
Date Sampled : 12/12/94
Date Extracted: 12/14/94

Project Number: 7137
Date Released: 12/19/94
Instrument I.D.: HP19

Anametrix I.D.	Client I.D.	Date Analyzed	Reporting Limit (mg/Kg)	Amount Found (mg/Kg)	Surrogate %Rec
9412134-01 9412134-02 9412134-03 BD14H1F1	MW-2-5 MW-2-10 MW-2-15 METHOD BLANK	12/16/94 12/16/94 12/16/94 12/16/94	10 10 10 10	ND ND ND	89% 84% 84% 82%

Note: Reporting limit is obtained by multiplying the dilution factor times 10 mg/Kg.

The surrogate recovery limits for o-terphenyl are 64-109%.

ND - Not detected at or above the practical quantitation limit for the method.

TPHd - Total Petroleum Hydrocarbons as diesel is determined by GCFID following sample extraction by EPA Method 3550.

All testing procedures follow California Department of Health Services (Cal-DHS) approved methods.

Analyst Date

Cheuf Balman (4/19/9-1)
Supervisor Date

ANALYSIS DATA SHEET - TOTAL PETROLEUM HYDROCARBONS AS MOTOR OIL ANAMETRIX, INC. (408) 432-8192

Anametrix W.O.: 9412134
Matrix : SOIL
Date Sampled : 12/12/94
Date Extracted: 12/14/94

Project Number: 7137
Date Released: 12/19/94
Instrument I.D.: HP19

Anametrix I.D.	Client I.D.	Date Analyzed	Reporting Limit (mg/Kg)	Amount Found (mg/Kg)	Surrogate %Rec
9412134-01	MW-2-5	12/16/94	10	ND	89%
9412134-02	MW-2-10	12/16/94	10	ND	84%
9412134-03	MW-2-15	12/16/94	10	ND	84%
BD14H1F1	METHOD BLANK	12/16/94	10	ND	82%
		- ,			

Note: Reporting limit is obtained by multiplying the dilution factor times 10 mg/Kg.

The surrogate recovery limits for o-terphenyl are 64-109%.

ND - Not detected at or above the practical quantitation limit for the method.

TPHd - Total Petroleum Hydrocarbons as motor oil is determined by GCFID following sample extraction by EPA Method 3550.

All testing procedures follow California Department of Health Services (Cal-DHS) approved methods.

Affairst Date

Cheryl Balma (2/, 9/54) Supervisor Date

ANALYSIS DATA SHEET - TOTAL PETROLEUM HYDROCARBONS AS KEROSENE ANAMETRIX, INC. (408) 432-8192

Anametrix W.O.: 9412134

Project Number: 7137
Date Released: 12/19/94

Instrument I.D.: HP19

Matrix : SOIL
Date Sampled : 12/12/94
Date Extracted: 12/14/94

Anametrix I.D.	Client I.D.	Date Analyzed	Reporting Limit (mg/Kg)	Amount Found (mg/Kg)	Surrogate %Rec
9412134-01 9412134-02 9412134-03 BD14H1F1	MW-2-5 MW-2-10 MW-2-15 METHOD BLANK	12/16/94 12/16/94 12/16/94 12/16/94	10 10 10	ND ND ND ND	89% 84% 84% 82%

Note: Reporting limit is obtained by multiplying the dilution factor times 10 mg/Kg. The surrogate recovery limits for o-terphenyl are 64-109%.

ND - Not detected at or above the practical quantitation limit for the method.

TPHd - Total Petroleum Hydrocarbons as kerosene is determined by GCFID following sample extraction by EPA Method 3550.

All testing procedures follow California Department of Health Services (Cal-DHS) approved methods.

TOTAL EXTRACTABLE HYDROCARBON MATRIX SPIKE REPORT EPA METHOD 3550 WITH GC/FID ANAMETRIX, INC. (408) 432-8192

Sample I.D.: 7137 MW-2-10 Anametrix I.D.: 9412134-02 Analyst: Aft.

: SOIL Matrix : 03 Supervisor

Date Sampled: 12/12/94 Date Extracted: 12/14/94 Date Analyzed: 12/16/94 Date Released : 12/19/94 Instrument I.D.: HP19

COMPOUND	SPIKE AMT (mg/Kg)	SAMPLE CONC (mg/Kg)	REC % MS (mg/Kg)	REC MS	REC % MD (mg/Kg)	REC MD	RPD	% REC LIMITS *
DIESEL	62.5	0	60.7	97%	58.7	94%	-3%	32-143
SURROGATE				888		88%		55-129

^{*} Quality control limits established by Anametrix, Inc.

TOTAL EXTRACTABLE HYDROCARBON LABORATORY CONTROL SAMPLE REPORT EPA METHOD 3550 WITH GC/FID ANAMETRIX, INC. (408) 432-8192

Sample I.D. : LAB CONTROL SAMPLE

Anametrix I.D.: MD14H1F1

: SOIL Matrix Date Sampled : N/A

Analyst : All

Date Extracted: 12/14/94 Date Analyzed: 12/16/94 Supervisor : %
Date Released : 12/19/94 Instrument I.D.: HP19

COMPOUND	SPIKE AMT (mg/Kg)	REC LCS (mg/Kg)	% REC LCS	% REC LIMITS *
DIESEL	62.5	56.6	91%	48-113
SURROGATE			97%	55-129

^{*} Quality control limits established by Anametrix, Inc.

ANAMETRIX REPORT DESCRIPTION INORGANICS

Analytical Data Report (ADR)

The ADR contains tabulated results for inorganic analytes. All field samples, QC samples and blanks were prepared and analyzed according to procedures in the following references:

- "Test Methods for Evaluating Solid Waste," SW-846, EPA, 3rd Edition, November 1986.
- "Methods for Chemical Analysis of Water and Wastes," EPA, 3rd Edition, 1983.
- CCR Title 22, Section 66261, Appendix II, California Waste Extraction Test.
- CCR Title 22, Section 66261, Appendix XI, Organic Lead.
- "Standard Methods for the Examination of Water and Wastewater," APHA, AWWA, WEF, 18th Edition, 1992.
- USEPA Contract Laboratory Program Statement of Work for Inorganic Analyses, ILM02.1, 1991.

Matrix Spike Report (MSR)

The MSR summarizes percent recovery and relative percent difference information for matrix spikes and matrix spike duplicates. This information is a statement of both accuracy and precision. MSRs may not be provided with all analytical reports. Anametrix control limit for MSR is 75-125% with 25% for RPD limits, except for Method 6010A, which is 80-120% with 25% RPD limits.

Laboratory Control Sample Report (LCSR)

The LCSR summarizes percent recovery information for laboratory control spikes on reagent water or soil. This information is a statement of performance for the method, i.e., the samples are properly prepared and analyzed according to the applicable methods. Anametrix control limit for LCSR is 80-120%.

Method Blank Report (MBR)

The MBR summarizes quality control information for reagents used in preparing samples. The absolute value of each analyte measured in the method blank should be below the method reporting limit for that analyte.

Post Digestion Spike Report (PDSR)

The PDSR summarizes percent recovery information for post digestion spikes. A post digestion spike is performed for a particular analyte if the matrix spike recovery is outside of established control limits. Any percent recovery for a post digestion spike outside of established limits for an analyte indicates probable matrix effects and interferences for that analyte. Anametrix control limit for PDSR is 75-125%.

Qualifiers (O)

Anametrix uses several data qualifiers in inorganic reports. These qualifiers give additional information on the analytes reported. The following is a list of qualifiers and their meanings:

- I Sample was analyzed at the stated dilution due to spectral interferences.
- U Analyte concentration was below the method reporting limit. For matrix and post digestion spike reports, a value of "0.0" is entered for calculation of the percent recovery.
- B- Sample concentration was below the reporting limit but above the instrument detection limit. Result is entered for calculation of the percent recovery only.
- H Spike percent recovery was outside of Anametrix control limits due to interferences from relatively high concentration level of the analyte in the unspiked sample.
- L Reporting limit was increased to compensate for background absorbances or matrix interferences.

Comment Codes

In addition to qualifiers, the following codes are used in the comment section of all reports to give additional information about sample preparation methods:

- A- Sample was prepared for silver based on the silver digestion method developed by the Southern California Laboratory, Department of Health Services, "Acid Digestion for Sediments, Sludges, Soils and Solid Wastes. A Proposed Alternative to EPA SW846, Method 3050." Environmental Science and Technology, 1989, 23, 898-900.
- T Spikes were prepared after extraction by the Toxicity Characteristic Leaching Procedure (TCLP).
- C Spikes were prepared after extraction by the California Waste Extraction Test (CWET) method.
- D Reported results are dissolved, not total, metals.

Reporting Conventions

Analytical values reported are gross values, i.e., not corrected for method blank contamination. Solid matrices are reported on a wet weight basis, unless specifically requested otherwise.

REPORT SUMMARY ANAMETRIX, INC. (408)432-8192

MS. JOBETH FOLGER WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4041 Workorder # : 9412134
Date Received : 12/13/94
Project ID : 7137
Purchase Order: N/A

Purchase Order: N/A
Department : METALS
Sub-Department: METALS

SAMPLE INFORMATION:

ANAMETRIX CLIENT SAMPLE ID 9412134- 3 MW-2-15		MATRIX	DATE SAMPLED	METHOD
9412134- 3	MW-2-15	SOIL	12/12/94	PP-MET

REPORT SUMMARY ANAMETRIX, INC. (408)432-8192

MS. JOBETH FOLGER WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4041 Workorder # : 9412134
Date Received : 12/13/94
Project ID : 7137
Purchase Order: N/A
Department : METALS
Sub-Department: METALS

QA/QC SUMMARY :

- All holding times have been met for the analyses reported in this section.

- Matrix spike recoveries for sample MW-2-15 for antimony were outside Anametrix control limits, possibly due to interferences encountered during the sample preparation. A post digestion spike was performed, and the result was within control limits, indicating no spectral interferences.

Manhous 12/2/94
Department Supervisor Date

Stephen Carroll 11/21/6, Date

INCHCAPE TESTING SERVICES ANAMETRIX LABORATORIES (408) 432-8192 DATA REPORT

Anametrix Sample ID: 9412134-03 Client Sample ID: MW-2-15

Client Project Number: 7137

Matrix: SOIL

Date Sampled: 12/12/94

Analyst: 5 C Supervisor: MD

Analyte	Prep. Method	Analytical Method	instr. ID	Date Prepared	Date Analyzed	Dil. Factor	Units	Reporting Limit	Results	Q
Antimony	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	6.0	ND	
Arsenic	3050A	6010A	ICP2	12/14/94	12/21/94	1	mg/Kg	1.0	3.9	
Beryllium	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	0.50	ND	
Cadmium	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	0.50	ND	
Chromium	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	1.0	15.0	
Copper	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	2.5	10.7	$\lceil \rceil$
Lead	3050A	6010A	ICP2	12/14/94	12/21/94	1	mg/Kg	0.30	4.3	
Mercury	3050A	6010A	HGA1	12/14/94	12/15/94	1	mg/Kg	0.10	ND_	$\lceil _ \rceil$
Nickel	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	4.0	19.4	
Selenium	3050A	6010A	ICP2	12/14/94	12/21/94	1	mg/Kg	0.50	ND	
Silver	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	1.0	ND	
Thallium	3050A	6010A	ICP2	12/14/94	12/21/94	1	mg/Kg	1.0	ND	
Zinc	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	2.0	23.4	

INCHCAPE TESTING SERVICES ANAMETRIX LABORATORIES (408) 432-8192 METHOD BLANK REPORT

Anametrix Sample ID: BD144SA Anametrix WO #: 9412134 Client Project Number: 7137

Matrix: SOIL

Analyst:

Analyte	Prep. Method	Analytical Method	Instr.	Date Prepared	Date Analyzed	Dil. Factor	Units	Reporting Limit	Results	Q
Antimony	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	6.0	ND	
Arsenic	3050A	6010A	ICP2	12/14/94	12/21/94	1	mg/Kg	1.0	ND	
Beryllium	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	0.50	ND	
Cadmium	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	0.50	ND	
Chromium	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	1.0	ND	-
Copper	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	2.5	ND	
Lead	3050A	6010A	ICP2	12/14/94	12/21/94	1	mg/Kg	0.30	ND	
Mercury	3050A	6010A	HGA1	12/14/94	12/15/94	1	mg/Kg	0.10	ND	
Nickel	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	4.0	ND	
Selenium	3050A	6010A	ICP2	12/14/94	12/21/94	1	mg/Kg	0.50	ND	
Silver	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	1.0	ND	
Thallium	3050A	6010A	ICP2	12/14/94	12/21/94	1	mg/Kg	1.0	ND	
Zinc	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	2.0	ND	

INCHCAPE TESTING SERVICES ANAMETRIX LABORATORIES (408) 432-8192 SAMPLE DUPLICATE REPORT

Anametrix Sample ID: 9412134-03D Client Sample ID: MW-2-15

Client Project Number: 7137

Matrix: SOIL

Analyst: Supervisor:

Analyte	Prep. Method	Analyt. Method	Instr. ID	Date Prepared	Date Analyzed	Dil. Factor	Units	Sample Conc.	Sample Duplicate Conc.	RPD	Q
Antimony	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	ND	ND	N/A	
Arsenic	3050A	6010A	ICP2	12/14/94	12/21/94	1	mg/Kg	3.9	3.8	2.6	
Beryllium	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	ND	ND	N/A	
Cadmium	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	ND	ND	N/A	
Chromium	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	15.0	17.7	16.5	
Copper	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	10.7	12.0	11.5	
Lead	3050A	6010A	ICP2	12/14/94	12/21/94	1	mg/Kg	4.3	4.2	2.4	
Mercury	3050A	6010A	HGA1	12/14/94	12/15/94	1	mg/Kg	ND	ND	N/A	
Nickel	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	19.4	21.8	11.7	
Selenium	3050A	6010A	ICP2	12/14/94	12/21/94	1	mg/Kg	ND	ND	N/A	
Silver	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	ND	ND	N/A	
Thallium	3050A	6010A	ICP2	12/14/94	12/21/94	1	mg/Kg	ND	ND	N/A	
Zinc	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	23.4	26.6	12.8	

