

Correspondence File

Filing:

5900 Hollis Street, Suite A Emeryville, California 94608 Telephone: (510) 420-0700

Fax: (510) 420-9170

www.CRAworld.com

			TRANSM	ITTAL	
DATE:	Augus	t 3, 2009	Referen	CE No.:	240503
			Project	NAME:	6039 College Avenue, Oakland
то:	Jerry V	Vickham	·		RECEIVED
	Alame	da County Health Care	e Services Agenc	у	2:07 pm, Aug 10, 2009
	1131 H	larbor Bay Parkway, Su	uite 250		Alameda County
	Alame	da, California 94502-65	577		Environmental Health
Please find	l enclose	d: Draft Originals Prints	_	nal ther	
Sent via:		Mail Overnight Co		me Day Cou her <u>Geo</u>	urier Tracker and Alameda County FTP
QUAN'	TITY		Γ	DESCRIPT	TION
1		Groundwater Monito	oring Report – Se	econd Qua	rter 2009
					· · · · · · · · · · · · · · · · · · ·
	equested our Use		For Review and	Comment	
COMME If you hav (510) 420-	e any q	uestions regarding the	contents of this c	locument,	please call Peter Schaefer at
Copy to:		Denis Brown, Shell Oil	Products US, 20	945 S. Wili	mington Avenue, Carson, CA 90810
		•			Hope Lane, Lafayette, CA 94549
		Montrose Investment C Larkspur, CA 9493	•	aham, 242	Rivera Circle, Greenbrae Marina,
		•		lark, 6013	Auburn Avenue, Oakland, CA 94618
		SF Data Room (electro			0.00
Complete	d by:	Peter Schaefer	S	igned: 檱	gen John John

Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Shell-branded Service Station

6039 College Avenue Oakland, California SAP Code 135685 Incident No. 98995745

ACHCSA Case No. RO0000469

Dear Mr. Wickham:

The attached document is provided for your review and comment. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

Denis L. Brown

Shell Oil Products US

Tel (707) 865 0251 **Fax** (707) 865 2542

HSE - Environmental Services 20945 S. Wilmington Ave. Carson, CA 90810-1039

Email denis.l.brown@shell.com

If you have any questions or concerns, please call me at (707) 865-0251.

Sincerely,

Denis L. Brown Project Manager

GROUNDWATER MONITORING REPORT - SECOND QUARTER 2009

SHELL-BRANDED SERVICE STATION 6039 COLLEGE AVENUE OAKLAND, CALIFORNIA

SAP CODE 135685 INCIDENT NO. 98995745 AGENCY NO. RO0000469

> Prepared by: Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, California U.S.A. 94608

Office: (510) 420-0700 Fax: (510) 420-9170

web: http://www.CRAworld.com

AUGUST 3, 2009 REF. NO. 240503 (5)

This report is printed on recycled paper.

TABLE OF CONTENTS

			<u>Page</u>
1.0	INTRO	DDUCTION	1
	1.1	SITE INFORMATION	1
2.0	SITE A	.CTIVITIES, FINDINGS, AND DISCUSSION	2
	2.1	CURRENT QUARTER'S ACTIVITIES	2
	2.2	CURRENT QUARTER'S FINDINGS	2
	2.3	PROPOSED ACTIVITIES FOR NEXT QUARTER	2
	2.4	DISCUSSION	2

LIST OF FIGURES

(Following Text)

FIGURE 1 VICINITY MAP

FIGURE 2 GROUNDWATER CONTOUR AND CHEMICAL CONCENTRATION MAP

LIST OF APPENDICES

APPENDIX A BLAINE TECH SERVICES, INC. – GROUNDWATER MONITORING REPORT

1.0 <u>INTRODUCTION</u>

Conestoga-Rovers & Associates (CRA) prepared this report on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell) in accordance with the quarterly reporting requirements of 23 CCR 2652d.

1.1 <u>SITE INFORMATION</u>

Site Address 6039 College Avenue, Oakland

Site Use Shell Branded Service Station

Shell Project Manager Denis Brown

CRA Project Manager Peter Schaefer

Lead Agency and Contact ACHCSA, Jerry Wickham

Agency Case No. RO0000469

Shell SAP Code: 135685

Shell Incident No. 98995745

Date of most recent agency correspondence was September 22, 2006.

2.0 SITE ACTIVITIES, FINDINGS, AND DISCUSSION

2.1 CURRENT QUARTER'S ACTIVITIES

Blaine Tech Services Inc. (Blaine) gauged and sampled the wells according to the established monitoring program for this site. Wells MW-3 and MW-4 were resampled on June 26, 2009 to verify initial results which were not consistent with recent trends.

CRA prepared a vicinity map (Figure 1) and a groundwater contour and chemical concentration map (Figure 2). Blaine's report, presenting the analytical data, is included in Appendix A.

2.2 <u>CURRENT QUARTER'S FINDINGS</u>

Groundwater Flow Direction Southwesterly

Hydraulic Gradient 0.01

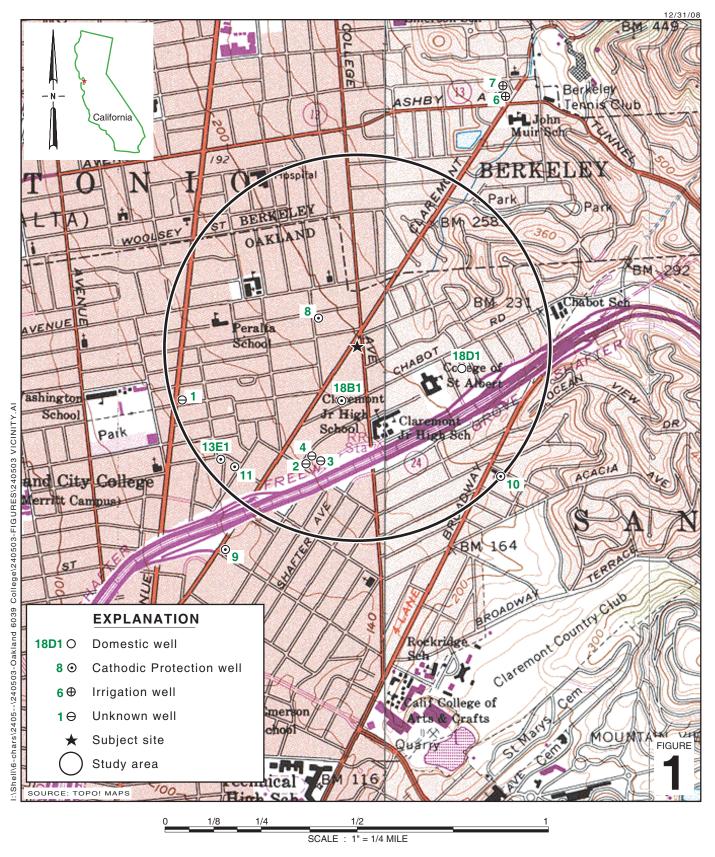
Depth to Water 11.28 to 14.28 feet below top of well casing

2.3 PROPOSED ACTIVITIES FOR NEXT QUARTER

Blaine will gauge and sample wells according to a monitoring program. Per State Water Resources Control Board Resolution 2009-0042 adopted May 19, 2009, we will implement a semi-annual monitoring and reporting schedule at the site, with sampling activities conducted during the first and third quarters.

2.4 DISCUSSION

This quarter's analytical results from MW-3 and MW-4 were confirmed to be above recent trends. The change is likely due to groundwater elevations rising approximately 3.7 feet since the sampling event in the first quarter of 2009.


During a March 19, 2009 meeting with Alameda County Health Care Services Agency, Jerry Wickham suggested conducting a soil vapor investigation as the next step toward closure of this environmental case. Since the results discussed above are not consistent with recent trends, the proposal for a soil vapor investigation will be postponed until groundwater conditions have stabilized.

All of Which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES

Peter Schaefer, CHG, CEG

Aubrey K. Cool, PG

FIGURES

Shell-branded Service Station

6039 College Avenue Oakland, California

Vicinity Map

APPENDIX A

BLAINE TECH SERVICES, INC. –
GROUNDWATER MONITORING REPORT

BLAINE TECH SERVICES INC.

GROUNDWATER SAMPLING SPECIALISTS **SINCE 1985**

July 15, 2009

Denis Brown Shell Oil Products US 20945 South Wilmington Avenue Carson, CA 90810

> Second Quarter 2009 Groundwater Monitoring at Shell-branded Service Station 6039 College Avenue Oakland, CA

Monitoring performed on May 7 and June 26, 2009

Groundwater Monitoring Report 090507-WW-1 Reissue

This report covers the routine monitoring of groundwater wells at this Shell-branded facility. In accordance with standard procedures that conform to Regional Water Quality Control Board requirements, routine field data collection includes depth to water, total well depth, thickness of any separate immiscible layer, water column volume, calculated purge volume (if applicable), elapsed evacuation time (if applicable), total volume of water removed (if applicable), and standard water parameter instrument readings. Sample material is collected, contained, stored, and transported to the laboratory in conformance with EPA standards. Purgewater (if applicable) is, likewise, collected and transported to the Martinez Refining Company.

Basic field information is presented alongside analytical values excerpted from the laboratory report in the cumulative table of WELL CONCENTRATIONS. The full analytical report for the most recent samples and the field data sheets are attached to this report.

At a minimum, Blaine Tech Services, Inc. field personnel are certified on completion of a fortyhour Hazardous Materials and Emergency Response training course per 29 CFR 1910.120. Field personnel are also enrolled in annual eight-hour refresher courses.

SAN JOSE

SACRAMENTO

LOS ANGELES

SAN DIEGO

Blaine Tech Services, Inc. conducts sampling and documentation assignments of this type as an independent third party. Our activities at this site consisted of objective data and sample collection only. No interpretation of analytical results, defining of hydrological conditions or formulation of recommendations was performed.

Please call if you have any questions.

Yours truly,

Mike Ninokata Project Manager

MN/jb

attachments: Cumulative Table of WELL CONCENTRATIONS

Certified Analytical Report

Field Data Sheets

cc: Anni Kreml

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608

SAN JOSE

SACRAMENTO

LOS ANGELES

SAN DIEGO

SEATTLE

T					1			MTBE	MTBE	1 1 10	· -		-	1,2	 			Depth to	Depth	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	E	х	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	Ethanol	TOC	Water	to SPH	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)
<u></u>			, U /				-									 -						
MW-1	02/15/1990	95	650	ND	0.67	0.37	3.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	17.73	NA	178.16	NA .	NA
MW-1	04/19/1990	NA NA	NA.	NA.	NA	NA.	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA NA	195.89	18.51	NA	177.38	NA	NA
MW-1	05/14/1990	95	ND.	0.7	0.57	0.71	3.5	NA	NA	ΝA	NA	NA	NA	NA	NA	NA	195.89	18.92	NA	176.97	NA	NA
MW-1	06/21/1990	NA.	NA	NA	NA	ΝA	NA	NA	NA	NΑ	NA	NA	·NA	NA	NA	. NA	195.89	18.21	NA	177.68	NA	NA
MW-1	09/12/1990	ND	- 84	ND	ND	ND	ND	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	19.81	NA	176.08	NA	· NA
MW-1	11/27/1990	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	20.39	NΑ	175.50	NA	NA
MW-1	03/08/1991	ND	50	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	16.85	NA	179.04	NA	NA
MW-1	06/03/1991	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	17.82	NA	178.07	NA	NA
MW-1	08/30/1991	16.85	520	ND	ND	ND	ND	NA	NA	NA .	NA	NA	NA	NA	NA	NA	195.89	19.87	NA	176.02	NA	NA
MW-1	11/22/1991	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	20.58	NA.	175.31	NA	NA
MW-1	03/18/1992	<30	<50	<0.3	<0.3	<0.3	<0.3	NA ·	NA	NA .	NA	NΑ	NA	NA	NA	ΝA	195.89	13.55	NA	182.34	NA	NA
MW-1	05/28/1992	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	17.08	NA	178.81	NA	NA
MW-1	08/19/1992	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA ·	NA	NA	NA	NA	NA.	195.89	19.07	NA	176.82	NA	NA
MW-1	11/17/1992	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	20.11	NA	175.78	NA	NA
MW-1	02/12/1993	<50	<50	<0.5	<0.5	<0.5	<0.5	NA ·	NA	NA	NA	NA	. NA	NA	NA	NA	195.89	12.10	NA	183.79	NA	NA
MW-1	06/10/1993	<50	· NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	ÑΑ	NA	NA	NA	195.89	14.87	NA NA	181.02	. NA	NA
MW-1	08/18/1993	<50	NA .	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	16.90	NA	178.99	NA	NA NA
MW-1	11/19/1993	<50	NA.	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	· NA	NA	NA	NA	195.89	19.72	NA	176,17	NA	NA NA
MW-1	02/28/1994	<50	NA	<0.5	<0.5	<0.5	1.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	15.08	NA NA	180.81	NA	NA NA
MW-1	05/04/1994	<50	NA	<0.5	<0.5	<0.5	<0.5	NA_	NA	NA	NA	NA	NA	NA .	NA	NA	195.89	17.20	NA	178.69	NA	NA.
MW-1	08/10/1994	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA _	NA	NA	NA	NA	NA	NA	NA	195.89	18.76	NA_	177.13	NA NA	NA NA
MW-1	11/08/1994	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA .	NA	NA	NA	NA	NA	NA	195.89	16.00	NA_	179.89	NA NA	NA
MW-1	02/01/1995	<50	NA.	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA_	NA	NA	NA ·	NA	NA NA	195.89	10.18	NA	185.71	NA	NA NA
MW-1	05/10/1995	<50	NA_	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	11,88	NA_	184.01	_ NA	NA NA
MW-1	08/24/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA _	NA	NA	NA	NA	195.89	15.60	NA NA	180.29	NA NA	NA NA
MW-1	11/10/1995	<50	. NA	<0.5	<0.5	<0.5	<0.5	NA	NA NA	NA	NA	NA	NA	NA_	NA	NA	195.89	18.24	NA	177.65	NA	NA NA
MW-1	02/24/1996	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	. NA	NA	NA	NA_	NA	NA	NA	195.89	9.88	NA	186.01	NA NA	NA_
MW-1	05/22/1996	<50	NA	<0.5	<0.5	<0.5	<0.5	<2.5	NA	NA	NA	NA	NA_	NΑ	NA	NA	195.89	12.24	NA	183.65	NA NA	NA
MW-1	08/19/1996	<50	NA	<0.5	<0.5	<0.5	<0.5	<2.5	NA	NA	NA	NA	NA	NA	NA_	NA	195.89	15.86	NA	180.03	NA NA	NA NA
MW-1	12/05/1996	160	NA	7.3	8.2	5.5	23	<2.5	NA	, NA	NA	NA NA	NA	NA	NA_	NA	195.89	16.21	NA	179.68	NA	NA NA
MW-1	01/08/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA	NA	NA	NA	NA	NA	195,89	9.73	NA _	186.16	NA NA	NA NA
MW-1	02/20/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	NA	NA_	NA .	NA ·	NA	NA	NA	195.89	11.60	NA	184.29	NA	NA NA
MW-1	05/30/1997	NA	NA	NA	NA	NA	NA.	NA	NA_	NA_	NA_	NA	NΑ	NA	NA	NA	195.89	15.02	NA .	180.87	NA NA	NA NA
MW-1	08/18/1997	NA	NA	NA	NA	NA	NA	NA ·	NA	NA	NA.	NA	NA	NA	NA	NA	195.89	17.20	NA	178.69	NA	NA NA
MW-1	11/03/1997	NA	NA	NA	NA	NA	NA	ŅΑ	NA	NΑ	NA.	NA	NA	NA	NA	NA NA	195.89	16.02	NA	179.87	NA NA	NA NA
MW-1	01/20/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA	ŊA	NA	NA	195.89	9.35	NA	186.54	NA NA	NA

- 1								MTBE	MTBE					1,2				Depth to	Depth	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	В	т.	E	х	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	Ethanol	TOC	Water	to SPH	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)
		<u></u>																				
MW-1	06/05/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	11.75	NA	184.14	NA	NA
MW-1	07/23/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA	NA	NA	NA	195.89	13.32	NA	182.57	NA	NA
MW-1	11/19/1998	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	195.89	14.01	. NA	181.88	NA	NA						
MW-1	02/03/1999	NA	NA	NA	NA	NA	NA	NA	NΑ	NΑ	NA	NA	NA	NA	NA	NA	195.89	15.62	NA	180.27	NA	NA
MW-1	06/04/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	14.72	NA	181.17	NA	NA
MW-1	08/31/1999	NA	NA	NA	NA	NA :	NA	NA	NA	NA	NA	NA	· NA	NA	NA	NA	195.89	17.00	NA	178.89	NA	NA
MW-1	12/10/1999	NA	NA	NA	NA	NA :	NA	NA.	195.89	18.36	NA	177,53	NA	NA								
MW-1	02/11/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	15.09	NA	180.80	NA	NA
· MW-1	05/04/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	12.97	NΑ	182.92	NA	NA
MW-1	08/31/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	195.89	15.02	NA	180.87	NA	NA
MW-1	11/30/2000	NA:	NA	NA	NA	NA	. NA	NA	NA	NA	NA	NA	NA	NA	NA_	, NA	195.89	12.90	NA	182.99	NA NA	NA
MW-1	02/13/2001	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	195.89	14.28	NA	181.61	NA	NA NA
MW-1	05/29/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA :	NA	NA	NA .	NA	NA	NA	195,89	16.04	NA	179.85	NA NA	NA
MW-1	07/30/2001	NA	NA	NA	NA	NA .	NA	NA	NA -	NA	195.89	17.53	NΑ	178.36	: NA	NA						
MW-1	12/12/2001	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	195.89	14.79	NA	181.10	NA	NA
MW-1	01/31/2002	<50 ·	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	195.89	13.71	NA	182.18	NA	NA .						
MW-1	05/31/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	195.89	15,63	NA	180.26	NA_	NA
MW-1	07/25/2002	NA -	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	195.89	17.08	NA	178.81	NA NA	NA .
MW-1	11/26/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NΑ	NA	NA	NA.	NA_	200.56	19.30	NA	181.26	NA	NA .
MW-1	01/29/2003	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	. NA	NA	NA	NA	NA	NA	NA NA	200.56	13.90	NA NA	186.66	NA	NA NA
MW-1	06/03/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA:	200.56	15.30	NA	185.26	NA NA	NA NA
MW-1	08/27/2003	NA	NA	⁻ NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	200.56	17.32	NA	183.24	NA	NA NA
MW-1	11/13/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA_	NA	200.56	18.61	NA	181.95	NA	NA NA
MW-1	02/05/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA_	NA	<5.0	NA	NA	NA NA	200.56	14.46	NA	186.10	NA	NA
MW-1	05/03/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA	NA	NA	NA_	200.56	14.52	NA	186.04	NA NA	NA
MW-1	08/30/2004	NA ·	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	200.56	16.73	NA	183.83	NA	NA
MW-1	11/22/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA :	NA	NA	NA NA	NA	NA	NA.	200.56	16.86	NA	183.70	NA	NA
MW-1	02/02/2005	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA NA	NA -	NA	<5.0	NA	NA	NA NA	200.56	12.82	NA	187.74	NA	NA
MW-1	05/09/2005	NA	NA	NA	NΑ	NĄ	NA	NA _	NA	NA NA	200.56	12.20	NA	188.36	NA	NA NA						
MW-1	08/16/2005	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	NA	NA	NA	NA	NA	NA NA	200.56	15.25	NA	185.31	NA	NA
MW-1	11/16/2005	NA ·	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	200.56	17.44	NA	183.12	NA	NA
MW-1	02/10/2006	<50.0	NA	<0.500	<0.500	<0.500	<0.500	NA	<0.500	NA	NA	NA	<10.0	NA	NA	NA NA	200.56	12.58	NA .	187.98	NA	NA NA
MW-1	05/26/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA	NA	NA NA	200.56	11.72	NA NA	188.84	. NA	NA NA
MW-1	08/31/2006	NA	NA	NA	NA	NA	NA	NA	NA _	NA	NA .	NA	NA NA	NA	NA	NA NA	200.56	14.75	NA	185.81	NA NA	NA .
MW-1	11/08/2006	NA	NΑ	NA	NA	NA	NA	NA	NA_	NA	NA NA	NA	NA NA	NΑ	NA	NA	200.56	16.61	NA	183.95	NA NA	NA NA
MW-1	02/22/2007	<50	NΑ	<0.50	<1.0	<0.50	<1.0	NA	<0.50	NA	NA	NA	<5.0	NA .	NA	NA	200.56	15,41	NA	185.15	NA	NA

