PROTECTION

00 JAN 25 PM 2: 17

QUARTERLY GROUNDWATER MONITORING REPORT FOURTH QUARTER 1999 NEW GENICO FACILITY 3927 EAST 14th STREET OAKLAND, CALIFORNIA

1/24/00

Submitted By:

ATC Associates 6666 Owens Drive Pleasanton, CA 94588

ATC Project No. 75 61137.0008 0002

January 24, 2000

Prepared By: Al Martinez Project Manager Reviewed By: James A. Lehrman, RG, CHG Program Director, Subsurface Remediation

January 24, 2000

75.61137.0008.0002

Mr. Ruben Hausauer 6017 International Boulevard Oakland, California 94621

Quarterly Groundwater Monitoring Report

Fourth Quarter 1999 New Genico Facility 3927 East 14th Street Oakland, California

Dear Mr. Hausauer:

ATC Associates Inc. is pleased to present this report of the Fourth Quarter 1999 groundwater monitoring conducted at the above referenced site for your review.

If you have any questions about this report please call me at (925) 460-5300.

Very truly yours,

Al Martinez

Project Manager

Enclosures

cc: Barney M. Chan, Alameda County Health Care Services

TABLE OF CONTENTS

LIST OF TABLES	j
LIST OF FIGURES	ii
LIST OF APPENDICES	iii
1.0 INTRODUCTION	1
2.0 INTRINSIC BIOREMEDIATION OF GROUNDWATER	2
3.0 GROUNDWATER SAMPLING	4
4.0 LABORATORYANALYSIS	5
5.0 RESULTS OF GROUNDWATER MONITORING	6
5.1 Groundwater Flow	6
5.2 Groundwater Laboratory Analysis	6
5.3 Analysis of Intrinsic Bioremediation Parameters	6
6.0 REPORTING REQUIREMENTS	8

TABLES

FIGURES

APPENDICES

LIST OF TABLES

TABLE <u>NO.</u>	<u>TITLE</u>
1	Cumulative Results of Groundwater Sampling and Analyses - New Genico
	Facility
2	Cumulative Results of Groundwater Monitoring - Motor Partners Facility
3	Cumulative Results of Intrinsic Bioremediation Parameters - New Genico
	Facility

LIST OF FIGURES

FIGURE NO.	TITLE
1	Site Location Map
2	Groundwater Elevation Contour Map (December 29, 1999)

LIST OF APPENDICES

<u>APPENDIX</u>	TITLE
A	Groundwater Sampling Protocol
В	Water Sampling Logs
С	Analytical Laboratory Report and Chain of Custody Records

QUARTERLY GROUNDWATER MONITORING REPORT FOURTH QUARTER 1999 NEW GENICO FACILITY 3927 EAST 14TH STREET OAKLAND, CALIFORNIA

1.0 INTRODUCTION

ATC Associates Inc. (ATC) has been retained by Ruben Hausauer to perform quarterly groundwater monitoring for the New Genico facility located at 3927 East 14th Street, Oakland, California (**Figure 1**). This quarterly groundwater monitoring report has been prepared per the request of the Alameda County Health Care Services (ACHCS) as stated in their letter dated August 3, 1999. The site plan showing the location of the adjacent streets, monitoring wells, and other site-specific features is shown on **Figure 2**.

The monitoring wells are sampled quarterly to monitor the shallow groundwater underlying the site. The program objectives are listed below:

- Measure depth of groundwater.
- Sample and analyze groundwater samples for specified petroleum hydrocarbon constituents.
- Sample and analyze groundwater samples for bioremediation parameters to assess the compatibility of the groundwater environment for degradation of petroleum hydrocarbons.
- Construct a groundwater elevation contour map within the study area.
- Compare current and past data.

The existence and degree of petroleum hydrocarbons in the groundwater underlying a site is evaluated by (1) the presence of free-floating product. and (2) the laboratory analyses of groundwater samples. Groundwater samples are analyzed for total petroleum hydrocarbons (TPH) as gasoline (TPH-G). TPH as diesel (TPH-D), TPH as motor oil (TPH-M), benzene, toluene, ethylbenzene, and total xylenes (BTEX), and methyl tert-butyl ether (MTBE)

2.0 INTRINSIC BIOREMEDIATION OF GROUNDWATER

Biological parameter testing was performed as part of the quarterly sampling at the site in order to assess whether intrinsic bioremediation is occurring at the site.

Several detailed field studies have been performed examining indicators of intrinsic bioremediation and identifying factors which significantly effect the rate and extent of bioremediation (Buscheck and others, 1993; McAllister and Chiang, 1994; Borden and others, 1995; Buscheck and Alcantar, 1995). Through these studies, and ongoing research of the factors which control biodegradation, it is now understood that dissolved petroleum hydrocarbons in groundwater will biodegrade, without artificial enhancement, due to the presence of naturally occurring (indigenous) microorganisms. The U.S. Air Force, Chevron Corporation, and others have developed technical protocols for implementing and monitoring intrinsic bioremediation studies in groundwater.

Intrinsic bioremediation, in brief, is the process of indigenous microorganisms degrading contaminants which have been released into the subsurface. The biodegradation of the contaminants is essentially an oxidation-reduction (redox) reaction where the hydrocarbon is oxidized (donates an electron) and an electron acceptor is reduced (accepts electrons). There are several compounds that can serve as electron acceptors including oxygen, nitrate, iron oxides (Fe III), Manganese (Mn IV), sulfate, and carbon dioxide (Borden and others, 1995). Aerobic microorganisms use oxygen as the electron acceptor. Anaerobic microorganisms use other compounds such as nitrate, iron oxides (ferric iron), manganese oxide (Mn IV), sulfate, and carbon dioxide as electron acceptors.

Oxygen is the most preferred electron acceptor in groundwater because microorganisms gain more energy from these reactions; however, this process usually results in the depletion of oxygen with an increase in carbon dioxide in the subsurface. Therefore, low concentrations of dissolved oxygen and corresponding high concentrations of carbon dioxide within hydrocarbon plume indicate biodegradation is taking place (Borden and others, 1995).

In anaerobic environments, microorganisms may use other compounds such as nitrate, ferric iron, manganese, and sulfate as electron acceptors. Thus, an increase in ferrous iron, carbon dioxide, dissolved manganese (Mn II), and perhaps sulfide, and a corresponding decrease in nitrate and or sulfate within a hydrocarbon plume may indicate biodegradation is taking place.

Additional indicators of anaerobic biodegradation include total alkalinity, redox potential (Buscheck and O'Reilly, 1995), and methane (Borden and others, 1995). The total alkalinity of a groundwater system is indicative of the water's capacity to neutralize acid. Alkalinity results from the dissolution of rock (particularly carbonate rocks), the transfer of carbon dioxide from the atmosphere, and the respiration of microorganisms. Therefore, an increase in alkalinity within a hydrocarbon plume is potentially an indicator of bioremediation occurring (Buscheck and O'Reilly, 1995). The redox potential of groundwater generally ranges from -400 millivolts (mV) to 800 mV. Under oxidizing conditions, the redox potential of groundwater is positive while reducing conditions are negative. The redox potential inside a hydrocarbon plume should be less than that measured outside the plume (Buscheck and O'Reilly, 1995), and generally negative. Methane levels generally increase within the plume as a byproduct of the breakdown of petroleum hydrocarbons under anaerobic conditions (Borden and others, 1995).

Indicators of potential intrinsic biodegradation occurring across a dissolved contaminant plume can be summarized by the following trends:

A Relative Decrease In:	A Relative Increase In:
Dissolved Oxygen	Ferrous Iron (Fe III)
Oxidation-Reduction Potential	Total Alkalinity
Nitrate (NO ₄)	Carbon Dioxide (CO ₂)
Sulfate (SO ₄)	Sulfide (S)
	Methane (CH ₄)
	Dissolved Manganese (Mn II)

3.0 GROUNDWATER SAMPLING

Four groundwater monitoring wells (HMW-1, HMW-2, HMW-3, and HMW-4) were gauged on December 29, 1999 by ATC. In addition, five groundwater monitoring wells (MW-1, MW-2, MW-3, MW-4, and MW-5) installed by Motor Partners were gauged and sampled on December 29, 1999 by Aquatic & Environmental Applications of Fremont, California. Subsequently, three groundwater monitoring wells (HMW-1, HMW-2, and HMW-4) were sampled on December 29, 1999 by ATC. Groundwater monitoring well HMW-3 is only sampled annually during the second quarter. groundwater sample was collected after purging each well of approximately three well volumes of water and recording consistent pH, conductivity, and temperature measurements. Once each well had recovered to at least 80% of its original volume, a water sample was collected using a disposable bailer. Each groundwater sample was carefully poured into the appropriate sample container. Each groundwater sample was properly labeled and placed in a cooler with ice. Chain-of-custody procedures were followed until delivery of the groundwater samples to a State certified laboratory. Groundwater purged from the well, and equipment decontamination water were placed in a Department of Transportation (DOT) approved 17H drum. The contents of the drum will be transported by a licensed hauler for disposal at a licensed waste treatment site.

