

Eric Frohnapple, **P.E**. Project Manager Marketing Business Unit

Chevron Environmental Management Company 6111 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6692 ericf@chevron.com

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Former Chevron Service Station No. 20-9339

5940 College Avenue Oakland, California

RECEIVED

3:31 pm, Dec 05, 2011

Alameda County
Environmental Health

I accept the **Second Semi-Annual 2011 Groundwater Monitoring and Sampling Report** dated November 30, 2011.

I agree with the conclusions and recommendations presented in this document. The information included is accurate to the best of my knowledge, and appears to meet local agency and Regional Board guidelines. This **Second Semi-Annual 2011 Groundwater Monitoring and Sampling Report** was prepared by Conestoga Rovers & Associates, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

Eric Frohnapple, P.E. Project Manager

Enc Trohyple

Attachment: Second Semi-Annual 2011 Groundwater Monitoring and Sampling Report

5900 Hollis Street, Suite A Emeryville, California 94608

Telephone: (510) 420-0700 Fax: (510) 420-9170

http://www.craworld.com

November 30, 2011 Reference No. 311954

Mr. Mark Detterman Alameda County Environmental Health (ACEH) 1131 Harbor Bay Parkway Alameda, California 94502

Re: Second Semi-Annual 2011

Groundwater Monitoring and Sampling Report

Former Chevron Service Station 20-9339

5940 College Avenue Oakland, California

ACEH Case No. RO0000466

Dear Mr. Mark Detterman:

Conestoga-Rovers & Associates (CRA) is submitting this *Second Semi-Annual 2011 Groundwater Monitoring and Sampling Report* for the site referenced above (Figure 1) on behalf of Chevron Environmental Management Company. Groundwater monitoring and sampling was performed by Gettler-Ryan, Inc. of Dublin, California and their October 18, 2011 *Second Semi-Annual Groundwater Monitoring and Sampling Data Package* is included as Attachment A. Current groundwater monitoring and sampling data are presented in Table 1. Lancaster Laboratories' October 19, 2011 *Analytical Results* is included as Attachment B. Historical groundwater data are included as Attachment C. Groundwater monitoring and sampling for the former Sheaff's Garage (5930 College Avenue) was conducted by Golden Gate Tank Removal (GGTR) and their analytical data table is included as Attachment D.

RESULTS OF SECOND SEMI-ANNUAL 2011 EVENT

On October 7, 2011, G-R monitored and sampled the site wells per the established schedule.

Results of the current monitoring event indicate the following:

Groundwater Flow Direction WestHydraulic Gradient 0.60

Depth to Water
 10.27 to 10.66 feet below grade

Equal Employment Opportunity Employer

November 30, 2011 Reference No. 311954

- 2 -

Results of the current sampling event are presented below in Table A:

	TABLE A	GROUNDWA	TER ANALY	TICAL DATA	
Well ID	TPHg (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)
ESLs	100	1	40	30	20
MW-1	140	<0.5	<0.5	<0.5	2.0
MW-2	370	0.7	<0.5	0.8	5.0
	For	ner Sheaff's G	arage Analytic	cal Data	
MW-1	50,000	9,200	1,500	4,200	13,500
MW-2	9,200	810	34	610	100
MW-3	5,400	140	7.0	160	67
PW-1	260	<0.5	<0.5	5.9	4.5

μg/L Micrograms per liter

CONCLUSIONS AND RECOMMENDATIONS

The results of ongoing groundwater monitoring and sampling at the site indicate the following:

- Benzene, toluene, ethylbenzene, and xylenes (BTEX) concentrations were below the laboratory detection limit and/or ESL for drinking water.
- Total petroleum hydrocarbons as gasoline (TPHg) was detected in both site wells, but concentrations are low, near the ESL for drinking water, and are within historical ranges.
- Hydrocarbon concentrations detected at the Sheaff site are as much as three orders of magnitude higher than those detected in Chevron wells.

CRA submitted a *Case Closure Request* on August 25, 2011. CRA requests to discontinue groundwater monitoring and sampling while the site is being reviewed for case closure.

Indicates constituent was not detected at or above the stated laboratory reporting limit

ESL California Regional Water Quality Control Board, San Francisco Bay Region. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Table A, Interim Final-November 2007 (Revised May 2008).

BOLD indicates concentrations detected at or above ESLs

November 30, 2011 Reference No. 311954

Please contact Kiersten Hoey at (510) 420-3347 if you have any questions or require additional information.

Sincerely,

CONESTOGA-ROVERS & ASSOCIATES

Kiersten Hoey

Brandon S. Wilken, PG 7564

KH/aa/9 Encl.

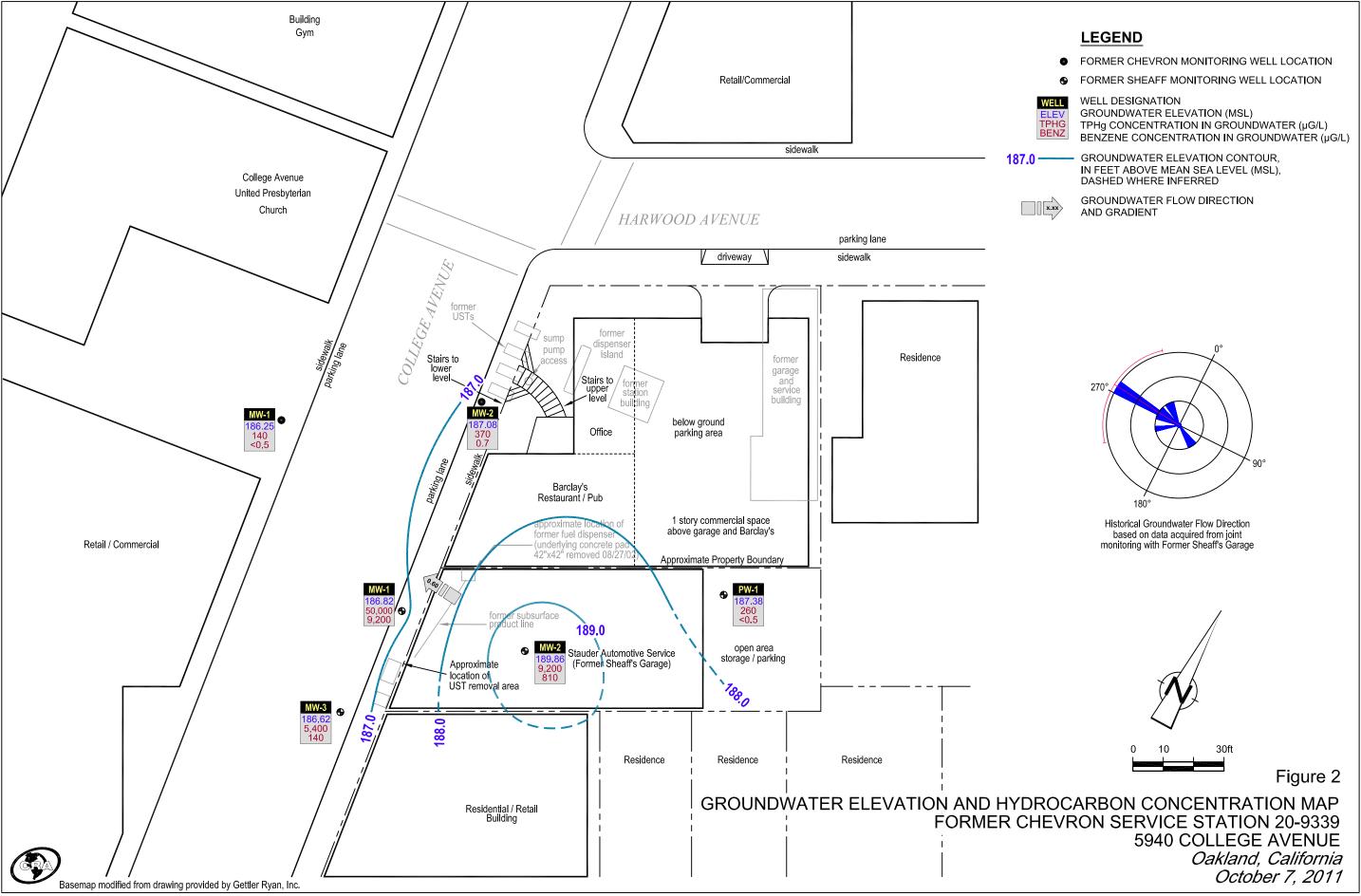
Figure 1 Vicinity Map

Figure 2 Groundwater Elevation and Hydrocarbon Concentration Map

Table 1 Groundwater Monitoring and Sampling Data

Attachment A Monitoring Data Package
Attachment B Laboratory Analytical Report

Attachment C Historical Groundwater Monitoring and Sampling Data


Attachment D Sheaff's Garage Historical Groundwater Monitoring and Sampling Data

cc: Mr. Eric Frohnapple, Chevron (electronic copy)

Mr. Donald Sweet, San Francisco Property MGMT Mr. Patrick Elwood, College Square Associates **FIGURES**