							-	MTBE	MTBE					1,2		```		Depth to	Depth	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	• т	E	x	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	Ethanoi	TOC	Water	to SPH	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)
	<u> </u>					<u></u>															· · · · · · · · · · · · · · · · · · ·	
MW-1	05/29/2007	NA	. NA	NA	NA	. NA	NA	NA	NΑ	NA	200.56	16.85	NA.	183.71	NA	NA						
MW-1	08/29/2007	NA	NA	NA	NA	. NA	NA NA	NA	NA	NA.	NA.	NA	NA	NA	NA	NA	200.56	18.23	NA	182.33	NA	NA
MW-1	11/30/2007	NA	NA	NA	NA	ÑΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	200.56	18.70	NΑ	181.86	NA	NA
MW-1	02/04/2008	<50 h	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NΑ	<10	NA	NA_	NA	200.56	12.06	NA NA	188.50	NA	NA
MW-1	05/27/2008	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	200.56	15.97	NA	184.59	. NA	NA
MW-1	08/05/2008	NΑ	NA:	NA	NA :	NA	NA.	NA	NA	NA	NA	. NA	NA	NA	NA	NA	200.56	16.93	NA NA	183.63	NA NA	NA
MW-1	12/03/2008	NA	NA	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	200.56	18.83	NA	181.73	NA NA	NA
MW-1	02/05/2009	<50	NA -	2.0	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	<10	NA	NA	NA_	200.56	18.21	NA	182.35	NA NA	NA NA
MW-1	05/07/2009	NA	NA	NA	NA	NA	NA	NA .	NA	200.56	14.28	NA	186.28	. NA	NA							
																					,	
MW-2	02/15/1990	ND	560	ND	ND	ND	ND	NA	NA	NA	NA	NA:	NA	NA	NA_	NA	194.27	16.90	NA	177.37	NA NA	NA
MW-2	04/19/1990	NA	NA	NA '	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NΑ	NA	194.27	17.69	NA	176.58	NA	NA
MW-2	05/14/1990	ND .	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA :	NA	NA	NA .	NA	194.27	18.01	NA	176.26	NA NA	NA .
MW-2	06/21/1990	, NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NΑ	NA NA	194.27	17.39	NA.	176.88	NA _	NA
MW-2	09/12/1990	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	194.27	19.00	NA	175.27	NA	NA
MW-2	11/27/1990	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	194.27	19.44	NA	174.83	NA	NA
MW-2	03/08/1991	ND	ND	ND	ND	ND	ND	NA	NA	. NA	NA .	NA	NA NA	NA NA	NΑ	NA	194.27	15.96	NA	178.31	NA	NA
MW-2	06/03/1991	ND.	ND	ND	ND	ND	ND_	NA	NA NA	NA	NA	NA.	NA	NA	NA.	NA	194.27	17.00	NA_	177.27	NA	NA
MW-2	08/30/1991	ND	ND	ND	ND	ND	ND	NA	NA .	NA	NA	NA .	NA	NA	ŅA	NA I	194.27	18.95	NA	175.32	NA	NA_
MW-2	11/22/1991	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA .	NA	NA NA	NA	NA	NA	NA	NA NA	194.27	19.55	NA	174.72	NA	NA
MW-2	03/18/1992	<30	- NA	<0.3	<0.3	<0.3	<0.3	NA	NA	NA_	NA	NA	NA NA	NA NA	NA	NA	194.27	12.91	NA	181.36	NA	NA
MW-2	05/28/1992	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA.	NA	NA	NA NA	194.27	16.25	NA NA	178.02	NA NA	NA
MW-2	08/19/1992	<50	NA	<0.5	2	1.2	1.9	NA	NA	NA	NA	NA	NA_	NA	NA	NA .	194.27	18.21	NA_	176.06	NA NA	NA .
MW-2	11/17/1992	<50	NA	<0.5	2	1.2	1.9	NA	NA	NA	NA	NA .	NA_	NA	NA	NA NA	194.27	19.15	NA NA	175.12	NA NA	NA NA
MW-2	02/12/1993	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA_	NA	NA	NA NA	194.27	11.60	NA	182.67	NA NA	NA NA
MW-2	06/10/1993	<50	NA_	<0.5	<0.5	<0.5	<0.5	NA	NA	NA_	NA	NA NA	NA	NA NA	NA NA	NA NA	194.27	14.14	NA NA	180.13	NA NA	NA NA
MW-2	08/18/1993	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA NA	NA_	NA NA	NA NA	NA NA	194.27	16.10	NA NA	178.17	NA NA	NA NA
MW-2	11/19/1993	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA NA	NA	NA_	NA_	NA_	NA	NA NA	NA NA	194.27	18.77	NA NA	175.50		NA NA
MW-2	02/28/1994	<50	NA ·	<0.5	<0.5	<0.5	1.6	NA	NA NA	NA	NA	NA .	NA	NA NA	NA NA	NA	194.27	14.35	NA NA	179.92	NA NA	NA NA
MW-2	05/04/1994	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	194.27	16.34	NA NA	177. <u>93</u> 178.48	NA NA	NA NA
MW-2	08/10/1994	<50	NA NA	<0.5	<0.5	<0.5	<0.5	NA	NA .	NA	NA	NA .	NA	NA NA	NA NA	NA NA	194.27	15.79	NA NA		NA NA	NA NA
MW-2	11/08/1994	<50	NΑ	<0.5	<0.5	<0.5	<0.5	NA	NA NA	NA	NA	NA I	NA NA	NA NA	NA NA	NA NA	194.27	15.04	NA NA	179.23 184.19	NA NA	NA NA
MW-2	02/01/1995	<50	NA	<0.5_	<0.5	<0.5	<0.5	NA	NA	NA:	NA NA	NA NA	NA NA	NA NA	NA ·	NA NA	194.27 194.27	10.08 11.68	NA NA	182.59	NA NA	NA NA
MW-2	05/10/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA NA			NA NA	179.33	NA NA	NA NA							
MW-2	08/24/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA I	NA .	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	194.27	14.94 13.36	NA NA	180.91	NA NA	NA NA
MW-2	11/10/1995	<50	NA	1.7	0.8	1.4	4.9	NA	NA	NA	NA	NA _	NA _	NA	NA	NA	194.27	13.30	INA	160,81	INA	INA

								MTBE	MTBE					1,2				Depth to	Depth	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	E	Х	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	Ethanol	TOC	Water	to SPH	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)
	<u></u>																					
MW-2	02/24/1996	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	194.27	9.90	NA	184.37	NA	NA								
MW-2	05/22/1996	<50	NA	<0.5	<0.5	<0.5	<0.5	<2.5	ΝA	NA	194.27	11.80	NA	182.47	NA	NA						
MW-2	08/19/1996	<50	NA	<0.5	<0.5	<0.5	<0.5	<2.5	NA	194.27	15.08	NA	179.19	NA	NA NA							
MW-2	12/05/1996	<50	NA	1.5	1.6	1.2	5.2	<2.5	NA.	NA	NA	NA	NA	NA	NΑ	NA	194.27	15.16	NA	179.11	NA	NA
MW-2	01/08/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	194.27	9.76	NA	184.51	. NA	NA							
MW-2	02/20/1997	<50	NA	<0.50	<0.50	<0.50	<0.50	<2.5	NA	194.27	11.47	NA	182.80	NA	NA							
MW-2	05/30/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	194.27	14.30	NA	179.97	NA	NA
MW-2	08/18/1997	NA .	NA	NA	NA	NA	. NA	NA	NΑ	NA ·	NA	NA	NA	NA	NA	NA	194.27	16.33	NA	177.94	NA NA	NA .
MW-2	11/03/1997	NA	NA	NA	NA	NA	NA:	NA	194.27	15.54	NA	178.73	NA	NA								
MW-2	01/20/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	194.27	9.43	NA_	184.84	NA .	NA
MW-2	06/05/1998	NA	NA	NA	NA	NA	· NA	NA	NA.	NA	NA	NA	NA.	NA	NA	NA NA	194.27	11.45	NA	182.82	NA	NA .
MW-2	07/23/1998	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	194.27	12.71	NA	181.56	NA .	NA -						
MW-2	11/19/1998	NA	NA	- NA	· NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	194.27	13.98	NA	180.29	NA	NA
MW-2	02/03/1999	NA	NA	NA	NA:	NΑ	NA	194.27	15.01	NA	179.26	NA	NA.									
MW-2	06/04/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	194.27	13.93	NA	180.34	NA	NA
MW-2	08/31/1999	NA	NA	NA	NA	NΑ	NA	NA	NA:	NA	NA	· NA	NA	NA	NA	NA	194.27	16.22	ŅA	178.05	NA NA	NA
MW-2	12/10/1999	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	194.27	17.58	NA	176.69	NA NA	NA .
MW-2	02/11/2000	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA_	NA	NA	NA	NA	NA NA	194.27	14.10	NA	180.17	NA NA	NA
MW-2	05/04/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA:	NA	NA	NA	NA	NA	NA .	194.27	12.72	NA .	181.55	NA .	NA NA
MW-2	08/31/2000	NA	. NA	NA	NA	NA	. NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	194.27	14.39	NA	179.88	NA NA	NA_
MW-2	11/30/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ΝA	NA	NA	NA	NA	194.27	17.00	NA	177.27	NA	NA
MW-2	02/13/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	ŅA	194.27	13.58	NA	180.69	NA	NA
MW-2	05/29/2001	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA.	194.27	15.26	NA	179.01	NA NA	NA
MW-2	07/30/2001	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA_	NA	NA	NA	NA	NA NA	194.27	16.67	NA NA	177.60	NA NA	NA
MW-2	12/12/2001	NA	NA	NA	NA	NA	NA	ΝA	NA	NA_	NA	NA NA	NA	NA	NA	NA NA	194.27	13.91	NA	180.36	NA NA	NA :
MW-2	01/31/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	NA	NA	NA	NΑ	NA	NA	194.27	12.96	NA	181.31	NA	NA
MW-2	05/31/2002	. NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	NA.	194.27	14.85	NA	179.42	NA NA	NA
MW-2	07/25/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA	NA	NA:	194.27	16.24	NA.	178.03	NA NA	NA
MW-2	11/26/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	- NA	NA	NA NA	198.95	18.35	NA	180.60	NA NA	NA .
MW-2	01/29/2003	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	<5.0	NA	198.95	13.19	NA	185.76	NA NA	NA						
MW-2	06/03/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA	NA	NA	198.95	14.53	NA	184.42	NA	NA
MW-2	08/27/2003	NA _	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA_	NA	NA	198.95	16.46	NA	182.49	NA NA	NA
MW-2	11/13/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA	NA	NA NA	198.95	17.68	NA.	181.27	NA	NA :
MW-2	02/05/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	<5.0	NA	NA	NA NA	198.95	13.68	NA	185.27	NA NA	NA NA
MW-2	05/03/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA NA	198.95	13.82	NA .	185.13	NA NA	NA
MW-2	08/30/2004	NA _	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA_	NA	NA	NA_	198.95	15.94	NA	183.01	NA NA	NA

Well ID Date TPPH TEPH GUG L (Ug/L)				1.			T 1		MTBE	MTBE		<u> </u>			1,2	Ī			Depth to	Depth	GW	SPH	DO
May 11/22/2004 MA	Wallin	Date	тррн	TEPH	В	т	E	х			DIPE	ETBE	TAME	TBA	1 -	EDB	Ethanol	TOC	Water	to SPH	Elevation	Thickness	Reading
MMY2	Weilid	Date	1.0				1 1			(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.) _	(ft.)	(MSL)	(ft.)	(ppm)
MW-2 020202005 450 NA NA NA NA NA NA NA N	L		(-3/	(-3/	(-3-7	(-0-7	<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>					-							
MMY-2 05/06/2005 NA NA NA NA NA NA NA N	MW-2	11/22/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA:	NA	NA NA	198.95	15.96	NA	182.99	NA	NA
MW-2						<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	<5.0	NA	NA:	NA	198.95	12.24	NA	186.71	NA	NA
MMY-2 0916/2000		· · · · · · · · · · · · · · · · · · ·				NA.	NA	NA	NA	NA	NA	NA ·	NA	NA	NA	NA	NA	198.95	11.80	NA	187.15	NA	NA
MW-2 11/16/2005								NA	NA	NA	NA	NA	NA	NA :	NA	NA	NA	198.95	14.39	NA	184.56	NA	NA .
MM-V2 05/28/2006 NA NA NA NA NA NA NA N	1			NA	NA	NA	NA	NA	NA	. NA	NA	NA .	- NA	NA	NA	NA	NA	198.95	16.52	NA	182.43	NA	NA
MW-2 05/26/2006 NA NA NA NA NA NA NA N	-					<0.500	<0.500	<0.500	NA	<0.500	NA	NA	NA	<10.0	NA	.NA	NA	198.95	12.17	NA	186.78	NA	NA
MM-V2 08631/2006 NA NA NA NA NA NA NA N			NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	198.95	11.61	NA	187.34	. NA	NA
MW-2 11/08/2006 NA NA NA NA NA NA NA N			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	198.95	13,95	NA	185.00	NA	. NA
MW-2 05/23/2007 -50 NA -0.50 -1.0 -0.50 -1.0 NA NA NA NA NA NA NA N			NA	NA	NA	NΑ	NA	NΑ	NA	NA	NA	NA	· NA	NA	NA	NA	NA	198.95	15.67	NA	183.28	NA	NA
MW-2 050292007 NA			<50	NA	<0.50	<1.0	<0.50	<1.0	NA	<0.50	NA	NA	NA	<5.0	NA	NA	- NA	198.95	14.54	. NA	184.41	NA	NA.
MW-2 05/27/2008	MW-2	05/29/2007	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	198.95	15.97	NA	182.98	NA	NA NA
MW-2 02/04/2008 < 50 h NA < 0.50 < 1.0 < 1.0 < 1.0 < 1.0 NA	MW-2	08/29/2007	NA	NA	NA	NA	NA:	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	198.95	17.37	NA	181.58	NA	NA NA
MW-2 02/04/2008 <50 h NA <0.50 <1.0 <1.0 <1.0 NA NA NA NA NA NA NA N	MW-2	11/30/2007	NA	NA	NA	NA	· NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA.	NA	198.95	17.80	NA	181.15	NA	NA NA
MW-2 08/05/2008 NA NA NA NA NA NA NA N	- 1		<50 h	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	<10	NA ·	NA	NA NA	198.95	11.61	NA	187.34	NA	NA NA
MW-2 08/05/2008 NA NA NA NA NA NA NA N	MW-2	05/27/2008	NA	NA	NA	NA	NA	NA	NA	NA	NΆ	NA	NA	NA	NA	NA	NA NA	198.95	15.25	NA	183.70	NA	NA NA
MW-2 12/03/2008 NA 188.95 17.91 NA 181.04 NA 188.95 17.22 NA 181.73 NA NA MW-2 05/07/2009 NA 181.73 NA NA NA MW-3 02/15/1990 NA	MW-2	08/05/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA NA	198.95	15.67	NA	183.28	NA	NA
MW-2 02/05/2009 <50 NA <0.50 <1.0 <1.0 <1.0 NA NA NA NA NA 198.95 17.22 NA 191.73 NA NV MW-2 05/07/2009 NA NA<	-	12/03/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	198.95	17.91	NA	181.04	NA	NA NA
MV-3 02/15/1990 4,700 3,100 320 29 110 33 NA	MW-2	02/05/2009	<50	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	<10	NA	NA	NA NA	198.95					NA NA
MW-3 02/13/1990	MW-2	05/07/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	198.95	13.50	NA	185.45	NA NA	NA
MW-3 02/13/1990																	<u> </u>					**	
MW-3 05/14/1990 1,400 60 130 8.6 40 17 NA	MW-3	02/15/1990	4,700	3,100	320	29	110	33	NA	NA	NA	NA	NA	NA	NA	NA	NA	192.52	15.81	NA			NA NA
MW-3 06/21/1990 NA	MW-3	04/19/1990	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	192.52	16.57	NA	175.95		NA NA
MW-3 06/21/1990 2,000 1,500 58 5.8 16 15 NA	MW-3	05/14/1990	1,400	60	130	8.6	40	17	NA	NA	NA	NA	NA	NA	NA	NA _	. NA						NA NA
MW-3 09/12/1990 2,000 1,500 58 5.8 16 15 NA	MW-3	06/21/1990	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA NA						NA
MW-3 03/08/1991 3,400 2,100 630 33 270 18 NA	MW-3	09/12/1990	2,000	1,500	- 58	5.8	16	15	NA_	NA	NA	NA	NA	NA	NA	NA	NA NA						NA NA
MW-3 06/03/1991 1,700 690 a 260 13 98 24 NA	MW-3	11/27/1990	540	240	18	1.5	8.7	2.5	NA	NA	NA	NA	NA	NA	NA_	NA .							NA _
MW-3 08/30/1991 870 370 a 44 6.1 10 2.9 NA	MW-3	03/08/1991	3,400	2,100	630	33	270	18	NA	NA.	NA	NA	NA	NA	NA	-	 						
MW-3 11/22/1991 310 140 18 1.2 3.3 2.9 NA	MW-3	06/03/1991	1,700	690 a	260	13	. 98	24	NA	NA_	NΑ	NA	NA	NA	NA	NA	-	-					NA NA
MW-3 03/18/1992 67,100 1,900 620 28 220 38 NA	MW-3	08/30/1991	870	370 a	44	6.1	10	2.9	NA	NA	NA	NA	NA	NA									NA
MW-3 05/28/1992 2,300 1,100 a 200 9 71 17 NA	MW-3	11/22/1991	310	140	18	1.2	3.3	2.9	NA	NA	NA	NA	NA	NA								-	NA
MW-3 08/19/1992 5,700 1,000 a 71 77 52 130 NA 192.52 17.03 NA 175.49 NA	MW-3	03/18/1992	67,100	1,900	620	28	220	38	NA	NA	NA	NA	NA	NA									NA .
MW-3 08/19/1992 5,700 1,000 a 71 77 52 130 NA	MW-3	05/28/1992	2,300	1,100 a	200	9	71	17	ŅA	NA	NA	NA	NA	NA	NA								NA
MW-3 11/17/1992 3,600 160 a 16 8.6 24 50 NA 192.52 17.94 NA 174.58 NA NA NW-3 02/12/1993 4,700 560 a 820 58 130 77 NA	MW-3	08/19/1992	5,700	1,000 a	71	77	52	130	NA .	NA	NA	NA	NA	NA	NA								NA_
MW-3 02/12/1993 4,700 560 820 58 130 77 NA	-	11/17/1992	3,600	160 a	16	8.6	24	50	NA	NA	NA	NA	NA	NA									NA
MW3 06/10/1093 2 200 NA 310 23 89 23 NA NA NA NA NA NA NA NA NA 192.52 13.20 NA 179.32 NA N	MW-3	02/12/1993	4,700	560 a	820	58	130	77	NA	NA .	NA	NA	NA	NA	-								NA
1 19194-0 00/10/1000 12/200 19/1 010 20 00 20 10/1 10/	MW-3	06/10/1993	2,200	NA.	310	23	89	23	NA	NA	NA	NA_	NA	_ NA	NA	NA NA	NA_	192.52	13.20	NA NA	179.32	NA	NA