The groundwater monitoring data for the New Genico facility are summarized in **Table 1**. The groundwater monitoring data (i.e. gauging data) for the Motor Partners facility are summarized in **Table 2**. The Groundwater Sampling Protocol is described in **Appendix A**. The volume of groundwater removed from each well and other measured sampling parameters are noted on the field Water Sampling Logs included in **Appendix B**.

4.0 LABORATORY ANALYSIS

ATC utilized the laboratory services of Sequoia Analytical of Morgan Hill, California for this project. Sequoia Analytical is certified in California by the Department of Health Services under the Environmental Laboratory Accreditation Program (ELAP).

The groundwater sample was analyzed for the presence of TPH-G, TPH-D, and TPH-M in accordance with Environmental Protection Agency (EPA) Method 8015, and BTEX and MTBE in accordance with EPA Method 8020.

In addition, the groundwater sample was analyzed for dissolved oxygen, oxidation-reduction potential, nitrate (EPA Method 300.0), sulfate (EPA Method 300.0), and ferrous iron (EPA Method 6010A) to assess whether intrinsic bioremediation is occurring at the site. Copies of the signed laboratory analytical reports and chain-of-custody forms are provided in **Appendix C**.

5.0 RESULTS OF GROUNDWATER MONITORING

5.1 Groundwater Flow

Figure 2 shows the groundwater elevation contours based on the water-level data for December 29, 1999. The apparent groundwater flow direction was south-southwest at a gradient of approximately 0.015.

5.2 Groundwater Laboratory Analysis

Groundwater monitoring wells HMW-1, HMW-2, and HMW-4 were sampled on December 29, 1999. A summary of the analytical results from the December 29, 1999, and past well sampling events are presented in **Table 1**.

TPH-G, TPH-D, and BTEX were detected in the groundwater sample obtained from HMW-1, HMW-2, and HMW-4 (ethylbenzene not detected). TPH-M was detected in groundwater samples obtained from HMW-1 and HMW-4. The maximum benzene concentration was 184 microgram per liter (ug/l) in groundwater sample obtained from HMW-1. MTBE (EPA Method 8020) was detected in HMW-1, HMW-2, and HMW-4. The maximum MTBE concentration was 407 ug/l in groundwater sample obtained from HMW-2. Confirmation MTBE analysis was performed on HMW-2 in accordance with EPA Test method 8260. MTBE was not detected in HMW-2 using EPA Test Method 8260 (detection limit of 0.500 ug/l).

5.3 Analysis of Intrinsic Bioremediation Parameters

Samples were collected from site wells and analyzed for one or more of the following: dissolved ferrous iron, nitrate, sulfate, dissolved oxygen, and/or oxidation-reduction potential (redox potential). The analyses are presented in **Table 3**. When comparing data from wells within the plume which generally have high concentrations of petroleum hydrocarbons i.e., monitoring wells HMW-1 and HMW-2, to the well beyond the plume (i.e., HMW-4) and upgradient of the plume (i.e., HMW-3), the data in **Table 3** suggests that bioremediation processes are occurring. Review of the data reveals the following observations:

The ferrous iron concentrations in HMW-1 and HMW-2 were higher than in groundwater monitoring well HMW-4. Redox potential is generally lower in wells within the plume compared to the wells beyond of the plume. Based on the review of the groundwater analytical data collected to date, it appears that intrinsic bioremediation may be occurring at the site.

6. REPORTING REQUIREMENTS

At the request of Ruben Hausauer, ATC Associates Inc. will forward a copy of this report to the following agencies:

Alameda County Health Care Services Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 Mr. Barney M. Chan

CERTIFICATION

This Quarterly Groundwater Monitoring Report was prepared under the direction of a California Registered Geologist.

James A. Lehrman, RG, CHG

Program Director, Subsurface/Remediation

EXPLANATION

← HMW-3 Groundwater Monitoring Well

22.55 Groundwater Eleva**tion in Feet** (mean sea level) **Measured** on December 29, **1999.**

Groundwater Elevation Contour
Line in Feet (mean sea level)

Approximate Groundwater

Flow Direction

Notes:

- Base Map developed from survey map provided by Kier & Wright
- 2. Location of HMW-4 obtained from Artesian Environmental Project No.: 197-002-01 Date: 1/8/98
- Location of MW-5 obtained from Aquatic & Environmental Applications, Project No.: 1004 Date: 3/27/98
- HMW-3 not gauged due to well not being accessible at time of gauging.

CROUNDWATER ELEVATION CON

GROUNDWATER ELEVATION CONTOUR
MAP (DECEMBER 29, 1999)
NEW GENICO
3927 E. 14th Street

3927 E. 14th Street Oakland, Collfornia

Project No. 61137.0008

Figure 2

Table 1

Cumulative Results of Groundwater Sampling and Analyses New Genico Facility 3927 East 14th Street Oakland, California

										Well		Groundwater
							Ethyl-	Total		Elevation	Depth to	Elevation
	Date	TPH-D	трн-м	TPH-G	Benzene	Toluene	benzene	Xylenes	MTBE	(ft above	Groundwater	(ft above
	Sampled	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	MSL)	(feet)	MSL)
							HMW-	I		-		
	08/22/96	ND	ND	7,400	1.200	170	530	490	NA	31.25	8.01	23.24
į	02/25/97	2,000	ND	5,400	760	110	260	260	ND	31.25	5.95	25.30
	05/28/97	2,000	600	6,600	1,100	100	290	340	130	31.25	7.65	23.60
	09/02/97	8,700	3,700	4,000	460	40	200	100	ND*	31.25	8.56	22.69
	11/26/97	4,700	3,000	7,500	1,000	120	270	320	ND*	31.25	7.50	23.75
	03/17/98	ND	16,000	11,000	2,100	290	600	760	1,200	31.25	5.29	25.97
	06/30/98	ND	5,900	10,000	1,300	160	390	390	160	31.25	6.63	24.62
	09/24/98	ND	6,600	7,100	890	89	230	180	430/ND*	31.25	8.22	23.03
	12/16/98	ND	1,400	1,900	290	39	85	100	NR	31.25	6.66	24.59
	03/16/99	5,100	8,100	7,700	1,100	120	250	240	100	31.25	4.71	26.54
	06/23/99	ND	12,000	3,300	510	52	110	110	70	31.25	7.25	24.00
	09/23/99	1,190	540	1,360	150	19.9	37.7	42.5	125/ND*	31.25	8.75	22.50
	12/29/99	2,440	3,110	1,380	184	22.7	38.6	57.8	70.7	31.25	8.81	22.44
			<u></u>				HMW	2				
	08/22/96	7,400**	2,100	6,300	170	57	370	120	NA	29.43	8.71	20.72
_	02/25/97	90	ND	8,400	150	35	280	70	ND*	29.43	6.00	23 43
	05/28/97	130	200	6,000	170	35	170	67	150	29.43	7.65	21.78
	09/02/97	4,502	ND***	8,000	210	30	160	90	ND*	29.43	8.59	20.84
	11/26/97	180	ND	1,600	41	7.5	40	10	31	29.43	6.82	22.61
	02/09/98	NA	NA	NA	NA	NA	NA	NA	NA	29.43	3.24	26.19
	03/17/98	ND	ND	8,600	200	96	410	120	330	29.43	4.44	24.99
	06/30/98	ND	ND	7,300	180	52	240	88	170	29.43	6.30	23.13
	09/24/98	ND	ND	2,900	32	1.5	38	16	ND	29.43	8.20	21.23
	12/16/98	ND	ND	5,300	93	25.0	160	53	NR	29.43	6.64	22.79
	02/19/99	NA	NA	NA	NA	NA	NA	NA	NA	NG	NG	NG
	03/16/99	1.500	730	5.200	83	31	150	45	140*	29.43	4.08	25.35
	06 23 99	∕D	\D	1.200	31	11	36	12	5.2	29 43	7 (/2	22 41
	09 23 99	11	11	\A	11	\-i	11	\1	NA.	29 43	874	20 69
	12 29 99	1,560	ND 500	4,410	145	45 6	111	80.8	407 ND*	29 43	8 ~0	20.73