Chevron Service Station 20-9339

CONESTOGA-ROVERS & ASSOCIATES

TABLE

TABLE 1 Page 1 of 2

GROUNDWATER MONITORING AND SAMPLING DATA CHEVRON SERVICE STATION 20-9339 5940 COLLEGE AVENUE OAKLAND, CALIFORNIA

Location Date TOC DTW GWE E B T E X							HYDROCARBONS		PRIMAI	RY VOCS	
MW-1 10/14/2010 196.91 13.25 183.66 <50 <0.5 <0.5 <0.5 <1.5 MW-1 04/14/2011 196.91 7.81 189.10 <50 <0.5 <0.5 <0.5 <0.5 <1.5 MW-1 10/07/2011 196.91 10.66 186.25 140 <0.5 <0.5 <0.5 <2.0 2.0 MW-2 10/14/2010 197.35 12.15 185.20 480 1.3 <2.0 <2.0 7.1 MW-2 04/14/2011 197.35 6.92 190.43 150 <0.5 <0.5 <0.5 <0.5 <0.5 <5.0 MW-2 10/07/2011 197.35 10.27 187.08 370 0.7 <0.5 0.8 5.0 MW-2 10/07/2011 197.35 10.27 187.08 370 0.7 <0.5 <0.5 <0.5 <1.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0	Lo	ocation	Date	тос	DTW	GWE	IPH-GRO	В	T	E	X
MW-1 04/14/2011 196.91 7.81 189.10 <50 <0.5 <0.5 <0.5 <0.5 <1.5 MW-1 10/07/2011 196.91 10.66 186.25 140 <0.5 <0.5 <0.5 <2.0 2.0 MW-2 10/14/2010 197.35 12.15 185.20 480 1.3 <2.0 <2.0 7.1 MW-2 04/14/2011 197.35 6.92 190.43 150 <0.5 <0.5 <0.5 <0.5 <5.0 MW-2 10/07/2011 197.35 10.27 187.08 370 0.7 <0.5 0.8 5.0 QA 10/14/2010 <0.5 <0.5 <0.5 <1.5 <0.5 <1.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0			Units	ft	ft	ft-amsl	μg/L	μg/L	μg/L	μg/L	μ <i>g</i> /L
MW-1 04/14/2011 196.91 7.81 189.10 <50 <0.5 <0.5 <0.5 <0.5 <1.5 MW-1 10/07/2011 196.91 10.66 186.25 140 <0.5 <0.5 <0.5 <2.0 2.0 MW-2 10/14/2010 197.35 12.15 185.20 480 1.3 <2.0											
MW-1 10/07/2011 196.91 10.66 186.25 140 <0.5 <0.5 <2.0 2.0 MW-2 10/14/2010 197.35 12.15 185.20 480 1.3 <2.0	N	MW-1	10/14/2010	196.91	13.25	183.66	<50	<0.5	<0.5	<0.5	<1.5
MW-2 10/14/2010 197.35 12.15 185.20 480 1.3 <2.0 <2.0 7.1 MW-2 04/14/2011 197.35 6.92 190.43 150 <0.5 <0.5 <0.5 <0.5 MW-2 10/07/2011 197.35 10.27 187.08 370 0.7 <0.5 0.8 5.0 <0.5 <0.5 <1.5 <0.5 <1.5 <0.5 <0.5 <1.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0	N	√W-1	04/14/2011	196.91	7.81	189.10	<50	<0.5	<0.5	<0.5	<1.5
MW-2 04/14/2011 197.35 6.92 190.43 150 <0.5 <0.5 <0.5 <0.5 <5.0 MW-2 10/07/2011 197.35 10.27 187.08 370 0.7 <0.5 0.8 5.0 QA 10/14/2010 <- <- <- <- <- <- <- <- <- <- <-	N	MW-1	10/07/2011	196.91	10.66	186.25	140	<0.5	<0.5	<2.0	2.0
MW-2 04/14/2011 197.35 6.92 190.43 150 <0.5 <0.5 <0.5 <0.5 <5.0 MW-2 10/07/2011 197.35 10.27 187.08 370 0.7 <0.5 0.8 5.0 QA 10/14/2010 <- <- <- <- <- <- <- <- <- <- <-											
MW-2 10/07/2011 197.35 10.27 187.08 370 0.7 <0.5 0.8 5.0 QA 10/14/2010 <50 <0.5 <0.5 <0.5 <1.5	N	MW-2	10/14/2010	197.35	12.15	185.20	480	1.3	<2.0	<2.0	7.1
QA 10/14/2010 <- <- <- <- <- <- <- <- <- <- <- <-	N	MW-2	04/14/2011	197.35	6.92	190.43	150	<0.5	<0.5	<0.5	<5.0
	N	MW-2	10/07/2011	197.35	10.27	187.08	370	0.7	<0.5	0.8	5.0
OA 04/14/2011 <50 <0.5 <0.5 <0.5 <1.5		QA	10/14/2010	-	-	-	<50	<0.5	<0.5	<0.5	<1.5
211 01/11/2011		QA	04/14/2011	-	-	-	<50	<0.5	<0.5	<0.5	<1.5
QA 10/07/2011 <50 <0.5 <0.5 <0.5 <1.5		QA	10/07/2011	-	-	-	<50	<0.5	<0.5	<0.5	<1.5

Abbreviations and Notes:

TOC = Top of Casing

DTW = Depth to Water

GWE = Groundwater elevation

(ft-amsl) = Feet Above Mean sea level

ft = Feet

 μ g/L = Micrograms per Liter

TPH-GRO = Total Petroleum Hydrocarbons - Gasoline Range Organics

VOCS = Volatile Organic Compounds

B = Benzene

T = Toluene

TABLE 1 Page 2 of 2

GROUNDWATER MONITORING AND SAMPLING DATA CHEVRON SERVICE STATION 20-9339 5940 COLLEGE AVENUE OAKLAND, CALIFORNIA

E = Ethylbenzene

X = Xylene

-- = Not available / not applicable

<x = Not detected above laboratory method detection limit

TOC elevations were surveyed on December 27, 2000, by Virgil Chavez Land Surveying.

The benchmark used for the survey was the City of Oakland benchmark being

a cut square in the top of curb, at the curb return at the northeast corner of

College Avenue and Miles Avenue (Benchmark Elev. 179.075 feet msl).

ATTACHMENT A

MONITORING DATA PACKAGE

TRANSMITTAL

October 18, 2011 G-R #386521

TO:

Ms. Kiersten Hoey

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608

FROM:

Deanna L. Harding

Project Coordinator

Gettler-Ryan Inc. 6747 Sierra Court, Suite J Dublin, California 94568 RE:

Former Chevron Service Station

#209339

5940 College Avenue Oakland, California

RO 0000466

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DESCRIPTION
VIA PDF	Groundwater Monitoring and Sampling Data Package Second Semi-Annual Event of October 7, 2011

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced data for your use.

Please provide us the updated historical data prior to the next monitoring and sampling event for our field use.

Please feel free to contact me if you have any comments/questions.

trans/209339

WELL CONDITION STATUS SHEET

Client/Facility #: Site Address: City:		llege Avei	nue				Job # Event Date: Sampler:	386521	10.	7. 4	
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M)missing	BOLTS (M) Missing (R) Replaced	Bolt Flanges B= Broken S= Stripped R=Retap	APRON Condition C=Cracked B=Broken G=Gone	Grout Seal (Deficient) inches from TOC	Casing (Condition prevents tight cap seal)	REPLACE LOCK Y/N	REPLACE CAP Y/N	WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken Yes /🔞
MW-1	OK	-					~	2	Y	BAN-1/84/2	
MW-1 MW-2	OIL						\Rightarrow	7	h	BOANT L. 18"/2	
							i				
· .						· .					
Comments											

STANDARD OPERATING PROCEDURE - GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by IWM to Chemical Waste Management located in Kettleman Hills, California.

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#:	Chevron #209339		Job Number:	386521	
Site Address:	5940 College Aver	nue	Event Date:	10-7.	(inclusive)
City:	Oakland, CA		Sampler:	FT	
Well ID Well Diameter Total Depth Depth to Water Depth to Water Purge Equipment: Disposable Bailer Stainless Steel Baile Stack Pump Suction Pump Grundfos Peristaltic Pump QED Bladder Pump Other:	w/ 80% Recharge [(Height	Volu Fact Check if water column The column is a column in the column in	or (VF) 4"= 0.60 mn is less then 0.50x3 case volume = + DTW]: \(\lambda 2.55	of t. Estimated Purge Volume: Time Started: Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thickney Visual Confirmation/I Skimmer / Abserban Amt Removed from S	(2400 hrs) (2400 hrs) (2400 hrs) ft ft ess: ft Description: t Sock (circle one) Skimmer: gal Vell: gal
Start Time (purge Sample Time/Da Approx. Flow Rar Did well de-water (2400 hr.)	te: 0910 /10·7· te:gpm.	Sediment D	r: <u>CLEAU</u> escription:		
		LABORATORY I	NFORMATION		
SAMPLE ID MW-	(#) CONTAINER REFRI	G. PRESERV. TYPE		ANALY TPH-GRO(8015)/BTEX(80)	
COMMENTS:					
Add/Replaced L	.ock: A	dd/Replaced Plug:	/ (2")	Add/Replaced Bolt	