	,	-						MTBE	MTBE	-			-	1,2			-	Depth to	Depth	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	В	Т	Ε	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	Ethanol	TOC	Water	to SPH	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)
			<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>																	
MW-3	08/18/1993	260	NA	27	2	7	2.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	192.52	14.93	NA	177.59	NA	NA _
MW-3	11/19/1993	1,500a	NA	24	54	37	17	NA	NA	NA	NA	NA	NA	NA	NA	NA	192.52	17.58	NA	174.94	NA	NA
MW-3	02/28/1994	2,700	NA	65	5.2	16	6.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	192.52	13.30	NA	179.22	NA	NA
MW-3	05/04/1994	780	NA	120	7.5	21	6.9	NA	NA .	NA	NA	NA	NA	NA	NA	NA	192.52	15.25	NA	177.27	NA	NA
MW-3	08/10/1994	920	NA	20	2.3	3	2.2	NA:	NA	NA	NA	NA	NA	NA	NA	NA	192.52	16.63	NA	175.89	NA	NA
MW-3	11/08/1994	1,300	NA	180	16	7	12	NA	NA	. NA	NA	NA	NA	NA	NA	NA	192.52	13.88	NA_	178.64	NA	NA .
MW-3	02/01/1995	1,400	NA	210	8.5	11	8.7	NA .	NA	NA	ÑA_	NA	NA	NA	NA	NA NA	192.52	9.25	NA	183.27	NA .	NA
MW-3	05/10/1995	460	NA	97	10	1	19	NA	NA	NA	NA	NA	NA.	NA	NA	. NA	192.52	10.76	NA	181.74	NA NA	NA
MW-3	08/24/1995	640	NA	68	21	14	19	NA .	NA	NA	NA	NA	NA	NA	NA	NA	192.52	13.90	NA	178.62	NA NA	NA
MW-3	11/10/1995	350	NA	15	2.3	1.2	2.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	192.52	16.20	NA	176.32	NA NA	NA
MW-3	02/24/1996	3,300	NA	240	53	38	55	NA :	NA	NA	NA	. NA	NA_	NA	NA	NA	192.52	8.93	NA_	183.59	NA ·	NA
MW-3	05/22/1996	1,300	NA	110	15	<10	<10	3,500	NA	NA_	NA	NA	NA	NA	NA .	NA	192.52	10.86	NA NA	181.66	NA_	NA
MW-3	08/19/1996	350	NA	15	3.3	3.4	3.3	340	NA	· NA	NA	. NA	NA	NA	NA	NA NA	192.52	13.97	NA	178.55	NA NA	NA NA
MW-3	12/05/1996	290	NA	12	7.6	5.4	16	370	NA	NA	NA	. NA	NA	NA	NA_	. NA	192.52	14.06	NA	178.46	NA NA	NA_
MW-3	02/20/1997	980	NA	69	7.9	14	15	3,200	NA NA	NA .	NA	NA	NA_	NA	NA	NA	192.52	10.60	NA	181.92	NA NA	NA
MW-3	05/30/1997	NA	NA	NA	NA	NA	NA .	NA	NA	NA .	NA	NA	NA	NA:	NA_	NA NA	192.52	13.26	NA	179.26	, NA	NA
MW-3	08/18/1997	NA	NA	NA_	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	192.52	15.21	NA	177.31	NA NA	NA
MW-3	11/03/1997	NA	NA	NA	NA :	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA NA	192.52	14.49	NA	178.03	NA	NA NA
MW-3	01/20/1998	3,100	NA	360	1,000	73	420	59,000	NA NA	· NA	NA NA	NA	NA	NA	NA	NA NA	192.52	8.43	NA:	184.09	NA	NA NA
MW-3	06/05/1998	NA .	NA	NA	NA	NA	NA	NA	NΑ	NA	NA_	NA	· NA	NA	NA	NA NA	192.52	10.55	NA	181.97	NA	NA
MW-3	07/23/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	. NA	NA	NA	NA .	192.52	11.80	NA	180.72	NA	NA
MW-3	11/19/1998	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA	NA_	NA NA	192.52	11.97	NA	180.55	NA NA	NA _
MW-3	02/03/1999	<10,000	NA	840	131	<100	316	27,600	NA	NA	NA	NA	NA	NA	NA	NA NA	192.52	13.55	NA	178.97	NA NA	2.3
MW-3	06/04/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	192.52	12.90	NA	179.62	NA NA	NA 0.4
MW-3	08/31/1999	1,550	NA	232	<10.0	125	293	4,620	2,460 b	NA	NA	NA NA	NA	NA	NA	NA .	192.52	14.99	NA NA	177.53	NA NA	3.4
MW-3	12/10/1999	NA	NA	NA	NΑ	NA_	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA NA	192.52	16.35	NA NA	176.17	NA	NA _
. MW-3	02/11/2000	10,900	NA _	1,030	<50.0	308	1,000	19,300	NA	NA	NA	NA	NA	NA	NA	NA NA	192.52	12.85	NA NA	179.67	NA NA	1.0 NA
MW-3	05/04/2000	NA_	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA_	NA	NA NA	NA	NA NA	192.52	17.05	NA NA	175.47	NA NA	NA C
MW-3	08/31/2000	2,560	NA	165	7.19	77.6	183	4,090	NA_	NA NA	NA NA	NA NA	NA_	NA NA	NA NA	NA.	192.52	14.26	NA _	178.26	NA NA	NA
MW-3	11/30/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA_	NA	NA NA	NA NA	NA NA	192.52	15.75	NA NA	176.77	NA NA	3.6
MW-3	02/13/2001	5,880	NA	563	<50.0	282	472	8,960	NA	NA	NA _	NA_	NA_	NA NA	NA NA	NA NA	192.52	13.05	NA NA	179.47 178.68	NA NA	NA
MW-3	05/29/2001	1,800	NA	130	<5.0	84	100	NA	1,900	NA .	NA_	NA_	NA_	NA NA	NA NA	NA NA	192.52	13.84		178.68	NA NA	NA NA
MW-3	07/30/2001	2,700	NA	250	8.8	130	120	NA	5,200	NA .	NA NA	NA 1100	NA 11.000	NA NA	NA NA	NA -1.000	192.52	15.46	NA NA	177.06	NA NA	NA NA
MW-3	12/12/2001	<10,000	NA	720	<100	260	260_	NA	6,600	<100	<100	<100	<1,000	NA NA	NA NA	<1,000 NA	192.52	12.93 11.88	NA NA	180.64	NA NA	NA NA
MW-3	.01/31/2002	11,000	NA .	750	14	570	510	NA NA	5,800	NA _	NA NA	NA _	NA NA	NA NA	NA NA	NA NA	192.52 192.52	13,65	NA NA	178.87	NA NA	NA NA
MW-3	05/31/2002	5,100	NA	410	8.6	300	190	NA	3,600	NA	NΑ	NA	NA	NA	NA	INA]	192.02	13,03	INA	170.07	1 14/5	19/5

				1				MTBE	MTBE	1 1	·			1,2				Depth to	Depth	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	В	Т	E	х	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	Ethanol	TOC	Water	to SPH	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)
L		\ 3 /	(-5-7	, (; <u>9</u> /	, ,	. \ 0 / /				<u> </u>											-	
мw-з	07/25/2002	2,100	NA	170	<10	73	33	NA	2,600	NA :	NA	NA	NA	NA	NΑ	NΑ	192.52	15.04	NA	177.48	NA	NA
MW-3	11/26/2002	510	NA	26	<2.0	<2.0	2.1	NA	940	NA.	. NA	NA	NA	NA	NA	NA	197.18	17.15	NA	180.03	NA	NA
MW-3	01/29/2003	6,000	NA	460	8.5	250	87	NA	3,500	NA	NA	NA	NA	NA	NA	NA	197.18	12.21	NA	184.97_	NA	NA
MW-3	06/03/2003	5,300	NA	350	<25	130	51	NA	2,200	<100	<100	<100	920	<25	<25	<2,500	197.18	13.40	NA	183.78	NA	NA
MW-3	08/27/2003	700 a	NA	100	<5.0	20	<10	NA	810	. NA	NA	NA	460	NA	NA	NA	197.18	15.14	NA	182.04	NA	NA
MW-3	11/13/2003	590	NA	36	<2.5	<2.5	<5.0	NA	440	NA	NA	NA	400	NA.	NA	NA	197.18	16.46	NA	180.72	NA	NA
MW-3	02/05/2004	<2,500	NA	420	<25	74	<50	NA	2,400	NA	NA	NA	950	NA	NA ·	NΑ	197.18	12.84	NA	184.34	NA	NA
MW-3	05/03/2004	2,600	NA	210	<10	42	21	NA	1,600	NA	NA	NA	820	NA	NA	NA	197.18	12.57	NA	184.61	NA	NA
MW-3	08/30/2004	2,100	NA	120	6.8	5.7	11	NA	730	<20	<20	<20	460	NA	NA	NA	197.18	14.76	NA	182.42	NA	NA
MW-3	11/22/2004	2,600	NA	160	5.5	5.1	<10	NA	570	NA .	NA	NA	540	NA	NA	NA	197.18	14.58	NA ·	182.60	NA	NA
MW-3	02/02/2005	4,500	NA	380	17	23	27	NA	1,900	NΑ	NA	NA	730	NA	NA	NA	197.18	11.48	NA	185.70	NA	NA
MW-3	05/09/2005	63 f	NA	<0.50	<0.50	<0.50	<1.0	NA	21	NA	NA	NA	8.2	NA	NA	NA	197.18	10.86	NA	186.32	NA	NA
MW-3	08/16/2005	3,800	NA	230	11	17	23	NA	840	<40	<40	<40	460	NA	NA	NA ·	197.18	13.13	NA	184.05	NA	NA
MW-3	11/16/2005	3,400	NA	107	5.16	4.61	7.64	· NA	321	NA	NA	NA	166	NA	NA	NA	197.18	15.31	NA	181.87	NA	NA NA
MW-3	02/10/2006	7,850	NA	326	14.6	27.2	25.6	NA	905	NA	NA	NA	455	NA	NA	NA	197.18	11.14	NA	186.04	NA	NA
MW-3	05/26/2006	11,500	NA	217	16.5	35.3	37.4 g	NA	679	NΑ	NA	NA	253	NA	NA	NA	197.18	10.39	NA	186.79	NA.	NA .
MW-3	08/31/2006	4,800	NA	48.8	4.70	7.68	12.2	NA	178	<0.500	<0.500	<0.500	108	NA	NA	NA	197.18	11.92	NA	185.26	NA	NA .
MW-3	11/08/2006	1,400	NA	25	<2.5	4.5	<5.0	NA	100	NΑ	NA	NA	100	NA	NA	NA	197.18	14.56	NA	182.62	NA	NA
MW-3	02/22/2007	1,500	NA	53	4.3	4.6	7.8	NA	160	NA_	NA	NA	190	NA:	NA	NA NA	197.18	13.20	NA	183.98	NA	NA NA
MW-3	05/29/2007	1,600 h	NA	32	3.0	3.1	5.9	NA	52	. NA	NA	NA	44	NA	NA	NA	197.18	14.62	NA	182.56	NA NA	NA .
MW-3	08/29/2007	1,100 a,h	NA	19	1.3	1.0	2.3 i	NA	53	<2.0	<2.0	<2.0	52	NA	NA	NA	197.18	16.10	NA	181.08	NA	NA NA
MW-3	11/30/2007	910 h	NA	26	1.9	1.2	2.61 i	NA	53	NA	NΑ	NA	54	NA	NA	NA	197.18	16.50	NA	180.68	NA NA	NA NA
MW-3	02/04/2008	1,400 h	- NA	48	8.5	4.0	6.8	NA	300	NA	NA	NA	110	NA	NA	NA	197.18	10.18	NA	187.00	NA NA	NA ·
MW-3	05/27/2008	2,000	NA	70	45	5.0	12.5	NA	170	NA	NA	NΑ	110	NΑ	NA	NA	197.18	13.90	NA .	183.28	NA	NA
MW-3	08/05/2008	1,200	NA	41	26	2.6	3.5	NA	77	<4.0	<4.0	<4.0	55	NA	NA	NA	197.18	15.04	NA	182.14	NA NA	NA .
MW-3	12/03/2008	630	NA	23	6.4	<1.0	<1.0	NA	60	NA	NA	NA_	41	NA	NA	NA	197.18	16.63	NA	180.55	NA	NA NA
MW-3	02/05/2009	730	NA	27	10	1.3	3.4	NA	48	NA	NA	NA	38	NA .	NA	NA	197.18	16,10	NA_	181.08	NA	NA NA
MW-3	05/07/2009	2,200	NA	160	58	5.6	14	NA	350	NA	NA	NA	130	NA	NA	NA -	197.18	12.34	NA	184.84	NA	NA
MW-3	06/26/2009	790	NA	64	22	2.6	6.9	NA	91	NA	NA	NA	88	NA	NA	NA	197.18	14.00	NA	183.18	NA	NA .
																		_				
MW-4	02/15/1990	ND	1,200	ND	ND	ND	ND	NA	NA_	NA	NA	NA	NA	NA	NA	NA	193.37	16.7 <u>3</u>	NA	176.65	NA	NA .
MW-4	04/19/1990	NA	NA	NA	NA .	NA	NA	NA	NA	NΑ	NA_	NA NA	NA	NA	NA	NA	193.37	17.48	NA	175.89	NA	NA
MW-4	05/14/1990	650	350	160	7	1.9	3.1	NA	NA	NA	NA	NA	NA	NA	NA_	NA	193.37	17.88	NA	175.49	NA	NA
MW-4	06/21/1990	NA	NA	NA	NA	NA	NA	NA	NA_	. NA	NA .	NA	NA	NA	NA	NA NA	193.37	17.18	NA	176.19	NA.	NA
MW-4	09/12/1990	440	260	91	1.1	0.75	0.79	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	17.85	NA	175.52	NA NA	NA NA
MW-4	11/27/1990	470	2,400	64	1.2	8.0	2.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	19.16	NA	174.21	NA.	NA

								MTBE	MTBE					1,2		<u> </u>		Depth to	Depth	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Т	Ē	х	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	Ethanol	TOC	Water	to SPH	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)
																			-			
MW-4	03/08/1991	1,100	2,600	330	3.5	88	5.8	NA	NA .	193.37	15.77 .	.NA	177.60	- NA	NA							
MW-4	06/03/1991	670	1,100	240	2.3	1.6	2.3	NA	193.37	16.77	NA	176.60	NA	NA								
MW-4	08/30/1991	570	280	64	1.8	0.9	0.9	NA	193.37	18.71	NA	174.66	· NA	NA								
MW-4	11/22/1991	NA.	NΑ	NA	NA	NΑ	NA	NA	NA	NA	NA .	NA	NA	NA	NA	· NA	193.37	ŅA	NA	NA	NA	NA
MW-4	01/15/1992	. NA	NA	NA	NA	NA	. NA	-NA	NA	NA	ÑΑ	NA	NA	NA	NA	NA	193.37	NA	NA	NA	NA	NA
MW-4	02/15/1992	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	193.37	NA	NA	NA ·	NA .	NA						
MW-4	03/18/1992	NA.	NA	NA	NA .	NA	NA	NA	NA.	NA	193.37	13.15	NA	180.41	0.24	NA						
MW-4	04/29/1992	NA	. NA	NA	NA	NA	· NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	193.37	NA	NA	NA	NA NA	NA
MW-4	05/28/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	16.22	NA	177.25	0.12	NA
MW-4	08/19/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA -	NA	NA	NA NA	NA	NA .	NA .	193.37	18.05	NA	175.39	0.09	NA_
MW-4	11/17/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	. NA	193.37	18.89	NA	174.48	NA.	NA
MW-4	02/12/1993	NA	NA	NA .	NA	NA	NA	NA	NA .	NA	193.37	11.78	NA	181.59	<0.01	NA						
MW-4	06/10/1993	NA	NA	NA	. NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA	NA	NA	193.37	14.20	NA	179.17	0.02	NA .
MW-4	08/18/1993	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	15.95	NA	177.43	0.01	NA
MW-4	11/19/1993	NA:	NA	NA	NA	NA	. NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	193.37	18.48	NA	174.90	0.01	NA
MW-4	02/28/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA .	193.37	14.60	NA NA	178.77	0.01	NA NA
MW-4	05/04/1994	NA -	NA	NΑ	NA	NA	NA	NA	193.37	16.15	NA	177.22	<0.01	NA								
MW-4	08/10/1994	NA	NA	NA	NA	NA.	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA NA	193.37	17.58	NA	175,81	0.02	NA
MW-4	11/10/1994	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	. NA	193.37	15.05	NA	178.36	0.05	NA NA
MW-4	02/01/1995	NA	NA	•NA	NA	NA	NA	. NA	NA	_NA	NA_	NA	NA	NA	NA	NA :	193.37	10.71	NA	182.69	0.04	NA.
MW-4	05/10/1995	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA.	193.37	11.90	NA	181.52	0.06	NA NA
MW-4	08/24/1995	NA	NA	NA	NA.	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	14.97	NA	178.42	0.02	NA
MW-4	11/10/1995	4,700	NA	100	22	23	38	NA	193.37	17.27	NA	176.10	<0.01	NA								
MW-4	02/24/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	10.44	NA	182.95	0.03	NA
MW-4	05/22/1996	NA	NA	NA	NA	NA	, NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	11.88	NA	181.51	0.03	NA
MW-4	08/19/1996	NA	NA:	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	193.37	15.23	NA	178.16	0.02	NA NA
MW-4	12/05/1996	NA	NA	NA	NA	NA_	NA	NA	NA _	NA	NA	NA	NA	. NA	NA	NA	193.37	14.70	NA	178.69	0.02	NA NA
MW-4	01/08/1997	<10,000	NA	<100	<100	<100	<100	24,000	NA	193.37	11.60	NA	181.79	0.02	NA							
MW-4	02/20/1997	<10,000	NA	490	<100	<100	<100	59,000	NA	NA	NΑ	NA .	NA	NA	NA	NA NA	193.37	11.91	NA	181.46	NA NA	NA
MW-4	05/30/1997	<2,000	NA	72	<20	<20_	<20	6,100	NA NA	NA	NA	NA	NA	NA	NA	NA	193.37	14.68	NA	178.69	NA NA	NA
MW-4	08/18/1997	<5,000	NA	150	570	<50	130	31,000	NA	. NA	NA	NA	NA	NA	NA	NA	193.37	15.07	NA :	178.30	NA	NA NA
MW-4	11/03/1997	32,000	NA	1,100	6,100	640	3,600	78,000	NA	NA	NA	NA	NA .	NA	NA	NA	193.37	15.87	NA	177.50	NA	NA NA
MW-4	01/20/1998	NA	NA	NA	NA.	NA	NA	NA NA	NA	NA	NA	NA	NA_	NA	NA	NA	193.37	10.25	NA	183.62	0.62	NA
MW-4	06/05/1998	NA	NA .	NA	NA_	NA	NA	NA	NA	NA	NA _	NA	NA NA	NA	NA_	NA	193.37	11.62	NA	181.80	0.06	NA NA
MW-4	07/23/1998	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	193.37	13.93	NA	179.51	0.09	NA NA
MW-4	11/19/1998	NA	NA	NΑ	NA	NA	NA	NA	NA	NA_	NA	NA	NA	NA	NA	NA J	193.37	14.07	14.03	179.33	0.04	NA

2 1	1					1		MTBE	MTBE		·			1,2				Depth to	Depth	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	т	E	х	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	Ethanol	TOC	Water	to SPH	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)
1		, ,			1																· · · · · · · · · · · · · · · · · · ·	
MW-4	12/09/1998	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ΝA	NA	193.37	15.84	15.81	177.55	0.03	NA
MW-4	02/03/1999	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	- NA	193.37	15.58	15.55	177.81	0.03	NA
MW-4	06/04/1999	NA	. NA	NA:	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	193.37	14.04	14.02	179.35	0.02	· NA
MW-4	08/31/1999	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	16.15	16.12	177.24	0.03	NA
MW-4	12/10/1999	NA	NΑ	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA :	-NA	NA	193.37	17,41	17.31	176.04	0.10	NA
MW-4	02/11/2000	47,200	NA	905	<200	479	3,690	27,400	30,300b	NA	NA	NA	NA	NA	NA	NA	193.37	14.82	NA	178.55	NA .	0.6
MW-4	05/04/2000	30,800	NA	1,650	<100	574	3,310	28,600	31,200b	NA	NA	NA	NA	NA	NA	NA	193.37	12.64	NA	180.73	NA	2.1
MW-4	08/31/2000	5,470	NA	366	<10.0	296	834	3,950	NA	NA	NA	NA	NA	NA	NA	NA	193.37	16.47	NA	176.90	NA	С
MW-4	11/30/2000	20,700	NA	525	<50.0	447	1,570	2,440	4,280b	NA	NA	NA	NA	NA_	NA	NA.	193.37	17.67	NA	175.70	NA	3.3
MW-4	02/13/2001	16,200	: NA	909	<50.0	514	2,390	21,300	20,300	NA	NA	NA	NA	NA	NA	NA.	193.37	13:30	NA	180.07	NA	2.4
MW-4	05/29/2001	Well Inac	essible	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.37	NA	NA	NA	NA	NA
MW-4	05/31/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	193.37	15.08	15.03	178,33	0.05	NA.
MW-4	07/30/2001	6,700	NA	260	5.7	190	280	NA .	3,900	NA	NA	NA	NA	NA	NA	NA	193.37	16.29	16.28	177.09	0.01	NA
MW-4	12/12/2001	15,000	NA	1,300	<50	520	990	NA	20,000	NA	NA	NA	NA	NA	NA	NA	193.37	13.81	NA	179.56	NA NA	NA .
MW-4	01/31/2002	12,000	: NA	1,500	<25	570	800	· NA	12,000	NA	NA	NA	NA	NA	NA	NA	193.37	12.80	NA	180.57	NA NA	NA ·
MW-4	05/31/2002	8,200	NA	1,100	· <20	380	340	NA	8,100	NA	NA	NA	NA	NA	NA	NA .	193.37	14.59	NA	178.78	NA	NA ·
MW-4	07/25/2002	3,300	NA	290	<10	98	74	NA	2,600	NA	NA	NA	NA	NA.	NA	NA	193.37	15.94	NA	177.43	NA	NA NA
MW-4	11/26/2002	1,400	NA	89	2.9	- 14	14	NA	770	NA	NA	NA	NA	NA_	NA	NA	198.03	18.10	NA	179.93	NA	NA.
MW-4	01/29/2003	7,400	NA	1,400	<20	140	200	NA	8,900	NA -	NA	NA	NA	NA	NA	NA	198.03	13.08	NA	184.95	NA NA	NA NA
MW-4	06/03/2003	5,600	NA	990	<10	110	53	NA	3,700	<40	<40	<40	760	<10	<10	<1,000	198.03	14.29	NA	183.74	NA NA	NA NA
MW-4	08/27/2003	1,500	NA	220	<10	31	.<20	NA	1,100	NA	NA	NA	380	NA	NA	NA	198.03	16.14	NA	181.89	NA NA	NA NA
MW-4	11/13/2003	3,100	NA	140	<2.5	4.3	5.2	NΑ	340	NA	NA	NA	140	NA	NA	NA	198.03	17.35	NA.	180.68	NA NA	NA NA
MW-4	02/05/2004	3,700	NA	560	<10	18	<20	NA	2,100	NA	NA	NA	2,000	NA	NA	NA_	198.03	13.52	NA	184.51	NA NA	NA.
MW-4	05/03/2004	9,300	NA	1,400	91	25	31	NA	2,400	NA.	NA NA	NA	1,700	NA	NA	NA NA	198.03	12.65	NA	185.38	NA NA	NA
MW-4	08/30/2004	2,700	NA	270	17	8.6	6.7	NA ·	540	<10	<10	<10	670	NA	NA	NA	198.03	15.64	NA	182.39	NA_	NA
MW-4	11/22/2004	2,200	NA	310	7.8	3.0	<5.0	NA	340	NA	NA	NΑ	790	NA	NA :	NA	198.03	15.72	NA.	182.31	NA	NA ***
MW-4	02/02/2005	12,000	NA	1,200	85	31	<20	NA	1,600	NA.	NA	NA	1,900	NA	NA	NA	198.03	12.68	NA	185.35	NA NA	NA NA
MW-4	05/09/2005	5,800	NA	800	100	35	35	NA	530	NA	NA _	NA	970	NΑ	NA	NA	198.03	11.80	NA	186.23	NA NA	NA NA
MW-4	08/16/2005	4,800	NA_	640	59	30	18	NA	310	<20	<20	<20	510	NA	NA.	NA	198.03	14.22	NA	183.81	NA	NA NA
MW-4	11/16/2005	4,910	NA	113	11.5	9.88	9.47	NA _	67.4	NA	NA	NA	192	NA	NA	NA	198.03	16.17	NA	181.86	NA NA	NA
MW-4	02/10/2006	9,160	NA	818	25.4	17.9	14.2	NA	655	NA .	NA	NA_	821	NA	NA	NA	198.03	12.05	NA	185.98	NA NA	NA NA
MW-4	05/26/2006	9,770	NA	665	21.0	35.2	16.8	NA	487	NA .	NA	NA_	538	NA	NA_	NA	198.03	11.30	NA	186.73	NA NA	NA NA
MW-4	08/31/2006	7,560	NA	369	17.4	15.1	14.4	NA	92.6	<0.500	<0.500	<0.500	240	NA	NA_	NA	198.03	13.57	NA	184.46	NA	NA NA
MW-4	11/08/2006	3,800	NA	87	6.8	4.0	6.9	NA	37	NA	NA	NA NA	<5.0	NA.	NA	NA I	198.03	15.36	NA NA	182.67	NA_	NA NA
MW-4	02/22/2007	2,700	NA	30	3.4	2.1	4.9	NA	25	NA	NA	NA	320	NA I	NA	NA .	198.03	14.29	NA_	183.74	NA	NA NA
MW-4	05/29/2007	2,200 h	NA	20	1.1	0.61 i	1.81 i	NA	9.6	NA	NA	NA	130	NA_	NA	NA]	198.03	15.66	NA	182.37	NA	NA