Table 1

Cumulative Results of Groundwater Sampling and Analyses New Genico Facility 3927 East 14th Street Oakland, California

Ī										Well		Groundwater
						:	Ethyl-	Total		Elevation	Depth to	Elevation
7	Date	TPH-D	трн-м	ТРН-G	Benzene	Toluene	benzene	Xylenes	MTBE	(ft above	Groundwater	(ft above
	Sampled	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	MSL)	(feet)	MSL)
						1.0	HMW	3		 		
ľ	08/22/96	ND	ND	1,300	3	6	8	12	NA	31.48	8.10	23.38
ì	02/25/97	70	ND	150	ND	ND	ND	ND	ND	31.48	6.00	25.48
1	05/28/97	ND	ИD	80	ND	ND	0.60	ND	ПИ	31.48	7.74	23.74
	09/02/97	ND***	ND***	140	ND	ND	2.1	ND	ND	31 48	8.60	22.88
	11/26/97	50	ND	70	0.6	0.8	0.8	ND	ND	31.48	7.50	23.98
7	02/09/98	NA	NA	NA	NA	NA	NA	NA	NA	31.48	2.34	29.14
	03/17/98	ND	200	ND	ND	ND	ND	ND	ND	31.48	5.23	26.25
Ţ	06/30/98	ND	ND	ND	ND	ND	ND	ND	ND	31.48	6.60	24.88
	09/24/98	ND	ND	58	ND	ND	ND	0.76	ND	31.48	8.32	23.16
	12/16/98	ND	ND	ND	ND	ND	ND	ND	NR	31.48	6.71	24.77
1	02/19/99	NA	NA	NA	NA	NA	NA	NA	NA	NG	NG	NG
	03/16/99	70	ND	98	ND	ND	ND	ND	ND	31.48	4.61	26.87
	06/23/99	70	ND	71	ND \	0.70	ND	1.6	ND	31.48	7.12	24.36
	09/23/99	NA	NA	NA	\ NA	NA	NA	NA	NA	31.48	8.86	22.62
	12/29/99	NA	NA	NA	\ NA	NA	NA	NA	NA	31.48	NG	NG
I							HMW-	4				
	08/22/96	NA	NA	NA	NA	NA	NA	NA	NA	NG	NG	NG
Ş	02/25/97	NA	NA	NA	NA	NA	NA	NA	NA	NG	NG	NG
1	05/28/97	NA	NA	NA	NA	NA	NA	NA	NA	NG	NG	NG
	09/02/97	NA	ÑΑ	NA	NA	NA	NA	NA	NA	NG	NG	NG
7	11/26/97	400	ND	1,600	4.2	3.1	1.7	5.9	ND	28.80	7 42	21.38
1	02/09/98	NA	NA	NA	NA	NA	NA	NA	NA 10	28.80	2.96	25.84
Į	03/17/98	ND	ND	1,300	20	1.4	6.8	3.0	19	28.80	5.72	23.08 21.40
۱	06/30/98 09/24/98	ND	ND	940	17	1.5	18	2	10 11	28 80 28.80	7.40 9.80	19.00
	12/16/98	ND	ND	370	7.2 11.0	ND ND	0.75 2.70	1.3	NR	26.60 NG	9.80 NG	19.00 NG
T	02 19 99	ND NA	ND NA	830 \ \ \	\A	\ \ \	2.70 \A	5.0 \A	\ \ \ 1	NG NG	NG NG	NO No
	02 19 99	200	ND NA	660	61	\D	1.0	2.8	7.3	28.86	4 95	23.85
	06 23 99	∑(/0	\D	1 100	53	11	2.0	3.9	5~	28.80	7 43	21.37
	09 23 99	\1	11	1.100	7.7	/4	11	\ \ \ \	~ 1	28 80	9.36	19 44
	12 29 99	2 240	911	2 020	33.9	55.1	ND 100	111	66.2	28.80	7.30 9.40	19 40
	7 7 7 7 7		711	2 H2O	1,1 7	~ <i>~</i>		111	1101	L =0 011	7 +11	1 / 40

Table 1

Cumulative Results of Groundwater Sampling and Analyses New Genico Facility 3927 East 14th Street Oakland, California

									Well		Groundwater
						Ethyl-	Total		Elevation	Depth to	Elevation
Date	TPH-D	трн-м	TPH-G	Benzene	Toluene	benzene	Xylenes	MTBE	(ft above	Groundwater	(ft above
Sampled	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	MSL)	(feet)	MSL)
						Trip Blai	nk				
08/22/96	NA	NA	NA	NA	NA	NA	NA	NA	NG	NG	NG
02/25/97	NA	NA	ΝA	NA	NA	NA.	NA	NA	NG	NG	NG
05/28/97	NA	NA	NA	NA	NA	NA	NA	NA	NG	NG	NG
09/02/97	NA	NA	NA	NA	NA	NA	NA	NA	NG	NG	NG
11/26/97	NA	NA	NA	NA	NA	NA	NA	NA	NG	NG	NG
02/09/98	NA	NA	NA	NA	NA	NA	NA.	NA	NG	NG	NG
03/17/98	NA	NA	ND	ND	ND	ND	ND	ND	NG	NG	NG
06/30/98	NA	NA	ND	ND	ND	ND	ND	ND	NG	NG	NG
09/24/98	NA	NA	ND	ND	ND	ND	ND	ND	NG	NG	NG
12/16/98	NA	NA	NA	NA	NA	NA	NA	NA	NG	NG	NG
02/19/99	NA	NA	NA	NA	NA	NA	NA	NA	NG	NG	NG
03/16/99	NA	NA	ND	ND	ND	ND	ND	ND	NG	NG	NG
06/23/99	NA	NA	ND	ND	ND	ND	ИD	ИD	NG	NG	NG
09/23/99	NA	NA	ND 50.0	ND 0.500	ND 0.500	ND 0.500	ND 0.500	ND 2.50	NG	NG	NG
12/29/99	NA	NA	ND 50.0	ND 0.500	ND 0.500	ND 0.500	ND 0.500	ND 2.50	NG	NG	NG

Notes:

TPH-G denotes total petroleum hydrocarbons as gasoline

TPH-D denotes total petroleum hydrocarbons as diesel

TPH-M denotes total petroleum hydrocarbons as motor oil

MTBE denotes methyl-tert-butyl ether

NA denotes no analyzed

NG denotes not gauged

NR denotes not reported due to laboratory instrument conditions

ug/L denotes micrograms per liter

ND denotes not detected above listed detection limit for the method or see actual laboratory analytical report

ft denotes feet

MSL denotes mean sea leve!

- * Positive result by initial EPA Method 8020, confirmation performed by EPA Method 8260.
- ** Laboratory reported concentration for diesel is estimated due to overlapping fuel pattern
- *** Sample collected on October 3, 1997
- **** Corrected elevation for 0 of feet of free product in monitoring well

Data obtained on 3-17-98 obtained by Aquatic & Fevironmental Applications. Data obtained between 6-30-98 to 6-23-99 obtained by Kleinfelder.