INCHCAPE TESTING SERVICES ANAMETRIX LABORATORIES (408) 432-8192 MATRIX SPIKE REPORT

Anametrix. Sample ID: 9412134-03MS,MD

Client Sample ID: MW-2-15 Client Proj. Number: 7137 Matrix: SOIL Analyst: *C
Supervisor: **

**Description: **

**De

Analyt. Method	Instr.	Date Prepared	Date Analyzed	Units	Spike Amount	Sample Conc.	Matrix Spike Conc.	% Rec.	Matrix Sp. Dup. Conc.	% Rec.	RPD	a
6010A	ICP1	12/14/94	12/20/94	mg/Kg	50.0	0.0	12.3	24.6	14.1	28.2	13.6	U
6010A	ICP2	12/14/94	12/21/94	mg/Kg	10.0	3.9	13.8	99.0	13.6	97.0	1.5	
6010A	ICP1	12/14/94	12/20/94	mg/Kg	5.0	0.0	5.1	102	5.0	100	2.0	U
6010A	ICP1	12/14/94	12/20/94	mg/Kg	5.0	0.0	4.3	86.0	4.3	86.0	0.0	U
6010A	ICP1	12/14/94	12/20/94	mg/Kg	20.0	15.0	38.5	118	34.9	99.5	9.8	
6010A	ICP1	12/14/94	12/20/94	mg/Kg	25.0	10.7	36.7	104	34.9	96.8	5.0	
6010A	ICP2	12/14/94	12/21/94	mg/Kg	50.0	4.3	52.8	97.0	52.2	95.8	1.1	
6010A	HGA1	12/14/94	12/15/94	mg/Kg	0.50	0.0	0.48	96.0	0.48	96.0	0.0	U
6010A	ICP1	12/14/94	12/20/94	mg/Kg	50.0	19.4	69.7	101	69.6	100	0.1	
6010A	ICP2	12/14/94	12/21/94	mg/Kg	5.0	0.0	5.1	102	5.1	102	0.0	U
6010A	ICP1	12/14/94	12/20/94	mg/Kg	5.0	0.0	4.1	82.0	4.1	82.0	0.0	U
6010A	ICP2	12/14/94	12/21/94	mg/Kg	10.0	0.0	8.9	89.0	9.2	92.0	3.3	U
6010A	ICP1	12/14/94	12/20/94	mg/Kg	50.0	23.4	72.1	97.4	67.6	88.4	6.4	
	Method 6010A 6010A 6010A 6010A 6010A 6010A 6010A 6010A 6010A 6010A	Method I.D. 6010A ICP1 6010A ICP1 6010A ICP1 6010A ICP1 6010A ICP1 6010A ICP2 6010A ICP2 6010A ICP2 6010A ICP2 6010A ICP1 6010A ICP1 6010A ICP1 6010A ICP1 6010A ICP2 6010A ICP2 6010A ICP2	Method I.D. Prepared 6010A ICP1 12/14/94 6010A ICP2 12/14/94 6010A ICP1 12/14/94 6010A ICP1 12/14/94 6010A ICP1 12/14/94 6010A ICP1 12/14/94 6010A ICP2 12/14/94 6010A ICP1 12/14/94 6010A ICP1 12/14/94 6010A ICP2 12/14/94 6010A ICP1 12/14/94 6010A ICP1 12/14/94 6010A ICP2 12/14/94 6010A ICP2 12/14/94	Method I.D. Prepared Analyzed 6010A ICP1 12/14/94 12/20/94 6010A ICP2 12/14/94 12/21/94 6010A ICP1 12/14/94 12/20/94 6010A ICP1 12/14/94 12/20/94 6010A ICP1 12/14/94 12/20/94 6010A ICP1 12/14/94 12/21/94 6010A ICP2 12/14/94 12/21/94 6010A ICP1 12/14/94 12/20/94 6010A ICP2 12/14/94 12/21/94 6010A ICP1 12/14/94 12/20/94 6010A ICP1 12/14/94 12/20/94 6010A ICP1 12/14/94 12/20/94 6010A ICP1 12/14/94 12/20/94 6010A ICP1 12/14/94 12/20/94	Method I.D. Prepared Analyzed Units 6010A ICP1 12/14/94 12/20/94 mg/Kg 6010A ICP2 12/14/94 12/21/94 mg/Kg 6010A ICP1 12/14/94 12/20/94 mg/Kg 6010A ICP1 12/14/94 12/20/94 mg/Kg 6010A ICP1 12/14/94 12/20/94 mg/Kg 6010A ICP1 12/14/94 12/21/94 mg/Kg 6010A ICP2 12/14/94 12/21/94 mg/Kg 6010A ICP1 12/14/94 12/20/94 mg/Kg 6010A ICP1 12/14/94 12/21/94 mg/Kg 6010A ICP2 12/14/94 12/21/94 mg/Kg 6010A ICP1 12/14/94 12/20/94 mg/Kg 6010A ICP1 12/14/94 12/20/94 mg/Kg 6010A ICP1 12/14/94 12/20/94 mg/Kg	Method I.D. Prepared Analyzed Units Amount 6010A ICP1 12/14/94 12/20/94 mg/Kg 50.0 6010A ICP2 12/14/94 12/21/94 mg/Kg 10.0 6010A ICP1 12/14/94 12/20/94 mg/Kg 5.0 6010A ICP1 12/14/94 12/20/94 mg/Kg 5.0 6010A ICP1 12/14/94 12/20/94 mg/Kg 20.0 6010A ICP1 12/14/94 12/20/94 mg/Kg 50.0 6010A ICP2 12/14/94 12/21/94 mg/Kg 50.0 6010A ICP1 12/14/94 12/20/94 mg/Kg 50.0 6010A ICP1 12/14/94 12/21/94 mg/Kg 50.0 6010A ICP2 12/14/94 12/21/94 mg/Kg 5.0 6010A ICP1 12/14/94 12/20/94 mg/Kg 5.0 6010A ICP1 12/14/94 12/20/94	Method I.D. Prepared Analyzed Units Amount Conc. 6010A ICP1 12/14/94 12/20/94 mg/Kg 50.0 0.0 6010A ICP2 12/14/94 12/21/94 mg/Kg 10.0 3.9 6010A ICP1 12/14/94 12/20/94 mg/Kg 5.0 0.0 6010A ICP1 12/14/94 12/20/94 mg/Kg 5.0 0.0 6010A ICP1 12/14/94 12/20/94 mg/Kg 20.0 15.0 6010A ICP1 12/14/94 12/20/94 mg/Kg 25.0 10.7 6010A ICP2 12/14/94 12/21/94 mg/Kg 50.0 4.3 6010A ICP1 12/14/94 12/20/94 mg/Kg 50.0 0.0 6010A ICP1 12/14/94 12/20/94 mg/Kg 50.0 19.4 6010A ICP2 12/14/94 12/20/94 mg/Kg 5.0 0.0 6010A	Analyt. Method Instr. I.D. Date Prepared Date Analyzed Units Spike Amount Sample Conc. Spike Conc. 6010A ICP1 12/14/94 12/20/94 mg/Kg 50.0 0.0 12.3 6010A ICP2 12/14/94 12/21/94 mg/Kg 10.0 3.9 13.8 6010A ICP1 12/14/94 12/20/94 mg/Kg 5.0 0.0 5.1 6010A ICP1 12/14/94 12/20/94 mg/Kg 5.0 0.0 4.3 6010A ICP1 12/14/94 12/20/94 mg/Kg 20.0 15.0 38.5 6010A ICP1 12/14/94 12/20/94 mg/Kg 25.0 10.7 36.7 6010A ICP2 12/14/94 12/21/94 mg/Kg 50.0 4.3 52.8 6010A ICP1 12/14/94 12/20/94 mg/Kg 50.0 0.0 0.48 6010A ICP1 12/14/94 12/20/94 mg/Kg 5.0 <t< td=""><td>Analyt. Method Instr. I.D. Date Prepared Date Analyzed Units Spike Amount Spike Conc. Spike Conc. Rec. 6010A ICP1 12/14/94 12/20/94 mg/Kg 50.0 0.0 12.3 24.6 6010A ICP2 12/14/94 12/21/94 mg/Kg 10.0 3.9 13.8 99.0 6010A ICP1 12/14/94 12/20/94 mg/Kg 5.0 0.0 5.1 102 6010A ICP1 12/14/94 12/20/94 mg/Kg 5.0 0.0 4.3 86.0 6010A ICP1 12/14/94 12/20/94 mg/Kg 20.0 15.0 38.5 118 6010A ICP1 12/14/94 12/20/94 mg/Kg 25.0 10.7 36.7 104 6010A ICP2 12/14/94 12/21/94 mg/Kg 50.0 4.3 52.8 97.0 6010A ICP1 12/14/94 12/20/94 mg/Kg 50.0 0.0 0.48<td>Analyt. Method Instr. I.D. Date Prepared Analyzed Units Amount Spike Conc. Spike Conc. % Rec. Sp. Dup. Conc. 6010A ICP1 12/14/94 12/20/94 mg/Kg 50.0 0.0 12.3 24.6 14.1 6010A ICP2 12/14/94 12/21/94 mg/Kg 10.0 3.9 13.8 99.0 13.6 6010A ICP1 12/14/94 12/20/94 mg/Kg 5.0 0.0 5.1 102 5.0 6010A ICP1 12/14/94 12/20/94 mg/Kg 5.0 0.0 4.3 86.0 4.3 6010A ICP1 12/14/94 12/20/94 mg/Kg 20.0 15.0 38.5 118 34.9 6010A ICP1 12/14/94 12/20/94 mg/Kg 25.0 10.7 36.7 104 34.9 6010A ICP2 12/14/94 12/21/94 mg/Kg 50.0 4.3 52.8 97.0 52.2 6010A</td><td>Analyt. Method I.D. Date Prepared Date Analyzed Units Spike Amount Spike Conc. Spike Conc. Spike Conc. Spike Conc. Rec. Sp. Dup. Conc. Sp. Dup. Conc. Rec. Sp. Dup. Conc. Sp. Dup. C</td><td>Analyt. Method Instr. I.D. Date Prepared Prepared Analyzed Analyzed Analyzed Units Amount Spike Conc. Spike Conc. Spike Conc. Spike Conc. Spike Conc. Spike Conc. Rec. Spike Conc. Spike Conc. Rec. Spike Conc. Rec. Spike Conc. Spike Conc. Spike Conc. Rec. Spike Conc. Spike Conc. Rec. Spike Conc. Spike Conc. Rec. Spike Conc. Spike Conc. Spike Conc. Rec. Spike Conc. Spike Conc. Spike Conc. Rec. Spike Conc. Spike Conc. Spike Conc. Spike Conc. Rec. Spike Conc. Spike Conc</td></td></t<>	Analyt. Method Instr. I.D. Date Prepared Date Analyzed Units Spike Amount Spike Conc. Spike Conc. Rec. 6010A ICP1 12/14/94 12/20/94 mg/Kg 50.0 0.0 12.3 24.6 6010A ICP2 12/14/94 12/21/94 mg/Kg 10.0 3.9 13.8 99.0 6010A ICP1 12/14/94 12/20/94 mg/Kg 5.0 0.0 5.1 102 6010A ICP1 12/14/94 12/20/94 mg/Kg 5.0 0.0 4.3 86.0 6010A ICP1 12/14/94 12/20/94 mg/Kg 20.0 15.0 38.5 118 6010A ICP1 12/14/94 12/20/94 mg/Kg 25.0 10.7 36.7 104 6010A ICP2 12/14/94 12/21/94 mg/Kg 50.0 4.3 52.8 97.0 6010A ICP1 12/14/94 12/20/94 mg/Kg 50.0 0.0 0.48 <td>Analyt. Method Instr. I.D. Date Prepared Analyzed Units Amount Spike Conc. Spike Conc. % Rec. Sp. Dup. Conc. 6010A ICP1 12/14/94 12/20/94 mg/Kg 50.0 0.0 12.3 24.6 14.1 6010A ICP2 12/14/94 12/21/94 mg/Kg 10.0 3.9 13.8 99.0 13.6 6010A ICP1 12/14/94 12/20/94 mg/Kg 5.0 0.0 5.1 102 5.0 6010A ICP1 12/14/94 12/20/94 mg/Kg 5.0 0.0 4.3 86.0 4.3 6010A ICP1 12/14/94 12/20/94 mg/Kg 20.0 15.0 38.5 118 34.9 6010A ICP1 12/14/94 12/20/94 mg/Kg 25.0 10.7 36.7 104 34.9 6010A ICP2 12/14/94 12/21/94 mg/Kg 50.0 4.3 52.8 97.0 52.2 6010A</td> <td>Analyt. Method I.D. Date Prepared Date Analyzed Units Spike Amount Spike Conc. Spike Conc. Spike Conc. Spike Conc. Rec. Sp. Dup. Conc. Sp. Dup. Conc. Rec. Sp. Dup. Conc. Sp. Dup. C</td> <td>Analyt. Method Instr. I.D. Date Prepared Prepared Analyzed Analyzed Analyzed Units Amount Spike Conc. Spike Conc. Spike Conc. Spike Conc. Spike Conc. Spike Conc. Rec. Spike Conc. Spike Conc. Rec. Spike Conc. Rec. Spike Conc. Spike Conc. Spike Conc. Rec. Spike Conc. Spike Conc. Rec. Spike Conc. Spike Conc. Rec. Spike Conc. Spike Conc. Spike Conc. Rec. Spike Conc. Spike Conc. Spike Conc. Rec. Spike Conc. Spike Conc. Spike Conc. Spike Conc. Rec. Spike Conc. Spike Conc</td>	Analyt. Method Instr. I.D. Date Prepared Analyzed Units Amount Spike Conc. Spike Conc. % Rec. Sp. Dup. Conc. 6010A ICP1 12/14/94 12/20/94 mg/Kg 50.0 0.0 12.3 24.6 14.1 6010A ICP2 12/14/94 12/21/94 mg/Kg 10.0 3.9 13.8 99.0 13.6 6010A ICP1 12/14/94 12/20/94 mg/Kg 5.0 0.0 5.1 102 5.0 6010A ICP1 12/14/94 12/20/94 mg/Kg 5.0 0.0 4.3 86.0 4.3 6010A ICP1 12/14/94 12/20/94 mg/Kg 20.0 15.0 38.5 118 34.9 6010A ICP1 12/14/94 12/20/94 mg/Kg 25.0 10.7 36.7 104 34.9 6010A ICP2 12/14/94 12/21/94 mg/Kg 50.0 4.3 52.8 97.0 52.2 6010A	Analyt. Method I.D. Date Prepared Date Analyzed Units Spike Amount Spike Conc. Spike Conc. Spike Conc. Spike Conc. Rec. Sp. Dup. Conc. Sp. Dup. Conc. Rec. Sp. Dup. Conc. Sp. Dup. C	Analyt. Method Instr. I.D. Date Prepared Prepared Analyzed Analyzed Analyzed Units Amount Spike Conc. Spike Conc. Spike Conc. Spike Conc. Spike Conc. Spike Conc. Rec. Spike Conc. Spike Conc. Rec. Spike Conc. Rec. Spike Conc. Spike Conc. Spike Conc. Rec. Spike Conc. Spike Conc. Rec. Spike Conc. Spike Conc. Rec. Spike Conc. Spike Conc. Spike Conc. Rec. Spike Conc. Spike Conc. Spike Conc. Rec. Spike Conc. Spike Conc. Spike Conc. Spike Conc. Rec. Spike Conc. Spike Conc