								MTBE	MTBE		,			1,2				Depth to	Depth	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	т .	E	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	Ethanol	тос	Water		Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)
<u></u>			, ,	, ,	,							<u> </u>	<u></u>									<u> </u>
MW-4	08/29/2007	2,300 a,h	NA	6.1	0.33 i	<1.0	0.23 i	NA	<1.0	<2.0	<2.0	<2.0	13	NA	NA	NA	198.03	17.02	.NA	181.01	NA	NA
MW-4	11/30/2007	1,900 h	NA	9.2	0.49 i	0.27 i	0.93 i	NA	4.8	NΑ	NA	NA	21	NA	NA	NA	198.03	17.40	NA	180.63	NA NA	NA
MW-4	05/27/2008	2,200	NA.	210	28	<2.0	<2.0	NA	94	NA	NA	NA	390	NA	NA	NA	198.03	15.00	NA	183.03	NA	NA
MW-4	08/05/2008	1,600	NA	. 26	4.6	<2.0	<2.0	NA	24	<4.0	<4.0	<4.0	180	NA	NA	NA	198.03	15.85	NA	182.18	NA	NA
MW-4	12/03/2008	920	NA	14	<1.0	<1.0	<1.0	NA	4.7	NA	NA	NA	<10	NA	NA	NA	198.03	17.52	NA	180.51	NA	NA
MW-4	02/05/2009	1,300	NA	15	<1.0	<1.0	<1.0	NA	8.7	NA	NA	NA	42	NA	NA	NA	198.03	16.98	NA	181.05	NA	NA
MW-4	05/07/2009	2,900	NA	140	3.9	<1.0	1.3	NA	71	NA	NA	. NA	420	NΑ	NA	NA ·	198.03	13.30	NA	184.73	NA	NA
MW-4	06/26/2009	6,300	NA	190	6.7	<2.0	<2.0	NA	24	NA	NA	NA	130	NA	NA	NA	198.03	15.00	· NA	183.03	NA	NA
													•							i .		
MW-5	08/30/1991	· ND	80	ND	ND	ND	ND	NA	NA	NA :	NA	NA	NA	NA	NA	NA.	190.35	16.74	NA	173.61	NA	NA
MW-5	11/22/1991	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	190.35	17.27	NA	173.08	NA	NA
MW-5	03/18/1992	<30	<50	<0.3	<0.3	<0.3	<0.3	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	190.35	11.28	NA	179.07	NA	NA
MW-5	05/28/1992	Well Inacc	essible	NA	NA	NA	NA	NA	190.35	NA	NA.	NA	NA	NA								
MW-5	08/19/1992	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NΑ	. NA	. NA	190.35	15.99	NA	174.36	NA	NA.
MW-5	11/17/1992	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA.	190.35	16.84	NA	173.51	NA	NA_
MW-5	02/12/1993	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA:	NA	NA	NA	190.35	10.30	NA	180.05	NA	NA .
MW-5	06/10/1993	<50	NA	<0.5	<0.5	<0.5	<0.5	NA NA	NA	NA:	NA	NA :	NA	NA	NA	NΑ	190.35	12.36	NA .	177.99	NA_	NA
MW-5	08/18/1993	<50.	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA .	NA	NA	190.35	14.02	NΑ	176.33	N/A	NA
MW-5	11/19/1993	<50	NA -	<0.5	<0.5	. <0.5	<0.5	NΑ	NA	NA	NA	NA	NA	NA	NA	NA	190.35	16.50	NA	173.85	NA	NA NA
MW-5	02/28/1994	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NΑ	. NA	NA .	190.35	12.55	NA	177.80	NA	NA.
MW-5.	05/04/1994	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA NA	NA	. NA	NA	- NA	NA	NA	NA:	190.35	14.27	NA	176.08	NA	NA NA
MW-5	08/10/1994	70a	NA	<0.5	<0.5	<0.5	<0.5	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	190.35	15.60	.NA	174.75	NA NA	NA
MW-5	11/08/1994	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA.	NA	NA	NA .	NA	NA	NA	190.35	12.85	NA NA	177.50	NA NA	NA
MW-5	02/01/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA NA	NA	NA	NA_	NA	NA	NA .	NA	NA	190.35	8.98	NA	181.37	NA NA	NA
MW-5	05/10/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA_	NA	NA	190.35	10.16	NA	180.19	NA	NA NA
MW-5	08/24/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	. NA	NΑ	NA NA	NA	. NA	NA	NA	NA	NA	190.35	12.98	NA	177.37	NA	NA
MW-5	11/10/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	190.35	15.12	NA	175.23	NA NA	NA
MW-5	02/24/1996	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	190.35	NA	NA	NA	NA NA	NA
MW-5	05/22/1996	<2,000	. NA	<20	<20	<20	<20	_NA	NA	NA	NA	NA	NA NA	NA	NA	NA	190,35	10.10	NA	180.25	NA	NA
MW-5	08/19/1996	<2,500	NA	<25	<25	<25	<25	NA	NA.	NA.	NA	NA	NA	NA	NA	NA	190.35	13.09	NA	177.26	NA	NA
MW-5	12/05/1996	<500	NA	<5.0	<5.0	<5.0	<5.0	NA	NA	NA	NA	NA	NA	NA:	NA	NA	190.35	13.31	NA	177.04	NA	NA
MW-5	02/20/1997	<1,000	NA	<10	<10	<10	<10	NA	NA NA	NA NA	NA	NA	NA_	NA	NA NA	NA	190.35	9.55	NA	180.80	NA	NA
MW-5	05/30/1997	NA	NA	NA	NA	NA	NA ·	NA	NA.	NA	NA	NA .	NA	NA	NA NA	NA NA	190.35	12.40	NA	177.95	NA NA	NA
MW-5	08/18/1997	NA	NA	NA NA	NΑ	NA	NA	NA	NA.	NA .	NA_	NA	NA	NA	NA	NA	190.35	14.19	NA	176.16	NA	NA
MW-5	11/03/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA NA	190.35	13.66	NA NA	176.69	NA NA	NA NA
MW-5	01/20/1998	<50	NA	<0.50	<0.50	<0.50	<0.50	1,600	NA	NA	NA	NA]	NA	NA	NA	NA	190.35	8.06	NA.	182.29	NA	NA

		 						MTBE	MTBE			-		1,2				Depth to	Depth	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	В	т	E	х	8020	8260	DIPE	ETBE	TAME	ТВА	DCA	EDB	Ethanol	TOC	Water	to SPH			
Well ID	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)
<u> </u>		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(49, 2)	(49.2)	(49.2)	(-9,-)	(-3/-/	(-3-7)	(3/	(-3/	(-3/		. ,		\ <u>/</u>			
1004.5	20/05/4000	N.A.	NA.	NIA	NA	NA	NA	. NA	NA	NA	NA .	NA	NA	NA	NA	NA .	190.35	9.95	NA	180.40	NA ·	NA
MW-5	06/05/1998	NA.	NA NA	NA NA	NA NA		NA .	NA NA	NA NA	NA NA	NA.	NA.	NA.	NA.	NA NA	NA NA	190,35	11.10	NA.	179.25	NA.	NA.
MW-5	07/23/1998	NA NA	NA NA	NA NA		NA NA			NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	190.35	12.21	NA.	178.14	NA NA	NA.
MW-5	11/19/1998	NA 1500	NA NA	NA 15.00	NA 15.00	NA 15.00	NA <5.00	NA _	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	190.35	12.99	NA NA	177.36	NA NA	2.4
MW-5	02/03/1999	<500	NA_	<5.00	<5.00	<5.00	- NA	2850 NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	190.35	12.08	NA NA	178.27	NA.	NA NA
MW-5	06/04/1999	NA -50.0	NA NA	NA 10.500	NA 10 FOO	NA 500				NA NA	NA NA	NA.	NA.	NA NA	NA.	NA NA	190.35	14.05	NA.	176.30	NA NA	2.7
MW-5	08/31/1999	<50.0	NA NA	<0.500	<0.500	<0.500	<0.500 NA	4,260 NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	190.35	15.41	NA.	174.94	NA NA	NA.
MW-5	12/10/1999	NA 50.0	NA	NA 0.500	NA - D. EGG	NA -0.500			NA NA	NA NA	NA NA	NA NA	NA NA	NA .	NA NA	NA NA	190.35	12.42	NA.	177.93	NA NA	1.7
MW-5	02/11/2000	<50.0	NA_	<0.500	<0.500	<0.500	<0.500	<2.50			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	190.35	11.13	NA NA	179.22	NA NA	NA NA
MW-5	05/04/2000	NA 500	NA_	NA -5.00	NA_	NA 15.00	NA 15.00	NA 40.000	NA 45.700b	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	190.35	13.53	NA NA	176.82	NA NA	c c
MW-5	08/31/2000	<500	NA NA	<5.00	<5.00	<5.00	<5.00	13,000	15,700b	NA NA			NA NA	NA NA	NA NA	NA NA	190.35	14.65	NA NA	175.70	NA NA	NA NA
MW-5	11/30/2000	NA	NA	NA	NA .	NA 0.500	NA SOO	NA 0.440	NA_	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	190.35	12.05	NA.	178,30	NA NA	4.1
MW-5	02/13/2001	<50.0	NA	<0.500	<0.500	<0.500	<0.500	2,440	NA 1 200	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	190.35	13.26	NA NA	177.09	NA.	NA NA
MW-5	05/29/2001	<500	NA	<5.0	<5.0	<5.0	<5.0	NA NA	1,300	NA NA	NA_		NA NA	NA NA	NA NA	NA NA	190.35	14.49	NA NA	177.86	NA NA	NA.
MW-5	07/30/2001	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	310	: NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	190.35	12.08	NA.	178.27	NA NA	NA NA
MW-5	12/12/2001	<200	NA	<2.0	<2.0	<2.0	<2.0	NA NA	350	NA NA	NA NA			NA NA	NA NA	NA NA	190.35	11.29	NA.	179.06	NA NA	NA NA
MW-5	01/31/2002	61	NA	<0.50	<0.50	<0.50	<0.50	NA NA	280	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	190.35	12.75	NA NA	177.60	NA NA	NA NA
MW-5	05/31/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA NA	130	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	190.35	14.12	NA NA	176.23	NA.	NA NA
MW-5	07/25/2002	<50	NA .	<0.50	<0.50	<0.50	<0.50	NA NA	190				NA NA	NA NA	NA NA	NA NA	195.01	16.17	NA NA	178.84	NA NA	NA NA
MW-5	11/26/2002	Unable to		NA	NA	NA	NA 0.55	NA_	NA O4	NA NA	NA_	NA NA	NA NA	NA NA	NA NA	NA NA	195.01	16.39	NA NA	178.62	NA NA	NA NA
MW-5	12/06/2002	<50	NA	<0.50	<0.50	<0.50	<0.50	NA :	24	NA NA	NA	NA NA			NA NA	NA NA	195.01	11.20	NA NA	183.81	NA NA	NA NA
MW-5	01/29/2003	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	100	NA NA	NA 110	NA 110	NA S	NA co.s		<250	195.01	12.53	NA NA	182.48	NA NA	NA NA
MW-5	06/03/2003	<250	NA	<2.5	<2.5	<2.5	<5.0	NA	120	<10_	<10	<10	2,200	<2.5	<2.5	NA		14.32	NA NA	180.69	NA NA	NA NA
MW-5	08/27/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA.	19	NA	NA NA	NA NA	180	NA NA	NA NA	NA NA	195.01 195.01	15.48	NA NA	179.53	NA NA	NA NA
MW-5	11/13/2003	<50	NA	<0.50	<0.50	<0.50	<1.0	NA_	15	NA NA	NA	NA NA	46	NA_	NA NA	NA NA	195.01	11.88	NA NA	183.13	NA NA	NA NA
MW-5	02/05/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA _	17	NA NA	NA_	NA NA	790	NA NA	NA NA	NA NA	195.01	11.92	NA.	183.09	NA NA	NA NA
MW-5	05/03/2004	<250	NA	<2.5	<2.5	<2.5	<5.0	NA NA	32	NA 10.0	NA_	NA 12.0	1,300	NA NA	NA NA	NA NA	195.01	13.82	NA.	181.19	NA NA	NA NA
MW-5	08/30/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA NA	7.8	<2.0	<2.0	<2.0	95	NA NA	NA NA	NA NA	195.01	13.89	NA NA	181.12	NA NA	NA NA
MW-5	11/22/2004	<50	NA	<0.50	<0.50	<0.50	<1.0	NA I	4.1	NA NA	NA_	NA NA	60		NA NA	NA NA	195.01	10.30	NA NA	184.71	NA NA	NA NA
MW-5	02/02/2005	<50	NA	<0.50	<0.50	<0.50	<1.0	NA .	4.3	NA NA	NA_	NA NA	400 24	NA NA	NA NA	NA NA	195.01	10.30	NA NA	184.81	NA NA	NA NA
MW-5	05/09/2005	<50	NA -	<0.50	<0.50	<0.50	<1.0	NA _	2.4	NA 10.0	NA .	NA CO		NA NA	NA NA	NA NA	195.01	12.42	NA.	182.59	NA NA	NA NA
MW-5	08/16/2005	<50	NA	<0.50	<0.50	<0.50	<1.0	NA NA	4.4	<2.0	<2.0	<2.0	37		NA NA	NA NA	195.01	14.28	NA NA	180.73	NA NA	NA NA
MW-5	11/16/2005	201	NA	<0.500	<0.500	<0.500	<0.500	NA NA	1.23	NA NA	NA_	NA NA	31.1	NA NA	NA NA	NA NA	195.01	10.58	NA NA	184.43	NA NA	NA NA
MW-5	02/10/2006	<50.0	NA	<0.500	<0.500	<0.500	<0.500	NA	2.32	NA NA	NA	NA NA	97.3				195.01	9.98	NA NA	185.03	NA NA	NA NA
MW-5	05/26/2006	<50.0	NA	<0.500	<0.500	<0.500	0.950 g	NA	10.8	NA 10.500	NA 500	NA 10 F00	104	NA NA	NA_	NA NA	195.01	12.02	NA NA	182.99	NA NA	NA NA
MW-5	08/31/2006	<50.0	NA	<0.500	<0.500	<0.500	<0.500	NA	6.69	<0.500	<0.500	<0.500	31.4	NA NA	NA_	NA_			NA NA	181.60	NA NA	NA NA
MW-5	11/08/2006	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	2.3	NA	NA_	NA	<5.0	NA	NA	NA	195.01	13.41	INA	101.00	14/4	14/4

		T						MTBE	MTBE			-		1,2		-		Depth to	Depth	GW	SPH	DO
Well ID	Date	ТРРН	ТЕРН	В	т	Е	х	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	Ethanol	TOC	Water	to SPH	Elevation	Thickness	Reading
****		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)
		· · · · · ·			, , ,			<u> </u>														
MW-5	02/22/2007	<50	NA	<0.50	<1.0	<0.50	<1.0	NA	0.81	NA	NA	NA	<5.0	NA	NA	NA	195.01	12.32	NA	182.69	NA	NA
MW-5	05/29/2007	<50 h	NA	<0.50	<1.0	<1.0	<1.0	NA	0.33 i	NA	NA	NA	<10	NA	NA	NA	195.01	13.78	NA	181.23	NA	NA
MW-5	08/29/2007	<50 h	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	NA	195.01	15.11	NA	179.90	NA NA	NA
MW-5	11/30/2007	<50 h	NA	0.18 i	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	<10	NA	NA	NA	195.01	15.47	NA	179.54	NA	NA
MW-5	02/04/2008	<50 h	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	<10	NA	NA	NA	195.01	9.59	NA	185.42	. NA	NA
MW-5	05/27/2008	<50	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NΑ	NA	NA	<10	NA_	NA	NA	195.01	13.20	NA	181.81	NA	NA
MW-5	08/05/2008	<50	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	<2.0	<2.0	<2.0	<10	NA	NA	NA	195.01	14.06	NA	180.95	NA	NA
MW-5	12/03/2008	<50	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	- NA	NA	<10	NA	NA	NA	195.01	15.20	NA	179.81	NA	NA
MW-5	02/05/2009	<50	NA:	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	- NA	<10	NA	NA	NA:	195.01	15.10	NA	179.91	NA	NA_
MW-5	05/07/2009	<50	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA	NA	NA	<10	NA	NA	NA	195.01	11.60	NA	183.41	NA NA	NA
																				A	· · · · · · ·	
MW-6	09/21/1993	<50	<50	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	189.05	14.64	NA	174.41	NA NA	NA
MW-6	11/19/1993	NA.	NA	NA_	NA ·	NA	NA	NA	NA .	NA	NA_	NA	NA	NA	NA	NA NA	189.05	NA	NA	NA	NA	NA .
MW-6	02/28/1994	98a	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA_	NA	NA NA	189.05	12.18	NA	176.87	NA	NA
MW-6	05/04/1994	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA .	NA:	NA	NA	NA ·	NA	NA	189.05	13.62	NA	175.43	NA	NA .
MW-6	08/10/1994	80a	NA	<0.5	<0.5	<0.5	<0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	189.05	14.98	NA	174.07	NA	NA NA
MW-6	11/08/1994	NA	NA	NA	NA	NA	NA _	NA .	NA	NA	NA	NA	NA	NA	NA_	NA NA	189.05	12.20	NA	176.85	NA	NA
MW-6	02/01/1995	120	NA	3.5	21	3.4	22	NA	N <u>A</u>	NA	NA NA	NA	NA	NA	NA	NA	189.05	8.70	NA	180.35	NA	NA .
MW-6	05/10/1995	NA_	NA	NA	NA	NA NA	NA	NA:	NA _	NA	NA	• NA	NA	NA	NA_	ŅA	189.05	9.86	NA NA	179.19	NA NA	NA NA
MW-6	08/24/1995	80	NA	<0.5	<0.5	1.8	2.4	NA	NA	NA.	NA	NA .	NA	NA	NA .	NA	189.05	12.46	NA .	176.59	NA NA	NA.
MW-6	11/10/1995	<50	NA	<0.5	<0.5	<0.5	<0.5	NA	NA NA	NA_	NA	NA	NA	NA_	NA	NA	189.05	14.56	NA _	174.49	NA NA	NA NA
MW-6	11/10/1995	60	NA	<0.5	<0.5	<0.5	<0.5	NA	N <u>A</u>	NA	NA	NA	NA	NA	NA	NA_	189.05	14.56	NA.	174.49	NA NA	NA NA
MW-6	02/24/1996	NA .	NA	NA -	NA_	NA	NA NA	NA	NA	NA .	NA	NA.	NA .	NA	NA	NA NA	189.05	NA 10.00	NA NA	NA	NA NA	NA NA
MW-6	05/22/1996	<50	NA	<0.5	<0.5	<0.5	<0.5	290	NA .	NA.	NA	NA .	NA	NA NA	NA	NA NA	189.05	10.23	NA NA	178.82		
MW-6	08/19/1996	<1,250	NA	<12	<12	<12	<12	1,100	NA	NA	NA	NA .	NA_	NA	NA NA	NA NA	189.05	12.61	NA NA	176.44	NA NA	NA NA
MW-6	12/05/1996	<125	NA	<1.2	<1.2	<1.2	<1.2	440	NA_	NA .	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	189.05	12.47	NA NA	176.58 179.20	NA NA	NA NA
MW-6	02/20/1997	<100	NA	<1.0	<1.0	<1.0	<1.0	480	NA	NA	NA	NA NA	NA	NA_	NA NA	NA NA	189.05	9.85	NA NA	179.20	NA NA	NA NA
MW-6	05/30/1997	NA .	NA	NA	NA	NA	NA .	NA	NA	NA.	NA _	NA NA	NA NA	NA NA	NA NA	NA NA	189.05	13.65	NA NA	177.09	NA NA	NA NA
MW-6	08/18/1997	NA	NA	NA	NA	NA	NA NA	NA _	NA NA	NA.	NA NA	NA .	NA_	NA NA	NA NA	NA NA	189.05	13.65 NA	NA NA	173.40 NA	NA NA	NA NA
MW-6	11/03/1997	NA	NA:	NA_	NA	NA	NA NA	NA NA	NA_	NA NA	NA NA	NA NA	NA NA	NA NA	NA_	NA NA	189.05	7.76	NA NA	181.29	NA NA	NA NA
MW-6	01/20/1998	<50	NA_	<0.50	<0.50	<0.50	<0.50	340	NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	189.05 189.05	9.85	NA NA	179.20	NA NA	NA NA
MW-6	06/05/1998	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	189.05	10.99	NA NA	179.20	NA NA	NA NA
MW-6	07/23/1998	NA	NA	NA	NA	NA	NA_	NA NA	NA NA	NA NA	NA NA	NA NA	NA_	NA NA	NA NA	 			NA NA	177.69	NA NA	NA NA
MW-6	11/19/1998	NA	NA	NA	NA	NA	NA .	NA NA	NA NA	NA NA	NA_	NA NA	NA_	NA NA	NA NA	NA NA	189.05 189.05	11.36 NA	NA NA	NA	NA NA	NA NA
MW-6	02/03/1999	Well Inac		NA	NA	NA NA	NA NA	NA_	NA	NA NA	NA NA	NA NA	NA NA		NA NA		189.05	NA NA	NA NA	NA NA	NA NA	NA NA
MW-6	06/04/1999	Well Inac	cessible	NA	NA	NA	_NA	NA	NA _	NA	NA	NA _	NA	NA	NA.	NA	109.00	N/A	INA	INA	11/7	14/3