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#: Chevro	n #209339	Job Number:	386521	
Site Address: 5940 Co	ollege Avenue	Event Date:	10.7.11	(inclusive)
City: Oakland	d, CA	Sampler:	FT	
Well ID MW	1-2	Date Monitored:	10.7.11	
Well Diameter 2	in. Volui			0.38
Total Depth 20.10		or (VF) 4"= 0.66		5.80
Depth to Water 10, 2				
9.8			Estimated Purge Volume: 5.0	gal.
Depth to Water w/ 80% Red	charge [(Height of Water Column x 0.20)	+ DTW]: 12.2	Time Started:	(0400 b)
Durge Equipment	/ Sampling Faulument	. /	Time Completed:	(2400 hrs) (2400 hrs)
Purge Equipment:	Sampling Equipment	: /	Depth to Product:	ft
Disposable Bailer Stainless Steel Bailer	Disposable Bailer Pressure Bailer		Depth to Water:	ft
Stack Pump	Discrete Bailer		Hydrocarbon Thickness: Visual Confirmation/Descrip	ft
Suction Pump	Peristaltic Pump		Visual Confirmation/Lescrip	otion:
Grundfos	QED Bladder Pump		Skimmer / Absorbant Sock	(circle one)
Peristaltic Pump	Other:		Amt Removed from Skimme	er:gal
QED Bladder Pump			Amt Removed from Well: Water Removed:	gal
Other:			Product Transferred to:	
Start Time (purge):	Weather Co	onditions:	SUNH	
Sample Time/Date: 095		r: CLEAN		1641
Approx. Flow Rate:				1 10#1
	gpm. Sediment D	_	HORE	\$ 0 a
Did well de-water?	If yes, Time: Volu	ime:	gal. DTW @ Sampling: 🔟	1.10
Time Volume (gal.) pH Conductivity	Temperature	D.O. ORP	
(2400 hr.)	(μmhos/cm - μS)	(② / F)	(mg/L) (mV)	
0933 1.5	7.21 614	18.1		
0936 3.0	7.17 620	18.3		
0940 50	7.13 624	18.5		
SAMPLE ID (#) CONTA	LABORATORY I	NFORMATION	T	22
SAMPLEID (#) CONTA		LANCASTER	ANALYSES TPH-GRO(8015)/BTEX(8021)	
WW 2 3 A	VOA VIAI 123 HCE	LANCASTER	11 11 - GRO(6013)/B1EX(8021)	
		-		
COMMENTS:				
COMMENTS:				
COMMENTS:				

Chevron California Region Analysis Request/Chain of Custody

Lancaster Laboratories					A	Acct.	#:			{					borato				008	148
- COMPONED ON COMPONE	8716	- 42	2004		2						Ana	lyses	s Re	ques	ted			2	0.00	
Facility #:					Matri Potable		of Containers	8260 □ 802 1X	4	O ☐ Silica Gel Cleanup	Pre	serva			des				T = Thio B = NaC O = Othe ng needer rest detect 260 compo	sulfate oH er d
Sampler: Frank Tennedown	Date Collected	Time Collected	Grab	Soil	Water	Oil 🗆 Air	Total Number of Containers	BTEXEMESE 826	TPH 8015 MOD GRO	TPH 8015 MOD DRO	8260 full scan	Total Lead Method	ead					Confirm higher Confirm all hits Run oxy'	st hit by 8 s by 8260 s on high	est hit
MW-1 MW-2	4	0910			W		33	X	X									Please forward directly to the L	I the lab re	
Turnaround Time Requested (TAT) (please ci STD. TA) 72 hour 48 hour 24 hour 4 day 5 day	r	Relinqu	ished by	0	Augus	1890				Da Da	7. \te	Time 115 Time	R	Receiv	ed by: ed by: ed by:	fal	zer	c 67	Date Date Date	Time // 55 Time
Data Package Options (please circle if required)	EDF/EDD																			

Other

Relinquished by Commercial Carrier:

FedEx

Temperature Upon Receipt

UPS

Type VI (Raw Data)

WIP (RWQCB)

Disk

Coelt Deliverable not needed

Date

Yes No

Time

Received by:

Custody Seals Intact?

ATTACHMENT B

LABORATORY ANALYTICAL REPORT

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425 Chevron 6001 Bollinger Canyon Rd L4310 San Ramon CA 94583

October 19, 2011

Project: 209339

Submittal Date: 10/08/2011 Group Number: 1270360 PO Number: 0015075227 Release Number: FROHNAPPLE State of Sample Origin: CA

Client Sample Description Lancaster Labs (LLI) #

 QA-T-111007 NA Water
 6432154

 MW-1-W-111007 Grab Water
 6432155

 MW-2-W-111007 Grab Water
 6432156

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC CRA c/o Gettler-Ryan Attn: Rachelle Munoz

COPY TO

ELECTRONIC Chevron c/o CRA Attn: Report Contact

COPY TO

ELECTRONIC Chevron Attn: Anna Avina

COPY TO

ELECTRONIC CRA Attn: Kiersten Hoey

COPY TO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Jill M Parker at (717) 656-2300 Ext. 1241

Respectfully Submitted,

Lawrence M. Taylor Senior Specialist

Account

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: QA-T-111007 NA Water

Facility# 209339 Job# 386521 GRD

5940 College Ave-Oakland T06019752694 QA

LLI Sample # WW 6432154 LLI Group # 1270360

10904

Project Name: 209339

Collected: 10/07/2011 Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 10/08/2011 09:30 Reported: 10/19/2011 11:16

CAOQA

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01729	TPH-GRO N. CA water	C6-C12	n.a.	N.D.	50	1
GC Vol	latiles	SW-846	8021B	ug/l	ug/l	
02102	Benzene		71-43-2	N.D.	0.5	1
02102	Ethylbenzene		100-41-4	N.D.	0.5	1
02102	Toluene		108-88-3	N.D.	0.5	1
02102	Total Xylenes		1330-20-7	N.D.	1.5	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01729	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11290A94A	10/17/2011 16:4	Marie D John	1
02102	Method 8021 Water Master	SW-846 8021B	1	11290A94A	10/17/2011 16:4	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	11290A94A	10/17/2011 16:4	Marie D John	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-1-W-111007 Grab Water

Facility# 209339 Job# 386521 GRD

5940 College Ave-Oakland T06019752694 MW-1

LLI Sample # WW 6432155

LLI Group # 1270360 Account # 10904

Project Name: 209339

Collected: 10/07/2011 09:10 by FT Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 10/08/2011 09:30 Reported: 10/19/2011 11:16

CA001

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01729	TPH-GRO N. CA water	C6-C12	n.a.	140	50	1
GC Vol	latiles	SW-846	8021B	ug/l	ug/l	
02102	Benzene		71-43-2	N.D.	0.5	1
02102	Ethylbenzene		100-41-4	N.D.	2.0	1
02102	Toluene		108-88-3	N.D.	0.5	1
02102	Total Xylenes		1330-20-7	2.0	1.5	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01729	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11290A94A	10/17/2011 17:11	Marie D John	1
02102	Method 8021 Water Master	SW-846 8021B	1	11290A94A	10/17/2011 17:11	Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	11290A94A	10/17/2011 17:11	Marie D John	1

Account

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: MW-2-W-111007 Grab Water

Facility# 209339 Job# 386521 GRD

5940 College Ave-Oakland T06019752694 MW-2

LLI Sample # WW 6432156 LLI Group # 1270360

10904

Project Name: 209339

Collected: 10/07/2011 09:52 by FT Chevron

6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Submitted: 10/08/2011 09:30 Reported: 10/19/2011 11:16

CAO02

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
GC Vol	latiles	SW-846	8015B	ug/l	ug/l	
01729	TPH-GRO N. CA water	C6-C12	n.a.	370	50	1
GC Vol	latiles	SW-846	8021B	ug/l	ug/l	
02102	Benzene		71-43-2	0.7	0.5	1
02102	Ethylbenzene		100-41-4	0.8	0.5	1
02102	Toluene		108-88-3	N.D.	0.5	1
02102	Total Xylenes		1330-20-7	5.0	1.5	1

General Sample Comments

State of California Lab Certification No. 2501

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Sample Analysis Record

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01729	TPH-GRO N. CA water C6-C12	SW-846 8015B	1	11290A94A	10/17/2011 17:3	6 Marie D John	1
02102	Method 8021 Water Master	SW-846 8021B	1	11290A94A	10/17/2011 17:3	6 Marie D John	1
01146	GC VOA Water Prep	SW-846 5030B	1	11290A94A	10/17/2011 17:3	6 Marie D John	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax; 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Quality Control Summary

Client Name: Chevron Group Number: 1270360

Reported: 10/19/11 at 11:16 AM

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD <u>%REC</u>	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 11290A94A	Sample nu	mber(s): 64	32154-6432	2156				
Benzene	N.D.	0.2	ug/l	100	100	80-120	0	30
Ethylbenzene	N.D.	0.2	ug/l	100	100	80-120	0	30
Toluene	N.D.	0.2	ug/l	95	95	80-120	0	30
TPH-GRO N. CA water C6-C12	N.D.	50.	ug/l	109	109	75-135	0	30
Total Xylenes	N.D.	0.6	ug/l	102	102	80-120	0	30

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: Method 8021 Water Master

Batch number: 11290A94A

	Trifluorotoluene-F	Trifluorotoluene-P	
6432154	90	84	
6432155	83	85	
6432156	86	86	
Blank	79	84	
LCS	93	84	
LCSD	94	84	
Limits:	63-135	58-146	

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Chevron California Region Analysis Request/Chain of Custody