INCHCAPE TESTING SERVICES ANAMETRIX LABORATORIES (408) 432-8192

POST DIGESTION SPIKE REPORT

Anametrix Sample ID: 9412134-03PDS

Client Sample ID: MW-2-15

Client Project Number: 7137

Matrix: SOIL

Analyst: Supervisor: W

Analyte	Analyt. Method	Instr. ID	Date Prepared	Date Analyzed	D.F.	Units	Spike Amount	Sample Conc.	PDS Conc.	% Rec.	Ŋ
Antimony	6010A	ICP1	12/21/94	12/21/94	1	mg/Kg	25.0	0.0	22.3	89.2	C

INCHCAPE TESTING SERVICES ANAMETRIX LABORATORIES (408) 432-8192

LABORATORY CONTROL SAMPLE REPORT

Lab. Control Sample ID: LD144SA

Anametrix WO #: 9412134 Client Project Number: 7137

Matrix: SOIL

Analyst: 5C Supervisor: W

Analyte	Prep. Method	Analytical Method	instr. ID	Date Prepared	Date Analyzed	Dil. Factor	Units	Spike Amount	LCS Results	% Recovery	Q
Antimony	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	50.0	43.5	87.0	
Arsenic	3050A	6010A	ICP2	12/14/94	12/21/94	1	mg/Kg	10.0	10.0	100	
Beryllium	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	5.0	4.7	94.0	
Cadmium	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	5.0	4.2	84.0	
Chromium	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	20.0	18.0	90.0	
Copper	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	25.0	22.5	90.0	
Lead	3050A	6010A	ICP2	12/14/94	12/21/94	1	mg/Kg	50.0	50.7	101	
Mercury	3050A	6010A	HGA1	12/14/94	12/15/94	1	mg/Kg	0.50	0.50	100	
Nickel	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	50.0	45.4	90.8	
Selenium	3050A	6010A	ICP2	12/14/94	12/21/94	1	mg/Kg	5.0	5.2	104	
Silver	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	5.0	4.3	86.0	
Thallium	3050A	6010A	ICP2	12/14/94	12/21/94	1	mg/Kg	10.0	10.1	101	
Zinc	3050A	6010A	ICP1	12/14/94	12/20/94	1	mg/Kg	50.0	41.5	83.0	

SAMPLE RECEIVING CHECKLIST

WORKORDER NUMBER: 947134 CLIENT PRO	OJECT ID: 137		-	
				-
COOLER				
Shipping slip (airbill, etc.) present?	Y	S I	МО	(N/A)
If YES, enter carrier name and airbill #:				
Custody Seal on the outside of cooler?	Y	ES I	МО	(N/A)
Condition: INTACT BROKEN		=		
Temperature of sample (s) within range?	(Y	ES)	NO	N/A
List temperature of cooler (s):				
SAMPLES			_	_
Chain of custody seal present for each container?	Y	ES	ИО	(N/A)
Condition: INTACT BROKEN				
Samples arrived within holding time?	(Y	ES)	NO	N/A
Samples in proper containers for methods requested?	Y	EŜ	NO	
Condition of containers: INTACT BROKEN				
If NO, were samples transferred to proper container?				
Were VOA containers received with zero headspace?	Y	ES	NO	(N/A
If NO, was it noted on the chain of custody?				
Were container labels complete? (ID, date, time preservative, etc.)		ES	NO	
Were samples preserved with the proper preservative?	Y	ES	NO	(N/A)
If NO, was the proper preservative added at time of receipt?				
pH check of samples required at time of receipt?	Y	es (NO	
If YES, pH checked and recorded by:				
Sufficient amount of sample received for methods requested?		ES)	NO	
If NO, has the client or lab project manager been notified?			_	
Field blanks received with sample batch? # of Sets:		ES	NO	N/A
Trip blanks received with sample batch? # of Sets:		TES	МО	N/A
CHAIN OF CUSTODY				
Chain of custody received with samples?	(ÆŜ	ИО	
Has it been filled out completely and in ink?	(TES)_	NO	
Sample ID's on chain of custody agree with container labels?		ÆŠ	NO	<u>-</u>
Number of containers indicated on chain of custody agree with number re	eceived?	YES)	NO	···
Analysis methods clearly specified?		(ES)	ИО	
Sampling date and time indicated?	(YES	NO	
Proper signatures of sampler, courier, sample custodian in appropriate pl	ace? with time and date?	YES	NO	
Turnaround time? REGULAR RUSH				
Any NO response and/or any "BROKEN" that was checked must be	e detailed in the Corrective A	ction	Fort	n.

Sample Custodian: TP Date: 17-18-94 Project Manager: Manager: Date: 18/20/94

Woodward-Clyde Consultants Chain of Custody Record 500 12th Street, Suite 100, Oakland, CA 94607-4014 (510) 893-3600 PROJECT NO. **ANALYSES** of Containers SAMPLERS: (Signature) CCK Metals REMARKS (Sample preservation, handling procedures, etc.) DATE SAMPLE NUMBER TIME 1994 1212 1135 MW-2-5 *805 1205 MW-2-10 TPHEXT CORd, 2 Kevesene, (veloil) 1220 MW-Z-15 Samples collected in brass liners, teflon coated
paper, plastic
caps, and
zylock bags.
Staredonice
upon collection Normal TAT Questions/Results JoBeth Folger 510-874-3138 TOTAL lica chest NUMBER OF **CONTAINERS** DATE TIME RELINQUISHED BY: RECEIVED BY : RELINQUISHED BY : DATE/TIME RECEIVED BY: (Signature) (Signature) (Signature) METHOD OF SHIPMENT : SHIPPED BY: COURIER: (Signature) RECEIVED FOR LAB BY : DATE/TIME (Signature) Anametric Course

9412139

ZO'.U7

1961 Concourse Drive Suite E San Jose, CA 95131 Tel: 408-432-8192 Fax: 408-432-8198

MS. JOBETH FOLGER WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4041

Workorder # : 9412222 Date Received: 12/21/94

Project ID : 7137 Purchase Order: N/A

The following samples were received at Anametrix for analysis:

ANAMETRIX ID	CLIENT SAMPLE ID
9412222- 1	MW-3-5
9412222- 2	MW-3-10
9412222- 3	MW-3-15
9412222- 4	MW-1-4
9412222- 5	MW-1-10
9412222- 6	MW-1-14

This report is organized in sections according to the specific Anametrix laboratory group which performed the analysis(es) and generated the data.

The results contained within this report relate to only the sample(s) tested. Additionally, these data should be considered in their entirety and Anametrix cannot be responsible for the detachment, separation, or otherwise partial use of this report.

Anametrix is certified by the California Department of Health Services (DHS) to perform environmental testing under Certificate Number 1234.

If you have any further questions or comments on this report, please call your project manager as soon as possible. Thank you for using Inchcape Testing Services.

Susan Kraska Yeager Laboratory Director

This report consists of 25

REPORT SUMMARY ANAMETRIX, INC. (408)432-8192

MS. JOBETH FOLGER WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4041 Workorder # : 9412222
Date Received : 12/21/94
Project ID : 7137
Purchase Order: N/A
Department : GC

Sub-Department: TPH

SAMPLE INFORMATION:

ANAMETRIX SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE SAMPLED	METHOD
9412222- 1	MW-3-5	SOIL	12/20/94	BTEX
9412222- 2	MW-3-10	SOIL	12/20/94	BTEX
9412222- 3	MW-3-15	SOIL	12/20/94	BTEX
9412222- 4	MW-1-4	SOIL	12/20/94	BTEX
9412222- 5	MW-1-10	SOIL	12/20/94	BTEX
9412222- 6	MW-1-14	SOIL	12/20/94	BTEX
9412222- 1	MW-3-5	SOIL	12/20/94	TPHd
9412222- 2	MW-3-10	SOIL	12/20/94	TPHd
9412222- 3	MW-3-15	SOIL	12/20/94	TPHd
9412222- 4	MW-1-4	SOIL	12/20/94	TPHd
9412222- 5	MW-1-10	SOIL	12/20/94	TPHd
9412222- 6	MW-1-14	SOIL	12/20/94	TPHd

REPORT SUMMARY ANAMETRIX, INC. (408) 432-8192

MS. JOBETH FOLGER WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4041

Workorder # : 9412222 Date Received : 12/21/94 Project ID : 7137 Purchase Order: N/A Department : GC Sub-Department: TPH

QA/QC SUMMARY :

- All holding times have been met for the analyses reported in this workorder.

Cheul Bulme Department Supervisor

Regge Dawson 1/3/95 Chemist

Organic Analysis Data Sheet Total Petroleum Hydrocarbons as Gasoline with BTEX ITS - Anametrix Laboratories - (408)432-8192

Lab Workorder : 9412222

Client Project ID: 7137

Matrix

: SOIL

Units : mg/Kg

		Client ID				
	Method	MW-3-5	MW-3-10	MW-3-15	MW-1-4	MW-1-10
	Reporting	Lab ID				
Compound Name	Limit*	9412222-01	9412222-02	9412222-03	9412222-04	9412222-05
Benzene	0.0050	ND	ND	0.057	ND	ND
Toluene	0.0050	ND	ND	0.11	ND_	ND
Ethylbenzene	0.0050	ND	ИD	0.30	ND	ND
Total Xylenes	0.0050	ИД	ND	1.0	ND	ND
TPH as Gasoline	0.50					
Surrogate Recovery	T	82%	95%	129%	78%	98%
Instrument ID		HP12	HP12	HP12	HP12	HP12
Date Sampled		12/20/94	12/20/94	12/20/94	12/20/94	12/20/94
Date Analyzed		12/28/94	12/28/94	12/29/94	12/28/94	12/28/94
RLMF		1	1	10	1	1
Filename Reference		FPD22201.D	FPD22202.D	FRD22203.D	FPD22204.D	FPD22205.D

^{*} The Method Reporting Limit must be multiplied by the Reporting Limit Multiplication Factor (RLMF) to achieve the compound's reporting limit in the analysis.

ND : Not detected at or above the reporting limit for the analysis as performed.

TPHq : Determined by GC/FID following sample purge & trap by EPA Method 5030.

BTEX : Determined by modified EPA Method 8020 following sample purge & trap by EPA Method 5030.

Lab Control Limits for surrogate compound p-Bromofluorobenzene are 53-147%.

All testing procedures follow California Department of Health Services (Cal-DHS) approved methods.

Analyst

01/03/95

Date

Charge Balmer Supervisor 1/3/95

Issued on 1/4/95 @ 4:16 pm

Date

Total Petroleum Hydrocarbons as Gasoline with BTEX ITS - Anametrix Laboratories - (408)432-8192

gante Analysis sata smet

Lab Workorder : 9412222

Client Project ID: 7137

Matrix

: SOIL

Units : mg/Kg

	Ţ Į	Client ID	Client ID	Client ID	Client ID	Client ID
	Method	MW-1-14				
	Reporting	Lab ID	Lab ID	Lab ID	Lab ID	Lab ID
Compound Name	Limit*	9412222-06	METHOD BLANK	METHOD BLANK	METHOD BLANK	
Benzene	0.0050	ND	ND	ND	ND	
Toluene	0.0050	ND	ND	ND	ND	
Ethylbenzene	0.0050	ND	ND	ND	ND	
Total Xylenes	0.0050	ND	ND	ND	ND	
TPH as Gasoline	0.50					
Surrogate Recovery		99%	97%	101%	99%	
Instrument ID		HP12	HP12	HP12	HP12	
Date Sampled		12/20/94	N/A	N/A	N/A	
Date Analyzed	12/28/94		12/28/94	12/28/94	12/29/94	
RLMF		1	1	1	1	
Filename Reference		FPD22206.D	BD2801E1.D	BD2802E1.D	BD2901E1.D	

^{*} The Method Reporting Limit must be multiplied by the Reporting Limit Multiplication Factor (RLMF) to achieve the compound's reporting limit in the analysis.

ND : Not detected at or above the reporting limit for the analysis as performed.

TPHg : Determined by GC/FID following sample purge & trap by EPA Method 5030.

BTEX : Determined by modified EPA Method 8020 following sample purge & trap by EPA Method 5030.

Lab Control Limits for surrogate compound p-Bromofluorobenzene are 53-147%.

All testing procedures follow California Department of Health Services (Cal-DHS) approved methods.

Analyst

01103195

Date

Chengl Berlman

1/3/5/-Date

Issued on 1/4/95 @ 4:17 pm

Matrix Spike Report

Total Petroleum Hydrocarbons as BTEX

ITS - Anametrix Laboratories - (408)432-8192

Project ID

: 7137

Laboratory ID : 9412222-02

Sample ID

: MW-3-10

: 12/20/94

Analyst : KV

Matrix

Supervisor : 3

Date Sampled

: SOIL

Instrument ID : HP12

Units : mg/Kg

COMPOUND NAME	SPIKE	SAMPLE	MS	MSD	RECOVERY	RPD	RPD
	TRUOMA	RESULTS	RECOVERY	RECOVERY	LIMITS		LIMITS
Benzene	0.020	ND	106%	100%	45-139	6%	30
Toluene	0.020	ND	106%	96%	51-138	10%	30
Ethylbenzene	0.020	ND	110%	100%	48-146	10%	30
Total Xylenes	0.020	ND	120%	106%	50-139	12%	30
Surrogate Recovery		95%	94%	87%			
Date Analyzed		12/28/94	12/28/94	12/28/94			
Multiplier		1	1	1			
Filename Reference		FPD22202.D	FMD22202.D	FDD22202.D			

^{*} Limits established by Inchcape Testing Services, Anametrix Laboratories.