		1	· ·		<u> </u>			MTBE	MTBE			T	1	1,2				Depth to	Depth	GW	SPH	DO
Well ID	Date	ТРРН	ТЕРН	В	т .	E	x	8020	8260	DIPE	ETBE	TAME	ТВА	DCA	EDB	Ethanol	тос	Water	to SPH	Elevation	Thickness	Reading
Well ID	Dute	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)
L	<u>-</u>	(49)	(-3/	(-3/-	(-3, -)	(-3/	(-3 /					, ,	· · · · · · · · · · · · · · · · · · ·									<u></u>
MW-6	06/22/1999	<5,000	NA	<50.0	<50.0	<50.0	<50.0	2,800	NA.	NA	NA	NA	NA.	NA	NA	NA	189.05	12.15	NA	176.90	NA	2.1
MW-6	08/31/1999	<50.0	NA.	<0.500	<0.500	<0.500	<0.500	3,390	NA.	NA	NA	NA	NA.	NΑ	NA	NA	189.05	13.62	NA	175.43	NA NA	2.5
MW-6	12/10/1999	NA	NA NA	NA	NA	NA	NA	NA	NA.	NA.	NA NA	NA NA	NA.	NA.	NA	NA	189.05	14.98	NA	174.07	NA	NA
MW-6	02/11/2000	<50.0	NA NA	<0.500	<0.500	<0.500	<0.500	<2.50	NA.	NA.	NA NA	NA	NA.	NA	NA	NA	189.05	12.00	NA	177.05	· NA	1.1
MW-6	05/04/2000	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA .	NA NA	NA	NA NA	NA.	NA .	NA	NA	189.05	10.94	NA .	178.11	NA	NA
MW-6	08/31/2000	<250	NA NA	<2.50	<2.50	<2.50	<2.50	4.460	NA NA	NA	NA	NA	NA.	NA.	NA	. NA	189.05	13.19	NA	175.86	NA	С
MW-6	11/30/2000	NA NA	NA NA	NA	NA	NA	NA.	NA	NA NA	NA	NA	NA.	NA	NA.	NA	NA	189.05	14.28	NA	174.77	NA NA	NA .
MW-6	02/13/2001	Well Inac		NA NA	NA.	NA NA	NA.	NA NA	NA ·	NA.	NA	NA	NA.	NA	NA	NA	189.05	NA	NA	NA:	NA	NA
MW-6	02/16/2001	<500	NA NA	<5.00	<5.00	<5.00	<5.00	3.910	NA NA	NA	NA	NA	NA.	NA	NA	NA	189.05	12.10	NA	176.95	NA	3.8
MW-6	05/29/2001	<500	NA.	<5.0	<5.0	<5.0	<5.0	NA	2,000	NA	NA	NA	NA	NA	NA	NA	189.05	12.94	NA	176.11	NA	NA
MW-6	07/30/2001	<500	NA NA	<5.0	<5.0	<5.0	<5.0	NA	2,700	NA	NA	NA	NA	NA	NA	NA	189.05	14.10	NA	174.95	NA	NA
MW-6	12/12/2001	<500	NA NA	<5.0	<5.0	<5.0	<5.0	NA NA	2,100	<5.0	<5.0	<5.0	97	NA	ΝA	<500	189.05	12.11	NA	176.94	NA ·	NA
MW-6	01/31/2002	<500	NA NA	<5.0	<5.0	<5.0	<5.0	NA NA	2,000	NA	NA	NA	NA	NA	NA	NA	189.05	11.16	NA	177.89	NA	NA .
MW-6	05/31/2002	<500	NA NA	<5.0	<5.0	<5.0	<5.0	NA .	1,800	NA	NA	NA	NA	NA	NA	NA	189.05	12.52	NA	176.53	NA	NA
MW-6	07/25/2002	<500	NA NA	<5.0	<5.0	<5.0	<5.0	NA NA	1,800	NA	NA	NA NA	NA	NA.	NA	NA	189.05	13.68	NA	175.37	NA	NA
MW-6	11/26/2002	Well Inac		NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	193.75	NA	NA	NA	NA	NA
MW-6	12/06/2002	<50	NA NA	<0.50	<0.50	<0.50	<0.50	NA NA	280	NA.	NA.	NA	NA	NA	NA	NA	193.75	16.01	NΑ	177.74	NA	NA
MW-6	01/29/2003	Well Inac		NA	NA	NA.	NA .	NA	NA.	NA	NA	NA	NA	NA.	NA	NA	193.75	NA	NΑ	NA	NA	NA
MW-6	02/05/2003	<50	NA	<0.50	<0.50	<0.50	<0.50	NA	120	NA	NA	NA	NA	NA.	NA	NA	193.75	11.71	NA	182.04	NA.	NA
MW-6	06/03/2003	<50	NA NA	<0.50	<0.50	<0.50	<1.0	NA	69	<2.0	<2.0	<2.0	970	<0.50	<0.50	<50	193.75	12.33	NA .	181.42	NA	NA
MW-6	08/27/2003	130	NA NA	<1.3	<1.3	<1.3	<2.5	NA NA	28	NA.	NA	NA	880	NA	NA	NA	193.75	13.83	NA	179.92	NA	NA
MW-6	11/13/2003	<50	NA NA	<0.50	<0.50	<0.50	<1.0	NA	6.8	NA	NA	NA	710	NA	NA	NA	193.75	15.05	NA	178.70	NA	NA ·
MW-6	02/05/2004	<50	NA NA	<0.50	<0.50	<0.50	<1.0	NA NA	14	NA.	NA.	NA	290	NA	NA	NA	193.75	11.44	NA	182.31	NA	NA NA
MW-6	05/03/2004	<50	NA NA	<0.50	<0.50	<0.50	<1.0	NA NA	10	NA.	NA	NA	200	NA	NA	NA	193.75	11.74	NA	182.01	NA	NA
MW-6	08/30/2004	78 e	NA	<0.50	<0.50	<0.50	<1.0	NA	4.9	<2.0	<2.0	<2.0	120	NA .	NA	NA	193.75	13.52	NA	180.23	NA	NA
MW-6	11/22/2004	<50	NA NA	<0.50	<0.50	<0.50	<1.0	NA NA	4.6	NA.	NA	NA	110	NA	NA .	NA	193.75	13.65	NA	180.10	NA	NA
MW-6	02/02/2005	<50	NA.	<0.50	<0.50	<0.50	<1.0	NA	12	NA	NA	NA	95	NA	NΑ	NA	193.75	10.78	NA	182.97	NA	NA
MW-6	05/09/2005	<50	NA.	<0.50	<0.50	<0.50	<1.0	NA	2.1	ΝA	NA	NA	<5.0	ΝA	NA	NA	193.75	10.10	NA	183.65	NA	NA
MW-6	08/16/2005	<50	NA.	<0.50	<0.50	<0.50	<1.0	NA	3.6	<2.0	<2.0	<2.0	27	NA	NA	NA	193.75	12.05	NA .	181.70	NA	NA
MW-6	11/16/2005	<50.0	NA.	<0.500	<0.500	<0.500	<0.500	NA	1.52	NΑ	NA	NA	12.5	NA	NA	NA ·	193.75	13.85	NA	179.90	NA	NA
MW-6	02/10/2006	<50.0	NA.	<0.500	<0.500	<0.500	<0.500	NA	3.34	NΑ	NA	NA	35.4	NA	NA	NA	193.75	10.39	NA	183.36	NA	NΑ
MW-6	05/26/2006	<50.0	NA.	<0.500	<0.500	<0.500	0.830 q	NA	1.63	NΑ	NA	NA	11.5	NA	NA	NA	193.75	9.73	NA	184.02	NA	NA
MW-6	08/31/2006	<50.0	NA NA	<0.500	<0.500	<0.500	<0.500	NA NA	4.09	<0.500	<0.500	<0.500	<10.0	NA	NA_	NA:	193.75	11.74	NA.	182.01	NA	NA
MW-6	11/08/2006	<50	NA NA	<0.50	<0.50	<0.50	<1.0	NA NA	2.0	NA	NA	NA	7.4	NA	NA .	NA	193.75	13.16	NA	180.59	NA NA	NA
MW-6	02/22/2007	<50	NA.	<0.50	<1.0	<0.50	<1.0	NA NA	1.8	NA	NA	NA	<5.0	NA	NA	NA	193.75	11.90	NA	181.85	NA	NA
MW-6	05/29/2007	<50 h	NA NA	<0.50	<1.0	<1.0	<1.0	NA	1.4	NA	NA	NA	<10	NA	NA	NA	193.75	13.40	NA	180.35	NA	NA
MAA-O	03/23/2007	1 30011	14/3	10.00	- 1.0																	

				<u></u>				MTBE	MTBE				ŀ	1,2				Depth to	Depth	GW .	SPH	DO
Well ID	Date	ТРРН	TEPH	В	Т	E	х	8020	8260	DIPE	ETBE	TAME	ТВА	DĆA	EDB	Ethanol	TOC	Water	to SPH	Elevation	Thickness	Reading
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)
		(-3/	(-3/.)	(-3/	(-3. –)	(-3/	(-3/	(-3/-)	(0/	(-3 -/)			() /	, ,	() /		`			, ,	1	/
MW-6	08/29/2007	<50 h	NA .	<0.50	<1.0	<1.0	<1.0	NA	0.76 i	<2.0	<2.0	<2.0	<10	NA	NA -	NA	193.75	14.62	NA	179.13	NA NA	. NA
MW-6	11/30/2007	<50 h	NA.	0.16 i	<1.0	<1.0	<1.0	NA NA	0.57 i	NA .	NA.	NA.	<10	NA	NA	NA NA	193.75	14.81	NA.	178.94	NA.	NA.
MW-6	02/04/2008	<50 h	NA NA	<0.50	<1.0	<1.0	<1.0	NA NA	<1.0	NA NA	NA.	NA.	<10	NA NA	NA	NA NA	193.75	9.26	.NA	184.49	NA	NA NA
MW-6	05/27/2008	Well Inacc		10.00	NA NA	NA .	NA NA	NA NA	NA NA	NA NA	NA:	NA NA	NA	NA NA	NA	NA.	193.75	NA.	NA	NA NA	NA NA	NA
MW-6	08/05/2008	<50	NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	<2.0	<2.0	<2.0	<10	NA.	NA	NA	193,75	13.55	NA	180.20	NA	NA
MW-6	12/03/2008	<50	NA NA	<0.50	<1.0	<1.0	<1.0	NA	<1.0	NA.	NA	NA	<10	NA	NA	NA	193.75	15.12	· NA	178.63	NA NA	NA ·
MW-6	02/05/2009	<50	NA NA	<0.50	<1.0	<1.0	<1.0	NA NA	<1.0	NA	NA	NA	<10	NA.	NA	NA	193.75	14.72	NA.	179.03	NA	NA
MW-6	05/07/2009	<50	NA.	<0.50	<1.0	<1.0	<1.0	NA	1.1	NA	NA	NA	<10	NΑ	NA	NA	193.75	11.28	NA	182.47	. NA	NA
													<u></u>									
MW-7	05/22/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	197.44	10.09	NA	187.35	NA	NA
MW-7	05/26/2006	1,250	NA	<0.500	<0.500	0.530	1.21	NA	15.3	NA	NΑ	NA	17.4	NA	NA .	NA	197.44	10.41	NA	187.03	NA	¹ NA
MW-7	08/31/2006	<50.0	NA	<0.500	<0.500	<0.500	<0.500	NA	<0.500	NA	NA	NA	<10.0	NA	NA	NA	197.44	12.90	NA	184.54	NA	. NA
MW-7	11/08/2006	<50	NA	<0.50	<0.50	<0.50	<1.0	NA	<0.50	NA	NA	NA	<5.0	NA	NA	NA	197,44	14.55	NA	182.89	NA	NA
MW-7	02/22/2007	<50	NA	<0.50	<1.0	<0.50	<1.0	NA	1.4	NA	NA -	NA	<5.0	NA	NA	NA	197.44	13.37	NA	184.07	NA	N/A
MW-7	05/29/2007	61 h	NA	<0.50	<1.0	<1.0	<1:0	NΑ	1.7	NA	NA	NA	<10	NA	NA	NA	197.44	14.82	NA	182.62	NA	NA
MW-7	08/29/2007	7,200 a,h	NA	<0.50	<1.0	0.30 i	<1.0	NA	5.1	<2.0	<2.0	<2.0	18	NA	NA	NA	197.44	16.03	NA	181.41	NA	NA
MW-7	11/30/2007	86 h	NA	0.26 i	<1.0	<1.0	<1.0	NA	1.4	NA	NA	NA	<10	NA	NA	NA	197.44	16.61	NA	180.83	NA	NA
MW-7	02/04/2008	<50 h	NA	<0.50	<1.0	<1.0	<1.0	NA	6.5	NA	NA	. NA	<10	NA	NA	NA	197.44	10,36	NA	187.08	NA	NA
MW-7	05/27/2008	520	NA	<0.50	<1.0	<1.0	<1.0	NA	17	NA	NA	NA -	35	NA	NA	NA	197.44	14.11	NA:	183.33	NA	NA
MW-7	08/05/2008	510	NA	<0.50	<1.0	<1.0	<1.0	NA	13	<2.0	<2.0	<2.0	<10	NA	NA NA	NA	197.44	15.10	NA	182.34	NA	NA
MW-7	12/03/2008	130	NA	<0.50	<1.0	<1.0	<1.0	NA	5.5	NA .	NA	NA	15	NA	NA	NA NA	197.44	16.75	NA	180.69	NA	NA:
MW-7	02/05/2009	<50	NA	<0.50	<1.0	<1.0	<1.0	NA	1.3	NA	NA	NA	<10	NA	NA	NA	197.44	16.17	NA	181.27	NA	NA .
MW-7	05/07/2009	87	NA	<0.50	<1.0	<1.0	<1.0	NA	31	NA :	NA	NA	30	NA	NA	. NA	197.44	12.45	NA	184.99	NA	NA .
T-1	05/30/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Dry	NA	NA	NA	NA NA
T-1	08/18/1997	NA ·	NA	NA	NA	NA	NA	NA	NA	NA	NA	· NA	NA	NA NA	NA	NA	NA NA	Dry	NA	NA	NA	NA NA
T-1	11/03/1997	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA -	NA	NA	NA	NA	NA	NA	Dry	NA	NA	NA	NA NA
T-1	01/20/1998	NA	NA	NA	NA	NA	NA	NA	.NA	NA	NA	NA	NA	NA	NA	NA:	NA	Dry	NA	NA	NA NA	NA
T-1	06/05/1998	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	Dry	NA	NA	NA	NA NA
T-1	07/23/1998	NA	NA	NA .	NA	NA_	NA .	NA	NA_	NA	NA	NA	NA	NA	NA	NA	NA NA	Dry	NA	NA	NA	NA NA
T-1	11/19/1998	NΑ	NA	NA	NA_	NΑ	NA	NA NA	NA NA	NA .	NA	NA	NA	NA	NA	NA	NA	Dry	NA	NA NA	NA	NA
T-1	02/03/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	, NA	NA	NA	NA	NA_	NA NA	Dry	NA	NA NA	NA	NA
T-1	06/04/1999	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Dry	NA	NA NA	NA	NA.
T-1	08/31/1999	NA	NA	NA	NA	NA	NA [.]	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	Dry	NA	NA NA	NA	NA
T-1	12/10/1999	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	Dry	NA	NA_	NA	NA_
T-1	02/11/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA	NA	Dry	NΑ	NA	NA	NA

Well ID Date TPPH TEPH B T E X 8820 SiPE ETBE TAME TBA DCA EDB Ethanol TOC Water to SPH Elevation TOC Water to SPH Elevation TOC Water CMSL CMSL	· 1				<u> </u>				MTBE	MTBE		a.			1,2				Depth to	Depth	GW	SPH	DO
T-1 05/04/2000 NA	Well ID	Date	TPPH	TEPH	В	т	E	х	8020		DIPE	ETBE	TAME	TBA		EDB	Ethanol	TOC	-	1 - 1	Elevation	Thickness	Reading
T-1 08/31/2000 NA			(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)
T-1 08/31/2000 NA	•																						
T-1 11/30/2000 NA	T-1	05/04/2000	NA	NA	NA	NA	NA	NA	NA	· NA	NA	NA	NA	NA	NA :	NA	NA	NA	Dry	NA -	NA	NA	NA
T-1 02/13/2001 NA	T-1	08/31/2000	NA	NA	NA	NA	NA	NA	NA :	NA	NA	NA	NA.	NA	NA	NA	NA	NA '	Dry	NA	NA	NA	NA
## ## ## ## ## ## ## ## ## ## ## ## ##	T-1	11/30/2000	NA	NA	NA	NA	NA	NA	NA	NA:	NA	NA	NA	NA	NA	NA	NA	NA	Dry	NA	NA	. NA	NA
T-1 07/30/2001 NA	T-1	02/13/2001	NA	NA	NA	NA .	NA	NA	NA ·	NA	NA	NA	NA	NA	NA	NA	NA .	NA	Dry	NA	NA	NA NA	NA NA
T-1 12/12/2001 NA	-ब -1	05/29/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Dry	NA	NA	NA	NA
T-1 01/31/2002 NA	T-1	07/30/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	Dry	NA	NA	NA	NA
T-1 05/22/2002 0 NA	T-1	12/12/2001	NA	NA	NA	NA	- NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	Dry	NA	NA	NA .	NA NA
T-2 05/30/1997 NA	T-1	01/31/2002	NA	NA	NA	NA	NA	NA	NA	NA		NA -	NA	NA	NA							NA NA	NA
T-2 08/18/1997 NA	T-1	05/22/2002 d	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	198.07	NA	NA	NA	NA NA	NA 1
T-2 08/18/1997 NA							r:-																
T-2 11/03/1997 NA	T-2	05/30/1997	NA	NA	NA	NA		NA			- "											NA	NA
T-2 01/20/1998 NA	T-2	08/18/1997	NA	NA	NA	NA	NA	NA		NA	NA	NA										NA .	NA
T-2 06/05/1998 NA	: T-2	11/03/1997	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .										NA	NA NA
T-2 07/23/1998 NA		01/20/1998	NA	NA																		NA	NA
T-2 11/19/1998 NA															\vdash							NA	NA NA
T-2 02/03/1999 NA																						NA NA	NA NA
T-2 06/04/1999 NA																						NA NA	NA NA
T-2 08/31/1999 NA						-																NA NA	NA NA
T-2 12/10/1999 NA																						NA NA	NA NA
T-2 02/11/2000 NA														_								NA NA	NA NA
T-2 05/04/2000 NA				_		_																NA NA	NA NA
T-2 08/31/2000 NA											_											NA NA	NA .
T-2 11/30/2000 NA													_				-				-	NA NA	NA NA
T-2 02/13/2001 NA					_						-											NA NA	NA.
T-2 05/29/2001 NA																						NA NA	NA
T-2 07/30/2001 NA	-	-				-														—		NA NA	NA.
T-2 12/12/2001 NA											1			_								NA	NA
1-2 12/12/2001 NA NA NA NA NA						-					_					_						NA	NA
T-2 01/31/2002 NA																						NA .	NA
T-2 01/31/2002 NA																						NA	NA

,,	-					F		MTBE	MTBE					1,2				Depth to	Depth	GW	SPH	DO
Well ID	Date	TPPH	TEPH	В	Τ.	E	X	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	Ethanol	TOC	Water	to SPH			Reading
		(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)														

Abbreviations:

TPPH = Total petroleum hydrocarbons as gasoline by EPA Method 8260B; prior to May 29, 2001, analyzed by EPA Method 8015.

TEPH = Total petroleum hydrocarbons as diesel by modified EPA Method 8015.

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8260B; prior to May 29, 2001, analyzed by EPA Method 8020.

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether, analyzed by EPA Method 8260B

ETBE = Ethyl tertiary butyl ether, analyzed by EPA Method 8260B

TAME = Tertiary amyl methyl ether, analyzed by EPA Method 8260B

TBA = Tertiary butyl alcohol, analyzed by EPA Method 8260B

1,2-DCA = 1,2-dichloroethane, analyzed by EPA Method 8260B

EDB = Ethylene dibromide, analyzed by EPA Method 8260B

TOC = Top of Casing Elevation

SPH = Separate-Phase Hydrocarbons

GW = Groundwater

DO = Dissolved Oxygen

ug/L = Parts per billion

ppm = Parts per million

MSL = Mean sea level

ft. = Feet

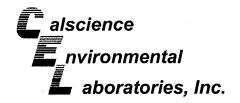
<n = Below detection limit

NA = Not applicable

ND = Not detected at or above the minimum quantitation limits.