Lancaster Laboratories				Α	vcct. #	.10	29	04		Sam	For ple #	Lanc	aste 43	r Labo Q15	ratori 54 -	ies us 56			008	
166	-11-62	_								Aı	naly	ses	Req	ueste	d		$\supset C$	7#18	17031	00
55#209339-OML G-R#386521 Giol	al IDELUGUT97	52694		Matrix	x					P	res	ervat	ion	Code	\$			Preserv	rative Cod	des
Facility #: 5940 COLLEGE AVENUE, OAKLAN	D, CA		1			ŀ	H	И				_	_		-			HCI	T = Thic	
EF	CRAHK	Hoey		1	-				g									HNO ₃	$\mathbf{B} = \mathbf{Na}(0)$	
Chevron PM: G-R, Inc., 6747 Sierra Court, Su	ient i, Dublin, C ≠	\ 94568	-	 	$ \ $	ω	ارا		Gel Cleanup										rting neede	
Consultant/Office: Deanna L. Harding (deanna)			_	Potable NPDES		Containers	™ 8021 X		9	ļ									owest detec	
Consultant Pri. Mgr.:	· · · · · · · · · · · · · · · · · · ·			lg z		ğ	206		Silica			1]	_!						8260 comp	
Consultant Prj. Mgr.: 925-551-7555 Consultant Phone #: Fax Sampler: Flat Euch	925-551-7899	3	-		4	읳		ွ	밍			Method	Method				802	MTBE C	onfirmation	
Complex Flack [Gundari	•		={				8260	9	0 0 0		ates	¥	- 1				ПС	onfirm hig	nest hit by 8	3260
Jampier.		Grab	3		Ąį	Total Number		TPH 8015 MOD GRO	TPH 8015 MOD	8260 full scan	Oxygenates	اچ	Dissolved Lead				□ c	onfirm all l	nits by 8260	,
Da	e Time	┩ᇐ┃┋	<u> </u>	Ē		ᄝ	×	8	8015	ž	õ	Total Lead	8						xy's on high	
Sample Identification Colle		da la	Soil	Water	□ lio	Ď	BTEX	표	TPH	8260		Tota	ÖİŞ			1 1	□R	un o	xy's on all h	nits
QA 10.7	· 11			W		2	X	X									Cor	nments /	Remarks	
<u> </u>																				1
<u> </u>	0910	\times				3	X	X												
MM-7 4	0952			1		3	X	X											ard the lab e Lead Cor	
•				<u> </u>				Ì											cc: G-R.	Journal I
		\bot	\perp	<u> </u>							_				_		_			1
			_		$\bot \bot$						_	_			1_		[1
			_	ļ	\sqcup						_	_			<u> </u>		_			
		+		<u> </u>	11						_				 					1
		+	╁	 	1						_	-	_		-	-	_			
			-	 	+-+							_	-		+					1
		- -	Щ.	<u> </u>	Ш					\perp	$\frac{1}{1}$		ᆛ			لبل		.,.,,	 	
Turnaround Time Requested (TAT) (please circle)	Helino	uished by		_	<u></u>					Date	\ \ \	ime <u> </u>	Į πε	Ceived	by:	al	we	Ø7	Date 0C711	Time 1155
STD. TAT 72 hour 48 hour	Relino	uisned by	r: .						T -	loto.	┱	ima	10,	and it in a	-				Date	Time
24 hour 4 day 5 day	a	ursned to	lps	٧				87	00	77/	160	230	1	FE	DE	\geq		_		
Data Package Options (please circle if required)	Relino	uished by	y: ¯							Date		ime /	₽ē	ceived	by:		-		Date	Time
QC Summary Type I - Full EDF/	EDD -								.]		<u> </u>		\-			- ,			1	 _
Type VI (Raw Data) Coelt Deliverable not needed		uished by											Re	ceived	by:	- /	`		Date I-136v	Time
WIP (RWQCB)	UPS		FedE			ther		7					4-	(-	$\overline{}$	<u> </u>			-	3933
Disk	Temp	erature U	pon R	eceipt				1				_ C°	Cı	dtody	Seals	Intact	? >	§§ No		

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL N.D. TNTC IU umhos/cm C meq g ug	Reporting Limit none detected Too Numerous To Count International Units micromhos/cm degrees Celsius milliequivalents gram(s) microgram(s)	BMQL MPN CP Units NTU ng F Ib. kg	Below Minimum Quantitation Level Most Probable Number cobalt-chloroplatinate units nephelometric turbidity units nanogram(s) degrees Fahrenheit pound(s) kilogram(s) milligram(s)
ml m3	milliliter(s) cubic meter(s)	Ĭ ul	liter(s) microliter(s)

- less than The number following the sign is the limit of quantitation, the smallest amount of analyte which can be reliably determined using this specific test.
- greater than
- J estimated value – The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).
- ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry weight Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported basis on an as-received basis.

U.S. EPA CLP Data Qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	Ε	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of the instrument	S	Method of standard additions (MSA) used for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions, and Lancaster hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

ATTACHMENT C

HISTORICAL GROUNDWATER MONITORING AND SAMPLING DATA

Table 1
Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #209339 5940 College Avenue Oakland, California

					, California				
WELL ID/	TOC*	DTW	GWE	TPH-GRO	В	Т	E	X	MTBE
DATE	(ft.)	(ft.)	(msl)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)
MW-1									
01/03/01	196.91	12.75	184.16	930^{1}	2.9	6.9	2.7	7.6	$14/<2.0^3$
04/25/01	196.91	9.23	187.68	210^{4}	2.0	1.5	2.0	3.3	$5.3 < 2.0^3$
07/09/01	196.91	11.86	185.05	290^{5}	1.8	2.0	2.5	0.96	<2.5
06/08/00	196.91	13.49	183.42	200	< 0.50	< 0.50	< 0.50	<1.5	<2.5
01/13/02	196.91	7.33	189.58	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
04/08/02	196.91	7.45	189.46	670	< 0.50	< 2.0	<1.0	5.6	<2.5
10/15/02	196.91	13.68	183.23	260	0.62	0.82	< 0.50	<1.5	
04/15/03	196.91	6.82	190.09	1,700	1.3	< 5.0	< 2.0	< 5.0	
10/31/03	196.91	13.72	183.19	150	<2.0	0.7	< 2.0	< 5.0	
04/23/04	196.91	9.02	187.89	< 50	< 0.5	< 0.5	< 0.5	<1.5	
10/22/04	196.91	11.50	185.41	63	< 0.5	< 0.5	< 0.5	<1.5	
04/14/05	196.91	7.11	189.80	< 50	< 0.5	< 0.5	< 0.5	<1.5	
10/14/05	196.91	11.90	185.01	160	< 0.5	< 0.5	0.6	< 5.0	
04/14/06	196.91	6.95	189.96	< 50	< 0.5	< 0.5	< 0.5	<1.5	
10/26/06	196.91	11.68	185.23	< 50	< 0.5	< 0.5	< 0.5	<1.5	
04/13/07 ⁶	196.91	10.71	186.20	1,200	3.4	< 5.0	2.1	<20	
10/22/07	196.91	13.75	183.16	< 50	< 0.5	< 0.5	< 0.5	<1.5	
04/21/08	196.91	9.95	186.96	120	< 0.5	< 0.5	< 0.5	<1.5	
10/15/08	196.91	14.30	182.61	< 50	< 0.5	< 0.5	< 0.5	<1.5	
04/15/09	196.91	9.20	187.71	< 50	< 0.5	< 0.5	< 0.5	<1.5	
10/01/09	196.91	14.26	182.65	< 50	< 0.5	< 0.5	< 0.5	<1.5	
04/12/10	196.91	7.04	189.87	<50	<0.5	<0.5	<0.5	<1.5	
MW-2									
01/03/01	197.35	12.48	184.87	$2,100^2$	110	11	63	25	83/2.2 ³
04/25/01	197.35	8.90	188.45	$1,700^4$	150	12	30	15	$150/<2.0^3$
07/09/01	197.35	11.44	185.91	$2,500^5$	200	21	55	26	<50
04/08/02	197.35	13.37	183.98	4,200	87	2.8	29	9.8	<2.5
01/13/02	197.35	6.55	190.80	410	20	2.9	<2.5	4.4	$27/<2.0^3$
04/08/02	197.35	8.37	188.98	4,000	70	1.7	17	17	<2.5
10/15/02	197.35	13.00	184.35	3,100	41	2.2	16	<6.0	~2.3
04/15/03	197.35	7.58	189.77	2,400	37	<2.5	12	<7.5	
10/31/03	197.35	13.02	184.33	2,300	12	3.4	4.8	<7.5	
10/31/03	171.33	13.02	107.33	2,300	12	J. T	7.0	1.5	

Table 1
Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #209339 5940 College Avenue Oakland, California