Matrix Spike Report

Total Petroleum Hydrocarbons as BTEX ITS - Anametrix Laboratories - (408)432-8192

Project ID

: 7137

Laboratory ID : BATCH SPIKE

Sample ID

: BATCH SPIKE

Analyst : \emptyset

Matrix

Supervisor : 5

: SOIL

Instrument ID : HP12

Date Sampled : N/A

Units : mg/Kg

COMPOUND NAME	SPIKE	SAMPLE	MS	MSD	RECOVERY	RPD	RPD
	TUUOMA	RESULTS	RECOVERY	RECOVERY	LIMITS	l	LIMITS
Benzene	0.040	ND	106%	116%	45-139	- 9%	30
Toluene	0.040	ND	106%	116%	51 - 138	-9%	30
Ethylbenzene	0.040	ND	110%	120%	48-146	-9%	30
Total Xylenes	0.040	ND	110%	126%	50-139	-14%	30
<u> </u>		<u>624:2223009;9546824,222</u> 	: 00 00000	<u>. 000000000000000000000000000000000000</u>	F-25:22.22.23.33		
Surrogate Recovery		103%	104%	109%			
Date Analyzed		12/29/94	12/29/94	12/29/94			
Multiplier		1	1	1			
Filename Reference		FRD23702.D	FMD23702.D	FDD23702.D			

Limits established by Inchcape Testing Services, Anametrix Laboratories.

Laboratory Control Spike Report Total Petroleum Hydrocarbons as BTEX ITS - Anametrix Laboratories - (408)432-8192

Instrument ID : HP12

Analyst : N

Matrix

: SOLID

Supervisor : W

Units : mg/Kg

COMPOUND NAME	SPIKE	LCS	RECOVERY
	AMOUNT	RECOVERY	LIMITS
Benzene	0.020	98%	52-133
Toluene	0.020	101%	57-136
Ethylbenzene	0.020_	104%	56-139
Total Xylenes	0.020	114%	56-141
Surrogate Recovery		100%	53-147
Date Analyzed		12/28/94	
Multiplier		1	
Filename Reference		MD2802E1.D	

^{*} Limits established by Inchcape Testing Services, Anametrix Laboratories.

Laboratory Control Spike Report Total Petroleum Hydrocarbons as BTEX ITS - Anametrix Laboratories - (408)432-8192

Instrument ID : HP12 Analyst : PD

Matrix : SOLID Supervisor : 9

Units : mg/Kg

COMPOUND NAME	SPIKE	LCS	RECOVERY
	AMOUNT	RECOVERY	LIMITS
Benzene	0.020	105%	52-133
Toluene	0.020	106%	57-136
Ethylbenzene	0.020	110%	56-139
Total Xylenes	0.020	121%	56-141
Surrogate Recovery		99%	53-147
Date Analyzed		12/29/94	
Multiplier		1	
Filename Reference		MD2901E1.D	

^{*} Limits established by Inchcape Testing Services, Anametrix Laboratories.

ANALYSIS DATA SHEET - TOTAL PETROLEUM HYDROCARBONS AS DIESEL ANAMETRIX, INC. (408) 432-8192

Anametrix W.O.: 9412222

Project Number: 7137 Date Released: 12/29/94 Instrument I.D.: HP19

Matrix : SOIL
Date Sampled : 12/20/94
Date Extracted: 12/23/94

Anametrix I.D.	Client I.D.	Date Analyzed	Reporting Limit (mg/Kg)	Amount Found (mg/Kg)	Surrogate %Rec
9412222-01	MW-3-5	12/28/94	10	ND	83%
9412222-02	MW-3-10	12/28/94	10	ND	78%
9412222-03	MW-3-15	12/28/94	10	ND	89%
9412222-04	MW - 1 - 4	12/29/94	10	ND	86%
9412222-05	MW-1-10	12/28/94	10	ND	85%
9412222-06	MW-1-14	12/29/94	10	ИD	90%
BD23H1F1	METHOD BLANK	12/28/94	10	ND	76%

Note: Reporting limit is obtained by multiplying the dilution factor times 10 mg/Kg. The surrogate recovery limits for o-terphenyl are 64-109%.

ND - Not detected at or above the practical quantitation limit for the method.

TPHd - Total Petroleum Hydrocarbons as diesel is determined by GCFID following sample extraction by EPA Method 3550.

> All testing procedures follow California Department of Health Services (Cal-DHS) approved methods.

Chuyl Belmer

ANALYSIS DATA SHEET - TOTAL PETROLEUM HYDROCARBONS AS MOTOR OIL ANAMETRIX, INC. (408) 432-8192

Anametrix W.O.: 9412222
Matrix : SOIL
Date Sampled : 12/20/94
Date Extracted: 12/23/94

Project Number: 7137
Date Released: 12/29/94
Instrument I.D.: HP19

Anametrix I.D.	Client I.D.	Date Analyzed	Reporting Limit (mg/Kg)	Amount Found (mg/Kg)	Surrogate %Rec
	<u>-</u>			115	0.28
9412222-01	MW-3-5	12/28/94	10	ND	83%
9412222-02	MW-3-10	12/28/94	10	ND	78%
9412222-03	MW - 3 - 15	12/28/94	10	ND	89%
9412222-04	MW-1-4	12/29/94	10	29	86%
9412222-05	MW-1-10	12/28/94	10	ND	85%
9412222-06	MW-1-14	12/29/94	ĩo	ND	90%
BD23H1F1	METHOD BLANK	12/28/94	10	ND	76%

Note: Reporting limit is obtained by multiplying the dilution factor times 10 mg/Kg.

The surrogate recovery limits for o-terphenyl are 64-109%.

ND - Not detected at or above the practical quantitation limit for the method.

TPHd - Total Petroleum Hydrocarbons as motor oil is determined by GCFID following sample extraction by EPA Method 3550.

All testing procedures follow California Department of Health Services (Cal-DHS) approved methods.

Analyst 1/3/96

Charles 1/3/45 Supervisor Date

ANALYSIS DATA SHEET - TOTAL PETROLEUM HYDROCARBONS AS KEROSENE ANAMETRIX, INC. (408) 432-8192

Anametrix W.O.: 9412222

: SOIL Matrix

Project Number: 7137
Date Released: 12/29/94

Date Sampled : 12/20/94 Date Extracted: 12/23/94

Instrument I.D.: HP19

Anametrix I.D.	Client I.D.	Date Analyzed	Reporting Limit (mg/Kg)	Amount Found (mg/Kg)	Surrogate %Rec
9412222-01	MW-3-5	12/28/94	10	ND	83%
9412222-02	MW-3-10	12/28/94	10	ND	78%
9412222-03	MW-3-15	12/28/94	10	ND	89%
9412222-04	MW - 1 - 4	12/29/94	10	ND	86%
9412222-05	MW-1-10	12/28/94	10	ND	85%
9412222-06	MW-1-14	12/29/94	10	ND	90%
BD23H1F1	METHOD BLANK	12/28/94	10	ND	76%
					

Note: Reporting limit is obtained by multiplying the dilution factor times 10 mg/Kg. The surrogate recovery limits for o-terphenyl are 64-109%.

- ND Not detected at or above the practical quantitation limit for the method.
- TPHd Total Petroleum Hydrocarbons as kerosene is determined by GCFID following sample extraction by EPA Method 3550.

All testing procedures follow California Department of Health Services (Cal-DHS) approved methods.

1/3/95

Date

TOTAL EXTRACTABLE HYDROCARBON MATRIX SPIKE REPORT EPA METHOD 3550 WITH GC/FID ANAMETRIX, INC. (408) 432-8192

Sample I.D. : 7137 MW-1-10 Matrix : SOIL

Anametrix I.D.: 9412222-05

Matrix

Analyst

1. A. B. Supervisor Date Released: 01/03/95

Date Sampled: 12/20/94
Date Extracted: 12/23/94
Date Analyzed: 12/28/94

Instrument I.D.: HP19

COMPOUND	SPIKE AMT (mg/Kg)	SAMPLE CONC (mg/Kg)	REC % MS (mg/Kg)	REC MS	REC % MD (mg/Kg)	REC MD	RPD	% REC LIMITS *	;
DIESEL	62.5	0	54.5	87%	56.3	90%	3%	32-143	
SURROGATE				93% 		88%		64-109	

^{*} Quality control limits established by Anametrix, Inc.

TOTAL EXTRACTABLE HYDROCARBON LABORATORY CONTROL SAMPLE REPORT EPA METHOD 3550 WITH GC/FID ANAMETRIX, INC. (408) 432-8192

Anametrix I.D.: MD23H1F1 Sample I.D. : LAB CONTROL SAMPLE

Analyst : 5 Supervisor : 6 Matrix : SOIL Date Sampled : N/A

Date Extracted: 12/23/94 Date Analyzed: 12/28/94 Date Released : 12/29/94 Instrument I.D.: HP19

COMPOUND	SPIKE AMT (mg/Kg)	REC LCS (mg/Kg)	% REC LCS	% REC / LIMITS *:
DIESEL	62.5	49.5	79%	48-113
SURROGATE			84%	64-109

^{*} Quality control limits established by Anametrix, Inc.

ANAMETRIX REPORT DESCRIPTION INORGANICS

Analytical Data Report (ADR)

The ADR contains tabulated results for inorganic analytes. All field samples, QC samples and blanks were prepared and analyzed according to procedures in the following references:

- "Test Methods for Evaluating Solid Waste," SW-846, EPA, 3rd Edition, November 1986.
- "Methods for Chemical Analysis of Water and Wastes," EPA, 3rd Edition, 1983.
- CCR Title 22, Section 66261, Appendix II, California Waste Extraction Test.
- CCR Title 22, Section 56261, Appendix XI, Organic Lead.
- "Standard Methods for the Examination of Water and Wastewater," APHA, AWWA, WEF, 18th Edition, 1992.
- USEPA Contract Laboratory Program Statement of Work for Inorganic Analyses, ILM02.1, 1991.

Matrix Spike Report (MSR)

The MSR summarizes percent recovery and relative percent difference information for matrix spikes and matrix spike duplicates. This information is a statement of both accuracy and precision. MSRs may not be provided with all analytical reports. Anametrix control limit for MSR is 75-125% with 25% for RPD limits, except for Method 6010A, which is 80-120% with 25% RPD limits.

Laboratory Control Sample Report (LCSR)

The LCSR summarizes percent recovery information for laboratory control spikes on reagent water or soil. This information is a statement of performance for the method, i.e., the samples are properly prepared and analyzed according to the applicable methods. Anametrix control limit for LCSR is 80-120%.

Method Blank Report (MBR)

The MBR summarizes quality control information for reagents used in preparing samples. The absolute value of each analyte measured in the method blank should be below the method reporting limit for that analyte.

Post Digestion Spike Report (PDSR)

The PDSR summarizes percent recovery information for post digestion spikes. A post digestion spike is performed for a particular analyte if the matrix spike recovery is outside of established control limits. Any percent recovery for a post digestion spike outside of established limits for an analyte indicates probable matrix effects and interferences for that analyte. Anametrix control limit for PDSR is 75-125%.

Qualifiers (Q)

Anametrix uses several data qualifiers in inorganic reports. These qualifiers give additional information on the analytes reported. The following is a list of qualifiers and their meanings:

- I Sample was analyzed at the stated dilution due to spectral interferences.
- U Analyte concentration was below the method reporting limit. For matrix and post digestion spike reports, a value of "0.0" is entered for calculation of the percent recovery.
- B- Sample concentration was below the reporting limit but above the instrument detection limit. Result is entered for calculation of the percent recovery only.
- H Spike percent recovery was outside of Anametrix control limits due to interferences from relatively high concentration level of the analyte in the unspiked sample.
- L Reporting limit was increased to compensate for background absorbances or matrix interferences.

Comment Codes

In addition to qualifiers, the following codes are used in the comment section of all reports to give additional information about sample preparation methods:

- A- Sample was prepared for silver based on the silver digestion method developed by the Southern California Laboratory, Department of Health Services, "Acid Digestion for Sediments, Sludges, Soils and Solid Wastes. A Proposed Alternative to EPA SW846, Method 3050." Environmental Science and Technology, 1989, 23, 898-900.
- T Spikes were prepared after extraction by the Toxicity Characteristic Leaching Procedure (TCLP).
- Spikes were prepared after extraction by the California Waste Extraction Test (CWET) method.
- D Reported results are dissolved, not total, metals.

Reporting Conventions

Analytical values reported are gross values, i.e., not corrected for method blank contamination. Solid matrices are reported on a wet weight basis, unless specifically requested otherwise.

REPORT SUMMARY ANAMETRIX, INC. (408)432-8192

MS. JOBETH FOLGER

WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4041 Workorder # : 9412222
Date Received : 12/21/94
Project ID : 7137
Purchase Order: N/A
Department : METALS
Sub-Department: METALS

SAMPLE INFORMATION:

ANAMETRIX SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE SAMPLED	METHOD
9412222- 3	MW-3-15	SOIL	12/20/94	T 22-MET
9412222- 6	MW-1-14	SOIL	12/20/94	T 22-MET

REPORT SUMMARY ANAMETRIX, INC. (408)432-8192

MS. JOBETH FOLGER WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4041 Workorder # : 9412222
Date Received : 12/21/94
Project ID : 7137
Purchase Order: N/A
Department : METALS
Sub-Department: METALS

QA/QC SUMMARY :

- All holding times have been met for the analyses reported in this section.

- Matrix spike recoveries for sample MW-1-14 for antimony were outside Anametrix cotrol limits, possibly due to matrix effects. A post digestion spike was performed, and the result was within control limits, indicating no spectral interferences.