	1							MTBE	MTBE					1,2				Depth to	Depth	GW	SPH	DO
Well ID	Date	ТРРН	TEPH	В	Т	E	х	8020	8260	DIPE	ETBE	TAME	TBA	DCA	EDB	Ethanol	TOC	Water	to SPH	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Reading
1.5		(ug/L)	(MSL)	(ft.)	(ft.)	(MSL)	(ft.)	(ppm)														

Notes:


- a = Chromatogram patterns indicate an unidentified hydrocarbon/Hydrocarbon does not match pattern of laboratory's standard.
- b = Sample was analyzed outside the EPA recommended holding time.
- c = DO Readings not taken this event.
- d = Survey date only.
- e = Sample contains discrete peak in gasoline range.
- f = Quantity of unknown hydrocarbon(s) in sample based on gasoline.
- g = Analyte was detected in the associated Method Blank.
- h = Analyzed by EPA Method 8015B (M).
- i = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

Ethanol analyzed by EPA Method 8260B.

Site surveyed May 22, 2002 by Virgil Chavez Land Surveying of Vallejo, CA.

When separate-phase hydrocarbons are present, ground water elevation is adjusted using the relation: Corrected ground water elevation = Top-of-casing elevation - depth to water + (0.8 x hydrocarbon thickness).

Well MW-7 2Q06 survey data provided by Cambria Environmental Technology, Inc.

May 22, 2009

Michael Ninokata Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105

Subject:

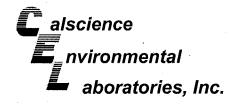
Calscience Work Order No.:

Client Reference:

09-05-0860

6039 College Ave., Oakland, CA

Dear Client:


Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 5/9/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental Laboratories, Inc. Jessie Lee Project Manager

Analytical Report

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105

Date Received:

05/09/09

Work Order No:

09-05-0860

Preparation:

EPA 5030B

Method: Units: LUFT GC/MS / EPA 8260B

ug/L

Project: 6039 College Ave., Oakland, CA

Page 1 of 3

intoject. 0039 College A	ve., Caki	anu, CA		, i						ı ayı	- 1 01 3
Client Sample Number				b Sample	Date/Time	Matrix	Instrument	Date t Prepared	Date/T d Analyz		QC Batch ID
			CONTRACTOR OF THE PARTY	Number	Collected	suksulut otsinsinin Sarkuti	walkerstein wed his also 'n Grun steintein fere	T TOPATOE		_0u	
MW-3			09-05-0	0860-1-A	05/07/09 09:35	Aqueous	GC/MS RI	₹ 05/19/09	05/20/ 06:0		090519L02
東亞語與時間各種資料的結合經濟性的特別的的語彙的可以的經濟學的			e la catalogía i								
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	DF	Qual
Benzene	160	0.50	1		Methyl-t-Butyl	Ether (MTE	BE)	350	5.0	5	
Ethylbenzene	5.6	1.0	1		Tert-Butyl Alco	ohol (TBA)		130	10	1	
Toluene	58	1.0	1	•	TPPH			2200	50	1	
Xylenes (total)	14	1.0	1			4					
Surrogates:	REC (%).	<u>Control</u>		<u>Qual</u>	Surrogates:			REC (%)	Control		Qual
Dibromofluoromethane	103	<u>Limits</u> 74-140			1,2-Dichloroet	hane-d4		102	<u>Limits</u> 74-146		
Toluene-d8	110	88-112			Toluene-d8-Ti			107	88-112		
1,4-Bromofluorobenzene	103	74-110			. 0.000 00				00 1.12		
* *** *** *** *** *** *** *** *** ***		Constant and a second second second				of a warden			05/20	voo.	
MW-4			U9-U5-	0860-2 -A .	05/07/09 09:50	Aqueous	GC/MS RI	R U5/19/09	03/20	103	090519L02
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	<u>DF</u>	Qual
Benzene	140	0.50	1		Methyl-t-Butyl	Ether (MTF	3E)	71	1.0	1	
Ethylbenzene	ND	1.0	1	ì	Tert-Butyl Alco		<i>3</i> L)	420	10	1	
Toluene	3.9	1.0	1		TPPH	31101 (1 27 1)		2900	50	1	
Xylenes (total)	1.3	1.0	1	1.194				2000	00		
Surrogates:	REC (%)	Control	- 13	Qual :	Surrogates:			REC (%)	Control		Qual
<u>ourrogatos.</u>	1.42 1.707	Limits		, (2222 .)	, o ar rogardor			1100 (70)	Limits		
Dibromofluoromethane	102	74-140			1,2-Dichloroet	hane-d4 `		99	74-146		
Toluene-d8	111	88-112		اب	Toluene-d8-TI	PPH ·		107	88-112		
1,4-Bromofluorobenzene	105	74-110			A. the site						
MW-5			09-05-	0860-3-A	05/07/09	Anneous	GC/MSR	R 05/19/09	05/20	0/09	090519L02
					09:05				06:5	55	
海绵和热心和顶部间用层排资过滤光度压力流光剂等的过去式和过去分词			ed market							EACH PHE ROSAN	
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			Result	RL	DF	Qual
Benzene	ND	0.50	1		Methyl-t-Butyl	Ether (MTE	BE)	ND	1.0	1	
Ethylbenzene	ND	1.0	1		Tert-Butyl Alc	ohol (TBA)	•	ND	10	1	
Toluene	ND	1.0	1		TPPH	. ,		ND	50	1	
Xylenes (total)	ND	1.0	1								
Surrogates:	REC (%)	Control		Qual	Surrogates:		r	REC (%)	<u>Control</u>		<u>Qual</u>
		<u>Limits</u>							<u>Limits</u>		
Dibromofluoromethane	105	74-140			1,2-Dichloroet			103	74-146		
Toluene-d8	103	88-112			Toluene-d8-T	PPH		99	88-112		
1,4-Bromofluorobenzene	99	74-110									

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

Analytical Report

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received:

05/09/09

Work Order No:

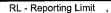
09-05-0860

Preparation:

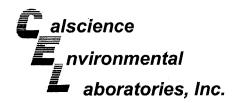
EPA 5030B

Method:

LUFT GC/MS / EPA 8260B


Units:

ug/L


Project: 6039 College Ave., Oakland, CA

Page 2 of 3

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tir Analyze		C Batch ID
MW-6			SERVERS CONTRACTOR)860-4-A	05/07/09 08:45	Aqueous	GC/MS RR	05/19/09	05/20/0 07/:19		90519L02
Parameter	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	RL	DF	Qual
Benzene	ND	0.50	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Methyl-t-Butyl I		E)	1,1	1.0	1	
Ethylbenzene	ND	1.0	1	,,	Tert-Butyl Alco	hol (TBA)			10	1.	
Toluene	ND	1.0	1		TPPH			ND	50	1	•
Xylenes (total)	ND	1.0	1								
Surrogates:	REC (%)	Control		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Dibromofluoromethane	106	<u>Limits</u> 74-140			1,2-Dichloroeth	nane-d4		102	74-146		
Toluene-d8	102	88-112			Toluene-d8-TF				88-112		
1,4-Bromofluorobenzene	97	74-110			10.001.0						
MW-7			09-05-)860-5-A	05/07/09 - 09:20	Aqueous	GC/MS R	ora Sasesia di Basili	05/20/ 07.4		90519L02
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	RL	<u>DF</u>	<u>Qual</u>
Parameter	ND			Quui	Methyl-t-Butyl	Ethor (MTE	ıE)	31	1.0	1	, 1, 1, 1
Benzene	ND ND	0.50 1.0	1		Tert-Butyl Alco		· <i>)</i>	30	10	1	
Ethylbenzene Toluene	ND	1.0	. 1		TPPH	onoi (10A)		87	50	1	
Xvlenes (total)	ND ·	1.0	1		11 (11,			0.	00	'	
Surrogates:	REC (%)	Control	. '	Qual	Surrogates:			REC (%)	Control		Qual
<u>Currogates.</u>	1320 (70)	Limits			<u></u>				Limits		
Dibromofluoromethane	108	74-140			1,2-Dichloroet			105	74-146		
Toluene-d8	104	88-112		- 1	Toluene-d8-TI	PPH		100	88-112		
1,4-Bromofluorobenzene	98	74-110	7. 1								
:Method Blank'i			099-12	-767-1,79	1 NA	Aqueous	GE/MS RI	₹ 05/19/09	05/20 02:4		090519L02
Parameter Parameter	Result	RL	DF	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.50	1	1	Methyl-t-Butyl	Ether (MTE	3E)	ND	1.0	1	
Ethylbenzene	ND	1.0	1		Tert-Butyl Alc			ND	10	· 1	
Toluene	ND	1.0	1		TPPH		•	ND	50	1	
Xylenes (total)	ND	1.0	1								
Surrogates:	REC (%)	<u>Control</u>		Qual	Surrogates:			REC (%)	<u>Control</u>		<u>Qual</u>
D	405	<u>Limits</u>			4.2 Diables	hana d4		105	<u>Limits</u> 74-146		
Dibromofluoromethane	105	74-140			1,2-Dichloroel Toluene-d8-T			99	74-146 88-112		
Toluene-d8	102 97	88-112 74-110			i Oluene-do-l	rrπ		33	00-112		
1,4-Bromofluorobenzene	91	74-110						. 1			

J. J. J. 44.

Analytical Report

Blaine Tech Services, Inc. 1680 Rogers Avenue

San Jose, CA 95112-1105

Date Received:

Work Order No:

Preparation:

Method: Units:

05/09/09

09-05-0860

EPA 5030B

LUFT GC/MS / EPA 8260B

ug/L

Project: 6039 College Ave., Oakland, CA

Page 3 of 3

Client Sample Number				ab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti dAnalyz		QC Batch ID
Method Blank			099-12	ċ767-1,79!	N/A	Aqueous	GC/MS RF	05/20/09	05/20/ 15:0		090520L01
<u>Parameter</u>	Result	RL	DF	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.50	1.		Methyl-t-Butyl	Ether (MTB)	E)	ND	1.0	1	
Ethylbenzene	ND	1.0	1	4	Tert-Butyl Alco	ohol (TBA)		ND	10	1	
Toluene	ND	1.0	1	*	TPPH			ND	50	1	
Xylenes (total)	. ND	1.0	1,		į.						
Surrogates:	REC (%)	<u>Control</u>		Qual;	Surrogates:			REC (%)	<u>Control</u>		<u>Qual</u>
		<u>Limits</u>	. 13	1					<u>Limits</u>		
Dibromofluoromethane	108	74-140		ing and a second	1,2-Dichloroet	hane-d4		105	74-146		
Toluene-d8	102	88-112	37	1	Toluene-d8-TI	PPH		98	88-112		
1,4-Bromofluorobenzene	98	74-110									

Quality Control - Spike/Spike Duplicate

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 05/09/09 09-05-0860 EPA 5030B LUFT GC/MS / EPA 8260B

Project 6039 College Ave., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Ä	Date Analyzed	MS/MSD Batch Number
(09-05-0857F1	Aqueou	s. GC/MS RR	05/19/09		05/20/09	090519802
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	102	100	88-118	2	0-7	
Carbon Tetrachloride	101	101	67-145	0	0-11	
Chlorobenzene	95	93	88-118	2	0-7	
1,2-Dibromoethane	98	96	70-130	2	0-30	
1,2-Dichlorobenzene	90	87	86-116	3	0-8	
1,1-Dichloroethene	102	100	70-130	2	0-25	
Ethylbenzene	98	95	70-130	3	0-30	
Toluene	100	. 98	87-123	2	0-8	
Trichloroethene	95	93	79-127	2	0-10	
Vinyl Chloride	92	94	69-129	3	0-13	
Methyl-t-Butyl Ether (MTBE)	105	104	71-131	0	0-13	
Tert-Butyl Alcohol (TBA)	94	90	36-168	-5	0-45	
Diisopropyl Ether (DIPE)	111	110	81-123	1	0-9	•
Ethyl-t-Butyl Ether (ETBE)	108	108	72-126	0	0-12	
Tert-Amyl-Methyl Ether (TAME)	103	102	72-126	1	0-12	•
Ethanol	93	99	53-149	7	0-31	

Quality Control - Spike/Spike Duplicate

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 05/09/09 09-05-0860 EPA 5030B LUFT GC/MS / EPA 8260B

Project 6039 College Ave., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date I nalyzed	MS/MSD Batch Number
09-05-0871-1	Aqueous	GC/MS RR	05/20/09	- 0	5/20/09	090520801
printing data de response and y monte services en	MARKET TO THE TOTAL CONTRACTOR OF THE TOTAL CONTRACTOR OF CONTRACTOR OF THE TOTAL CONTRACTOR OF THE TOTAL CONT	THE STATE OF THE S	55115151181531181547450050180051155051		THE RELEASE PROPERTY OF THE RESIDENCE PROPERTY OF THE RESIDENCE OF THE RES	AND THE PROPERTY OF THE PROPER
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	101	104	88-118	3	0-7	,
Carbon Tetrachloride	104	110	67-145	6	0-11	
Chlorobenzene	92	94	88-118	2	0-7	
1,2-Dibromoethane	94	95	70-130	1	0-30	
1,2-Dichlorobenzene	87	89	86-116	2	0-8	
1,1-Dichloroethene	107	111	70-130	4	0-25	
Ethylbenzene	96	97	70-130	1	0-30	
Toluene	100	101	87-123	1	0-8	
Trichloroethene	97	100	79-127	3	0-10	
Vinyl Chloride	99	104	69-129	5	0-13	
Methyl-t-Butyl Ether (MTBE)	106	110	71-131	3	0-13	
Tert-Butyl Alcohol (TBA)	85	80 '	36-168	6	0-45	
Diisopropyl Ether (DIPE)	111	115	81-123	3	0-9	
Ethyl-t-Butyl Ether (ETBE)	109	114	72-126	4	0-12	
Tert-Amyl-Methyl Ether (TAME)	102	105	72-126	3	0-12	
Ethanol	101	97	53-149	4	0-31	

Quality Control - LCS/LCS Duplicate

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105

Date Received:

N/A

Work Order No:

09-05-0860

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B

Project: 6039 College Ave., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Analy		LCS/LCSD E Number	
099-12-767-19791 A	queous	GC/MS RR	05/19/09	05/20/	09 .	- 090519E0)2
<u>Parameter</u>	LCS %REĆ	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	<u>Qualifiers</u>
Benzene	100	98	84-120	78-126	1	0-8	
Carbon Tetrachloride	102	99	63-147	49-161	2	0-10	
Chlorobenzene	94	92	89-119	84-124	2	0-7	
1,2-Dibromoethane	94	96	80-120	73-127	2	0-20	
1,2-Dichlorobenzene	88	88	89-119	84-124	1	0-9	ME
1,1-Dichloroethene	102	98	77-125	69-133	3	0-16	
Ethylbenzene	98	96	80-120	73-127	2	0-20	
Toluene	99	97	83-125	76-132	3	0-9	•
Trichloroethene	103	98	89-119	84-124	5	0-8	
Vinyl Chloride	104	95	63-135	51-147	9	0-13	
Methyl-t-Butyl Ether (MTBE)	99	102	82-118	76-124	3	0-13	
Tert-Butyl Alcohol (TBA)	83	84	46-154	28-172	1	0-32	
Diisopropyl Ether (DIPE)	105	106	81-123	74-130	1	0-11	
Ethyl-t-Butyl Ether (ETBE)	102	103	74-122	66-130	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	99	100	76-124	68-132	1	0-10	
Ethanol	91	91	60-138	47-151	1	0-32	
TPPH	104	102	65-135	53-147	1	0-30	

Total number of LCS compounds: 17
Total number of ME compounds: 1

Total number of ME compounds allowed :

LCS ME CL validation result: Pass

Quality Control - LCS/LCS Duplicate

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received:

N/A

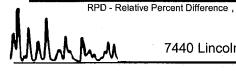
Work Order No:

09-05-0860

Preparation:

EPA 5030B

Method:


LUFT GC/MS / EPA-8260B

Project: 6039 College Ave., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Analy		LCS/LCSD B Number	
099-12-767-1 795	queous	GC/MS/RR	(05/20/09)	05/20/	09	09052010	
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	104	100	84-120	78-126	3	0-8	
Carbon Tetrachloride	109	102	63-147	49-161	7	0-10	
Chlorobenzene	95	93	89-119	84-124	2	0-7	
1,2-Dibromoethane	96	95	80-120	73-127	1	0-20	
1,2-Dichlorobenzene	90	89	89-119	84-124	2	0-9	
1,1-Dichloroethene	115	107	77-125	69-133	7	0-16	
Ethylbenzene	99	96	80-120	73-127	3	0-20	
Toluene	104	101	83-125	76-132	3	0-9	
Trichloroethene	100	97	89-119	84-124	3	0-8	
Vinyl Chloride	114	100	63-135	51-147	13	0-13	
Methyl-t-Butyl Ether (MTBE)	113	106	82-118	76-124	6	0-13	
Tert-Butyl Alcohol (TBA)	79	82	46-154	28-172	4	0-32	
Diisopropyl Ether (DIPE)	119	111	81-123	74-130	7	0-11	
Ethyl-t-Butyl Ether (ETBE)	116	109	74-122	66-130	6	0-12	
Tert-Amyl-Methyl Ether (TAME)	106	104	76-124	68-132	3	0-10	
Ethanol	91	101	60-138	47-151	10	0-32	
TPPH	109	108	65-135	53-147	2	0-30	

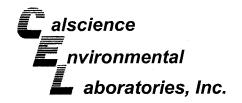
Total number of LCS compounds: 17
Total number of ME compounds: 0
Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 09-05-0860

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.
	,是老人的人,我就是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个


LAB (LOCATION)	,									S	hell	0	il F	^o ro	du	ıct	s C	ha	ain	Of	Cı	ıst	od	y F	(ec	or	d							-		
	-		Pl	eas	e Che	ck:A	ppro	priate	Box	:		Pr	int B	ill:T	o C	onta	ct N	ame:					1 0	ICID	ENT	# (E	NV:	SER	VICE	S)	D cur	CK IF NO	THETO	NY 4 .		
☐ SPL (☑ EI	V. SERVICE	s		иотл/	VA RETA	VIL.		SHELL	RETAIL	71		Вгоч									9	1					4		DAT	-	ST	-)	T	<u>a</u>
TEST AMERICA (□ M	OTIVA SD&C	CM		CONS	ULTANT			LUBES							РО	#					Ť		, ,	SAI	****			-	DAI	=:	+	-/-	0	7 _
OTHER (☐ St	IELL PIPELIN	1E		OTHER							T	<u> </u>	T	T	1	T	T		Ī	-1-1-1-1		<u> </u>	T	T	T	T	1		PAG	}E:	_{	of		
SAMPLING COMPANY:		1				Log	CODE.					SIT	E ADDF	RE55:	Street	and Cit	<u> </u>	<u> </u>	<u> </u>			_	State	<u> </u>		GLO	BAL IÓ N									
Blaine Tech Services	·					81	rss	_				60	39 (Coll	ege	Av	e., (Dak	lanc	ľ			CA			1			272							
1680 Rogers Ave, San Jose, CA 95	5112											EDF	ELVER	ABLE TO	O (Name,	Compan	v. Office !	Location	r		PHONE	io;				E-MAL						CON	SULTANT	PROJECT	TNO	
PROJECT CONTACT (Hardcopy or PDF Report to): **Michael Ninokata**			•									Ana	PLER NA	emi,	CRA, (Print):	, Em	eryvi	lle			(510)	420-	3335			She	iledf	Осга	world					10	-000	υ (
TELEPHONE: FAX: (408)573-0555	(408)573-7771		E-MAL			-41						1	W	AME(S)		AN	1	٧٧٥	W	7									- 1		OSE ON	05	رمر	26	G	
TURNAROUND TIME (CALENDAR DAYS):			mninol				1.com	_	ESULTS	NEEDE	D	+																		Y		ت ب	U	رمر	V	
			2 DAYS		☐ 24 H	OURS				ON W	EEKEND	╄					, 					RE	QUE	STEE	O AN	ALYS	SIS		·						·	ا ز
	UST AGENCY:				☐ SHEL	LCONT	DACT II	ATE AD	DI 75C			-			İ												1	·			7	EMPER			RECE	(P 33
SPECIAL INSTRUCTIONS OR N	OTES:				STAT					JES		(8260B)	(8015M)		_					_					İ								•			
					☐ EDD							828			60B)																					
Day Tott i Motify of the Little	•_				☑ RECE	IPT VE	RIFICAT			D .		를	TPH - Extractable	_	5 Oxygenates (8260B)		1				8		<u>@</u>	(W)		-				ŀ	 					\dashv
Run TPH-d w/Silica Gel Clean U	'P	SAN	IPLING	Τ-		_	PF	ESERV/	ATIVE				traci	8092	喜	260E	(B)	60B)	260B	809	826	8	8260	<u> (8</u>	~=						-					-
្នែរ Field Sample Ident	ification		T		ATRIX				<u> </u>		NO. OF	- Purg	ĕ	(8)	Yge	(8) (8)	(826	(82	E (8;	E (82	§ S	(826	loi loi	ano!												
VSE 049.11	` ·	DATE	TIME			HCL	HNO3	H2S04	NONE	OTHER	CONT.	F H	T.	BTEX (8260B)	Š S	MTBE (8260B)	TBA (8260B)	DIPE (8260B)	TAME (8260B)	ETBE (8260B)	1,2 DCA (8260B)	EDB (8260B)	Ethanol (8260B)	Methanol (8015M)			-					Contai or La		D Rea ory No		
Field Sample Identified Field Sample Identifi		5/7/0	0935	h)	3					3	X		α		Y	S							-		•				\dashv	+					ㅓ
2 MW-4		T	0950		Ī	1					1	×		P		p											-			+	+					\dashv
3 MW-5			0905			\top				-	\top	8		Ø		٦	م			\dashv	$\neg \dagger$									+	+					\dashv
4 m-6			6345			$\dagger \dagger$		-				Ø		8		ø	Ø		7	7	\dashv	_		-				-	-	+	+					\dashv
5 mu-7		4	0920	7	1	1			12		1	Q				٦	0		1	\neg	+		\dashv	_	\vdash	\dashv		\dashv		-+	+					\dashv
			012	-		+			\vdash			-		9	-		2	\dashv		+						\dashv			-	\dashv						-1
				-		+											-			-			\perp				\dashv	-+	-	+	-	<u> </u>				Į,
			-			┼	\vdash									\dashv			-+	_										_						
						↓													_	_																
																							1	İ												7
																										\dashv		1	1	\top	\top					ヿ
Relinquished by: (Signature)	<u>-</u>			Rece	by: (S	ignalure)		1	SK	ME	UE				Ll	—L									Date:			,	!_	7	me:			·		\dashv
, WX					N S	N	1				OD/	AN													3	-/.	7	I_n	9			15	\mathcal{U}	6		1
Relinquished by: (Signature)					ved by (3)		$\overline{}$					~												-1	Date:	+	-//			TI	me:	' —				\dashv
If Court Cos	stody)				_	<u>'</u>			\geq	2	. !	<u>C</u>	1	1											6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3.)0	\			12	3/	<u>)</u>		
restriction by: (Stightflure)	5-8	5-D	7	Recei	red by: (SI	(gnature)		1	4		3/	フ	`					-							Dale:		-			70	me:	_	-			7
LINE PR	0	137	2	6	U	Le	to	<u> </u>	1/	<u></u>	<u> </u>	3_	<u>ノ</u>		2	<u>e</u>									ك		9-	22	<u> </u>			<u> </u>				_
G.S. 5118290	76							0	,																			7	-			/2/06 Revi	sion			