					California				
WELL ID/	TOC*	DTW	GWE	TPH-GRO	В	Т	E	X	MTBE
DATE	(ft.)	(ft.)	(msl)	$(\mu g/L)$	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-2 (cont)									
04/23/04	197.35	8.38	188.97	960	8.9	1.0	2.4	<1.5	
10/22/04	197.35	11.41	185.94	2,200	24	<2.5	4.1	<10	
04/14/05	197.35	6.69	190.66	640	2.1	< 2.0	< 2.0	7.5	
10/14/05	197.35	11.14	186.21	1,200	6.9	<2.5	<2.5	<7.5	
04/14/06	197.35	6.54	190.81	180	< 0.5	< 0.5	< 0.5	< 5.0	
10/26/06	197.35	11.02	186.33	550	<2.0	0.5	< 2.0	<10	
$04/13/07^6$	197.35	9.95	187.40	< 50	< 0.5	< 0.5	< 0.5	<1.5	
10/22/07	197.35	12.63	184.72	3,200	12	< 5.0	4.7	<20	
04/21/08	197.35	9.31	188.04	860	1.0	< 2.07	< 2.07	<10 ⁷	
10/15/08	197.35	13.71	183.64	480	1.3	0.8	1.1	< 5.0 ⁸	
04/15/09	197.35	8.79	188.56	370	0.7	1.3	0.9	6.5	
10/01/09	197.35	13.67	183.68	< 50	< 0.5	< 0.5	< 0.5	<1.5	
04/12/10	197.35	6.62	190.73	310	1.0	<0.5	0.5	<1.5	
TRIP BLANK									
TB-LB				~0	0.50		0.70	0.70	
01/03/01				<50	<0.50	<0.50	<0.50	<0.50	<2.5
04/25/01				<50	<0.50	<0.50	<0.50	< 0.50	<2.5
07/09/01				<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
QA				70	0.50	0.50	0.50	1.5	2.5
10/08/01				<50	<0.50	<0.50	<0.50	<1.5	<2.5
01/13/02				<50	<0.50	<0.50	<0.50	< 0.50	<2.5
04/08/02				<50	<0.50	<0.50	<0.50	<1.5	<2.5
10/15/02				<50	<0.50	< 0.50	<0.50	<1.5	
04/15/03				<50	<0.5	<0.5	<0.5	<1.5	
10/31/03				<50	<0.5	<0.5	<0.5	<1.5	
04/23/04				<50	<0.5	<0.5	<0.5	<1.5	
10/22/04				<50	<0.5	<0.5	<0.5	<1.5	
04/14/05				<50	<0.5	<0.5	<0.5	<1.5	
10/14/05				<50	<0.5	<0.5	<0.5	<1.5	
04/14/06				<50	<0.5	<0.5	<0.5	<1.5	
10/26/06				<50	<0.5	<0.5	<0.5	<1.5	
04/13/07				< 50	< 0.5	< 0.5	< 0.5	<1.5	

Table 1 Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #209339 5940 College Avenue Oakland, California

WELL ID/	TOC*	DTW	GWE	TPH-GRO	В	T	E	X	MTBE
DATE	(ft.)	(ft.)	(msl)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)
QA (cont)									
10/22/07				< 50	< 0.5	< 0.5	< 0.5	<1.5	
04/21/08				< 50	< 0.5	< 0.5	< 0.5	<1.5	
10/15/08				< 50	< 0.5	< 0.5	< 0.5	<1.5	
04/15/09				< 50	< 0.5	< 0.5	< 0.5	<1.5	
10/01/09				< 50	< 0.5	< 0.5	< 0.5	<1.5	
04/12/10				< 50	< 0.5	< 0.5	< 0.5	<1.5	

Table 1

Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #209339 5940 College Avenue Oakland, California

EXPLANATIONS:

TOC = Top of Casing TPH = Total Petroleum Hydrocarbons X = Xylenes

(ft.) = Feet GRO = Gasoline Range Organics MTBE = Methyl Tertiary Butyl Ether

 $DTW = Depth \ to \ Water \\ GWE = Groundwater \ Elevation \\ (msl) = Mean \ sea \ level$ E = Ethylbenzene $(\mu g/L) = Micrograms \ per \ liter \\ -- = Not \ Measured/Not \ Analyzed \\ QA = Quality \ Assurance/Trip \ Blank$

- * TOC elevations were surveyed on December 27, 2000, by Virgil Chavez Land Surveying. The benchmark used for the survey was a City of Oakland benchmark being a cut square in the top of curb, at the curb return at the northeast corner of College Avenue and Miles Avenue, (Benchmark Elev. = 179.075 feet, msl).
- Laboratory report indicates unidentified hydrocarbons C6-C12.
- ² Laboratory report indicates gasoline C6-C12.
- MTBE by EPA Method 8260.
- Laboratory report indicates gasoline C6-C12 + unidentified hydrocarbons <C6.</p>
- Laboratory report indicates gasoline C6-C12 + unidentified hydrocarbons C6-C12.
- Current laboratory analytical results do not coincide with historical data, although the laboratory results were confirmed.
- Laboratory report indicates that due to the presence of interferent near their retention time, normal reporting limits were not attained for toluene, ethylbenzene, and total xylenes. The presence or concentration of these compounds cannot be determined below the reporting limits due to the presence of these interferents.
- Laboratory report indicates that due to the presence of an interferent near its retention time, the normal reporting limit was not attained for total xylenes. The presence or concentration of this compound cannot be determined due to the presence of this interferent.

Table 2
Groundwater Analytical Results - Oxygenate Compounds

Former Chevron Service Station #209339 5940 College Avenue Oakland, California

WELL ID	DATE	ETHANOL (μg/L)	TBA (μg/L)	MTBE (μg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	1,2-DCA (μg/L)
MW-1	01/03/01	<500	<50	<2.0	<2.0	<2.0	<2.0	<2.0
	04/25/01		<20	<2.0	<2.0	<2.0	<2.0	
MW-2	01/03/01	<500	<50	2.2	<2.0	<2.0	<2.0	<2.0
	04/25/01		<20	<2.0	<2.0	<2.0	<2.0	
	01/13/02		<20	<2.0	<2.0	<2.0	<2.0	

EXPLANATIONS:

TBA = t-Butyl alcohol

 $MTBE = Methyl \ Tertiary \ Butyl \ Ether$

DIPE = di-Isopropyl ether

 $ETBE = Ethyl \ t\text{-butyl ether}$

TAME = t-Amyl methyl ether

1,2-DCA = 1,2-Dichloroethane

 $(\mu g/L) = Micrograms \ per \ liter$

-- = Not Analyzed

ANALYTICAL METHOD:

EPA Method 8260 for Oxygenate Compounds

Table 3 Groundwater Analytical Results

Former Chevron Service Station #209339 5940 College Avenue Oakland, California

	DATE	FERROUS IRON	TOTAL ALKALINITY	SULFATE AS SO ₄
		(mg/L)	(mg/L)	(mg/L)
MW-1	04/25/01	0.15	380	11
	07/09/01	< 0.050	410	6.8
	10/08/01	1	414	5.4
	01/13/02	$<0.10^2$	390	10
MW-2	04/25/01	0.093	680	21
1,1,1, 2	07/09/01	0.44	600	9.3
	10/08/01	1	683	3.8
	01/13/02	$<0.10^{2}$	630	7.0

EXPLANATIONS:

(mg/L) = milligrams per liter

-- = Not Analyzed

ANALYTICAL METHODS:

EPA Method SM 3500 Fe for Ferrous Iron EPA Method 310.1 for Total Alkalinity EPA Method 300.0 for Sulfate as SO_4

Analysis was not performed by the laboratory as requested on the Chain of Custody.

Due to sample transfer by the lab from one laboratory to another, the sample was received beyond the EPA recommended holding time.

Table 4 Field Measurements

Former Chevron Service Station #209339

5940 College Avenue Oakland, California

WELL ID			
MW-1	07/09/01	1.25	111
	10/08/01	1.20	64
	01/13/021	-	
MW-2	07/09/01	1.89	16
	10/08/01	1.04	58
	01/13/021		

EXPLANATIONS:

D.O. = Dissolved Oxygen Concentration

(mg/L) = Milligrams per liter

ORP = Oxygen Reduction Potential

(mV) = Millivolt

-- = Not Measured

 $^{^{1}\,}$ D.O. and ORP meter erratic; measurements not taken.

ATTACHMENT D

SHEAFF'S GARAGE
HISTORICAL GROUNDWATER MONITORING AND SAMPLING DATA

TABLE 1

Historical Groundwater Levels & Hydrocarbon Analytical Results
5930 College Avenue, Oakland, CA