Table 2

Cumulative Results of Groundwater Monitoring Motor Partners Facility 1234 40th Street Oakland, California

	Well		Groundwater							
	Elevation	Depth to	Elevation							
Date	(ft above	Groundwater	(ft above							
Sampled	MSL)	(feet)	MSL)							
	MW-1									
11/26/97	31.44	7.98	23.46							
03/17/98	31.44	5.84	25.60							
06/30/98	31.44	NG	NG							
09/24/98	31.44	8.74	22.7							
12/16/98	31.44	7.11	24.33							
03/16/99	31.44	5.26	26.18							
06/23/99	31.44	7.62	23.82							
09/23/99	31.44	9.30	22.14							
12/29/99	31.44	9.32	22.12							
		MW-2								
11/26/97	31.06	7.24	23 82							
03/17/98	31.06	5.05 —	26.01							
06/30/98	31.06	6.35	24.71							
09/24/98	31.06	7.94	23.12							
12/16/98	31.06	6.42	24.64							
03/16/99	31.06	4.54	26.52							
06/23/99	31.06	6.87	24.19							
09/23/99	31.06	8.38	22.68							
12/29/99	31.06	8.51	22.55							
		MW-3								
11/26/97	30.43	7.06	23.37							
03/17/98	30.43	5 1 1	25.32							
06/30/98	30.43	6.62	23.81							
09/24/98	30.43	8.13	22.30							
12/16/98	30.43	6.52	23.91							
03/16/99	30.43	4.36	26.07							
06 23 99	30 43	- 06	23 37							
119 23 99	30.43	8 73	21 70							
12 29 99	30 43	8 65	21 77							

Table 2

Cumulative Results of Groundwater Monitoring Motor Partners Facility 1234 40th Street Oakland, California

	Well		Groundwater						
	Elevation	Depth to	Elevation						
Date	(ft above	Groundwater	(ft above						
Sampled	MSL)	(feet)	MSL)						
	MW-4								
11/26/97	30.37	6.64	23.73						
03/17/98	30.37	4.52	25.85						
06/30/98	30.37	5.86	24.51						
09/24/98	30.37	7.23	23.14						
12/16/98	30.37	5.92	24.45						
03/16/99	30.37	4.12	26.25						
06/23/99	30.37	6.42	23.95						
09/23/99	30.37	8.08	22.29						
12/29/99	30.37	8.09	22.28						
		MW-5							
11/26/97	NG	NG	NG						
03/17/98	31.15	5.80	25.35						
06/30/98	NG	NG	NG						
09/24/98	31.15	8.76	22.39						
12/16/98	31.15	7.19	23.96						
03/16/99	31.15	5.14	26.01						
06/23/99	31.15	7.66	23 49						
09/23/99	31.15	9.38	21.77						
12/29/99	31.15	9.27	21.88						

Notes:

NG denotes not gauged

Data obtained from Kleinfelder's Second Quarter 1999 Groundwater Monitoring Report dated July 22, 1999

Data obtained on September 23, 1999 by ATC Associates

Table 3

Cumulative Results of Intrinsic Bioremediation Parameters New Genico Facility 3927 East 14th Street Oakland, California

	Field Measurement				
	Dissolved			Dissolved	Redox
Date	Ferrous Iron	Nitrate	Sulfate	Oxygen**	Potential**
Sampled	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mV)
		****	HMW-1		
08/22/96	NA	NA	NA	NA	NA
02/25/97	NA	NA	NA	NA	NA
05/28/97	NA	NA	NA	NA	NA
09/02/97	4.20	2.0	12	0.24	-14.4
11/26/97	<0.01	0.6	ND	2.0	105
03/17/98	0.16	ND	0.8	0.8*	-60.4
06/30/98	0.96	0.4	2 0	0.77	-46.70
09/24/98	ND	1.4	ND	0.4	-17
12/16/98	0.17	5.1	33.0	NR	-40
02/19/99	NA.	NA	NA	1.00	107
03/16/99	0.14	4.8	12.0	1.25	-84
06/23/99	0.19	5.8	ND	1.60	-78
09/23/99	0.800	36.9	34.1	0.73	-61
12/29/99	1.40	31.2	29.6	NA	-90
			HMW-2		
08/22/96	NA	2,100	2,100	NA	NA
02/25/97	NA	ND	ND	NA	NA
05/28/97	NA	200	200	NA	NA
09/02/97	1.37	ND	0.5	0.38	25.2
11/26/97	0.03	ND	ND	2.5	52
03/17/98	0.01	ND	0.8	0.48*	-50.28
06/30/98	0.01	ND	ND	0.43	- 45.50
09/24/98	ND	ND	ND	0.32	67
12/16/98	1.1	ND	ND	0.38	-73
02/19/99	NA	NA	NA	1.10	101
03/16/99	ND	ND	ND	1.20	125
06 23 99	() 13	/D	0.93	1 45	-81
09 23 99	11	11	11	0.55	105
12 29 99	1 90	ND 100	ND 5 00	0.58	-~1
			HMW-3		
08 22 96	\1	ND.	/D	NA NA	11
02 25 97	\1	\D	\D	NA NA	11
05 28 97	\1	ND	ND ND	NA NA	1

Cumulative Results of Intrinsic Bioremediation Parameters New Genico Facility 3927 East 14th Street Oakland, California

				Field 1	Measurement				
	Dissolved			Dissolved	Redox				
Date	Ferrous Iron	Nitrate	Sulfate	Oxygen**	Potential**				
Sampled	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mV)				
HMW-3 (Continued)									
09/02/97	0.03	2	53	0.88	98.6				
11/26/97	0.01	3.5	50	1.4	102				
03/17/98	ND	1.1	43	0.63*	91.90				
06/30/98	ND	4.0	51	0.25	95.70				
09/24/98	ND	4.9	95	0.63	-16				
12/16/98	ND	4.0	55	0.71	138				
02/19/99	NA	NA	NA	0.95	89				
03/16/99	ND	3.1	11	0.75	104				
06/23/99	ND	6.2	46	1.00	128				
09/23/99	NA	NA	NA	0.51	110				
12/29/99	NA	NA	NA	NA	NA				
			HMW-4						
08/22/96	NA	NA	NA	NA	NA				
02/25/97	NA	NA	NA	NA	NA				
05/28/97	NA	ŇΑ	NA	NA	NA				
09/02/97	NA	NA	NA	NA	NA				
11/26/97	NA	NA	NA	NA	NA				
03/17/98	0.12	ND	8.6	2.4*	-26 67				
06/30/98	ND	ND	18.0	3.7	-21.7				
09/24/98	ND	ND	11	0.58	-17				
12/16/98	1.20	ND	12	1.2	-34				
02/19/99	NA	NA	NA	NA	NA				
03/16/99	ND	ND	2 3	1.15	-45				
06/23/99	1.3	ND	30	1.20	82				
09/23/99	NA	NA	NA	NA	NA				
12/29/99	0.410	ND 1.00	12.6	NA NA	-94				

Notes

NA denotes no analyzed

R denotes not reported due to laboratory instrument conditions.

mg L denotes milligrams per liter

ND denotes not detected above listed detection limit for the method or see actual laboratory analytical report

^{*} d.ssolved oxygen measured prior to purging

^{**} measured in fleid

Data obtained on 3-17-98 obtained by Aquatic & Environmental Applications. Data obtained between 6-30-98 to 6-23-99 obtained by Kleinfelder

APPENDIX A GROUNDWATER SAMPLING PROTOCOL

GROUNDWATER SAMPLING PROTOCOL

The static water level and floating product level, if present, in each well that contained water was measured with an ORS Interphase Probe Model No. 1068018 or Solonist Water Level Indicator. These instruments are accurate to the nearest 0.01 foot. These groundwater depths were subtracted from wellhead elevations, including corrections for product thickness, when necessary, for gradient evaluation by multiplying product thickness (PT) by a correction factor of 0.8 and subtracting from the DTW (Adjusted DTW = DTW - [PT x 0.8]).

Water samples collected for subjective evaluation were collected by gently lowering approximately half the length of a new disposable or Teflon® bailer past the air-water interface (if possible) and collecting a sample from near the surface of the water in the well. The samples were checked for measurable floating hydrocarbon product. All Teflon® bailers are triple-washed with Alconox® and triple-rinsed with distilled water prior to use.

Before water samples were collected from the groundwater monitoring wells, the wells were purged until stabilization of the temperature, pH, and conductivity were obtained. Approximately four well casing volumes were purged before those characteristics stabilized. The quantity of water purged from each well was calculated as follows:

One Well Casing Volume = π r² h(7.48)

Where:

r = radius of the well casing in feet

h = column of water in the well in feet (depth-to bottom, depth-to-water)

7.48 = conversion constant from cubic feet to gallons

Gallons of water purged divided by gallons in one well casing volume equals well casing volumes removed.

After purging, each well was allowed to recharge to at least 80% of the initial water level. Water samples were collected with a new disposable or Teflon® bailer and carefully poured into 40-milliliter (ml) glass vials, which were filled so as to produce a positive meniscus. Each vial was preserved with hydrochloric acid, sealed with a cap containing a Teflon® septum, and subsequently examined for air bubbles to avoid headspace. The samples were promptly transported in iced storage in a thermally-insulated ice chest, accompanied by a Chain of Custody Record, to a California-certified laboratory.