rvironmental eboratories, inc. Page 11 of 11 WORK ORDER #: **09-05- 0 6 0**

SAMPLE RECEIPT FORM

Cooler <u>/</u> of <u>/</u>

	519109
TEMPERATURE: (Criteria: 0.0 °C – 6.0 °C, not frozen)	
Temperature °C - 0.2 °C (CF) = C Blank □ Sample(s) outside temperature criteria (PM/APM contacted by:). □ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling	□ Sample
☐ Received at ambient temperature, placed on ice for transport by Courier.	`
Ambient Temperature: ☐ Air ☐ Filter ☐ Metals Only ☐ PCBs Only	Initial: WSC
	Illinai.
CUSTODY SEALS INTACT: Cooler	Initial: <u>428</u> 4 Initial: T
SAMPLE CONDITION: Yes	No N/A
Chain-Of-Custody (COC) document(s) received with samples	
COC document(s) received complete	
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.	
and telliquistied.	
Sampler's name indicated on COC. Sample container label(s) consistent with COC	
Sample container label(s) consistent with COC.	
Sample container(s) intact and good condition.	
Correct containers and volume for analyses requested	
Analyses received within holding time	
Proper preservation noted on COC or sample container	
☐ Unpreserved vials received for Volatiles analysis	
Volatile analysis container(s) free of headspace	
Tedlar bag(s) free of condensation.	
CONTAINER TYPE:	L KI
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve □EnCores® □TerraCores®	® - ¬
Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □1AGB □1	·
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB □5	IAGBna₂ □1AGBs
U250PB U250PBn □125PR □125PRznna □100PR □400PR	500PB □500PB na
Air: Tedlar® Tsumma® T	
Container: C: Clear A: Amber P: Plastic G: Class 1: los 04/14 - 11 - 2 - 2	
Preservative: h: HCL n: HNO3 na ₂ :Na ₂ S ₂ O ₃ Na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ znna: ZnAc ₂ +NaOH f: Field-filtered Sc	viewed by:RN

July 08, 2009

Michael Ninokata Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105

Subject:

Calscience Work Order No.:

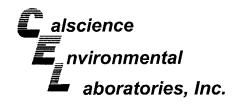
Client Reference:

09-06-2483

6039 College Ave., Oakland, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 6/30/2009 and analyzed in accordance with the attached chain-of-custody.


Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Jesan Cee

Calscience Environmental Laboratories, Inc. Jessie Lee Project Manager

Analytical Report

Blaine Tech Services, Inc. 1680 Rogers Avenue

San Jose, CA 95112-1105

Date Received:

Work Order No:

Preparation: Method:

Method: Units:

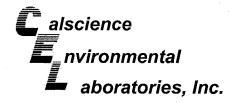
06/30/09

09-06-2483

EPA 5030B LUFT GC/MS / EPA 8260B

ug/L

Project: 6039 College Ave., Oakland, CA


Page 1 of 2

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tim Analyze	_	C Batch ID
MW-3			1650015 St 4550000	2483-1-B	. 06/26/09 12:50	Aqueous	GC/MST	07/01/09	07/01/09 22:51) (90701L01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	Parameter		•	Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	64	0.50	1		Methyl-t-Butyl	Ether (MTB)	E)	91	1.0	1	
Ethylbenzene	2.6	1.0	1		Tert-Butyl Alc	ohol (TBA)		88	10	1	
Toluene	22	1.0	1		TPPH			790	50	1	
Xylenes (total)	6.9	1.0	. 1								
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		Qual
Dibromofluoromethane	89	74-140			1,2-Dichloroe	hane-d4		80	74-146		
Toluene-d8	100	88-112			Toluene-d8-T			100	88-112		
1,4-Bromofluorobenzene	97	74-110			. 5.00.10 00 1	· · · ·			·· -		
MW-4			09-06-	2483-2-C	06/26/09 12:20	Aqueous	GC/MST	07/02/09	07/03/0 00:20		090702L01
Parameter	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	190	1.0	2		Methyl-t-Buty	Ether (MTB	E)	24	2.0	2	
Ethylbenzene	ND	2.0	2		Tert-Butyl Alc		•	130	20	2	
Toluene	6.7	2.0	2		TPPH			6300	100	2	
Xylenes (total)	ND	2.0	2								
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Dibromofluoromethane	96	74-140			1,2-Dichloroe	thane-d4		98	74-146		
Toluene-d8	109	88-112		•	Toluene-d8-T			101	88-112		
1,4-Bromofluorobenzene	104	74-110			, diacite de l						
Method Blank			099-12	2-767-2,13	2 N/A	Aqueous	GC/MS T	07/01/09	07/01/0 18:24		090701L01
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.50	1		Methyl-t-Buty	i Ether (MTE	BE)	ND	1.0	1	
Ethylbenzene	ND	1.0	1		Tert-Butyl Ald	ohol (TBA)		ND	10	1	
Toluene	ND	1.0	1		TPPH			ND	50	1	
Xylenes (total)	ND	1.0	1								
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	<u>Control</u> Limits		<u>Qual</u>
Dibromofluoromethane	96	74-140			1,2-Dichloroe	thane-d4		95	74-146		
Toluene-d8	98	88-112	•		Toluene-d8-1	PPH		98	88-112		
1,4-Bromofluorobenzene	93	74-110									

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

Analytical Report

Blaine Tech Services, Inc.

1680 Rogers Avenue

San Jose, CA 95112-1105

Date Received:

Work Order No:

Preparation:

Method: Units:

09-06-2483 **EPA 5030B**

LUFT GC/MS / EPA 8260B

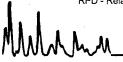
ug/L

06/30/09

Project: 6039 College Ave., Oakland, CA

Page 2 of 2

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepare	Date/Ti d Analyz		QC Batch ID
Method Blank			099-12	-767-2.13	9 N/A"	Aqueous	GC/MS [†] T	07/02/09	07/02/ 21:2:		090702L01
三日本的市场的时间,从中国的市场的市场的市场的市场的市场的市场的市场的市场的市场		Salutar szak		SERVICE CONTRACTOR	CANDELLA SESSE DA SELLA						
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Benzene	ND	0.50	1		Methyl-t-Butyl E	Ether (MTB	E)	ND	1.0	1	
Ethylbenzene	ND	1.0	1		Tert-Butyl Alco	hol (TBA)	•	ND	10	1	
Toluene	ND	1.0	1		TPPH			ND.	50	1	
Xylenes (total)	ND	1.0	1								
Surrogates:	REC (%)	Control		<u>Qual</u>	Surrogates:			REC (%)	Control		Qual
		<u>Limits</u>							Limits		
Dibromofluoromethane	108	74-140			1,2-Dichloroeth	nane-d4		110	74-146		
Toluene-d8	99	88-112			Toluene-d8-TP	PH		95	88-112		
1,4-Bromofluorobenzene	91	74-110									


Quality Control - Spike/Spike Duplicate

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 06/30/09 09-06-2483 EPA 5030B LUFT GC/MS / EPA 8260B

Project 6039 College Ave., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Α	Date Analyzed	MS/MSD Batch Number
09-06-2382-2	Aqueous	GC/MS T	07/01/09	(07/01/09	090701801
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	85	81	88-118	4	0-7	3
Carbon Tetrachloride	76	73	67-145	4	0-11	3
	76 88					4.0
Chlorobenzene		81	88-118	9	0-7	4,3
1,2-Dibromoethane	87	.82	70-130	6	0-30	
1,2-Dichlorobenzene	85	81	86-116	5	8-0	. 3
1,1-Dichloroethene	108	103	70-130	5	0-25	
Ethylbenzene	87	83	70-130	5	0-30	
Toluene	85	82	87-123	4	0-8	3
Trichloroethene	81	77	79-127	6	0-10	3
Vinyl Chloride	81	81	69-129	1	0-13	
Methyl-t-Butyl Ether (MTBE)	86	90	71-131	4	0-13	
Tert-Butyl Alcohol (TBA)	135.	91	36-168	39	0-45	
Diisopropyl Ether (DIPE)	95	92	81-123	4	0-9	
Ethyl-t-Butyl Ether (ETBE)	93	95 '	72-126	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	94	93	72-126	1	0-12	
Ethanol	168	123	53-149	31	0-31	3

Quality Control - Spike/Spike Duplicate

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received: Work Order No: Preparation: Method: 06/30/09 09-06-2483 EPA 5030B LUFT GC/MS / EPA 8260B

Project 6039 College Ave., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date nalyzed	MS/MSD Batch Number
09-07-0178-1	Aqueous	GC/MST	07/02/09	0	7/02/09	090702801
Company (Control for Anni Andrews Control and Control for Anna Control and Con	eventurines agostinopolise su matematica de 341,0 su	To a small state of the state o	3.11.00.00.00.00.00.00.00.00.00.00.00.00.			
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
- A						
Benzene	93	92	88-118	1	0-7	
Carbon Tetrachloride	92	90	67-145	2	0-11	
Chlorobenzene	93	93	88-118	1	0-7	
1,2-Dibromoethane	90	92	70-130	. 3	0-30	
1,2-Dichlorobenzene	89	91	86-116	2	0-8	
1,1-Dichloroethene	92	70	70-130	28	0-25	4
Ethylbenzene	99	99	70-130	0	0-30	
Toluene	95	95	87-123	0	0-8	
Trichloroethene	91	91	79-127	0	0-10	
Vinyl Chloride	81	83	69-129	2	0-13	
Methyl-t-Butyl Ether (MTBE)	94	97	71-131	3	0-13	
Tert-Butyl Alcohol (TBA)	115	105	36-168	9	0-45	
Diisopropyl Ether (DIPE)	101	100	81-123	1	0-9	
Ethyl-t-Butyl Ether (ETBE)	97	100	72-126	3	0-12	
Tert-Amyl-Methyl Ether (TAME)	101	101	72-126	1	0-12	
Ethanol	117	104	53-149	10	0-31	

Quality Control - LCS/LCS Duplicate

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received:

N/A

Work Order No:

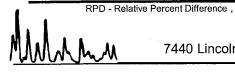
09-06-2483

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B


Project: 6039 College Ave., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Analy		LCS/LCSD E Number	
099-12-767-2;132	\queous	GC/MS.T	07/01/09	07/01/	09	090701L0	011
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	91	91	84-120	78-126	0	0-8	
Carbon Tetrachloride	85	85	63-147	49-161	1	0-10	
Chlorobenzene	91	91	89-119	84-124	0	0-7	
1,2-Dibromoethane	93	94	80-120	73-127	2	0-20	
1,2-Dichlorobenzene	89	92	89-119	84-124	4	0-9	ME
1,1-Dichloroethene	121	122	77-125	69-133	1	0-16	
Ethylbenzene	94	94	80-120	73-127	0	0-20	
Toluene	93	92	83-125	76-132	2	0-9	
Trichloroethene	93	92	89-119	84-124	0	0-8	
Vinyl Chloride	92	90	63-135	51-147	2	0-13	
Methyl-t-Butyl Ether (MTBE)	91	96	82-118	76-124	5	0-13	-
Tert-Butyl Alcohol (TBA)	120	116	46-154	28-172	3	0-32	
Diisopropyl Ether (DIPE)	98	100	81-123	74-130	2	0-11	
Ethyl-t-Butyl Ether (ETBE)	97	100	74-122	66-130	4	0-12	
Tert-Amyl-Methyl Ether (TAME)	97	99	76-124	68-132	3	0-10	
Ethanol	145	138	60-138	47-151	5	0-32	ME
TPPH	104	101	65-135	53-147	<u>,</u> 2	0-30	

Total number of LCS compounds: 17 Total number of ME compounds: 1

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Quality Control - LCS/LCS Duplicate

Blaine Tech Services, Inc. 1680 Rogers Avenue San Jose, CA 95112-1105 Date Received:

N/A

Work Order No:

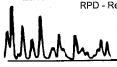
09-06-2483

Preparation:

EPA 5030B

Method:

LUFT GC/MS / EPA 8260B


Project: 6039 College Ave., Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		LCS/LCSD E	
099-12-767-2,139	Aqueous	GC/MST	07/02/09	07/02	09	090702L0	
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	<u>Qualifiers</u>
Benzene	104	104	84-120	78-126	0	0-8	
Carbon Tetrachloride	105	109	63-147	49-161	4	0-10	
Chlorobenzene	102	101	89-119	84-124	1	0-7	
1,2-Dibromoethane	103	102	80-120	73-127	1	0-20	
1,2-Dichlorobenzene	99	97	89-119	84-124	2	0-9	
1,1-Dichloroethene	110	111	77-125	69-133	1	0-16	
Ethylbenzene	111	112	80-120	73-127	1	0-20	
Toluene	104	105	83-125	76-132	0	0-9	
Trichloroethene	107	107	89-119	84-124	1	0-8	
Vinyl Chloride	101	101	63-135	51-147	0	0-13	
Methyl-t-Butyl Ether (MTBE)	111	103	82-118	76-124	7	0-13	
Tert-Butyl Alcohol (TBA)	88	107	46-154	28-172	19	0-32	
Diisopropyl Ether (DIPE)	110	109	81-123	74-130	1	0-11	
Ethyl-t-Butyl Ether (ETBE)	112	107	74-122	66-130	5	0-12	
Tert-Amyl-Methyl Ether (TAME)	114	107	76-124	68-132	7	0-10	
Ethanol	82	102	60-138	47-151	22	0-32	
TPPH	95	94	65-135	53-147	1	0-30	

Total number of LCS compounds: 17
Total number of ME compounds: 0
Total number of ME compounds allower

Total number of ME compounds allowed :

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 09-06-2483

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1 .	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J ·	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

	LAB (LOCATION)							?	•	Snei	IU	111	ro	du	Cts	s C	na	in (Of	Cı	ist	ody	y R	ec	or	d								
	CIENCE (Ple	ase Che	k Ar	propi	iate l	ox:		Pr	int E	3ĭII: T	o Co	ntac	rt Na	me:					ΙŃ	CIDE	NT:	# (E	NV S	SER'	VICE	S)∷[CUEC	K IF NO IN	CTOENT	# ADDLTE	
☐ SPL			□ EN	V, SERVICES		мотту	A RETAIL		☐ SHE	LL RETAIL	٦	 	Scha		240	 Eng						9	t			1			1 1			121		9
☐ XENC			П мс	OTIVA SD&CN		CONSU	LTANT		LUBE			eter	Scna	erer	240		40.00	,-11,	Arran.			٦	0	B			1	4	19	DAT	Ξ: <u> </u>	100	210	٦
	AMERICA ()									╎			<u> </u>		PO	#								SA	Р#				PAG	F: 1		of	
OTHE			LLI SH	ELL PIPELINE		OTHER					<u> </u>							-									-	1] [-	
SAMPLING CO	OMPANY Tech Services			-		i i	CODE						RESS:		-							State		-	!	BAL ID N						-		\neg
ADDRESS.			 :	-		ВТ	33		*		EDF	DELMER	Coll RABLE TO	ege	Company	Office L	Daki	and	P	HONE N		CA			E-MAG	600	101	1272	<u>. </u>		I consul	TANT PRO	JECTNO	
	ogers Ave, San Jose, ONTACT (Hardcopy or PDF Report to):										1								- 1												4			- 2
	Ninokata Copy to Si		world.co	m							SA	MPLER N	remi,	Print)	Eme	ryvill	le 1			510)	420-3	335			She	lledf	<u>@сга</u>	awori	d.com		090			
TELEPHONE	408)573-0555	(408)573-777	1	E-MAL. mninok	ata@blain	etech	.com				ر [Ą.	- ()a	10	,4	Le	1	5											n	6-	21	183	
	OUND TIME (CALENDAR DA DARD (14 DAY)	YS): Is days II s days		2 DAYS	☐ 24 H			☐ RES	ULTS NEE	DED WEEKENI	,										RE	QUE	STEC	ANA	ALYS	sis		•	[1414[4]4]	1-1-1-1-2-1	<u> </u>		<u> </u>	221121
□ IA - F	RWQCB REPORT FORMAT	☐ UST AGENCY:									T	T	T							Т						Ī	Г	T		T_				_ >~i
SPEC	CIAL INSTRUCTIONS	OP NOTES :			☐ SHEL	L CONT	RACT RA	TE APPLI	ES	-	٦	. 2		Ι.	} .			-		ļ							Ì			11	EMPERA'	TURE C	N RECI	žIPT
OI EC	DEAL MOTROOTIONS	OR HOTES,			☐ STAT	E REIMI	BURSEME	NT RATE	APPLIES		1 89	(8015M)		<u>۾</u> ا					1	-							İ							ı
					EDD 1						8	9		(8260B)		Ì							_							L				
Dun "	TPH-d w/Silica Gel C	loon Un			☑ RECE	IPT VER	RIFICATIO	ON REQU	ESTED		TPH - Purgeable (8260B)	TPH - Extractable	8		<u></u>			<u>a</u>	<u>_</u>		_	8	Methanol (8015M					1						\neg
Kuii i	IFN-G W/SIIICA GEI G	lean op	SAN	PLING		1	PRE	SERVATI	VE		-¦ Š	trac	260	nate	260	80B)	809	260	200	27	(<u>6</u>	(826	89						1 1					1
LAB	Field Sample	Identification			MATRIX					NO. OF	, ÷	G	8) X	yge	(8) (8)	(82)	(82	E (8	<u>8</u>	5	(826	2	ם	ĺ							C	B/D r		. [
LAB USE GNLY		The Salar	DATE	TIME		HCL	HNO3 H	12SO4 N	ONE OTH	1	Ē	Ŧ	BTEX (8260B)	5 Oxygenates	MTBE (8260B)	TBA (8260B)	DIPE (8260B)	TAME (8260B)	ETBE (8260B)	1,2 DCA (8260B)	EDB (8260B)	Ethanol (8260B)	Meth		l				. 1		Containe or Lab	er PID F oratory		's
	mw-3		6/2010	1250	W	3				3	1	,	X		×	×	_		_		_	Ŧ					Г		\Box	-				
2	MW-4		16	1220	()	也				13	٧ ا	4	×		火	V											\Box		\neg	\top				\neg
						13				-		1	\ <u>*</u>		<u> </u>	*	_	\dashv	+	1		\dashv			Ι		М							\dashv
			 			+-	1-1	+	_	+	╁	 	+				-+	+	+	+	\dashv	\dashv				-	\vdash	-	\dashv					
			 			+		-		 	┿	+	+-	-	_	-		-+	-	+											· ———			
	· · · · · · · · · · · · · · · · · · ·		ļ			↓				<u> </u>	↓_		<u> </u>				_	\perp	\perp	┸	_	\perp								<u> </u>				j
												<u>i</u>	i		1														. [-			\Box
		¥.									Γ																			\top	7.			-
					• • • • • • • • • • • • • • • • • • • •				\dashv	_	T	\top	1-		\dashv	1	-+	\dashv	+	+	-	+					-		-+					
	······	_ 	<u> </u>			 	\vdash	\dashv			 	╂	-		\dashv		_	_	-	+									_					_
	<u> </u>					_		_				_	:									_												İ
		,					70		1	1											i	-		}										
Reilnquish	by: (Signature)	11			Received by: (S	lgralure	7		//	7/		1									<u> </u>			Dale:		7	_		7	fime:			-	\dashv
(L	me	Sh			-	L	ls.	\angle	A	In		(5	an	لم،	le i	cu	51	00	ميا	_	1				<u>61</u>	2	6	10	9	1	5	15		
Je.	A Seup	le Castro	in	,	Received by	ignature)								•						•)			Dale:		in/	,			160	Ø)			
Relinquished	ENT (114 6	51	2	Received by: (Si	gnature)												<u>A</u>	11	1	ik	,		Dole.				9		fime:	00			
																		///	~#		* * * * * * * * * *				- / 5	24	π_{λ}	7		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	00 72/06 Revisio			