	5930 College Avenue, Oakland, CA											
	Sample Date	Casing	Depth to	Water	Product	TPH-G	MTBE	BTEX				
Well ID		Elevation	GW	Elevation	Odor/ Sheen	(ug/L)	(ug/L)	(ug/L)				
		(ft, MSL)	(ft, TOC)	(ft, MSL)	Odol/ Blicch	(ug/L)	(ug/L)	(ug/L)				
	6/1/98	50.00 *	4.81	45.19	slight sheen	160000	1900	28000 / 21000 / 3800 / 21000				
	9/10/98	50.00 *	7.5	7.5 42.5		290000	440	<50 / 25000 / 7100 / 32000				
	10/7/99	50.00 *	10.04	39.96	Odor	85000	1100	20000 / 13000 / 3800 / 17000				
	1/26/00	50.00 *	8.26	41.74	slight sheen	130000	470	25000 / 18000 / 4500 / 22000				
	10/25/00	50.00 *	10.1	39.9	Odor	130000	1300	23000 / 12000 / 3900 / 18000				
	2/2/01	50.00 *	9.61	40.39	Odor	128000	780	19000 / 11000 / 3800 / 18000				
	4/25/01		7.39	188.51	Odor	120000	900	21000 / 13000 / 390 / 18000				
	7/10/01		9.72	186.18	Odor	79000	660	15000 / 7800 / 3000 / 15000				
	10/8/01		10.88	185.02	Odor/sheen	112000	374	25300 / 11800 / 4280 / 20600				
	1/7/02		4.34	191.56	Odor	96100	596	21100 / 13500 / 4160 / 21900				
	4/8/02		6.84	189.06	slight odor	111000	679	21200 / 13400 / 4230 / 21000				
	7/9/02		9.4	186.5	slight odor	110000	570	20300 / 13300 / 4060 / 19800				
	10/23/02		11.04	184.86	None	54100	1010 (1080)**	10800 / 3870 / 2320 / 9440				
	10/15/03		10.8	185.1	None	90700	724	17800 / 4740 / 3150 / 13900				
	2/2/04		7.35	188.55	None	108000	194	14200 / 7420 / 3450 / 19800				
	4/23/04		6.83	189.07	slight odor	49200	114	7910 / 1480 / 1810 / 10100				
	7/19/04		8.95	186.95	Odor	63900	303	7260 /2270 / 2510 / 10100				
	10/22/04		10.15	185.75	None	80700	493 (296)**	13900 / 1670 / 3550 / 15200				
MW-1	1/21/05		5.45	190.45			271 (174)**	14700 / 25300 / 10800 / 73500				
141 44 -1	4/14/05		5.3	190.6	Odor /sheen	116000	366 (410)**	15100 / 7080 / 4220 / 20700				
	7/26/05		7.6	188.3	Odor	82000	ND<250	12000 / 4500 / 3300 / 14000				
	10/14/05	195.9	9.58	186.32	Odor/sheen	64000	ND<250	13000 / 5700 / 3400 / 16000				
	1/13/06	175.7	4.6	191.3	Odor/sheen	49000	ND<250	12000 / 5300 / 3500 / 17000				
	4/14/06		3.08	192.82	Odor	51000	270	14000 / 5300 / 3500 / 17000				
	10/26/06		9.22	186.68	Odor	34000	ND<250	12000 / 1600 / 3100 / 8600				
	1/30/07		9.6	186.3	Odor	39000	ND<200	10000 / 2200 / 2900 / 10000				
	4/13/07		9.24	186.66	NM	52000	150	9100 / 2600 / 3100 / 11000				
	7/24/07		10.67	185.23	None	46000	240	10000 / 1200 / 3500 / 6200				
	4/21/08		7.24	188.66	None	50000	ND<100	7800 / 1500 / 3000 / 12000				
	7/22/08		9.71	186.19	Odor	60000	470 ¹	8100 / 1500 / 2700 / 9800				
	10/21/08		11.63	184.27	Odor	15000	110	4900 / 430 / 1900 / 2260				
	1/19/09		10.91	184.99	Odor/Sheen	33000	143	8830/837/2160/3880				
	4/27/09		7.7	188.2	Odor	75000	53	8500/2100/2300/11000				
	10/27/09		9.34	186.56	Odor	61000	75	8300/1500/2600/7900				
	10/14/10		10.3	185.6	Clear/Odor	24000 ²	220	8100/820/2200/4400				
	6/9/11		6.38		Clear/Odor	53000	NA	14000/3000/3800/16900				
	10/7/11			189.5 186.82	None							
			9.08	50000 ²	89	9200/1500/4200/13500						
	CRWQCB	ESL - Nov 20	007 (Revised	100	5	1.0 / 40 / 30 / 20						

Table Notes Following

TABLE 1 (Cont.)
Historical Groundwater Levels & Hydrocarbon Analytical Results
5930 College Avenue, Oakland, CA

Well ID Sample Date Elevation (ft, MSL) (ft, TOC) (ft, MSL) (ft, MSL) (ft, TOC) (ft, MSL) (ft,	Casing Depth to Water P 1 TRIVIC METERS PARTY											
MW-2 107.99 51.42° 11.49 39.93 slight/odor 18000 490 3000 / 1700 / 1000 / 390 1/26/00 51.42° 7.85 43.57 None 42000 560 9300 / 2200 / 2300 / 7700 10/25/00 51.42° 11.57 39.85 slight/odor 31000 500 5500 / 3300 / 1200 / 1200 / 2500 2/201 51.42° 11.57 39.85 slight/odor 31000 500 5500 / 3300 / 1200 / 2500 / 3000 4/25/01 8.52 188.76 Odor 56000 460 6700 / 1700 / 2600 / 8200 7/10/01 11.05 186.23 Odor 39000 180 6200 / 730 / 2300 / 6100 10/8/01 11.05 186.23 Odor 39000 180 6200 / 730 / 2300 / 6100 10/8/01 17/02 4.92 192.36 Odor 59600 366** 10300 / 3250 / 4180 / 14400 4/80/2 8.4 188.88 slight odor 59600 366** 10300 / 3250 / 4180 / 14400 4/23/04 4/23/04 13.85 183.43 None 13300 322 (360)** 2420 / 216 / 922 / 1470 10/15/03 12.38 184.9 None 11300 264 (322)** 2660 / 51 / 1180 / 1220 4/23/04 8.4 188.88 Slight odor 30400 112 (203)** 2420 / 216 / 922 / 1470 10/22/04 10.25 187.03 Mod odor 13100 263 (233)** 2540 / 239 / 1320 / 2300 10/22/04 10.25 187.03 Mod odor 13500 273 (229)** 1790 / 54 / 892 / 915 10/14/05 10/3 186.98 Odor 28300 283 (373)** 2540 / 239 / 1320 / 2300 10/22/04 10.25 187.03 Mod odor 27800 161 (163)** 5980 / 1030 / 2890 / 970 4/14/05 10/3 186.36 Odor/sheen 4000 ND (ND)** 5600 / 550 / 2600 / 4600 1/30/07 19.98 186.36 Odor/sheen 10000 84 1300 / 1300 / 1200 1/30/07 12.04 185.24 None 10000 84 1300 / 1300 / 1200 1/24/08 13.11 184.17 Odor/sheen 4900 65 700 / 20 / 370 / 52 1/19/09 12.31 184.97 Odor 2500 90 167/8 49/114/501 10/21/08 13.11 184.17 Odor/sheen 4900 65 700 / 20 / 370 / 52 1/19/09 10.52 186.76 Odor 7000 ND 10/24/01 10.52 186.76 Odor 7000 ND 10/24/01 10.52 186.76 Odor 7000 ND	Wall ID	Commis Data	-			Product	TPH-G	MTBE	BTEX			
10/7/99	well ID	Sample Date				Odor/ Sheen	(ug/L)	(ug/L)	(ug/L)			
1/26/00		10/7/00				1: 1./ 1	10000	400	2000 / 1700 / 1000 / 2000			
10/25/00 51.42* 11.57 39.85 slight/odor 31000 500 5500/370/1700/2600 2/201 51.42* 10.77 40.65 Odor 36000 400 4300/530/1800/4500 4/2500 7/10/00 10.80 11.05 188.23 Odor 56000 460 6700/1700/2600/8200 10/8/01 12.79 184.49 Odor/sheen 40700 6460 6301/399/2100/5320 12.79 184.49 Odor/sheen 40700 6460 6301/399/2100/5320 12.79 184.49 Odor/sheen 40700 6460 6301/399/2100/5320 10/23/02 10/23/02 18.84 188.88 slight odor 59600 366** 10300/3250/4180/14400 10/23/02 13.85 186.73 slight odor 37100 303 (298)** 5340/890/2110/6920 10/15/03 12.38 184.9 None 13300 322 (360)** 2420/216/922/1470 10/15/03 12.38 184.9 None 11300 264 (322)** 2660/51/1180/1220 8.8 188.48 None 21700 168 (200)** 2300/51/1030/2060 4/23/04 8.4 188.88 Slight odor 30400 112 (203)** 3570/322/1620/4140 10.33 186.98 Odor 28300 283 (373)** 2540/239/1320/2300 10/2204 10.25 187.03 Mod odor 278000 161 (163)** 5980/1030/2890/9070 10/14/05 17/26/05 8.7 188.58 None 46100 155 (150)** 5700/787/2530/6010 4/4/406 4/4/406 19.36 19.36 Odor/sheen 13000 130 2900/100/1300/1200 10/26/06 10.58 186.7 Odor 20000 ND-100 4900/490/2400/4200 4/13/07 10.54 186.74 None 10000 84 1300/41/710/270 4/21/08 10.13 184.97 Odor 2500 90 167/84.9/114/50.3 10/27/09 10.52 186.76 Odor/sheen 4900 65 700/20/370/52 11.12 188.27 Odor/sheen 4900 65 700/20/370/52 11.13 184.17 Odor/sheen 4900 65 700/20/370/52 10/2709 10.52 186.76 Odor 2500 90 167/84.9/114/50.3 10/27/09 10.52 186.76 Odor 2500 90 167/84.9/114/50.3 10/												
MW-2												
## 17.50 8.52 188.76 Odor 56000 460 6700 / 1700 / 2600 / 8200												
11.05			51.42*									
10/8/01												
MW-2 17/02												
4/8/02 8.4 188.88 slight odor 66700 583** 10200/2670/3840/13200 7/9/02 10/23/02 10.55 186.73 slight odor 37100 303 (298)** 5340/890/2110/6920 10/15/03 10/15/03 22/204 12.38 184.9 None 11300 264 (322)** 2660/51/1180/1220 4/23/04 4/23/04 8.8 188.48 None 21700 168 (200)** 2130/51/1030/2060 10/22/04 10/22/04 10.3 186.98 Odor 28300 283 (373)** 2540/239/1320/2300 10/22/04 1/21/05 8.4 188.88 Slight odor 3800 283 (373)** 2540/239/1320/2300 10/22/04 1/21/05 6.65 190.63 Mod odor 278000 161 (163)** 5980/1030/2890/9970 4/14/05 7/26/05 10/14/05 188.58 None 46100 155 (150)** 5170/787/2530/6010 4/13/06 4/14/06 10/26/06 1/30/07 188.95 188.33 Mod odor 13000 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
T/9/02 10/23/02 13.85 186.73 slight odor 37100 303 (298)** 5340 / 890 / 2110 / 6920 10/23/02 13.85 183.43 None 13300 322 (360)** 2420 / 216 / 922 / 1470 12.38 184.9 None 11300 264 (322)** 2660 / 51 / 1180 / 1220 8.8 188.48 None 21700 168 (200)** 2130 / 51 / 1030 / 2060 4/23/04 8.4 188.88 Slight odor 24300 283 (373)** 2540 / 239 / 1520 / 2300 10/22/04 10.3 186.98 Odor 28300 283 (373)** 2540 / 239 / 1320 / 2300 10/22/04 10.25 187.03 Mod odor 3500 273 (229)** 1790 / 54 / 892 / 915 6.65 190.63 Mod odor 278000 161 (163)** 5980 / 1030 / 2890 / 9070 8.7 188.58 None 46100 155 (150)** 5170 / 787 / 2530 / 6010 8.95 188.33 Mod odor 278000 ND (ND)** 5600 / 550 / 2600 / 4600 10/26/06 10/3007 8.41 193.67 Odor 20000 ND < 100 4900 / 490 / 2400 / 4200 4713/07 10.58 186.3 Odor 20000 ND < 100 4900 / 490 / 2400 / 4200 4712/08 10.54 186.74 NM 19000 57 2000 / 88 1300 / 110.54 186.74 NM 19000 57 2000 / 88 / 1300 / 110.54 186.74 NM 19000 57 2000 / 88 / 1300 / 110 / 1200 10/21/08 13.11 184.17 Odor/sheen 10000 84 1300 / 1400 / 1400 / 1300 10/21/08 13.11 184.17 Odor/sheen 10000 ND < 0.5 1700 / 1300 / 1400 / 1300 10/27/09 10.52 186.76 Odor 2500 90 167/8.49/114/50.3 4/27/09 9.01 188.27 Odor/sheen 21000 ND < 0.5 1700 / 1300 / 100.54 186.72 None 10000 ND < 0.5 510/9/330/1600 10/27/09 10.52 186.76 Odor 7000 ND < 0.5 510/9/330/1600 10/27/09 10.52 186.76 Odor 7000 ND < 0.5 510/9/330/1600 10/27/09 10.52 186.76 Odor 7000 ND < 0.5 510/9/330/1600 10/27/09 10.52 186.76 Odor 7000 ND < 0.5 510/9/330/1600 10/27/09 10.52 186.76 Odor 7000 ND < 0.5 510/9/330/1600 10/27/09 10.52 186.76 Odor 7000 ND < 0.5 510/9/330/1600 10/27/09 10.52 186.76 Odor 7000 ND < 0.5 510/9/330/1600 10/27/09 10.52 186.76												
10/23/02						U						
10/15/03 2/2/04 8.8 188.48 None 11300 264 (322)** 2660 / 51 / 1180 / 1220						U						
MW-2								\ /				
MW-2 Mathematical Process of the Content of the								` ′				
MW-2 Tolson												
MW-2 10/22/04					188.88							
MW-2 MW-2				10.3		Odor			2540 / 239 /1320 / 2300			
MW-2 4/14/05 7/26/05 10/14/05 8.95 188.33 Mod odor 41000 ND (ND)** 5600 / 550 / 2600 / 4600 1/13/06 1/13/06 4/14/06 10.92 186.36 Odor/sheen 13000 130 2900 / 100 / 1300 / 1200 5.48 191.8 Odor 20000 ND<100		10/22/04			187.03		13500	273 (229)**	1790 / 54 / 892 / 915			
197.28		1/21/05		6.65	190.63			161 (163)**	5980 / 1030 / 2890 / 9070			
10/14/05	MW-2	4/14/05		8.7	188.58	None	46100	155 (150)**	5170 / 787 / 2530 / 6010			
1/13/06	1.1.1.2	7/26/05		8.95	188.33	Mod odor	41000	ND (ND)**	5600 / 550 / 2600 / 4600			
1/13/06		10/14/05	197 28	10.92	186.36	Odor/sheen	13000	130	2900 / 100 / 1300 / 1200			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1/13/06	177.20	5.48	191.8	Odor	20000	ND<100	4900 / 490 / 2400 / 4200			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4/14/06		3.61	193.67	Odor	21000	ND<100	4000 / 740 / 2300 / 5100			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10/26/06		10.58	186.7	Odor	8200	68	1400 / 51 / 840 / 500			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1/30/07		10.98	186.3	Odor	17000	62	3200 / 150 / 2200 / 1800			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4/13/07		10.54	186.74	NM	19000	84 48	2000 / 85 / 1300 / 1100			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7/24/07		12.04	185.24	None	10000		1300 / 41 / 710 / 270			
10/21/08 13.11 184.17 Odor/sheen 4900 65 700 / 20 / 370 / 52 1/19/09 12.31 184.97 Odor 2500 90 167/8.49/114/50.3 4/27/09 9.01 188.27 Odor/sheen 21000 ND<0.5		4/21/08		8.01		None	17000		1800 / 100 / 1400 / 1300			
10/21/08 13.11 184.17 Odor/sheen 4900 65 700 / 20 / 370 / 52 1/19/09 12.31 184.97 Odor 2500 90 167/8.49/114/50.3 4/27/09 9.01 188.27 Odor/sheen 21000 ND<0.5		7/22/08		11.12	186.16	None	16000		1900 / 98 / 1600 / 741			
1/19/09 12.31 184.97 Odor 2500 90 167/8.49/114/50.3 4/27/09 9.01 188.27 Odor/sheen 21000 ND<0.5		10/21/08		13.11	184 17	Odor/sheen	4900		700 / 20 / 370 / 52			
4/27/09 9.01 188.27 Odor/sheen 21000 ND<0.5												
10/27/09 10.52 186.76 Odor 7000 ND<0.5*** 510/19/330/160 10/14/2010 11.56 185.72 None 3200 2 35 460/16/230/110 6/9/2011 7.67 189.61 Clear/Odor 9900 NA 1900/75/1100/1013 10/7/2011 10.42 189.86 Clear/Odor 9200 4 ND<22												
10/14/2010 11.56 185.72 None 3200 ² 35 460/16/230/110 6/9/2011 7.67 189.61 Clear/Odor 9900 NA 1900/75/1100/1013 10/7/2011 10.42 189.86 Clear/Odor 9200 ⁴ ND<22												
6/9/2011 7.67 189.61 Clear/Odor 9900 NA 1900/75/1100/1013 10/7/2011 10.42 189.86 Clear/Odor 9200 ND ND 22 810/34/610/100												
10/7/2011 10.42 189.86 Clear/Odor 9200 4 ND<22 810/34/610/100												
					1							
CRWQCB ESL - Nov 2007 (Revised May 2008) 100 5 1.0 / 40 / 30 / 20						Clear/Odor						
		CRWQCB	ESL - Nov 20	007 (Revised	May 2008)		100	5	1.0 / 40 / 30 / 20			