APPENDIX B WATER SAMPLING LOGS

FIELD REPORT/DATA SHEET

Date	12	12	.9	199	
				(W) Th	F

Project Number: 6/137, 0008

Field Technician: J. SALA

DTW Order	Walin	Diam.	Lock	Exp. Cap	Total Depth	DTW Juitial	DTW Final	Time Sampled	Comments
	HMW-4	'jz <u>"</u>	વઝ્ઝ	9009	1436	9.40			D.O. Probe will NOT Fit in "h" .
	HMW- 2	2	good	good	17.65	8,70			58/63
	HMW-	2	->	4.	19.48	8.75	*		Traice of only Product
	L'MW-3	_ 2_			MELLEN				Trace of only Product
NOTES:		· · · · · · · · · · · · · · · · · · ·						# D) D	HOU PUT DO. IN Product -

Number of Drums Onsite

Full	Empty	TOTAL
Estimated Value		

AREALL DRUMS LABELLED WITH THE LABELS FAGING OUT

		ATC ASSO	CIATES INC. V	VATER S	AMP	LING LOG			
WELL DESIGNATION_	HMW.			SII			GENICO	j	
_				DA		12			
SAMPLE DESIGNATION	V HMW-	4		PR	OJECT#		137.0008		
		•		SA	MPLER	7	. SALA	<u> </u>	
AMBIENT CONDITION	<u> S</u>	/N Y							
WATER LEVEL INF									
			MEASURING POINT	X , T.C).C,				
W.L. BEFORE PURGE	140 TIMI		W L. AFTER PURGE				TIME _		
W.L. FOR 80% RECOVE			W.L. TIME OF SAMP	LE		DATE		TIME	_
MONITORING WEI	L PURGE IN	FORMATION	MON	ITORING	WELL	PURGE MET	HOD_		

WELL DEPTH 1436			DIAMETER 2				OLUMES3		
SCREENED INTERVAL PURGE VOLUME CALC			PUMP SETTING			•			
PURGE VOLUME CALC	ULATION\	4.36 - 7	.45 4.96	x .06	1.12	9 901			
						•			
TIME PURGE BEGINS	255			AC	TUAL A	MOUNT PURG	ED_ 1.0		
T									
								D.O.	
TIME VOLU		H CONI	D. TEMP	COLO		TURBIDI		mg/L / %	O.R P
1257 700	NL 6		106.0	DE (grey	MoD			-94
1302 19 20	KL 6.	97, 550	65.7	<u> </u>		<u> </u>	.43	14,6	- ⁴ 3
१३०६० ३०००	ML G.	93 570	4.45.4	<u> </u>		<u> </u>	<u></u>	183	-97
		· _ 							
	· · · · · · · · · · · · · · · · · · ·								
									
·									
WATER SAMPLING	INFORMAT	ION	MON	ITORING	WELL	SAMPLE ME	тнор		
Į.	SAMPLING	TIME 1370				DATE	12/29/99		
BOTTLE TYPE	NO.	VOLUME	ANALYSIS		LAB		RVATION	FILTE	RATION
VOA'S	3	40 ML	TPHG/BTEX	/ MIBE		QuoA	HCL		NONE
AMBER		Liter	TPH-DIT			i	_		~
phstic		<u> </u>	N.trote/Su				_		
1, 4300			FERROUSI			/			
									
SAMPLING EQUIPN	MENT INFOR	MATION							
URGE EQUIPMENT				SAMPLING:	EQUIPM	ENT			
SUBMERSIBLE PUMP	BAILER(T	EFLON)			-		FLON)BAILER	(DISPOSABL	E)
BAILER(PVC)HO							URIZED DISPOSA		
OTHER: TUBIN	_			OTHER:	•				
REVIOUSLY USED IN	1			PREVIOUSL					
SITE				SITE					
DECON METHOD ALC	ONOX L	IQUINOX		DECON ME	THOD A	LCONOX	LIQUINOX		
QA/QC INFORMATI									
TEMP BLANKYE			 					 	
TRAVEL BI ANK _ 🗶 `		ID TB-1	Q A QC SPIKE	Y; `` X_	NO ID				
DUPLICATE YES Y			VES_X_NO						
WHILINTEGRITY 9.					 =		_୦୦K- ବ	30c	
VITY STRON	9 000	0R Cho	w sports	· stax	- چو ا	t ourse			
						-11			
	··					, _			
JGNA™ RE							o worsiile sa	mpling same	∙อ <u>g</u> รปร

		OCIATES INC.	WATER SAP	MPLING LOG	
WELL DESIGNATION	4 HW-1		SITE:	New Coel	
	1144 1 2		DATE	12/24/9	~~~~
SAMPLE DESIGNATION_	HMW-I		PROJECT#	61/31/00	
	C_1		SAMPLER	<u> j. 34 c</u>	<u> </u>
AMBIENT CONDITIONS	26009				
WATER LEVEL INFO	RMATION				
	20	MEASURING POIN			•••
W.L. BEFORE PURGE_8				TIME_	m. () (7
W.L. FOR 80% RECOVER		W.L. TIME OF SAM			
MONITORING WELL	PURGE INFORMA	HON MONI	TORING WEL	L PURGE METHO	<u>"</u>
WELL DEPTH 19.48		DIAMETER	_	#CASING VOLUMES	. 3
SCREENED INTERVAL		PUMP SETTING_ ~		#CASHING VOLUMES)
PURGE VOLUME CALCU	TATION 19.48-	8.75 - 13 -	73 × 49	- 515	
FORGE VOLUME CALCU	LATION	<u> </u>	3 2 1 1	<u></u>	
TIME PURGE BEGINS	121		ACTUAL A	MOUNT PURGED	55
			7101012012		
TIME VOLUM	Œ pH	COND. TEMP	COLOR	TURBIDITY	D O. O.R.P.
112A 1.5		75) 64.9			
1127 3.0		195 65			1.76/13.4 -9
1131 4.5		769 65-		*	1.63/17.8 -8
1134 55		7.55 65.8			1.61/17.6 -8
7-2					
		,			
	· · · · · · · · · · · · · · · · · · ·				
WATER SAMPLING I	NFORMATION	MONI	TORING WEL	L SAMPLE METH	OD
				. \	
	SAMPLING TIME <u>\(\)4</u>	1		DATE 12 24	99
BOTTLE TYPE	NO. VOLUMI		LAB	PRESERVATION`	FILTRATION
VONS	3 40 ML			SEQU, OA	HCU -
AMBER_	i liter			<u> </u>	
plastic			1 SULFATE	<u> </u>	<u> </u>
<u> </u>	<u>i</u> Ψ	<u> Ferrous</u>	3 1R0Ni	<u>_</u>	<u> </u>
					
SAMPLING EQUIPMI	ENT INFORMATION				
PURGE EQUIPMENT	L BAILER(TEFLON)	Σŧ S	AMPLING EQUIF		V
) X BAILER(DISPOSABLE)
BAILER(PVC) HON	DA PUMP DEDICATE		· —	DIPPER PRESSURIZED	DISPOSABLE BAILER
OTHER:		_	THER:		
PREVIOUSLY USED IN W	ÆLL		REVIOUSLY USE	ED IN WELL	
SITE			ITE	4.7.6.03.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	I IOL TO IOL
DECON METHOD ALCO			ECON METHOD	ALCONOX	LIQUINOX
QA/QC INFORMATIO					
TEMP BLANK YES		• ON COSTRIC	7-0 × 10	~ ~	
TRAVEL BLANK X YE				رسا ر	
DUPLICATE YES X		DBLANKYES_ <u>x</u>	п.	T OCT	
WELL INTEGRITY 90	<i>⊅</i> ('			LOCK=	7000
NOTES					
		 			
CICX'ATITIF					
SIGNATURE				a workti	ile sampling samplog Xls
1				A	and the control of th