WORK ORDER #: **09-06-** ② 4 图 3

SAMPLE RECEIPT FORM

Cooler ___ of ___

CLIENT: Blaine Tech	ATE:	6 13	0/09
TEMPERATURE: (Criteria: 0.0 °C − 6.0 °C, not frozen) Temperature 2 6 °C − 0.2 °C (CF) = 2 4 °C □ B □ Sample(s) outside temperature criteria (PM/APM contacted by:). □ Sample(s) outside temperature criteria but received on ice/chilled on same day of □ Received at ambient temperature, placed on ice for transport by Courie Ambient Temperature: □ Air □ Filter □ Metals Only □ PCBs Only	f sampli e r.	☑-Sam ing. Initi	
CUSTODY SEALS INTACT: □ Cooler □ □ No (Not Intact) Not Present □ □ Sample □ No (Not Intact) Not Present	□ N/A		ial: <u>f</u>
SAMPLE CONDITION: Yes		No	N/A
Chain-Of-Custody (COC) document(s) received with samples			
COC document(s) received complete			
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.			
\square COC not relinquished. \square No date relinquished. \square No time relinquished.			
Sampler's name indicated on COC			
Sample container label(s) consistent with COC			
Sample container(s) intact and good condition			
Correct containers and volume for analyses requested			
Analyses received within holding time			□ ,
Proper preservation noted on COC or sample container			
☐ Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace	-		
Tedlar bag(s) free of condensation			Ø
CONTAINER TYPE:			′
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve □EnCores® □Ter	raCore	es® □_	
Water: □VOA ☑VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □1			
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □	•		
□250PB □250PBn □125PB □125PBznna □100PB □100PBna₂ □			
Air: □Tedlar [®] □Summa [®] □ Other: □ C			
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar (Wide-mouth) B: Bottle (Narrow-mouth)	F	Reviewed b	y: h.L
Preservative: h: HCL n: HNO3 na2:Na2S2O3 Na: NaOH p: H3PO4 s: H2SO4 znna: ZnAc2+NaOH f: Field			

WELL GAUGING DATA

Project#_	090507-WW	Date 5/7/0°	7 Client	SHELL
Site 603	COLLEGE A	VE, OAKLAND	r GA	

Well ID	Time	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	l	Immiscibles Removed	1	Depth to well bottom (ft.)	Survey Point: TOB or	Notes
Mw-1	0812	4					14.28	1444		6.0
MW-2	0810	4		·	¥.,		13.50	24.40		6.0
mu-3	0204	4					12.34	24.82		
tw=4	0801	4		3			13.30	24.37		
MW-5	0816	J					11.60	28.56		Asj
	0826	42					11.28	24.19		Tr
Mw-7	0806	4					12.45	34.18		
				. %					A STATE OF THE STA	
									1	
					to the					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
										-
				у ^{да} лг ,						
				95.2						
				128						1

SHEE WELL MONITORING DAT HEET

BTS #: 00	10507	-WW	<u> </u>	Site 6039 C	OLLEGE AVE	, OAK CAMP, GO						
Sampler: V	√W		11 V		Date: 5/1/09							
Well I.D.:	MW-	3		Well Diameter:	2 3 🗇	6 8						
Total Well I	Anna da de la companya del la companya de la compan): 2Y	1.82	Depth to Water	·(DTW): 12	-34						
Depth to Fro	ee Product	•		Thickness of F	ree Product (fee	t):						
Referenced	to:	PVC	Grade	D.O. Meter (if	req'd):	YSI HACH						
DTW with 8	 30% Recha	arge [(H	leight of Water	Column x 0.20)	+ DTW]: (1.86						
Purge Method:	Bailer Disposable Ba Positive Air E Electric Subm	Displaceme		Waterra Peristaltic tion Pump	Sampling Method: Other:	➤ Bailer Disposable Bailer Extraction Port Dedicated Tubing						
R (Case Volume	$ \frac{3}{3} \frac{1}{(Gals.) \times Specified Volumes} = \frac{2}{Calculated Volume} = \frac{2}{Calculated Volume} = \frac{3}{Calculated Volume}$											
7 Time	Temp (°F)	рН	Cond. (mS or as)	Turbidity (NTUs)	Gals. Removed	Observations						
0924	63.7	7,20	542	60	8.1							
0925	63.6	7.10	629	30	16.2	odur						
0926	63.9	17.93	627	20	24.3	11						
	٠				-							
Did well de	water?	Yes	W.	Gallons actuall	y evacuated:	24.3						
Sampling D	ate: 5 / 7	109	Sampling Time	e: 0935	Depth to Water	14.31						
Sample I.D.	: MW-	7		Laboratory: (CalScience Colu	mbia Other						
Analyzed fo	or: TPH-G	BTEX	МТВЕ Т РН-D	Oxygenates (5)	Other: TBA							
EB I.D. (if a	applicable));	@ Time	Duplicate I.D.	(if applicable):							
Analyzed fo	r: TPH-G	BTEX	мтве трн-р	Oxygenates (5)	Other:							
D.O. (if req	'd): Pi	re-purge:		mg/ ₁ P	'ost-purge:	mg/L						
ORP (if re	va!d). P.	re_nurgė:		mV P	'ost-nurge	mV						

SHEE WELL MONITORING DAT HEET

BTS#: 00	0507	-WW	1	Site 6037 C	LLEGE AVE	OAK (AND, EX
Sampler: 1	VW			Date: 5/1/0	9	•
Well I.D.:	MW-	4		Well Diameter:	2 3 4	6 8
Total Well I	Depth (TD): 24	.37	Depth to Water	(DTW): 13	, 30
Depth to Fre	ee Product			Thickness of Fi	ree Product (fee	t):
Referenced	to:	PVC	Grade (D.O. Meter (if	req'd):	YSI HACH
DTW with 8	30% Recha	urge [(H	eight of Water	Column x 0.20)	+ DTW]: į	5.51
72	Bailer Disposable Ba Positive Air D Electric Subm	isplaceme		Waterra Peristaltic tion Pump Well Diamete 1" 2"	0.04 4" 0.16 6"	Disposable Bailer Extraction Port Dedicated Tubing Multiplier 0.65 1.47 radius² * 0.163
1 Case Volume		fied Volum		lume 3"	0.37 Other	radius* * 0.163
Time	Temp (°F)	рН	Cond. (mS or µ &)	Turbidity (NTUs)	Gals. Removed	Observations
0940	63:4	7.46	449	61	7.2	odor
0941	63.4	7.22	578	1.15	14.4	17
0942	63.7	7-19	583	58	21.6	((
		· · · · · · · · · · · · · · · · · · ·				pump has sheen upon retrieval
				C 11 11	. 1	
Did well de		Yes	<u>(4)</u>	Gallons actuall		21.6
Sampling D	Pate: $5/7$	109	Sampling Tim	e: 0950	Depth to Wate	r: 14,65
Sample I.D.	: Mw-	4	·	Laboratory: C	CalScience Colu	mbia Other
Analyzed for	or: TPH-G	BTEX	МТВЕ ТРН-D	Oxygenates (5)	Other: TBA	N.
EB I.D. (if	applicable)):	@ Time	Duplicate I.D.	(if applicable):	
Analyzed for	or: TPH-G	BTEX	МТВЕ ТРН-D	Oxygenates (5)	Other:	
D.O. (if req	'd): P	re-purge:		mg/L F	ost-purge:	mg/L
O.R.P. (if re	eq'd): P	re-purge:		mV F	ost-purge:	mV

SHET WELL MONITORING DAT. HEET

		<u> </u>				
BTS#: 00	10507	-WW	1	Site:6039 C	OLLEGE NE,	OAK CAND, GO
Sampler: 1	VW			Date: 5/1/0	•	
Well I.D.:	MW-	5		Well Diameter:	2 3 4	6 8
Total Well I			56	Depth to Water	·(DTW): .	60
Depth to Fro				Thickness of F	ree Product (fee	t):
Referenced	to:	M	Grade,	D.O. Meter (if	req'd):	YSI HACH
DTW with 8	30% Recha	arge [(H	eight of Water	Column x 0.20)	+DTW]: /Y	.99
Purge Method:	Bailer Disposable B Positive Air I Blectric Subm	Displaceme		Waterra Peristaltic tion Pump	Sampling Method: Other:	➤ Bailer Disposable Bailer Extraction Port Dedicated Tubing
1 Case Volume	Gals.) XSpeci	3 fied Volum	= 33 es Calculated Vo		0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163
an:	Temp (°F)	. 77	Cond. (mS o µS)	Turbidity (NTUs)	Gals. Removed	Observations
7ime 0852	64.0	pH 6.54	389	155	Jais. Removed	Observations
0854	64.1	6.62	399	94	772	
0856	11/ (1	b. 66		22	33	
0000	09.9	10 . 00	702	50)/	
Did well de	water?	Yes		Gallons actual	ly evacuated: 3	3
Sampling D		109	Sampling Tim		Depth to Water	
Sample I.D.		5		Laboratory: (CalScience Colu	
Analyzed for		BTEX	мтве урн-р	Oxygenates (5)	Other: TBA	
EB I.D. (if	applicable):	@ Time	Duplicate I.D.	(if applicable):	
Analyzed for		BTEX	МТВЕ ТРН-D	Oxygenates (5)	Other:	
D.O. (if req	'd): P	re-purge:		mg/L F	Post-purge:	mg/L
O.R.P. (if re	ea'd): P	re-purge:		mV I	Post-purge:	mV

SHE WELL MONITORING DAT HEET

			1 2	<u> 1389/13 </u>							
BTS#: 09	0507.	-WW		Site:6039 W	OLLEGE AVE,	OAK LAND, CA					
Sampler: k	/W			Date: $5/1/c$	•	,					
Well I.D.:	MW-	,)		Well Diameter	(2) 3 4	6 8 <u> </u>					
Total Well I			19	Depth to Water (DTW): 11, 28							
Depth to Fre				Thickness of Free Product (feet):							
Referenced		(NC)	Grade	D.O. Meter (if req'd): YSI HACH							
DTW with 8	30% Recha	urge [(He	eight of Water	Column x 0.20) + DTW]: 13	. 86					
K	Bailer Disposable Ba Positive Air D Electric Subm	Displacemen	t Extrac Other	Waterra Peristaltic tion Pump	Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing					
1 Case Volume	Gals.) XSpeci	3 fied Volume	6.3 25 Calculated Vo	Gals. Well Diamet 1" 2" 3"	er Multiplier Well D 0.04 4" 0.16 6" 0.37 Other	iameter Multiplier 0.65 1.47 radius² * 0.163					
Time	Temp (°F)	рН	Cond. (mS or as)	Turbidity (NTUs)	Gals. Removed	Observations					
0834	64.5	5.13	604	730	2.1						
0835	64.6	5.39	585	985	4.2						
0836	647	5.71	561	800	6.}	· ·					
			÷		·						
						: "					
Did well de	water?	Yes (No C	Gallons actual	ly evacuated:	6.3					
Sampling D	Date: 5 / 7	109	Sampling Tim	ie: 0845	Depth to Wate	r: 11.34 (matric					
Sample I.D	.: MW-	6	1 th 100 miles	Laboratory: (CalScience Colu	ımbia Other					
Analyzed for	or: TPH-G	BTEX	мтве трн-р	Oxygenates (5)	Other: TBA						
EB I.D. (if	applicable):	@ Time	Duplicate I.D.	(if applicable):						
Analyzed f	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:						
D.O. (if rec	ı'd): F	re-purge:		mg/L	Post-purge:	mg _/					
O.R.P. (if r	ea'd): F	re-purge:		mV	Post-purge:	n V					

SHEL WELL MONITORING DATA HEET

		CHARIS	TO AVE CALALLA VV	I VAR CORGA		ZKEZ. JEEKS		
BTS #: 00	10507	-WW	1	Site:603	90	OLLEGE	WE,	OAK CAMD, CO
Sampler: V	VW			Date: 5				,
Well I.D.:	MW-	7		Well Dia	meter	: 2 3	0	6 8
Total Well			18	Depth to	Wate	r (DTW):	12.	45
Depth to Fr	ee Product			Thickne	ss of F	ree Produc	t (feet):
Referenced	to:	NO.	Grade	D.O. Me	ter (if	req'd):)	/SI HACH
DTW with	80% Recha	arge [(H	eight of Water	Column	x 0.20) + DTW]:	16	.80
Purge Method:	Bailer Disposable Ba Positive Air E Electric Subm	Displaceme		Waterra Peristaltic tion Pump	ell Diamet	Sampling M	lethod: Other:	➤ Bailer Disposable Bailer Extraction Port Dedicated Tubing
1 Case Volume	Gals.) XSpecif	3 fied Volum	$= \frac{42.3}{\text{Calculated Vo}}$	_ Gals.	1" 2"- 3"	0.04 0.16 0.37	4" 6" Other	0.65 1.47 radius ² * 0.163
Time	Temp (°F)	рН	Cond. (mS of uS)	Turbi (NTI		Gals. Rem	oved	Observations
0910	65.4	6.91	492	14	1	28.	7	
0912	65.1	7.07	491	139	<u> </u>	1/)	2	
		(.0(72-		
Did well de	water?	Yes /	No)	Gallons	actual	ly evacuate	ed: L	1203
Sampling D	ate: 5 / 7	109	Sampling Time	e: D7	20	Depth to	Water	: 16-53
Sample I.D.	: Mw-	7		Laborate	ory: (CalScience) Colur	nbia Other
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenat	es (5)	Other: T	BA	
EB I.D. (if	applicable)):	@ Time	Duplica	te I.D.	(if applica	ble):	
Analyzed fo		BTEX	MTBE TPHED	Oxygenat	es (5)	Other:		
D.O. (if req	'd): Pi	re-purge:	į,	mg/L		Post-purge:		mg/
O.R.P. (if re	eq'd): Pi	re-purge:		mV		Post-purge:		m۱

WELL GAUGING DATA

Project # 090626-AC2	_ Date _	6/26/0a	_Client _	Shell	·
Site 6039 Collage	1 Le	. Oakland			

										
		,			Thickness	Volume of			Survey	
		Well		Depth to	of	Immiscibles			Point:	
	1	Size	Sheen /	Immiscible	Immiscible		Depth to water	Denth to well	TOB or	
Well ID	Time	(in.)	Odor	Liquid (ft.)	Liquid (ft.)	(ml)	(ft.)	bottom (ft.)	70C)	Notes
	<u> </u>				1 (()		(10.)	bottom (it.)		inoles
Mw-3	1152	4	odon	:			1//	011 10	. [•
mw-	1170	 	odon				14.60	24.65		
	2150	4	odon				_		\ \ \	
MW-4	10	7					15-00	24.34		

							<u> </u>			
	ļ				· .					
	 									- 19 _{5.5}
			,							SW: 1 TH
<u> </u>	ļ								'	
									······································	·····
, , , , , , , , , , , , , , , , , , , ,					***************************************					
			· · · · · · · · · · · · · · · · · · ·							
										
		,		·						
							3			
										
					-					
						·				
						•				

				•	}					
					* * * * * * * * * * * * * * * * * * *					·
	·			•						
····										
										, i
					,					
									:	. /
				L			·	<u></u>		1.5

SHEL WELL MONITORING DATA HEET

BTS #: 09	0626	-AC	2	Site: Shell-603a College Ave, Oakland					
Sampler:	A-C			Date: 6/26/09					
Well I.D.:	mw-	>		Well Diameter: 2 3 (4) 6 8					
Total Well I	Depth (TD): QH	-65	Depth to Water (DTW): 14-00					
Depth to Fre				Thickness of Free Product (feet):					
Referenced		PVC) Grade	D.O. Meter (if req'd): YSI HACH					
DTW with 8	30% Recha	arge [(He	eight of Water	Column x 0.20)	+ DTW]:	16.13			
Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Extraction Port Electric Submersible Other Dedicated Tubing Other:									
1 Case Volume	Gals.) X Speci	fied Volume	$= \frac{2}{\text{Calculated Vo}}$	Well Diamete 1" 2" 3" lume	0.04 4 0.16 6				
Time	Temp (°F)	рН	Cond. (mS or μS)	Turbidity (NTUs)	Gals. Remove				
1228	65.7	659	572.3	65	7	clear+odor			
1235	65.2	6.58	569.7	59	14	U)			
1235	65.1	658	562.3	<i>5</i> 2	21	L			
						,			
Did well de	water?	Yes (No)	Gallons actuall	y evacuated:	21			
Sampling D	Pate: 6/2/	5/89	Sampling Tim	e: 1250	Depth to Wa	ater: 14.69			
Sample I.D	: W.C	N.3		Laboratory:	CalScience C	Columbia Other			
Analyzed for	or: TPH-G	BTEX	МТВЕ "ТРН-D	Oxygenates (5)	Other:	se COC			
EB I.D. (if	applicable):	@ Time	Duplicate I.D.	(if applicable	e):			
Analyzed for	or: TPH-G	BTEX	MTBE TPH-D	Oxygenates (5)	Other:				
D.O. (if req'd): Pre-purge: mg/L Post-purge: mg/									
ORP (if r	ea'd). P	re-nurge'		mV F	Post-purge:	mV			

SHEI WELL MONITORING DATA HEET

BTS #: 00	10626	-ACQ		Site: 6039 College Aire, Oakland				
Sampler:	AC			Date: $6/26/09$				
Well I.D.:	mw-c	-{		Well Diameter: 2 3 (4) 6 8				
Total Well I			1,34	Depth to Water (DTW): 15.00				
Depth to Fre	ee Product	V -		Thickness of Free Product (feet):				
Referenced	to:	₽VC	Grade	D.O. Meter (if req'd): YSI HACH				
DTW with 8	30% Recha	rge [(H	eight of Water	Column x 0.20)	+ DTW]:	16.86		
Purge Method: >	Railer Disposable Ba Positive Air D Electric Subm	Displaceme		Waterra Peristaltic tion Pump Well Diamete		♥ Bailer Disposable Bailer Extraction Port Dedicated Tubing		
O (0 1 Case Volume	Gals.) XSpeci:	Sied Volum	$= \frac{1}{\text{Calculated Vo}}$	_ Gals. 1" 2" 3"	0.04 4" 0.16 6" 0.37 Other	0.65 1.47 radius ² * 0.163		
Time	Temp (°F)	рН	Cond. (mS or µS))	Turbidity (NTUs)	Gals. Removed	Observations		
1201	67.8	6.69	604.1	190	6	oder, chen		
1208	67.4	6.63	591.6	171	12	il		
1215	671	6.6(5822	151	18	U		
,						,		
Did well de	water?	Yes (No	Gallons actual	ly evacuated:	18		
Sampling Date: 6/26/09 Sampling Time: 1220 Depth to Water: 15.41								
Sample I.D.: MW-H Laboratory: CalScience Columbia Other								
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other: Soc COC								
EB I.D. (if applicable): Outplicate I.D. (if applicable):								
Analyzed for: TPH-G BTEX MTBE TPH-D Oxygenates (5) Other:								
D.O. (if req	^{mg} /L							
O.R.P. (if req'd): Pre-purge: mV Post-purge:								

SHELL WELLHEAD INSPECTION FORM

(FOR SAMPLE TECHNICIAN)

'Site Address	603	59 co	Life	TE	AV E	OP	k LAN	DICA	Dat	te 5/7/09
Site Address Job Number	09	0507	٧N	/W)	Te	ehniciar	1_60		geof
WellID	Well Inspected - No Corrective Action Required	Well Box Meets Compliance Requirements	Water Bailed From	Cap Replaced	Lock Replaced	Well No Inspecte (explain i notes)	d New		No	ites
MW-1	X	X								
mu-2	N	Ø					*			
mw-3	К	1 X2				1	To the second			
Mw-4	Ж,	ኦ					dispell		8*	
MWS	×	×								
MW-7	X	N				# L				
Mw-7	×	X	·				ā			()
ær ^e		-					·			
						6			· .	
		·						*		
							Pilla	j. i		
							18 - W- - 12 - 1			
	æ							ji .		
										~
Nell box must meet	all three	criteria t r less) 3)	o be d	ompl	liant:	1) WELL RESENT,	IS SECURA SECURE, A	BLE BY DE	SIGN (12"or less) 2) WELL IS MAR	KED WITH THE WORDS
lotes:								· 1		
	211	-	· · · · · · · · · · · · · · · · · · ·			·				44.
BLAINE TECH SERVI	CES, INC.			ZOL NA		SACRAM	ENTO '	OS ANGELES	SAN DIEGO SEATTLE	www.blainetech.com

WELLHEAD INSPECTION CHECKLIST

Date 6/26/09 Client 5hell

Site Address 6039 College Ave, Oakland

Job Number 090626-AC2 Technician Technician Debris Other Action Well Not Well Inspected -Water Bailed Wellbox Сар Removed Lock Taken Inspected No Corrective From Components Replaced From Replaced (explain (explain Well ID Action Required Wellbox Cleaned Wellbox below) below) NOTES:

Page ____ of ___