Table Notes Following

TABLE 1 (Cont.)
Historical Groundwater Levels & Hydrocarbon Analytical Results
5930 College Avenue, Oakland, CA

Casing Depth to Water P 1 TDV C MEDICAL PROPERTY.											
Well ID	Sample Date	Elevation	GW	Elevation	Product	TPH-G	MTBE	BTEX			
well ID	Sample Date				Odor/ Sheen	(ug/L)	(ug/L)	(ug/L)			
	10/7/00	(ft, MSL) 49.39*	(ft, TOC)	(ft, MSL)	N	6600	200	210 / 110 / 420 / 1000			
	10/7/99	.,,	9.67	39.72 43.99	None None	6600 3300	390 40	310 / 110 / 430 / 1000			
	1/26/00	49.39*	5.4					110 / 8 / 100 / 32			
	10/25/00	49.39*	9.24	40.15	Slight odor	4500	ND	100 / 2 / 120 / 130			
	2/2/01	49.39*	8.73	40.66	Slight odor	2900	35	35 / 3 / 160 / 298			
	4/25/01		6.61	188.61	Slight odor	8400	56	260 / 33 / 290 / 510			
	7/10/01		8.85	186.37	Slight odor	12000	35	39 / 10 / 690 / 1600			
	10/8/01		9.75	185.47	Odor/sheen	4913	52	108 / 4 / 99 / 133			
	1/7/02		4.25	190.97	Odor/sheen	7260	81.7**	723 / 138 / 492 / 887			
	4/8/02		6.33	188.89	Odor	11700	ND**	540 / 108 / 706 / 1710			
	7/9/02		8.56	186.66	Odor	2320	28.3 (20)**	37.1 / 4.7 / 98.5 / 187			
	10/23/02		10.02	185.2	Odor/sheen	2830	ND (ND)**	46.8 / 4.7 / 43.6 / 65.5			
	10/15/03		9.8	185.42	Odor/sheen	3040	ND (ND)**	91.3 / 8.4 / 69.9 / 148			
	2/2/04		6.85	188.37	Odor/sheen	5140	ND (ND)**	126 / 8.7 / 134 / 238			
	4/23/04		6.17	189.05	None	7210	ND (ND)**	227 / 39.5 / 448 / 879			
	7/19/04		8.25	186.97	Slight odor 9860 ND (ND)**		20.4 / 3.2 / 30.6 / 117				
	10/22/04		9.25	185.97	None	7420	96 (21)**	152 / 12.8 / 267 / 480			
	1/21/05		5.22	190	Slight odor	2420	ND (ND)**	111 / 11.4 / 139 / 265			
MW-3	4/14/05		6.64	188.58	Odor/sheen	5130	54 (41.4)**	357 / 19.4 / 287 / 510			
141 11 -3	7/26/05		6.9	188.32	None	9800	ND (21)**	200 / 23 / 220 / 360			
	10/14/05	195.22	8.83	186.39	Odor/sheen	6100	ND	76 / 19 / 170 / 350			
	1/13/06	173.22	4.61	190.61	Odor	3900	24	380 / 17 / 230 / 300			
	4/14/06		3.41	191.81	Odor	5000	69	760 / 44 / 230 / 190			
	10/26/06		8.57	186.65	Odor	3100	17	120 /9.8 /55 / 54			
	1/30/07		8.83	186.39	Odor	4500	ND<10	90 /7.6 / 75 / 44			
	4/13/07		8.57	186.65	NM	2800	ND<5	55 / 4.9 / 19 / 6.1			
	7/24/07		9.98	185.24	None	4800	ND<5	140 / 8.3 / 66 / 22			
	4/21/08		9.3	185.92	None	4300	ND<5	200 / 11 / 30 / 14			
	7/22/08		9.05	186.17	None	2400	53 ¹	140 / 13 / 26 / 18.5			
	10/21/08		11.12	184.1	Slight Odor	2900	2.2	170 / 9.2 / 99 / 25.8			
	1/19/09		10.29	184.93	Odor	3600	ND<0.5	148/6.73/24.5/22.1			
	4/27/09		7.15		Odor/sheen	5800	8.8	370/12/82/84			
	10/27/09		8.96	188.07 186.26	Odor	4900 ²	ND<0.5***	130/8.5/89/130			
	10/14/2010			185.46	None	2700 ²	ND<4.4	270/11/290/399.2			
			9.76								
	6/9/2011		5.92	189.3	Clear/Odor None	3200 ²	NA	220/ND<4.4/37/20			
	10/7/2011		8.6	8.6 186.62		5400 ²	ND<4.4	140/7.0/160/67			
	CRWQCB 1	ESL - Nov 20	007 (Revised	May 2008)		100	5	1.0 / 40 / 30 / 20			