Word 12/30/94
Department/Supervisor Date

Stephe Caroll 12/30/94 Chemist Date

INORGANICS - PAGE 2

INCHCAPE TESTING SERVICES ANAMETRIX LABORATORIES (408) 432-8192 DATA REPORT

Anametrix Sample ID: 9412222-03 Client Sample ID: MW-3-15

Client Project Number: 7137

Matrix: SOIL

Date Sampled: 12/20/94

Analyst: 50 Supervisor: W

Analyte	Prep. Method	Analytical Method	Instr. ID	Date Prepared	Date Analyzed	Dil. Factor	Units	Reporting Limit	Results	Q
Antimony	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	6.0	ND	
Arsenic	3050A	6010A	ICP2	12/27/94	12/27/94	1	mg/Kg	1.0	4.4	
Barium	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	10.0	86.0	
Beryllium	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	0.50	ND	
Cadmium	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	0.50	ND	
Chromium	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	1.0	16.5	
Cobalt	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	5.0	7.5	
Copper	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	2.5	11.6	
Lead	3050A	6010A	ICP2	12/27/94	12/27/94	1	mg/Kg	0.30	4.4	
Mercury	7471	7471	HGA1	12/27/94	12/29/94	1	mg/Kg	0.10	ND	
Molybdenum	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	1.0	ND	
Nickel	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	4.0	19.3	
Selenium	3050A	6010A	ICP2	12/27/94	12/27/94	1	mg/Kg	0.50	ND	
Silver	3050A	6010A	ICP2	12/27/94	12/27/94	1	mg/Kg	1.0	ND	
Thallium	3050A	6010A	ICP2	12/27/94	12/27/94	1	mg/Kg	1.0	ND	
Vanadium	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	5.0	27.9	
Zinc	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	2.0	28.0	

INCHCAPE TESTING SERVICES ANAMETRIX LABORATORIES (408) 432-8192 DATA REPORT

Anametrix Sample ID: 9412222-06 Client Sample ID: MW-1-14 Client Project Number: 7137

Matrix: SOIL

Date Sampled: 12/20/94

Analyst: 5 C

Supervisor: 144

Analyte	Prep. Method	Analytical Method	Instr. ID	Date Prepared	Date Analyzed	Dil. Factor	Units	Reporting Limit	Results	Q
Antimony	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	6.0	ND	
Arsenic	3050A	6010A	ICP2	12/27/94	12/27/94	1	mg/Kg	1.0	5.1	
Barium	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	10.0	112	
Beryllium	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	0.50	ND	
Cadmium	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	0.50	ND	
Chromium	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	1.0	19.6	
Cobalt	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	5.0	9.0	
Copper	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	2.5	15.6	
Lead	3050A	6010A	ICP2	12/27/94	12/27/94	1	mg/Kg	0.30	5.6	<u> </u>
Mercury	7471	7471	HGA1	12/27/94	12/29/94	1	mg/Kg	0.10	ND	
Molybdenum	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	1.0	ND	<u> </u>
Nickel	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	4.0	26.5	
Selenium	3050A	6010A	ICP2	12/27/94	12/27/94	1	mg/Kg	0.50	ND	
Silver	3050A	6010A	ICP2	12/27/94	12/27/94	1	mg/Kg	1.0	ND	
Thallium	3050A	6010A	ICP2	12/27/94	12/27/94	1	mg/Kg	1.0	ND	
Vanadium	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	5.0	31.0	
Zinc	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	2.0	32.9	

INCHCAPE TESTING SERVICES ANAMETRIX LABORATORIES (408) 432-8192 METHOD BLANK REPORT

Anametrix Sample ID: BD274SA Anametrix WO #: 9412222 Client Project Number: 7137

Matrix: SOIL

Analyst: J. c. Supervisor: W

Analyte	Prep. Method	Analytical Method	Instr. ID	Date Prepared	Date Analyzed	Dil. Factor	Units	Reporting Limit	Results	Q
Antimony	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	6.0	ND	
Arsenic	3050A	6010A	ICP2	12/27/94	12/27/94	1	mg/Kg	1.0	ND	
Barium	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	10.0	ND	
Beryllium	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	0.50	ND	
Cadmium	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	0.50	ND	
Chromium	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	1.0	ND	
Cobalt	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	5.0	ND	
Copper	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	2.5	ND	
Lead	3050A	6010A	ICP2	12/27/94	12/27/94	1	mg/Kg	0.30	ND	
Mercury	7471	7471	HGA1	12/27/94	12/29/94	1	mg/Kg	0.10	ND	
Molybdenum	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	1.0	ND	
Nickel	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	4.0	ND	
Selenium	3050A	6010A	ICP2	12/27/94	12/27/94	1	mg/Kg	0.50	ND	
Silver	3050A	6010A	ICP2	12/27/94	12/27/94	1	mg/Kg	1.0	ND	
Thallium	3050A	6010A	ICP2	12/27/94	12/27/94	1	mg/Kg	1.0	ND	
Vanadium	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	5.0	ND	
Zinc	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	2.0	ND	

INCHCAPE TESTING SERVICES ANAMETRIX LABORATORIES (408) 432-8192 MATRIX SPIKE REPORT

Anametrix. Sample ID: 9412222-06MS,MD

Client Sample ID: MW-1-14

Client Proj. Number: 7137

Matrix: SOIL

Analyst: 5^c
Supervisor: 14

	Analyte	Analyt. Method	Instr.	Date Prepared	Date Analyzed	Units	Spike Amount	Sample Conc.	Matrix Spike Conc.	% Rec.	Matrix Sp. Dup. Conc.	% Rec.	RPD	Q
	Antimony	6010A	ICP1	12/27/94	12/29/94	mg/Kg	50.0	0.0	21.8	43.6	22.3	44.6	2.3	U
	Arsenic	6010A	ICP2	12/27/94	12/27/94	mg/Kg	10.0	5.1	14.2	91.0	14.7	96.0	3.5	
	Barium	6010A	ICP1	12/27/94	12/29/94	mg/Kg	200	112	305	96.5	312	100	2.3	
	Beryllium	6010A	ICP1	12/27/94	12/29/94	mg/Kg	5.0	0.0	5.3	106	5.3	106	0.0	บ
	Cadmium	6010A	ICP1	12/27/94	12/29/94	mg/Kg	5.0	0.0	4.3	86.0	4.5	90.0	4.5	U
	Chromium	6010A	ICP1	12/27/94	12/29/94	mg/Kg	20.0	19.6	38.2	93.0	38.3	93.5	0.3	
	Cobalt	6010A	ICP1	12/27/94	12/29/94	mg/Kg	50.0	9.0	53.8	89.6	54.3	90.6	0.9	
	Copper	6010A	ICP1	12/27/94	12/29/94	mg/Kg	25.0	15.6	38.7	92.4	39.7	96.4	2.6	
S	Lead	6010A	ICP2	12/27/94	12/27/94	mg/Kg	50.0	5.6	50.9	90.6	50.4	89.6	1.0	
	Mercury	7471	HGA1	12/27/94	12/29/94	mg/Kg	0.50	0.0	0.46	92.0	0.47	94.0	2.2	U
	Molybdenum	6010A	ICP1	12/27/94	12/29/94	mg/Kg	200	0.0	170	85.0	168	84.0	1.2	U
	Nickel	6010A	ICP1	12/27/94	12/29/94	mg/Kg	50.0	26.5	71.4	89.8	71.1	89.2	0.4	
	Selenium	6010A	ICP2	12/27/94	12/27/94	mg/Kg	5.0	0.0	4.9	98.0	4.7	94.0	4.2	U
	Silver	6010A	ICP2	12/27/94	12/27/94	mg/Kg	5.0	0.0	4.8	96.0	4.9	98.0	2.1	υ
	Thallium	6010A	ICP2	12/27/94	12/27/94	mg/Kg	10.0	0.0	9.2	92.0	8.8	88.0	4.4	U
	Vanadium	6010A	ICP1	12/27/94	12/29/94	mg/Kg	50.0	31.0	75.9	89.8	76.2	90.4	0.4	
	Zinc	6010A	ICP1	12/27/94	12/29/94	mg/Kg	50.0	32.9	75.0	84.2	76.7	87.6	2.2	

INCHCAPE TESTING SERVICES ANAMETRIX LABORATORIES (408) 432-8192

POST DIGESTION SPIKE REPORT

Anametrix Sample ID: 9412222-06PDS

Client Sample ID: MW-1-14

Client Project Number: 7137

Matrix: SOIL

Analyst: 5° Supervisor: W

Analyte	Analyt. Method	Instr. ID	Date Prepared	Date Analyzed	D.F.	Units	Spike Amount	Sample Conc.	PDS Conc.	% Rec.	Q
Antimony	6010A	ICP1	12/29/94	12/29/94	1	mg/Kg	25.0	0.0	23.1	92.4	υ

INCHCAPE TESTING SERVICES ANAMETRIX LABORATORIES (408) 432-8192

LABORATORY CONTROL SAMPLE REPORT

Lab. Control Sample ID: LD274SA

Anametrix WO #: 9412222

Client Project Number: 7137

Matrix: SOIL

Analyst: 5 C Supervisor: 144

t e e e e e e e e e e e e e e e e e e e											
Analyte	Prep. Method	Analytical Method	Instr. ID	Date Prepared	Date Analyzed	Dil. Factor	Units	Spike Amount	LCS Results	% Recovery	Q
Antimony	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	50.0	44.0	88.0	
Arsenic	3050A	6010A	ICP2	12/27/94	12/27/94	1	mg/Kg	10.0	9.6	96.0	
Barium	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	200	192	96.0	
Beryllium	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	5.0	4.8	96.0	
Cadmium	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	5.0	4.2	84.0	
Chromium	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	20.0	18.3	91.5	
Cobalt	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	50.0	46.1	92.2	
Copper	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	25.0	23.3	93.2	
Lead	3050A	6010A	ICP2	12/27/94	12/27/94	1	mg/Kg	50.0	48.5	97.0	
Mercury	7471	7471	HGA1	12/27/94	12/29/94	1	mg/Kg	0.50	0.46	92.0	
Molybdenum	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	200	181	90.5	
Nickel	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	50.0	45.0	90.0	
Selenium	3050A	6010A	ICP2	12/27/94	12/27/94	1	mg/Kg	5.0	5.1	102	
Silver	3050A	6010A	ICP2	12/27/94	12/27/94	1	mg/Kg	5.0	5.0	100	
Thallium	3050A	6010A	ICP2	12/27/94	12/27/94	1	mg/Kg	10.0	10.3	103	
Vanadium	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	50.0	45.1	90.2	Ĺ
Zinc	3050A	6010A	ICP1	12/27/94	12/29/94	1	mg/Kg	50.0	41.8	83.6	

100 Date: 122 99

Project Manager: ___

SAMPLE RECEIVING CHECKLIST

WORKORDER NUMBER: 4412222 CLIENT PROJECT ID: 137			
COOLER			
Shipping slip (airbill, etc.) present?	YES	NO	N/A)
If YES, enter carrier name and airbill #:			
Custody Seal on the outside of cooler?	YES	NO	(N/A)
Condition: INTACT BROKEN			
Temperature of sample (s) within range?	(FES)	NO	N/A
List temperature of cooler (s):			
SAMPLES			•
Chain of custody seal present for each container?	YES	NO	(N/A)
Condition: INTACT BROKEN			
Samples arrived within holding time?	YES	NO	N/A
Samples in proper containers for methods requested?	YES	NO	
Condition of containers: INTACT BROKEN			1
If NO, were samples transferred to proper container?			
Were VOA containers received with zero headspace?	YES	NO	(N/A)
If NO, was it noted on the chain of custody?			
Were container labels complete? (ID, date, time preservative, etc.)	YES	NO	
Were samples preserved with the proper preservative?	YES	NO	WA
If NO, was the proper preservative added at time of receipt?			
pH check of samples required at time of receipt?	YES (NO	
If YES, pH checked and recorded by:			
Sufficient amount of sample received for methods requested?	YES	МО	
If NO, has the client or lab project manager been notified?			
Field blanks received with sample batch? # of Sets:	YES	NO	(VA)
Trip blanks received with sample batch? # of Sets:	YES	NO	(N/A)
CHAIN OF CUSTODY			
Chain of custody received with samples?	YES	NO	
Has it been filled out completely and in ink?	(YES)	NO	
Sample ID's on chain of custody agree with container labels?	(YES)	NO	
Number of containers indicated on chain of custody agree with number received?	ŒS	NO	
Analysis methods clearly specified?	YES (NO	
Sampling date and time indicated?	(YES)	NO	
Proper signatures of sampler, courier, sample custodian in appropriate place? with time and date?	YES	NO	
Turnaround time? REGULAR RUSH			
Any NO response and/or any "BROKEN" that was checked must be detailed in the Corrective	e Action	Г Гоп	n.

Sample Custodian: 184

_ Date: __17/2/1/94

Suite E
San Jose, CA 95151
Tel: 408-432-8192

Fax: 408-432-8198

MS. JOBETH FOLGER
WOODWARD-CLYDE CONSULTANTS
500 12TH STREET, SUITE 100
OAKLAND, CA 94607-4041

Workorder # : 9501029 Date Received : 01/05/95

Project ID : 7137 Purchase Order: N/A

The following samples were received at Anametrix for analysis:

ANAMETRIX ID	CLIENT SAMPLE ID
9501029- 1	MW-1-4

This report is organized in sections according to the specific Anametrix laboratory group which performed the analysis(es) and generated the data.

The results contained within this report relate to only the sample(s) tested. Additionally, these data should be considered in their entirety and Anametrix cannot be responsible for the detachment, separation, or otherwise partial use of this report.

Anametrix is certified by the California Department of Health Services (DHS) to perform environmental testing under Certificate Number 1234.

If you have any further questions or comments on this report, please call your project manager as soon as possible. Thank you for using Inchcape Testing Services.

Susan Kraska Yeager

Laboratory Director

01/17/45

Date

This report consists of _____ pages.