ATC ASSOCIATE	S INC. WATER SAM	PLING LOG	
WELL DESIGNATION 17 MW - Z-	SITE:	New GENIE	~
WELL DESIGNATION 17 ptw 22		12/29/99	-0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DATE		
SAMPLE DESIGNATION HWW-2	PROJEC		<u> </u>
S 3 4 6 4	SAMPLE	R J. SALA	
AMBIENT CONDITIONS SURVING			
WATER LEVEL INFORMATION	······································		
MEASURII	NG POINT X TO C.		_
	R PURGE —	TIME_	
	OF SAMPLE 9,20	DATE 12 29 99	CIII AMIT
MONITORING WELL PURGE INFORMATION	MONITORING WEL	L PURGE METHOD	
in a	•		2
	R 2	#CASING VOLUMES_	
SCREENED INTERVAL PUMP SET PURGE VOLUME CALCULATION 17.65 - 8.70 =	TING TO THE TING	A '2 &	
PURGE VOLUME CALCULATION 11.65 - 8.75 =	7.15 X 47 =	4.70	
4.7		Λ	
TIME PURGE BEGINS 1043	ACTUAL	AMOUNT PURGED 4 .	<u>5</u>
			D.O.
TIME VOLUME PH COND.	TEMP COLOR	TURBIDITY	mg/L/% O.R P
	(A.) HAN	Shebt	1.03 1220 -11
	63.7 olive		.66 / 11.9 -82
	650 4		72/184 -84
1054 4.5 6.89 686	65.6 V		56/17.0 -85
10 9:			
			· · · ·
			
WATER SAMPLING INFORMATION	MONITORING WEL	L SAMPLE METHOD	
SAMPLING TIME 110 V		DATE 12 29	
	NALYSIS LAI		FILTRATION
	1BTEX/MIEE	SEQUIOA HCL	NONE
	4-0/ TPH-M		
piastic i i N:	trate / SULFATE	<u> </u>	
¥ 1 ¥ F	FERROUSTRON)	<u> </u>	
SAMPLING EQUIPMENT INFORMATION			
PURGE EQUIPMENT	SAMPLING EQUI	PMENT	
SUBMERSIBLE PUMP X BAILER (TEFLOR)	_ SUBMERSIBLE F	PUMP _ BAILER(TEFLON) X BA	AILER(DISPOSABLE)
BAILER(PVC) HONDA PUMP DEDICATED		DIPPER _X_ PRESSURIZED DIS	
OTHER:	OTHER.		
PREVIOUSLY USED IN WELL	PREVIOUSLY US	ED IN WELL	
SITE	SITE		_
DECON METHOD ALCONOX LIQUINOX	DECON METHOD	ALCONOX LIQUIN	IOX
QA/QC INFORMATION		<u></u>	
TEMP BLANK YES X NO			
TRAVEL BLANK X MES NO TO TO TO - 1 QAQCS	PIKE VIN X NO	ID	
•			
	· / · · · · · · · · · · · · · · · · · ·	1 7,771	9000
WELL NIECK IN 9000			
rolls strong odor Through pur	1200		
			ile semaling simplicates
SICNAM RE		~ 1/11+	HC 2011 - E 2 - E

APPENDIX C

ANALYTICAL LABORATORY REPORT AND CHAIN OF CUSTODY RECORDS

January 12, 2000

Al Martinez ATC Associates, Inc. - Pleasanton 6666 Owens Drive Pleasanton, CA 94588

RE: New Genico/M912AAW

Dear Al Martinez

Enclosed are the results of analyses for sample(s) received by the laboratory on December 30, 1999. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kayvan Kimyai

Project Manager D.M.

CA ELAP Certificate Number 1210

ATC Associates, Inc. - Pleasanton

6666 Owens Drive Pleasanton, CA 94588 Project: -

Project Number: New Genico Project Manager. Al Martinez Sampled: 12/29/99

Received: 12/30/99 Reported: 1/12/00

ANALYTICAL REPORT FOR M912AAW

Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled
HMW-2	M912AAW-01	Water	12/29/99
HMW-1	M912AAW-02	Water	12/29/99
TB-1	M912AAW-03	Water	12/29/99
HMW-4	M912AAW-04	Water	12/29/99

ATC Associates, Inc. - Pleasanton

Project:
Sampled: 12/29/99

6666 Owens Drive

Project Number: New Genico

Project Manager: Al Martinez

Reported: 1/12/00

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Morgan Hill

			····					
	Batch	Date	Date	Surrogate	Reporting	Danile	1 != :4 *	N1044
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
HMW-2			M912AA	W-01			<u>Water</u>	
Purgeable Hydrocarbons	0010135	1/6/00	1/6/00		1000	4410	ug/l	1.D
Benzene	*1	••	н		10.0	145	н	D
Toluene	•	H	H		10.0	45.6	н	D
Ethylbenzene	•	н	11		10.0	111	16	D
Nylenes (total)	н	н	**		10.0	80.8	ft	D
Methyl tert-butyl ether	**		**		50.0	407	1+	D
Surrogate. a.a.a-Trifluorotoluene	,,	,,	"	70.0-130		153	%	$2^{}$
HMW-1			M912AA	W-02			Water	
Purgeable Hydrocarbons	0010135	1/6/00	1/6/00		250	1380	ug/l	1,D
Benzene	11	**	11		2.50	184	n "	D
Toluene	11	TP	*11		2 50	22.7	11	D
Ethylbenzene	"	er .	••		2 50	38.6	11	D
Xylenes (total)	**	*1	"		2.50	57.8	11	D
Methyl tert-butyl ether	**	н	н		12.5	70.7	ti.	. <u>D</u> .
Surrogate. a,a,a-Trifluorotoluene	<i>"</i>	ii -	,	70 v-130		134	%	2
TB-1			M912AA	W-03			Water	
Purgeable Hydrocarbons	0010135	1/6/00	1/6 00		50.0	ND	ug/l	
Benzene	7	**	11		0.500	ND		
Toluene	**	*1	#1		0.500	ND	11	
Ethylbenzene	н	n	11		0.500	ND	11	
Xylenes (total)	H	н	Ħ		0.500	ND	41	
Methyl tert-buty ether	**	*	n		2.50	ND	Ħ	
Surrogate: a,a.a-Trifluorotoluene	" "	,	"	70 0-130	-	90 7	%	
HMW-4			M912AA	W. OA			Water	
	0010135	1/6/00	1/6/00	VV-U-4	1000	2020	ug/l	3.D
Purgeable Hydrocarbons	0010133	170700	170700		10.0	33.9	ug/i	D.D
Benzene Toluene	H .	н	**		10.0	22.7	*r	Đ
	It	Ħ	**		10.0	ND	**	D
Ethylbenzene	11	11	17		10.0	11.1	ti	D
Xylenes (total)	"	**	u .		50.0	66.2	**	D
Methyl tert-butyl ether		H	"	70 0-130	50.0	120	%	P.
Surrogate a.a a-Trifluorotoluene		••		70/0-130		120	/0	

Secure a Analytical - Morgan Hi

Refer to end of report for text of roles and defautions

ATC Associates, Inc. - Pleasanton 6666 Owens Drive Pleasanton, CA 94588

Project Number. New Genico Project Manager. Al Martinez Sampled: 12/29/99 Received: 12/30/99 Reported: 1/12/00

Diesel Hydrocarbons (C9-C24) and Motor Oil by DHS LUFT Sequoia Analytical - Morgan Hill

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
Analyte	Number	Frepared	Anaryzeu	Limits	Limit	Result	Omis	Notes.
HMW-2			M912AA	<u>W-01</u>			Water	
Diesel Range Hydrocarbons	0010099	1/4/00	1/6/00		50.0	1560	ug/l	4
Motor Oil (C16-C36)	*1	**	71		500	ND	Ħ	
Surrogate. n-Pentacosane	"	"	"	50.0-150		78.6	%	
HMW-1			M912AA	<u>W-02</u>			<u>Water</u>	
Diesel Range Hydrocarbons	0010099	1/4/00	1/6/00		50.0	2440	ug/l	4
Motor Oil (C16-C36)	*1	11	•1		500	3110	11	5
Surrogate. n-Pentacosane	"	"	"	50 0-150		192	%	2
HMW-4			M912AA	W-04			Water	
Diesel Range Hydrocarbons	0010099	1/4/00	1/6/00		50.0	2240	ug/l	4
Motor Oil (C16-C36)	•	15	**		500	911	"	5
Surrogate: n-Pentacosane	'n	<i>"</i>	"	50.0-150		114	%	