Table Notes Following

TABLE 1 (Cont.)

Historical Groundwater Levels & Hydrocarbon Analytical Results 5930 College Avenue, Oakland, CA

Well ID	Sample Date	Casing Elevation (ft, MSL)	Depth to GW (ft, TOC)	Water Elevation (ft, MSL)	Product Odor/ Sheen	TPH-G (ug/L)	MTBE (ug/L)	BTEX (ug/L)	
	4/14/05		6.4	190.77	None	3360	ND (ND**)	62.8 / 6.7 / 79.5/ 317	
	7/26/05		8.63 188		None	1300	ND (ND**)	22 / ND / 48 / 110	
	10/14/05		10.71	186.46	None	4300	ND	93 /1.2 / 100 / 140	
	1/13/06		4.87	192.3	None	450	ND<2.0	10 / ND / 37 / 72	
	4/14/06		2.27	194.9	Odor	120 ND<2.0 2.3		2.3 / ND<1.0 / 3.5 /9.3	
	10/26/06		10.3	186.87	Odor	2800	ND<10	61 / ND<5.0 / 130 / 34	
	1/30/07		10.8	186.37	Odor	1200	ND<2	22 / ND<1.0 / 100 / 200	
	4/13/07		10.31	186.86	NM	510	ND<1	6 / ND<0.5 / 30 / 56	
	7/24/07		11.81	185.36	None	3400	ND<5	63 / ND<2.5 / 180 / 5.6	
PW-1	4/21/08	197.17	9.08	188.09	None	300	ND<1	3 / ND<0.5 / 16 / 26	
1,,, 1	7/22/08	177.17	9.83	187.34	None	710	3.1 1	9.3 / 1.2 1 / 49 / 67.86	
	10/21/08		12.9	184.27	None	1500 ²	1	20 / ND<0.5 / 57 / 20	
	1/19/09		12.11	185.06	Odor/sheen	1100 ²	ND<0.5	12.3/ND<0.5/30.8/9.20	
	4/27/2009		8.69	188.48	None	360 ³	ND<0.5	2.7/ND<0.5/12/18	
	10/27/2009		10.32	186.85	None	1100 ²	ND<0.5	12/ND<0.5/36/34	
	10/14/2010		11.38	185.79	None	860 ³	ND<0.5	8.8/.55/44/44	
	6/9/2011		7.43	189.74	None	96 ³	ND<0.5	ND<0.5/ND<0.5/3.1/2.5	
	10/7/2011		9.79	187.38	None	260 ⁵	ND<0.5	ND<0.5/ND<0.5/5.9/4.5	
CRWQCB ESL - Nov 2007 (Revised May 2008) 100 5 1.0 / 40 / 30									

NOTES:

ft, MSL = feet Above Mean Sea Level

TOC = Top of Well Casing

GW = Depth to Groundwater in feet Below TOC

TPH-G = Total Petroleum Hydrocarbons as Gasoline

MTBE = Methyl Tertiary Butyl Ether

BTEX = Benzene / Toluene / Ethylbenzene / Total Xylenes

ug/L = micrograms per liter

ND = Not detected above laboratory reporting limit

CRWQCB/ESL = California Regional Water Quality Control Board's Interim Final - November 2007 (Revised May 2008), Tier 1 Environmental Screening Level for groundwater that IS a potential source of drinking water

¹ = Presence confirmed, but Relative Percentage Difference (RPD) between columns exceeds 40%

² = Sample exhibit chromatographic pattern that does not resemble standard; See laboratory report for additional information

³ = Although TPH-gas compounds are present, value is elevated due to discrete peak (PCE) within C5-C12 range quantified as gasoline

⁴ = Result is elevated due to contribution from heavy end hydrocarbons within C5-C12 range quantified as gasoline

⁵ = Result is elevated due to contribution from heavy end hydrocarbons and discrete peak of non-fuel compound within C5-C12 range quantified as gasoline

^{* =} Arbitrary datum point with assumed elevation of 50 ft used prior to MSL survey on 4/25/01

^{** =} Concentration confirmed by EPA Method 8260

^{** =} Sample also analyzed for other Fuel oxygenates (EPA Method 8260); All results ND (See Lab Report)

TABLE 2 Historical Groundwater VOC Analytical Results in PW-1 5930 College Avenue, Oakland, CA

Well ID	Sample Date	IPB	n-PB	1,3,5-TMB	1,2,4-TMB	Sec-BB	n-BB	Naphthalene	TCE	MC	cis-1,2-DCE	Vinyl	PCE
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	Chloride	(ug/L)
												(ug/L)	
	4/14/05	11	22	110	100	ND,10	ND<10	43	3.3	ND<25	12	ND<0.5	84.9
	7/26/05	7.3	17	37	100	ND<10	ND<10	43	ND<1	ND<10	7	ND<1	48
	10/14//05	28	72	67	120	12	17	43	4.1	ND<40	29	ND<1	25
	1/13/06	ND<20	ND<10	ND<10	37	ND<10	ND<10	ND<10	1.4	ND<40	5	ND<1	95
	4/14/06	ND<2	ND<10	ND<10	ND<10	ND<10	ND<10	ND<10	1.1	ND<40	2.8	ND<1	68
	10/26/06	ND<10	ND<50	ND<50	ND<50	ND<50	ND<50	ND<50	6.2	ND<200	32	ND<5.0	26
	1/30/07	ND<2	23	31	120	ND<10	ND<10	18	ND<1	ND<40	11	ND<1	29
	4/13/07	2.4	6.1	7	30	ND<5	ND<5	6.8	0.84	ND<20	4.7	ND<0.5	64
PW-1	7/24/07	ND<5.0	60	ND<25	ND<25	ND<25	ND<25	ND<25	ND<2.5	ND<100	58	ND<2.5	50
	4/21/08	1.1	ND<5	ND<5	15	ND<5	ND<5	ND<5	0.88	ND<20	3.7	ND<0.5	91
	7/22/08	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	10/21/08	17	14	5	15	9.4	14	5.1	6.2	ND<10	56	0.6	44
	4/27/09	1.2	3.3	3.4	16	ND<0.5	ND<0.5	ND<1.0	1.4	ND<5.0	4	ND<0.5	120
	10/27/09	6	4.8	ND<0.5	15	ND<0.5	ND<0.5	ND<1.0	ND<0.5	ND<5.0	35	ND<0.5	78
	10/14/10	9.8	15	12	44	4.4	ND<0.5	4	5	ND<5.0	61	ND<0.5	35
	6/9/11	0.55	1.7	0.98	3.7	ND<0.5	ND<0.5	ND<1.0	0.85	ND<5.0	1.4	ND<0.5	86
	10/7/11	0.79	1.8	0.99	3.8	ND<0.5	0.68	1.2	0.63	ND<5.0	2	ND<0.5	76
CRW	CRWQCB ESL		NC	NC	NC	NC	NC	17	5	5	6	0.5	5

NOTES:

VOC = Volatile Organic Compounds

IPB = Isopropylbenzene

n-PB = n-Propylbenzene

1,3,5-TMB = 1,3,5-Trimethylbenzene

1,2,4-TMB = 1,2,4-Trimethylbenzene

sec-BB = sec-Butylbenzene

n-BB = n-Butylbenzene

TCE = Trichloroethene

MC = Methylene Chloride

cis-1,2-DCE = cis-1,2-Dichloroethene

PCE = Tetrachloroethene

ug/l = micrograms per liter

ND = Not detected above laboratory reporting limit

NC = No Criteria Listed

NA = Not Analyzed

CRWQCB/ESL = California Regional Water Quality Control Board's Interim Final - November 2007 (Revised May 2008), Tier 1 Environmental Screening Level for groundwater that **IS** a potential source of drinking water