4

REPORT SUMMARY ANAMETRIX, INC. (408)432-8192

MS. JOBETH FOLGER WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4041

Workorder # : 9501029
Date Received : 01/05/95
Project ID : 7137
Purchase Order: N/A
Department : METALS
Sub-Department: METALS

SAMPLE INFORMATION:

ANAMETRIX SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE SAMPLED	METHOD
9501029- 1	MW-1-4	SOIL	12/20/94	CWET-INORG
9501029- 1	MW-1-4	SOIL	12/20/94	CWETMETALS

REPORT SUMMARY ANAMETRIX, INC. (408)432-8192

MS. JOBETH FOLGER WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4041

Workorder # : 9501029 Date Received: 01/05/95
Project ID: 7137
Purchase Order: N/A Department : METALS Sub-Department: METALS

QA/QC SUMMARY :

- All holding times have been met for the analyses reported in this section.

epho Carole 1/17/95

INORGANICS - PAGE 2

INCHCAPE TESTING SERVICES ANAMETRIX LABORATORIES (408) 432-8192 DATA REPORT

Analyte-Method: Lead-STLC-6010A

Client Project Number: 7137

Matrix - Units: SOIL - mg/L

Analyst: Supervisor: (MA)

Anametrix Sample ID	Client Sample ID	Prep. Method	instr. ID	Date Sampled	Date Prepared	Date Analyzed	D.F.	Reporting Limit	Results	Q
9501029-01	MW-1-4	CWET	ICP1	12/20/94	01/12/95	01/13/95	50	2.0	319	
BJ125EA	METHOD BLANK	CWET	ICP1	N/A	01/12/95	01/13/95	5	0.20	ND	

INCHCAPE TESTING SERVICES ANAMETRIX LABORATORIES (408) 432-8192 SAMPLE DUPLICATE REPORT

Anametrix Sample ID: 9501029-01D

Client Sample ID: MW-1-4

Client Project Number: 7137

Matrix: SOIL

Analyst:Sc Supervisor: [[]]

Analyte	Prep. Method	Analyt. Method	Instr. ID	Date Prepared	Date Analyzed	Dil. Factor	Units	Sample Conc.	Sample Duplicate Conc.	RPD	Q
Lead	CWET	6010A	ICP1	01/12/95	01/13/95	50	mg/L	319	326	2.2	

INCHCAPE TESTING SERVICES ANAMETRIX LABORATORIES (408) 432-8192 MATRIX SPIKE REPORT

Anametrix. Sample ID: 9501029-01MS

Client Sample ID: MW-1-4 Client Proj. Number: 7137

Matrix: SOIL

Analyst: SC Supervisor: AUA

Analyte	Analyt. Method	Instr. I.D.	Date Prepared	Date Analyzed	Units	Spike Amount	Sample Conc.	Matrix Spike Conc.	% Rec.		Q
Lead	6010A	ICP1	01/12/95	01/13/95	mg/L	5.0	319	332	NR		Н

COMMENTS: NR - Not reported due to high level of analyte concentration in the sample compared to spiked amount.

1961 Concourse Drive Suite E San Jose, CA 95131 Tcl: 408-432-8192 Fax: 408-432-8198

na V Rayburn

MS. JOBETH FOLGER
WOODWARD-CLYDE CONSULTANTS
500 12TH STREET, SUITE 100
OAKLAND, CA 94607-4041

Workorder # : 9501222
Date Received : 01/25/95
Project ID : 7137-0200

Purchase Order: N/A

The following samples were received at Anametrix for analysis:

ANAMETRIX ID	CLIENT SAMPLE ID
9501222- 1	MW-3
9501222- 2	MW-1
9501222- 3	T.BLANK
9501222- 4	MW-4-Equip Blank
9501222- 5	MW-2

This report is organized in sections according to the specific Anametrix laboratory group which performed the analysis(es) and generated the data.

The results contained within this report relate to only the sample(s) tested. Additionally, these data should be considered in their entirety and Anametrix cannot be responsible for the detachment, separation, or otherwise partial use of this report.

Anametrix is certified by the California Department of Health Services (DHS) to perform environmental testing under Certificate Number 1234.

If you have any further questions or comments on this report, please call your project manager as soon as possible. Thank you for using Inchcape Testing Services.

Susan Kraska Yeager

Laboratory Director

Date

This report consists of 22 pages.

REPORT SUMMARY ANAMETRIX, INC. (408)432-8192

MS. JOBETH FOLGER

WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4041

Workorder # : 9501222
Date Received : 01/25/95
Project ID : 7137-0200
Purchase Order: N/A
Department : GC

Sub-Department: TPH

SAMPLE INFORMATION:

ANAMETRIX SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE SAMPLED	METHOD
9501222- 1	MW-3	WATER	01/25/95	BTEX
9501222- 2	MW-1	WATER	01/25/95	BTEX
9501222- 3	T.BLANK	WATER	01/25/95	BTEX
9501222- 4	MW-4	WATER	01/25/95	BTEX
9501222- 5	MW-2	WATER	01/25/95	BTEX
9501222- 1	MW-3	WATER	01/25/95	TPHd
9501222- 2	MW-1	WATER	01/25/95	TPHd
9501222- 4	MW-4	WATER	01/25/95	TPHd
9501222- 5	MW-2	WATER	01/25/95	TPHd

REPORT SUMMARY ANAMETRIX, INC. (408)432-8192

MS. JOBETH FOLGER WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4041 Workorder # : 9501222
Date Received : 01/25/95
Project ID : 7137-0200
Purchase Order: N/A

Purchase Order: N/A
Department : GC
Sub-Department: TPH

QA/QC SUMMARY :

- All holding times have been met for the analyses reported in this section.

- The concentrations reported as diesel for samples MW-3, MW-1, and MW-2 are primarily due to the presence of a heavier petroleum product, possibly aged diesel fuel.

Ohne Bolmen 1/31/95
Department Supervisor Date

Luca Mer 1/31/95
Chemist Date

Organic Analysis Data Sheet Total Petroleum Hydrocarbons as Gasoline with BTEX ITS - Anametrix Laboratories - (408)432-8192

Lab Workorder : 9501222

Client Project ID: 7137-0200

Matrix : WATER

Units : ug/L

		Client ID				
	Method	MW-3	MW-1	T.BLANK	MW-4 Egues	MW-2
	Reporting	Lab ID				
Compound Name	Limit*	9501222-01	9501222-02	9501222-03	9501222-04	9501222-05
Benzene	0.50	2.5	ND	ND	ND	ND
Toluene	0.50	1.2	ND	ND	ND	ND
Ethylbenzene	0.50	2.5	ND	ND	ND	ND
Total Xylenes	0.50	8.0	ND	ND	ND	ND
TPH as Gasoline	50					
Surrogate Recovery		135%	99%	97%	95%	95%
Instrument ID		HP12	HP12	HP12	HP12	HP12
Date Sampled		01/25/95	01/25/95	01/25/95	01/25/95	01/25/95
Date Analyzed		01/26/95	01/26/95	01/26/95	01/26/95	01/26/95
RLMF		1	1	1	1.	1
Filename Reference		FPJ22201.D	FPJ22202.D	FPJ22203.D	FPJ22204.D	FPJ22205.D

^{*} The Method Reporting Limit must be multiplied by the Reporting Limit Multiplication Factor (RLMF) to achieve the compound's reporting limit in the analysis.

ND : Not detected at or above the reporting limit for the analysis as performed.

TPHg : Determined by GC/FID following sample purge & trap by EPA Method 5030.

BTEX : Determined by modified EPA Method 8020 following sample purge & trap by EPA Method 5030.

Lab Control Limits for surrogate compound p-Bromofluorobenzene are 61-139%.

All testing procedures follow California Department of Health Services (Cal-DHS) approved methods.

luus Slier 1/30/95
Analyst Date

Supervisor Supervisor

1/30/91-Date

Issued on 1/30/95 @ 1:52 pm

GCTPH/BTEX - RESULTS - Page 01

Organic Analysis Data Sheet

Total Petroleum Hydrocarbons as Gasoline with BTEX ITS - Anametrix Laboratories - (408)432-8192

Lab Workorder : 9501222

Client Project ID: 7137-0200

Matrix : WATER

Units : ug/L

 		Client ID	Client ID	Client ID	Client ID	Client ID
	Method	.//				
	Reporting	Lab ID	Lab ID	Lab ID	Lab ID	Lab ID
Compound Name	Limit*	METHOD BLANK				
Benzene	5.0	ND				
Toluene	5.0	ND				
Ethylbenzene	5.0	ND				
Total Xylenes	5.0	ND				
TPH as Gasoline	500	ND				
Surrogate Recovery		95%				
Instrument ID		HP12				
Date Sampled		N/A				
Date Analyzed		01/26/95				
RLMF		1				
Filename Reference		BJ2601E1.D				

^{*} The Method Reporting Limit must be multiplied by the Reporting Limit Multiplication Factor (RLMF) to achieve the compound's reporting limit in the analysis.

ND : Not detected at or above the reporting limit for the analysis as performed.

TPHg : Determined by GC/FID following sample purge & trap by EPA Method 5030.

BTEX : Determined by modified EPA Method 8020 following sample purge & trap by EPA Method 5030.

Lab Control Limits for surrogate compound p-Bromofluorobenzene are 53-147%.

All testing procedures follow California Department of Health Services (Cal-DHS) approved methods.

Analyst Date Cheyl Balman '/20/x5 Date Supervisor Date

Matrix Spike Report

Total Petroleum Hydrocarbons as BTEX

ITS - Anametrix Laboratories - (408)432-8192

Project ID

: 7137-0200

Laboratory ID : 9501222-05

Sample ID

: MW-2

Analyst : Is

Matrix

Supervisor : 6

: WATER

Date Sampled

: 01/25/95

Instrument ID: HP12

Units : ug/L

COMPOUND NAME	SPIKE	SAMPLE	MS	MSD	RECOVERY	RPD	RPD
	AMOUNT	RESULTS	RECOVERY	RECOVERY	LIMITS		LIMITS
Benzene	20	ND	90%	100%	45-139	-11%	30
Toluene	20	ND	95%	100%	51-138	-5%	30
Ethylbenzene	20	ND	95%	105%	48-146	-10%	· 30
Total Xylenes	20	ND	90%	95%_	50-139	−5%	30
Surrogate Recovery		95%	99%	101%			
Date Analyzed		01/26/95	01/26/95	01/26/95			
Multiplier		1	1	1			
Filename Reference		FPJ22205.D	FMJ22205.D	FDJ22205.D			

^{*} Limits established by Inchcape Testing Services, Anametrix Laboratories.

Laboratory Control Spike Report Total Petroleum Hydrocarbons as BTEX ITS - Anametrix Laboratories - (408)432-8192

Instrument ID : HP12 Analyst : IS

Matrix : LIQUID Supervisor : 09

Units : ug/L

COMPOUND NAME	SPIKE	LCS	RECOVERY
	AMOUNT	RECOVERY	LIMITS
Benzene	20	95%	52-133
Toluene	20	95%	57-136
Ethylbenzene	20	100%	56-139
Total Xylenes	20	90%	56-141
			61-139
Surrogate Recovery		98%	61-139
Date Analyzed		01/26/95	
Multiplier		1	
Filename Reference		MJ2601E1.D	

^{*} Limits established by Inchcape Testing Services, Anametrix Laboratories.

TOTAL PETROLEUM HYDROCARBONS AS DIESEL

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

DATA SUMMARY FORM

Anametrix Workorder:

9501222

Client Project ID:

7137-0200

Matrix:

WATER

Date Released:

1/31/95

Date Extracted:

1/26/95

Concentration Units:

ug/L

Instrument ID:

HP27

		•					
		Date	Date	Dilution	Reporting	Amount	Surrogate
Anametrix ID	Client ID	Sampled	<u>Analyzed</u>	<u>Factor</u>	<u>Limit</u>	Found	Recovery
9501222-01	MW-3	1/25/95	1/26/95	1	50	1200	103%
9501222-02	MW-l	1/25/95	1/26/95	I	50	62	92%
9501222-04	MW-4	1/25/95	1/27/95	1	50	ND	96%-equip
9501222-05	MW-2	1/25/95	1/27/95	1	50	300	90%
BJ2611F1	Method Blank		1/26/95	1	50	ND	100%

ND: Not detected at or above the reporting limit for the method.

TPHd: Total Petroleum Hydrocarbons as C10-C28 is determined by GC/FID (modified EPA Method 8015) following sample extraction by EPA Method 3510. Surrogate recovery quality control limits for o-terphenyl are 67-103%.

All testing procedures follow California Department of Health Services approved methods.

luce Sher 1/31/95 Date

Analyst

Supervisor

RESULTS - TPHd -Page 1

TOTAL PETROLEUM HYDROCARBONS AS KEROSENE

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

DATA SUMMARY FORM

Anametrix Workorder:

9501222

Client Project ID:

7137-0200

Matrix:

WATER

Date Released:

1/31/95

Date Extracted:

1/26/95

Concentration Units:

ug/L

Instrument ID:

HP27

Anametrix ID	Client ID	Date Sampled	Date <u>Analyzed</u>	Dilution <u>Factor</u>	Reporting <u>Limit</u>	Amount Found	Surrogate Recovery
9501222-01	MW-3	1/25/95	1/26/95	l	50	820	103%
9501222-02	MW-1	1/25/95	1/26/95	1	50	ND	92%
9501222-04	MW-4	1/25/95	1/27/95	1	50	ND	96%
9501222-05	MW-2	1/25/95	1/27/95	1	50	ND	90%
BJ2611F1	Method Blank		1/26/95	1	50	ND	100%

ND: Not detected at or above the reporting limit for the method.

TPHd: Total Petroleum Hydrocarbons as kerosene is determined by GC/FID (modified EPA Method 8015) following sample extraction by EPA Method 3510. Surrogate recovery quality control limits for o-terphenyl are 67-103%.

All testing procedures follow California Department of Health Services approved methods.

Lucia Star 1/31/95
Analyst Date

<u>(heyl Bal</u> Supervisor

Date

TOTAL PETROLEUM HYDROCARBONS AS DIESEL

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

MATRIX SPIKE RECOVERY REPORT

Client Project ID:	7137-0200	Anametrix ID:		9501222-04			
Client Sample ID:	MW-4			Date Releas	ed:	1/31/95	
Date Sampled:	1/25/95			Instrument	ID:	HP27	
Date Extracted:	1/26/95			Matrix:		WATER	
Date Analyzed:	1/27/95			Concentration Units:		ug/L	
COMPOUND	SPIKE	SAMPLE	MS	% REC	MSD	%REC	
NAME	AMT	CONC	CONC	<u>MS</u>	<u>CONC</u>	MSD	RPD
Diesel	1250	300	1480	94%	1470	94%	-1%
o-Terphenyl				83%		102%	

Quality control limits for MS/MSD recovery are 38-96%.

Quality control limits for RPD(relative percent difference) are +/- 18%.

Quality control limits for o-terphenyl recovery are 67-103%.