885 Jarvis Drive Morgan Hill, CA 95037 (408) 776-9600 FAX (408) 782-6308

ATC Associates. Inc. - Pleasanton 6666 Owens Drive Pleasanton, CA 94588

Project: -

Project Number: New Genico Project Manager: Al Martinez

Sampled: 12/29/99

Received: 12/30/99 Reported: 1 12/00

MTBE by EPA Method 8260A Sequoia Analytical - Morgan Hill

Analyte	Batch Number	Date Prepared	Date Analyzed	Surrogate Limits	Reporting Limit	Result	Units	Notes*
<u>HMW-2</u>			M912AA	<u>W-01</u>			Water	ļ
Methyl tert-butyl ether	0010262	1/10/00	1/10.00		0.500	ND	ug/l	
Surrogate: 1,2-Dichloroethane-d4	"	"	"	70 0-130		499	%	6

ATC Associates, Inc Pleasanton	Project.	-	Sampled:	12/29/99	
6666 Owens Drive	Project Number:	New Genico	Received.	12/30/99	
Pleasanton, CA 94588	Project Manager:	Al Martinez	Reported:	1/12/00	

Total Metals by EPA 6000/7000 Series Methods Sequoia Analytical - Morgan Hill

Analyte	Batch Number	Date Prepared	Date Analyzed	Specific Method	Reporting Limit	Result	Units	Notes*
HMW-2 Ferrous Iron	0010189	1/5/00	M912AA` 1/6/00	<u>W-01</u> EPA 6010A	0.0100	1.90	Water mg/l	
<u>HMW-1</u> Ferrous Iron	0010189	1/5/00	<u>M912AA</u> 1/6/00	<u>W-02</u> EPA 6010A	0.0100	1.40	<u>Water</u> mg/l	
<u>HMW-4</u> Ferrous Iron	0010189	1/5/00	M912AA 1/6/00	<u>W-04</u> EPA 6010A	0.0100	0.410	<u>Water</u> mg/l	

ATC Associates, Inc. - Pleasanton Project: - Sampled: 12/29/99
6666 Owens Drive Project Number: New Genico Received 12/30/99
Pleasanton, CA 94588 Project Manager: Al Martinez Reported: 1/12/00

Anions by EPA Method 300.0 Sequoia Analytical - Morgan Hill

	Batch	Date	Date	Specific	Reporting			
Analyte	Number	Prepared	Analyzed	Method	Limit	Result	Units	Notes*
HMW-2			M912AA	W-01			<u>Water</u>	
Nitrate as NO3	0010061	12/31/99	12/31/99	EPA 300.0	1.00	ND	mg/l	D
Sulfate as SO4	H	n	17	EPA 300.0	5.00	ND	н	D
<u>HMW-1</u>			M912AA	W-02			Water	
Nitrate as NO3	0010061	12/31/99	12/31/99	EPA 300.0	1.00	31.2	mg/l	D
Sulfate as SO4	н	**	**	EPA 300.0	5.00	29.6	"	D
HMW-4			M912AA	W-04			<u>Water</u>	
Nitrate as NO3	0010061	12/31/99	12/31/99	EPA 300.0	1.00	ND	mg/l	D
Sulfate as SO4	н		11	EPA 300.0	5 00	12.6	11	D

Sedulita Analytica - Moreun II.ⁿ

the second and report to an orthodes and definitions

ATC Associates. Inc. - Pleasanton

Project: -

Sampled: 12/29/99

Received: 12/30/99 Reported: 1/12/00

6666 Owens Drive Pleasanton, CA 94588

Project Number: New Genico Project Manager. Al Martinez

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT/Quality Control Sequoia Analytical - Morgan Hill

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Batch: 0010135	Date Prepa	red: 1/6/00	1		<u>Extrac</u>	tion Method: EPA	A 5030B	[P/T]		
Blank	0010135-BI	<u>LK1</u>								
Purgeable Hydrocarbons	1/6/00			ND	ug/l	50.0				
Benzene	11			ND	**	0.500				
Toluene	**			ND	n	0.500				
Ethylbenzene	н			ND	**	0.500				
Xylenes (total)	Ħ			ND	n	0.500				
Methyl tert-butyl ether	n .			ND	H	2.50				
Surrogate. a,a,a-Trifluorotoluene	"	100		9. 4 4	"	70 0-130	94 4			
LCS	0010135-BS	<u>81</u>								
Benzene	1/6/00	10.0		7.22	ug/l	70.0-130	72 2			
Toluene	18	10.0		8.15	11	70.0-130	81.5			
Ethylbenzene	It	10 0		9 45	49	70.0-130	94 5			
Xylenes (total)	11	30 0		28.6	H	70.0-130	95.3			
Surrogate. a,a,a-Trifluorotoluene	'n	10.0	-	9.16	"	70 0-130	916			
<u>Matrix Spike</u>	0010135-M	S1 <u>M91</u>	2AAO-06							
Benzene	1/6/00	10.0	ND	7.20	ug/l	60.0-140	72.0			
Toluene	71	10 0	ND	8.27	11	60.0-140	82.7			
Ethylbenzene	n	100	ND	9.52	71	60 0-140	95.2			
Xylenes (total)	tt.	30.0	ND	28.7	n	60.0-140	95.7			
Surrogate: a.a,a-Trıfluorotoluene	n	100		8 72	"	70 0-130	87 2			
<u>Matrix Spike Dup</u>	0010135-M	SD1 M91	2AAO-06							
Benzene	1/6/00	10.0	ND	8.58	ug/l	60.0-140	85.8	25.0	17.5	
Foluene	11	10.0	ND	8.68	11	60.0-140	86.8	25.0	4.84	
Ethylbenzene	**	10.0	ND	9.30	**	60.0-140	93.0	25.0	2.34	
Xylenes (total)	11	30 0	ND	27.0	**	60.0-140	90.0	25.0	6.14	
Surrogate: a,a,a-Trifluorotoluene	. ,, -	10.0		9 23	н	70 0-130	92.3			

ATC Associates, Inc. - Pleasanton 6666 Owens Drive Pleasanton, CA 94588

Project

Project Number: New Genico Project Manager: Al Martinez

Sampled: 12 29/99 Received: 12/30/99

Reported: 1/12/00

Diesel Hydrocarbons (C9-C24) and Motor Oil by DHS LUFT/Quality Control Sequoia Analytical - Morgan Hill

· · · · · · · · · · · · · · · · · · ·									~~~	1
	Date	Spike	Sample	QC		Reporting Limit		RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	<u>%</u>	Notes*
Batch: 0010099	Date Prepar				Extra	ction Method: EP	4 3510B			
Blank Diesel Range Hydrocarbons	0010099-BL 1/6/00	<u>K1</u>		ND	ug/l	50.0				
_Motor Oil (C16-C36)	11			ND		500				
Surrogate: n-Pentacosane	"	100		79.0	"	50.0-150	79.0			
LCS	0010099-BS	1								
	1/6/00	1000		684	ug/l	60.0-140	68.4			
Diesel Range Hydrocarbons Surrogate n-Pentacosane	"	100		67 4	"	50 0-150	67 4			
LCS Dup	0010099-BSI	<u>D1</u>								
Diesel Range Hydrocarbons	1/6/00	1000		937	ug/l	60.0-140	93 7	50.0	31.2	
Surrogate. n-Pentacosane	"	100		94.4	"	50 0-150	94 4			

ATC Associates, Inc. - Pleasanton 6666 Owens Drive

Pleasanton, CA 94588

Project: -

Project Number: New Genico Project Manager: Al Martinez

Sampled: 12/29/99

Received: 12/30/99 Reported: 1/12/00

MTBE by EPA Method 8260A/Quality Control Sequoia Analytical - Morgan Hill

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%]	Notes*
■Batch: 0010262	Date Prepa	red: 1/10/6	<u>00</u>		Extrac	tion Method: EP.	A 5030B	[P/T]		
Blank	0010262-B	LK1								
Methyl tert-butyl ether	1/10/00			ND	ug/l	0.500				
Surrogate 1,2-Dichloroethane-d4	n	100		8.88	<i>n</i>	70 0-130	888			
LCS	0010262-B	S1								
Methyl tert-butyl ether	1/10/00	10.0		8.02	ug/l	70.0-130	80.2			
Surrogate: 1,2-Dichloroethane-d4	rt -	100		7 53	"	70 0-130	75 3		-	
Matrix Spike	0010262-M	S1 M	912750-02							
Methyl tert-butyl ether	1/10/00	2000	3320	4900	ug/l	70.0-130	79.0			D
Surrogate: 1,2-Dichloroethane-d4	н	10 0		4900 7.88	,,"	70.0-130	<i>78.</i> 8			
Matrix Spike Dup	0010262-M	SDI M	912750-0 <u>2</u>							
Methyl tert-butyl ether	1/10/00	2000	3320	4860	ug/l	70.0-130	77.0	25.0	2.56	D
Surrogate: 1,2-Dichloroethane-d4	ii .	10.0		7.55	,,	70.0-130	75 5	-		