TOTAL PETROLEUM HYDROCARBONS AS DIESEL

INCHCAPE TESTING SERVICES - ANAMETRIX (408) 432-8192

LABORATORY CONTROL SAMPLE REPORT

Client Project ID:	7137-0200	Anametrix ID:	MJ2611F1
Matrix:	WATER	Date Released:	1/31/95
Date Extracted:	1/26/95	Instrument ID:	HP27
Date Analyzed:	1/26/95	Concentration Units:	ug/L

COMPOUND	SPIKE	LCS	%REC
NAME	<u>AMT</u>	<u>CONC</u>	<u>LCS</u>
Discol	1250	1100	88%
Diesel	1250	1100	00/0
o-Terphenyl			95%

Quality control limits for LCS recovery are 38-96%.

Quality control limits for o-terphenyl recovery are 67-103%.

ANAMETRIX REPORT DESCRIPTION **INORGANICS**

Analytical Data Report (ADR)

The ADR contains tabulated results for inorganic analytes. All field samples, QC samples and blanks were prepared and analyzed according to procedures in the following references:

- "Test Methods for Evaluating Solid Waste," SW-846, EPA, 3rd Edition, November 1986.
- "Methods for Chemical Analysis of Water and Wastes," EPA, 3rd Edition, 1983.
- CCR Title 22, Section 66261, Appendix II, California Waste Extraction Test.
- CCR Title 22, Section 66261, Appendix XI, Organic Lead.
- "Standard Methods for the Examination of Water and Wastewater," APHA, AWWA, WEF, 18th Edition, 1992.
- USEPA Contract Laboratory Program Statement of Work for Inorganic Analyses, ILM02.1, 1991.

Matrix Spike Report (MSR)

The MSR summarizes percent recovery and relative percent difference information for matrix spikes and matrix spike duplicates. This information is a statement of both accuracy and precision. MSRs may not be provided with all analytical reports. Anametrix control limit for MSR is 75-125% with 25% for RPD limits, except for Method 6010A, which is 80-120% with 25% RPD limits.

Laboratory Control Sample Report (LCSR)

The LCSR summarizes percent recovery information for laboratory control spikes on reagent water or soil. This information is a statement of performance for the method, i.e., the samples are properly prepared and analyzed according to the applicable methods. Anametrix control limit for LCSR is 80-120%.

Method Blank Report (MBR)

The MBR summarizes quality control information for reagents used in preparing samples. The absolute value of each analyte measured in the method blank should be below the method reporting limit for that analyte.

Post Digestion Spike Report (PDSR)

The PDSR summarizes percent recovery information for post digestion spikes. A post digestion spike is performed for a particular analyte if the matrix spike recovery is outside of established control limits. Any percent recovery for a post digestion spike outside of established limits for an analyte indicates probable matrix effects and interferences for that analyte. Anametrix control limit for PDSR is 75-125%.

Qualifiers (Q)

Anametrix uses several data qualifiers in inorganic reports. These qualifiers give additional information on the analytes reported. The following is a list of qualifiers and their meanings:

- I Sample was analyzed at the stated dilution due to spectral interferences.
- U Analyte concentration was below the method reporting limit. For matrix and post digestion spike reports, a value of "0.0" is entered for calculation of the percent recovery.
- B- Sample concentration was below the reporting limit but above the instrument detection limit. Result is entered for calculation of the percent recovery only.
- H Spike percent recovery was outside of Anametrix control limits due to interferences from relatively high concentration level of the analyte in the unspiked sample.
- L Reporting limit was increased to compensate for background absorbances or matrix interferences.

Comment Codes

In addition to qualifiers, the following codes are used in the comment section of all reports to give additional information about sample preparation methods:

- A Sample was prepared for silver based on the silver digestion method developed by the Southern California Laboratory, Department of Health Services, "Acid Digestion for Sediments, Sludges, Soils and Solid Wastes. A Proposed Alternative to EPA SW846, Method 3050." Environmental Science and Technology, 1989, 23, 898-900.
- T Spikes were prepared after extraction by the Toxicity Characteristic Leaching Procedure (TCLP).
- C Spikes were prepared after extraction by the California Waste Extraction Test (CWET) method.
- D Reported results are dissolved, not total, metals.

Reporting Conventions

Analytical values reported are gross values, i.e., not corrected for method blank contamination. Solid matrices are reported on a wet weight basis, unless specifically requested otherwise.

REPORT SUMMARY ANAMETRIX, INC. (408)432-8192

MS. JOBETH FOLGER WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4041

Workorder # : 9501222
Date Received : 01/25/95
Project ID : 7137-0200
Purchase Order: N/A
Department : METALS

Sub-Department: METALS

SAMPLE INFORMATION:

ANAMETRIX SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE SAMPLED	METHOD
9501222- 2	MW-1	WATER	01/25/95	6010
9501222- 4	MW-4	WATER	01/25/95	6010

REPORT SUMMARY ANAMETRIX, INC. (408)432-8192

MS. JOBETH FOLGER WOODWARD-CLYDE CONSULTANTS 500 12TH STREET, SUITE 100 OAKLAND, CA 94607-4041 Workorder # : 9501222 Date Received : 01/25/95 Project ID : 7137-0200

Purchase Order: N/A
Department : METALS
Sub-Department: METALS

QA/QC SUMMARY :

- All holding times have been met for the analyses reported in this section.

Mutul A ctol 1/3/195

Department Supervisor

Date

Stephen Carrall 1/31/95

INORGANICS - PAGE 2

INCHCAPE TESTING SERVICES ANAMETRIX LABORATORIES (408) 432-8192 DATA REPORT

Analyte-Method: Lead-6010A Client Project Number: 7137-0200 Matrix - Units: WATER - ug/L Analyst: 5c Supervisor: www.

Anametrix Sample ID	Client Sample ID	Prep. Method	Instr. ID	Date Sampled	Date Prepared	Date Analyzed	D.F.	Reporting Limit	Results	Q
9501222-02	MW-1	3010A	ICP2	01/25/95	01/26/95	01/27/95	1	40.0	ND	
9501222-04	MW-4	3010A	ICP2	01/25/95	01/26/95	01/27/95	1_	40.0	ND	
BJ265WB	METHOD BLANK	3010A	ICP2	N/A	01/26/95	01/27/95	1	40.0	ND	

INCHCAPE TESTING SERVICES ANAMETRIX LABORATORIES (408) 432-8192 SAMPLE DUPLICATE REPORT

Anametrix Sample ID: 9501222-04D

Client Sample ID: MW-4

Client Project Number: 7137-0200

Matrix: WATER

Analyte	Prep. Method	Analyt. Method	Instr. ID	Date Prepared	Date Analyzed	Dil. Factor	Units	Sample Conc.	Sample Duplicate Conc.	RPD	Q
Lead	3010A	6010A	ICP2	01/26/95	01/27/95	1	ug/L	ND	ND	N/A	

INCHCAPE TESTING SERVICES ANAMETRIX LABORATORIES (408) 432-8192 MATRIX SPIKE REPORT

Anametrix. Sample ID: 9501222-04MS,MD

Client Sample ID: MW-4 Client Proj. Number: 7137-0200

Matrix: WATER

Analyst: 50 Supervisor:

Analyte	Analyt. Method	Instr. I.D.	Date Prepared	Date Analyzed	Units	Spike Amount	Sample Conc.	Matrix Spike Conc.	% Rec.	Matrix Sp. Dup. Conc.	% Rec.	RPD	Q
Lead	6010A	ICP2	01/26/95	01/27/95	1.0	500	0.0	512	102	515	103	0.6	

INCHCAPE TESTING SERVICES ANAMETRIX LABORATORIES (408) 432-8192

LABORATORY CONTROL SAMPLE REPORT

Lab. Control Sample ID: LJ265WB

Anametrix WO #: 9501222

Client Project Number: 7137-0200

Matrix: WATER

Analyst: 5C
Supervisor: wet

Analyte	Prep. Method	Analytical Method	Instr. ID	Date Prepared	Date Analyzed	Dil. Factor	Units	Spike Amount	LCS Results	% Recovery	Q
Lead	3010A	6010A	ICP2	01/26/95	01/27/95	1	ug/L	500	512	102	

SAMPLE RECEIVING CHECKLIST

VORKORDER NUMBER: 950/222 CLIENT PROJECT ID: 7/37-0	200		
COOLER			
hipping slip (airbill, etc.) present?	YES	NO ((N/A)
If YES, enter carrier name and airbill #:			
Sustody Seal on the outside of cooler?	YES	NO	N/A)
Condition: INTACT BROKEN			
Temperature of sample (s) within range?	YES	NO	N/A
List temperature of cooler (s): 4°C, 3°C			
SAMPLES (663)			
Chain of custody seal present for each container?	YES	NO	(N/A)
Condition: INTACT BROKEN			
Samples arrived within holding time?	(FES)	МО	N/A
Samples in proper containers for methods requested?	(ES	ИО	
Condition of containers: INTACT BROKEN			1
If NO, were samples transferred to proper container?			
Were VOA containers received with zero headspace?	YES	МО	N/A
If NO, was it noted on the chain of custody?			
Were container labels complete? (ID, date, time preservative, etc.)	YES	NO	
Vere samples preserved with the proper preservative?	YES	(NO)	N/A
If NO, was the proper preservative added at time of receipt? 45			
H check of samples required at time of receipt?	YES	NO	
If YES, pH checked and recorded by:			
Sufficient amount of sample received for methods requested?	(YES)	NO	
If NO, has the client or lab project manager been notified?			
Field blanks received with sample batch? # of Sets:	YES	NO	(N/A)
Trip blanks received with sample batch? # of Sets:	YES	NO	N/A
CHAIN OF CUSTODY			
Chain of custody received with samples?	(YES	МО	
Has it been filled out completely and in ink?	(YES)	NO	
Sample ID's on chain of custody agree with container labels?	MES	NO	
Number of containers indicated on chain of custody agree with number received?	(YES)	NO	
Analysis methods clearly specified?	XED	NO	
Sampling date and time indicated?	(YES)	NO	
Proper signatures of sampler, courier, sample custodian in appropriate place? with time and date?	(YES)	NO	
Furnaround time? REGULAR RUSH			
Any NO response and/or any "BROKEN" that was checked must be detailed in the Correction	ve Action	n Fon	m.
Sample Custodian: UB Date: 1/25/95 Project Manager: WR			,

Sample Custodian: UB Date: 1/25/95

)(2)_

9501222 18 10/22

Woodward-Clyde Consultants

500 12th Street, Suite 100, Oakland, CA 94607-4014 (510) 893-3600

Chain of Custody Record

PROJECT NO. CAMP PARKS						*	<u>W</u>		ANA	LYS	SES				7		
L		37-0				۲	<u>u</u>	م								ers	
S	AMP	ERS: (S	Signature) / Naluse	A)ic	7	DY.	80	<u></u>	Ì	×						ntain	REMARKS (Sample
	N/S	 	- Mause	# # E	2	Ճ	죠	<u>ā</u>	120	딋					(ဦ	preservation,
I	DATE	TIME	SAMPLE NUMBER	Sample Matrix (S)oil, (W)ater, (A)ir	EPA Method	EPA Method	EPA Method	EPA Mathod	Bress	4月0日米			٠			Number of Containers	handling procedures, etc.)
1	25/95	0800	TRIP BLANK	WE	Z											z	RESULTS TO
		10:00	MW-4	W	2	x	Х	人		乂						7	TO BETH FOLGER
L		14:00	MW 3 9C		2	 	×			×							QUESTIONS CALL 50.EETH@ 8743138
		11:00	MW-3	W	2											خ	Jo. Bern & 07 / 3/30
		13:10	MW-2	W	Z	X	x			х						6	*= TPHextractables
	V	13:40	MW-I	_ lw	2			_								Z	quanifified as
Ĺ					1_								_	_			EVEL OIL MAY BE
ſ																	SIMILAR TO BUNKER
Γ																	OIL
Γ																	SAMPLES WRAPPED
I	<u>-</u> -				T					<u> </u>							IN PIZBBLEWRAP + IN
r						Π		Π		-							IZIPLOCIK BIES, KALLY
ľ	 -													Г	İ		IN ICED COOLER POR
ŀ			<u> </u>		 										<u> </u>		SHIPMENT TO LAB.
ŀ		 			-	1-		-	\vdash	 					-		
ŀ		1			1-		1			 			 	\vdash			†
ŀ		 			+	-	\vdash	-	†-	<u> </u>		-			 		†
ŀ		 				┞-	\vdash		1	\vdash		\vdash	 	\vdash	<u> </u>	}—	
ŀ		 			╫	╂-	┼	+	-	<u>: </u>		_		-	<u> </u>		Cancil fuel oil Jobeth Folge
ŀ		 		}	+-	╁	╂-	y	-	-	-	 	1	-	 	 	19/19/93, Cu
ŀ		-			╁	╀	╀.		╂—	┡	-	<u> </u>	-	<u> </u>	-	-	Cancel fuel
L		<u> </u>			—	╀-		╀	-	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u>!</u>	ļ	mi tobbyth Tolio
ļ		ļ			ļ-	_	<u> </u>	-	!	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>:</u>	ļ. —	1 000 00 100 100
ļ					$oldsymbol{\perp}$	1_	igspace	<u> </u>	 	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	1
1				<u> </u>		<u> </u>	<u> </u>		1_		<u> </u>		_	<u> </u>	<u> </u>		1
1		<u> </u>	-		$oldsymbol{igstyle igstyle igytyle igstyle igytyle igstyle igytyle igytyle igytyle igytyle igytyle igytyle igstyle igytyle	<u> </u>	$oldsymbol{oldsymbol{oldsymbol{eta}}}$		_				<u>_</u>	<u> </u>	<u> </u>	<u> </u>]
		<u> </u>			_	<u> </u>			1_		_		_	<u> </u>]
												í	L		•]
١										ļ					ļ	}	
				:,.	·	;				-				TO BER	OF	19	
	RELING (Signal	OUISHED (ure)	RECEIVED E (Signature)	Y:	1			RELIN 81gna	(OUIS	SHED	BY:	?		0/	JE/TI	ME RECEIVED BY : (Signature)	
Ì	XIV	41	1/0	SHIPPED BY	14	24	18	ŢŽ	12%	74	<u>B</u>	0)	<u>seş</u>	27 0	1	<u></u>	
METHOD OF SHIPMENT: SHIP (Sign					<i>(</i> :	V				RER ature			•			CEIVE gg/3tyr	ED FOR LAB BY : DATE/TIME
	0			<u></u>		ľ	-		•				1	Va.	15/15 IS		

1961 Concourse Drive Suite E San Jose, CA 95131 Tcl: 408-432-8192 Fax: 408-432-8198

February 14, 1995

Ms. Jo Beth Folger WOODWARD CLYDE CONSULTANTS 500 12th Street Suite 100 Oakland, CA 94607-4041

Dear Ms. Folger:

Enclosed are the analytical results for your project ID: 7137-0200, we received on January 25, 1995. The enclosed work was performed by a laboratory subcontracted by Inchcape Testing Services - Anametrix Laboratories.

 I.T.S. Anametrix ID:
 Client ID:

 9501222-2
 MW1

If you have any questions regarding this workorder, please give me a call at (408)432-8192.

Sincerely,

INCHCAPE TESTING SERVICES ANAMETRIX LABORATORIES

ristein V-Raybur

Cristina Velasquez Rayburn

Project Manager

Quanterra Incorporated 880 Riverside Parkway West Sacramento, California 95605

916 373-5600 Telephone 916 372-1059 Fax

February 10, 1995 Lab ID: 079979

Cristina V. Rayburn Inchcape Testing Services 1961 Concourse Drive, Suite E San Jose, CA 95131

Dear Ms. Rayburn:

Enclosed is the report for the PCDD/PCDF analysis by Method 8290 of your one aqueous sample for your Project #9501222 received at Quanterra Incorporated on 26 January 1995 under chain-of-custody.

Detection limits for dioxins and furans are reported on a sample specific basis and all results are recovery corrected per the isotope dilution technique. For an analyte reported as 'Not Detected' the associated detection limit represents its maximum possible concentration. The method blank is a laboratory-generated sample which assesses the degree to which laboratory operations and procedures cause false-positive analytical results for your samples.

All samples and extracts are retained for 30 days from the date of this report. If longer storage is required or you would like samples returned to you, please call with instructions.

Results are on the attached data sheets.

If you have any questions, please feel free to call.

Sincerely,

Eric W. Redman Senior Scientist

Advanced Technology Group

Kathleen A. Gill Program Administrator

Rell W. Dold

SAMPLE DESCRIPTION INFORMATION for Anametrix, Inc.

			Sampi	ed	Received
Lab ID	Client ID	Matrix	Date	Time	Date
079979-0001-MB 079979-0001-SA		AQUEOUS AQUEOUS	25 JAN 95	13:40	26 JAN 95 26 JAN 95

POLYCHLORINATED DIOXINS/FURANS ISOMER SPECIFIC ANALYSIS Method 8290

Client Name: Anametrix, Inc. Client ID: Method Blank Lab ID: 079979-0001-MB

Matrix: AQUEOUS Sampled: NA Received: NA

Authorized: 26 JAN 95 Prepared: 30 JAN 95 Analyzed: 03 FEB 95

1.00 L Sample Amount DB-5 Column Type Detection Data Qualifiers Result Units Limit Parameter **Furans** 0.92 ND pg/L TCDFs (total) 0.92 ND pg/L 2,3,7,8-TCDF 2.4 PéCDFs (total) 1,2,3,7,8-PeCDF ND pg/L 2.3 ND pg/L 2.4 ND 2,3,4,7,8-PeCDF pg/L 1.7 ND HxCDFs (total) pg/L 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF HpCDFs (total) 1.6 ND pg/L 1.6 ND pg/L 1.7 ND pg/L pg/L 1.5 ND 2.2 ND pg/L 1.9 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF ND pg/L 2.2 ND pg/L 4.9 ND pg/L OCDF Dioxins 2.2 ND TCDDs (total) 2,3,7,8-TCDD pg/L 0.66 ND pg/L PecDDs (total)
1,2,3,7,8-PecDD
HxCDDs (total)
1,2,3,4,7,8-HxCDD
1,2,3,6,7,8-HxCDD
1,2,3,7,8,9-HxCDD
HpCDDs (total) 1.6 ND pg/L 1.6 ND pg/L 1.9 pg/L ND 1.9 ND pg/L 1.7 ND pg/L pg/L 1.7 ND 2.6 ND pg/L 1,2,3,4,6,7,8-HpCDD 2.6 ND pg/L

(continued on following page)

ND

pg/L

ND = Not detected NA = Not applicable

OĆDĎ

Reported By: Clark Pickell Approved By: Jill Kellmann

The cover letter is an integral part of this report.

Rev 230787

POLYCHLORINATED DIOXINS/FURANS . ISOMER SPECIFIC ANALYSIS (CONT.) Method 8290

Client Name: Anametrix, Inc. Client ID: Method Blank Lab ID: 079979-0001-MB

Sampled: NA Prepared: 30 JAN 95 Received: NA Matrix: AQUEOUS

Analyzed: 03 FEB 95 Authorized: 26 JAN 95

1.00 L Sample Amount DB-5 Column Type

% Recovery

13C-2,3,7,8-TCDF	74
13C-2,3,7,8-TCDD	70
13C-1,2,3,7,8-PeCDF	69
13C-1,2,3,7,8-PeCDD	71
13C-1,2,3,4,7,8-HxCDF	64
13C-1,2,3,6,7,8-HxCDD	65
13C-1,2,3,4,6,7,8-HpCDF	55
13C-1,2,3,4,6,7,8-HpCDD	56
13C-0CDD	45

ND = Not detected NA = Not applicable

Approved By: Jill Kellmann Reported By: Clark Pickell

The cover letter is an integral part of this report.

Rev 230787

POLYCHLORINATED DIOXINS/FURANS ISOMER SPECIFIC ANALYSIS Method 8290

Client Name: Anametrix, Inc. Client ID: 7137-0200 MW-1 079979-0001-SA Lab ID:

Sampled: 25 JAN 95 Prepared: 30 JAN 95 Received: 26 JAN 95 Matrix: AQUEOUS Analyzed: 08 FEB 95 26 JAN 95 Authorized:

1.04 1 Sample Amount

Column Type Parameter	DB-5	Result	Units	Detection Limit	Data Qualifiers
Furans					
TCDFs (total) 2,3,7,8-TCDF PeCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF HxCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF HpCDFs (total) 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF		ND ND ND ND ND ND ND ND ND ND	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	2.0 2.0 3.9 3.4 2.1 1.2 1.6 1.7 2.1 2.1 0.93 3.9	
Dioxins					
TCDDs (total) 2,3,7,8-TCDD PeCDDs (total) 1,2,3,7,8-PeCDD HxCDDs (total) 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD HpCDDs (total) 1,2,3,4,6,7,8-HpCDD OCDD		ND ND ND ND ND ND ND ND ND	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	2.7 2.4 2.4 2.5 2.4 2.5 2.0 2.0	

(continued on following page)

ND = Not detected NA = Not applicable

Approved By: Jill Kellmann Reported By: Maricon Estrada

> The cover letter is an integral part of this report. Rev 230787

POLYCHLORINATED DIOXINS/FURANS ISOMER SPECIFIC ANALYSIS (CONT.) Method 8290

Client Name: Anametrix, Inc. Client ID: 7137-0200 MW-1

079979-0001-SA Lab ID:

Received: 26 JAN 95 Analyzed: 08 FEB 95 Sampled: 25 JAN 95 Prepared: 30 JAN 95 Matrix: AQUEOUS Authorized: 26 JAN 95

1.04 L Sample Amount Column Type DB-5

% Recovery

13C-2,3,7,8-TCDF	63
13C-2,3,7,8-TCDD	67
13C-1,2,3,7,8-PeCDF	60
13C-1,2,3,7,8-PeCDD	64
13C-1,2,3,4,7,8-HxCDF	73
13C-1,2,3,6,7,8-HxCDD	72
13C-1,2,3,4,6,7,8-HpCDF	83
13C-1,2,3,4,6,7,8-HpCDD	77
13C-OCDD	67

ND = Not detected NA = Not applicable

Approved By: Jill Kellmann Reported By: Maricon Estrada

The cover letter is an integral part of this report. Rev 230787

LABORATORY CONTROL SAMPLE REPORT

Advanced Technology Group - High Resolution

Project: 079979

Category: 8290-HR-A C14-C18 D/F plus 2378-substituted isomers by Method 8290

Matrix: AQUEOUS

QC Lot: 27 JAN 95-A QC Run: 03 FEB 95-A

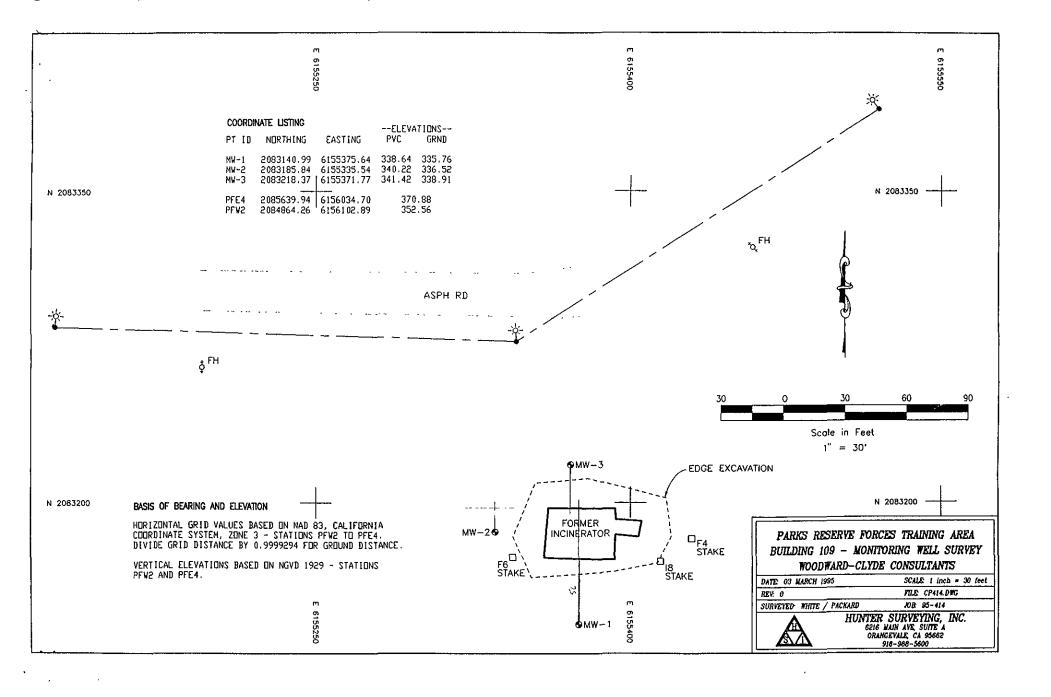
Concentration Units: pg/uL

Analyte	Concent Spiked	ration Measured	Accur LCS	acy(%) Limits
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-HxCDD 1,2,3,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-2,3,7,8-TCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDD	10.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 2	11.2 25.6 27.5 26.8 26.8 24.8 22.5 25.6 26.8 24.8 22.5 27.4 27.4 27.4 27.4 27.3 27.4 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3	112 103 110 106 107 99 113 119 110 104 110 106 74 79 71 68 68	60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140 40-135 40-135 40-135 40-135 40-135
13C-0ĆDD	250	139	55	40-135

ND = Not Detected

Calculations are performed before rounding to avoid round-off errors in calculated results.

Micheape Testing Services Anametrix Laboratories


San Jose, CA 95131 (408) 432-8192 • Fax (408) 432-8198

CHAIN-OF-CUSTODY RECORD

PROJECT NUMBER		Logouser	Aur		······		1	1	حجات							_				
l		PROJECT N	AME				Ì		13	ype	of Ar	nalys	is							
95017	122	1							8	 	1	T		Т	\neg	1	 	j		
Send Report Att	ention of:		¦ R	eport Du	e Verbal	Due	Number	Туре	~ ~	1	ļ							Condition		Į.
CRISTI	NA RAYBU	TDM	12	131	35 1	,	of	of	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1				1			ł		•	
OK1011	I I I	1	, -	1					1 3									of		Initial
Sample Number	Date	Time	Сопр	Matrix	Station Loca	tion	Cntnrs	Containers	(C									Samples		
2*	1/25/95	1340		w			2	liter	<u>-X</u>					_				Good	, t = 3	963
	·			İ					7					\top			1	* samp		1 -
							ļ	ļ		<u> </u>	<u> </u>									
] 					ĺ.,		İ		Ì		j			İ				37-020
							ļ			 	-				- -	- -			# / Mi	h - l
																			Brzi	Dizeiz
													İ					· · · · · · · · · · · · · · · · · · ·		
					·				1-				-	_		╁	╁╾	<u> </u>		
						i							-					İ		
į				į										\exists	7			<u></u>	· · · · · · · · · · · · · · · · · · ·	
									 -				_		_ _	_ _	1_			
												•	į			į	į		, •	
					· · · · · · · · · · · · · · · · · · ·				 						┪					
*			·	<u> </u>										-						
į				İ									_	_	+	†	 	 ,	, _	
											_		_							
						ł				į				İ						
^					·			<u></u>	╂╼┋						- -	┼				
40						ļ	ļ			- {					-	-				
Refinquished by:	ク	Date/Line 1/25/15	Recei		(Signature) #-46623°	Date,	/Time	Remarks:	PLEAS VITH	SE S	SENI E RI	D OF EPOF	IGI T. (NAL V PO	CHA LSQ	1/2/	<u>;</u>	USTODY AI	ONG -	45 day
(elinquished by: (Signature)	Date/Time			(Signature)	Date/	Time	ater -	TF4 1	ga	rt i	is n	wil.	ed.	ub	1/2		O a	terro	, ¥
Relinquished by:(Signature	Date/Time	Recei	ved by	ah•	Dot s	/Time	COMPANY:	INCHO	API	T T	ESTI	NG :	SERV	TCE!	5. 7	MAIN	ETRIX LAP	SS	<u> </u>
]	20001111112	!	-	0	Date/		WOOKE 22:	1901	COL	VCOL	JRSE	DR	TVF.	SU:	ITE	E			ł
<u> </u>	<u> </u>		1	<u>, 194</u>	naly	10.00	,13710	PHONE :	(408)	432	2_81	92		_	FAX	: 17	1001	422 0100		į

APPENDIX E SURVEY MAP

L:\94\24576.17137\viii M0329950853