ATC Associates, Inc - Pleasanton 6666 Owens Drive Pleasanton, CA 94588 Project -Project Number: New Genico Sampled 12'29/99 Received, 12'30'99

Project Manager: Al Martinez

Reported: 1 12/00

Total Metals by EPA 6000/7000 Series Methods/Quality Control Sequoia Analytical - Morgan Hill

Analyte	Date Analyzed	Spike Level	Sample Result	QC Result	Units	Reporting Limit Recov Limits	Recov. %	RPD Limit	RPD %	Notes*
Batch: 0010189	Date Prepa		<u>0</u>		Extra	ction Method: EP.	4 3020A			
Blank Ferrous Iron	<u>0010189-BI</u> 1/6/00	<u>JK1</u>		ND	mg/l	0.0100				
LCS Ferrous Iron	0010189-BS 1/6/00	5 <u>1</u> 1.00		1.00	mg/l	80.0-120	100			
Matrix Spike Ferrous Iron	<u>0010189-M</u> 1/6/00	<u>S1</u> <u>M91</u> 1.00	2AAW-01 1.90	2 60	mg/l	80 0-120	70.0			7
Matrix Spike Dup Ferrous Iron	0010189-M 1/6/00	SD1 <u>M91</u> 1.00	2AAW-01 1.90	2.80	mg/l	80.0-120	90.0	20.0	25.0	8

ATC Associates, Inc. - Pleasanton 6666 Owens Drive Pleasanton, CA 94588 Project Project Number New Genico
Project Manager Al Martinez

Sampled: 12/29/99 Received: 12/30/99 Reported: 1/12/00

Anions by EPA Method 300.0/Quality Control Sequoia Analytical - Morgan Hili

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	,
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Batch: 0010061	Date Prepa	red: 12/31	/99		Extrac	tion Method: Ger	neral Pre	paration		
Blank	0010061-BI	LK1								
Nitrate as NO3	12/31/99	·····		ND	mg/l	0.100				
Sulfate as SO4	11			ND	n	0.500				
LCS	0010061-BS	<u> </u>								
Nitrate as NO3	12/31/99	100		9.85	mg/l	80.0-120	98.5			
Sulfate as SO4	н	10.0		9.67	17	80 0-120	96.7			
Matrix Spike	0010061-M	<u>S1 M91</u>	2AAW-01							
Nitrate as NO3	12/31/99	100	ND	101	mg/l	75.0-125	101			
Sulfate as SO4	п	100	ND	99.0	16	75.0-125	99.0			
Matrix Spike Dup	<u>0010061-M</u>	SD1 M91	2AAW-01							
Nitrate as NO3	12/31/99	100	ND	101	mg/l	75.0-125	101	20.0	0	
Sulfate as SO4	ff	100	ND	98.1	"	75 0-125	98.1	20.0	0.913	

ATC Associates, Inc. - Pleasanton Project: - Sampled: 12 29 99 6666 Owens Drive Project Number. New Genico Received. 12 30 99 Pleasanton, CA 94588 Project Manager: Al Martinez Reported. 1 12/00

Notes and Definitions

#	Note
D	Data reported from a dilution
1	Çhromatogram Pattern: Gasoline C6-C12
2	The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample.
3	Chromatogram Pattern: Weathered Gasoline C6-C12 + Unidentified Hydrocarbons C6-C12
4	Chromatogram Pattern. Unidentified Hydrocarbons C9-C24
5	Chromatogram pattern: Motor Oil C16-C36.
6	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
7	The spike recovery for this QC sample is outside of established control limits. Review of associated batch QC indicates the recovery for this analyte does not represent an out-of-control condition for the batch
8	The RPD value for this QC sample is above the established control limit. Review of associated QC indicates the high RPD does not represent an out-of-control condition for the batch.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
Recov.	Recovery
RPD	Relative Percent Difference
•	

LI 88 Tabris 2000 • Marson Hill 200 950 (408) 776-96(200 FAX (100) 782-2008	
☐ 819 Striker Ave., Suite 8 • Sacramento, CA 95834 • (916) 921-9600 FAX (916) 921-0100	i
☐ 404 N. Wiget Lane • Walnut Creek, CA 94598 • (925) 988-9600 FAX (925) 988-9673	
Li 1455 McDowell Blvd. North, Suite D • Petaluma, CA 94954 • (707) 792-1865 FAX (707) 792-03	342

	n ishisubni tegi D	oad • San Carlos, CA 94070 • (650) 232-9600 FAX (650) 232-9612						
Company Name ATC ASSOCIATES	•	Project Name: NEW GENICO						
Mailing Address Wole 6 OWENS I		Billing Address (if different): Suite						
City PLEASANTON State: CA	Zip Code: 94588							
Telephone (925) 460-5300 FA	× #(925) 463-2559	P.O. #: 61137.0008						
Report to AL MARTINEZ Sampler:		QC Data: X Level D (Standard) U Level C U Level B U Level A						
Turnaround 💸 10 Working Days 🗀 3 Working Days		inking Water Analyses Requested	7					
Time Ci 7 Working Days Ci 2 Working Days Ci 5 Working Days Ci 24 Hours	S	aste Water ther						
	# of Cont. Sequoia's Cont. Type Sample #		<u> </u>					
1 HMW - 4- 12/29/99 1320 water =	3 VOAS 04	\times	-					
2	1 AMBER	XX						
3 1 1 2 2 3	2 plastic	XXXX						
4								
13								
			-					
6								
/	,		^-					
8	,		-					
9								
10								
Relinquished By Jeffry D. Soly	Date: 12/30/49 Time: 9;	25 Received By: Stee te Date: 12/30/99 Time: 9:20	5					
Relinquished By	Date: /2/30/99 Time:	Received By: TTT (MH) Date: 23, 99 Time: 14:	<u> 20</u> .					
Refinquished By	Date: Time:	Received By: Date: Time:						

√ 88 Mary vis (1995 • Mary Hilland 950 mary 408) 19960 MAX (1995 • Mary 1995 ☐ 819 Striker Ave., Suite 8 • Sacramento, CA 95834 • (916) 921-9600 FAX (916) 921-0100 LI 404 N. Wiget Lane • Walnut Creek, CA 94598 • (925) 988-9600 FAX (925) 988-9673 ☐ 1455 McDowell Blvd. North, Suite D • Petaluma, CA 94954 • (707) 792-1865 FAX (707) 792-0342

CHAIN OF COSTODY,	551 Industrial Ro	Road • San Carlos, CA 94070 • (650) 232-9600 FAX (650) 232-9612
Company Name ATC ASSOCIATES		Project Name: New GENICO
Mailing Address. 6666 OWENS DR		Billing Address (if different): Same
City PLEASANTON State: CA Zip Co	de: 94588	
Telephone (916) 460-5300 FAX #:(925)	163-2559	P.O. #: 61137,0008
Report to AL MARTINEZ Sampler: J. SAL		QC Data: DxLevel D (Standard) Level C Level B Level
Turnaround 10 Working Days G 3 Working Days G 2 - 8 Time G 7 Working Days G 2 Working Days ET 5 Working Days G 24 Hours M 9 26.	l l	rinking Water Vaste Water Where Commer
Client Date/Time Matrix # of Cor Sample LD Sampled Desc. Cont. Typ		ther Commer
1 HMW-2 12/19/19 1106 WHER 3 VOA	S OI	
SMA 1 1 2	5ef	XX
3 L L Z Plass	tve	X X X
4 HMW-1 1147 3 VOA	15 02	X
5 I AMB	erz	
phs	tie	
178-1 J 3 VOA	5 03	X BUBBLE Famples
8		
9		
10		
Belinquished By July Date: 12/30	199 Time: 972	
Relinquished By Jale: 1236	Time:	Received By: 757 (MH) Date: 12-30-79 Time: 14:
Belinquished By . Date:	Time:	Received By: Date Time